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Abstract
Recently Gubbiotti, Joshi, Tran and Viallet classified birational maps in four
dimensions admitting two invariants (first integrals) with a particular degree
structure, by considering recurrences of fourth order with a certain symmetry.
The last three of the maps so obtained were shown to be Liouville integrable, in
the sense of admitting a non-degenerate Poisson bracket with two first integrals
in involution. Here we show how the first of these three Liouville integrable
maps corresponds to genus 2 solutions of the infinite Volterra lattice, being the
g= 2 case of a family of maps associated with the Stieltjes continued fraction
expansion of a certain function on a hyperelliptic curve of genus g⩾ 1. The
continued fraction method provides explicit Hankel determinant formulae for
tau functions of the solutions, together with an algebro-geometric descrip-
tion via a Lax representation for each member of the family, associating it
with an algebraic completely integrable system. In particular, in the elliptic
case (g= 1), as a byproduct we obtain Hankel determinant expressions for the
solutions of the Somos-5 recurrence, but different to those previously derived
by Chang, Hu and Xin. By applying contraction to the Stieltjes fraction, we
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recover integrable maps associated with Jacobi continued fractions on hyper-
elliptic curves, that one of us considered previously, as well as the Miura-type
transformation between the Volterra and Toda lattices.

Keywords: integrable map, continued fraction, Poisson bracket,
hyperelliptic curve, discrete integrability

Mathematics Subject Classification numbers: 39A20, 14E05, 37J70, 14H70

1. Introduction

In classicalmechanics, the study of integrableHamiltonian systems, given byHamiltonian vec-
tor fields with a sufficient number of functionally independent first integrals in involution with
respect to a Poisson bracket, has a long history that goes back to the origins of calculus. It was
further enriched in the latter half of the last century by the discovery of the method of inverse
scattering for solving certain Hamiltonian partial differential equations, which gave new per-
spectives and new techniques for deriving finite-dimensional integrable systems obtained as
reductions of the latter. The case of discrete integrable systems, in the form of difference
equations or maps preserving a symplectic (or Poisson) structure and satisfying the conditions
for a discrete analogue of Liouville’s theorem, soon began to attract attention [7, 39, 63], but
it is fair to say that, despite the fact that many examples are now known, the theory of dis-
crete integrability is much less well developed. For integrable birational maps in the plane,
the archetypal example is provided by the QRT family of maps [50], whose level sets are
biquadratic curves (generically, of genus one), are associated with elliptic fibrations [16]. If
one imposes a requirement of subexponential degree growth (zero algebraic entropy, in the
terminology of [6, 64]), then in two dimensions the only possibilities are maps that preserve
a pencil of genus one curves (like QRT), maps that preserve a pencil of rational curves, or
completely periodic maps [14]. An example of a quadratic map in the projective plane that
preserves a pencil of cubic curves was studied in [45]. This fits in with an observation of
Veselov [63], that for an infinite order birational map of the plane with an algebraic invariant,
the level curves can have genus at most one (as a consequence of the Hurwitz theorem on the
automorphism group of a Riemann surface).

Poisson maps in three dimensions with two first integrals, of which one is a Casimir, can be
reduced to the two-dimensional case by restricting to symplectic leaves, and the common level
sets are curves, so in an algebro-geometric setting this will typically lead to elliptic fibrations.
Thus, in order to see new geometrical features, with invariant tori of dimension greater than
one, it is necessary to look to integrable maps in four dimensions. Building on the work [21,
34], which was based on considering autonomous versions of the fourth-order members of
hierarchies of discrete Painlevé I/II equations from [12], in [22] Gubbiotti et al presented a
classification of four-dimensional birational maps of recurrence type, that is

φ : (w0,w1,w2,w3) 7→ (w1,w2,w3,F(w0,w1,w2,w3)) , (1.1)

for a suitable rational function F of affine coordinates (w0,w1,w2,w3) ∈ C4, with φ being
invariant under the involution ι : (w0,w1,w2,w3) 7→ (w3,w2,w1,w0) and having two func-
tionally independent polynomial invariants, K1, K2 say, with specific degree patterns
(degw0

Kj,degw1
Kj,degw2

Kj,degw3
Kj) = (1,3,3,1) and (2,4,4,2) for j = 1,2, respectively.
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The result of this classification was six maps with parameters, labelled (P.i–vi), together with
six associated maps, labelled (Q.i–vi), dual to them in the sense of [51], meaning that they
arise as discrete integrating factors for linear combinations of the first integrals. (Note that,
aside from the original connection with [12], the letter P in this nomenclature has nothing to
do with the usual labelling of continuous Painlevé equations.)

1.1. The map (P.iv): an integrable map in 4D

From our point of view, the most interesting examples among those presented in [22] are the
maps labelled (P.iv), (P.v) and (P.vi). According to table 1 in [22], these are the only ones
arising from a discrete variational principle (Lagrangian), which leads to a non-degenerate
Poisson bracket in four dimensions, such that the two first integrals K1, K2 are in involution,
and this means that in the real case the Liouville tori are two-dimensional (cf figure 1). In this
paper, our main concern will be the case of (P.iv), which is the birational map given in affine
form by the recurrence

wn+4wn+3wn+2 +wn+2wn+1wn+ 2w2
n+2 (wn+3 +wn+1)+wn+2

(
w2
n+3 +wn+3wn+1 +w2

n+1

)
+w3

n+2 + νwn+2 (wn+3 +wn+2 +wn+1)+ bwn+2 + a= 0.
(1.2)

The above map depends on three essential parameters a,b,ν (compared with [22], by rescaling
we have set the parameter d= 1), and it can be written in the form (1.1), with

F=−

w0w1w2 +w1w2w3 +w2
1w2 +w2w2

3 + 2w1w2
2 + 2w2

2w3 +w3
2

+ν
(
w1w2 +w2w3 +w2

2

)
+ bw2 + a

w2w3
,

which is the rational function of w0,w1,w2,w3 obtained by solving for w4 in the recur-
rence (1.2) with n= 0. More recently, Gubbiotti showed how the equation (1.2) also arises
from a classification of additive fourth-order difference equations, based on the requirement
of a discrete Lagrangian structure alone [23].

The first integral denoted IP.ivlow in [22] is given in affine coordinates by

K1 = w1w2

(
w2w3 +w0w1 −w0w3 +(w1 +w2)

2
+ ν (w1 +w2)+ b

)
+ a(w1 +w2) . (1.3)

The latter has the degree pattern (1,3,3,1). In particular, it is linear in w3, which implies that,
on each three-dimensional level set K1 = k1 = const, the map (1.2) reduces to a birational map
in three dimensions, given by the recurrence

wn+3wn+2wn+1 (wn+2 −wn)+wn+2w
2
n+1wn+wn+2wn+1 (wn+1 +wn+2)

2

+ νwn+2wn+1 (wn+1 +wn+2)+ bwn+2wn+1 + a (wn+1 +wn+2) = k1.

3
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Figure 1. Plot of the 3D projection of 10 000 points on the orbit of (1.2) with initial
values ( 2116 ,

21
16 ,

452
343 ,

3124
2373 ) and parameters a=−9, b= 29, ν =−10.

A second functionally independent invariant for (1.2), with degree pattern (2,4,4,2), is
given by

K2 = w1w2

 w2
0w1 +w2

3w2 +w0w3 (w1 +w2)+w0
(
w2
2 + 2w2

1

)
+w3

(
w2
1 + 2w2

2

)
+3(w0 +w3)w1w2 +(w1 +w2)

3

+ν
(
w0w3 +(w0 +w3)(w1 +w2)+ (w1 +w2)

2
)
+ b (w0 +w1 +w2 +w3)


+ a

(
w0w1 +w3w2 +(w1 +w2)

2
)
.

(1.4)

This differs slightly from the second invariant presented in [22], which is IP.ivhigh = K2 − νK1.
The non-degenerate Poisson bracket between the coordinates, which was obtained in [22]

by making use of a discrete Lagrangian for (1.2), is given by

{wn,wn+1 }= 0, {wn,wn+2 }=
1

wn+1
, {wn,wn+3 }=−wn+ 2wn+1 + 2wn+2 +wn+3 + ν

wn+1wn+2
,

(1.5)

for all n. So the 4D map of the form (1.1) defined by (1.2) is a Poisson map, in the sense
that {φ∗G,φ∗H}= φ∗{G,H} for all functions G,H on C4. Equivalently, the fact that φ is
Poisson with respect to a non-degenerate bracket means that it preserves a symplectic form ω,
such that φ∗ω = ω. The two functionally independent invariants given in [22] are in involution
with respect to the Poisson bracket, which is equivalent to the involutivity of functions (1.3)
and (1.4), that is

{K1,K2 }= 0.

Hence the four-dimensional map defined by (1.2) is integrable in the Liouville sense.

4
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Computing the Hamiltonian vector field for the first flow, generated by K1, we find that on
the phase space C4 with coordinates (w0,w1,w2,w3) this takes the form

dwn
dt

= wn (wn+1 −wn−1) for n= 1,2, (1.6)

while the components of the vector field for n= 0,3 appear to be more complicated rational
functions of these 4 coordinates and the parameters a,b,ν. However, since (1.2) is a Poisson
map it commutes with this flow, so it follows that the relation (1.6) extends to all n ∈ Z. To see
this, note that the vecor field d

dt = {·,K1} commutes with the action of φ, and φ∗(wn) = wn+1;
hence, if (1.6) holds for some particular n, then

dwn+1

dt
= φ∗

(
dwn
dt

)
= φ∗ (wn (wn+1 −wn−1)) = wn+1 (wn+2 −wn) ,

which is just the same equation with n→ n+ 1. Thus the combined solutions of the iterated
map and the flow, which are compatible with one another, generate a sequence of functions(
wn(t)

)
n∈Z satisfying (1.6), which is the Volterra lattice equation, first considered by Kac and

van Moerbeke [35]. We will see that, in a certain sense to be made precise, these are genus 2
solutions of this lattice equation.

A wide variety of difference equations admitting Lax pairs and explicit formulae for first
integrals have been presented by Svinin [56, 57], including a family that arises as reductions of
the hierarchy of symmetries of the Volterra lattice. By eliminating the parameter b from (1.2)
we get an equation of fifth order, that is

wn+4

 5∑
j=2

wn+j+ ν

+
a

wn+3
= wn+1

 3∑
j=0

wn+j+ ν

+
a

wn+2
, (1.7)

and upon setting a= 0 this reduces to equation (1) in [58] when s= 4 (cf also the case N= 4
in [30], where an equivalent equation is obtained via a periodic reduction of the lattice KdV
equation); thus the map (1.2) can be viewed as a 1-parameter generalization of one of Svinin’s
symmetry reductions of the Volterra lattice hierarchy, which in turn is a generalization of one
of the maps considered in [13].

1.2. Outline of the paper

The purpose of this article is to give a complete description of the complex geometry of the
solutions of the map defined by (1.2). In reaching this goal, we found that all of the structures
we obtained could naturally be extended to analogous constructions associated with a family
of curves of arbitrary genus g (elliptic for g= 1, hyperelliptic for g⩾ 2).

Section 2 presents a set of empirical observations, numerical examples and standalone res-
ults about the (P.iv) map. Originally, these were the specific clues that led us to uncover the geo-
metrical structure of the solutions of (1.2). To beginwith, we use a p-adicmethod to identify the
singularity pattern of the solutions, leading us to introduce a tau function τ n, which lifts (1.2)
to a recurrence of order 7 with the Laurent property; this is a Laurentification of the original
map, in the sense of [24]. By considering a pattern of initial values that approaches a singular-
ity, and substituting this set of initial data into the expressions (1.3) and (1.4) on the level set

5
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Kj = kj for j = 1,2, in the limit that the singularity is reached we find a hyperelliptic curve of
genus 2, isomorphic to the Weierstrass quintic

y2 =
(
1+ νx+ bx2

)2
+ 4a

(
1+ νx+ bx2

)
x3 + 4k1x

4 + 4(k2 + νk1)x
5. (1.8)

We also show that the tau function τ n satisfies a Somos-9 recurrence with coefficients that
depend on a,b,ν and the values of K1,K2 along each orbit of (1.2). It turns out that both the
singularity pattern, and the corresponding tau function substitution wn = τnτn+3/(τn+1τn+2)
found for (1.2), are the same as for the QRT map associated with the Somos-5 recurrence
[25], which is associated with a family of elliptic curves; so this was a strong initial hint that
analogues of the (P.iv) map should exist for any genus g. For enthusiasts of detective stories,
the results in this section provide motivation and insight into how we made the first steps
on the trail that led to the rest of the paper. However, a reader who is not particularly fond
of experimental mathematics can safely omit section 2 on first reading, since the subsequent
sections are not logically dependent on it, and are written in a more linear, deductive style.

In section 3, we start from a hyperelliptic curve Γf of arbitrary genus g⩾ 1, given by a
Weierstrass equation y2 = f(x) where f ∈ C[x] is of odd degree 2g+ 1, analogous to (1.8),
together with a particular choice of rational function F0 on the curve, and show how a Stieltjes
continued fraction (S-fraction) expansion of this function, of the form

F0 = 1− w1x
F1

= 1− w1x

1− w2x
F2

= 1− w1x

1− w2x

1− w3x
1− ·· ·

, (1.9)

leads to a birational map on the coefficients wj of the fraction, in dimension 3g+ 1, which we
refer to as theVolterra mapVg. As we shall see, iteratingVg for generic initial data produces the
infinite sequence of coefficients wn for n⩾ 1 that appear in the fraction (1.9), while applying
the inverse map V−1

g extends this sequence to n⩽ 0. Furthermore, the recursion for the S-
fraction can be rewritten in the form of a discrete Lax equation. In this setting, the hyperelliptic
curve Γf is the spectral curve, and the polynomial f has 2g+ 1 non-trivial coefficients which
provide conserved quantities (first integrals) for the map. In particular, for g= 1 it reduces to a
QRT map whose tau functions satisfy the Somos-5 recurrence, while when g= 2 we find that,
by fixing the values of three of the first integrals to reduce it to four dimensions, the map is
precisely (1.2). We also show from the S-fraction that, for any g, the solutions of the map can
be written explicitly in terms of tau functions that (up to gauge transformations) are expressed
as Hankel determinants.

Next, in section 4, we introduce a family of compatible Poisson brackets for the map Vg: it
is a Poisson map with respect to any of these brackets, and the conserved quantities provide
a sufficient number of invariants in involution, so we have a Liouville integrable map for any
positive integer g. The maps Vg are examples of discrete a.c.i. systems, which we define as
follows:

Definition 1.1. Suppose that Cn is equipped with a rational Poisson structure of rank 2r. A
birational map φ : Cn → Cn is said to be a discrete a.c.i. system if it is a Poisson map having
s= n− r functionally independent invariants F1, . . . ,Fs that are pairwise in involution (so that
the map is Liouville integrable) and such that

(1) The generic fiber of the momentum map µ := (F1, . . . ,Fs) : Cn → Cs are affine parts of
Abelian varieties (r-dimensional complex algebraic tori);

(2) The restriction of φ to the generic fiber is a translation.

6
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This is the natural discrete analogue of the concept of an algebraic completely integrable
(a.c.i.) system, on which there is a considerable literature [1, 60], and that we will also discuss
in section 5.1 since a.c.i. systems and discrete a.c.i. systems are intimately connected. Although
definition 1.1 is new, several examples of discrete a.c.i. systems in the particular case of r= 1
have already been discovered and thoroughly analyzed in the literature, often in connection
with QRT maps (see [16]). The case r= 1 is a very particular case, as the Abelian varieties are
in this case one-dimensional, that is they are elliptic curves. In the present paper, the Abelian
varieties that appear as compactified level sets of the invariants are affine parts of Abelian
varieties of dimension g, namely the fiber is the Jacobian Jac(Γ̄f) of the (completion of the)
corresponding spectral curve Γ̄f, and the restriction of the map to any of these complex tori is
indeed given by translation over a fixed vector which we describe explicitly. In particular, for
the map (P.iv) given by (1.2), each generic level set defined by fixing Kj = kj for j = 1,2 is an
affine part of an Abelian surface—that is the Jacobian of the curve (1.8)–and the map restricts
to a translation on each of these Abelian surfaces. It is worth clarifying that the requirement
for a discrete system to be a.c.i. is much more restrictive than just being integrable (in the
Liouville sense): for example, the invariants of a generic linear map are transcendental (see
section III in [27]), so such maps cannot be a.c.i. except in certain special cases (and see also
[28] for some examples of integrable Poisson maps in 3D with transcendental invariants).

The whole basis of our construction is the S-fraction expansion (1.9), which may appear
to be a deus ex machina in section 3, but in fact has many antecedents in the literature on
integrable systems, and especially in the development of van der Poorten’s results on Jacobi
fraction (J-fraction) expansions in elliptic [47] and hyperelliptic function fields [46, 48, 49],
as presented in recent work by one of us [31]. The latter revealed the integrable structure of
maps generated by J-fractions of the form

Y0 = α0 (X)+
1
Y1

= α0 (X)+
1

α1 (X)+
1
Y2

= α0 (X)+
1

α1 (X)+
1

α2 (X)+
1
. . .

, (1.10)

where Y0 =
(
Y+P0(X)

)
/Q0(X) is a rational function on a hyperelliptic curve C defined by

a polynomial of even degree 2g+ 2, that is C : Y2 = P2
0 +Q0Q−1, for polynomials Pj,Qj of

degrees g+ 1,g in X, respectively, with the coefficents αj = αj(X) in (1.10) being linear in X.
It was shown in [31] that, for appropriate such Y0, the shift from one line of the J-fraction to
the next defines a Liouville integrable map on a phase space of dimension 3g+ 1, which (on
a generic level set of the first integrals) corresponds to a fixed translation on the Jacobian of
(the completion of) C.

There are classical results going back to Abel on the continued fraction expansion of the
square root of an even degree polynomial (i.e. the function Y on an even hyperelliptic curve C),
although the fact that the sequence of degrees of the coefficients αj(X) in such an expansion is
eventually periodic was proved only very recently [66] (they need not all be linear in X, as per
the above assumption about the function Y0 in (1.10)). This is intimately related to elliptic [2]
and hyperelliptic analogues of orthogonal polynomials [3, 9], as well as more general types
of Padé approximation problems connected with integrable systems [5, 15]. In fact, Stieltjes
continued fractions (of finite type) were already used in the solution of the finite Volterra
lattice by Moser [42], and such fractions were applied to obtain Hankel determinant solutions
for non-isospectral extensions more recently [10].

Section 5 of the paper starts by considering the continuous Hamiltonian system that shares
the same phase space with the Volterra map Vg. After proving that this continuous system is

7
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a.c.i., we show that iteration ofVg (and its inverse) leads to an infinite sequence ofmeromorphic
functions

(
wn(t)

)
n∈Z of t, the time associated with one of the commuting Hamiltonian flows,

providing a meromorphic solution of the Volterra lattice equation (1.6) (hence reproducing
the above observation about (P.iv) in the particular case g= 2). Next we show that this also
produces a meromorphic solution of the Toda lattice, taken in the form

ddn
dt

= dn (vn−1 − vn) ,
dvn
dt

= dn− dn+1 , n ∈ Z, (1.11)

by applying the well-known Miura transformation between the Volterra and Toda lattices. We
further show that the latter transformation arises naturally via the contraction procedure for
continued fractions, due to Stieltjes [55], which combines successive pairs of lines in an S-
fraction into a single line in a J-fraction, and thereby maps a generic solution of the Volterra
map Vg to an associated solution of the map generated by van der Poorten’s construction in
genus g. The paper ends in section 6, with a few conclusions and observations concerning trans-
formations relating solutions of (P.v) and (P.vi) to solutions of the map (P.iv), which we plan to
discuss in detail elsewhere. Also, in appendix A (section A), a birational Poisson isomorphism
is established between the genus g even Mumford system (see [60]) and the Hamiltonian sys-
tem associated with the Volterra map Vg, and in appendix B we provide the details of MAPLE
code used to carry out the proof of proposition 2.1 using computer algebra.

2. Laurentification and tau functions for the map (P.iv)

In this section we exhibit certain phenomena displayed by the iterates of the map (P.iv), which
are related to its discrete integrability. Firstly, we describe the singularity pattern of the iterates,
which is found from an empirical p-adic approach, and leads to the introduction of a sequence
of tau functions τ n for these iterates. On the one hand, these tau functions satisfy a homogen-
eous recursion relation of order 7 with the Laurent property; so this is a Laurentification of
(P.iv), as we state here and prove in section 3.4. On the other hand, these tau functions are
also shown to satisfy a Somos-9 relation, with invariants of (P.iv) as coefficients. Secondly, by
considering the limit where a solution of (P.iv) approaches a singularity, we are led to a family
of genus two curves which will turn out to be at the core of the Stieltjes continued fractions
(section 3) and the algebraic integrability of (P.iv) (section 4).

The Laurent property is a very special feature of certain birational transformations, appear-
ing in cluster algebras and their generalizations [18, 38], which a priori is unrelated to
integrability [26]. However, it turns out that the solutions of discrete integrable systems are
often encoded by tau functions satisfying relations that have the Laurent property, such as
bilinear equations of discrete Hirota type [40]. Despite the fact that integrable maps occur-
ring ‘in the wild’ typically do not exhibit the Laurent phenomenon, it nevertheless seems
to be a common feature of such maps that they admit Laurentification, that is, a lift to a
higher-dimensional relation that does have the Laurent property [24]. For some time, sin-
gularity analysis has been used as a tool to detect integrability of maps (see [41] and refer-
ences), and when the pattern of places where the solutions have a zero or pole is sufficiently
simple, this can further suggest an appropriate way to introduce tau functions and perform
Laurentification [30].

To start with, we apply the p-adic approach described in [30] (see also [36]) to the map (P.iv)
defined by (1.2), and derive a singularity pattern from it. This empirical approach is based on

8
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examining the prime factorization of the terms of specific orbits (wn)n∈N defined inQ, chosen
arbitrarily, and considering the behaviour of the p-adic norms |wn|p for particular primes p. As
a concrete example, upon picking the specific parameter values ν= 3, a= 5, b= 7 and setting
all four initial values to be 1, we then find a sequence of rational numbers given by

− 30,
743
30

,
10541
22290

,
3819540
7831963

,−4315187227
1342059038

,
6624290612327
739436079902

,−23965197528782842
3649794341246183

,

− 304709076970269230792
118290200741883010693

, . . . , (2.1)

where the latter terms factorize as

− 2 · 3 · 5, 743
2 · 3 · 5

,
83 · 127

2 · 3 · 5 · 743
,
22 · 3 · 5 · 63659
83 · 127 · 743

, − 13 · 743 · 446753
2 · 83 · 127 · 63659

,

19 · 83 · 127 · 1579 · 20947
2 · 13 · 63659 · 446753

,− 2 · 59 · 51593 · 61837 · 63659
13 · 19 · 1579 · 20947 · 446753

,

− 23 · 13 · 967 · 446753 · 6782004923
19 · 59 · 1579 · 20947 · 51593 · 61837

, . . . .

For several different primes, e.g. p= 3, 5, 83, 127, 743, . . ., this reveals a common pattern
whereby, for some n,

|wn|p = p−1 , |wn+1|p = p , |wn+2|p = p , |wn+3|p = p−1 , (2.2)

with the prime p being absent from the factorization on the previous and on the next terms:
|wn−1|p = |wn+4|p = 1. The p-adic norms (2.2) identify places where the orbit of the map over
the finite field Fp has a zero or pole, as well as the order of these [36]. Since the recurrence (1.2)
defines a birational map, any orbit defined for n⩾ 0 can be extended to n< 0 (at least, provided
that it does not reach a singularity, where wn = 0 for some n; but see Corollary 2.6 below).
Hence, the pattern (2.2) suggests that for n ∈ Z one should make the tau function substitution

wn =
τnτn+3

τn+1τn+2
, (2.3)

so that the places where a prime factor p appears in the numerators or denominators of the
sequence (wn)n∈Z can be encoded by the appearance of the factor p in the terms of the tau
function sequence (τn)n∈Z. These tau functions can be defined recursively, in two quite differ-
ent ways:

Proposition 2.1. Suppose that (wn)n∈Z is a solution of (1.2). Then the corresponding sequence
(τn)n∈Z satisfies

(1) A homogeneous recurrence of order 7 and degree 8:

τn+7τ
2
n+4τ

3
n+3τ

2
n+2 + τ 2n+6τ

4
n+3τ

2
n+2 + 2τn+6τ

2
n+5τ

2
n+3τ

3
n+2 + τn+6τn+5τ

2
n+4τ

2
n+3τn+2τn+1

+ τ 4n+5τ
4
n+2 + 2τ 3n+5τ

2
n+4τ

2
n+2τn+1 + τ 2n+5τ

4
n+4τ

2
n+1 + τ 2n+5τ

3
n+4τ

2
n+3τn

+ ν
(
τn+6τn+5τn+4τ

3
n+3τ

2
n+2 + τ 3n+5τn+4τn+3τ

3
n+2 + τ 2n+5τ

3
n+4τn+3τn+2τn+1

)
+ bτ 2n+5τ

2
n+4τ

2
n+3τ

2
n+2 + aτn+5τ

3
n+4τ

3
n+3τn+2 = 0 .

(2.4)

9
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(2) A (generalized) Somos-9 recurrence:

α1 τn+9τn+α2 τn+8τn+1 +α3 τn+7τn+2 +α4 τn+6τn+3 +α5 τn+5τn+4 = 0 . (2.5)

The coefficients αi are polynomial functions of the parameters of the map and of the val-
ues k1,k2 of the invariants K1,K2, hence are constant along each orbit (wn)n∈Z. They are
given by

α1 = k1, α2 = ak2 − k21, α3 = a
(
ak2 − 2k21

)
,

α4 = a
(
k22 + νk1k2 + bk21 + a2k1

)
, α5 =−k1

(
k22 + νk1k2 + bk21 + a2k1

)
.

Proof. The proof of (1) is by a direct substitution of (2.3) in (1.2), while (2) is derived by
implementing the method from [29], which involves computing determinants of matrices with
entries that are of degree two in tau functions. More precisely, for (2) one should write five
copies of the Somos-9 relation as a matrix equation Mnα= 0, that is


τn+9τn τn+8τn+1 τn+7τn+2 τn+6τn+3 τn+5τn+4

τn+10τn+1 τn+9τn+2 τn+8τn+3 τn+7τn+4 τn+6τn+5

τn+11τn+2 τn+10τn+3 τn+9τn+4 τn+8τn+5 τn+7τn+6

τn+12τn+3 τn+11τn+4 τn+10τn+5 τn+9τn+6 τn+8τn+7

τn+13τn+4 τn+12τn+5 τn+11τn+6 τn+10τn+7 τn+9τn+8




α1

α2

α3

α4

α5

=


0
0
0
0
0


and then verify that there is a non-zero vector of coefficients α, lying in the kernel of Mn,
that is independent of n. By iterating (1), all of the entries of the matrix Mn can be written in
terms of a fixed set of 7 initial tau functions; so say for n= 0 one can take τ j for 0⩽ j⩽ 6 as
initial data, verify directly that det(M0) = 0, then find a vector α in the kernel of this matrix,
and check that it is invariant under a shift of index j→ j+ 1 applied to all of these initial τ j,
hence each of the components α1, . . . ,α5 is constant along an orbit. The latter calculations all
require extensive use of computer algebra (see appendix B). Note that, in contrast to (1), there
is not a strict equivalence between solutions of (1.2) and solutions of the Somos-9 relation (2),
because one cannot choose 9 initial data arbitrarily; rather, the latter relation is only satisfied
for particular sequences (τn), specified by 7 initial tau functions, with the coefficients αj being
fixed by these and the parameters a,b,ν.

The recursion defined by (1.2) requires 4 initial values, while (2.4) requires 7, and the dis-
crepancy between the two is described by the three-parameter group (C∗)3 of gauge trans-
formations, with action given by

τn 7→ A±B
n τn , A+,A−,B ∈ C∗ , (2.6)

corresponding to the freedom to rescale even/odd terms by a different factor A±, and apply
a rescaling Bn that is exponential in n to all terms. Any 4 non-zero initial values w0, . . . ,w3

of (1.2) allow a corresponding set of non-zero initial data to be determined for (2.4), up to this
gauge freedom; for example, we may take as corresponding initial data τn = 1 for n= 0,1,2
and τ3 = w0, τ4 = w0w1, τ5 = w2

0w1w2 and τ6 = w2
0w

2
1w2w3, which are polynomials (in fact,

monomials) in w0,w1,w2,w3. Notice that (2.4) can also be solved rationally for τ n in terms of
τn+1, . . . , τn+7 so that the sequence (τn) is actually defined for all n ∈ Z.

10
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Example 2.2. In the case ν= 3, a= 5, b= 7, taking the initial values τj = 1 for 0⩽ j⩽ 6
in (2.4) yields the sequence of tau functions beginning

1,1,1,1,1,1,1,−30,−743,10541,127318,5807789,628430947,−188231024119,

52465590084328, . . . , (2.7)

which consists of integers, and the terms after the initial 1 s have prime factorizations given
by −2 · 3 · 5,−743,83 · 127,2 · 63659,13 · 446753,19 · 1579 · 20947,−59 · 61837 · 51593,23 ·
967 · 6782004923, etc. These correspond to the prime factors appearing in the numerators and
denominators in the particular sequence of rational values of wn illustrated in (2.1) above. Due
to a reversing symmetry of the recurrence (2.4), this sequence extends backwards to n< 0 in
such a way that the property τ6−n = τn holds for all n ∈ Z, since the 7 initial data have this
symmetry. Furthermore, these tau functions also satisfy the Somos-9 recurrence

28τn+9τn− 239τn+8τn+1 − 5115τn+7τn+2 + 136125τn+6τn+3 − 762300τn+5τn+4 = 0,
(2.8)

which corresponds to (2.5) with the coefficients αj being fixed (up to overall rescaling) by the
specified choices of ν,a,b, together with the fact that the first integrals take the valuesK1 = 28,
K2 = 109. For any solution of (2.4), the subsequences consisting of even/odd index terms, that
is τ̂n = τ2n or τ2n+1, respectively, also satisfy a Somos-8 relation, of the form

α̂1 τ̂n+8τ̂n+ α̂2 τ̂n+7τ̂n+1 + α̂3 τ̂n+6τ̂n+2 + α̂4 τ̂n+5τ̂n+3 + α̂5 τ̂
2
n+4 = 0 . (2.9)

For the particular integer sequence above, up to overall scale the coefficients are given by

α̂1 = 195848, α̂2 =−61660241775, α̂3 = 13236763233189375,
α̂4 =−8064076031989579800, α̂5 =−3603810041796109733 .

The relation (2.9) can be regarded as an ordinary difference reduction of a constraint for a
tau function defined on a multidimensional lattice, which arises from a Hermite–Padé approx-
imation problem (cf equation (2.10) in [15]). An explanation for why this Somos-8 relation
must hold will be provided in section 5, via the connection with the Toda lattice and the results
in [31].

The following proposition shows that the recurrence (2.4) is a Laurentification of (P.iv). In
particular, this explains why the tau functions in the preceding example are all integers.

Proposition 2.3. The recurrence (2.4) has the Laurent property. More precisely, for
all n ∈ Z,

τn ∈ Z
[
a,b,ν,τ0, τ1, τ

±1
2 , τ±1

3 , τ±1
4 , τ5, τ6

]
.

In principle, for n⩾ 0 the proof of the proposition is a direct application of Theorem 2
in [24], and the same method of proof applies for n< 0, because the map defined by (2.4)
is birational. However, the formal verification to be done by this method quickly gets out
of hand, since the rational functions obtained as the formulae for the first few iterations of
the map defined by (2.4) soon become too complicated for the checks to be carried out by a
simple computer algebra program. A general proof of Proposition 2.3 that does not require
any computer algebra will be given in section 3.4.

11
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Remark 2.4. As mentioned in the introduction, through the relation (1.7), the special case
a= 0 of the (P.iv) map is closely linked to a difference equation appearing in the work of
Svinin, and to a reduction of the lattice KdV equation. Thus, when the parameter a= 0, the
result of proposition 2.3 is subtly related to the fact that the order 7, degree 6 recurrence

τn+7τ
2
n+4τn+3τn+2τn+1 + τn+6τn+5τn+4τ

2
n+3τn+ τ 2n+6τ

2
n+3τn+2τn+1 + τn+6τn+5τ

2
n+4τ

2
n+1

+ τn+6τ
2
n+5τ

2
n+2τn+1 −ατn+5τ

2
n+4τ

2
n+3τn+2 +βτn+6τn+5τn+4τn+3τn+2τn+1 = 0

(2.10)

has the Laurent property, in the sense that it generates Laurent polynomials in τ0, . . . , τ6 with
coefficients in Z[α,β] (the case N= 4 of proposition 2.3 in [30]). The point is that (2.3) coin-
cides with the tau function substitution found for maps related with lattice KdV reductions in
[30], and the relation (2.10) holds for solutions of (2.4) obtained by setting a= 0, ν = β, and
taking an orbit for which the value of the first integral K1 is fixed to be k1 =−α.

Example 2.5. Upon taking a= 0, b=−17, ν =−11 andmaking a specific choice of 7 integer
initial values for (2.4), with the 3 central values fixed to be 1, we generate an integer sequence
that begins as follows:

3,2,1,1,1,4,5,699,−25626,453024,−112570254,23354432973,61327997061471,

− 35520663450983076, . . . .

Then we see that this sequence also satisfies the relation (2.10) with β =−11 and α=−k1 =
327. Also, since three of the coefficients in (2.5) vanish when a= 0, we see that the Somos-9
relation for this sequence takes the shorter (three-term) Gale–Robinson form

τn+9τn+ 327τn+8τn+1 + 3850083τn+5τn+4 = 0,

which is a reduction of the discrete Hirota equation, and is in agreement with the N= 4 case
of theorem 1.1 in [30].

The Laurent property for (2.4), together with the formula (2.3), immediately implies that
the generic orbit (wn) of (P.iv) is well-defined, as stated in the following corollary.

Corollary 2.6. For generic non-zero initial values (w0,w1,w2,w3) ∈ (C∗)4, the orbit (wn)n∈Z
exists, with wn ∈ P1 = C∪{∞}.

Proof. As we shall see in section 3.4, the initial tau functions can be chosen so that all τ n
are polynomials in the initial data for (1.2). For a fixed index n it is then clear from (2.3)
that wn is an indeterminate element of P1 only when at least two out of three successive tau
functions in (2.3) vanish, i.e. belong to a certain proper Zariski closed subset of the space of
(non-zero) initial data for (1.2). Considering this condition for all n yields a subset of this space
of initial data, which is the intersection of a countable family of Zariski open subsets. Such
an intersection is a residual, hence dense, subset so that for generic initial data, the orbit is
well-defined.

Note that (P.iv) was originally defined as a birational affine map in C4, but the above corol-
lary allows the existence of certain orbits defined in (P1)4. Notice also that this corollary does
not state that the subset of initial data for which the orbit exists is open. This stronger statement
will follow from algebraic integrability, without use of the tau functions (see section 4).

12
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As an initial foray into the geometry of the map, defined by (1.2), we now consider the
singularity pattern in more detail, by taking three non-zero initial values w0,w1,w2 ∈ C∗ fol-
lowed by a fourth value proportional to a small parameter ϵ ∈ C, and consider the behaviour
of the solution in the limit ϵ→ 0. To reformulate this in terms of tau functions, we set

τ0 = Z , τ1 = τ2 = τ3 = 1, τ4 = X , τ5 = Y , τ6 = ϵ , XYZ 6= 0 ,

where three adjacent values have been set equal to 1 by a choice of gauge. This gives,
using (2.3), four non-zero initial values

w0 = Z , w1 = X , w2 =
Y
X
, w3 =

ϵ

XY
, (2.11)

for the map (1.2), such that the fourth value w3 → 0 as ϵ→ 0. Upon substituting these values
in (1.2) we find as subsequent values

w4 = C4 ϵ
−1 +O(1) , w5 = C5 ϵ

−1 +O(1) , w6 = C6 ϵ+O
(
ϵ2
)
, w7 = C7 +O(ϵ) ,

for certain coefficients Cj which are rational functions of X,Y,Z. Notice that the leading order
behaviours of w3,w4,w5,w6 are ϵ,ϵ−1, ϵ−1, ϵ, respectively, with terms of O(1) on either side,
which corresponds to the singularity pattern (2.2) obtained above by the p-adic method. Now
if we substitute the initial values (2.11) into K1 = k1, K2 = k2, where K1 and K2 are the invari-
ants (1.3) and (1.4), and take the limit ϵ→ 0, then (after clearing denominators) we get two
polynomial relations between X,Y,Z, which define an affine algebraic curve. Upon taking res-
ultants with respect to Z, this yields a single relation between X and Y, namely(

aY2 − (νk1 + k2)Y− ak1
)
X4 +

(
(aν− k1)Y

2 +
(
a2 − bk1

)
Y+ k21

)
X3

+
(
2aY3 +(ab− νk1)Y

2 − 2ak1Y
)
X2 +Y2

(
(aν− k1)Y+ a2

)
X+ aY4 = 0 . (2.12)

This plane curve is birationally equivalent to the Weierstrass quintic (1.8), which can be seen
from the transformation

x=
X(aY− k1X)

Y(aX2 − k1X+ aY)
, (2.13)

together with a corresponding formula for y= y(X,Y), which is rather unwieldy and so is
omitted. For generic values of k1,k2, the curve (2.12) is a smooth hyperelliptic curve of genus
2. As already said, in its Weierstrass form (1.8), this family of curves will play an important
role in all that follows.

3. S-fractions on hyperelliptic curves and Volterra maps

In this section, for a fixed integer g> 0, we introduce an affine space of triplets of polynomi-
als, reminiscent of the phase space of the Mumford system [43, 60] and use Stieltjes contin-
ued fractions (S-fractions) to construct a series of birational automorphisms of the affine space,
indexed by g, which we describe in several ways. When g= 1 we recover several known integ-
rable maps, and for g= 2 we recover the map (P.iv), which was been the primary motivation
for this study, while the maps for g> 2 appear to be new. We also give solutions in terms of
Hankel determinants of the iterates of these maps, i.e. of the corresponding recursion relations.

13
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For a fixed g> 0 we consider the affine space

Mg :=

(P (x) ,Q(x) ,R(x)) ∈ C [x]3
∣∣∣ degP (x)⩽ g , P (0) = 1

degQ(x)⩽ g , Q(0) = 2
degR(x)⩽ g+ 1 , R(0) = 0

 . (3.1)

It is clear that Mg is an affine space of dimension 3g+ 1: writing

P (x) = 1+
g∑

i=1

pix
i , Q(x) = 2+

g∑
i=1

qix
i , R(x) =

g+1∑
i=1

rix
i , (3.2)

the coefficients p1, . . . ,pg,q1, . . . ,qg,r1, . . . ,rq+1 provide a natural system of linear coordinates
on Mg. We will often write an element (P,Q,R) of Mg as a traceless 2× 2 matrix

L(x) :=

(
P (x) R(x)
Q(x) −P (x)

)
, (3.3)

which will later serve as a Lax operator, and think of Mg as an affine space of matrices (Lax
operators). It is then natural to consider the map µ defined by

µ : Mg → C [x]

L(x) =

(
P (x) R(x)
Q(x) −P (x)

)
7→ −detL(x) = P (x)2 +Q(x)R(x) .

(3.4)

In view of the degree constraints on the entries of L(x), the polynomial −detL(x) has degree
at most 2g+ 1 and its constant term is 1; moreover, every such polynomial is contained in the
image of µ. In the g= 2 case these curves are precisely the ones encountered in section 2 in the
singularity analysis of (P.iv), see (1.8), (2.12) and (2.13), which in part motivates the choice of
constraints on the polynomials P,Q and R. (When Mg is endowed with a Poisson structure,
as in section 4, then µ can be viewed a momentum map.)

Throughout this section, g> 0 is fixed. In each of the following subsections, the results and
phenomena being discussed will be specialized and illustrated for the cases of g= 1 and g= 2,
when Mg has dimension 4 and 7, respectively.

3.1. Stieltjes continued fractions

We start from a hyperelliptic curve Γf, defined by an odd Weierstrass equation

Γf : y
2 = f(x) , with f(x) := 1+

2g+1∑
j=1

cjx
j ∈ C [x] . (3.5)

When f has degree 2g+ 1 and has no multiple roots, Γf is non-singular and its genus is
g, which explains the notation used. Let (P,Q,R) be any point in µ−1( f), the fiber of µ
over f, so that f(x) = P2(x)+Q(x)R(x), and the spectral curveΓf is the characteristic equation
det(L(x)− y1) = 0. We consider on Γf the rational function, given by

F :=
y+P (x)
Q(x)

=
R(x)

y−P (x)
. (3.6)

14
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In preparation for constructing the Stieltjes continued fraction of F, we show in the follow-
ing lemma how the triplet (P,Q,R) leads to another triplet (P̃,Q̃,R̃) in the same fiber of µ,
under the assumption that (P,Q,R) is regular, meaning that

2P (x)−Q(x)+R(x)
x

∣∣
x=0

= 2p1 − q1 + r1 6= 0 . (3.7)

Lemma 3.1. Given a regular triplet (P,Q,R) in µ−1( f), there exists a unique w ∈ C∗ and a
unique triplet (P̃,Q̃,R̃) in µ−1( f) such that

y+P (x)
Q(x)

= 1− wx
y+P̃(x)
Q̃(x)

. (3.8)

The two triplets are related by

P̃ (x) =Q(x)−P (x) , Q̃(x) =
2P (x)−Q(x)+R(x)

−wx
, R̃(x) =−wxQ(x) , (3.9)

and

w=−2p1 − q1 + r1
2

=− r̃1
2
. (3.10)

Proof. We will constructively show that we can achieve (3.8) with w ∈ C∗ and (P̃,Q̃,R̃) ∈
µ−1( f) uniquely determined. Clearing the denominators in (3.8) and using y2 = f(x) we get

y
(
P (x)+ P̃ (x)−Q(x)

)
+ f(x)+P (x) P̃ (x)−P̃ (x)Q(x)+wxQ(x)Q̃(x) = 0 , (3.11)

an equality which holds in the field of fractions of C[x,y]/(y2 − f(x)), so that the coefficients
of y and of y0 in (3.11) must be zero. The vanishing of the former coefficient gives the first
equation in (3.9) and guarantees P̃(0) = 1 and deg P̃ ⩽ g. The vanishing of the y0 coefficient
gives

−wQ̃(x) =
f(x)+ (P (x)−Q(x)) P̃ (x)

xQ(x)
=
f(x)− (P (x)−Q(x))2

xQ(x)
=

2P (x)−Q(x)+R(x)
x

,

(3.12)

where we have used in the last step that f(x) = P2(x)+Q(x)R(x). Notice that in view of the
values of the constant terms in (3.2), the last numerator in (3.12) vanishes for x= 0 and is of
degree at most g+ 1. Also, as the triplet (P,Q,R) is assumed to be regular, the polynomial
(2P −Q+R)/x does not vanish at x= 0, hence we can (uniquely) choose w ∈ C∗ such that
Q̃(0) = 2. This gives the first equality in (3.10) and the second equation in (3.9). The first
equality in (3.12) also shows that f(x)−P̃2(x) is divisible by Q̃(x), with quotient −wxQ(x);
thus, if we take the third equality in (3.9) to define R̃, then degR̃= g+ 1, R̃(0) = 0 and
f(x) = P̃2(x)+ Q̃(x)R̃(x), completing the proof that (P̃,Q̃,R̃) belongs to µ−1( f). Notice that
the third equality in (3.9) implies the alternative formula for w in (3.10), since Q(0) = 2.

Applying the lemma to all regular points of the fiber µ−1( f) yields a rational map of the
fiber to itself, given by (P,Q,R) 7→ (P̃,Q̃,R̃) with (P̃,Q̃,R̃) given by (3.9). Since the lat-
ter can also be solved rationally for (P,Q,R) in terms of (P̃,Q̃,R̃) by using the second
expression for w in (3.10), this rational map is actually a birational automorphism of the fiber.
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Iterating this map starting from a triplet (P0,Q0,R0) = (P,Q,R) ∈ µ−1( f), we get an infinite
sequence (Pn,Qn,Rn)n∈Z of triplets as well as an infinite sequence (wn)n∈Z in C∗, such that
(Pn+1,Qn+1,Rn+1) and wn+1 are related to (Pn,Qn,Rn) as dictated by the lemma:

Pn+1 (x) =Qn (x)−Pn (x) , Qn+1 (x) =
2Pn (x)−Qn (x)+Rn (x)

−wn+1x
,

Rn+1 (x) =−wn+1xQn (x) . (3.13)

Writing, as in (3.2), Pn(x) = 1+
∑g

i=1 pn,ix
i, and similarly for Qn(x) andRn(x), the value of

wn+1 is given, according to (3.10), by

wn+1 =−2pn,1 − qn,1 + rn,1
2

=− rn+1,1

2
, (3.14)

for all n ∈ Z.
It is clear that (Pn,Qn,Rn) is obtained from (P0,Q0,R0) by repeating the map n times

(or, when n< 0, repeating the inverse of the map −n times). As pointed out in the lemma, the
starting triplet (P0,Q0,R0) must be regular in order for (P1,Q1,R1) and w1 ∈ C∗ to exist.
But nothing guarantees that (P1,Q1,R1) will also be regular, and in general it need not be so;
assuming (P1,Q1,R1) to be a regular triplet puts an open linear condition on the coefficients
of (P1,Q1,R1), namely that 2p1,1 − q1,1 + r1,1 6= 0, which amounts to an open polynomial
condition on (P0,Q0,R0), and for the existence of every extra term of the sequence such
an extra condition is to be added to the triplet (P0,Q0,R0). However, since this amounts to
a countable number of open conditions on the latter, this means that when (P0,Q0,R0) is
generic, in the sense that it belongs to a residual subset of the fiber µ−1( f), the sequence of
triplets of polynomials (Pn,Qn,Rn) ∈ µ−1( f) and the sequence of constants wn ∈ C∗, both
indexed by n ∈ Z, exist. For generic (P0,Q0,R0), iterating (3.8) gives

F0 :=
y+P0 (x)
Q0 (x)

= 1− w1x
y+P1(x)
Q1(x)

= · · ·= 1− w1x

1− w2x

1− w3x
1− ·· ·

, (3.15)

yielding the Stieltjes continued fraction, also called S-fraction, of F0. Similarly, each triple
(Pn,Qn,Rn), n ∈ Z, is associated with a rational function Fn, with a corresponding S-fraction
obtained by shifting each of the indices in (3.15), which for n> 0 appears on the nth line below
the top.

Example 3.2. Suppose that g= 1. Then the entries of the triplets (P,Q,R) and sequences
(Pn,Qn,Rn)n∈Z in Mg =M1 take the form

P (x) = 1+ p1x ,
Q(x) = 2+ q1x ,
R(x) = r1x+ r2x2 ,

and
Pn (x) = 1+ pn,1x ,
Qn (x) = 2+ qn,1x ,
Rn (x) = rn,1x+ rn,2x2 .

(3.16)

The birational automorphism (3.9), constructed in lemma 3.1, and its iterates are given by

p̃1 = q1 − p1 ,
q̃1 =−r2/w ,
r̃1 =−2w ,
r̃2 =−wq1 ,

and

pn+1,1 = qn,1 − pn,1 ,
qn+1,1 =−rn,2/wn+1 ,
rn+1,1 =−2wn+1 ,
rn+1,2 =−wn+1qn,1 ,

(3.17)

where w=− 2p1−q1+r1
2 and wn+1 =− 2pn,1−qn,1+rn,1

2 for n ∈ Z.
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Example 3.3. Suppose now that g= 2. The entries of the triplets (P,Q,R) and sequences
(Pn,Qn,Rn)n∈Z in M2 now take the form

P (x) = 1+ p1x+ p2x2 ,
Q(x) = 2+ q1x+ q2x2 ,
R(x) = r1x+ r2x2 + r3x3 ,

and
Pn (x) = 1+ pn,1x+ pn,2x2 ,
Qn (x) = 2+ qn,1x+ qn,2x2 ,
Rn (x) = rn,1x+ rn,2x2 + rn,3x3 .

(3.18)

From the construction in lemma 3.1, the birational automorphism (3.9) and its iterates are
given by (3.17), with the expression for q̃1 modified to

q̃1 =−(2p2 − q2 + r2)/w, and qn+1,1 =−(2pn,2 − qn,2 + rn,2)/wn+1,

further supplemented with the following formulae:

p̃2 = q2 − p2 ,
q̃2 =−r3/w ,
r̃3 =−wq2 ,

and
pn+1,2 = qn,2 − pn,2 ,
qn+1,2 =−rn,3/wn+1 ,
rn+1,3 =−wn+1qn,2 ,

(3.19)

where, as in the genus 1 case, w=− 2p1−q1+r1
2 and wn+1 =− 2pn,1−qn,1+rn,1

2 for n ∈ Z.

3.2. Lax equation and invariants

In section 3.1 we defined a birational automorphism of the fiber µ−1( f)⊂Mg, where f = f(x)
is any polynomial of degree at most 2g+ 1, satisfying f(0) = 1. This map, given by (3.9), is not
just defined on µ−1( f), but is also as it stands a well-defined birational automorphism of Mg.
In view of its relation to the Volterra lattice (see section 5), we call it the Volterra map, denoted
Vg; explicitly,

Vg : (P,Q,R) 7→
(
P̃,Q̃,R̃

)
,

where the entries of the latter are given by (3.9); also, we can write Vg(Pn,Qn,Rn) =
(Pn+1,Qn+1,Rn+1) for all n ∈ Z. For a fixed initial triplet (P0,Q0,R0), the entire sequence
of triplets (Pn,Qn,Rn)n∈Z inMg is called the orbit of Vg through (P0,Q0,R0). We also refer
to a sequence of triplets that satisfies the recursion relations (3.13) for all n as a solution. The
equations (3.9) for the Volterra map, as well as the recursion relations (3.13) for its iterates, are
easily rewritten as discrete Lax equations; this fact has many important consequences which
will be worked out in what follows.

Proposition 3.4. The Volterra map Vg can be written in the compact form

Vg : L(x)M(x) =M(x) L̃(x) , (3.20)

where L(x) is given by (3.3), L̃(x) is L(x) with P,Q,R replaced by P̃, Q̃, R̃, and M(x) :=(
1 −wx
1 0

)
, with w given by (3.10). As a consequence, the 2g+ 1 polynomial functions

H1, . . . ,H2g+1 on Mg, defined by
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P (x)2 +Q(x)R(x) = 1+
2g+1∑
i=1

Hix
i (3.21)

are invariants of the Volterra map, i.e. H̃i = Hi for i = 1, . . . ,2g+ 1.

Proof. It is easily checked by direct computation that (3.9) and (3.20) are the same set of
Equations. Since the latter says that L̃(x) is obtained from L(x) by conjugation withM(x), the
spectrum of L(x) is preserved, hence also all coefficients of the determinant of L(x), i.e. the
coefficients Hi of µ(L(x)) = P(x)2 +Q(x)R(x).

Upon iterating the Volterra map, as discussed in section 3.1, starting from a generic triplet
L0(x) of Mg we get a sequence of triplets

Ln (x) :=

(
Pn (x) Rn (x)
Qn (x) −Pn (x)

)
of Mg. According to (3.20), a discrete Lax equation for this sequence is given by

Ln (x)Mn (x) =Mn (x)Ln+1 (x) , (3.22)

where

Mn (x) :=

(
1 −wn+1x
1 0

)
, with wn+1 =−2pn,1 − qn,1 + rn,1

2
=− rn+1,1

2
.

(3.23)

Example 3.5. When g= 1, respectively when g= 2, the invariants Hi can be computed
from (3.21):

H1 = 2(p1 + r1) ,
H2 = p21 + q1r1 + 2r2 ,
H3 = q1r2 ,

H1 = 2(p1 + r1) ,
H2 = 2p2 + p21 + q1r1 + 2r2 ,
H3 = 2p1p2 + 2r3 + q1r2 + q2r1 ,
H4 = p22 + q1r3 + q2r2 ,
H5 = q2r3 .

(3.24)

The formulae on the left, which correspond to g= 1, can be obtained from the first three for-
mulae on the right by setting p2 = q2 = r3 = 0 in them.

3.3. The Volterra map and its reductions

The invariants Hi can be used to reduce the Volterra map to the submanifolds obtained by
fixing the values of some of these invariants. Here we will use this to express the Volterra map
in terms of the variables wi which we introduced when constructing the S-fraction (3.15).

We start from the linear coordinates p1, . . . ,pg,q1, . . . ,qg,r1, . . . ,rq+1 ofMg, which are iden-
tified with p0,1, . . . ,p0,g,q0,1, . . . ,q0,g,r0,1, . . . ,r0,g+1. The latter functions are used to define
recursively pn,1, . . . ,pn,g, qn,1, . . . ,qn,g,rn,1, . . . ,rn,g+1, as well as wn, for all n ∈ Z. Recall that
this is done using (3.13) and (3.14).

In a first step, we will use a birational map to replace our linear coordinates for Mg by
p0,1, . . . ,p0,g and some of its iterates pn,1, . . .pn,g. To do this, we fix the value of the invari-
ant H1 = 2(p1 + r1) to an arbitrary constant c1. It means that we consider the hyperplane

18
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H1 = c1 of Mg, which denote by Mc1
g . On it, we can take p1, . . . ,pg,q1, . . . ,qg,r2, . . . ,rq+1 as

linear coordinates (we left out r1). The invariance ofH1 implies that 2(pn,1 + rn,1) = c1 which,
combined with rn,1 =−2wn (see (3.14)), leads to

wn =
1
2

(
pn,1 −

c1
2

)
(3.25)

for all n ∈ Z. Using this and the first and last equations in (3.13), we can express the above
variables in terms of p0,1, . . . ,p0,g and their iterates:

qn,k = pn+1,k+ pn,k , and rn,k+1 =−wnqn−1,k =
1
2

(c1
2
− pn,1

)
(pn,k+ pn−1,k) , (3.26)

where k= 1, . . . ,g. Taking n= 0 we get

q0,k = p1,k+ p0,k , and r0,k+1 =
1
2

(c1
2
− p0,1

)
(p0,k+ p−1,k) , (3.27)

and we have expressed all coordinates of Mc1
g in terms of the 3g coefficients of the polyno-

mials P−1,P0 and P1. It is clear that the (3.27) can be solved rationally for p1,k and p−1,k

so that (3.27) defines a birational morphism from Mc1
g to the space of triplets (P−1,P0,P1).

For later use, we also express the iterates of the Volterra map as a recursion relation on the
polynomials Pn. To do this, we apply (3.13) several times to get

Pn+2 =Qn+1 (x)−Pn+1 (x) =
2Pn (x)−Qn (x)+Rn (x)

−wn+1x
−Pn+1 (x)

=−Pn+1 (x)+
1

wn+1x
(Pn+1 (x)−Pn (x))+

wn
wn+1

(Pn (x)+Pn−1 (x)) . (3.28)

We will now go one step further and show how the above coordinates p0,k,p1,k and p−1,k

can be expressed birationally in terms of p0,1 and some of its iterates pn,1. To do this, we do
a further reduction, namely we also fix the value of each one of the invariants H2, . . . ,Hg to
an arbitrary constant c2, . . . ,cg and consider the subvariety ∩g

i=1(Hi = ci) of Mg, which we
denote byMc

g, so c stands now for (c1, . . . ,cg). Notice that this subvariety may be singular, but
that does not affect the reduction or the recursion relations. Using (3.26), we get the following
formula for the invariants Hi in terms of Pn,Pn+1 and Pn−1, valid for any n ∈ Z:

1+
2g+1∑
k=1

Hix
i = P2

n (x)+Qn (x)Rn (x) = P2
n (x)−wnx(Pn (x)+Pn+1 (x))(Pn (x)+Pn−1 (x)) ,

with wn given by (3.25). Upon comparing the coefficient of xk on both sides, for k= 1 we
recover (3.25), while for k= 2, . . . ,gwe recursively obtain pn,k in terms of p0,1 and its iterates,
via the following formulae:

ck = 2pn,k+
k−1∑
i=1

pn,ipn,k−i− 2wn (2pn,k−1 + pn−1,k−1 + pn+1,k−1)

−wn

k−2∑
i=1

(pn,i+ pn+1,i)(pn,k−1−i+ pn−1,k−1−i) . (3.29)
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Indeed, aside from the linear term in pn,k, the above equation contains only the variables pn,i
and pn±1,i with 1⩽ i < k. For k= 2 one gets

c2 = 2pn,2 + p2n,1 − 2wn (2pn,1 + pn−1,1 + pn+1,1) ,

from which it is clear that pn,2 depends (polynomially) only on pn−1,1,pn,1 and pn+1,1

(see (3.25) for the formula forwn). An easy recursion on k using (3.29) shows that pn,k depends
on pn−k+1,1, . . . ,pn+k−1,1 only. Taking n=−1, n= 0 and n=−1 we get that the coefficients
of P−1,P0 and P1 depend only on p−g,1, . . . ,pg,1. Conversely, it is obvious from (3.28) that
the coefficients of P2, and hence of all Pn with n⩾ 2, are rational functions of the coefficients
of P−1,P0 and P1. This applies in particular to pn,1 with n⩾ 2. Using the inverse recursion,
which yields a formula similar to (3.28) expressing Pn−2 in terms of Pn+1,Pn and Pn−1 one
obtains similarly that all pn,1 with n ∈ Z are rational functions of the coefficients of P−1,P0

and P1. The upshot is that we have a birational map betweenMc
g andC2g+1, equipped with the

coordinates p−g,1, . . . ,pg,1. In view of (3.25), which we now write as

pn,1 = 2wn+
c1
2
, (3.30)

it amounts to a birational map betweenMc
g andC

2g+1
w where the latter denotesC2g+1, equipped

with the coordinates w−g, . . . ,wg.
Hence we can use the birational map between Mc

g and C2g+1
w to write the Volterra map on

Mg, restricted to Mc
g, as a birational automorphism of C2g+1

w . Since we already gave in (3.28)
the Volterra map and its iterates in terms of the variables Pi, we set n= 0 therein, which gives
the Volterra map itself, and take the leading terms of both sides of (3.28):

w1 (p2,g+ p1,g) = w0 (p0,g+ p−1,g) . (3.31)

In view of the dependence of p−1,g, . . . ,p2,g on the variables wi, (3.31) gives an equation for
wg+1, which appears linearly in it, and the birational automorphism (w−g,w1−g, . . . ,wg) 7→
(w1−g, . . . ,wg,wg+1) is the Volterra map on C2g+1

w . Explicit expressions for it will be given in
the examples below.

However, we can do a further reduction, restricting the Volterra map to the subvariety Hk =
ck for some k with g< k⩽ 2g+ 1. The relation

Hk (w−g, . . . ,w0, . . . ,wg) = ck

defines wg as a rational function of w−g, . . . ,wg−1 because by inspection wg appears linearly
in it (the same applies to w−g). As we will see in the examples below, we can therefore take
any of the invariantsHk, with g< k⩽ 2g+ 1 which will give a birational automorphism which
is an incarnation of the Volterra map Vg on Mc

g ∩ (Hk = ck); precisely it is conjugate, via the
above birational map, to the Volterra map, restricted to Mc

g ∩ (Hk = ck), where values of c=
(c1, . . . ,cg) and ck are arbitrary.

20



Nonlinearity 37 (2024) 095028 A N W Hone et al

Example 3.6. We first consider the case g= 1. In this case, we only need to consider k= 1
in (3.27), which combined with (3.30) yields the following birational map betweenMc

g =Mc1
g

and C3
w:

p1 = p0,1 = 2w0 + c1/2 ,

q1 = q0,1 = p1,1 + p0,1 = 2(w0 +w1)+ c1 ,

r1 = r0,1 = c1/2− p0,1 ,

r2 = r0,2 =−w0 (p0,1 + p−1,1) =−2w0 (w0 +w−1 + c1/2) . (3.32)

In terms of the polynomials P,Q and R this can also be written as

P (x) = 1+(2w0 + c1/2)x ,

Q(x) = 2+ 2(w1 +w0 + c1/2)x ,

R(x) =−2w0x(1+(w0 +w−1 + c1/2)x) . (3.33)

For g= 1 the formula (3.31) takes the form w1(p2,1 + p1,1) = w0(p0,1 + p−1,1), and can
be expressed immediately in terms of the quantities w−1, . . . ,w2 since pn,1 = 2wn+ c1/2,
for all n:

w1 (2w2 + 2w1 + c1) = w0 (2w0 + 2w−1 + c1) . (3.34)

It defines the Volterra map (w−1,w0,w1) 7→ (w0,w1,w2) on C3
w, being the same as equation

(2) in [58], where Svinin used continued fraction expansions to construct particular solutions;
equation (3.34) also appears in [25]. Substituting (3.33) in P2(x)+Q(x)R(x) = 1+H1x+
H2x2 +H3x3 we get the following formulas for the invariants H2 and H3 of the Volterra map
in terms of the variables w−1,w0 and w1:

H2 =−4w0 (w1 +w0 +w−1 + c1/2)+ c21/4 , (3.35)

H3 =−4w0 (w1 +w0 + c1/2)(w0 +w−1 + c1/2) . (3.36)

We now fix c3 and consider the Volterra map on the subvariety H3 = c3 of Mc
g. According

to (3.36) we get

4w0 (w1 +w0 + c1/2)(w0 +w−1 + c1/2)+ c3 = 0 , (3.37)

which defines a 2D map (w−1,w0) 7→ (w0,w1), where w1 is computed from (3.37). It has H2

(from which w1 is eliminated using (3.37)) as invariant, given by

H2 =
c3

w0 +w−1 + c1/2
− 4w0w−1 +

c21
4
. (3.38)

We observe that H2 is a ratio of symmetric biquadratics in w0 and w−1 and it can be checked
that (3.37) is a symmetric QRT map [50] (and it is of type (III) in the classification of [52]).
We next fix c2 and consider the Volterra map on the subvariety H2 = c2 ofMc

1. From (3.35) we
now get

4w0 (w1 +w0 +w−1 + c1/2)− c21/4+ c2 = 0 . (3.39)
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It defines a 2Dmap (w−1,w0) 7→ (w0,w1)which is an additive QRTmap (type (I) in [52]) with
H3 as invariant, which (after using (3.39)) to eliminate w1) takes the form

H3 =
(
w0 +w−1 +

c1
2

)(
4w0w−1 + c2 −

c21
4

)
. (3.40)

To finish the g= 1 example we will present a slightly more involved reduction, leading to
a map which is closely related to Somos-5. To do this, we first compare two different ways of
writing of the genus 1 curve y2 = f(x), which lead to an alternative generating set of invariants
of the recursion. If we write

y2 = 1+ c1x+ c2x
2 + c3x

3 = (1− c ′1x)
(
1− c ′1x+ 4c ′2x

2
)
− 4c ′3x

3 , (3.41)

then the constants ci and c ′i are related by

c1 =−2c ′1 ,
c2 = 4c ′2 + c ′1

2
,

c3 =−4(c ′1c
′
2 + c ′3) ,

c ′1 =−c1/2 ,
c ′2 =

1
4

(
c2 − c21

4

)
,

c ′3 =
c1
8

(
c2 − c21

4

)
− c3

4 .

(3.42)

Next, if we write the recursion relations (3.37) and (3.39) in terms of the constants c ′i
using (3.42), we get respectively

w0 (w1 +w0 − c ′1)(w0 +w−1 − c ′1) = c ′1c
′
2 + c ′3 , (3.43)

w0 (w1 +w0 +w−1 − c ′1)+ c ′2 = 0 . (3.44)

Notice that c ′1 now appears linearly in (3.44), so we can easily eliminate c ′1 between (3.43)
and (3.44), which yields the following simple relation

w1w−1 = c ′2 +
c ′3
w0

(3.45)

on the generic level surface (H ′
2 = c ′2)∩ (H ′

3 = c ′3), which is also birational withC2. It defines a
2Dmap (w−1,w0) 7→ (w0,w1)which is a multiplicative QRTmap with c ′2 and c

′
3 as parameters

(being of type (II) in [52]). To get an invariant for this map, we eliminate w1 between (3.43)
and (3.44), to get

c ′1w0w−1 = (w0 +w−1)w0w−1 + c ′2 (w0 +w−1)+ c ′3. (3.46)

It leads upon division by w0w−1 to the following explicit formula for the invariant:

H ′
1 = w0 +w−1 + c ′2

(
1
w0

+
1
w−1

)
+

c ′3
w0w−1

. (3.47)

Also, the tau function substitution

wn =
τnτn+3

τn+1τn+2

in (3.45), which we now write in the form of the recursion relation wn+1wn−1 = c ′2 + c ′3/wn,
yields the general form of the Somos-5 recursion relation, namely

τn+5τn = c ′2τn+4τn+1 + c ′3τn+3τn+2 , n ∈ Z . (3.48)
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In our previouswork [25] we showed how to solve the initial value problem for (3.48) explicitly
in terms of the sigma function, but in section 3.4 below we will show how it can also be solved
in terms of Hankel determinants, using the S-fraction (3.15).

Note that, apart from (3.45), the maps (3.37) and (3.39) are also examples of symmetric
QRT maps [50], and the orbits of all three maps can be identified by restricting to particular
level sets of their invariants, which is a common feature of families of these maps [33]. To see
how the orbits of these different 2D maps coincide, it is necessary to identify the parameters
and values of the invariants (3.38), (3.40) and (3.47) in an appropriate way, from which it
can be seen that (on fixed level sets) H2, H3 and H ′

1 define an identical biquadratic curve in
the (w−1,w0) plane, namely (3.46), whose coefficients can be rewritten in terms of c1,c2,c3
using (3.42). Moreover, this curve is birationally equivalent to the Weierstrass cubic (3.41).

Example 3.7. Using (3.31) when g= 2, on Mc
2 (which is birational to C5) the formula for the

Volterra map takes the form

w1 (p2,2 + p1,2) = w0 (p0,2 + p−1,2) , (3.49)

so we need to express pn,2 for n=−1, . . . ,2 in terms of the variables wi. To do this, we
use (3.29), keeping in mind that pn,1 = 2wn+ c1/2 for all n:

2pn,2 =−p2n,1 + 2wn (pn+1,1 + 2pn,1 + pn−1,1)+ c2

=−
(
2wn+

c1
2

)2
+ 4wn (wn+1 + 2wn+wn−1 + c1)+ c2

= 4wn
(
wn+1 +wn+wn−1 +

c1
2

)
+ c2 −

c21
4
. (3.50)

Substituted in (3.49) and slightly reordering the terms, we get the following symmetric
relation:

w1

(
2w2 (w3 +w2)+ 2w1 (w1 +w0)+ 4w2w1 +(w2 +w1)c1 + c2 −

c21
4

)
= w0

(
2w0 (w1 +w0)+ 2w−1 (w−1 +w−2)+ 4w0w−1 +(w0 +w−1)c1 + c2 −

c21
4

)
.

(3.51)

This defines a 5D map (w−2,w−1,w0,w1,w2) 7→ (w−1,w0,w1,w2,w3), where w3 is computed
from (3.51). Using the first equation in (3.9), the above formulae for pn,1 and pn,2 lead at once
to the following expressions for the coefficients of Qn:

qn,1 = 2wn+1 + 2wn+ c1 ,

qn,2 = 2(wnwn−1 +wn+1wn+2)+ 2(wn+1 +wn)
2
+(wn+1 +wn)c1 + c2 −

c21
4
. (3.52)

The formulae for rn,k then follow from rn,1 =−2wn and rn,k =−wnqn−1,k−1 for k> 1, by
applying the third equation in (3.9). With these formulae we can express the invariants
H3, . . . ,H5 in terms of the variables wi. We write this out for H3, in order to find a recursion
relation of order 4. According to (3.24), and using the above expressions for rn,k,

H3 = 2p1p2 + 2r3 + q1r2 + q2r1 = p0,1p0,2 + 2r0,3 + q0,1r0,2 + q0,2r0,1
= 2p0,1p0,2 −w0 (q0,1q−1,1 + 2q−1,2 + 2q0,2) ,

23



Nonlinearity 37 (2024) 095028 A N W Hone et al

which can be written completely in terms of the variables wi using (3.50), (3.52) and the fun-
damental formula pn,1 = 2wn+ c1/2. After some simplification, we get on the hypersurface
H3 = c3, which is birational to C4,

w2w1w0 +w0w−1w−2 + 2w2
0 (w1 +w−1)+w3

0 +w0
(
w2
1 +w1w−1 +w2

−1

)
+
c1
2
w0 (w1 +w0 +w−1)+

1
2

(
c2 −

c21
4

)
w0 +

c3
4
− c1c2

8
+
c31
32

= 0 .

This is exactly the equation (1.2) defining the 4D map (P.iv), after setting n=−2 and

ν =
c1
2
, a=

c3
4
− c1c2

8
+
c31
32

, b=
1
2

(
c2 −

c21
4

)
. (3.53)

The invariants H4 and H5 yield the invariants for (P.iv), given in (1.3) and (1.4).

3.4. Hankel determinant solutions

The function F0 in (3.15) that defines the S-fraction admits a series expansion in x around
(0,1) ∈ Γf that we shall use to give explicit solutions to the recurrence relation defined by the
Volterra map. For a generic point (P,Q,R) in µ−1( f), with f as in (3.5), we introduce new
variables s1,s2, . . . by writing

1− w1x

1− w2x

1− w3x
1− ·· ·

= 1−
∞∑
j=1

sjx
j = 1− S(x) , (3.54)

where the latter equality defines the power series S(x), which can be regarded as a generating
function for the moments sj. The moments can be defined from the integral

sj =
1
2π i

˛
(1−F0)

xj+1
dx,

for a sufficiently small contour around the point (0, 1) onΓf, and this leads to a linear functional
(defined on polynomials in x−1), and the connection with the classical theory of orthogonal
polynomials [53], but we shall not pursue this further here. In view of (3.15), F0 = 1− S(x) in
the sense that the latter is a Taylor series expansion of the rational function F0 at (0, 1). It was
shown by Stieltjes [55] that the variables wi can be expressed as Hankel determinants of the
variables si. Precisely, he showed that

wn =
∆n−3∆n

∆n−2∆n−1
for n⩾ 1 , (3.55)

where ∆2k−1 = det(si+j−1)i,j=1,...,k and ∆2k = det(si+j)i,j=1,...,k, for k⩾ 1, that is,

∆2k−1 =

∣∣∣∣∣∣∣∣∣∣
s1 s2 · · · sk

s2 ··
· ...

... ··
· ...

sk · · · · · · s2k−1

∣∣∣∣∣∣∣∣∣∣
and ∆2k =

∣∣∣∣∣∣∣∣∣∣
s2 s3 · · · sk+1

s3 ··
· ...

... ··
· ...

sk+1 · · · · · · s2k

∣∣∣∣∣∣∣∣∣∣
. (3.56)
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Also, by definition, ∆−2 =∆−1 =∆0 = 1. For example, w1 = s1, w2 = s2/s1, w3 = (s1s3 −
s22)/(s1s2), and so on. It is clear from (3.54) that, conversely, si can be expressed as a poly-
nomial in w1, . . . ,wi, for example s1 = w1, s2 = w1w2, s3 = w1w2(w2 +w3), and so on. (While
these expressions can be found by expanding geometric series, a systematic method using
continuants is presented in section 3.5.)

Theorem 3.8. The terms wn, n⩾ 1, of the recurrence sequence defined by the Volterra map
on µ−1( f) can be written as

wn =
∆n−3∆n

∆n−2∆n−1
,

where the entries of the Hankel matrices satisfy the recursion relation

sj =
g∑

k=1

(pk− qk)sj−k+

j−1∑
i=1

sisj−i+
1
2

g∑
k=1

qk

j−k−1∑
i=1

sisj−k−i, j⩾ g+ 2 . (3.57)

The initial values s1,s2, . . . ,sg+1 and the coefficients for the recursion (3.57) are provided by
a generic triple (P,Q,R) ∈ µ−1( f).

Proof. In order to prove the recursion formula (3.57), we will derive a quadratic formula for
S(x) = 1−F0, introduced in (3.54). We use (3.15) to write

y=−P (x)+F0Q(x) =−P (x)+ (1− S(x))Q(x) , (3.58)

which we substitute in

y2 = f(x) = P (x)2 +Q(x)R(x) (3.59)

to get the following quadratic equation for S(x):

(Q(x)−P (x)) S(x)− 1
2
Q(x) S2 (x)+P (x)− 1

2
Q(x)+

1
2
R(x) = 0 . (3.60)

Substituting the power series for S(x) into the quadratic, as well as the polynomialsP,Q,R, the
coefficients of xj for 1⩽ j⩽ g+ 1 allow the g+ 1 initial values s1, . . . ,sg+1 to be determined
from these polynomials. Then, upon taking the coefficient of xj for j⩾ g+ 2, the recursion
relation (3.57) is obtained directly. Observe that the number of initial values plus independent
coefficients appearing linearly in the recursion is g+ 1+ 2g= 3g+ 1=dimMg.

As we will see in the examples, it is often more practical not to fix the curve y2 = f(x),
i.e. not to fix the values of all invariants, but only fix some of them and take w0, . . . ,wg as extra
initial conditions.

Example 3.9. We specialize the above results to g= 1, fixing arbitrary constants c1 and c2 and
taking the Volterra map on the surfaceH1 = c1, H2 = c2, as in one of the reductions considered
in example 3.6. For the recursion (3.57) we can take p1,q1 as initial conditions, since given p1
and q1, specifying the values of H1 and H2 is equivalent to specifying the values of r1 and r2
(see the explicit formulas for H1 and H2 in the left column of (3.24)). It follows from (3.32)
that

p1 − q1 =−2w1 −
c1
2
, and q1 = 2

(
w1 +w0 +

c1
2

)
=−2w2 +

1
2w1

(
c21
4
− c2

)
,

25



Nonlinearity 37 (2024) 095028 A N W Hone et al

where we obtained the last equality by using the recursion relation (3.39), shifted by 1, to
replace w0 by w2. Substituted in (3.57), we get the following recursive formula for sj (j⩾ 3)
in terms of w1,w2, which we can take as initial conditions, instead of p1 and q1:

sj =
(
−2w1 −

c1
2

)
sj−1 +

j−1∑
i=1

sisj−i+

(
1

4w1

(
c21
4
− c2

)
−w2

) j−2∑
i=1

sisj−1−i . (3.61)

Then specifying the two initial values w1,w2 fixes the initial conditions s1,s2 for the above, as
s1 = w1 and s2 = w1w2. Notice that sj is a polynomial of degree j in w1,w2, with w1|sj for all j.

As a concrete example, consider the curve y2 = 1− 10x+ 29x2 − 24x3, with initial condi-
tions s1 = 1, s2 = 2 (or, equivalently, w1 = 1, w2 = 2). Since c1 =−10 and c2 = 29, the recur-
sion (3.61) becomes

sj = 3sj−1 +

j−1∑
i=1

sisj−i− 3
j−2∑
i=1

sisj−i−1, j⩾ 3,

which generates the sequence

(sj)j⩾1 : 1,2,7,27,109,456,1969,8746,39825,185266, . . . ,

producing ∆1 = 1, ∆2 = 2,

∆3 =

∣∣∣∣ 1 2
2 7

∣∣∣∣= 3,∆4 =

∣∣∣∣ 2 7
7 27

∣∣∣∣= 5,∆5 =

∣∣∣∣∣∣
1 2 7
2 7 27
7 27 109

∣∣∣∣∣∣= 11,

∆6 =

∣∣∣∣∣∣
2 7 27
7 27 109
27 109 456

∣∣∣∣∣∣= 37, . . . ,

which extends symmetrically to all n ∈ Z to produce the original Somos-5 sequence [44],

. . . ,3,2,1,1,1,1,1,2,3,5,11,37,83,274,1217,6161,22833, . . . ,

generated by the bilinear recurrence

∆n+5∆n =∆n+4∆n+1 +∆n+3∆n+2. (3.62)

It is a particular case of (3.48) with c ′2 = c ′3 = 1, where the latter are computed from c1 =−10,
c2 = 29, c3 =−24, using (3.42).

Remark 3.10. Note that Hankel determinant formulae for Somos-5 were previously obtained
in the work of Chang, Hu and Xin, using a bilinear Bäcklund transformation for Somos-
4. We will return to the connection with Somos-4 in section 5, but for now we just point
out that the Hankel determinant expressions found in [8] are more complicated than the
above, because two different moment sequences are required for the terms with even/odd
indices. In particular, for the original Somos-5 sequence, there are two sequences of moments,
namely (s̄j)j⩾0 : 1,−1,4,−8,25,−65,197,−571,1753,−5351,16746,−52626, . . ., and
(ŝj)j⩾0 : 2,−1,3,−1,12,2,61,39,352,374,2210,3162, . . ., which are defined by
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s̄0 = 1, s̄1 =−1, s̄j+1 =−s̄j+ 2s̄j−1 +

j−1∑
i=0

s̄is̄j−i−1, and

ŝ0 = 2, ŝ1 =−1, ŝj+1 = ŝj+
j−1∑
i=0

ŝiŝj−i−1,

respectively, where the recursions hold for j⩾ 1, and (with the indexing convention of
theorem 1.2 in [8]) the terms of the Somos-5 sequence [44] are then given by S0 = 1,S1 =
1,S2 = s̄0 = 1,S3 = ŝ0 = 2, and

S4 =

∣∣∣∣ 1 −1
−1 4

∣∣∣∣= 3, S5 =

∣∣∣∣ 2 −1
−1 3

∣∣∣∣= 5, S6 =

∣∣∣∣∣∣
1 −1 4
−1 4 −8
4 −8 25

∣∣∣∣∣∣= 11,

S7 =

∣∣∣∣∣∣
2 −1 3
−1 3 −1
3 −1 12

∣∣∣∣∣∣= 37, . . . ,

which are not related to the determinants in example 3.9 in a straightforward manner.

Example 3.11. We now specialize the above results to g= 2, thereby continuing example 3.7.
From (3.53) it is clear that fixing the values c1,c2,c3 is equivalent to specifying the parameters
a,b and ν, which we fix, since these are the coefficients in the recurrence relation (P.iv), and
we can take w0,w1,w2,w3 (or w1,w2,w3,w4) as initial data for the latter. We now have

s1 = w1, s2 = w1w2, s3 = w1w2 (w2 +w3) ,

providing the 3 initial values for the recursion (3.57), which takes the form

sj = α̂sj−1 + β̂ sj−2 +

j−1∑
i=1

sisj−i+ γ̂

j−2∑
i=1

sisj−i−1 + δ̂

j−3∑
i=1

sisj−i−2 , j⩾ 4 . (3.63)

While s1,s2,s3 are determined by w1,w2,w3 only, w0 and a,b,ν are required to find the coef-
ficients α̂, . . . , δ̂, which are computed using p1 = 2w0 + ν (recall that ν = c1/2) and (3.50),
(3.52) for n= 1, to give

α̂= p1 − q1 =−2w1 − ν ,

β̂ = p2 − q2 =−2w1 (w2 +w1 +w0 + ν)− b ,

γ̂ =
1
2
q1 = w1 +w0 + ν ,

δ̂ =
1
2
q2 = w−1w0 +w1w2 +(w0 +w1)

2
+ ν (w0 +w1)+ b

=−
(
w2w3 +w1w2 +w2

2 +w0w2 + νw2 +
a
w1

)
, (3.64)

where, in the last equality, we have used the recurrence relation (1.2) to replace w−1 by w3. If
desired, one can apply (1.2) once again to replace w0 by w4 in the above expressions, but we
have not done this.
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As a particular numerical example, we take the rational orbit (2.1) of (P.iv) considered in
section 2. Upon fixing w0 = w1 = w2 = w3 = 1 and ν= 3, a= 5, b= 7, we see that for j⩾ 4
the recursion (3.63) becomes

sj =−5sj−1 − 19sj−2 +

j−1∑
i=1

sisj−i+ 5
j−2∑
i=1

sisj−i−1 − 12
j−3∑
i=1

sisj−i−2 ,

and the three initial values s1 = s2 = 1, s3 = 2 lead to the following moment sequence and
Hankel determinants:(
sj
)
j⩾1

: 1,1,2,−26,45,11,−116,553,1151,−26727,108897,−169157,−310959,3004412,

− 4722005, . . . ,

∆1 = 1,∆2 = 1,∆3 =

∣∣∣∣ 1 1
1 2

∣∣∣∣= 1,∆4 =

∣∣∣∣ 1 2
2 −26

∣∣∣∣=−30,

∆5 =

∣∣∣∣∣∣
1 1 2
1 2 −26
2 −26 45

∣∣∣∣∣∣=−743,∆6 =

∣∣∣∣∣∣
1 2 −26
2 −26 45

−26 45 11

∣∣∣∣∣∣= 10541,

∆7 =

∣∣∣∣∣∣∣∣
1 1 2 −26
1 2 −26 45
2 −26 45 11

−26 45 11 −116

∣∣∣∣∣∣∣∣= 127318, . . . .

This reproduces the sequence of tau functions in example 2.2, if we identify∆n−3 = τn in (2.7).

The preceding explicit form of the recursion for the entries of the Hankel determinants
when g= 2 yields a simple proof of the Laurent property for (2.4).

Proof of proposition 2.3 (reprise). For n⩾ 1 we have

wn =
τnτn+3

τn+1τn+2
=

∆n−3∆n

∆n−2∆n−1
,

where τ n satisfies (2.4). Hence the tau functions are given by Hankel determinants, up to a shift
of index and a gauge transformation of the form (2.6), with a different scaling for even/odd n.
Comparing with the values ∆−2 =∆−1 =∆0 = 1, we see that the relation between the two
sequences is

τ2k+1 = τ1

(
τ3
τ1

)k

∆2k−2, τ2k+2 =
τ1τ2
τ3

(
τ3
τ1

)k+1

∆2k−1 (3.65)

for k⩾ 0. Recall thatR denotes the ring formed of Laurent polynomials in τ2, τ3, τ4 and poly-
nomials in τ0, τ1, τ5, τ6 with coefficients in Z[a,b,ν]. Upon rewriting the formulae (3.64) for
the coefficients in (3.63) in terms of the 7 initial tau functions, we see that α̂, β̂ ∈R, but
(due to the presence of terms involving w0 and 1/w1), γ̂ and δ̂ both have τ 1 appearing in the
denominator, so instead γ̂, δ̂ ∈ τ−1

1 R. However, the three initial values are

s1 =
τ1τ4
τ2τ3

, s2 =
τ1τ5
τ 23

, s3 = τ1

(
τ2τ

2
5

τ 33 τ4
+

τ6
τ3τ4

)
,
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so sj ∈ τ1R for j = 1,2,3. Then by induction, since γ̂ and δ̂ appear in front of terms of degree
2 in si in the recursion (3.63), it follows that sj ∈ τ1R for all j⩾ 1. Then since∆2k−1 and∆2k

are k× k determinants, a factor of τ 1 can be taken out of each row (or column), so they are
each given by an overall factor of τ k1 times an element of R. Thus the powers of τ 1 exactly
cancel in (3.65), and hence τn ∈R for all n⩾ 1.

Remark 3.12 (Hankel determinant formula for negative indices). As was previously noted,
the Laurent property for negative indices n follows automatically from the birationality and
reversing symmetry of (2.4), but it can also be shown directly from an appropriate extension
of (3.65) to k< 0. In fact, for any g there is a version of the Hankel determinant formula (3.55)
which is valid for n⩽ 0. Indeed, the Volterra map arises from the S-fraction expansion (3.15)
of the function F0, based on the power series S(x), with F0 = 1− S, as in (3.54), but more
precisely this is the expansion around the point (0, 1) on the curve Γf given by (3.5), with x
being a local parameter. The inverse Volterra map arises from another S-fraction, associated
with a power series S∗(x), corresponding to the expansion of the same function F0 around the
point (0,−1) ∈ Γf, that is

F0 =
w0x

1− w−1x

1− w−2x
1− ·· ·

=
∞∑
j=1

s∗j x
j =: S∗ (x) . (3.66)

Then the extension of (3.55) to non-positive values of the index is

wn =
∆∗

−n−2∆
∗
−n+1

∆∗
−n∆

∗
−n−1

for n⩽ 0 , (3.67)

where∆∗
2k−1 = det(s∗i+j−1)i,j=1,...,k and∆∗

2k = det(s∗i+j)i,j=1,...,k for k⩾ 1, with∆∗
−2 =∆∗

−1 =
∆∗

0 = 1.Mutatis mutandis, this is proved in the same way as Theorem 3.8, and the moments s∗j
satisfy another recursion of the form (3.57). The two sets of Hankel determinants combine to
produce a single sequence of tau functions (τn)n∈Z, consistently defined by taking τn =∆n−3

for n⩾ 1, and τn =∆∗
−n+1 for n⩽ 3.

3.5. The birational map Mg → C3g+1
w

Elaborating further on the S-fraction of F= y+P(x)
Q(x) , we construct a birational map betweenMg

andC3g+1
w , where the latter stands forC3g+1 equipped withw1, . . . ,w3g+1 as affine coordinates.

We may call it the unreduced birational map, in view of the birational mapMc
g → C2g+1

w which
we obtained by reduction (fixing c= (c1, . . . ,cg)). This unreduced map turns out to be less
convenient for deriving the Volterra map in the wi coordinates, but it is nevertheless useful for
obtaining abstract results in these coordinates.

We start from the equation (3.60), which we can view as a linear relation for P(x),Q(x)
and R(x). It amounts to an infinite linear system of equations for the coefficients
p1, . . . ,pg,q1, . . . ,qg,r1, . . . ,rq+1 of these polynomials, given in terms of the coefficients sj of
the power series S(x) defined in (3.54). We show that its solution can be expressed rationally
in terms of s1, . . . ,s3g+1, and hence in terms of w1, . . . ,w3g+1, yielding the birational map. To
do this, we investigate the first 3g+ 1 equations only, namely the ones corresponding to the
coefficient of xj in (3.60). For convenience, we set

ρk :=
∑
i+j=k

sisj,
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for k⩾ 2, so that S2 =
∑

i+j=k sisjx
k =

∑∞
k=2 ρkx

k, and then consider the terms of (3.60) at each
order in x. At leading order, the constant term cancels, and the coefficients of x,x2, . . . ,xg+1

can be used to obtain r1, . . . ,rg+1 in terms of p1, . . . ,pg,q1, . . . ,qg, and sj for 1⩽ j⩽ g+ 1,
so it is sufficient to show that we can solve the coefficients of xj with g+ 2⩽ j⩽ 3g+ 1 for
p1, . . . ,pg,q1, . . . ,qg in terms of s1, . . . ,s3g+1. For each such j, the equation at order xj in (3.60)
is given by (3.57), which we can rewrite as

g∑
i=1

sj−i (pi− qi)+
1
2

g∑
i=1

ρj−iqi = sj− ρj , for g+ 2⩽ j⩽ 3g+ 1 . (3.68)

We view (3.68) as a linear system in the 2g variables pj - qj and qj/2, with i = 1, . . . ,g. In
matrix form, it is written as

sg+1 · · · s2 ρg+1 · · · ρ2
...

. . .
...

...
. . .

...
s2g · · · sg+1 ρ2g · · · ρg+1

s2g+1 · · · sg+2 ρ2g+1 · · · ρg+2
...

. . .
...

...
. . .

...
s3g · · · s2g+1 ρ3g · · · ρ2g+1





p1 − q1
...

pg− qg
q1/2
...

qg/2


=



sg+2 − ρg+2
...

s2g+1 − ρ2g+1

s2g+2 − ρ2g+2
...

s3g+1 − ρ3g+1


so that the matrix which governs the linear system has the following 2× 2 block form, each
block being a Toeplitz matrix,

(
Tg (s,g) Tg (ρ,g)
Tg (s,2g) Tg (ρ,2g)

)
where Tg (σ,k) :=


σk+1 σk . . . σk−g+2

σk+2 σk+1
. . .

...
. . .

. . . σk
σk+g σk+2 σk+1

 (3.69)

Our claim that p1, . . . ,pg,q1, . . . ,qg can be solved rationally in terms of s1, . . . ,s3g+1 then fol-
lows from the fact that its determinant, which is a polynomial in s1, . . . ,s3g+1, is non-zero. To
show that the determinant is non-zero it is sufficient to show it for one particular set of values
of the si. We pick si = 1 for i= g and i = g+ 1 and si = 0 for all other values of i. Then ρi = 1
for i = 2g and i = 2g+ 2, ρi = 2 for i = 2g+ 1 and ρi = 0 for all other values of i. With this
choice, Tg(s,g) is upper triangular, with all diagonal entries equal to 1, Tg(s,2g) is the zero
matrix and Tg(ρ,2g) is a tridiagonal matrix, with all diagonal entries equal to 2 and all super-
diagonal and subdiagonal entries equal to 1. It is easily verified that its determinant is g+ 1,
hence non-zero, showing our claim.

Example 3.13. The simplest example is the case of g= 1. Then 3g+ 1= 4. The birational
map between s1, . . . ,s4 and w1, . . . ,w4 is given by

s1 = w1 , s2 = w1w2 , s3 = w1w2 (w2 +w3) , s4 = w1w2

(
(w2 +w3)

2
+w3w4

)
.

(3.70)
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The linear system for p1,q1,r1,r2 then corresponds to the coefficients of xj in (3.60) with
j = 1, . . . ,4. They are explicitly given by

q1 − 2p1 − 2s1 − r1 = 0 ,

2p1s1 − 2q1s1 − 2s2 + 2ρ2 − r2 = 0 ,

2ρ3 − 2s3 +(ρ2 − 2s2)q1 + 2s2p1 = 0 ,

2ρ4 − 2s4 +(ρ3 − 2s3)q1 + 2s3p1 = 0 . (3.71)

As in the general case, we first solve the last 2g= 2 equations for p1,q1, which gives, upon
writing each ρk in terms of the sj,

p1 = 2
−3s21s

2
2 − 2s32 + 2

(
s1s2 + s31 − s3

)
s3 +

(
2s2 − s21

)
s4

s1
(
2s22 − s1s3

)
=−w1 −w2 +w3 +

w3 (w1 −w4)(w1 − 2w2)

w1 (w2 −w3)
,

q1 = 2
s2s4 − s23 − s32
s1
(
2s22 − s1s3

) =−2w2

(
1+

w3 (w1 −w4)

w1 (w2 −w3)

)
,

where we have used (3.70) to write the formulae in terms of w1, . . . ,w4. The first two equations
can now be solved for r1 and r2, leading to the following expressions:

r1 =−2w3

(
1+

(w1 −w2)(w1 −w4)

w1 (w2 −w3)

)
, r2 = 2w1w3

(
1+

w1 −w4

w2 −w3

)
.

Note also that in this case the unreduced version of the Volterra map is the birational map of
C4
w defined by

(w1,w2,w3,w4) 7→ (w2,w3,w4,w5) ,

w5w4 +w2
4 −w2

3 −w3w2

w4 −w3
+
w1w2 +w2

2 −w2
3 −w3w4

w3 −w2
= 0 , (3.72)

which (after replacing each wi → wi−2) is the relation obtained by eliminating c1 from (3.34).

For any g, we can describe an explicit algorithmic procedure for obtaining the exact expres-
sions for the birational map between s1, . . . ,s3g+1 and w1, . . . ,w3g+1. One way round, this is
given by the Hankel determinant formula (3.55), but to describe the inverse map more expli-
citly we must recall how this relates to the approximation problem originally considered by
Stieltjes [55], as well as other classical results on convergents of continued fractions in terms
of continuants (for a concise review of the latter, see [17]).

The convergents of the S-fraction (3.15) are the sequence of rational functions of x obtained
by truncating the continued fraction at some finite line n, which approximate the series for
F0 = 1− S exactly up to and including the coefficient of xn, that is

Fn (x) := 1− w1x

1− w2x

1− ·· ·
1−wnx

= 1− S(x)+O
(
xn+1

)
, (3.73)

31



Nonlinearity 37 (2024) 095028 A N W Hone et al

Thus, for the first few convergents we have

F0 = 1, F1 = 1−w1x, F2 =
1− (w1 +w2)x

1−w2x
, F3 =

1− (w1 +w2 +w3)x+w1w3x2

1− (w2 +w3)x
,

and so on. By the usual correspondence between convergents and 2× 2 matrices, we see that
the monodromy product over the conjugation matrices (3.23) appearing in the discrete Lax
equation is given by

Φn+1 :=M1 (x)M2 (x) · · ·Mn+1 (x) =

(
Kn+1 (w1, . . . ,wn;x) −wnxKn (w1, . . . ,wn−1;x)
Kn (w2, . . . ,wn;x) −wnxKn−1 (w2, . . . ,wn−1;x)

)
,

(3.74)

with the nth convergent being the ratio of the entries in the first column, that is

Fn (x) =
Kn+1 (w1, . . . ,wn;x)
Kn (w2, . . . ,wn;x)

,

where the polynomial Kn is a continuant of size n, that is

Kn (w1, . . . ,wn−1;x) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 . . . 0

−w1x 1 −1
. . .

...

0 −w2x 1
. . . 0

...
. . .

. . . −1
0 . . . 0 −wn−1x 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

From (3.74), the continuants are generated recursively from the linear relation Φn+1 =
ΦnMn+1, starting from Φ0 = 1 (the identity matrix). Hence, by replacing the series for
F0 = 1− S in (3.73) by its truncation at the nth term, then multiplying by Kn(w2, . . . ,wn;x)
on both sides, we find the relation1−

n∑
j=1

sjx
j

Kn (w2, . . . ,wn;x) =Kn+1 (w1, . . . ,wn;x)+O
(
xn+1

)
,

and comparing the coefficients of xj for j = 1, . . . ,n allows s1,s2, . . . ,sn to be calculated recurs-
ively as polynomial expressions in w1, . . . ,wn. For instance, when n= 4 the expressions (3.70)
are obtained from the numerator and denominator of

F4 =
1− (w1 +w2 +w3 +w4)x+(w1w3 +w1w4 +w2w4)x2

1− (w2 +w3 +w4)x+w2w4x2
.

Observe that these expressions are universal, in the sense that they depend only on the structure
of the S-fraction, so that each sn is always given by the same polynomial in wj for 1⩽ j⩽ n,
independent of g.

For g⩾ 2, the corresponding formulae for the coefficients of P(x),Q(x),R(x) in terms of
w1, . . . ,w3g+1 become very complicated, and we do not have a compact way to write them.
However, we will not need the explicit form of these formulae in what follows, even when
dealing with the example of genus 2.
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4. Discrete integrability

We show in this section that the map (P.iv) is a discrete a.c.i. system, in the sense of defin-
ition 1.1. To do this, we will first show that the affine space Mg (g⩾ 1) of (3.1) which was
constructed in the previous section has the same integrability properties as the odd and even
Mumford systems (see [43, 60]): the invariants Hi of the Volterra map are in involution with
respect to a large family of compatible Poisson structures and their generic level sets are affine
parts of Jacobi varieties. We then show that the Volterra map is a Poisson map with respect to
these Poisson structures and that it is a translation on the latter complex tori. In appendix A
(section A) we further show the precise relation between theMumford-like system, introduced
here, and the even Mumford system.

4.1. Compatible Poisson structures for the Mumford-like system

We first introduce a g+ 1-dimensional family of compatible Poisson structures on Mg. The
family is parametrized by the g+ 1-dimensional vector space of polynomials ϕ ∈ C[x] of
degree at most g+ 1, vanishing at 0, so ϕ(0) = 0. For such a polynomial ϕ, the corresponding
Poisson structure is most naturally written by viewing P,Q and R as generating functions,
and is defined by

{P (x) ,P (y)}ϕ = {Q(x) ,Q(y)}ϕ = 0 , {R(x) ,R(y)}ϕ = ϕ(y)R(x)−ϕ(x)R(y) ,

{P (x) ,Q(y)}ϕ =
ϕ(x)yQ(y)−ϕ(y)xQ(x)

x− y
, {P (x) ,R(y)}ϕ =−yϕ(x)R(y)−ϕ(y)R(x)

x− y
,

{Q(x) ,R(y)}ϕ = 2y
ϕ(x)P(y)−ϕ(y)P(x)

x− y
−ϕ(y)Q(x) . (4.1)

Of course, one needs to verify that the above definition is coherent, in the sense that the right-
hand side of each of these formulae is indeed a polynomial in x and y, and also that the right-
hand side does not contain any monomials xiyj which are absent in the left-hand side. For
example, {P(x),Q(y)}ϕ is a polynomial in x,y with only non-zero coefficients of xiyj when
1⩽ i, j⩽ g, while ϕ(x)yQ(y)−ϕ(y)xQ(x) is clearly divisible by x− y and the quotient has
only non-zero coefficients of xiyj in the same range. The same argument applies to the other
formulae. Moreover, we need to verify that {· , ·}ϕ is a Poisson bracket, i.e. that it satisfies the
Jacobi identity. This follows easily from the formulae (4.1). Let us show for example that

{
{Q(x) ,Q(y)}ϕ,R(z)

}ϕ
+
{
{Q(y) ,R(z)}ϕ ,Q(x)

}ϕ
+
{
{R(z) ,Q(x)}ϕ ,Q(y)

}ϕ
= 0 .

(4.2)

The first term in (4.2) is zero since {Q(x),Q(y)}ϕ = 0. Also, by direct computation
using (4.1),

{
{Q(y) ,R(z)}ϕ ,Q(x)

}ϕ

=

{
2z

ϕ(y)P (z)−ϕ(z)P (y)
y− z

−XXXXXϕ(z)Q(y),Q(x)

}ϕ

=
2zϕ(y)
y− z

ϕ(z)xQ(x)−ϕ(x)zQ(z)
z− x

− 2zϕ(z)
y− z

ϕ(y)xQ(x)−ϕ(x)yQ(y)
y− x

=− 2xzϕ(y)ϕ(z)
(z− x)(x− y)

Q(x)− 2yzϕ(x)ϕ(z)
(y− z)(x− y)

Q(y)− 2z2ϕ(x)ϕ(y)
(y− z)(z− x)

Q(z) .
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By skew-symmetry,
{
{R(z),Q(x)}ϕ ,Q(y)

}ϕ
=−

{
{Q(x),R(z)}ϕ ,Q(y)

}ϕ
, so that

{
{R(z) ,Q(x)}ϕ ,Q(y)

}ϕ
=

2yzϕ(x)ϕ(z)
(y− z)(x− y)

Q(y)+
2xzϕ(y)ϕ(z)
(z− x)(x− y)

Q(x)+
2z2ϕ(x)ϕ(y)
(y− z)(z− x)

Q(z) .

Summing up, we get indeed zero, which shows (4.2).
Notice that since {· , ·}ϕ is a Poisson bracket for anyϕ ∈ C[x]with degϕ⩽ g+ 1 andϕ(0) =

0, the Poisson brackets {· , ·}ϕ are compatible, simply because {· , ·}ϕ+ {· , ·}ϕ
′
= {· , ·}ϕ+ϕ

′

for any such polynomials ϕ,ϕ ′.
We show in the next proposition that the Volterra map Vg is a Poisson map with respect to

each one of these Poisson brackets. Recall from (3.9) and (3.10) that Vg is given by

P̃ (x) =Q(x)−P (x) , Q̃(x) =
2P (x)−Q(x)+R(x)

−wx
, R̃(x) =−wxQ(x) ,

(4.3)

where w=− 2p1−q1+r1
2 .

Proposition 4.1. For any ϕ =
∑g+1

i=1 ϕix
i, the Volterra map Vg :Mg →Mg is a (birational)

Poisson map with respect to {· , ·}ϕ.

Proof. We need to check that Vg preserves the Poisson bracket {· , ·}ϕ. In formulae, this

means that
{
S̃(x), T̃ (y)

}ϕ
=

˜{S(x),T (y)}ϕ, where S and T stand for any of the polyno-

mials P,Q,R. To do this, it helps to first use (4.1) to derive the following formulae for the
Poisson brackets of w with the polynomials P,Q,R:

{w,P (y)}ϕ = {w,Q(y)}ϕ =
ϕ1
2
Q(y)− ϕ(y)

y
,

{w,R(y)}ϕ =
ϕ(y)
y

−wϕ(y)− ϕ1
2
(2P (y)+R(y)) . (4.4)

To derive these formulae from (4.1), it suffices to use that −2w is the linear term of 2P(x)−
Q(x)+R(x). For example,

{−2w,R(y)}ϕ = lim
x→0

1
x
{2P (x)−Q(x)+R(x) ,R(y)}ϕ

= lim
x→0

1
x

[
−2y

ϕ(x)R(y)−ϕ(y)R(x)
x− y

− 2y
ϕ(x)P (y)−ϕ(y)P (x)

x− y

+ ϕ(y)(Q(x)+R(x))−ϕ(x)R(y)

]
= ϕ1R(y)−ϕ(y)r1 + 2ϕ1P (y)+ϕ(y) lim

x→0

2yP (x)+ (x− y)Q(x)
x(x− y)

= ϕ1R(y)−ϕ(y)r1 + 2ϕ1P(y)− 2
ϕ(y)
y

− (2p1 − q1)ϕ(y)

= ϕ1(2P(y)+R(y))− 2
ϕ(y)
y

+ 2wϕ(y) ,
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which proves the last formula in (4.4). It is now easy to prove that the Volterra map is a Poisson
map. For example, it is clear from (4.4) that {P(x)−Q(x),w}ϕ = 0, and so

{
P̃ (x) ,R̃(y)

}ϕ
= {Q(x)−P (x) ,−wyQ(y)}ϕ = wy{P (x) ,Q(y)}ϕ

= wy
ϕ(x)yQ(y)−ϕ(y)xQ(x)

x− y

=−yϕ(x)R̃(y)−ϕ(y)R̃(x)
x− y

=
˜{P (x) ,R(y)}ϕ .

The other verifications are done in the same way. This shows that the Volterra map is a Poisson
map.

We show in the next proposition that the invariants of the Volterra map, as introduced in the
previous section, are in involution with respect to any of the Poisson brackets {· , ·}ϕ, where
we recall that degϕ⩽ g+ 1 and ϕ(0) = 0.

Proposition 4.2. The 2g+ 1 invariants H1, . . . ,H2g+1 of the Volterra map, defined by

P (x)2 +Q(x)R(x) = 1+
2g+1∑
i=1

Hix
i . (4.5)

are in involution with respect to {· , ·}ϕ.

Proof. We first compute from (4.1)

{
P (x) ,P (y)2 +Q(y)R(y)

}ϕ
=Q(y){P (x) ,R(y)}ϕ+R(y){P (x) ,Q(y)}ϕ

=−yQ(y)�
����ϕ(x)R(y)−ϕ(y)R(x)

x− y

+R(y)�����
yϕ(x)Q(y)− xϕ(y)Q(x)

x− y

= ϕ(y)
yQ(y)R(x)− xQ(x)R(y)

x− y
, (4.6)

and similarly

{
Q(x) ,P (y)2 +Q(y)R(y)

}ϕ
= 2ϕ(y)

xP (y)Q(x)− yP (x)Q(y)
x− y

−ϕ(y)Q(x)Q(y) ,

(4.7){
R(x) ,P (y)2 +Q(y)R(y)

}ϕ
= 2xϕ(y)

P (x)R(y)−P (y)R(x)
x− y

+ϕ(y)Q(y)R(x) .

(4.8)
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These formulae imply

{
P2 (x)+Q(x)R(x) ,P2 (y)+Q(y)R(y)

}ϕ
= 2P (x)

{
P (x) ,P2 (y)+Q(y)R(y)

}ϕ
+Q(x)

{
R(x) ,P2 (y)+Q(y)R(y)

}ϕ
+R(x)

{
Q(x) ,P2 (y)+Q(y)R(y)

}ϕ
= 2P (x)ϕ(y)������

yQ(y)R(x)−XXXXXxQ(x)R(y)
x− y

+Q(x)2xϕ(y)
XXXXXP(x)R(y)−�����XXXXXP(y)R(x)

x− y

+Q(x)ϕ(y)Q(y)R(x)+R(x)2ϕ(y)�
����XXXXXxP(y)Q(x)−�����yP(x)Q(y)

x− y

−R(x)ϕ(y)Q(x)Q(y) = 0 ,

so that the invariants Hi are in involution, {Hi,Hj}ϕ = 0 for 1⩽ i, j⩽ 2g+ 1.

As before, we often fix the Hamiltonians H1, . . . ,Hg to generic values so that we actually
work on a (non-singular) subvariety of Mc

g, which is birational with C2g+1. We show in the
following proposition that Mc

g is a bi-Hamiltonian manifold, i.e. that it is equipped with a
pencil of compatible Poisson structures.

Proposition 4.3. The Hamiltonians H1, . . . ,Hg are Casimirs of the Poisson structure {· , ·}ϕ if
and only if ϕ is of the form ϕ = ϕgxg+ϕg+1xg+1. In this case,

Cϕ :=
g∑

i=0

(−1)iϕg−i
g ϕig+1H2g+1−i (4.9)

is also a Casimir function of {· , ·}ϕ.

Proof. Consider for i = 1, . . . ,g the Hamiltonian vector field XHi , which is given as the coeffi-

cient of yi in
{
· ,P(y)2 +Q(y)R(y)

}ϕ
, whichwe computed in (4.6)–(4.8). These Hamiltonians

are Casimir functions for {· , ·}ϕ if and only if their Hamiltonian vector fields are zero, which
is in turn equivalent to the fact that the right hand sides in (4.6)–(4.8) are divisible by yg+1.
Notice that the latter right hand sides, without the factorϕ(y), are divisible by y sinceP(0) = 1,
Q(0) = 2 and R(0) = 0, without being divisible by y2. Therefore, this is equivalent to ϕ(y)
being divisible by yg, i.e. that ϕ is of the form ϕ = ϕgxg+ϕg+1xg+1; since degϕ⩽ g+ 1,
it follows that the Poisson structures which make Mc

g into a bi-Hamiltonian manifold are

the restrictions to Mc
g of the Poisson pencil {· , ·}ϕ with ϕ(x) = ϕgxg+ϕg+1xg+1. It is eas-

ily shown by direct computation that Cϕ, given by (4.9) is a Casimir of the Poisson pencil.
For example,
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{
P (x) ,

g∑
i=0

(−1)iϕg−i
g ϕig+1H2g+1−i

}ϕ

= Res
y=0

1
y2g+2

{
P (x) ,H2g+1−iy2g+1

}ϕ
g∑

i=0

(−1)iϕg−i
g ϕig+1

= Res
y=0

1
y2g+2

{
P (x) ,P (y)2 +Q(y)R(y)

}ϕ
g∑

i=0

(−1)iϕg−i
g ϕig+1y

i

= Res
y=0

1
y2g+2

[
ϕ(x)yQ(y)−ϕ(y)xQ(x)

x− y
R(y)− yQ(y)

ϕ(x)R(y)−ϕ(y)R(x)
x− y

] g∑
i=0

(−1)iϕg−i
g ϕig+1y

i

= Res
y=0

1
y2g+2

yQ(y)R(x)− xQ(x)R(y)
x− y

g∑
i=0

(−1)iϕg−i
g ϕig+1y

iϕ(y)

= Res
y=0

1
y2g+2

yQ(y)R(x)− xQ(x)R(y)
x− y

(
ϕg+1
g yg +(−1)gϕg+1

g+1y
2g+1

)
= ϕg+1

g Res
y=0

1
yg+2

yQ(y)R(x)− xQ(x)R(y)
x− y

= 0 ,

where we have used in the last two equalities respectively that R(y) is divisible by y and that
the polynomial yQ(y)R(x)−xQ(x)R(y)

x−y has degree at most g in y.

Example 4.4. Continuing example 3.6, we specialize the above results to g= 1 andmake them
more explicit. Recall thatM1 is the 4-dimensional vector space of polynomials (P,Q,R)with

P (x) = 1+ p1x , Q(x) = 2+ q1x , R(x) = r1x+ r2x
2 , (4.10)

and the invariants H1,H2,H3 are given in (3.24). The Poisson structures {· , ·}ϕ on M1 are
parametrized by ϕ(x) = ϕ1x+ϕ2x2 and they all have H1 as a Casimir function. The Poisson

matrices of the basic Poisson structures {· , ·}x and {· , ·}x
2

(with the coordinates taken in the
following order: p1, q1, r1, r2) are easily determined from (4.1) and are given by

{· , ·}x =


0 −q1 0 r2
q1 0 −q1 0
0 q1 0 −r2

−r2 0 r2 0

 , {· , ·}x
2

=


0 2 0 −r1
−2 0 2 2q1 − p1
0 −2 0 r1
r1 p1 − 2q1 −r1 0

 .

(4.11)

For a generic c1 ∈ C, the subvarietyMc
1 is defined byH1 = c1. The pencil of Poisson structures

{· , ·}ϕ can be restricted to Mc
1 and the Casimir function Cϕ on (Mc

1,{· , ·}
ϕ
), given by (4.9),

takes the simple form Cϕ = ϕ2H2 −ϕ1H3. In particular, H2 and H3 are Casimir functions

of {· , ·}x
2

and {· , ·}x, respectively, and {· , ·}x can be restricted to H3 = c3 while {· , ·}x
2

can
be restricted to H2 = c2 (for generic c2,c3). Since, by proposition 4.1, the Volterra map is a
Poisson map with respect to any such ϕ (of degree at most g+ 1 with ϕ(0) = 0), it follows that

• (3.34) defines a Poisson map with respect to the full Poisson pencil {· , ·}ϕ;
• (3.37) defines a Poisson map with respect to {· , ·}x;
• (3.39) defines a Poisson map with respect to {· , ·}x

2

.
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It follows from the Poisson matrices (4.11) and from (3.33) that the Poisson structures

{· , ·}x and {· , ·}x
2

are respectively given by {wn−1,wn}x =−(wn−1 +wn+ c1/2)/2, and

{wn−1,wn}x
2

= 1/2.
In example 3.6 we also considered the recursion relation on the surface H ′

2 = c ′2, H
′
3 = c ′3.

None of the Poisson structures {· , ·}ϕ considered above can be restricted to these surfaces, but
a Nambu–Poisson structure with H ′

2 and H ′
3 as Casimirs can be so restricted. It leads to the

quadratic Poisson bracket

{wn−1,wn}= wn−1wn (4.12)

with respect to which (3.45) is a Poisson map. The above bracket can also be derived via
reduction of a presymplectic structure for the tau functions, by regarding (3.48) as a mutation
in a cluster algebra [19].

To see how the quadratic bracket arises here, recall from [59] that, for some fixed choice of
m-form Ω, a Nambu–Poisson bracket of order m is defined by

{f1, f2, . . . , fm} Ω= df1 ∧ df2 ∧ ·· · ∧ dfm.

In the case at hand (taking m= 4), observe that the unreduced version (3.72) of the Volterra
map φ on C4

w with coordinates (w−1,w0,w1,w2) preserves the rational volume form

Ω=
w0w1

w0 −w1
dw−1 ∧ dw0 ∧ dw1 ∧ dw2, φ∗ (Ω) = Ω.

Then the corresponding Nambu–Poisson bracket defines a Poisson bracket on C4
w

according to

{f1, f2} := {f1, f2,H ′
2,H

′
3} ,

which by construction has Casimirs H ′
2 and H

′
3, and restricts to (4.12) on the surface H

′
2 = c ′2,

H ′
3 = c ′3. The same Nambu–Poisson bracket also produces any member of the pencil {· , ·}ϕ for

g= 1: in particular, the Poisson structures {· , ·}x and {· , ·}x
2

arise in this way, by taking (up to
scaling) {f1, f2,H1,H3} and {f1, f2,H1,H2}, respectively. However, this construction does not
extend to g> 1 in a straightforward manner.

Example 4.5. Continuing example 3.7, taking ϕ = x3 when g= 2 we find that the Poisson
brackets on M2 (with coordinates p1,p2,q1,q2,r1,r2,r3) take the form

{r1,r3}x
3

= r1, {r2,r3}x
3

= r2, {p1,q2}x
3

= 2= {p2,q1}x
3

,

{p2,q2}x
3

= q1, {p2,r3}x
3

=−r2, {p1,r3}x
3

=−r1 = {p2,r2}x
3

,

{q1,r2}x
3

= 2= {q2,r1}x
3

, {q1,r3}x
3

= 2p1 − q1, {q2,r2}x
3

= 2p1, {q2,r3}x
3

= 2p2 − q2,

where only the non-zero brackets are specified here. By restricting this Poisson structure
to Mc

g ∩ (H3 = c3), we find that (up to an overall factor of 1/2) it coincides with Poisson
bracket (1.5) for the (P.iv) map that was derived from a discrete Lagrangian in [22], where
the parameters ν,a,b are fixed according to (3.53) in terms of the values c1,c2,c3 of the 3

Casimirs of {· , ·}x
3

.
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4.2. The generic fibers of the momentum map

We will now give an algebro-geometric description of the generic fibers of the momentum
map µ :Mg → C[x], which we recall is given by µ(P,Q,R) = P2 +QR. Precisely, we will
describe the fiber over any polynomial f ∈ C[x] of degree 2g+ 1, without multiple roots, and
satisfying f(0) = 1. Notice that such polynomials are exactly those f in the image of µ for
which y2 = f(x) defines a non-singular affine curve Γf of genus g; we use Γ̄f to denote the
completion of the latter, which can be thought of as a compact Riemann surface.

Proposition 4.6. Let f be polynomial of degree 2g+ 1, without multiple roots, such that f(0) =
1. Denote by Γf the non-singular affine curve of genus g, defined by y2 = f(x), with Γ̄f being its
completion. Then µ−1( f) is isomorphic to an affine part of the Jacobian variety of Γ̄f minus
three translates of the theta divisor,

µ−1 ( f)∼= Jac
(
Γ̄f
)
\ (Θ∪Θ+ ∪Θ−) . (4.13)

The (−1)-involution on Jac(Γ̄f) leaves Θ invariant and permutes Θ+ and Θ−.

Proof. Let (P,Q,R) ∈ µ−1( f), so that

P2 (x)+Q(x)R(x) = f(x) , degP,degQ,degR− 1⩽ g ,

(P (0) ,Q(0) ,R(0)) = (1,2,0) . (4.14)

Since f has degree 2g+ 1, degQ= g and degR= g+ 1; it also implies that Γ̄f is obtained
from Γf by adding a single point, which we denote by∞. The hyperelliptic involution on Γ̄f is
denoted by ı; it fixes ∞ and sends (x,y) ∈ Γf to (x,−y). To (P,Q,R) we associate a divisor∑g

i=1(xi,yi)− g∞ on Γ̄f as follows: x1,x2, . . . ,xg are the roots of Q(x) and yi := P(xi) for
i = 1, . . . ,g. It is indeed a divisor on Γ̄f since for j = 1, . . . ,g,

y2j − f(xj) = P2 (xj)−
(
P2 (xj)+Q(xj)R(xj)

)
= 0 .

Of course, (xi,yi) 6=∞ for all i. Notice that when Q(x) has multiple roots, say x1 = · · ·= xk,
then y1 = y2 = · · ·= yk. We show by contradiction that if xi is a root of Q(x) and yi = 0 (so
that xi is also a root of P(x)), then xi is a simple root of Q(x). Indeed, if xi is a multiple root
of Q(x) and is also a root of P(x), then xi is a multiple root of f(x) = P(x)2 +Q(x)R(x), so
that f is not square-free, contrary to the assumptions. The upshot is that the obtained divisors
are of the form

∑g
i=1Pi− g∞, where Pi ∈ Γf for i = 1, . . . ,g and Pi 6= ı(Pj) when i 6= j. It is

well-known that two such divisors are linearly equivalent if and only if they are the same; also,
that none of these divisors are equivalent to a divisor of the form

∑g−1
i=1 Qi− (g− 1)∞, with

Qi ∈ Γ̄f for i = 1, . . . ,g− 1. Since Jac(Γ̄f) is the group of degree zero divisors on Γ̄f, modulo
linear equivalence, this shows that the map µ−1( f)→ Jac(Γ̄f), which associates to (P,Q,R)
the divisor class

[∑g
i=1Pi− g∞

]
, is injective. This map is of course not surjective. In order

to determine the image, let
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Θ :=

{[
g−1∑
i=1

Pi− (g− 1)∞

]
| ∀i Pi ∈ Γ̄f

}
,

Θ+ :=

{[
(0,1)+

g−1∑
i=1

Pi− g∞

]
| ∀i Pi ∈ Γ̄f

}
=Θ+ [(0,1)−∞] ,

Θ− :=

{[
(0,−1)+

g−1∑
i=1

Pi− g∞

]
| ∀i Pi ∈ Γ̄f

}
=Θ+ [(0,−1)−∞] .

The first one is the theta divisor and the other two are translates of it. Notice that ı(Θ) = Θ
and ı(Θ+) = Θ−, since ı(∞) =∞. As we already said, the image contains no point of the

form
[∑g−1

i=1 Pi− (g− 1)∞
]
, i.e. is disjoint from Θ. Since Pi = (xi,yi) where xi is a root of

Q(x) and since Q(0) = 2, it is clear that xi 6= 0, so that every Pi = (xi,yi) is different from
(0, 1) and from (0,−1); hence the image is also disjoint from Θ+ and Θ−. Take now any
point in Jac(Γ̄f) \ (Θ∪Θ+ ∪Θ−). It can as above be written uniquely as

[∑g
i=1Pi− g∞

]
with Pi /∈ {∞,(1,0),(−1,0)} and Pi 6= ı(Pj) for all i 6= j. When all Pi = (xi,yi) are different,
there is a unique polynomial Q(x) whose roots are the xi and with Q(0) = 2, and there is a
unique polynomial P(x) of degree g, with P(xi) = yi for i = 1, . . . ,g and P(0) = 1: setting
(x0,y0) = (0,1), they are given by

Q(x) = 2
g∏

i=1

(
1− x

xi

)
, P (x) =

g∑
i=0

yi
∏
j̸=i

x− xj
xi− xj

. (4.15)

This also works in the limiting case when some of the Pi are the same upon adding in the
definition of P(x) a tangency condition (see [43, page 3.18]), which assures that f(x)−P2(x)
is divisible byQ(x). The quotient is a polynomialR(x) of degree g satisfying f(x) = P(x)2 +
Q(x)R(x); by uniqueness, µ(P,Q,R) =

[∑g
i=1Pi− g∞

]
, as required.

Example 4.7. We specialize proposition 4.6 to the case of g= 1. Notice that in this case we
should say elliptic rather than hyperelliptic, and in this case the (hyper-) elliptic involution
is not unique. Another peculiarity about g= 1 is the well-known fact that a complete non-
singular genus one curve (i.e. any compact elliptic Riemann surface) is isomorphic to its
Jacobian, a fact that we will be able to illustrate here. Let f(x) = 1+ c1x+ c2x2 + c3x3 be
an arbitrary polynomial of degree 3 with no multiple roots. We investigate µ−1( f), which
is the affine curve defined by the following equations, which are found by expressing that
P2(x)+Q(x)R(x) = f(x):

2(p1 + r1) = c1 ,

p21 + q1r1 + 2r2 = c2 ,

q1r2 = c3 .

The curve µ−1( f) can be equivalently written as a plane algebraic curve by first eliminating
r1 from the first two equations and then r2 from the two remaining equations; writing p1 and
q1 simply as p and q, the final equation takes the simple form

µ−1 ( f) :
pq
2
(p− q)+ c1

q2

4
− c2

q
2
+ c3 = 0 . (4.16)

40



Nonlinearity 37 (2024) 095028 A N W Hone et al

It is easy to see that, thanks to the conditions on f, this curve is non-singular, just like Γf. In
fact, if we denote the left-hand side of (4.16) by F then a singular point (q0,p0) of µ−1( f)must
satisfy

∂F
∂p

(q0,p0) =
q0
2
(q0 − 2p0) = 0 ,

∂F
∂q

(q0,p0) =
1
2

(
p20 − 2p0q0 + c1q0 − c2

)
= 0 . (4.17)

Since q0 6= 0 (as F(q0,p0) = 0 and c3 6= 0), we get q0 = 2p0; substituted in F(q0,p0) = 0 and
in the second equation of (4.17) we get

p30 − c1p
2
0 + c2p0 − c3 = 0 , 3p20 − 2c1p0 + c2 = 0 ,

which can be written as f(−p0) = f ′(−p0) = 0. Since f has no multiple roots these equations
have no common solution, which shows that µ−1( f) is non-singular.

To see that µ−1( f) and Γf are birationally isomorphic, it suffices to consider the following
rational map:

q=−2
x
, p=

y− 1
x

, with inverse x=−2
q
, y=

q− 2p
q

. (4.18)

Notice that, despite the appearance of q in the denominator, the inverse map in 4.18 is actually
regular, because q 6= 0 on µ−1( f). The rational map and its inverse extend (uniquely) to an
isomorphism of the completions Γ̄f and µ−1( f), which can be thought of respectively as an
elliptic curve and its Jacobian. It allows us to determine the number and nature of the points at
infinity of µ−1( f), i.e. the points needed to complete µ−1( f) into µ−1( f); they are the points
corresponding to affine points (x, y) for which the map is not defined, to wit (x,y) = (0,±1),
and to the point at infinity ∞ of Γ̄f, making a total of three points, as asserted by proposition
4.6. More specifically, by using the map we can determine a local parametrisation around these
points from local parametrisations around the points (0,±1) and∞. For the latter, we can take
(x,y) = (t,1± c1t

2 +O(t2)) and (x,y) = (t−2,
√
c3t−3(1+ c2

2c3
t2 +O(t4)) to obtain, again using

the map, the following local parametrisations at the three points at infinity of µ−1( f):

∞0 :

(
−2t2,

√
c3
t

(
1+

c2
2c3

t2 +O
(
t3
)))

, ∞1 :

(
−2
t
,
c1
2
+O (t)

)
,

∞2 :

(
−2
t
,−2

t
− c1

2
+O (t)

)
.

Again, using the map we can derive that the (hyper-) elliptic involution on Γf, which is given
by (x,y) 7→ (x,−y), is given on µ−1( f) by (q,p) 7→ (q,q− p). It permutes the points ∞1 and
∞2 while leaving ∞0 fixed (together with the points (2p,p) where −p is a root of f ). The
points ∞0, ∞1 and ∞2 correspond to Θ ,Θ+ and Θ−, respectively.

Example 4.8. We also specialize proposition 4.6 to the case of g= 2 and provide some extra
information. The polynomial f is now of degree 5, taking the form f(x) = 1+ c1x+ c2x2 +
c3x3 + c4x4 + c5x5, with no multiple roots, which is equivalent to the curve (1.8) associated
with the map (P.iv). In this case, the theta divisor and its translates are genus 2 curves, iso-
morphic to Γ̄f. This general fact can also be seen here directly from the description that
Θ=

[
Γ̄f−∞

]
and similarly for Θ+ =

[
Γ̄f+(0,1)− 2∞

]
and Θ− =

[
Γ̄f+(0,−1)− 2∞

]
.

We show that these curves in µ−1( f) meet according to the intersection pattern in figure 2.
To do this, we first recall the general fact that two translates of the theta divisor (also called

theta curves) intersect in two points which coincide if and only if the curves are tangent.
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Figure 2. When g= 2 the divisor at infinity of µ−1( f) consist of three copies of the
curve y2 = f(x), intersecting according to the indicated pattern.

Consider first a point (divisor class) inΘ+ ∩Θ−. It must be of the form [P+(0,1)− 2∞] and
of the form [Q+(0,−1)− 2∞], for some P,Q ∈ Γ̄f. In particular, the points P and Q must be
such thatP+(0,1)∼ Q+(0,−1); as we already recalled, a linear equivalence of such divisors
amounts to equality, so that P= (0,−1) and Q= (0,1) and there is a unique intersection
point [(0,1)+ (0,−1)− 2∞] which is the origin O of Jac(Γ̄f), since (0,1)+ (0,−1)∼ 2∞.
Consider next a point inΘ∩Θ±. It must be both of the form [P−∞] and [Q+(0,±1)− 2∞],
for some P,Q ∈ Γ̄f. This leads us now to the linear equivalence P+∞∼ Q+(0,±1), whose
only solutions areP=∞, Q= (0,∓1) andP= (0,±1), Q=∞; the first solution corresponds
again to the originOwhile the other intersection point is the point [(0,±1)−∞] (see figure 2).

4.3. Discrete Liouville and algebraic integrability

We are now ready to show that the VolterramapVg is Liouville integrable on (Mg,{· , ·}ϕ)when
ϕ 6= 0. Recall that a birational map R on an algebraic Poisson manifold (M,{· , ·}) of dimension
n and (Poisson) rank 2r is said to be Liouville integrable when the following conditions are
satisfied:

(1) R is a Poisson map;
(2) R has n− r functionally independent invariants in involution.

In the case at hand, M=Mg so that n= 3g+ 1, and R= Vg, which we already know to
be a Poisson map (proposition 4.1). Also, we already have 2g+ 1 invariants in involution
(proposition 4.2). So it will be sufficient to show, in the proof which follows, that the rank of
{· , ·}ϕ is 2g and that the invariants H1, . . . ,H2g+1 are functionally independent.

Proposition 4.9. Let ϕ ∈ C[x] be any non-zero polynomial of degree at most g+ 1, vanishing
at 0. Then the Volterra map Vg is Liouville integrable on (Mg,{· , ·}ϕ).

Proof. We first show that the components of µ, which are the 2g+ 1 polynomial func-
tions Hi, defined by µ(P,Q,R) = 1+

∑2g+1
i=1 Hixi, are functionally independent. According

to Proposition 4.6, the generic fiber of µ (which is the generic fiber of H1, . . . ,H2g+1) is an
open subset of the Jacobian of a curve of genus g, hence has dimension g The dimension of
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the generic fiber of µ is given by dimMg− s= 3g+ 1− s, where s denotes the number of func-
tionally independent functions in H1, . . . ,H2g+1. Therefore, s= 2g+ 1 and the components of
µ are functionally independent.

It remains to be shown that the rank of {· , ·}ϕ is 2g. Since dimM= 3g+ 1 and {· , ·}ϕ admits
2g+ 1 functionally independent functions in involution, the rank of {· , ·}ϕ is at most 2g (see
[60, proposition 3.4]); to show equality, in a neighborhood of a generic point (P,Q,R) ∈Mg

we take the functions x1, . . . ,xn,y1, . . . ,yn, whichwe constructed in the proof of proposition 4.6.
Then {xi,xj}ϕ = {yi,yj}ϕ = 0, since {P(x),P(y)}ϕ = {Q(x),Q(y)}ϕ = 0. We show that the
brackets {xi,yj}ϕ are non-zero if and only if i= j, from which it follows that the rank of {· , ·}ϕ

is indeed 2g. To do this, we compute for 1⩽ i⩽ g the Poisson bracket {yi, lnQ(y)}ϕ in two
different ways. First, using (4.1),

{yi, lnQ(y)}ϕ = {P (xi) , lnQ(y)}ϕ =
{P (xi) ,Q(y)}ϕ

Q(y)

=
yϕ(xi)− xiϕ(y)Q(xi)/Q(y)

xi− y
= y

ϕ(xi)
xi− y

, (4.19)

and next, using (4.15),

{yi, lnQ(y)}ϕ =

g∑
j=1

{yi, ln(1− y/xj)}ϕ = y
g∑

j=1

{yi,xj}ϕ

xj (xj− y)
, (4.20)

so that

ϕ(xi)
xi− y

=

g∑
j=1

{yi,xj}ϕ

xj (xj− y)
.

Since (generically) all xj are different, {xj,yi}ϕ = 0 when j 6= i, while {xi,yi}ϕ =−xiϕ(xi), so
that

{xi,yj}ϕ =−xiϕ(xi)δij . (4.21)

Since ϕ 6= 0, this shows that the rank of {· , ·}ϕ is 2g.

We now conclude with the main result of this section, namely that the Volterra map is a
discrete a.c.i. system. Recall from Definition 1.1 that this means that, besides being Liouville
integrable, the generic level sets defined by the invariants are affine parts of Abelian varieties
(complex algebraic tori) and the restriction of the map to any of these Abelian varieties is a
translation.

Theorem 4.10. The Volterra map Vg is a discrete a.c.i. system on (Mg,{· , ·}ϕ).

Proof. Liouville integrability was already shown in proposition 4.9. Let f ∈ C[x] be a polyno-
mial of degree 2g+ 1, without repeated roots andwith f(0) = 1.Writing f(x) = 1+

∑2g+1
i=0 cixi,

the common level set defined by Hi = ci, i = 1,2, . . . ,2g+ 1 is the fiber µ−1( f) which was
shown in proposition 4.6 to be an affine part of the Jacobian of Γ̄f, and this is indeed
an Abelian variety. It remains to be shown that the restriction of the Volterra map Vg to
µ−1( f)∼= Jac(Γ̄f) is a translation; more precisely we will show that it is a translation over
[(0,−1)−∞] = [∞− (0,1)]. Let (P,Q,R) ∈ µ−1( f) be a generic point (a regular triplet) so
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that (P̃,Q̃,R̃) := Vg(P,Q,R) also belongs toµ−1( f). The degree g divisors on Γ̄f correspond-
ing to these two triplets are respectively denoted byD =

∑g
i=1(xi,yi) and D̃ =

∑g
i=1(x̃i, ỹi) (so

that the corresponding divisor classes in Jac(Γ̄f) are [D− g∞] and [D̃ − g∞], respectively).
Consider the rational function F̃ on Γ̄f given by the action of Vg on (3.6), which in view of (4.3)
and the definition (4.14) of f, can be written in a few different ways:

F̃ :=
y+ P̃ (x)

Q̃(x)
=

R̃(x)

y−P̃ (x)
=

−wxQ(x)
y−Q(x)+P (x)

. (4.22)

It is clear from the last, respectively first, expression that F̃ has a simple zero at the each
of the points (xi,yi) and (0,−1), and a simple pole at each of the points (x̃i, ỹi) and ∞. To
verify the behaviour at ∞, one should introduce a local parameter z such that x= 1/z2, y=√
c2g+1z−(2g+1)

(
1+O(z)

)
there, which gives F̃=

√
c2g+1q−1

g /z+O(1). For the other zero
or pole candidates in Γf, coming from places where the numerators or denominators in (4.22)
vanish, one checks using one of the alternative formulae that F̃ is finite and non-zero at these
points. Thus F̃ has precisely g+ 1 zeros and g+ 1 poles, in accord with the fact that the degree
of the divisor of a rational function is zero. The upshot is that the divisor of zeros and poles of
F̃ is given by

(
F̃
)
=

g∑
i=1

(xi,yi)+ (0,−1)−
g∑

i=1

(x̃i, ỹi)−∞=D−D̃+(0,−1)−∞ ,

which leads to the linear equivalence D+(0,−1)∼ D̃+∞, and hence to[
D̃ − g∞

]
= [D− g∞] + [(0,−1)−∞] , (4.23)

as was to be shown.

According to proposition 4.3, when ϕ = ϕgxg+ϕg+1xg+1 we can restrict the Volterra map
and its Poisson structure toMc

g = ∩g
i=1(Hi = ci), and so by the above theorem the Volterra map

is a discrete a.c.i. system on (Mc
g,{· , ·}

ϕ
). In particular, the recursion relations obtained by

fixing the invariants H1, . . . ,Hg to generic values ci (and possibly also fixing the other Casimir
Cϕ to some generic value) are discrete a.c.i. systems.

Example 4.11. In the genus 1 case, it follows that (3.34), (3.37) and (3.39), equipped respect-

ively with the Poisson structures {· , ·}ϕ, {· , ·}x and {· , ·}x
2

, are discrete a.c.i. systems. The
same holds for (3.45), which is a discrete a.c.i. system with respect to the quadratic Poisson
structure (4.12).

Example 4.12. In the genus 2 case, we have that for generic a,b,ν the map (P.iv) is a discrete
a.c.i. system.

5. Continuous flows and the infinite Volterra and Toda lattices

The discrete integrable systems that we have discussed so far are naturally associated with
continuous systems which are equally integrable. More precisely, Liouville integrability of the
Hamiltonian systems associated with the Volterra maps comes for free, and with some extra
work we show that these continuous systems are also algebraically integrable.We further show
that in the genus g case any solution wi(t) of one of the integrable Hamiltonian vector fields
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extends, under the action of the Volterra map, to a sequence
(
wn(t)

)
n∈Z that is a solution to the

infinite Volterra lattice; notice that in particular, as discussed in the introduction, this applies
to the map (P.iv). We also discuss the relation between the infinite Toda and Volterra lattices,
which explains in part how some of the results in this paper are related to the results in [31],
and what motivated us to introduce S-fractions and the corresponding Mumford-like systems
to study the map (P.iv) and its higher genus analogues.

5.1. Liouville and algebraic integrability

Recall that on Mg we have a family of compatible Poisson brackets {· , ·}ϕ of rank 2g, as
well as a family of polynomial functions H1, . . . ,H2g+1, where Hi is the coefficient in xi of
P2(x)+Q(x)R(x); said differently, H1, . . . ,H2g+1 are the components of the momentum map
µ :Mg → C[x]. For the sake of clarity, and since the choice of Poisson structure is not important
for what follows, we will only consider ϕ = xg+1 here, and henceforth write {· , ·} for {· , ·}ϕ.
With this choice of ϕ, (4.6)–(4.8) become

{
P (x) ,P (y)2 +Q(y)R(y)

}
= yg+1 yQ(y)R(x)− xQ(x)R(y)

x− y
,{

Q(x) ,P (y)2 +Q(y)R(y)
}
= 2yg+1 xP (y)Q(x)− yP (x)Q(y)

x− y
− yg+1Q(x)Q(y) ,{

R(x) ,P (y)2 +Q(y)R(y)
}
= 2xyg+1P (x)R(y)−P(y)R(x)

x− y
+ yg+1Q(y)R(x) .

Aswe have seen,H1, . . . ,Hg are Casimir functions of the Poisson bracket, as well asHg+1 = Cϕ
(see (4.9)). The vector fields 1

2XHg+i+1 are denoted by Xi; we will mainly be interested in
X1 =

1
2XHg+2 , which we can compute by dividing the above equations by 2yg+2 and taking the

limit for y→ 0, so that

Ṗ (x) = lim
y→0

yQ(y)R(x)− xQ(x)R(y)
2y(x− y)

=
2R(x)− xQ(x)R ′ (0)

2x
=

R(x)
x

− r1
2
Q(x) ,

(5.1)

where the dot denotes the derivative d
dt , and similarly

Q̇(x) =
2p1 − q1

2
Q(x)− 2P (x)−Q(x)

x
,

Ṙ(x) = r1P (x)+
q1 − 2p1

2
R(x)− R(x)

x
. (5.2)

Notice that the vector field X1 is (non-homogeneous) quadratic. From proposition 4.2, the
functions Hj are in involution with one another with respect to {· , ·}, which means that the
vector fields Xi all commute.

Note that the Liouville integrability of this continuous system is incorporated into the
Liouville integrability of the discrete system, so the following statement is an automatic con-
sequence of proposition 4.9.
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Proposition 5.1. The Hamiltonian system (Mg,{· , ·} ,µ) is a Liouville integrable system.

We now turn to the algebraic integrability of the Mumford-like system, which is slightly
more involved in the continuous case. Recall (for example from [1, chapter 6]) that
(Mg,{· , ·} ,µ) being an a.c.i. system means that

(1) (Mg,{· , ·} ,µ) is a (complex) Liouville integrable system;
(2) The generic fiber of µ is (isomorphic to) an affine part of an Abelian variety;
(3) The integrable vector fields are holomorphic (hence constant) on these Abelian varieties.

Items (1) and (2) have been shown already, in propositions 5.1 and 4.6, respectively, so it
only remains to address item (3).

Proposition 5.2. TheHamiltonian system (Mg,{· , ·} ,µ) is an algebraic completely integrable
system (a.c.i. system).

Proof. We show (3) for one of the integrable vector fields; then it also holds for the other
integrable vector fields, since the latter are holomorphic on the fiber and commute with a
constant vector field.

The vector field which we consider is the Hamiltonian vector field X1, given by (5.1)
and (5.2). Let (P0,Q0,R0) be a generic point ofMg and consider for small |t| the integral curve
t 7→ (Pt,Qt,Rt) of X1, starting at (P0,Q0,R0). Let Dt =

∑g
i=1(xi(t),yi(t))− g∞ denote the

associated divisor on the algebraic curve Γf, defined by it; recall that Γf is given by y2 = f(x)
where f = P2

0 +Q0R0 = P2
t +QtRt. Since the xi(t) are the roots of Qt(x), upon substituting

x= xi(t) in the equation (5.2) for Q̇(x) we get

Q̇(xi (t)) =−2
P (xi (t))
xi (t)

=−2
yi (t)
xi (t)

.

However, we can also compute Q̇(xi(t)) directly from the explicit formula (4.15) for Q(x),
to wit

Q̇(xi (t)) =
2ẋi (t)
xi (t)

∏
j̸=i

(
1− xi (t)

xj (t)

)
.

Comparing these two expressions gives

yi (t) =−ẋi (t)
∏
j̸=i

(
1− xi (t)

xj (t)

)
. (5.3)

It follows that for k= 0, . . . ,g− 1,

g∑
i=1

xki (t)dxi (t)
yi (t)

=−
g∑

i=1

xki (t)
∏
j̸=i

xj (t)
xj (t)− xi (t)

dt=−δk,0 dt . (5.4)

Above we have used the following identity which is well-known in the theory of symmetric
functions:

g∑
i=1

xki
∏
j̸=i

xj
xj− xi

= δk,0 , k= 0, . . . ,g− 1; (5.5)
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the proof of the latter follows easily from the fact that any lowest degree antisymmetric poly-
nomial in g variables is, up to a factor, the Vandermonde determinant. Integrating (5.4) from
0 to t gives

ˆ Dt

D0

xkdx
y

=−tδk,0 . (5.6)

The left-hand side of (5.6) contains the differentials xkdx/y for k= 0, . . . ,g− 1, which form
a basis for the holomorphic differentials on Γ̄f. Thus the left-hand side of (5.6) is the image
of the divisor Dt−D0 under the Abel map, which is (by Abel’s Theorem) an isomorphism
between the algebraic Jacobian of Γ̄f, consisting of degree zero divisor classes on Γ̄f, and the
analytic Jacobian of Γ̄f, which is a complex torus, that is

Jac
(
Γ̄f
)∼= H0

(
Ω1

Γ̄f

)∗
/H1

(
Γ̄f
)
.

Formula (5.6) then says that the integral curve of X1 is a straight line in this complex torus, as
was to be shown.

It follows that for, generic initial conditions, the solutions to X1 are meromorphic functions
in t.

5.2. Genus g solutions to the infinite Volterra and Toda lattices

The infinite Volterra lattice is given by the set of equations

ẇn = wn (wn+1 −wn−1) , n ∈ Z . (5.7)

It was first considered by Kac and van Moerbeke [35], who also studied the N-periodic case
(wN+n = wn for all n).We now show that the Volterra map allows us to define, for any g, infinite
sequences of meromorphic functions (wn(t))n∈Z which satisfy (5.7). Since these sequences are
defined from solutions of the genus gMumford-like system, and hence can be written in terms
of genus g theta functions, we will refer to these solutions to the Volterra lattice as genus g
solutions.

Let g> 0 be fixed and consider the vector field on C3g+1
w , corresponding to the vector field

1
2X1 on the genus g Mumford-like system, via the birational transformation constructed in
section 3.5. For the sake of brevity, let us call this the w-system (in genus g). By algebraic integ-
rability, the vector field 1

2X1 has globally defined meromorphic solutions w1(t), . . . ,w3g+1(t),
corresponding to generic initial conditions. Using the recursion relation induced by the action
of the Volterra map on C3g+1

w , we get also globally defined meromorphic functions wn(t) for
all n> 3g+ 1 and all n⩽ 0. Algebraic integrability further implies that the recursion and the
flow of the vector field must commute, as they both correspond to translations on the fibers
of the momentum map, which are affine parts of g-dimensional tori. (The fact that the map
and the flow commute is already a consequence of Liouville integrability.) It follows that all
formulae only involving the variables wn remain valid when all indices are shifted by the same
integer. In the proof of the theorem which follows we will make extensive use of the birational
transformation between the w-system and theMumford-like system. The triplet corresponding
to a meromorphic solution (w1(t), . . . ,w3g+1(t)) of the w-system in genus g will be denoted
(P0(x; t),Q0(x; t),R0(x; t)), the index 0 being added because we will also use the triplets
(Pn(x; t),Qn(x; t),Rn(x; t)), obtained from it by applying the Volterra map or its inverse sev-
eral times. Again, all formulae involving only the polynomialsPn,Qn,Rn, n ∈ Z, remain valid
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when all indices are shifted by the same integer, and for any n ∈ Z, (Pn(x; t),Qn(x; t),Rn(x; t))
corresponds to (wn+1(t), . . . ,w3g+n+1(t)) under the birational map.

Theorem 5.3. The sequence of meromorphic functions
(
wn(t)

)
n∈Z is a solution to the infinite

Volterra lattice (5.7).

Proof. We first recall the recursion relations (3.9) for the triplets (Pn,Qn,Rn), which we eval-
uate at any meromorphic solution to X1 =

1
2XHg+2 :

Pn+1 (x; t) =Qn (x; t)−Pn (x; t) , Qn+1 (x; t) =
2Pn (x; t)−Qn (x; t)+Rn (x; t)

−wn+1 (t)x
, (5.8)

Rn+1 (x; t) =−wn+1 (t)xQn (x; t) . (5.9)

From (5.9), since H1 = 2(p1 + r1) is a first integral, and using pn+1,1 = qn,1 − pn,1, which fol-
lows from the first equation in the recursion relation (3.13), we have

wn (t) =−1
2
rn,1 (t) =

1
2
pn,1 (t)−

c1
4
, and rn,2 (t) =−wn (t)qn−1,1 (t) , (5.10)

where c1 is a constant. It follows that

ẇn (t)
(5.10)
=

1
2
ṗn,1 (t)

(5.1)
=

1
2
rn,2 (t)−

1
4
rn,1 (t)qn,1 (t)

(5.10)
=

wn (t)
2

(qn,1 (t)− qn−1,1 (t))

(5.8)
=

wn (t)
2

(pn+1,1 (t)− pn−1,1 (t))
(5.10)
= wn (t)(wn+1 (t)−wn−1 (t)) ,

as was to be shown.

Remark 5.4. It is fairly straightforward to modify the proof of proposition 5.2, and the preced-
ing result, to all of the Hamiltonian vector fields Xi, associated with times ti, 1⩽ i⩽ g, which
correspond to the first g flows in the Volterra lattice hierarchy. This replaces t by ti and mod-
ifies the Kronecker delta on the right-hand side of (5.6) to δk,i−1, hence producing solutions
that are meromorphic in t= t1, t2, . . . , tg.

We now apply a standardMiura-like formula, to show how a genus g solution of the Volterra
lattice, given by an infinite sequence of meromorphic functions wn(t), also leads to a corres-
ponding solution to the infinite Toda lattice, given by

dan
dt

= an (bn−1 − bn) ,
dbn
dt

= an− an+1 . (5.11)

(These are almost the same as the Flaschka variables for the Toda lattice, except that tradition-
ally

√
an is used in place of an; and similarly, the quantities

√
wn are used in [42].)

Corollary 5.5. Let wn(t), n ∈ Z be a genus g meromorphic solution to the infinite Volterra
lattice (5.7). Upon setting, for j ∈ Z,

aj+1 := w2j−1w2j , bj+1 :=−w2j−w2j+1 , (5.12)

the sequence of meromorphic functions aj(t),bj(t) is a solution to the infinite Toda lattice, while
another sequence of meromorphic solutions to (5.11) is given for j ∈ Z by

a∗j+1 := w2jw2j+1 , b∗j+1 :=−w2j+1 −w2j+2 . (5.13)
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Proof. Differentiating (5.12) and using (5.7) one gets immediately (5.11), and similarly
for (5.13).

Example 5.6. Theorem 5.3 and corollary 5.5 imply that we can obtain elliptic (genus 1) solu-
tions to the infinite Volterra and Toda lattices, by starting from a generic solution to (3.34).
On a fixed orbit of the latter, any such solution can be identifed with an orbit of the QRT
map (3.45) associated with Somos-5. Hence this means that the analytic results of [25] can be
applied, to write the tau function explicitly as

τn = A±B
nσ (z0 + nz)

σ (z)n
2 ,

where A+,A−,B are non-zero constants (with A± chosen according to the parity of n), and
σ(z) = σ(z;g2,g3) denotes the Weierstrass sigma function associated with an elliptic curve
y2 = 4x3 − g2x− g3, isomorphic to (3.41). The parameters z,g2,g3 all depend on c1,c2,c3,
while z0 also depends on the initial point on the orbit. Then we can write the solution of the
map explicitly in terms of the Weierstrass zeta function, as

wn =
σ (z0 + nz)σ (z0 +(n+ 3)z)

σ (z)4σ (z0 +(n+ 1)z)σ (z0 +(n+ 2)z)

= ĉ(ζ (z0 +(n+ 2)z)− ζ (z0 +(n+ 1)z)+C) , (5.14)

where ĉ= σ(2z)/σ(z)4, C= ζ(z)− ζ(2z). Now extending this by the flow of the vector field
X1, with parameter t, we find that only z0 changes, being replaced by z0 + ĉ t (giving a linear
flow on the Jacobian of the elliptic curve). Hence we arrive at the genus 1 solution of the
Volterra lattice, given for n ∈ Z by

wn (t) = ĉ(ζ (z0 + ĉ t+(n+ 2)z)− ζ (z0 + ĉ t+(n+ 1)z)+C)

(equivalent to the travelling waves found in [65]), and from (5.12) we get a corresponding
genus 1 solution of the Toda lattice, that is

an (t) = ĉ4 (℘(2z)−℘(z0 + ĉ t+(2n− 1)z)) ,

bn (t) = ĉ(ζ (z0 + ĉ t+(2n− 1)z)− ζ (z0 + ĉ t+(2n+ 1)z)− 2C) , (5.15)

written in terms of theWeierstrass ℘ function, with the constants ĉ, C as above. Note that some
more general elliptic solutions of the Volterra lattice, with the form of wn depending on the
parity of n, have been presented elsewhere in the literature [37, 61, 62].

Remark 5.7. Similarly, we can produce genus 2 solutions to the infinite Volterra and Toda lat-
tices, by starting from a generic solution to the map (P.iv), extended to meromorphic functions
wn(t) by the flow of the vector field X1.

In [42], the transformation (5.12) was used to connect the finite Volterra and Toda lattices
by Moser, who attributed it to Hénon. The same transformation has further been applied to
connect real-valued solutions of the infinite lattices, subject to suitable (smoothness/bounded-
ness) conditions [20]. Moser also employed finite continued fractions in [42]. However, it turns
out that the map (5.12) has a much earlier origin in the classical theory of continued fractions,
where it arises from the method of contraction for S-fractions (see J.3 in [55], and [53]), a fact
that has perhaps been overlooked in the integrable systems literature. In the next subsection,
we show how the Volterra maps, as presented in this paper, are related to the integrable maps
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recently constructed by one of us [31]; the key is to apply contraction to the S-fraction (3.15),
which produces a J-fraction, and thereby yields the Miura-type formula (5.12).

5.3. Contraction of continued fractions

The following equivalence between a pair of continued fractions, which was introduced in
[55], is known as contraction:

X− w1

1− w2

X− w3

1− w4

X− ·· ·

= X+ b1 −
a2

X+ b2 −
a3

X+ b3 −
a4

X+ b4 − ·· ·

.

The form of the fraction on the left is the original way that an S-fractionwaswritten by Stieltjes,
in terms of a variable X= x−1, while the fraction on the right is a Jacobi continued fraction (J-
fraction). To be more precise, the above equality is an identity of continued fractions, obtained
by combining successive pairs of adjacent lines in the S-fraction into a single sequence of lines
in the J-fraction, with the coefficients aj,bj on the right being related to wj on the left by

b1 =−w1 , aj+1 = w2j−1w2j , bj+1 =−w2j−w2j+1 , for j⩾ 1 . (5.16)

(Within the theory of continuants, the formulae for contraction of two or more lines of a gen-
eral continued fraction are presented in [17].) To make contact with our previous discussion,
observe that (5.16) reproduces the transformation (5.12) between the Volterra and Toda lat-
tices, but for indices j⩾ 1 only.

In order to see how contraction arises in the context of Volterra maps, we start from a
hyperelliptic curve Γf of the form previously considered. We take a fixed set of coefficients ci,
which are arbitrary except that, as usual, we assume that the polynomial

f(x) = 1+
2g+1∑
i=1

cix
i (5.17)

is square-free with c2g+1 6= 0, so that the hyperelliptic curve Γf : y2 = f(x) is smooth and has
genus g. In order to simplify the presentation below, initially we make the further assumption
that c1 = 0. Then setting

X=
1
x
, Y=

y
xg+1

(5.18)

establishes a birational isomorphism between Γf and an algebraic curve C which (by complet-
ing the square) can be written in the form

C : Y2 = F̂(X) , F̂(X) = A(X)2 + 4R(X) , (5.19)

where A(X) is a monic polynomial in X of degree g+ 1 with no term of degree g (so that the
right-hand side of (5.19) has no degree 2g+ 1 term), and R is a polynomial of degree at most g
in X, not identically zero but otherwise arbitrary; such curves are exactly the ones which were
considered in [31].
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Now let (P,Q,R) = (P0,Q0,R0) ∈Mg be a generic triplet satisfying P2 +QR= f, in the
sense discussed above (3.15). As we have seen in (3.15), the associated rational function on
Γf, denoted F0, admits the following expansion as an S-fraction:

F0 =
y+P0 (x)
Q0 (x)

= 1− w1x

1− w2x

1− w3x
1− ·· ·

. (5.20)

Then, uponmultiplying (5.20) by x−1 = X, rewriting the S-fraction in terms of the new spectral
parameter X, and applying contraction, we find

x−1F0 = X− w1

1− w2

X− w3

1− w4

X− ·· ·

= X+ b1 −
a2

X+ b2 −
a3

X+ b3 −
a4

X+ b4 − ·· ·

, (5.21)

where the J-fraction on the right above is defined to be the contraction of the S-fraction. Thus,
via the second equality in (5.21), the coefficients aj,bj of the J-fraction are specified in terms
of the wj according to (5.16).

We now briefly recall the construction of integrable maps associated with J-fractions, as
presented in [31]. The starting point is a rational function Y0 on an even hyperelliptic curve C
of the form (5.19), whose completion C̄ includes two points ∞1,∞2 at infinity. This function
has g+ 1 simple poles and g+ 1 simple zeros, with one pole being at the point ∞1 (where
Y∼ Xg+1 ∼ A(X) as X→∞), and one zero being at∞2 (where Y∼−Xg+1 ∼−A(X)), taking
the form

Y0 =
Y+P0 (X)
Q0 (X)

, (5.22)

for polynomials P0, of degree g+ 1 with no term at O(Xg), and Q0, of degree g; and there
exists another polynomial Q−1, of degree g, satisfying Y2 = P2

0 +Q0Q−1 = F̂. The expansion
of Y0 around the point∞1, with X−1 as a local parameter, can be considered as an element of
C((X−1)), and it was shown by van der Poorten (see [46, 49]) that this power series admits a
J-fraction expansion of the form

Y0 = α0 +
1
Y1

= α0 +
1

α1 +
1
Y2

= · · ·= α0 +
1

α1 +
1

α2 +
1
. . .

(5.23)

with αn := bYnc, the polynomial part of Yn. Furthermore, for a generic choice of such P0,
Q0 in (5.22), the polynomial parts αn are of degree 1 in X for any n, and the recursion Yn =
αn+

1
Yn+1

leads to a sequence of polynomials Pn,Qn satisfying the same degree constraints as
above, such that

Yn =
Y+Pn (X)
Qn (X)

=
Qn−1 (X)
Y−Pn (X)

=⇒ Y2 = F̂(X) = Pn (X)
2
+Qn (X)Qn−1 (X) , (5.24)

where the above relations extend to all n ∈ Z, not just n⩾ 0, by reversing (5.23) to find Y−1

from Y0, etc.
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The situation for the J-fraction expansion (5.23) is very similar to that for the expan-
sion (5.20), and allows the construction of a birational dynamical system that is defined by a
recursion for the polynomials Pn,Qn, analogous to the derivation of the Volterra map from the
S-fraction in section 3. Here we refer to the dynamical system (in dimension 3g+ 1) defined
by (5.23) as the J-fraction map in genus g, denoted Jg. In order to explain the very close con-
nection between Vg and Jg, and prove theorem 5.10, we further summarize some features of
the latter, while referring the reader to [31] for a complete description.

To describe the dynamics defined by Pn,Qn, new variables un, dn and vn are introduced
from

Pn (X) = A(X)+ 2dnX
g−1 +O

(
Xg−2

)
, Qn (X) = un

(
Xg− vnX

g−1 +O
(
Xg−2

))
, (5.25)

so that from the terms of O(X2g) in the equation for F̂ on the right-hand side of (5.24), the
relation

unun−1 =−4dn 6= 0 (5.26)

must hold, while calculating the (degree 1) polynomial parts in each line of (5.23) shows that,
for any n, we have αn = (X+ bn)/un. Thus, upon substituting for αn and rescaling each line
of the continued fraction using (5.26), we may rewrite the J-fraction (5.23) more explicitly as

Y0 = α0 +
1
Y1

=
2(X+ v0)

u0
+

1
2(X+v1)

u1
+

1
2(X+v2)

u2
− ·· ·

,

where, by setting ŝ0 =
u1
2 , we have

Y1 =
1
ŝ0

X+ v1 −
d2

X+ v2 −
d3

X+ v3 − ·· ·

 . (5.27)

Then the J-fraction mapJg is a dynamical system on an affine phase space M̂ĉ1=0
g of dimension

3g+ 1, which fibers over the space of curves C of the form (5.19), with each (generic) fiber
being an affine part of the corresponding Jacobian variety Jac(C̄); and on each such fiber, the
map corresponds to a translation by the class of the divisor∞2 −∞1. It is defined recursively
by (5.24), in terms of the coefficients of the polynomials Pn,Qn, except that the prefactors
un in front of each Qn, as in (5.25), are completely decoupled from the dynamics. Indeed, the
constant ŝ0 in (5.27) is arbitrary: it determines the first coefficient in the series expansion of the
moment generating function 1/Y1 =

∑
j⩾0 ŝjX

−j−1, whose coefficients allow the solutions of
Jg to be written in terms of tau functions given by Hankel determinants; but ŝ0 can be removed
by a gauge transformation on the tau functions. Moreover, once ŝ0 is fixed, then u1 and all the
other prefactors un are determined from ŝ0 and dn, due to (5.26); and the phase space M̂ĉ1=0

g
(which is an affine space of Lax matrices) does not include the parameter ŝ0. After decoupling
from un, the map Jg can be written equivalently as a recursion for the remaining coefficients
in Pn,Qn, or as coupled recurrences for the quantities dn,vn. (See (5.33) and (5.35) in the
examples below for the cases g= 1 and g= 2, respectively.)

We would now like to identify (5.27) with the J-fraction appearing on the right in (5.21), but
there are two problems: firstly, the relation (5.16) is valid only for j⩾ 1, and gives a different
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formula for b1 when j= 0; and secondly, we initially made the assumption that c1 = 0, which
does not hold in general. To relax the latter assumption, we must shift the spectral parameter
X, make a compensating shift in bj, and allow a linear relation between x−1F0 and Y1, yielding
a modification of (5.12), valid for all j ∈ Z.

Proposition 5.8. The odd, genus g spectral curve Γf : y2 = f(x) with f(x) = 1+
∑2g+1

i=1 cixi,
associated with a generic orbit of the Volterra map Vg, is isomorphic to C, the even spectral
curve (5.19) for a corresponding orbit of the J-fraction map Jg, via the birational equivalence
X= x−1 + c1/(2g+ 2), Y= y/xg+1. Under this isomorphism of curves, the function F0 on Γf
and the function Y1 on C are related by

x−1F0 −w0 = ŝ0Y1, (5.28)

and the quantities dn,vn satisfying the map Jg are given in terms of the solution of Vg by

dj+1 = w2j−1w2j , vj+1 =−w2j−w2j+1 −
c1

2(g+ 1)
, for j ∈ Z . (5.29)

Hence each iteration on the orbit of Jg corresponds to two iterations on the corresponding
orbit of Vg.

Proof. The shift inX in the birational transformation, as in the formulaX= x−1 + c1/(2g+ 2),
ensures that the equation Y2 = F̂(X) = A(X)2 + 4R(X) for C has no term at O(X2g+1) in F̂(X),
so that A(X) = Xg+1 +O(Xg−1), as required for a spectral curve of the J-fraction map. Also,
from the explicit form of the function F0 in (5.20), we may rewrite the left-hand side of (5.28)
in terms of Y and X̃= X− c1/(2g+ 2), as

X̃
(
X̃−(g+1)Y+P0

(
X̃−1

))
−w0Q0

(
X̃−1

)
Q0

(
X̃−1

) =
Y+P1 (X)
Q1 (X)/ŝ0

where we calculate P1(X) = X̃g+1P0(X̃−1)−w0X̃gQ0(X̃−1) = X̃g+1 +(p0,1 − 2w0)X̃g+
O(X̃g−1), and then in view of (3.25) we see that P1(X) = Xg+1 +O(Xg−1), while Q1(X) =
ŝ0X̃gQ0(X̃−1) = u1

2

(
2X̃g+O(X̃g−1)

)
= u1

(
Xg+O(Xg−1)

)
, so both of P1 and Q1 are polyno-

mials in X of the required form for the J-fraction map. Now from the S-fraction in (5.28), we
find that combining contraction with the shift of spectral parameter modifies (5.21), so that,
in terms of fractions in X, x−1F0 −w0 is equal to

X− c1
2g+2 −w0 −

w1

1− w2

X− c1
2g+2 −

w3

1− w4

X− c1
2g+2 − ·· ·

= X+ v1 −
d2

X+ v2 −
d3

X+ v3 −
d4

X+ v4 − ·· ·

,

where we have inserted the formula for Y1 from (5.27), and cancelled the arbitrary constant
ŝ0 =

u1
2 . Comparing the first line of the above fractions on each side, we see that v1 =−w0 −

w1 − c1/(2g+ 2), which is the correct form of the relation for v1 in (5.29) when j= 0, and
contraction of the subsequent lines on the left give these expressions for dj+1,vj+1 for all j⩾ 1.
One can also shift the fraction on the left down by two lines, to get a relation betweenF2 and Y2,
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and the fraction can be inverted to find a relation between F−2 and Y0; so, by continuing down
or up in this way, we find that x−1F2j−w2j =

uj+1

2 Yj+1 holds for all j ∈ Z, extending (5.29) to
negative j as well. In all expressions, a shift of indices j→ j+ 1 gives a single iteration of Jg,
but all indices of the Volterra variables increase by 2, giving two iterations of Vg.

Corollary 5.9. Under the action of the Hamiltonian vector field X1, each generic solution of
Vg produces a genus g solution of the Toda lattice equation (1.11) which also satisfies the map
Jg, via the transformation (5.29).

Proof. This follows immediately from the preceding result, by applying Theorem 5.3, and
noting that the result of Corollary 5.5 still stands if we set an = dn, bn = vn+ c1/(2g+ 2) for
all n.

The main results of this subsection are collected in the following statement.

Theorem 5.10. By contraction of the S-fraction (5.20) for the associated rational function F0,
a generic orbit of the VolterramapVg corresponding to a fixed odd spectral curveΓf : y2 = f(x)
of genus g, for square-free f(x) as in (5.17), is transformed to an orbit of the integrable map Jg

constructed in [31] from the J-fraction (1.10), with the even spectral curve C given by (5.19)
with F̂(X) = X2g+2 +

∑2g+2
j=2 ĉjX2g+2−j. For coefficients ĉj given suitably in terms of ci, there

is a birational equivalence between Γf and C, given by

X= x−1 +
c1

2(g+ 1)
, Y=

y
xg+1

. (5.30)

Moreover, the translation on Jac(C̄) associated with a single iteration of the J-fraction map
corresponds to twice the translation on Jac(Γ̄f) associated with each iteration of Vg. In fact,
each generic orbit of Vg is related to two different orbits of Jg in this way.

Proof. The main statements in the theorem were already proved in proposition 5.8. For the
relation between shifts on complex tori, note that in Mg, we have that µ−1( f), the fiber over
a generic curve Γf, is an affine part of Jac(Γ̄f), while in M̂ĉ1=0

g the fiber over C is an affine
part of Jac(C̄); but then the isomorphism (5.30) between these two spectral curves means that
Jac(Γ̄f)∼= Jac(C̄). It was shown in [31] that each iteration of the J-fraction mapJg corresponds
to a translation by the class of the divisor ∞2 −∞1 on JacC̄, where ∞1,2 are the two points
at infinity on C̄, and these are equivalent to the points (0,±1) on (3.5). So in terms of Jac(Γ̄f),
this is a translation by the class of the divisor (0,−1)− (0,1) = 2(0,−1)− (0,−1)− (0,1)∼
2
(
(0,−1)−∞

)
, that is by 2[(0,−1)−∞

]
, twice the shift corresponding to the Volterra map

Vg (as found in the proof of theorem 4.10). Finally, notice that in corollary 5.5 there is the
second, alternative formula (5.13), with the indices on all wi shifted one step forwards. This
corresponds to the freedom to start the contraction procedure one line lower in the S-fraction
(5.21), beginning with F1 rather than F0; so the indices on all Volterra variables must be shifted
by the same amount, and the relation (5.28) with the corresponding rational function on C is
modified to x−1F1 −w1 = ŝ0Y1. Then, in terms of the J-fraction coefficients, this produces

dj+1 = w2jw2j+1 , vj+1 =−w2j+1 −w2j+2 −
c1

2(g+ 1)
, for j ∈ Z . (5.31)

Thus each orbit of Vg is transformed to two different orbits of Jg, since the resulting orbit
of the latter map remains the same when the index on the wi in (5.31) is shifted by a
multiple of 2.

54



Nonlinearity 37 (2024) 095028 A N W Hone et al

Remark 5.11. In [31], the phase space M̂ĉ1=0
g for the J-fraction map Jg is obtained from M̂g,

an affine space of dimension 3g+ 2 with a specific Poisson structure {· , ·}, by restricting to a
subvariety defined by setting the value of one of the Casimirs to zero. (This is analogous to the
situation described in appendix A, section A.) Although theorem 5.10 has been stated in terms
of a correspondence between specific orbits of Vg andJg, the considerations in the proof make
it clear that, since the coresponding generic fibers are birationally equivalent, the restriction of
Jg to each fiber is (conjugate to) the square (Vg)2 = Vg ◦Vg. This gives a strong hint that M̂ĉ1=0

g
and Mg should also be birationally equivalent, making this into a global statement about the
two maps. While this global statement is by no means obvious, the first example below shows
that it is correct when g= 1; but it is not true as a Poisson isomorphism, at least for the specific
Poisson structure introduced in [31]. The problem of finding alternative Poisson structures on
M̂g, and making all these statements precise, is best left for future work.

Example 5.12. When g= 1, with the cubic Γf : y2 = 1+ c1x+ c2x2 + c3x3, the transforma-
tion (5.30) is

X= x−1 +
c1
4
, Y=

y
x2

=⇒ C : Y2 =
(
X2 + f̂

)2
+ 4ûX+ 4ĥ,

where the quartic curve C is written in terms of the parameters

f̂=
1
2
c2 −

3
16
c21, û=

1
4
c3 −

1
8
c1c2 +

1
32
c31, ĥ=

1
16

(
c21c2 − c1c3 − c22

)
− 3

256
c41. (5.32)

Under the transformation (5.29), solutions of the g= 1 Volterra map V1, given by (3.34), or
equivalently by (3.37) (with fixed c3), or by (3.39) (with fixed c2), are mapped to solutions of
the corresponding J-fraction map, which (according to the results in example 3.2 in [31]) can
be written as a 2D map defined by

dn+1 =−dn− v2n− f̂ ,

vn+1 =−vn+
û

dn+1
, (5.33)

on a reduced phase space with fixed parameters f̂, û, which are determined from (5.32) in terms
of the values of the constants c1,c2,c3 for the solution of the map V1. The map (5.33) has the
conserved quantity

Ĥ= dn
(
v2n+ dn+ f̂

)
− ûvn,

which, on the orbit corresponding to a fixed solution of V1, takes the value Ĥ= ĥ given
in (5.32). The Poisson bracket presented for the J-fraction maps in [31] becomes the canonical
bracket

{vn,dn}= 1 (5.34)

on the 2D phase space of the map (5.33), with coordinates (dn,vn), and it can be verified dir-
ectly that the vector field {·, Ĥ} extends to the Toda lattice flow (1.11) for all n ∈ Z under
the action of this J-fraction map. Upon comparing with example 5.6, it is clear that the ana-
lytic expressions for an,bn in (5.15) provide explicit formulae for the solutions of both the
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map (5.33) and the Toda lattice, by setting dn(t) = an(t) and vn(t) = bn(t)− 1
4c1. Upon com-

parison of (5.14) with (5.15), it can be seen that each iteration of V1 gives a shift by z on the
Jacobian of the elliptic curve, while each iteration of (5.33) produces a shift by 2z.

However, the bracket (5.34) cannot be a reduction of any of the Poisson structures in
example 4.4, because the parameters f̂, û do not correspond to Casimirs of any of these brack-
ets on the phase space M1. (This is immediately obvious for the pencil of brackets generated

by {· , ·}x and {· , ·}x
2

, while a short calculation shows this to be the case for (4.12) as well.)
Nevertheless, it is still possible to interpret (5.29) as a Poisson map in terms of members of
the pencil {· , ·}ϕ, with c1 being the fixed value of a Casimir. For instance, using the Nambu–
Poisson structure, we can construct a birational transformation between the symplectic leaves

of {· , ·}x
2

, that isMc
1 ∩ (H2 = c2), and a 2D phase space for the J-fraction map with coordinates

(dn,vn), with c1,c2 viewed as fixed parameters, on which the bracket reduces to

{vn,dn}x
2

= vn−
1
4
c1.

Nowwe take a particular numerical example, with the elliptic curve y2 = 1− 4x+ 4x3 (c1 =
−4, c2 = 0, c3 = 4), and w1 = 1,w2 = 2. The sequence (wn) extends backwards to n⩽ 0 to give
a singular orbit of (3.34), with the same singularity pattern appearing as was found for (P.iv)
in section 2:

. . . , 7
15 ,

10
3 ,−

3
2 ,−

1
2 ,2,1,0,∞,∞,0,1,2,− 1

2 ,−
3
2 ,

10
3 ,

7
15 , . . . .

This orbit is symmetrical, in the sense thatw−n = wn−3 for all n ∈ Z. By applying the formulae
in example 3.9, the solution is expressed in terms of Hankel determinants ∆n constructed
from the moment sequence determined from s1 = 1, s2 = 2, sj =

∑j−1
i=1 sisj−i−

∑j−2
i=1 sisj−i−1

(j⩾ 3), that is (sj)j⩾1 : 1,2,3,6,14,37,105,312,956,2996,9554, . . ., which gives

(∆n)n⩾−2 : 1,1,1,1,2,−1,3,−5,7,−4,23,29,59,129,314, . . . .

With ∆−3 = 0, this extends backwards to a sequence of tau functions τn =∆n−3 =
(−1)n+1τ−n for n ∈ Z; hence from (3.42) and (3.48) we find c ′2 =−1, c ′3 = 1, so for all n
they satisfy the Somos-5 relation

τn+5τn =−τn+4τn+1 + τn+3τn+2.

Applying (5.30) in this case produces the quartic curve Y2 = (X2 − 3)2 − 4(X+ 2), the same
one as in example 4.2 from [31], and the contraction formulae (5.29) and (5.31) with j= 1 give
initial points on two different orbits of the map (5.33) with parameters f̂=−3, û=−1, namely
(d2,v2) = (2,− 1

2 ) and (−1,3), respectively, which both correspond to the value ĥ=−2 for the
conserved quantity of this map. For these two different orbits, we find that

dn =
τ̂n−1τ̂n+1

τ̂ 2n
,

where τ̂n =∆2n−4 (even index Hankel determinants) for the first orbit, and τ̂n =∆2n−3

(odd index Hankel determinants) for the second one. It follows from Proposition 5.1
in [31] that either of these even/odd index subsequences (1,1,2,3,7,23,59,314, . . . and
1,1,−1,−5,−4,29,129, . . ., respectively) must satisfy the same Somos-4 relation, in this case
the original one introduced by Somos [54]:

τ̂n+4τ̂n = τ̂n+3τ̂n+1 + τ̂ 2n+2.
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This connection between Somos-5 and Somos-4 has already been exploited elsewhere (in [25],
and in [8], for example); however, the specific Hankel determinants for Somos-4 obtained here
via contraction differ from the ones found in [8], and also from the ones derived directly from
the J-fraction in [31].

Example 5.13. An orbit of the map (P.iv), with the spectral curve (1.8), can be transformed
to an orbit of the g= 2 J-fraction map, as discussed in Example 3.3 of [31], which has an
associated sextic curve, related to it via X= x−1 + ν/3, Y= y/x3, that can be taken in the
form

C : Y2 =
(
X3 + f̂X+ ĝ

)2
+ 4

(
ûX2 + ĥ1X+ ĥ2

)
.

Defined on a 4D phase space with coordinates (dn−1,dn,vn−1,vn) and depending on the 3
parameters f̂, ĝ, û, the map in [31] is given by

dn+1 + dn+ dn−1 + û/dn+ v2n+ vnvn−1 + v2n−1 + f̂= 0,

(2vn+ vn−1)dn+(2vn+ vn+1)dn+1 + v3n+ f̂vn+ ĝ= 0. (5.35)

More precisely, there are two different orbits of (5.35) obtained from each orbit of (P.iv),
depending on whether the formula (5.29) or (5.31) is applied. Then, upon writing each term
wj satisfying (P.iv) as a ratio of the Hankel determinants ∆j defined in example 3.11, we see
that the quantities dn that appear in the solution of the J-fraction map, as above, are given as a
ratio of tau functions, in two different ways:

dn =
τ̂n−1τ̂n+1

τ̂ 2n
, τ̂n =∆2n−4 or ∆2n−3,

for n ∈ Z, where the orbit is determined by the choice of parity of the index on ∆j. It fol-
lows from the proof of Theorem 5.5 in [31] that (regardless of which choice is made), the
tau functions τ̂n satisfy a Somos-8 relation, which explains why the relation (2.9) appears
in example 2.2.

6. Conclusions and outlook

We have seen how the map (P.iv) obtained by Gubbiotti et al can naturally be viewed as the
g= 2member of a family of algebraically integrablemaps, defined for each g, that are naturally
related to the infinite Volterra lattice equation, leading to genus g solutions of the latter. This
begs the question as to what can be said about the other Liouville integrable maps in 4D found
in [22], namely (P.v) and (P.vi), which take the same form (1.1) but for a different rational
function F. Note that (P.vi) depends on an extra parameter compared with (P.v), which we
denote here by δ (instead of δ2 in [22]). In fact, (P.v) arises from (P.vi) in the limit δ→ 0.

So far we have made the following observations:

• Each solution ŵn of (P.v) is mapped to a solution wn of (P.iv) via the transformation

wn = ŵn+1ŵn, (6.1)

by suitably identifying the parameters ν,a,b for (P.iv) in terms of the parameters and first
integrals for (P.v).
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• Under the flow of the Hamiltonian vector field d
dt associated with one of its first integrals,

the sequence (ŵn)n∈Z generated by iteration of the map (P.v) extends to a solution of the
modified Volterra lattice in the form

dŵn
dt

= ŵ2
n (ŵn+1 − ŵn−1) . (6.2)

• Each solution ŵn of (P.vi) is mapped to a pair of solutions w(+)
n , w(−)

n of (P.iv), via the
transformations

w(±)
n = (ŵn+1 ± δ)(ŵn∓ δ) , (6.3)

by suitably identifying the parameters ν,a,b for (P.iv) in terms of the parameters and first
integrals for (P.vi).

• Under the flow of the Hamiltonian vector field d
dt associated with one of its first integrals,

the sequence (ŵn)n∈Z generated by iteration of the map (P.vi) extends to a solution of the
modified Volterra lattice in the form

dŵn
dt

=
(
ŵ2
n− δ2

)
(ŵn+1 − ŵn−1) . (6.4)

The formulae (6.1) and (6.3) are the well-known expressions for the Miura transformation
connecting the two forms of the modified Volterra lattice equation, given by (6.2) and (6.4),
respectively, to the Volterra lattice (5.7). Thus the above statements about the connections
between the maps can be viewed as restrictions of a Miura transformation to a finite-
dimensional phase space. Preliminary calculations, and the results of [65] on elliptic solutions,
indicate that this picture should extend to arbitrary genus g. Our initial results, including an
explicit description of how both (P.v) and (P.vi) are related to (P.iv), have recently appeared
in [32]. We propose that the full description of the above observations, and their extension to
genus g analogues of the maps (P.v) and (P.vi), should be left as the subject of future work.

It is also worth pointing out that part of the original motivation for the work in [22] was
to consider autonomous versions of the higher order discrete Painlevé equations from [12],
and new applications of the latter have been found very recently. Non-autonomous analogues
of the Volterra maps Vg have been considered in the context of Hermitian matrix models [4],
where they arise as string equations, and they also appear as recursion relations for orthogonal
polynomials associated with generalised Freud weights of higher order [11]. In these applica-
tions, the algebro-geometric structure of the Volterra maps should be relevant to the asymptotic
description of the oscillatory behaviour that is observed in specific parameter regimes.
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Appendix A. The relation between the Mumford-like and the even Mumford
system

Here we now show that the Hamiltonian system (Mg,{· , ·}ϕ ,µ) associated with the Volterra
map is birationally isomorphic (as a Poisson isomorphism) to the even Mumford system, or
more precisely to a subsystem thereof, obtained simply by fixing the value of one of the
Casimirs. Recall from [60, chapter 6] that the even Mumford system (of genus g) is the
Hamiltonian system (M ′

g,{· , ·}
′ ψ,µ ′), whose phase space M ′

g is the (3g+ 2)-dimensional
affine space

M ′
g :=

(U(ξ) ,V(ξ) ,W(ξ)) ∈ C [ξ]
3
∣∣∣ degU(ξ) = g , U monic

degV(ξ)< g ,
degW(ξ) = g+ 2 , W monic

 . (A.1)

Elements (U(ξ),V(ξ),W(ξ)) of M ′
g are written as Lax matrices

L ′ (ξ) :=

(
V(ξ) U(ξ)
W(ξ) −V(ξ)

)
,

whose polynomial entries have the form

U(ξ) = ξg+

g−1∑
i=0

Uiξ
i , V(ξ) =

g−1∑
i=0

Viξ
i , W(ξ) = ξg+2 +

g+1∑
i=0

Wiξ
i .

The 3g+ 2 coefficients Wg+1,Wg and Ui,Vi,Wi with 0⩽ i < g are used as linear coordinates
on M ′

g. The momentum map µ ′ is given by

µ ′ : M ′
g → C [ξ]

L ′ (ξ) =

(
V(ξ) U(ξ)
W(ξ) −V(ξ)

)
7→ −detL ′ (ξ) = V(ξ)2 +U(ξ)W(ξ) .

It is clear that −detL ′(ξ) is monic of degree 2g+ 2, so 2g+ 2 polynomial functions
H ′

0,H
′
1, . . . ,H

′
2g+1 on M

′
g are defined by

V(ξ)2 +U(ξ)W(ξ) = ξ2g+2 +

2g+1∑
i=0

H ′
i ξ

i ,
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For any non-zero polynomial ψ of degree at most g+ 1, a Poisson structure of rank 2g onM ′
g

is given by

{U(ξ) ,U(η)} ′ ψ = {V(ξ) ,V(η)} ′ ψ = 0 ,

{U(ξ) ,V(η)} ′ ψ =
U(ξ)ψ (η)−U(η)ψ (ξ)

ξ− η
,

{U(ξ) ,W(η)} ′ ψ =−2
V(ξ)ψ (η)−V(η)ψ (ξ)

ξ− η
,

{V(ξ) ,W(η)} ′ ψ =
W(ξ)ψ (η)−W(η)ψ (ξ)

ξ− η
− (ξ+ η+Wg+1 −Ug−1)U(ξ)ψ(η) ,

{W(ξ),W(η)} ′ ψ = 2(ξ+ η+Wg+1 −Ug−1)(V(ξ)ψ(η)−V(η)ψ(ξ)) .

The polynomial functions H ′
i are functionally independent and in involution, which accounts

for the Liouville integrability of the even Mumford system. It is algebraically integrable, with
the fiber of µ ′ over any monic polynomial f ′(x) of degree 2g+ 2 and without multiple roots
being an affine part of the Jacobian of the smooth hyperelliptic curve defined by η2 = f ′(ξ).

For the isomorphism, we consider only the Poisson structures {· , ·} ′ ψ for which ψ(0) = 0.
They admit H ′

0 as Casimir function, hence we can restrict (M ′
g,{· , ·}

′ ψ,µ ′) to the subvariety,

defined by H ′
0 = 0; the resulting system is denoted by (M0

g,{· , ·}
0,ψ

,µ0). We show that this

system is birationally equivalent to the Mumford-like system (Mg,{· , ·}ϕ ,µ), where the rela-
tion between ψ and ϕ will be spelled out below. To do this, we construct a biregular map Ψ̃
and a birational map Ψ making the following diagram commutative:

In this diagram, Bg and B0
g are the images of µ and µ0, which we view as spaces of curves:

Bg consists of the hyperelliptic curves of the form y2 = f(x), with f(0) = 1 and deg f⩽ 2g+ 1,
while B0

g consists of the hyperelliptic curves of the form η2 = f ′(ξ), with f ′ monic of degree
2g+ 2, vanishing at 0. The curves of B0

g have two points at infinity, which we denote by ∞1

and ∞2.
We first establish a natural correspondence between the curves of B0

g and the curves of Bg.
Let y2 = f(x) be a curve of Bg and substitute x= ξ−1 and y= ηξ−g−1, to get η2 = f ′(ξ) =
ξ2g+2f(ξ−1), where f ′(0) = 0 and f ′ is monic of degree 2g+ 2, so η2 = f ′(ξ) is a curve of B0

g.
From the latter, one gets back y2 = f(x) by setting ξ = x−1 and η = yx−g−1. Notice that when
f(x) = 1+

∑2g+1
i=1 cixi then η2 = ξ2g+2 +

∑2g+1
i=1 c2g+2−iξ

i, which yields the biregular map Ψ̃.
For the construction of Ψ, the biregular map Ψ̃ between the spaces of curves y2 = f(x) and

η2 = f ′(ξ) is extended to divisors on these curves. To do this, we compare the description of
points (P(x),Q(x),R(x)) on a generic fiber of µ in terms of divisors on the corresponding
curve y2 = f(x) with the description of points (U(ξ),V(ξ),W(ξ)) on a generic fiber of µ ′ in
terms of divisors on the corresponding curve η2 = f ′(ξ). The first description was given in the
proof of proposition 4.6, while the second description, which we quickly recall, can be found
in [60, Ch. 6]. Let ξ1, . . . , ξg denote the roots of U(ξ) and let ηi := V(ξi), for i = 1, . . . ,g. Then
the points (ξi,ηi) belong to the curve η2 = ϕ(ξ) and so the divisor class

[∑g
i=1(ξi,ηi)− g∞1

]
60



Nonlinearity 37 (2024) 095028 A N W Hone et al

is a point of its Jacobian. The relation between the polynomials Q(x) and U(ξ) is clearly
given by

ξg

2
Q
(
ξ−1

)
= U(ξ) .

Indeed, both sides of this equality are polynomials of degree 2g+ 2 which vanish for ξ = ξi =
x−1
i (which we may assume to be different). Similarly, P(x) is related to U(ξ) and V(ξ) by

ξgP
(
ξ−1

)
−U(ξ) =

U0V(ξ)−V0U(ξ)

ξU0
,

because both sides of this equation are the unique polynomial in ξ of degree less than g which
takes for ξ = ξi the value ηi/ξi. A formula for R follows from the equations of the curves,
namely

P2
(
ξ−1

)
+Q

(
ξ−1

)
R
(
ξ−1

)
= f

(
ξ−1

)
= ξ−2g−2f ′ (ξ) = ξ−2g−2

(
V2 (ξ)+U(ξ)W(ξ)

)
.

It is clear that this defines a birational map betweenMg andM0
g. Under this map,Hi corresponds

to H ′
2g+2−i, for i = 1, . . . ,2g+ 1. To see that Ψ is a Poisson map, hence a birational Poisson

isomorphism, we recall that the Poisson bracket {· , ·} ′ ψ is given in terms of the ξi and ηj by
{ξi,ηj} ′ ψ = ψ(ξi)δij, and hence

{xi,yj} ′ ψ =
{
ξ−1
i ,ηjξ

−g−1
j

} ′
ψ =−ξ−2

i ξ−g−1
j {ξi,ηj} ′ ψ =−ξ−g−3

i ψ (ξi)δij

=−xg+3
i ψ

(
x−1
i

)
δij .

Compared with (4.21), this shows that Ψ : (M0
g,{· , ·}

′ ψ)→ (Mg,{· , ·}ϕ) is a birational
Poisson isomorphism when taking ϕ(x) = ψ(x−1)xg+2; notice that ϕ, defined by this formula,
is indeed a polynomial of degree at most g+ 1, vanishing at 0 and that we get all such poly-
nomials ϕ for some appropriate polynomial ψ of degree at most g+ 1, vanishing at 0.

Appendix B. MAPLE code for proposition 2.1

For completeness, below we have included MAPLE code (without output) which verifies the
computer algebra required for the proof of proposition 2.1. For the reader interested in using
the code, please see the repository https://github.com/anwh1729/Volterra_maps.git
where the original MAPLE file can be downloaded.

>restart : with(LinearAlgebra) :
> wrec := w[4] ·w[3] ·w[2] +w[2] ·w[1] ·w[0] + 2 ·w[2]2 · (w[3] +w[1])+w[2] · (w[3]2 +
w[3] ·w[1] +w[1]2)+w[2]3 + nu ·w[2] · (w[3] +w[2] +w[1])+ b ·w[2] + a;
>#The(P.iv)equation(1.2), expressedasarelationbetweenvariablesw[0],w[1],w[2],
w[3], w[4].
>#Makingthe tau function substitution (2.3) to express (P.iv) as a homogeneous
relation oforder 7 for tau[n] :
> tauseven := wrec : for n from 0 to 4 do tauseven := simplify(subs(w[n] =
tau[n] · tau[n+ 3]

tau[n+ 1] · tau[n+ 2]
, tauseven)) : od :

> tauseven := numer(tauseven);
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># The above equation tauseven is the 7th order degree 8 equation (2.4).
># (2.4) is expressed here as a relation between tau[0], tau[1], tau[2], tau[3], tau[4], tau[5],
tau[6], tau[7].
># This directly verifies the proof of part (1) of Proposition 2.1.
># In order to derive and verify part (2), the above recurrence is iterated to generate
14 adjacent iterates
># given in terms of the 7 initial values tau[0], tau[1], tau[2], tau[3], tau[4], tau[5], tau[6].
># The iterates are denoted t[n] for brevity.
>#t[0], t[1], t[2], t[3], t[4], t[5], t[6] are 7 arbitrary initial data for(2.4).
> topsol := solve(tauseven, tau[7]) :
> for n from 7 to 10 do t[n] := topsol : for m from 0 to 6 do t[n] :=
factor(simplify(subs(tau[m] = t[m+ n− 7], t[n]))) : od : print(t[n]) : od :
># Have generated t[7], t[8], t[9], t[10]. Rather than generating up to t[13], which is slow
># due to the increasing size of the expressions, apply the inverse map to generate
t[−1], t[−2], t[−3].
># This is faster and more efficient.
>botsol := solve(tauseven, tau[0]);
> for n from 1 to 3 do t[−n] := botsol : for m from 0 to 6 do t[−n] :=
factor(simplify(subs(tau[m+ 1] = t[m− n+ 1], t[−n]))) : od : print(t[−n]) : od :
># Remark : Observe that these iterates are all Laurent polynomials, in accordance
with Proposition 2.3.
># Now calculate determinant of matrix corresponding to 5 copies of
Somos− 9 recurrence.
> f := (i , j)→ t[i + j − 5] · t[i − j + 6] : M :=Matrix(5, f) : simplify(Determinant(M));
> nullM := NullSpace(M);
> nops(nullM); kernelvec := op(1,nullM);
> nullity := 5−Rank(M); for j from 1 to 5 do al[j] := kernelvec[j] od;
> # Entries of vector that spans the 1− dimensional nullspace (kernel) of matrix M.
># Checking that Somos− 9 relation is invariant under shifts :
># Would like to normalize the entries of the vector in the kernel, and show they are
invariant under shift.
># It is convenient to first show they are functions of the initial data w[0],w[1],w[2],w[3],
then check invariance.
> for j from 1 to 4 do alw[j] := al[j] : for m from 0 to 3 do alw[j] := subs(t[m] =
w[m] · t[m+ 1] · t[m+ 2]

t[m+ 3]
,alw[j]) : od : od :

> for j from 1 to 4 do alw[j] := simplify(alw[j]) : print(alw[j]) : od : k[1] := denom(alw[4]);
># Can recognize this polynomial as the first integral K[1] for the map (P.iv), given
by (1.3).
>alw[5] := 1 : for j from 1 to 5 do alpha[j] := simplify(−k[1] · alw[j] · denom(alw[1])) od :
># Write all normalized coefficients as polynomials in the two invariants ( first integrals)
for the map (P.iv).
>k[2] := collect(collect(collect(simplify((alpha[2] + k[1]2) · a−1),a),b),nu);
># Recognize this as the first integral K[2] for the map (P.iv), given by (1.4).
>simplify(alpha[1]− k[1]); simplify(alpha[2]− a · k[2] + k[1]2); simplify(alpha[3]−
a · (a · k[2]− 2 · k[1]2)); simplify(alpha[4]− a · (a2 · k[1] + b · k[1]2 + nu · k[1] · k[2] +
k[2]2)); simplify(alpha[5] + k[1] · (a2 · k[1] + b · k[1]2 + nu · k[1] · k[2] + k[2]2));
> # This completes the proof of part (2) of Proposition 2.1.
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