
Diana, Alex, Matechou, Eleni, Griffin, Jim E., Yu, Douglas W., Luo, Mingjie, Tosa, 
Marie, Bush, Alex and Griffiths, Richard A. (2024) eDNAPlus: A unifying modelling 
framework for DNA-based biodiversity monitoring.  Journal of the American 
Statistical Association . pp. 1-33. ISSN 0162-1459. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/107114/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1080/01621459.2024.2412362

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/107114/
https://doi.org/10.1080/01621459.2024.2412362
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Journal of the American Statistical Association

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/uasa20

eDNAPlus: A Unifying Modeling Framework for
DNA-based Biodiversity Monitoring

Alex Diana, Eleni Matechou, Jim Griffin, Douglas W. Yu, Mingjie Luo, Marie
Tosa, Alex Bush & Richard A. Griffiths

To cite this article: Alex Diana, Eleni Matechou, Jim Griffin, Douglas W. Yu, Mingjie Luo,
Marie Tosa, Alex Bush & Richard A. Griffiths (23 Dec 2024): eDNAPlus: A Unifying Modeling
Framework for DNA-based Biodiversity Monitoring, Journal of the American Statistical
Association, DOI: 10.1080/01621459.2024.2412362

To link to this article:  https://doi.org/10.1080/01621459.2024.2412362

© 2024 The Author(s). Published with
license by Taylor & Francis Group, LLC.

View supplementary material 

Published online: 23 Dec 2024.

Submit your article to this journal 

Article views: 741

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

https://www.tandfonline.com/journals/uasa20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2024.2412362
https://doi.org/10.1080/01621459.2024.2412362
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2024.2412362
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2024.2412362
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2024.2412362?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2024.2412362?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2024.2412362&domain=pdf&date_stamp=23%20Dec%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2024.2412362&domain=pdf&date_stamp=23%20Dec%202024
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20


JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
2024, VOL. 00, NO. 0, 1–15: Applications and Case Studies
https://doi.org/10.1080/01621459.2024.2412362

eDNAPlus: A Unifying Modeling Framework for DNA-based Biodiversity Monitoring

Alex Dianaa, Eleni Matechoub, Jim Griffinc , Douglas W. Yud,e, Mingjie Luof, Marie Tosag, Alex Bushh, and
Richard A. Griffithsi

aSchool of Mathematics, Statistics and Actuarial Science, University of Essex, Colchester, UK; bSchool of Mathematics, Statistics and Actuarial Science,
University of Kent, Canterbury, UK; cDepartment of Statistical Science, University College London, London, UK; dSchool of Biological Sciences, University of
East Anglia, Norwich, UK; eYunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese
Academy of Sciences, Kunming, China; fKunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; gDepartment of
Fisheries, Wildlife, Conservation Sciences, Oregon State University, Corvallis, OR; hLancaster Environment Centre, Lancaster University, Lancaster, UK;
iDurrell Institute of Conservation and Ecology, University of Kent, Canterbury, UK

ABSTRACT
DNA-based biodiversity surveys, which involve collecting physical samples from survey sites and assaying
them in the laboratory to detect species via their diagnostic DNA sequences, are increasingly being adopted
for biodiversity monitoring and decision-making. The most commonly employed method, metabarcoding,
combines PCR with high-throughput DNA sequencing to amplify and read “DNA barcode” sequences, gen-
erating count data indicating the number of times each DNA barcode was read. However, DNA-based data
are noisy and error-prone, with several sources of variation, and cannot alone estimate the species-specific
amount of DNA present at a surveyed site (DNA biomass). In this article, we present a unifying modeling
framework for DNA-based survey data that allows estimation of changes in DNA biomass within species, across
sites and their links to environmental covariates, while for the first time simultaneously accounting for key
sources of variation, error and noise in the data-generating process, and for between-species and between-
sites correlation. Bayesian inference is performed using MCMC with Laplace approximations. We describe
a re-parameterization scheme for crossed-effects models designed to improve mixing, and an adaptive
approach for updating latent variables, which reduces computation time. Theoretical and simulation results
are used to guide study design, including the level of replication at different survey stages and the use of
quality control methods. Finally, we demonstrate our new framework on a dataset of Malaise-trap samples,
quantifying the effects of elevation and distance-to-road on each species, and produce maps identifying
areas of high biodiversity and species DNA biomass. Supplementary materials for this article are available
online, including a standardized description of the materials available for reproducing the work.
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1. Introduction

Ecology is undergoing a technology revolution that is mak-
ing it possible to rapidly generate species inventories via auto-
mated and high-throughput DNA sequencers and via electronic
sensors, such as drones, satellites, camera traps, and acoustic
recorders. These techniques can, if coupled with appropriate
algorithms and databases, simultaneously identify large num-
bers of target species, including those that are cryptic, difficult-
to-access, tiny, and low-abundance (Bush et al. 2017; Piper et al.
2019; Besson et al. 2022; Ley 2022). So far, the most efficient
method for generating species-resolution inventories is DNA-
based surveys, which rely on reading DNA barcodes: short,
standardized sections of the genome that can be compared to a
reference library to enable taxonomic identifications without the
need to examine organism morphologies (Ratnasingham and
Hebert 2007).

DNA barcoding refers to the identification of single species
(Hebert et al. 2003), and DNA metabarcoding refers to the
detection of large numbers of species from environmental DNA

CONTACT Alex Diana ad23269@essex.ac.uk School of Mathematics, Statistics and Actuarial Science, University of Essex, Colchester, CO4 3SQ, UK.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

(eDNA), which is the collective name for DNA isolated from
environmental samples (Taberlet et al. 2018). These environ-
mental samples include water (Thomsen and Willerslev 2015),
soil (Frøslev et al. 2019), air (Clare et al. 2022), and bulk tissue
(i.e., mass-trapped organisms) (Ji et al. 2013). For instance,
Thomsen and Sigsgaard (2019) demonstrated that traces of
eDNA on flower petals could be analyzed to describe the diver-
sity of arthropods that visit wildflowers, including pollinators,
parasitoids, predators, and herbivores. Ji et al. (2022) used the
trace amounts of residual vertebrate blood left in 30,468 blood-
sucking leeches to map vertebrate wildlife across a 677 km2

nature reserve in China. Finally, Abrego et al. (2021) sequenced
542 mixed-species, bulk-tissue samples of arctic arthropods cap-
tured over 14 years and showed that species richness in the study
site had declined by 50% during a time period in which local
mean temperature had increased by 2C.

The potential of DNA-based surveys for monitoring and
managing biodiversity comes with a number of statistical chal-
lenges. First, species-specific absolute abundances cannot be
estimated using DNA data alone. Second, DNA-based surveys

© 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.
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Figure 1. Representation of the DNA biomass collection stage (Stage 1, Sites to Samples) and the DNA biomass analysis stage (Stage 2, Samples to PCR to OTU table). Each
of the selected sites to be surveyed hosts a community of species, and hence a certain amount of DNA biomass for each species. One or more physical samples are collected
from each surveyed site, and a “spike-in”or “internal standard”ISD, can be added to each sample (last column). Each sample is PCR’d one or more times and then sequenced.
This process gives rise to the OTU table.

Table 1. Description of noise, error, and species/pipeline effects in the two stages of DNA-based surveys.

Stage 1—DNA biomass collection

Species effect Every sample contains a certain amount of DNA biomass of each species, with the amount proportional to the DNA biomass available at the site.
However, the proportionality constant is unknown and species-specific, since the DNA of different species can be collected at different rates.

Noise The amount of DNA biomass collected for each species varies stochastically between samples collected at the same site and time.
Error It is possible for the DNA of a target species that is present at a site not to be sampled (false negative error), or traces of DNA from one sample to

contaminate another sample (false positive error).

Stage 2—DNA biomass analysis
Species effect As a result of differences in gene copy number, DNA extraction efficiency, and PCR amplification efficiency, the correspondence between the source

sample DNA biomass and the number of amplicon reads is species-specific (each column of the OTU table).
Pipeline effect PCR stochasticity and the passing of small aliquots of liquid along the laboratory pipeline affects the total number of reads per technical replicate for

all species (each row of the OTU table).
Noise In addition to the species and pipeline effect, there is added noise in the number of reads per OTU and PCR (each cell of the OTU table).
Error It is possible for the DNA of a target species that is present in the sample not to be amplified in the lab (false negative error), or traces of DNA of one

sample to contaminate and be detected in other samples (false positive error), due to the high species-detection power of amplicon sequencing.

yield data that are overdispersed (including zero-inflation) rel-
ative to a Poisson distribution due to several types of error and
noise (see Section 1.1), some of which are species-specific. The
framework presented in this article addresses these challenges by
developing a novel model and corresponding efficient inferential
tools. Using our framework, we model within-species change
in DNA biomass across sites (described in Section 1.1), which
under certain conditions can be considered as a proxy for change
in abundance, hence, addressing the first challenge. To address
the second challenge, we propose a hierarchical crossed-effects
model that expresses key sources of variation, error and noise
in the data collection and analysis pipeline, while accounting
for correlation across species and across sites, and for covariate
effects on DNA biomass. We also model frequently employed
controls at the PCR stage and evaluate their effect on inference.

1.1. DNA-based Surveys and Associated Challenges

Each individual of a species sheds tissue and waste products,
and thus its DNA, into the environment. We will refer to this as
DNA biomass. As we explain in Section 2, the estimates of species
DNA biomass obtained from DNA-based surveys alone are only
meaningful in comparison between sites, and for that reason,
in this article we focus on modeling changes in DNA biomass
within species, across sites, referred to as changes in DNA biomass
throughout. We achieve this by assuming that the processes are
standardized across sites, samples, and PCR replicates and that
any differences in the efficiencies of the processes are explained

by covariates that can be included in the model. We highlight
that, theoretically, the overall amount of DNA biomass for each
species is proportional to the species’ abundance at that site, but
the rate at which each species sheds DNA into the environment is
unknown and not estimable using eDNA data alone. Addition-
ally, the relationship between DNA biomass and abundance can
vary between species and sites due to environmental conditions,
such as DNA degradation rates, and we return to this point in
Section 6. Under the assumption that this relationship does not
vary with sites then we can interpret changes in species DNA
biomass as corresponding changes in abundance.

DNA-based surveys comprise two stages (Figure 1): the sam-
ple collection stage (Stage 1), taking place in the field, and the
sample analysis stage (Stage 2), taking place in the lab.

In Stage 1, physical samples are collected from each surveyed
site. However, the amount of DNA biomass of each species col-
lected in each sample is the result of a noisy and error-prone pro-
cess (see Table 1). Specifically, the sampling method inevitably
favors some species over others, and as a result, DNA biomass
collection rates, conditional on the available DNA biomasses,
are species-specific (Stage 1 species effect). The amount of DNA
biomass collected for each species also varies between samples
collected at the same site (Stage 1 noise). Finally, there are non-
negligible probabilities that (a) no DNA biomass is collected for
a species even if there was DNA biomass of that species at the site
(false negative error) and (b) the DNA biomass in the sample is
not the result of species presence, but instead reflects contami-
nation or deposition from elsewhere (false positive error) (Stage
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1 false negative and false positive errors are jointly referred to as
Stage 1 error).

In Stage 2, the physical samples are assayed in the lab. The
most frequently used method for reading DNA barcodes from
eDNA samples is “amplicon sequencing” (see Lindahl et al. 2013,
for an excellent review). In short, from each sample, all DNA is
extracted and purified. After extraction, a small aliquot of DNA
from each sample is subjected to Polymerase Chain Reaction
(PCR), which selectively amplifies (makes many copies of) just
the DNA-barcode sequences. It is common practice in Stage 2 for
a sample to be PCR-assayed multiple times, known as technical
replicates to distinguish them from sample replicates in Stage 1.
The PCR outputs (“amplicons”) from all the samples and their
technical replicates are pooled and read on a high-throughput
DNA sequencer. This procedure ultimately leads to a list of
many millions of individual DNA sequences (known as reads),
which are processed in a bioinformatic pipeline that removes
low-quality reads, groups the remainder into clusters of similar
reads that are species hypotheses known as OTUs (Operational
Taxonomic Units), and apportions each OTU’s reads back to
its original samples and PCRs. The resulting OTU table dataset
indicates the number of reads for each OTU in each PCR in each
sample in each site (Figure 1), with columns representing the
species and rows representing the PCR runs. For simplicity, we
hereafter use the terms OTUs and species interchangeably.

A real-world complication in DNA-based laboratory
pipelines is that samples are typically “normalized” one or
more times. For instance, after the samples are enzymatically
digested to break down cells and release their DNA into their
“lysis-buffer” solutions, each sample constitutes a larger volume
of liquid than can be used for DNA extraction. The samples are
thus normalized by taking a fixed volume from each sample
for processing. Another normalization step happens after PCR,
because different PCR replicates can generate different amounts
of product. In this case, the PCR products are normalized
by taking a certain amount of liquid from each PCR output,
either inversely proportional to their concentration, or fixed
across PCRs. In the first (lysis buffer) normalization step, the
numerator (amount of lysis buffer taken for extraction) is fixed,
while the denominator (total volume of lysis buffer) varies. In
the second (PCR product) normalization step, the numerator
(amount of PCR liquid taken for sequencing) varies, while
the denominator (total volume of PCR liquid) is fixed. It is
standard procedure to record these normalization fractions,
and in Section 2, we show how this information is incorporated
into the model.

Generally, we should expect a positive relationship between
the DNA biomass of a species in a sample and the count of
reads obtained for that species in that sample (Luo et al. 2022),
but this relationship is imperfect, due to noise and error (see
Table 1). First, even given best practice, there are small but non-
negligible probabilities (a) that a species’ DNA in a sample fails
to be amplified or sequenced, leading to false-negative error and
(b) that a species’ DNA cross-contaminates other samples and is
amplified, leading to false-positive error (Stage 2 false negative
and false positive errors are jointly referred to as Stage 2 error).
We say that a PCR yields non-negligible reads for a species when
the PCR product of that species is successfully read by the DNA
sequencer (i.e., the PCR is successful), and otherwise, a PCR

yields zero or nonzero but negligible reads, in which case we say
that the PCR is not successful for that species. We note that a
PCR can be successful, that is, yield non-negligible reads, not
only when the biomass is present in the sample but also when it
is not, in the latter case because of contamination. Additionally,
PCR amplification also inevitably favors some species over oth-
ers, due to PCR primer mismatch, resulting in species-specific
amplification rates (Stage 2 species effect, equal within columns
of the OTU table), and PCR and sequencing stochasticity results
in different total numbers of reads across all species, even for
the same sample (Stage 2 pipeline effect, equal within rows of the
OTU table). Finally, due to the inherent stochasticity of the PCR
and sequencing process, there is added noise in the resulting
reads in each cell of the OTU table (Stage 2 noise).

In Stage 2, in addition to recording the normalization frac-
tions, different approaches are employed to understand and
monitor some of the noise and error. One such approach is the
so-called internal standard or spike-in, during which a known
amount of DNA of a synthetic sequence or of a species that is
known to be absent from all surveyed sites, is added to each
sample. In addition, negative controls, which are samples that
are known to not include DNA of any species, can be introduced
in Stage 1 and Stage 2 (Ficetola et al. 2015).

1.2. Existing Approaches

A common approach for modeling metabarcoding data is to
convert them to detection/non-detection data by thresholding
the number of reads in the OTU table, with user-specified cri-
teria. This allows the use of a generalized linear model (GLM)
framework (Saine et al. 2020), which has also been extended to
account for species correlation, for example using joint species
distribution models (JSDMs) (Ovaskainen and Abrego 2020).
However, this approach does not account for the two stages or
the noise and error inherent in DNA-based surveys (Table 1).

To that end, several different but related approaches have
been proposed. A common approach applies occupancy models
that account for false negative observation error to the binary
detection/no detection data (Ficetola et al. 2015). More recently,
multi-scale extensions of these occupancy models have been
proposed to account for false negative error in both stages
(Mordecai et al. 2011; Schmidt et al. 2013) and for false positive
error (Guillera-Arroita et al. 2017; Griffin et al. 2020) for a single
species. However, the occupancy model framework disregards
the information in the reads and relies on arbitrary thresholds
about what constitutes a detection. Alternatively, the reads have
also been modeled within a GLM framework (Takahara et al.
2012; Carraro et al. 2018) but without considering the errors in
each stage. A joint model of species occupancy and correspond-
ing reads was developed by Fukaya et al. (2022) but without
considering the direct link between species DNA biomass at the
site and species reads, or the correlation between species.

Finally, we note that an area of research similar to DNA-based
biodiversity surveys is microbiome biology, which is the genetic
material of all microbial life in an abiotic substrate (e.g., soil) or
in a living host (e.g., the human microbiome). When modeling
microbiome data, analysis has usually focused on understanding
changes in the relative composition of each taxon across different
samples. As a result, modeling approaches in this field have
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revolved around the Dirichlet-Multinomial, which allows infer-
ence of the changes, across samples, of the proportions of the
species DNA biomasses (Fordyce et al. 2011; Coblentz, Rosen-
blatt, and Novak 2017; McLaren, Willis, and Callahan 2019;
Clausen and Willis 2022), although within-species changes in
DNA biomass are argued to be informative (Tkacz, Hortala, and
Poole 2018). A more detailed comparison between the model we
introduce in this article and models for microbiome data is given
in Section 2.1.

1.3. Structure of the Article

In this article, we present a unifying hierarchical modeling
framework for OTU reads that considers key sources of vari-
ation, noise, and error at both stages of DNA-based biodiver-
sity surveys (Table 1), while also modeling correlation between
species and between sites. The model allows us to infer changes
in DNA biomass and to link these changes to site-specific
covariates.

We use state-of-the-art MCMC (Markov chain Monte Carlo)
methods that build on recent work for hierarchical and crossed-
effects models (Zanella and Roberts 2021) as well as adaptive
MCMC techniques (Andrieu and Thoms 2008). In particular,

we develop a novel sampling technique to improve mixing in
the special case of a multivariate crossed-effect model with PCR-
specific random effects, and we use adaptive updates of latent
variables to focus sampling effort. This allows us to fit our model
(with many latent variables across the different stages of DNA
surveys) to data from large numbers of sites, samples per site,
PCRs per sample, and species.

The new model, its properties, and links to existing models
are presented in Section 2. Details on our approach to inference
are given in Section 3. Issues of study design are explored and
corresponding simulations are presented in Section 4. A case
study of a large Malaise-trap metabarcoding dataset is presented
in Section 5, and the article closes with a discussion in Section 6.

2. Model

We assume that Mi physical samples are collected from site i,
i = 1, . . . , n, and Kim PCR replicates are performed on the
mth sample from site i. We denote by ys

imk the number of DNA
reads of the sth species, s = 1, . . . , S in the kth PCR replicate
of the mth sample collected at the ith site. We have nz site
covariates and Xz

i represents their value at site i and nw sample
covariates, represented as Xw

im for the m sample at the ith site. In

Figure 2. (a): Model summary, (b): Directed acyclic graph representing the relationships between the variables in the model. (c) Graphical representation of the latent
indicator variables in the model.
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what follows, i indexes sites, m samples, k PCR replicates, and s
species.

Our proposed model (see Figure 2) is hierarchical, with three
levels. The first level models the amount of DNA biomass of
each species at the surveyed sites, which is a function of envi-
ronmental and landscape covariates as well as between-species
and between-sites correlation (DNA biomass availability). The
second level models the amount of DNA biomass collected
for each species in each physical sample from each site (DNA
biomass collection). Lastly, the third level models the number of
reads obtained for each species in each PCR from each physical
sample (DNA biomass analysis). Data are observed only at the
third level, as a result of Stage 2 of the survey, with levels one
and two corresponding to latent states.

DNA biomass availability We denote the logarithm of the
amount of DNA biomass of species s in site i available for
collection by lsi and denote the n × S matrix L by {L}is = lsi .
We model DNA biomass correlation between species and spatial
correlation between sites by assuming that L follows a matrix
normal distribution, L ∼ MN(B0 + XzB, �, T) (Dawid 1981),
where B0 is an n×S matrix with columns 1nβ

s
0, with βs

0 a species-
specific intercept, Xz is a design matrix whose rows are Xz

i , B
is an nz × S matrix of regression coefficients, � is an n × n
matrix modeling the correlation across sites, and T is an S × S
matrix modeling the correlation across species. We note that,
within this framework, the amount of DNA biomass of a species
at the surveyed site cannot be exactly 0, but can be negligible for
modeling purposes as we describe below. We employ a graphical
horseshoe (GH) prior (Li, Craig, and Bhadra 2019) for the
inverse species covariance matrix Q = T−1, which is defined
by specifying the following a priori independent distributions
on each element

Qss ∝ Exp
(

λ

2

)
, s = 1, . . . , p,

Qts = Qst ∼ N(0, λ2
stτ

2), λst ∼ C+(0, 1), s < t ≤ S

subject to the constraint T ∈ �S, where �S is the space of the
positive definite S × S matrices, C+ represents the half-Cauchy
distribution (Gelman 2006), and τ ∼ C+(0, 1). Unlike Li, Craig,
and Bhadra (2019) who specified a flat prior Qss ∝ 1, we
follow Wang (2012) and define a proper prior Qss ∼ Exp( λGH

2 ),
ensuring that T, which is latent, has a proper posterior. We
model the spatial correlation matrix � using an exponential
kernel function, so that �i1i2 = σ 2 exp

{
− (xi1 −xi2 )2

l2

}
, where

xi1 and xi2 are the locations of site i1 and i2, respectively. We
note that we have accounted for species correlations in the
DNA biomass availability stage, but any residual correlations of
this type could also be the result of species correlations in the
collection or analysis stages, discussed below. It is not possible,
with metabarcoding data alone, to identify the source of these
inferred correlations, and therefore, species correlations should
be interpreted with caution.
DNA biomass collection We denote by ws

im the amount of DNA
biomass of species s collected in sample m from site i and vs

im :=
log(ws

im). To account for Stage 1 false negative error at this stage,
we introduce the latent variable δs

im that is equal to 1 if DNA
biomass for species i has been collected in the mth physical
sample from site i, and 0 otherwise. We assume that δs

im = 1

with probability θ s
im, which is a function of covariates Xw

im, and
of lsi , since higher amounts of DNA biomass are expected to lead
to a higher probability of collecting DNA biomass in the sample,
leading to logit(θ s

im) = φs
0 + φs

1lsi + Xw
imφs. We note that as lsi

tends to −∞, θ s
im tends to 0, and therefore the species becomes

practically impossible to detect. If the amount of DNA biomass
collected is greater than 0 (δs

im = 1), we model vs
im ∼ N(ηs+ lsi +

Xw
imβw

s , σ 2
s ), where ηs models Stage 1 species effects on the DNA

biomass collection rate and σ 2
s models the species-specific Stage

1 noise in the DNA biomass collection rate. To account for Stage
1 false positive error, we introduce latent variable γ s

im, which is
equal to 1 with probability ζ s if the collected DNA biomass is
the result of contamination and 0 otherwise. We assume that γ s

im
can be 1 only if δs

im = 0 and that vs
im ∼ N(μs, ν2

s ) if γ s
im = 1. In

this way, we assume that a sample which already contains DNA
biomass of a species cannot be further contaminated by the DNA
of the same species from another sample or site. We make this
assumption as there is not enough information in the data to
partition the collected DNA biomass between that which was
truly collected from the site and that which was contamination
from elsewhere.
DNA biomass analysis As mentioned above, by non-negligible
reads we mean that some of the PCR product is successfully
read by the DNA sequencer. We introduce latent variable cs

imk
to model the success of PCR k, sample m, and site i for species s,
that is Stage 2 error. First, if sample m from site i contains DNA
biomass of species s (ws

im > 0), PCR run k can be successful,
that is, yields non-negligible reads (true positive) , cs

imk = 1,
or not successful, that is, yields neglibible reads (false negative),
cs

imk = 0, and we assume that cs
imk = 1 with probability ps. We

note that we have assumed here that ps only varies by species
and not across sites or replicates in either stage. However, ps
could depend (negatively) on the total amount of DNA biomass
in the sample, particularly in cases of low DNA concentration
for that species or could vary across primers or between labs.
We return to these issues in Section 6. Second, if sample m from
site i does not contain DNA biomass of species s (ws

im = 0),
PCR run k can be successful if it yields non-negligible reads due
to lab contamination (false positive), cs

imk = 2, or not successful
(again, cs

imk = 0, true negative) and assume that cs
imk = 2 with

probability qs.
We model the reads conditional on cs

imk as follows. Condi-
tional on cs

imk = 1, ys
imk ∼ NB(exp(λs + vs

im + uimk + oimk), rs),
where λs models the Stage 2 species effect on the amplification
rate, uimk is the Stage 2 pipeline effect, with uimk ∼ N(0, σ 2

u ), oimk
is an offset modeling the normalization steps described in Sec-
tion 1.1, and rs is a species-specific variance of the Stage 2 noise.
If more than one normalization step is employed, then they can
all be incorporated into the same offset as a sum. Conditional on
cs

imk = 0, ys
imk ∼ πδ0+(1−π)(1+NB(μ0, n0)), that is, there are

zero reads with probability π , and nonzero but negligible reads
otherwise. Finally, conditional on cs

imk = 2, ys
imk ∼ Pois(μ̃s).

The negative binomial is parameterised in terms of the mean
and the number of failures. A visual representation of the PCR
process when cs

imk = 1 is shown in Figure 1 of the supplementary
material.

Stage 2 negative control samples (which are known to not
contain DNA of any species) can be easily accounted for in
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our model by having additional samples for which δ̃s
l =

γ̃ s
l = 0. Accounting for spike-ins corresponds to having

S� additional species for which (vS+1
im , . . . , vS+S�

im ) is known.
Since the pipeline effect is shared across all species (including
spike-ins), the known values of vs

im for the spike-ins help
to better estimate uimk. We further investigate this effect in
Section 4.

The model is summarized in Figure 2(a), the directed acyclic
graph of the model is shown in Figure 2(b), while a graphical
representation of the latent variables introduced across both
stages is shown in Figure 2(c). The model allows both zero-
inflation and overdispersion (even after accounting for zero-
inflation) of the reads. In the case of true positives (when cs

imk =
1), we allow overdispersion through the negative binomial dis-
tribution and the introduction of the offset. The use of negative
binomial is a standard choice for overdispersed data, particularly
in Bayesian modeling. Ver Hoef and Boveng (2007) discuss
the merits of negative binomial and quasi-Poisson regression
modeling in ecological data. Datta and Dunson (2016) discuss
how a scale mixture of negative-binomial regression models can
be used for so-called quasi-sparse counts, which are often small,
not zero.

The model presented in Figure 2 is not identifiable in its
general form unless certain constraints are applied, as we discuss
below. For example, choosing for simplicity � and T to be
diagonal, if we define ṽs

im := vs
im − ηs − lsi and l̃si := lsi − βs

0, the
model for θ s

im and ys
imk conditional on cs

imk = 1 and all offsets
oimk set to 0 can be expressed as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

l̃si ∼ N(Xiβz
s , τ 2

s )

ṽs
im ∼ N(Ximβw

s , σ 2
s )

θ s
im = logit(φs

0 + φs
1β

s
0 + φs

1 l̃si + φsXs
im)

ys
imk ∼ NB

(
exp(βs

0 + l̃si + ηs + ṽs
im + λs + uimk), rs

)
.

(1)
It is evident that the model is invariant to transformations of the
form

(βs
0)

� = βs
0 + c + d, (λs)

� = λs − c,
(ηs)

� = ηs − d, (φs
0)

� = φs
0 − φs

1(c + d).

The reason for this unidentifiability is that data are observed
only in the third level of the model, and hence the following
sets of species-specific parameters are confounded: the baseline
amount of DNA biomass across all sites (βs

0) with the baseline
collection rate (ηs) and the baseline amplification rate (λs), and
the former again with the baseline detection rate φs

0. However,
by assuming that all these baseline rates are constant across sites,
samples, and PCRs, we are able to infer species-specific changes
in DNA biomass across sites and therefore covariate effects.

For inferential purposes, we reparameterize the model and
set the new baseline (log) amount of DNA biomass, (βs

0)
�,

equal to βs
0 + ηs, which means that we can only estimate the

sum of the baseline amount of available DNA biomass and
the corresponding baseline collection rate for the same species.
Similarly, we set the new baseline (logit) collection probability
(φs

0)
�, equal to φs

0−φs
1ηs, since the baseline collection probability

is also confounded with the baseline collection rate (equivalent
to setting φs

0 ≡ 0 and ηs ≡ 0 in (1)).

As a result, we cannot infer the amount of available DNA
biomass separately from the collection rate, and hence the esti-
mates of log DNA biomass obtained, as mentioned above, are
only meaningful for comparison within each species. For the
same reason, comparisons of absolute amount of DNA biomass
across species are not meaningful. We also note that depending
on the survey design in terms of the number of samples collected
per site and the number of PCR replicates per sample, additional
sets of parameters can be confounded and not estimable. Specif-
ically, the following pairs of parameters are confounded:

• S = 1: pipeline effect uimk and PCR variance rs,
• K = 1: PCR variance rs and sample noise ṽs

im,
• M = 1: sample noise ṽs

im and site noise l̃si .

These are pathological cases that arise when there is no replica-
tion at the site/sample/PCR levels. Replication is vital for being
able to account for and to estimate the effects of the different
sources of noise and error (Buxton et al. 2021), an issue to
which we return in Section 4.1. Finally, we note that if the offsets
oimk introduced in the model due to the several normalizations
occurring in the pipeline are not recorded, the link between
the amount of DNA biomass in the environment and the reads
is broken. However, a potential way to restore this link is the
introduction of spike-ins, which contribute to the estimation of
the “overall” pipeline effects ũimk = uimk + oimk.

2.1. Special Cases

Two models available in the literature (Section 1.2) arise as spe-
cial cases of our model. First, the Dirichlet-Multinomial model
(DMM) (Fordyce et al. 2011) is expressed through the following
hierarchy (omitting the indexes m and k to simplify notation):{

(y1
i , . . . , yS

i ) ∼ Multi(Ni, π1
i , . . . , πS

i )

(π1
i , . . . , πS

i ) ∼ Dirichlet(wα1, . . . , wαS)
. (2)

where Ni = ∑S
s=1 ys

i . The DMM can be seen as a special case
of the model described in Section 2, for the Stage 2 process,
conditional on δs

i = 1. Specifically, ys
i ∼ NB(exp(λs + vs

i +
ui), rs), and therefore, assuming λs = ui = 0, if rs →
∞, the distribution for ys

i converges to a Pois(exp(vs
i)). Con-

ditional on Ni, the model is a Multi
(
Ni, π1

i , . . . , πS
i
)
, where(

π1
i , . . . , πS

i
) =

(
exp(v1

i )∑
s exp(vs

i )
, . . . , exp(vS

i )∑
s exp(vs

i )

)
. Next, assum-

ing exp(vs
i) ∼ Gamma(wαs, θ), we obtain (π1

i , . . . , πS
i ) ∼

Dirichlet(wα1, . . . , wαS). Finally, as the DMM does not take
errors into account, the equivalence with our model can be
obtained by setting ps ≡ 1.

McLaren, Willis, and Callahan (2019) propose to account for
the Stage 2 species effect in the DMM framework by modeling
the probabilities (π1

i , . . . , πS
i ) as (

e1π̃1
i∑

s esπ̃ s
i
, . . . , eSπ̃S

i∑
s esπ̃ s

i
), where

es models the species-specific efficiencies, which in our model
is achieved by using a species-specific λs. The DMM can be
extended hierarchically if nested treatments are considered
(Coblentz, Rosenblatt, and Novak 2017) by defining a nested
prior (α1, . . . , αS) ∼ Dirichlet(α1

0 , . . . , αS
0) for each level. In our

model, this is achieved by a hierarchy of normal priors. This
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highlights a key difference between the DMM approach and
the approach we introduce in this article, since we model the
propagation of the absolute amount of DNA biomass across the
different stages, while the DMM models the propagation of the
relative amount of DNA biomass.

Second, the occupancy model of Griffin et al. (2020), in the
simple case of no covariates,⎧⎪⎨

⎪⎩
zi ∼ Be(ψ)

wim ∼ Be(ziξ1 + (1 − zi)ξ0)

yimk ∼ Be(wimp + (1 − wim)q)

(3)

designed for (single-species) qPCR, can be seen as a special
case of our model when the information in the counts is not
considered. Specifically, letting li be binary, with li ∈ {−∞, 0},
and defining zi = exp(li), we obtain θim|(li = −∞) = 0 and
θim|(li = 0) = logit(φ0). Hence, the model for δ and c becomes{

δim ∼ Be(zi(logit(φ0) + (1 − logit(φ0))ζ ) + (1 − zi)ζ )

cimk ∼ Be(δimp + (1 − δim)q)
,

which is identical to the Griffin et al. (2020) model after defining
ξ1 = logit(φ0) + (1 − logit(φ0))ζ and ξ0 = ζ .

3. Inference

Samples can be drawn from the posterior distribution of the
parameters using a Gibbs sampler. Posterior sampling is greatly
helped by representing the negative binomial distribution as a
Gamma-Poisson mixture, which allows many parameters to be
updated in closed form from their full conditional distribution.

For the parameters σs, μs, B, and B0, the full conditional
distribution is available in closed form, and therefore poste-
rior sampling is straightforward. We use simple random walk
Metropolis-Hastings steps for parameters π , μ0, n0, and rs
and Metropolis-Hastings steps with a Laplace approximation
proposal for the parameters lsi , λs, vs

im, uimk, and rs. However,
on its own, this naive Gibbs sampler will mix slowly since we
have a complex hierarchical model with crossed-effects and
many latent variables. We address this by updating parameters
in blocks using re-parameterization and an adaptive updating
scheme for the discrete latent variables.

To illustrate our approach to blocking and re-
parameterization, we consider the error-free version of our
model ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
lsi ∼ N(0, τ 2

s )

vs
im ∼ N(lsi , σ 2

s )

uimk ∼ N(0, σ 2
u )

ys
imk ∼ NB(exp(λs + vs

im + uimk), rs).

(4)

A naive Gibbs sampler updating each parameter from its full
conditional leads to prohibitively slow mixing, due to the form
of the likelihood where λs, vs

im and uimk appear as a sum. To
address the slow mixing in the nested effects, λs and vs

im, the use
of a centered parameterization (Papaspiliopoulos, Roberts, and
Sköld 2007) has been suggested, which corresponds to defining
v̄s

im := λs + vs
im and l̄si := λs + lsi . However, issues of slow mixing

still exist between v̄s
im and uimk and, as noted by Zanella and

Roberts (2021), re-parameterization does not improve mixing
in the case of crossed-effects models. In a classic crossed-effect
model of the form yjkl ∼ N(λ + vj + uk, σ 2), Papaspiliopoulos,
Roberts, and Zanella (2020) propose a collapsed Gibbs sampler
by first jointly sampling λ with vj and then λ jointly with uk.
However, this approach does not scale well in our setup, since
it would involve sampling all the λs and uimk jointly, which have
dimensions S and the total number of PCR technical replicates∑

i,m Kim, respectively. Zanella and Roberts (2021) propose the
use of identifiability constraints on the model, which in Equation
(4) correspond to assuming

∑
s vs

im = ∑
k uimk = 0. Since

sampling conditionally on constraints can be challenging, we
propose a simpler strategy to improve mixing that is more suited
to our framework. We consider re-parameterizing to the factor
averages v̂im = 1

S
∑S

s=1 v̄s
im and ûim = 1

K
∑K

k=1 uimk and the
factor increments ṽs

im = v̄s
im − v̂im and ũimk = uimk − ûim and

performing an update by first sampling jointly the factor means
conditional on the increments, that is, from (v̂im, ûim|ṽs

im, ũimk)

and next using the standard updates (uimk|v1
im, . . . , vS

im) and
(vj

im|uim1, . . . , uimK). In our simulations, we have found that
jointly updating the factor means considerably improves mixing.
The sampling scheme for the complete model is presented in the
supplementary material.

The indicator variables (δs
im, γ s

im, cs
imk) can be updated

directly from their full conditional distributions but, since
there are nMS(K̄ + 2) (where K̄ is the average number of
PCR replicates) of these variables and often one value of
(δimk, γimk, cimk) has probability very close to 1, evaluating
every full conditional distribution in every iteration can
be very time-consuming and computationally wasteful.
Therefore, we use a cheap approximation as a proposal in a
Metropolis-Hastings step. Specifically, every B iterations, we
update the approximation p̂((δs

im, γ s
im, cs

imk) = (ε1, ε2, ε3)) =
1
T

∑T
t=1 I

(
(δs

im)(t), (γ s
im)(t), (cs

imk)
(t)) = (ε1, ε2, ε3)

)
, where

(δs
im)(t), (γ s

im)(t), (cs
imk)

(t) is the value of (δs
im, γ s

imcs
imk) at the

tth iteration, I(A) is the indicator function, which takes the
value 1 if A is true and 0 otherwise, and T is the number of
current iterations. Using this update scheme, we only need to
evaluate the likelihood if the state is proposed to change. If the
probability of one state is close to one, the adaptive scheme
often proposes the current state, which can be accepted without
computation. The adaptive scheme does not affect convergence
of the MCMC algorithm since the approximation clearly has
diminishing adaptation, and the state space of the indicator
variables is discrete (see, e.g., Roberts and Rosenthal 2009,
for more discussion of conditions for convergence of adaptive
MCMC schemes).

4. Study Design

In this section, we use a simplified version of the model to inves-
tigate the properties of our modeling approach under different
study designs in terms of the number of sites, samples per site,
and PCRs per sample, as well as the number of spike-ins. In each
section, we consider the estimates of the differences in log DNA
biomass, when log DNA biomass is not a function of site-specific
covariates (no covariate case), and the estimates of the covariate
coefficients when log DNA biomass is a function of a single
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continuous covariate (regression case). In Section 4.1 we present
theoretical results using a continuous version of our model that
does not account for error in either stage. In Section 4.2 we fit
our model as presented in Section 2 under different scenarios for
study design by varying the number of sites, number of samples
per site, and number of PCRs per sample. Finally, in Section 4.3,
we explore the effect of spike-ins for different levels of noise in
each stage of the process and different study designs.

4.1. Theoretical Results for a Simplified Version of the
Model

We consider a normal approximation of the model presented in
Section 2, which assumes no species or site correlations, that
both stages are error-free by setting θ s

im = ps = 1, and that
the variances of the distributions of the noise at each stage are
the same across species. As mentioned in Section 2, the use of
spike-ins corresponds to the presence of species in the sample
for which (vS+1

im , . . . , vS+S�

im ) is known. We assume, without loss of
generality, that vS+j

im = 0 for j = 1, . . . , S�. We have the following
proposition.

Proposition 4.1. Consider the model λs ∼ N(0, σ 2
λ ) for s =

1, . . . , S + S� and, for i = 1, . . . , n, k = 1, . . . , K, m = 1, . . . , M,

uimk ∼ N(0, σ 2
u ), vs

im

{ ∼ N(lsi , σ 2), s = 1, . . . , S
= 0, s = S + 1, . . . , S + S� ,

ys
imk ∼ N(uimk + λs + vs

im, σ 2
y ), s = 1, . . . , S + S�

where σ 2, σ 2
u , and σ 2

y are known.

(a) If we assume p(lsi) ∝ 1 and σ 2
λ ∈ (0, ∞) is known, then

var(ls1 − ls2|y) = 1
M

⎛
⎜⎝σ 2 + σ 2

y

K

⎛
⎜⎝1 +

σ 2
u

σ 2
y

σ 2
u

σ 2
y

S� + 1

⎞
⎟⎠

⎞
⎟⎠ . (5)

(b) If we observe a single covariate Xi
iid∼ N(0, 1) for the ith site

and assume lsi ∼ N(Xiβs, τ 2) with σ 2
λ = ∞ (i.e., p(λs) ∝ 1)

and p(βs) ∝ 1, then

var(βs|y) = 1
n − 1

(
τ 2 + 1

M

(
σ 2 + σ 2

y

K

))
×(1 + C) (6)

where C = σ 2
u

σ 2
y +(Mτ 2+σ 2)K(1+S� σ2u

σ2y
)+σ 2

u (S+S�−1)
.

Here σ 2
y models the variance of the noise in Stage 2, as was

the case for rs in the original model. Equations (5) and (6) show
the contributions of the variances at each stage to the posterior
variance of the corresponding estimates (changes in biomass
between sites, on the log scale, and covariate coefficients, respec-
tively) in this special case.

The results for this special case suggest that, for both
var(ls1 − ls2|y) and var(β|y), increasing replication at a given stage
decreases the contribution of the error variance at that stage and
all downstream stages. For example, increasing the number of
samples M per site reduces the contribution of the noise variance
σ 2 at Stage 1 and at all downstream stages, that is σ 2

y and σ 2
u in

Stage 2. Whereas, increasing the number of PCR replicates, K,
only reduces the contribution of the Stage 2 variances (σ 2

u and
σ 2

y ). Additionally, the benefit of the spike-in is greater as the ratio

of variances σ 2
u

σ 2
y

increases. Moreover, in the case of var(β|y), if σ 2

is much greater than σ 2
y , the benefit of the spike-in is negligible,

as the noise induced by σ 2 greatly outweighs the noise that can
be mitigated via the use of spike-ins.

4.2. Simulated Results for the Full Model; Varying n, M,
and K

We turn our attention to the full model in Figure 2 and again
consider two cases: no covariates and a single covariate, Xi ∼
N(0, 1). In the no covariate case, we consider the model’s ability
to estimate the correct sign of the difference of species log DNA
biomasses at two sites. We use the Brier score b(i1, i2, s) :=
(p̄(lsi1 > lsi2) − δi1,i2)

2, where p̄(lsi1 > lsi2) is the posterior
probability of lsi1 > lsi2 and δi1,i2 is 1 if the true value of lsi1 is
greater than the true value of lsi2 and 0 otherwise. We generate

lsi ∼
{

N(1, τ 2
s ) i odd

N(0, τ 2
s ) i even which separates the sites between

those with “high” DNA biomass and those with “low” DNA
biomass. We use S = 40 species, n = 300 sites, M ∈ {1, 2, 3, 4, 5}
samples per site and K ∈ {1, 2, 3, 4} PCR replicates. The values
of the other parameters are reported in the supplementary mate-
rial. We have performed 50 replications for each combination of
values of the design parameters, M and K. We report the average
b(i1, i2, j) spanning i1 across the sites with low DNA biomass, i2
across the sites with high DNA biomass, and s across all species
and across the replicates. As expected, the Brier score decreases,
and hence the ability to distinguish between sites with low and
high DNA biomass increases, as M and K increase (Figure 3).
However, the benefit of increasing K decreases with M, which
highlights the greater importance of multiple sample replicates
per site in Stage 1.

In the regression case, we consider the absolute error and
posterior standard deviation of the covariate coefficient βs. We

Figure 3. Brier score for distinguishing high and low DNA biomass sites, as a
function of the number of samples (M) and number of PCR replicates (K). We have
only considered M ≤ 5, since greater M is unrealistic, and set n = 300.
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Figure 4. Mean absolute error, (a), and posterior standard deviation, (b), averaged across all species and all simulations, of the covariate coefficient βs for varying numbers
of sites (n), samples per site (M), and numbers of PCR replicates per sample (K).

use n ∈ {50, 100, 200} sites, M ∈ {1, 2, 3} samples per site and
K ∈ {1, 2, 3} PCR replicates per sample and S = 40 species. The
values of the other parameters are reported in the supplementary
material. We performed 50 replicates for each combination of
values of the design parameters and averaged results across all
replicates and species. Results are shown in Figure 4.

As expected, absolute error and posterior standard error
both decrease with more sites n, samples per site M, and PCRs
per sample K. Doubling the number of sites from 50 to 100
has a bigger effect than doubling them again from 100 to 200,
suggesting that the benefit of increasing the number of sampled
sites decreases as the number of sites gets large. Collecting
two samples per site instead of one drastically decreases both
absolute error and posterior standard deviation, whereas the
effect is less pronounced when the number of samples is further
increased to three compared to two, and the same can be said
about the number of PCRs.

4.3. Spike-ins

In this section, we consider the improvement in inference when
S� spike-ins are employed in Stage 2. The effect of the spike-
ins is maximized in the case of no false negative/positive errors,
otherwise the benefit of the spike-ins is lower, and dependent
upon the level of error. Therefore, in this section we consider
data and corresponding model with no false positive/negative
errors.

We simulated data on n = 300 sites, M ∈ {1, 2, 3} samples per
site, and K ∈ {1, 3} PCR replicates per sample on S = 10 species.
For each setting of M and K, we have fitted the model when S� ∈
{0, 1, 2, 3} and report in each case the posterior relative error and
posterior relative variance of the estimates, which are calculated
by dividing the posterior error/variance by the corresponding
error/variance when using S� = 0 (which is the case with the
greatest error/variance).

Results of the simulation study are presented in Figure 5. In
both cases, improvements diminish for S� ≥ 2, and in most cases
S� = 1 already provides most of the improvement, suggesting
that the benefit of more than one spike-ins is minimal. The no

covariate case is shown in the first row of Figure 5. Spike-ins
contribute more to reducing biomass-change estimation error
and variance with M > 1, with M = 1 resulting in virtually
no improvements for any setting considered in the simulation.
When M > 1, improvement is more pronounced when K = 1
instead of K = 3, because in the latter case, thanks to this
replication at Stage 2, there is already increased information for
estimating the pipeline effect. This is particularly true when τ

is 1 instead of 0.5, because in this case, the differences between
sites are more pronounced. For both values of τ , improvements
are bigger when the between-samples standard deviation (σ ) is
smaller, since otherwise, Stage 1 noise dominates the process and
understanding noise in Stage 2 decreases the overall variance
proportionally less.

The second row of Figure 5 shows the regression case. We
have chosen smaller values for σ and τ (.2 and .5), since the rel-
ative contribution of the spike-ins is negligible with larger values.
Spike-ins contribute more to reducing error and variance when
the between-samples standard deviation (σ ) and the between-
sites standard deviation (τ ) is smaller because, similar to before,
the noise at early stages dominates the process, and therefore the
relative contribution of the spike-ins is smaller. Also similar to
the no covariate case, the contribution of the spike-ins is higher
for K = 1 PCR replicates compared to K = 3. However, unlike
that case, the contribution does not appear to increase as the
number of samples per site M increases.

5. Case Study

We apply our model to an unpublished amplicon sequencing
dataset of arthropod invertebrates collected using 121 Malaise-
trap samples from 89 sample sites in the H.J. Andrews Experi-
mental Forest (HJA), Oregon, USA (225 km2) in July 2018 (site
details are provided in Li et al. 2024). Each trap was left to collect
for seven days, and samples were transferred to fresh 100%
ethanol to store at room temperature until extraction. The man-
agement objective that motivated the collection of this dataset
is to interpolate continuous species distributions among the 89
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Figure 5. Effect of spike-ins on inference. The three facets per figure represent simulations with M = 1/2/3 samples per site. The between-samples standard deviation, σ ,
is represented by the line type, the between-sites standard deviation, τ , is represented by the color, the number of PCR replicates, K , is represented by the symbols. The first
column represents the posterior relative error of the estimates and the second column represents the posterior relative variance.

sample points so that areas of higher and lower conservation
value at the HJA can be identified.

For each sample, the collected invertebrate samples were
combined with a lysis buffer, in an amount proportional to the
starting sample mass, to digest the tissue, and a fixed aliquot was
then taken from the overall mixture (and recorded) for DNA
extraction and subsequent three PCRs. This normalization, as
described in Section 2, was accounted for in the model by setting
the offset oimk equal to the log ratio between the aliquot and the
overall amount of liquid mixture in each case. We included 50
species in the study by selecting the species that have the most
nonzero counts across all PCR replicates. Log DNA biomass
is modeled as a function of two environmental covariates: log
elevation and log distance-to-road.

Figure 6 presents the 95% posterior credible intervals (PCIs)
for the species-specific coefficients of log elevation and log
distance-to-road in the model for log DNA biomass. The effects
of the covariates on species DNA biomass are not consistent
within each taxonomic order, which suggests low phylogenetic

inertia at this rank for response to these landscape characteris-
tics. Elevation is a stronger predictor for species DNA biomass
than distance-to-road for this ecosystem. This makes ecological
sense, since distance-to-road is only expected to exert an effect
over about 100 meters, via canopy openness, whereas elevation
exerts a pervasive effect via its effects on temperature, precipita-
tion, and vegetation.

Figure 7(a) presents the posterior mean of the between-
species residual correlations. We set λGH = 1 in the GH prior
and we emphasize that the GH prior assumes no prior structure
imposed on the taxa. Species in the Diptera (flies, spp. 14-30)
exhibit higher positive correlations with each other, as well as
with several species in the Hymenoptera (ants, bees, and wasps)
and Lepidoptera (butterflies and months). We conservatively
interpret these positive residual correlations as indicative of
unmeasured environmental covariates, such as canopy open-
ness, rather than of biotic interactions. We also note that two
species in the Lepidoptera, (spp. 41, 43), one in the Hymenoptera
(sp. 33), and one in the Psocodea (barklice, sp. 50) are among
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Figure 6. Case study: 95% PCI of the species-specific coefficients of log elevation (left) and distance to road (right) in the model for log DNA biomass. Species are grouped
taxonomically.

Figure 7. Case study. Left: Correlation plot of all species. Red represents positive correlations while blue represents negative correlations. Species are grouped taxonomically.
Right: Posterior mean of biomass-weighted species richness across the study area. For each species, we rescale the log-biomass amount across all study sites into the range
[0, 1] and next we compute the species richness as the sum of all the rescaled biomasses across all species.

the few species showing strong negative residual correlation
with many of the other species, and again, we conservatively
interpret these correlations as indicative of unmeasured envi-
ronmental covariates. There is a strongly positive, pairwise cor-
relation between two tabanid fly species Hybomitra liorhina and
Hybomitra sp. (spp. 12, 13), which might indicate the oversplit-
ting of one biological species into two OTUs during the bioinfor-
matic pipeline. Finally, there is also a strongly positive, pairwise
correlation between the moth species Ceratodelia gueneata (sp.
44) and the predatory fly (Scathophagidae, Microprosopa sp.,
(sp. 20), which might indeed indicate a specialized predator-
prey relationship. All that said, we highlight that these inferred

correlations have been accounted for in the DNA availability
stage of the model, but, as we discuss in Section 2, they can also
be the result of the DNA biomass collection or analysis stages,
so should be interpreted with caution.

In Figure 7(b), we show the biodiversity map for the area,
which is useful for identifying areas of higher species richness
and compositional distinctiveness, which together can be used
to identify areas of higher conservation value (i.e., higher “site
irreplaceability” sensu Baisero, Schuster, and Plumptre 2022).
The predicted mean log DNA biomasses on a continuous map
over the HJA for all individual species are presented in the
supplementary material. These can be used to identify species
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Figure 8. Case study: (left) 95% PCI of the species-specific between-samples standard deviation σs and between-sites standard deviation
√

Tss (in bold). (center) 95% PCI
of the species-specific average collection probability θ s

im across all sites. (right) 95% PCI of the species-specific Stage 2 false-positive probabilities qs (on the left of the plot)
and true-positive probabilities ps (on the right of the plot). Species are grouped taxonomically.

with a wide spatial range, such as the click beetle (Megapenthes
caprella), or with a restricted range, such as the leafhopper
(Osbornellus borealis).

Finally, Figure 8(a) suggests that generally, there is a similar
amount of variation between sites and between samples for
these species. As suggested by Figure 8(b), the species that we
have considered have similar collection probabilities across the
several sites, possibly due to the fact that the most frequently
detected species across PCRs have been selected. Figure 8(c)
demonstrates, as expected, that the Stage 2 true positive prob-
ability is close to 1 for all species. We highlight here that this
probability is modeled as species-specific but assumed constant
across all replicates. Similarly, the figure also suggests that the
probability of a Stage 2 false negative error is very close to 0 for
all but three species. One of these three (sp. 14) is in the fly family
Tachinidae, which are parasitoids of other insects and thus might
have been collected not only as adults but also occasionally as
eggs attached to the adults of other (insect) host species, with
the latter case being classified as false positives in Stage 2, given
that an egg would contribute very low amounts of starting DNA
biomass.

6. Discussion

Over the last decade, DNA-based biodiversity studies, primarily
using metabarcoding, have rapidly increased in popularity, and
multivariate statistical models are now starting to be deployed
to analyse metabarcoding data (e.g., Lin et al. 2021; Pichler and
Hartig 2021; Abrego et al. 2021; Fukaya et al. 2022; Ji et al.
2022). Our article provides the first unifying modeling frame-
work that considers and quantifies key sources of variation, error
and noise in metabarcoding surveys (Table 1). As a result, our
modeling framework allows more reliable and more powerful
biodiversity monitoring and inference on species responses to
landscape characteristics than has been possible before. We have
employed, extended, and developed a number of inferential

tools to deal with the complexity of the proposed hierarchical
model, which involves two latent stages and a large number
of latent variables. Finally, this is the first modeling approach
that accounts for spike-ins and negative controls (empty tubes),
which are widely used quality-control methods in DNA-based
biodiversity surveys but rarely explicitly considered within a
modeling framework. We explored the benefits of spike-ins on
inference and provided analytical and simulation results of the
effects of study design choices on parameter estimates. As is
the case in all models, we make certain assumptions about the
data-generating process and if (any of) these assumptions are
violated, then inference can be biased. Below, we discuss the
key assumptions and corresponding model extensions, when
appropriate.

Our new framework allows us to infer and map species
DNA biomass change across surveyed sites (Figure 7(b)), and to
link these to landscape characteristics (Figure 6). The resulting
maps can be used to identify areas of high conservation value,
as well as areas where particular species or groups of species
are more or less prevalent, and to detect species-specific shifts,
expansions, and shrinkage. We are also able to study pairwise
correlations across large numbers of species (Figure 7(a)), which
is considerably more scalable using metabarcoding data than
using standard observational data. We note that, as discussed in
the corresponding sections of the model and the case study, we
cannot unambiguously identify the sources of the estimated cor-
relations using the available data alone, as factors other than the
affinity between species, such as competition for primers, could
affect the inferred species correlations. We have shown that
using spike-ins can substantially increase inference accuracy for
parameters of interest (Figure 5). Our results also demonstrate
that the current practice of collecting a single sample from each
surveyed site considerably reduces our ability to infer changes in
species DNA biomass and that replication at both stages as well
as the use of normalization-ratio offsets or spike-ins is the opti-
mal approach to designing metabarcoding studies (Figure 3).
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In metabarcoding data, the baseline DNA biomass of each
species is confounded with its species-specific collection and
amplification rates. Hence, we cannot infer absolute values of
species-specific DNA biomass across sites using metabarcoding
data alone. However, by assuming that baseline species-specific
collection and amplification rates are the same across sites,
samples, and PCR replicates, we can infer species-specific DNA
biomass change across sites, species-specific covariate effects,
and pairwise species correlations. Finally, we model species
amplification rates as independent random effects, but compe-
tition between species for primers, polymerases and nucleotides
during PCR amplification might violate this independence
assumption, and future experimental work, alongside model
extensions, should explore this issue further.

We note that we have not allowed the probability of Stage 2
species detection, ps, to vary between samples or PCR replicates,
and hence we have assumed that it does not depend on the DNA
biomass of other species in the sample/PCR replicate. However,
because of the PCR product normalization step, described in
Section 1.1, in PCR replicates with relatively high resulting over-
all DNA biomass, relatively low-DNA-biomass species might
be less likely to be drawn in high enough concentration to be
detected, an issue that is often referred to as PCR dropout.
Empirically, it is known that such PCR competition can be mit-
igated by using a lower number of PCR cycles (Yang et al. 2021)
and by sequencing each sample replicate more deeply. When
extending the model of this article, Stage 2 species detection can
be modeled as a function of DNA biomass, so that logit(ps

imk) =
β

p
0 + βp(vs

im + oimk). Model extensions of this type are
important but are expected to introduce further identifiability
issues and computational challenges and hence require careful
investigation.

Generally, modeling changes in (proxies of) abundance, such
as changes in DNA biomass, is a more powerful monitoring
tool than modeling changes in species presence across survey
sites (Joseph et al. 2006). Metabarcoding studies yield count data
without any consequence on associated cost, and hence over-
come the time and cost implications associated with collecting
count data for multiple species. Our model uses the raw count
data, and does not rely on ad-hoc rules about what constitutes
a practically zero count for converting them to binary data,
which has been the standard practice thus far (Ovaskainen et al.
2017; Bush et al. 2020). To model changes in (log)biomass for
each species across sites, we rely on the investigator being able
to record any normalization steps (or to include a spike-in),
otherwise the relationship between change in read counts and
change in the amount of biomass in the environment cannot
be inferred, and instead the counts can only be used to infer
composition, as is standard practice in metabarcoding studies.
We have allowed for over-dispersion in the count data using
a negative binomial distribution, but future work could con-
sider alternative parameterizations, such as the discrete Weibull
distribution. The model can also be extended to account for
multiple primers or for differences between labs, if samples
are processed by more than one lab, by introducing regression
models for corresponding parameters.

Metabarcoding studies, particularly when applied to micro-
biomes and meiofauna (e.g., nematodes, micro-eukaryotes),

can detect 1000s of species, which leads to large numbers of
latent variables and coefficients in the model. There are several
ways that the inferential tools presented here could be further
extended to scale to these cases. First, the posterior distribu-
tion conditional on the uimk is independent across species. If
uimk could be estimated at a first stage then inference across
species could be easily parallelized. Second, variational Bayes
methods could be applied to avoid the use of sampling methods.
The choice of variational distribution will be important and
can exploit the conditional normality of much of the model.
Alternatively, the model could be adapted by assuming that the
coefficient matrices such as βz = (βz

1 , . . . , βz
S), have a low-

dimensional representation. We highlight that in its current for-
mat, the model assumes species-specific parameters, and hence
there is potentially a large number of parameters to be estimated
for each species. Therefore, if a species only has a few nonzero
PCR reads from potentially only a few sites, estimating all of
these species-specific parameters is difficult. Future work should
explore sharing parameters between species, making inference
for rarely-observed species possible.

We are not modeling species presence/absence and instead
we have focused on modeling biomass on a continuous scale.
As a result, we cannot infer whether a species is absent from
a particular study site, but instead only if its DNA biomass at
a given site is practically zero. We have assumed that a sample
which already contains DNA biomass of a species cannot be fur-
ther contaminated by the DNA of the same species from another
sample or site in Stage 1. This is a reasonable but also necessary
assumption, because of model identifiability issues otherwise.
It is possible that there exists contamination from other sites if
their samples are all processed in the same laboratory, especially
at the same time, or that there is contamination during the
collection or transfer of samples. However, with only metabar-
coding data to hand, it is not possible to identify the source of
contamination, or to model the possibility that a sample that
contains DNA of a species has been further contaminated by the
DNA of the same species from another sample or site in Stage
1. This is yet another reason to take measures that minimize
contamination risk.

eDNA metabarcoding has revolutionized the cost-
effectiveness, precision, and scale at which biodiversity
assessment can be performed. Nevertheless, the multiple stages
at which imperfect detection of DNA biomass can occur during
the workflow are not insignificant. By facilitating estimates
of within-species changes in DNA biomass as a function of
covariates, while accounting for workflow uncertainties, our
modeling framework provides a substantial improvement in the
design and analysis of eDNA metabarcoding data.

Supplementary Materials

Details of the inference scheme and on the simulation study settings. Addi-
tional plots. Comparison with existing methods, and proof of the results on
study design.
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