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Abstract

Pro�lers are crucial tools for identifying and improving ap-
plication performance. However, for language implementa-
tions with just-in-time (JIT) compilation, e.g., for Java and
JavaScript, instrumentation-based pro�lers can have signi�-
cant overheads and report unrealistic results caused by the
instrumentation.

In this paper, we examine state-of-the-art instrumentation-
based pro�lers for Java to determine the realism of their
results. We assess their overhead, the e�ect on compilation
time, and the generated bytecode. We found that the pro-
�ler with the lowest overhead increased run time by 82×.
Additionally, we investigate the realism of results by test-
ing a pro�ler’s ability to detect whether inlining is enabled,
which is an important compiler optimization. Our results
document that instrumentation can alter program behavior
so that performance observations are unrealistic, i.e., they do
not re�ect the performance of the uninstrumented program.
As a solution, we sketch late-compiler-phase-based in-

strumentation for just-in-time compilers, which gives us the
precision of instrumentation-based pro�ling with an over-
head that is multiple magnitudes lower than that of standard
instrumentation-based pro�lers, with a median overhead
of 23.3% (min. 1.4%, max. 464%). By inserting probes late in
the compilation process, we avoid interfering with compiler
optimizations, which yields more realistic results.
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1 Introduction

Pro�lers are the go-to tool for developers to identify the
program part that takes up most time and may bene�t from
optimization. Instrumentation-based pro�lers insert probes
into the program, which then collect information about the
program’s behavior. In contrast, sampling periodically in-
terrupts the program to collect information, e.g., records
the program stack, to derive a probabilistic picture of the
program’s behavior. Both approaches are widely used for
ahead-of-time- as well as just-in-time-compiled language
implementations [8, 15, 19, 20].
Unfortunately, both sample- and instrumentation-based

pro�ling of just-in-time-compiled programs a�ect program
execution, reducing the accuracy of pro�ling results [3, 10,
14, 21], i.e., results may not represent the true performance
behavior. Instrumenting code at the source or bytecode level
changes how it is optimized [10]. Sampling su�ers from safe-
point bias, which means pro�lers do not sample all program
parts with equal probability. Safepoint bias can also lead to
misinterpreted samples, since the pro�ler only has a par-
tial understanding of how the compiler altered a program’s
structure to achieve better performance [3, 14].
The one bene�t of instrumentation is its high precision.

Results may not be accurate, but probes count or measure
reliably. Thus, wewant to better understand instrumentation-
based pro�lers on the Java Virtual Machine (JVM). To this
end, wemeasure their overhead, which is typically increasing
run time by one or two orders of magnitude. Furthermore,
we assess the impact of instrumentation on compilation, and
�nd that they can not detect whether inlining is enabled or
disabled, which means their results are unrealistic.
As a way forward, we propose a new approach to in-

strumentation-based pro�ling on top of JIT compilers that
improves the accuracy of pro�les compared to source- and
bytecode-level instrumentation by only instrumenting the
code late in the compilation process.

Inspired by Basso et al. [2], we insert our instrumentation
with a compiler phase of the Graal JIT compiler. This avoids
changing which methods are selected for compilation, which
methods are inlined, and it minimizes the impact from how
the compiler optimizes the code. This is similar to instru-
menting binaries of ahead-of-time-compiled programs [18],
but with a lower engineering e�ort and thus, we believe, a
suitable way forward for just-in-time compilers.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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2 Background

This section introduces pro�ling, our terminology, the Graal
compiler, and the challenges pro�lers have with inlining.

2.1 Pro�lers and Pro�ling Techniques

Pro�ling allows developers to observe a program’s execution.
A pro�ler may record, e.g., a program’s CPU, GPU, or mem-
ory utilization. Pro�lers help identify performance issues,
e.g., by pinpointing sections of code that consume the most
CPU time, and thus, they can guide optimization e�orts.
Instrumentation-based pro�lers insert probes into a pro-

gram to record the information. For example, a probe at
the beginning of each method can count how many times a
method is called. This �nds frequently called methods and
can enable developers to identify underlying performance
problems. Probes can be inserted at the source, bytecode, or
native code level. We will evaluate JPro�ler,1 VisualVM,2 and
YourKit3 as state-of-the-art instrumentation-based pro�lers.

CPU sampling interrupts the program to gather a snap-
shot of the current state of both hardware and software. This
includes recording the call stack, instruction pointer, mem-
ory usage, and thread state, which are used to construct a
pro�le. The interrupts occur at regular intervals, but could
be random [14]. Safepoints [1] are crucial for garbage col-
lection and to ensure that the VM is in a state where the
stack can be correctly read and the program counter can be
used to indentify the currently executing method. Thus, sam-
ples are typically interpreted based on the closest safepoints.
However, this can lead to inaccurate pro�les [14].

2.2 Accuracy, Precision, and Realism

Accuracy and precision are often used interchangably. How-
ever, in our work we use two distinct meanings.

Accuracy measures how close the reported pro�ler results
are to what happens during executions without a pro�ler,
i.e., how close the results are to the ground truth, which we
unfortunately cannot determine directly. Precision refers to
how close measurements are to each other between runs.
Thus, it measures how consistent a pro�ler gives the same,
but not necessarily correct answer.
As realism we understand a weaker notion of accuracy,

which measures how close the reported pro�lers results are
to an execution with a pro�ler that does not a�ect run-time
optimizations. This allows for the general impact and bias in-
troduced by using a pro�ler, but is meant to allow us to assess
how instrumentation in�uences optimization heuristics. For
instance, we would consider a pro�ler unrealistic when it sig-
ni�cantly changes the e�ectiveness of speci�c optimizations,
because the normal execution would not be subject to this
change, and would show di�erent performance properties.

1h�ps://www.ej-technologies.com/products/jprofiler/overview.html
2h�ps://visualvm.github.io/
3h�ps://www.yourkit.com/
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Figure 1. A GraalIR graph showing that nodes from inlined
methods can end up being intermixed in a compilation unit.

2.3 Graal Compiler

The Graal compiler is a just-in-time (JIT) compiler imple-
mented in Java. It compiles Java bytecode at run time to
machine code. For this, it uses GraalIR, a graph-based sea of

nodes [4] intermediate representation (IR) with explicit con-
trol �ow edges [5]. It enables optimizations such as dead code
elimination, loop transformation, and inlining by adding,
transforming, or removing graph nodes. Each optimization
is typically implemented in its own compiler phase.

2.4 Pro�lers and Inlining

Inlining replaces a method call with the body of the called
method. This is a vital optimization, because it enables op-
timizations on the combination of caller and callee. Graal
does inlining at the GraalIR level. After inlining the nodes
from a callee, optimizations such as loop peeling can move
and duplicate nodes and nodes from di�erent methods can
end up mixed together. Figure 1 illustrates this for the Tower
benchmark [13] with nodes from the buildTowerAt, size,
and pushDisk methods, each in a di�erent color, without
clear method boundaries between them. This makes it im-
possible to simply instrument the beginning and end of an
inlined method, since they no longer exist.

Inlining thus complicates determining where time is spent.
A sampler needs to know which method the currently exe-
cuted instruction belongs to. For instrumentation, it depends
onwhen probes are inserted. If they are inserted at the source
or bytecode level, probes may be duplicated with the rest of
the code, for instance during loop peeling, increase the over-
head, and likely prevents optimizations, e.g., inlining [10].

If probes are added after inlining, then it may requiremany
probes to isolate the di�erent parts, and correctly attribute
the execution time. This would be needed in our example in
Figure 1 to accurately distinguish the methods. A simple pro-
�ler may only instrument the root method and attribute the
time of the whole compilation unit to this method. However,
a major part of the time may be spent on inlined code.
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3 State of the Art in Instrumentation on
JIT-Compiling JVMs

We will now analyze instrumentation-based pro�lers by ex-
amining their overhead, assessing their impact on the com-
pilation process, and evaluating the realism of their results.

3.1 Experimental Setup

We ran our experiments with Graal on top of the HotSpot
JVM in OpenJDK 21.0.2.4 By using Graal’s libgraal variant,
we ensure that Graal itself is ahead-of-time compiled, which
ensures the best possible compilation times from the start.
All benchmarks were run on a machine with an AMD Ryzen
5 36000 6-core processor, which uses the Zen 2 architecture,
32 GB DDR4 RAM, and Rocky Linux 9.4 with a Linux kernel
version 5.14.0. We chose to use the AreWe Fast Yet bench-
marks [13], because they are well-understood and determin-
istic. The suite includes 5 macro-benchmarks and 9 micro-
benchmarks. We con�gured the benchmarks so that a single
iteration takes about 100ms and we run each benchmark for
300 iterations. In this con�guration, the benchmarks quickly
reach a stable state and it is a good trade-o� between overall
run time and the number of measurements collected. All
pro�lers pro�le immediately from the benchmark start. The
benchmarks are executed with ReBench [12], which adapts
the system’s settings to minimize interference and noise.

3.2 Assessing Run-time Overhead

To assess the overhead instrumentation-based pro�lers intro-
duce, we measure for each pro�ler its default settings using
full instrumentation, i.e., without excluding any packages.
This means for example that Java’s standard library is instru-
mented, too. As a consequence of full instrumentation, we
ran the benchmarks for only 10 iterations, because the high
overhead made running the benchmarks for longer impracti-
cal. We veri�ed that the relevant JIT compilation still occurs
within the �rst iteration of the benchmark run.

Unfortunately, VisualVM does not seem to be scriptable
and we could not execute our benchmarks automatically.
This made it impractical run all experiments. Though, we ran
the DeltaBlue benchmark, which is roughly in line with the
other pro�lers, and we report results for it where relevant.

1 10 100 1000
Factor Increase in Run Time

YourKit

JProfiler

Figure 2. Overhead of instrumentation-based pro�lers for
the AreWe Fast Yet benchmarks. The overhead is expressed
as a factor over the uninstrumented run time.

4We used a Graal from April 2024: h�ps://github.com/oracle/graal/commit/

249d3e4abd2f357461c5ceb682791e22b2c8a92f

Figure 2 reports the run-time overhead over the uninstru-
mented execution of all benchmarks. While fully instrument-
ing a program is expected to result in high overhead, the
extent of this overhead can be substantial enough to render
the use of a instrumentation-based pro�ler impractical. For
VisualVM, which is not in the �gure, pro�ling DeltaBlue
increases the run time by 485×. This overhead is similar to
the median overhead we found for YourKit and JPro�ler.

3.3 Assessing Impact on Compilation

To understand why these pro�lers incur such high overhead,
we assess the impact of instrumentation on the amount of
code generated, and how it a�ects inlining. We extracted
these details from Graal’s compilation log, which is enabled
with -Djdk.graal.PrintCompilation=true.

Impact onCode Size. For each pro�ler, we collect the time
spent in compilation, the total amount of bytecode, the size of
the generated native code, and the memory allocations that
occurred during compilation for each of our benchmarks.

The overhead we saw in Figure 2 is likely due to the added
instrumentation itself. The increased bytecode and native
code size seen in Figure 3 suggests that the probes cause the
additional code and that the compiler is unable to optimize
the instrumented code e�ectively.
When YourKit is attached, the added instrumentation

causes the native code size to increase by a median of 341%,

0 500 1000 1500 2000 2500 3000
Generated Bytecode Size (% increase)

YourKit
JProfiler

0 200 400 600 800
Native Code Size (% increase)

YourKit
JProfiler

0 200 400 600 800 1000
Memory Allocated (% increase)

YourKit
JProfiler

0 200 400 600 800 1000 1200
Compile Time (% increase)

YourKit
JProfiler

Figure 3. Increase of bytecodes, native code size, memory
allocation, and compile time for attached instrumentation-
based pro�lers on the AreWe Fast Yet benchmarks.
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which contributes to the overhead of 374×. The instrumenta-
tion likely also changes inlining and optimization decisions,
further contributing to the slowdown. For example, instru-
mentation can cause some methods to become too large to
be inlined, thus a�ecting the overall performance [10]. The
increased code size and the resulting changes to optimization
decision suggests that any results obtained from such pro�l-
ers are likely less realistic than for other types of pro�lers.

Impact of Instrumentation on Inlining. We have mea-
sured how inlining statistics change when instrumentation
pro�lers are attached. The data for Figure 4 was collected
from Graal’s inlining log. When running the benchmarks
without a pro�ler, the number of inlined methods is much
lower, indicating that the instrumentation requires many
more instrumentation-related methods to be inlined, which
explains the earlier seen increase in native code size.
These numbers also suggest that the instrumentation is

likely to dominate the execution of the benchmarks. For
instance, small methods will end up consisting of more in-
strumentation code than application behavior. At the same
time, the compiler is not able to remove the instrumentation,
because it is indistinguishable from normal application code.
As a result, the behavior of an instrumented program likely
correlates with method activation counts. This is a strong
indication that the pro�led behavior does likely not resem-
ble the normal program behavior, making pro�ling results
“unrealistic,” since optimizations do not give the same bene�t
anymore, but often change the performance behavior of a
program signi�cantly.

1 20 40 60 80 100
Factor Increase of Inlining with Instrumentation

YourKit

JProfiler

1 2 3 4 5 6 7
Factor Increase of Compiled Methods with Instrumentation

YourKit

JProfiler

Figure 4. The increase in compiled methods and inlin-
ing caused by attached instrumentation pro�lers for AWFY
benchmarks. The increase is expressed as a factor compared
to the results of uninstrumented executions.

To understand better how much instrumentation changes
the benchmark behavior, we ran the DeltaBlue benchmark
with each instrumentation pro�ler, once normally, and once
with inlining disabled.5 We would expect a drastic change
in behavior between inlining enabled and disabled.

5Inlining is disabled with the Graal compiler �ag -Dgraal.Inline=false

Table 1. Pro�ling results for Async and JPro�ler, with and
without inlining enabled.

Pro�ler Inline Method %

Async

yes

deltablue.Plan 23.3

Vector.forEach 17.7

ScaleConstraint.execute 4.9

Vector.append 3.7

ScaleConstraint.recalculate 3.5

no

EqualityConstraint.execute 19.9

ScaleConstraint.execute 8.2

DMH.newInvokeSpecial 4.5

Plan$$Lambda.apply 3.7

Variable.getValue 3.6

JPro�ler

yes

EqualityConstraint.execute 14.0

Plan.lambda$execute$0 10.0

Vector.forEach 9.0

Variable.getValue 6.0

ScaleConstraint.execute 5.0

no

EqualityConstraint.execute 14.5

Plan.lambda$execute$0 10.0

Vector.forEach 8.0

Variable.getValue 6.0

ScaleConstraint.execute 5.0

We ran this experiment alsowith theAsync-pro�ler, which
uses sampling instead of instrumentation. We assume that
sampling provides results closer to the ground truth, since it
does not alter program behavior as much as instrumentation.

Table 1 shows the results for Async and JPro�ler. The full
results are in the appendix in ??. These tables show that the
pro�les with and without inlining are close to identical for
the instrumentation-based pro�lers. For Async, the sampling
pro�ler, this is however not the case. Here enabling inlining
drastically changes the pro�le as we would expect.
JPro�ler reports the methods Plan.lambda$execute$0,

Vector.forEach, and EqualityConstraint.execute as the
ones taking most time, with and without inlining. With-
out inlining, Async reports EqualityConstraint.execute,
ScaleConstraint.execute, and newInvokeSpecial from
the JVM’s method handle system as most important. Though
with inlining, it reports deltablue.Plan, Vector.forEach
and ScaleConstraint.execute, which suggests that inlin-
ing and subsequent optimizations change the observable
behavior signi�cantly.
For VisualVM and YourKit, inlining has also no major

e�ect on the pro�les. To us, this means that the instrumen-
tation prevents us from seeing the impact of inlining, which
itself enables many subsequent optimizations.
With this, we conclude that the probes used in state-of-

the-art instrumentation approaches change the application
behavior to such a degree, that the run-time behavior be-
comes unrealistic.
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3.4 Instrumentation Bias towards Activation Count

When instrumentation alters an application’s behavior, to
such a degree that pro�les strongly correlate with activation
counts, they may no longer provide actionable guidance.
Simply optimizing the most activated method may not be
feasible or provide the desired performance gains, because
the compiler may have already realized these bene�ts.
Figure 5 illustrates a worst-case scenario where a pro�le

based on activation counts may misdirect optimization ef-
forts. In this example. the execute() methods of ActionA
and ActionB could be identi�ed as most called. However,
optimizing them is likely fruitless. A realistic pro�le would
likely direct attention to the part of the program that domi-
nates run time after optimizations, e.g., the bubble sort.

1 class ActionA { int id; void execute () {} }

2 class ActionB { int id; void execute () {} }

3 var actions = getMixOfManyActions ();

4 bubbleSortById(actions);

5 framework.execute(actions);

Figure 5. Worst-case scenario for instrumentation pro�lers.
Highest activation counts maymisguide optimization e�orts.

4 Improving Realism with
Late-compiler-phase-based
Instrumentation

In this section, we sketch late-compiler-phase instrumenta-
tion to improve realism of pro�les and account for inlining.

4.1 Late-compiler-phase Instrumentation

Late-compiler-phase instrumentation inserts probes into
compilation units in the latest practical JIT compiler phase to
avoid interfering with optimizations. When we insert probes,
most optimizations are already applied, which minimizes the
observer e�ect and run-time overhead.
At the high-level, the compilation process remains un-

changed, too. The JVM uses its normal heuristics to select
a method for JIT compilation and the Graal compiler opti-
mizes it with its many phases. Our implementation adds two
phases to the process. The �rst is placed late in the highest
tier, where high-level information is still available, which
we use to collect details about the compiled method and
methods that have been inlined. We also prepare the reso-
lution of a memory address for our second phase. Though,
our �rst phase does not insert any instrumentation nodes,
which avoids interfering with optimizations.

Our second phase is added as late as possible to the low
tier and adds our instrumentation nodes. These nodes record
the CPU cycles at the start and each exit from the compila-
tion unit. It also instruments calls into non-inlined methods.
Further nodes are inserted to compute the CPU cycles taken

directly by this compilation unit, and to add the result to
the unit’s entry in a global array for all compilation units.
For this, we use the previously prepared memory address,
which minimizes the run-time computations. The array is
processed right before the JVM shuts down, to compute and
output the overall pro�le.

Since we instrument code in the JIT compiler, only meth-
ods that are compiledwill collect pro�ling information.Meth-
ods that are interpreted only thus will not be pro�led. How-
ever, for many use cases, the methods relevant for perfor-
mance are invoked often and therefore get JIT compiled.

4.2 Attributing Cycles to Inlined Methods

As discussed in Section 2.4, inlining is a major challenge
for pro�lers when it comes to correctly attributing where a
program spends its time, because inlining and subsequent
compiler optimizations may cause an inlined method to be
arbitrarily intermixed with parts from other methods.

To attribute time to inlinedmethods after all optimizations,
we estimate the cycle cost for the remaining elements. We
know for each GraalIR node fromwhich method it originates.
Based on branch probabilities and loop counts collected at
run time, we then estimate which fraction of the overall
compilation unit comes from a speci�c method. This allows
us to identify which methods make up the hottest compila-
tion units and avoids the overhead of instrumenting each
remaining part of an inlined method separately.

4.3 Evaluation

To evaluate our late-compiler-phase-based instrumentation,
we compare it with sampling- and the other instrumentation-
based pro�lers. The setup is the same as in Section 3.1, which
gives both instrumentation-based pro�lers and samplers
enough time to pro�le the program in a stable state. How-
ever, someminor engineering issues prevented us from using
libgraal for our implementation, which we call Bubo. Thus,
all experiments with Bubo use jargraal, i.e., the Java version
of Graal that is subject to JIT compilation itself. We believe
this has no major impact on our results. In the worst case, it
disadvantages Bubo compared to other pro�lers.

Comparison with Classic Instrumentation. As shown
in Figure 2, the median overhead for the instrumentation
pro�lers is in the range of 82× to 374× over all benchmarks.
This means at the median, JPro�ler causes programs to take
82× more time compared to their uninstrumented version.
In contrast, Figure 6 shows that Bubo has a median over-

head of only 23.3% (min. 1.4%, max. 464%), and having a
generally lower impact on the execution of a program.

Comparison with Sampling. Sampling pro�lers are ex-
pected to have a lower overhead than instrumentation-based
pro�lers, since their overhead is proportional to the sampling
frequency, instead of incurring a constant overhead for every
instrumented method. Figure 6 shows that Bubo has a higher
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median overhead with 23.3% (min. 1.4%, max. 464%) than the
sampling pro�lers. Bubo’s median overhead of 23.3% is also
higher than the 75th percentile of the sampling pro�lers, as
indicated by the right edge of the boxes. Nonetheless, Bubo’s
overhead is much closer to that of sampling-based pro�lers
than that of instrumentation-based ones.

We believe these �rst results show that the approach could
make instrumentation-based pro�ling more practical and
realistic.

1 10 100 1000
Factor Increase in Run Time

Inst JProfiler

Inst YourKit

Bubo

YourKit

Perf

JFR

Honest

Async

Figure 6. Run-time overhead for each pro�ler expressed as
factor over the uninstrumented run time. Async has the low-
est median overhead with 1% (min. 0.1%, max. 52%). Bubo’s
median overhead is 23.3% (min. 1.4%, max. 464%).

5 Related Work

Themost relevant work is on instrumentation at the compiler
level and binary rewriting.

Most notably, Zheng et al. [21] and Basso et al. [2] inspired
our late-compiler-phase instrumentation. Zheng et al. [21]
illustrate the impact of JIT compiler optimizations on, for
instance, object allocations and method invocations, demon-
strating the need to work alongside the JIT compiler to un-
derstand which of these operations are still present after
optimization. Both [2, 21] focused on speci�c compiler op-
timizations and compiler events to better understand the
compiler and performance issues with it. We on the other
hand focus on pro�ling applications.
Much earlier work such as gprof [7], also instrumented

programs as part of ahead-of-time (AOT) compilation. To-
day’s compilers such as GCC and LLVM also support it, e.g.,
to enable pro�le-guided optimizations [16].

However, it seemsmore common today for application pro-
�ling to instrument binaries after compilation to avoid inter-
fering with optimizations. Dynamic binary instrumentation
can be used to make instrumentation very targeted for use in
production, e.g., by sampling programs using instrumenta-
tion at con�gurable frequencies set by the user [11]. Others

optimize instrumentation by combining multiple probes into
one to reduce the overhead without losing information [9]
or by using self-modifying instrumentation [17].

6 Conclusion

In this work, we show that state-of-the-art instrumentation-
based pro�lers for the JVMhave high overhead and report un-
realistic results. We found that the lowest median overhead
is 82× across the AreWe Fast Yet benchmarks. The overhead
can be explained with the cost of instrumentation, which
is visible in the increased bytecode size, native code size,
and amount of inlining. We further argue that the reported
pro�les are unrealistic, because they do not change when in-
lining is turned o�, which indicates that the instrumentation
negates most compiler optimizations.
To overcome these issues, we proposed late-compiler-

phase-based instrumentation. It minimizes interference with
compiler optimizations and as a result delivers more realistic
pro�les than other instrumentation-based pro�lers.
In our prototype implementation, it reduces the median

pro�ler overhead on theAreWe Fast Yet benchmarks to 23.3%
(min. 1.4%, max. 464%), which is more similar to sampling-
based pro�lers. Furthermore, we attribute the cycles for a
compilation unit to the methods fragments that remain in the
compilation unit after optimization to account for inlining.
However, our prototype does not support multithreading.

Future Work. The main bene�t of instrumentation-based
pro�ling over sampling is its precision, i.e., that it gives con-
sistent results (see Section 2.2). However, it’s not generally
possible to assess the accuracy of pro�lers and samplers of-
ten disagree with eachother [3, 14]. Thus, an important open
question is how to better approximate the ground truth pro-
�le for any given program. One could possibly use hardware
simulators to determine the ground truth and thereby assess
the accuracy of pro�lers [6].
One could also consider combining sampling and late-

compiler-phase instrumentation to reduce the overhead, and
gain precision for speci�c parts of a pro�le. A hybrid solution
would also allow pro�ling of executions in the interpreter.

Other future work is more engineering focused. At this
point, Bubo instruments all methods, but perhaps one would
want to select manually which methods to instrument as
in classic instrumentation-based pro�lers. Adding support
for multithreaded application and ensuring the pro�le data
is collected correctly would be needed to make Bubo work
with most JVM applications.
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A Appendix

Table 2. A complete version of Table 1. Comparison of methods percentages across di�erent pro�lers for the DeltaBlue
benchmark with and without inlining.

Pro�ler Inlining Method Percentage

Async

yes

deltablue.Plan 23
Vector.forEach 17
ScaleConstraint.execute 4
Vector.append 3
ScaleConstraint.recalculate 3

no

EqualityConstraint.execute 19
ScaleConstraint.execute 8
invoke.DirectMethodHandle$Holder.newInvokeSpecial 4
Plan$$Lambda.0x00007fcf5800d6c0.apply 3
Variable.getValue 3

JPro�ler

yes

EqualityConstraint.execute 14
Plan.lambda$execute$0 10
Vector.forEach 9
Variable.getValue 6
ScaleConstraint.execute 5

no

EqualityConstraint.execute 14
Plan.lambda$execute$0 10
Vector.forEach 8
Variable.getValue 6
ScaleConstraint.execute 5

VisualVM

yes

Plan.lambda$execute$0 14
Vector.forEach 12
Variable.getValue 6
Planner.addPropagate 4
AbstractConstraint.satisfy 2

no

Plan.lambda$execute$0 24
Vector.forEach 12
Variable.getValue 6
Planner.addPropagate 4
AbstractConstraint.satisfy 2

YourKit

yes

deltablue.Plan.lambda$execute$0 24
som.Vector.forEach 17
deltablue.EqualityConstraint.execute 10
deltablue.Planner.addPropagate 3
deltablue.AbstractConstraint.satisfy 2

no

deltablue.Plan.lambda$execute$0 36
som.Vector.forEach 17
deltablue.EqualityConstraint.execute 10
deltablue.Planner.addPropagate 4
deltablue.AbstractConstraint.satisfy 2
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