
Bereczky, Péter, Horpácsi, Dániel and Thompson, Simon (2024) A frame stack
semantics for sequential Core Erlang. In: The 35th Symposium on Implementation
and Application of Functional Languages. IFL '23: Proceedings of the 35th Symposium
on Implementation and Application of Functional Languages. (5). pp. 1-13.
ACM, New York, USA

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/106442/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/3652561.3652566

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/106442/
https://doi.org/10.1145/3652561.3652566
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A Frame Stack Semantics for Sequential Core Erlang
Péter Bereczky

Dániel Horpácsi

berpeti@inf.elte.hu

daniel-h@elte.hu

ELTE Eötvös Loránd University

Budapest, Hungary

Simon Thompson

S.J.Thompson@kent.ac.uk

ELTE Eötvös Loránd University

Budapest, Hungary

University of Kent

Canterbury, United Kingdom

ABSTRACT
We present a small-step, frame stack style, semantics for sequen-

tial Core Erlang, a dynamically typed, impure functional program-

ming language. The semantics and the properties that we prove

are machine-checked with the Coq proof assistant. We improve on

previous work by including exceptions and exception handling, as

well as built-in data types and functions. Based on the semantics,

we define multiple concepts of program equivalence (contextual,

CIU equivalence, and equivalence based on logical relations) and

prove that the definitions all coincide. Using this we are able to

give a correctness criterion for refactorings, which is one of the

main motivations of this work, by means of contextually equivalent

symbolic expression pairs.

CCS CONCEPTS
• Theory of computation → Operational semantics; Program
reasoning; Functional constructs.

KEYWORDS
Formal semantics, Frame stack semantics, Coq, program equiva-

lence, Erlang, CIU theorem

ACM Reference Format:
Péter Bereczky, Dániel Horpácsi, and Simon Thompson. 2023. A Frame

Stack Semantics for Sequential Core Erlang. In The 35th Symposium on
Implementation and Application of Functional Languages (IFL 2023), August
29–31, 2023, Braga, Portugal. ACM, New York, NY, USA, 13 pages. https:

//doi.org/10.1145/3652561.3652566

1 INTRODUCTION
Most language processors and refactoring tools lack a precise for-

mal specification of how the code is affected by the changes they

may make. In particular, using a refactoring tool to improve the

quality of the code should not change the observable behaviour of

the program; however, this property is validated only by testing in

most cases. Higher assurance can be achieved by making formal

arguments to verify behaviour preservation, which requires a for-

mal description (e.g., a formal semantics) of the programs being

This work is licensed under a Creative Commons Attribution International

4.0 License.

IFL 2023, August 29–31, 2023, Braga, Portugal
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1631-7/23/08

https://doi.org/10.1145/3652561.3652566

refactored, a precise specification how the refactorings affect these

programs, and a suitable definition of program equivalence.

The research presented in this paper is part of a wider project

aiming to improve the trustworthiness of Erlang [10] refactorings

via formal verification [17]. As a stepping stone, we formalise Core

Erlang [9], which is a core and intermediate language of Erlang

and its compilation process. Besides Erlang, other languages (e.g.,

Elixir [15]) can be translated to Core Erlang, therefore a formali-

sation of the core language may contribute to the studies of all of

these languages.

In this paper, we are defining a small-step (frame stack style)

semantics of Core Erlang extending our previous work [18] with

most of the sequential features of Core Erlang. Based on the formal

semantics, we define a number of expression equivalence concepts,

which we use to prove the correctness of simple Erlang refactorings.

All of the results presented here are also formalised with the Coq

proof management system [32].

𝑓 (𝑥) when length(𝑥) == 0 -> 𝑒1;

𝑓 (_) -> 𝑒2.

↓ when 𝑥 ∉ vars(𝑒1)
𝑓 ([]) -> 𝑒1;

𝑓 (_) -> 𝑒2.

Figure 1: A simple function refactoring in Erlang

Running example. We present a simple refactoring in Erlang,

which replaces a guard of a function clausewith amore effective and

readable patternmatching (Figure 1). Note that in the figure, 𝑓 , 𝑒1, 𝑒2,

and 𝑥 are metavariables (𝑓 is used for atoms, 𝑒1, 𝑒2 for expressions,

𝑥 for variables) and the side-condition of the refactoring is given

as a logical constraint in the when clause. This example will serve

as a running example throughout this paper.

To utilize the formal semantics of Core Erlang presented here,

first both of these code chunks are translated to Core Erlang by the

standard Erlang/OTP compiler (OTP version 24). Next, we encode

the Core Erlang programs in the Coq formalisation, and prove their

equivalence. In this process, we consider the compiler as trusted.

This is a reasonable assumption for two reasons. The compiler

produces human-readable Core Erlang, and so it can be inspected

in any particular case. Also, the compiler is widely used, and so

has been subject to substantial social scrutiny. In Figure 2 we show

the result of the unoptimised translation of the first function in

Figure 1, after clearing the annotations of Core Erlang [9].

Contributions. In this paper, we make the following contribu-

tions:

https://orcid.org/0000-0003-3183-0712
https://orcid.org/0000-0003-0261-0091
https://orcid.org/0000-0002-2350-301X
https://doi.org/10.1145/3652561.3652566
https://doi.org/10.1145/3652561.3652566
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3652561.3652566
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652561.3652566&domain=pdf&date_stamp=2024-06-19

IFL 2023, August 29–31, 2023, Braga, Portugal Bereczky, Horpácsi and Thompson

𝑓 /1 = fun (_0) -> case _0 of
<𝑥 > when try let <_1> = call 'erlang ':'length '(𝑥)

in call 'erlang ':'=='(_1, 0)

of <Try > -> Try

catch <T,R> -> 'false '

-> 𝑒1
<_3> when 'true' -> 𝑒2
<_2> when 'true' ->

primop 'match_fail '({'function_clause ',_2})
end

Figure 2: Core Erlang code of the first function in Figure 1

• A (frame stack) semantics for the sequential subset of Core

Erlang including exception handling, which extends and

improves on our previous work [18].

• Definitions of termination-based program equivalence rela-

tions (namely: contextual equivalence, equivalence based on

logical relations, and CIU equivalence).

• Properties of the program equivalence relations, and their

coincidence.

• A number of simple (Erlang) expression equivalences (one

presented as the running example above).

• Amachine-checked implementation of the results in the Coq

proof management system [32].

For the proofs of the theorems, lemmas, and examples presented

here, we refer to the formalisation [32]. The rest of the paper is

structured as follows. In Section 2 we summarise the concepts

and our previous work which this paper builds on. Thereafter,

Section 3 introduces the formal semantics of sequential Core Erlang.

Section 4 discusses program equivalence definitions, followed by

a short discussion in Section 5 on the Coq implementation details.

Section 6 briefly discusses related work, while Section 7 concludes

and points out areas for future work.

2 BACKGROUND
In this section, we briefly introduce the concepts of frame stack

semantics and program equivalences, and also discuss our previous

work which we evolve in this paper.

Frame stack semantics. A frame stack style semantics is a small-

step [30] operational semantics. It is derived from the reduction-

style semantics of Wright and Felleisen [37]. In the frame stack

semantics, the reduction rules are applied in a special reduction

context; it is constructed as a stack of basic evaluation frames. This

stack can also be considered as the continuation of the evaluation.

The advantage of this style of semantics is that it is simpler to use

in a proof assistant since the frame stack is separated into a distinct

configuration cell (hence it does not need to be inferred like the

reduction context in reduction-style semantics).

Program equivalence concepts. In this paper, we investigate three

definitions of program equivalence. Contextual equivalence is a

syntactical notion of program equivalence: two expressions are

equivalent if their behaviours cannot be distinguished in any syntac-
tical contexts. Usually, it is burdensome to reason about contextual

equivalence since it requires induction on the context; however, this

notion is needed to express the correctness of local program trans-

formations (i.e., equivalent programs can be replaced in arbitrary

context without affecting the overall behaviour).

With equivalence based on logical relations [28] two expressions

are equivalent when their behaviour cannot be distinguished in

equivalent reduction contexts (i.e., frame stacks). In the frame stack

semantics reasoning about this equivalence can be carried out by in-

specting the semantics of the expressions instead of using induction

on the contexts.

With CIU equivalence (“closed instances of use” equivalence) [22]
two expressions are equivalent when their behaviour is indistin-

guishable in any reduction context. This notion is the most suitable

to reason about expressions being equivalent, since it involves only

one reduction context (frame stack).

Previous work. In earlier work [18] we have defined frame stack

semantics for a limited variant of Core Erlang, and defined the

program equivalence concepts mentioned above. Hereby we extend

this limited language by adding further language elements of Core

Erlang: function closures, tuples, maps, sequencing, value lists and

value sequences, exceptions and exception handling. Moreover, we

generalise pattern matching, let, letrec expressions, and built-in

function calls. With this extension, our semantics covers most of

the (sequential) language elements of Core Erlang [9] (except for

the module system, bitstring and alias patterns, binaries, timeouts

and floats). The syntax presented here also covers all the concurrent

language elements of Core Erlang (apart from process identifiers),

since they are expressed by built-in functions and primitive op-

erations since OTP version 23 [16]. After extending the language

and its semantics, we adjust and extend the equivalence relations,

corresponding properties and proofs. Another improvement on

previous work is handling expressions with an arbitrary number

of subexpressions in a uniform way.

It is worth mentioning that in prior work we also investigated

a big-step style semantics for sequential Core Erlang [4, 5], which

included studying the semantics of various language elements pre-

sented here, allowing us to reuse and adjust some of the results

about the syntax achieved there.

3 CORE ERLANG SEMANTICS
In this section, we discuss the syntax and frame stack semantics

of sequential Core Erlang, evaluate an example expression, and

show a number of semantic properties. For proofs we refer to the

machine-checked Coq formalisation [32].

3.1 Syntax
First, we present the syntax of Core Erlang [9] in Figure 3. We use

subscripts to denote multiplicities and superscripts to denote the

roles of values and expressions. For simplicity, we denote lists from

themetatheorywith 𝑒1, . . ., 𝑒𝑛 , and non-empty lists with 𝑒1, 𝑒2, . . ., 𝑒𝑛 .

We use 𝑥 to range over variables, 𝑖 over integers, 𝑎, 𝑓 denote atoms,

and 𝑘, 𝑙,𝑚, 𝑛 are used to denote natural numbers. Compared to our

previous work [18], here we separate values from expressions, but

use similar notations for them (e.g., {𝑒1, . . ., 𝑒𝑛} is a tuple expression,
while {𝑣1, . . ., 𝑣𝑛} is a tuple value).

The patterns of the language are integers (denoted with num-

bers), atoms (enclosed in single quotation marks), variables, lists,

A Frame Stack Semantics for Sequential Core Erlang IFL 2023, August 29–31, 2023, Braga, Portugal

𝑝 ∈ Pattern ::= 𝑖 | 𝑎 | 𝑥 | [𝑝1 |𝑝2] | [] | {𝑝1, . . ., 𝑝𝑛}

| ∼{𝑝𝑘
1
⇒ 𝑝𝑣

1
, . . ., 𝑝𝑘𝑛 ⇒ 𝑝𝑣𝑛}∼

ps ∈ list(Pattern) ::= <𝑝1, . . ., 𝑝𝑛>

cli ∈ ClosItem ::= 𝑓 /𝑘 = fun(𝑥1, . . ., 𝑥𝑘) → 𝑒

ext ∈ list(ClosItem) ::= cli1, . . ., cli𝑛

cl ∈ Clause ::= 𝑝𝑠 when 𝑒𝑔 → 𝑒𝑏

𝑣 ∈ Val ::= 𝑖 | 𝑎 | 𝑥 | 𝑓 /𝑘 | clos(𝑒𝑥𝑡, [𝑥1, . . ., 𝑥𝑛], 𝑒)

| [𝑣1 |𝑣2] | [] | {𝑣1, . . ., 𝑣𝑛} | ∼{𝑣𝑘
1
⇒ 𝑣𝑣

1
, . . ., 𝑣𝑘𝑛 ⇒ 𝑣𝑣𝑛}∼

nv ∈ NonVal ::= fun(𝑥1, . . ., 𝑥𝑛) → 𝑒 | <𝑒1, . . ., 𝑒𝑛> | [𝑒1 |𝑒2]

| {𝑒1, . . ., 𝑒𝑛} | ∼{𝑒𝑘
1
⇒ 𝑒𝑣

1
, . . ., 𝑒𝑘𝑛 ⇒ 𝑒𝑣𝑛}∼

| call 𝑒𝑚 :𝑒 𝑓 (𝑒1, . . ., 𝑒𝑛) | primop 𝑎(𝑒1, . . ., 𝑒𝑛)
| apply 𝑒 (𝑒1, . . ., 𝑒𝑛) | case 𝑒1 of cl1; . . . ; cl𝑛 end

| let <𝑥1, . . ., 𝑥𝑛> = 𝑒1 in 𝑒2 | do 𝑒1 𝑒2 | letrec 𝑒𝑥𝑡 in 𝑒
| try 𝑒1 of <𝑥1, . . ., 𝑥𝑘> → 𝑒2 catch <𝑥𝑘+1, . . ., 𝑥𝑘+𝑛> → 𝑒3

𝑒 ∈ Exp ::= nv | 𝑣
vs ∈ ValSeq ::= <𝑣1, . . ., 𝑣𝑛>

𝑐 ∈ ExcClass ::= ’throw’ | ’exit’ | ’error’

exc ∈ Exception := {𝑐, 𝑣𝑟 , 𝑣𝑑 }𝑋

res ∈ Result := exc | vs

Figure 3: Syntax of Core Erlang

tuples and maps (tilde-enclosed tuples containing key-value pairs

denoted with superscripts 𝑘 and 𝑣). The set of values in the lan-

guage essentially consists of the same constructs, extended with

function identifiers (𝑓 /𝑘 , atom-arity pairs) and function closures.

Note that we refer to variables and function identifiers as names in
the rest of the paper.

Closures. Closures are the normal forms of functions (we reuse

and adjust their definition from [5]). Besides a function’s parameter

list, body expression, they also include a list of function definitions

(ext) that can be applied recursively by the body expression (this

list is constructed while evaluating a letrec expression).

The expressions of the language are either values or non-values,

which consist of uncurried function abstractions, value lists (de-

noted with <𝑒1, . . ., 𝑒𝑛>, usually used in binding expressions), lists,

tuples, maps, inter-module calls (we denote themodule and function

names with superscripts), primitive operations, function applica-

tion, binding expressions (let, letrec, case, try), and sequencing
(do).

Primitive operations, inter-module calls, and function application.
The semantics of primitive operations (primop) is unspecified, thus
in the formalisation we simulate the behaviour of these operations

based on their implementation in the standard compiler [1]. Inter-

module calls (call) are applications of top-level functions of a

(Core) Erlang module (identified by module and function names).

The current formalisation does not include the module system yet,

thus for our semantics inter-module call expressions are mainly

𝑟 ∈ Redex ::= vs | exc | 𝑒 | □

id ∈ FrameId ::= tuple | values | call(𝑣𝑚, 𝑣 𝑓) | primop(𝑎) | map

| app(𝑣)
𝐹 ∈ Frame ::= id(𝑣1, . . ., 𝑣𝑖−1,□, 𝑒𝑖+1 . . ., 𝑒𝑛) | [𝑒1 |□] | [□|𝑣2]

| call □:𝑒 𝑓 (𝑒1, . . ., 𝑒𝑛) | call 𝑣𝑚 :□(𝑒1, . . ., 𝑒𝑛)
| apply □(𝑒1, . . ., 𝑒𝑛) | case □ of cl1; . . . ; cl𝑛 end

| case vs of 𝑝𝑠 when □→ 𝑒𝑏 ; cl2; . . . ; cl𝑛 end

| let <𝑥1, . . ., 𝑥𝑛> = □ in 𝑒2 | do □ 𝑒2
| try □ of <𝑥1, . . ., 𝑥𝑛> → 𝑒2 catch <𝑥𝑘+1, 𝑥𝑘+2, 𝑥𝑘+3> → 𝑒3

𝐾 ∈ FrameStack ::= 𝜀 | 𝐹 :: 𝐾

Figure 4: Syntax of redexes, frames, frame stacks

simulated built-in function (BIF) calls. BIFs include a collection

of simple operations (e.g., addition, subtraction, type testing) and

they live in the ’erlang’ module. In contrast, function application

(apply) is used to apply any closure to the given parameters.

Evaluation and binding. In Core Erlang all expressions evaluate

to either value sequences (denoted with <𝑣1, . . ., 𝑣𝑛> or vs) or ex-
ceptions (denoted with exc). Most expressions evaluate to a single

value and hence yield singleton value sequences, but value lists

(<𝑒1, . . ., 𝑒𝑛>) evaluate to a value sequence of the same length.

Binding expressions are capable of binding any number of vari-

ables (or function identifiers in case of letrec). For example, if 𝑛

variables are given in try or let expressions, and 𝑒1 evaluates to a

value sequence of 𝑛 values, then these values will be bound to the

𝑛 given variables in 𝑒2. This is true for case expressions too, but in

this case a list of 𝑛 patterns has to be specified in each clause.

Exceptions. In Erlang implementations [9], exceptions (denoted

with {𝑐, 𝑣𝑟 , 𝑣𝑑 }𝑋 , where we use the superscript 𝑋 to distinguish

exceptions from tuples) consist of an exception class (𝑐) and two

values describing the reason (𝑣𝑟) and additional details (𝑣𝑑) of the

exception. These three values are bound inside the catch clause of

a try expression.
1

3.2 Frame Stacks
Next, we define the formal semantics for Core Erlang. We use

⟨𝐾, 𝑟 ⟩ −→ ⟨𝐾 ′, 𝑟 ′⟩ to denote reduction steps, where the initial con-

figuration consists of the frame stack 𝐾 and redex 𝑟 , while the final

configuration includes the stack 𝐾 ′
and redex 𝑟 ′. Before discussing

the rules of the semantics, we define the syntax of redexes, frame

stacks, and a number of auxiliary definitions.

The syntax for frames, frame stacks, and redexes are presented

in Figure 4. Frames are essentially non-values with one of their

subexpression replaced by □ (they resemble the reduction contexts

of [37]). However, frames do not capture all syntactical contexts.

Frames capture evaluation order by some of their parameters being

values (that have already been evaluated) while others being (non-

value) expressions.

1
We note that Core Erlang implementations also allow binding only the first two

values in catch.

IFL 2023, August 29–31, 2023, Braga, Portugal Bereczky, Horpácsi and Thompson

Frame stacks are essentially lists: there is the empty stack 𝜀, and

the stack 𝐹 :: 𝐾 which denotes the frame stack 𝐾 with the frame 𝐹

pushed onto it.

Frames for expression lists. In order to avoid duplication for mul-

tiple kinds of expressions containing parameter lists (e.g., tuples,

maps, function applications)—which always need to be evaluated

in the same way—we introduce frame identifiers, the parameter

list frame 𝑖𝑑 (𝑣1, . . ., 𝑣𝑘−1,□, 𝑒𝑘+1, . . ., 𝑒𝑛), and the □ redex to handle

empty parameter lists in a uniform way.

3.3 Auxiliary definitions
For the rest of the paper, we introduce the following concepts:

• Similarly to our previous work [18], we use 𝜎 to denote

capture-avoiding, parallel substitutions. Substitutions map

names to values. We use 𝜎 (𝑥) to denote the value that is

mapped to the name 𝑥 by the substitution 𝜎 .

• Applying a substitution to a redex (or single value) is denoted

with 𝑟 [𝜎]. If a concrete substitution is given, we use 𝑟 [𝑥1 ↦→
𝑣1, . . ., 𝑥𝑛 ↦→ 𝑣𝑛] which replaces the names 𝑥𝑖 with values 𝑣𝑖
in 𝑟 .

• We also adapt the scoping rules and notations of [18] to

the extended language. We use Γ ⊢ 𝑡 to denote that the

redex, single value (note that variables are values too), frame

or frame stack 𝑡 contains free names listed in the set Γ. A
redex, single value, frame or frame stack 𝑡 is closed, if ∅ ⊢ 𝑡 .
Moreover, Γ ⊢ 𝜎 ⊸ Δ denotes that the substitution 𝜎 maps

names in Γ to values (𝑣) such that Δ ⊢ 𝑣 .
• Let vars(𝑝) denote the set of variables in pattern 𝑝 .

• The function is_match(ps, vs) decides whether the list of pat-
terns ps pairwise match to the given value sequence vs. The
function match(ps, vs) creates a substitution that includes

the result variable-value bindings of the successful pattern

matching.

• The function names_of(ext) returns the set of bound function
identifiers in the list of function definitions ext.

• The function mk_closlist(ext) creates a substitution of clo-

sures based on the function definitions in ext by transforming

all function definitions 𝑓 /𝑘 = fun(𝑥1, . . ., 𝑥𝑛) → 𝑒 of ext into
𝑓 /𝑘 ↦→ clos(ext, [𝑥1, . . ., 𝑥𝑛], 𝑒) (ext is used in all closures as

the collection of recursive function). For further details we

refer to the formalization [32].

3.4 Dynamic Semantics
In this subsection, we present the rules of the semantics. There are

4 rule categories:

(1) Rules that deconstruct an expression by extracting its first

redex while putting the rest of the expression in the frame

stack (Figure 5).

(2) Rules that modify the top frame of the stack by extracting the

next redex and putting back the currently evaluated value

into this top frame (Figure 6).

(3) Rules that remove the top frame of the stack and construct

the next redex based on this removed frame (Figure 7). We

also included rules here which immediately reduce an ex-

pression without modifying the stack (e.g., PFun).

(4) Rules that express concepts of exception creation, handling,

or propagation (Figure 8).

Next, we discuss a number of the more complex rules, starting

with rules of group 1 (Figure 5):

• SPrimOp, STuple, and SVals reduce expressions with pa-

rameter lists. They put a parameter list frame (with their

corresponding frame identifier) on the top of the frame

stack. To avoid handling empty parameter lists separately for

each language element, □ is put into the final configuration,

which will be handled by PParams□ in case of an empty, or

SParams□ in case of a non-empty parameter list.

• SMap starts the evaluation of a non-empty map expression

by creating a parameter list frame. In this case, the use of

□ can be avoided, since there is at least one key expression.

Note that empty maps are handled separately (in PMap0)

to satisfy that the number of subexpressions and values in

parameter list frames for maps is always an odd number (we

refer to the description of PParams on page 6 for more in-

sights). If we used the same general rules for map evaluation

as for other parameter lists, some theorems (e.g., 3.4 and 3.5)

would become significantly harder to prove.

• The rest of the rules of Figure 5 extract the first redex of

the given expression, and push the remaining parts onto the

stack. We note that lists are evaluated in a right-to-left order

in Core Erlang, this is why 𝑒2 is extracted first in SConsTail.

Now we draw attention to the rules in groups 2 (Figure 6) and 3

(Figure 7). Observe that all of these restrict the redex in the initial

configuration to be a singleton value sequence, except for the bind-

ing expressions (in line with what we said in Section 3.1), single-step

reduction rules, and technical rules involving □.

• SParams□ starts the evaluation of non-empty parameter

lists. This is one of the two rules that expects □ in the initial

configuration. If there are some expressions in the parameter

list frame on the top of the stack, this rule extracts the first

one. Note that this rule cannot be used for map frames, since

SMap handles non-empty, and PMap0 handles empty maps.

• SParams extracts the next redex (𝑒𝑖+1) from the parameter

list frame on the top of the stack, if the 𝑖th expression has

already been reduced to a singleton value sequence. The

item in this singleton sequence is put back into the frame.

• SCallParam, SAppParam express reductions for frameswith

parameter lists, and behave the same way as described above

for SPrimOp, STuple, and SVals.

• SCaseFail expresses the evaluation of a case expression if

the pattern matching failed. In this case, the first clause can

be removed, and the next clause needs to be checked.

• SCaseSuccess expresses the evaluation of a case expression
if the pattern matching succeeds. In this case, the next redex

to evaluate is the guard expression of the current clause,

substituted by the result of the pattern matching. Note that

the substitution is also applied to the body expression of the

current clause.

• SCaseFalse expresses when a guard of a clause evaluates to

’false’. In this case, the first clause can be removed, and

the next clause needs to be checked.

A Frame Stack Semantics for Sequential Core Erlang IFL 2023, August 29–31, 2023, Braga, Portugal

⟨𝐾, [𝑒1 |𝑒2]⟩ −→ ⟨[𝑒1 |□] :: 𝐾, 𝑒2⟩ (SConsTail)

⟨𝐾, let <𝑥1, . . ., 𝑥𝑛> = 𝑒1 in 𝑒2⟩ −→ ⟨let <𝑥1, . . ., 𝑥𝑛> = □ in 𝑒2 :: 𝐾, 𝑒1⟩ (SLet)

⟨𝐾, do 𝑒1 𝑒2⟩ −→ ⟨do □ 𝑒2 :: 𝐾, 𝑒1⟩ (SSeq)

⟨𝐾, apply 𝑒 (𝑒1, . . ., 𝑒𝑛)⟩ −→ ⟨apply □(𝑒1, . . ., 𝑒𝑛) :: 𝐾, 𝑒⟩ (SApp)

⟨𝐾, call 𝑒𝑚 :𝑒 𝑓 (𝑒1, . . ., 𝑒𝑛)⟩ −→ ⟨call □:𝑒 𝑓 (𝑒1, . . ., 𝑒𝑛) :: 𝐾, 𝑒𝑚⟩ (SCallMod)

⟨𝐾, primop 𝑎(𝑒1, . . ., 𝑒𝑛)⟩ −→ ⟨primop(𝑎) (□, 𝑒1, . . ., 𝑒𝑛) :: 𝐾,□⟩ (SPrimOp)

⟨𝐾, <𝑒1, . . ., 𝑒𝑛>⟩ −→ ⟨values(□, 𝑒1, . . ., 𝑒𝑛) :: 𝐾,□⟩ (SVals)

⟨𝐾, {𝑒1, . . ., 𝑒𝑛}⟩ −→ ⟨tuple(□, 𝑒1, . . ., 𝑒𝑛) :: 𝐾,□⟩ (STuple)

⟨𝐾,∼{𝑒𝑘
1
⇒ 𝑒𝑣

1
, 𝑒𝑘
2
⇒ 𝑒𝑣

2
. . ., 𝑒𝑘𝑛 ⇒ 𝑒𝑣𝑛}∼⟩ −→ ⟨map(□, 𝑒𝑣

1
, 𝑒𝑘
2
, 𝑒𝑣
2
, . . ., 𝑒𝑘𝑛 , 𝑒

𝑣
𝑛) :: 𝐾, 𝑒𝑘1 ⟩ (SMap)

⟨𝐾, case 𝑒 of cl1; . . . ; cl𝑛 end⟩ −→ ⟨case □ of cl1; . . . ; cl𝑛 end :: 𝐾, 𝑒⟩ (SCase)

Figure 5: Frame stack semantics rules (group 1)

⟨[𝑒1 |□] :: 𝐾, <𝑣2>⟩ −→ ⟨[□|𝑣2] :: 𝐾, 𝑒1⟩ (SConsHead)

⟨call □:𝑒 𝑓 (𝑒1, . . ., 𝑒𝑛) :: 𝐾, <𝑣𝑚>⟩ −→ ⟨call 𝑣𝑚 :□(𝑒1, . . ., 𝑒𝑛) :: 𝐾, 𝑒 𝑓 ⟩ (SCallFun)

⟨call 𝑣𝑚 :□(𝑒1, . . ., 𝑒𝑛) :: 𝐾, <𝑣 𝑓 >⟩ −→ ⟨call(𝑣𝑚, 𝑣 𝑓) (□, 𝑒1, . . ., 𝑒𝑛) :: 𝐾,□⟩ (SCallParam)

⟨apply □(𝑒1, . . ., 𝑒𝑛) :: 𝐾, <𝑣>⟩ −→ ⟨app(𝑣) (□, 𝑒1, . . ., 𝑒𝑛) :: 𝐾,□⟩ (SAppParam)

⟨case □ of ps when 𝑒𝑔 → 𝑒𝑏 ; cl2; . . . ; cl𝑛 end :: 𝐾, vs⟩ −→ ⟨case □ of cl2; . . . ; cl𝑛 end :: 𝐾, vs⟩ (if ¬is_match(𝑝𝑠, 𝑣𝑠)) (SCaseFail)

⟨case □ of ps when 𝑒𝑔 → 𝑒𝑏 ; cl2; . . . ; cl𝑛 end :: 𝐾, vs⟩ −→

⟨case vs of ps when □→ 𝑒𝑏 [match(ps, vs)]; cl2; . . . ; cl𝑛 end :: 𝐾, 𝑒𝑔 [match(ps, vs)]⟩ (if is_match(𝑝𝑠, 𝑣𝑠))
(SCaseSuccess)

⟨case vs of ps when □→ 𝑒𝑏 ; cl2; . . . ; cl𝑛 end :: 𝐾, <’false’>⟩ −→ ⟨case □ of cl2; . . . ; cl𝑛 end :: 𝐾, vs⟩ (SCaseFalse)

⟨id(□, 𝑒1, 𝑒2, . . ., 𝑒𝑛) :: 𝐾,□⟩ −→ ⟨id(□, 𝑒2, . . ., 𝑒𝑛) :: 𝐾, 𝑒1⟩ (if id ≠ map) (SParams□)

⟨id(𝑣1, . . ., 𝑣𝑖−1,□, 𝑒𝑖+1, 𝑒𝑖+2, . . ., 𝑒𝑛) :: 𝐾, <𝑣𝑖>⟩ −→ ⟨id(𝑣1, . . ., 𝑣𝑖−1, 𝑣𝑖 ,□, 𝑒𝑖+2, . . ., 𝑒𝑛) :: 𝐾, 𝑒𝑖+1⟩ (SParams)

Figure 6: Frame stack semantics rules (group 2)

• The rest of the rules of Figure 6 extract the next redex from

the top frame of the stack, and put back the result value

(which is inside a singleton value sequence) into the frame.

We use the auxiliary function eval(id, 𝑣1, . . ., 𝑣𝑛) that constructs
a redex based on a frame identifier and a parameter list. We provide

an informal overview of its definition here, and for the precise

definition, we refer to the formalisation [32]. If

• id = app(𝑣) and 𝑣 = clos(𝑒𝑥𝑡, [𝑥1, . . ., 𝑥𝑛], 𝑒), then
eval(app(𝑣), 𝑣1, . . ., 𝑣𝑛) = 𝑒 [mk_closlist(ext), 𝑥1 ↦→ 𝑣1, . . ., 𝑥𝑛
↦→ 𝑣𝑛].

• id = app(𝑣) and 𝑣 is not a closure, or has an incorrect number

of formal parameters, the result is an exception.

• id = tuple, then eval(tuple, 𝑣1, . . ., 𝑣𝑛) = {𝑣1, . . ., 𝑣𝑛}.
• id = values, then eval(values, 𝑣1, . . ., 𝑣𝑛) = <𝑣1, . . ., 𝑣𝑛>.

• id = map and 𝑛 is an even number, then

eval(map, 𝑣1, . . ., 𝑣𝑛) = ∼{𝑣1 ⇒ 𝑣2, . . ., 𝑣𝑘−1 ⇒ 𝑣𝑘 }∼,

where the 𝑘 ≤ 𝑛 result values inside the map are obtained

by eliminating duplicate keys and their associated values.

• id = call(𝑎𝑚, 𝑎𝑓), then eval(call(𝑎𝑚, 𝑎𝑓), 𝑣1, . . ., 𝑣𝑛) simu-

lates the behaviour of the built-in functions of (Core) Erlang.

• id = primop(a), then eval(primop(a), 𝑣1, . . ., 𝑣𝑛) simulates the

behaviour of primitive operations of Core Erlang.

Thereafter, we highlight some rules from group 3 (Figure 7):

• PMap0, PFun, and PLetRec express single step reductions

that do not include the manipulation of the frame stack.

• PValue reduces a value to a singleton value sequence. In

most cases, this rule is used to evaluate atoms, integers, and

empty lists, since these values do not have a corresponding

expression, in contrast to tuples, maps, and non-empty lists.

• PParams□ handles the evaluation of empty parameter lists

(note that maps are handled separately with PMap0). This

is the other rule (besides SParams□) that expects □ in the

initial configuration as the redex.

IFL 2023, August 29–31, 2023, Braga, Portugal Bereczky, Horpácsi and Thompson

⟨𝐾,∼{}∼⟩ −→ ⟨𝐾, <∼{}∼>⟩ (PMap0)

⟨𝐾, fun(𝑥1, . . ., 𝑥𝑛) → 𝑒⟩ −→ ⟨𝐾, <clos(∅, [𝑥1, . . ., 𝑥𝑛], 𝑒)>⟩ (PFun)

⟨𝐾, letrec ext in 𝑒⟩ −→ ⟨𝐾, 𝑒 [mk_closlist(ext)]⟩ (PLetRec)

⟨𝐾, 𝑣⟩ −→ ⟨𝐾, <𝑣>⟩ (PValue)

⟨id(𝑣1, . . ., 𝑣𝑛,□) :: 𝐾,□⟩ −→ ⟨𝐾, eval(𝑖𝑑, 𝑣1, . . ., 𝑣𝑛)⟩ (if id ≠ map) (PParams□)

⟨id(𝑣1, . . ., 𝑣𝑛−1,□) :: 𝐾, <𝑣𝑛>⟩ −→ ⟨𝐾, eval(𝑖𝑑, 𝑣1, . . ., 𝑣𝑛)⟩ (PParams)

⟨[□|𝑣2] :: 𝐾, <𝑣1>⟩ −→ ⟨𝐾, <[𝑣1 |𝑣2]>⟩ (PCons)

⟨case vs of ps when □→ 𝑒𝑏 ; cl2; . . . ; cl𝑛 end :: 𝐾, <’true’>⟩ −→ ⟨𝐾, 𝑒𝑏⟩ (PCaseTrue)

⟨let <𝑥1, . . ., 𝑥𝑛> = □ in 𝑒2 :: 𝐾, <𝑣1, . . ., 𝑣𝑛>⟩ −→ ⟨𝐾, 𝑒2 [𝑥1 ↦→ 𝑣1, . . ., 𝑥𝑛 ↦→ 𝑣𝑛]⟩ (PLet)

⟨do □ 𝑒2 :: 𝐾, <𝑣1>⟩ −→ ⟨𝐾, 𝑒2⟩ (PSeq)

Figure 7: Frame stack semantics rules (group 3)

⟨case □ of ∅ end :: 𝐾, vs⟩ −→ ⟨𝐾, {error, if_clause, {}}𝑋 ⟩ (ExcCase)

⟨𝐾, try 𝑒1 of <𝑥1, . . ., 𝑥𝑛> → 𝑒2 catch <𝑥𝑘+1, . . ., 𝑥𝑘+𝑛> → 𝑒3⟩ −→ ⟨try □ of <𝑥1, . . ., 𝑥𝑛> → 𝑒2 catch <𝑥𝑘+1, . . ., 𝑥𝑘+𝑛> → 𝑒3 :: 𝐾, 𝑒1⟩
(STry)

⟨try □ of <𝑥1, . . ., 𝑥𝑛> → 𝑒2 catch <𝑥𝑘+1, . . ., 𝑥𝑘+𝑛> → 𝑒3 :: 𝐾, <𝑣1, . . ., 𝑣𝑛>⟩ −→ ⟨𝐾, 𝑒2 [𝑥1 ↦→ 𝑣1, . . ., 𝑥𝑛 ↦→ 𝑣𝑛]⟩ (PTry)

⟨try □ of <𝑥1, . . ., 𝑥𝑛> → 𝑒2 catch <𝑥𝑘+1, . . ., 𝑥𝑘+3> → 𝑒3 :: 𝐾, {𝑐, 𝑣𝑟 , 𝑣𝑑 }𝑋 ⟩ −→ ⟨𝐾, 𝑒3 [𝑥𝑘+1 ↦→ 𝑐, 𝑥𝑘+2 ↦→ 𝑣𝑟 , 𝑥𝑘+3 ↦→ 𝑣𝑑]⟩ (ExcTry)

⟨𝐹 :: 𝐾, {𝑐, 𝑣𝑟 , 𝑣𝑑 }𝑋 ⟩ −→ ⟨𝐾, {𝑐, 𝑣𝑟 , 𝑣𝑑 }𝑋 ⟩ (if F ≠ try □ of <𝑥1, . . ., 𝑥𝑛> → 𝑒2 catch <𝑥𝑘+1, . . ., 𝑥𝑘+𝑛> → 𝑒3) (ExcProp)

Figure 8: Frame stack semantics rules (group 4)

• PParams handles parameter lists. If all of the expressions

have been evaluated to values, then based on the frame iden-

tifier the next redex is constructed with eval(id, 𝑣1, . . ., 𝑣𝑛).
Note that if the frame identifier was map, then 𝑛 is required

to be an even number (i.e., there is an odd number of sub-

values in the top frame, and the last value is in the second

configuration cell).

• PCaseTrue is used when the guard expression of the clause

is evaluated to ’true’. The next redex is the body expression
of the same clause. Note that the bindings obtained from

the successful pattern matching are already substituted by

SCaseSuccess.

Finally, we explain the rules for exception creation, handling and

propagation (Figure 8):

• ExcCase is used when none of the clauses of a case expres-

sion matched, or all of the guards of the matching clauses

evaluated to ’false’. In these cases an exception is raised.

Note that this is not the only option to raise exceptions:

exceptions can be the result of computing eval(id, 𝑣1, . . ., 𝑣𝑛).
• STry extracts the first redex from a try expression for eval-

uation. (This rule could also belong to group 1.)

• PTry is usedwhen the first subexpression of a try expression
evaluated to a value sequence. In this case (if the number

of variables are correct) the execution continues with the

expression of the first clause substituted with the resulting

variable-value bindings.

• ExcTry is used when the first subexpression of a try expres-
sion evaluated to an exception. In this case, three variables

are bound to the parts of the exceptions in the expression

of the catch clause, and the evaluation continues with this

redex.

• ExcProp describes exception propagation. If the first frame

is not an exception handler, it is removed from the stack.

The evaluation relation. Now we can define the step-indexed,

reflexive, transitive closure of the reductions as usual (denoted with

⟨𝐾, 𝑟 ⟩ −→𝑛 ⟨𝐾 ′, 𝑟 ′⟩ when the number of reduction steps is relevant,

⟨𝐾, 𝑟 ⟩ −→∗ ⟨𝐾 ′, 𝑟 ′⟩ when it is not).

3.5 Examples
Next, we show two examples on using the frame stack semantics.

Simple example. The first example involves a simple expression

which demonstrates the use of the frame stack semantics’ novel

features:

try {1, call 'erlang ':'div'(1,0)} of
<X> -> X

catch <C, R, V> -> R

For readability, we denote call ’erlang’:’div’(1,0) with

div and the frame try □ of <X> → X catch <C, R, V> → R for

A Frame Stack Semantics for Sequential Core Erlang IFL 2023, August 29–31, 2023, Braga, Portugal

the try expression with 𝑓𝑡𝑟𝑦 . The first two reductions (with rules

of group 1) deconstruct the expression in the configuration into

frames. For tuple evaluation, parameter list frames are used. The

next reduction is done by SParams□ to extract the first expression

of the tuple, which is reduced to itself inside a singleton value

sequence in the next step (PValue), then the next parameter is

extracted (SParams).

⟨𝜀, try {1, div} of <X> → X catch <C, R, V> → R⟩ −→
⟨𝑓𝑡𝑟𝑦 :: 𝜀, {1, div}⟩ −→
⟨tuple(□, 1, div) :: 𝑓𝑡𝑟𝑦 :: 𝜀,□⟩ −→
⟨tuple(□, div) :: 𝑓𝑡𝑟𝑦 :: 𝜀, 1⟩ −→
⟨tuple(□, div) :: 𝑓𝑡𝑟𝑦 :: 𝜀, <1>⟩ −→
⟨tuple(1,□) :: 𝑓𝑡𝑟𝑦 :: 𝜀, div⟩

In the next steps, the evaluation of the BIF ’div’ is explained. In
the first steps, SCallMod and SCallFun are used to extract the

module and name expressions of the inter-module call, which are

reduced with PValue. Next, a parameter list frame is created for the

evaluation of the call’s parameter list (SCallParam), which is eval-

uated similarly to the previous evaluation of the tuple’s parameter

list.

⟨tuple(1,□) :: 𝑓𝑡𝑟𝑦 :: 𝜀, div⟩ −→
⟨call □:’div’(1, 0) :: tuple(1,□) :: 𝑓𝑡𝑟𝑦 :: 𝜀, ’erlang’⟩ −→
⟨call □:’div’(1, 0) :: tuple(1,□) :: 𝑓𝑡𝑟𝑦 :: 𝜀, <’erlang’>⟩ −→
⟨call ’erlang’:□(1, 0) :: tuple(1,□) :: 𝑓𝑡𝑟𝑦 :: 𝜀, ’div’⟩ −→
⟨call ’erlang’:□(1, 0) :: tuple(1,□) :: 𝑓𝑡𝑟𝑦 :: 𝜀, <’div’>⟩ −→
⟨call(’erlang’, ’div’) (□, 1, 0) :: tuple(1,□) :: 𝑓𝑡𝑟𝑦 :: 𝜀,□⟩ −→
⟨call(’erlang’, ’div’) (□, 0) :: tuple(1,□) :: 𝑓𝑡𝑟𝑦 :: 𝜀, 1⟩ −→
⟨call(’erlang’, ’div’) (□, 0) :: tuple(1,□) :: 𝑓𝑡𝑟𝑦 :: 𝜀, <1>⟩ −→
⟨call(’erlang’, ’div’) (1,□) :: tuple(1,□) :: 𝑓𝑡𝑟𝑦 :: 𝜀, 0⟩ −→
⟨call(’erlang’, ’div’) (1,□) :: tuple(1,□) :: 𝑓𝑡𝑟𝑦 :: 𝜀, <0>⟩

Next, the result of the BIF is simulated (PParams), which is an ex-

ception of the ’error’ class, ’badarith’ reason, some additional

details 𝑣 which are irrelevant to this example. Since the parame-

ter list frame is not an exception handler, it is removed from the

stack (ExcProp). Finally, the try frame (𝑓𝑡𝑟𝑦) handles the exception

(ExcTry) and the result is the reason of the exception.

⟨call(’erlang’, ’div’) (1,□) :: tuple(1,□) :: 𝑓𝑡𝑟𝑦 :: 𝜀, <0>⟩ −→

⟨tuple(1,□) :: 𝑓𝑡𝑟𝑦 :: 𝜀, {’error’, ’badarith’, 𝑣}𝑋 ⟩ −→

⟨𝑓𝑡𝑟𝑦 :: 𝜀, {’error’, ’badarith’, 𝑣}𝑋 ⟩ −→
⟨𝜀, ’badarith’⟩ −→
⟨𝜀, <’badarith’>⟩

Running example. The second example shows the evaluation of

our running example. We recall the expression from Figure 2 in

Figure 9, and replace the metavariables (𝑓 , 𝑥, 𝑒1, 𝑒2) with concrete

values (’f’, L, 1, 2, respectively).
We note that the semantics requires the catch clauses to bind

three variables (which was based on the language specification [9]),

while the compiler also works with only two, thus in the Coq

'f'/1 = fun (_0) ->
case _0 of

<L> when try let <_1> = call 'erlang ':'length '(L)

in call 'erlang ':'=='(_1, 0)

of <Try > -> Try

catch <T,R> -> 'false '

-> 1

<_3> when 'true' -> 2

<_2> when 'true' ->
primop 'match_fail '({'function_clause ',_2})

end

Figure 9: Running example from Figure 2 with substituted
metavariables

formalisation, we have introduced a third variable to the catch
clause above, which has never been used.

We denote the clauses of the case subexpression with cl1, cl2, cl3,
the try subexpression with try, and the let subexpression with let.
Suppose that we apply this function to a value 𝑣 . In the first three

steps the singleton value 𝑣 is evaluated from the head of the case
expression. This involves transforming 𝑣 into a singleton value

sequence in the second step. In the next steps, rules from group

1 are used to deconstruct the complex expression until the call
expression is reached.

⟨𝜀, case 𝑣 of cl1; cl2; cl3 end⟩ −→
⟨case □ of cl1; cl2; cl3 end :: 𝜀, 𝑣⟩ −→
⟨case □ of cl1; cl2; cl3 end :: 𝜀, <𝑣>⟩ −→
⟨case <𝑣> of <L> when □→ 1; cl2; cl3 end :: 𝜀, try⟩ −→
⟨try □ of <Try> → Try catch <T, R> → ’false’ ::

case <𝑣> of <L> when □→ 1; cl2; cl3 end :: 𝜀, let⟩ −→
⟨let <_1> = □ in call ’erlang’:’==’(_1, 0) ::

try □ of <Try> → Try catch <T, R> → ’false’ ::

case <𝑣> of <L> when □→ 1; cl2; cl3 end :: 𝜀,

call ’erlang’:’length’(𝑣)⟩
For readability, we show the evaluation of this call expression

separately, and denote the current stack with 𝐾 . Note that at this

point the variable L has already been replaced by 𝑣 . First, the module

and then the function expression is turned into a singleton value

sequence and put back into the frame stack (we merged these steps

below). Then, the parameters are evaluated using a parameter list

frame. In this case, there is one parameter, thus first SParams□ is

used, then 𝑣 is reduced to a singleton value sequence, and finally,

the use of PParams concludes these reduction steps.

⟨𝐾, call ’erlang’:’length’(𝑣)⟩ −→∗

⟨call □:’length’(𝑣) :: 𝐾, ’erlang’⟩ −→∗

⟨call ’erlang’:□(𝑣) :: 𝐾, ’length’⟩ −→∗

⟨call(’erlang’, ’length’) (□, 𝑣) :: 𝐾,□⟩ −→
⟨call(’erlang’, ’length’) (□) :: 𝐾, 𝑣⟩ −→
⟨call(’erlang’, ’length’) (□) :: 𝐾, <𝑣>⟩ −→
⟨𝐾, eval(call(’erlang’, ’length’), 𝑣)⟩ (Result)

At this point, the result depends on the value 𝑣 . First, let us suppose

that 𝑣 = [], and proceed with the evaluation. In this case, the

IFL 2023, August 29–31, 2023, Braga, Portugal Bereczky, Horpácsi and Thompson

result of calling ’length’ is 0. Let us denote the current frame

stack without the first let frame with 𝐾1, and the stack we get

by removing the try frame from 𝐾1 with 𝐾2. The next step is to

evaluate the equality check (’==’) expression inside let, which is

done analogously to calling length above. The result is ’true’,
which is not an exception, thus it is propagated through the try
expression. This means that the guard is true of the case expression,
thus PCaseTrue is used followed by reducing 1 into a singleton

value sequence.

⟨let <_1> = □ in call ’erlang’:’==’(_1, 0) :: 𝐾1, <0>⟩ −→
⟨𝐾1, call ’erlang’:’==’(0, 0)⟩ −→∗

⟨try □ of <Try> → Try

catch <T, R> → ’false’ :: 𝐾2, <’true’>⟩ −→∗

⟨case <[]> of <L> when □→ 1; cl2; cl3 end :: 𝜀, <’true’>⟩ −→∗

⟨𝜀, <1>⟩
Next, we discuss the evaluation for another value. Suppose that

𝑣 = 0 when the evaluation reached the point in equation Result. In

this case, the result of calling ’length’ is a bad argument exception

(we denote it with badarg). In this case, the next reduction with

ExcProp removes the frame for let, then the exception is handled

by the frame for try with ExcTry. The expression in the catch
clause is ’false’, thus the next clause of the case expression is

checked (SCaseFalse). In this clause both the pattern matching

succeeds, and the guard evaluates to ’true’, thus the final result
is <2> in this case.

⟨let <_1> = □ in call ’erlang’:’==’(_1, 0) :: 𝐾1, badarg⟩ −→
⟨try □ of <Try> → Try

catch <T, R> → ’false’ :: 𝐾2, badarg⟩ −→
⟨case <0> of <L> when □→ 1; cl2; cl3 end :: 𝜀, ’false’⟩ −→
⟨case <0> of <L> when □→ 1; cl2; cl3 end :: 𝜀, <’false’>⟩ −→
⟨case □ of <_3> when ’true’ → 2; cl3 end :: 𝜀, 0⟩ −→∗

⟨case <0> of <_3> when □→ 2; cl3 end :: 𝜀, ’true’⟩ −→∗

⟨𝜀, <2>⟩
For more details and examples, we refer to the formalisation [32].

3.6 Semantic Properties
According to [18, 28] (and Theorem 4.13) it is sufficient to reason

about termination for programs to be equivalent, thus next we

define termination. A redex terminates in frame stack 𝐾 if it can be

evaluated either to a value sequence or exception.

Definition 3.1 (Termination).

⟨𝐾, 𝑟 ⟩ ⇓𝑛 := ∃res : ⟨𝐾, 𝑟 ⟩ −→𝑛 ⟨𝜀, res⟩
⟨𝐾, 𝑟 ⟩ ⇓ := ∃𝑛 : ⟨𝐾, 𝑟 ⟩ ⇓𝑛

We note that in the Coq implementation termination is expressed

as an inductive definition which is equivalent to the previous defi-

nition, because the inductive definition is simpler to use.

Finally, we highlight some properties of the semantics which

were heavily used in the proofs on program equivalence. The first

property expresses that adding frames to the bottom of the stack

(denoted with ++) does not affect the behaviour.

Theorem 3.2 (Extend frame stack). For all frame stacks 𝐾1,
𝐾2, 𝐾 ′, redexes 𝑟1, 𝑟2, and step counters 𝑛, if ⟨𝐾1, 𝑟1⟩ −→𝑛 ⟨𝐾2, 𝑟2⟩,
then ⟨𝐾1 ++ 𝐾 ′, 𝑟1⟩ −→𝑛 ⟨𝐾2 ++ 𝐾 ′, 𝑟2⟩.

The next property expresses that whenever a redex terminates

in a frame stack, the redex can be evaluated to a value sequence or

exception in the empty frame stack.

Theorem 3.3 (Termination and reductions). For all frame
stacks 𝐾 , redexes 𝑟 , and step counters 𝑛, if ⟨𝐾, 𝑟 ⟩ ⇓𝑛 then ∃res, 𝑘 ≤
𝑛 : ⟨𝜀, 𝑟 ⟩ −→𝑘 ⟨𝜀, res⟩.

The next two properties show that the frame stack can be merged

into the evaluable expression. We use 𝐹 [𝑒] to substitute an expres-

sion 𝑒 into the □ of frame 𝐹 . While this operation is a syntactical

replacement for most frames, there is one exception:

case vs of ps when □→ 𝑒𝑏 ; cl2; . . . ; cl𝑛 end

If this frame is on the top of the stack, the semantics has already

substituted the pattern variables of ps, thus these variables should
not be substituted again in the expression that replaces □ (neither

in 𝑒𝑏). Thus for this case we define the substitution in the following

way:

(case vs of ps when □→ 𝑒𝑏 ; cl2; . . . ; cl𝑛 end) [𝑒𝑔] :=
case <> of

<> when 𝑒𝑔 → 𝑒𝑏 ;

<> when ’true’ → case vs of cl2; . . . ; cl𝑛 end

end

With this definition, we highlight the following two properties of

the frame stack.

Theorem 3.4 (Remove frame). For all closed frames 𝐹 , closed
expressions 𝑒 , and all frame stacks 𝐾 , if ⟨𝐹 :: 𝐾, 𝑒⟩ ⇓ then ⟨𝐾, 𝐹 [𝑒]⟩ ⇓.

The next theorem is the converse of the previous one, allowing

a context frame to be pushed to the stack.

Theorem 3.5 (Add frame). For all closed frames 𝐹 , closed expres-
sions 𝑒 , and all frame stacks 𝐾 , if ⟨𝐾, 𝐹 [𝑒]⟩ ⇓ then ⟨𝐹 :: 𝐾, 𝑒⟩ ⇓.

4 PROGRAM EQUIVALENCE
In this section, we show three concepts of program equivalence

we investigated and formalised based on our previous [18] and

related [36] work; program equivalence based on logical relations,

CIU equivalence, and contextual equivalence, and show that these

definitions coincide.

We express the correctness property of refactorings with con-

textual equivalence, but proving it for concrete expression pairs

is a challenge (induction on the syntactical contexts is required in

most cases). To prove equivalence of expressions, CIU equivalence

is the most suitable, while for proving general properties of the

equivalence relations, the logical relation-based approach is the

most flexible.

4.1 Program Equivalence Based on Logical
Relations

First, we define program equivalence with logical relations based on

the techniques of Pitts [27, 28]. Since Core Erlang is a dynamically

A Frame Stack Semantics for Sequential Core Erlang IFL 2023, August 29–31, 2023, Braga, Portugal

typed language, we cannot rely on types (a typing judgement) to

express the mutual definitions, so we formalise the relations using

step-indexing [3] (following the approach of Wand et al. [36]). We

start by defining the relations for closed expressions, values, frame

stacks, and exceptions.

Definition 4.1 (Logical relations for closed expressions, values, ex-
ceptions and frame stacks). The following definitions are given

simultaneously. First, we define the logical relation for expressions.

We denote the set of related expressions with E𝑛 , where 𝑛 is a step

counter. Two expressions are related, when the first one terminates

in at most 𝑛 steps in a frame stack, the second also terminates (in

any number of steps) in all frame stacks that are related to the stack

in the first termination.

Note that this first definition is not (yet) about redexes, only

about expressions. This decision is motivated by the definition of

(syntactical) contextual equivalence (Definition 4.15) which coin-

cides with the following definition.

(𝑒1, 𝑒2) ∈ E𝑛
def

= (∀𝑚 ≤ 𝑛, 𝐾1, 𝐾2 : (𝐾1, 𝐾2) ∈ K𝑚 =⇒
⟨𝐾1, 𝑒1⟩ ⇓𝑚 =⇒ ⟨𝐾2, 𝑒2⟩ ⇓)

We denote the set of related frame stacks with K𝑛 , where 𝑛 is a step

counter. Two stacks are related whenever the first one terminates in

at most 𝑛 steps in a configuration with a value sequence, exception,

or □, then the second stack also terminates (in any number of steps)

in all configurations which contain value sequence, exception, or □
that are related to the value sequence, exception, or □ in the other

configuration.

(𝐾1, 𝐾2) ∈ K𝑛
def

=

(∀𝑚 ≤ 𝑛, 𝑣1, 𝑣 ′1, . . . , 𝑣𝑙 , 𝑣
′
𝑙
: (𝑣1, 𝑣 ′1), . . . , (𝑣𝑙 , 𝑣

′
𝑙
) ∈ V𝑚 =⇒

⟨𝐾1, <𝑣1, . . . , 𝑣𝑙>⟩ ⇓𝑚 =⇒ ⟨𝐾2, <𝑣 ′1, . . . , 𝑣
′
𝑙
>⟩ ⇓)∧

(∀𝑚 ≤ 𝑛, exc1, exc2 : (exc1, exc2) ∈ X𝑚 =⇒
⟨𝐾1, exc1⟩ ⇓𝑚 =⇒ ⟨𝐾2, exc2⟩ ⇓)∧

(∀𝑚 ≤ 𝑛 : ⟨𝐾1,□⟩ ⇓𝑚 =⇒ ⟨𝐾2,□⟩ ⇓)

Next, we define the concept of related values (their set is denoted

with V𝑛 , where 𝑛 is a step counter). This relation defines the base

cases of the mutual definitions. Two atoms, integers are related

when they are equal. Two empty lists are always related, while

non-empty value lists are related when their subvalues are related.

Similarly, tuples andmaps are relatedwhen they are related element-

wise. Two closures are related, if their bodies—substituted with their

recursive function definitions (ext, ext’) and pairwise-related actual

parameters—are related expressions. In this case, we do not require

the recursive definitions to be related, only the termination of the

body expression matters. We also highlight the < relation on the

step counters in this relation to ensure well-founded recursion.

(𝑖1, 𝑖2) ∈ V𝑛
def

= 𝑖1 = 𝑖2 (𝑎1, 𝑎2) ∈ V𝑛
def

= 𝑎1 = 𝑎2

([], []) ∈ V𝑛
def

= true

([𝑣1 |𝑣2], [𝑣 ′1 |𝑣
′
2
]) ∈ V𝑛

def

= (𝑣1, 𝑣 ′1), (𝑣2, 𝑣
′
2
) ∈ V𝑛

({𝑣1, . . . , 𝑣𝑙 }, {𝑣 ′1, . . . , 𝑣
′
𝑙
}) ∈ V𝑛

def

= (𝑣1, 𝑣 ′1), . . . , (𝑣𝑙 , 𝑣
′
𝑙
) ∈ V𝑛

(∼{𝑣𝑘
1
⇒ 𝑣𝑣

1
, . . . , 𝑣𝑘

𝑙
⇒ 𝑣𝑣

𝑙
}∼,∼{𝑣𝑘

′
1

⇒ 𝑣𝑣
′

1
, . . . , 𝑣𝑘

′

𝑙
⇒ 𝑣𝑣

′

𝑙
}∼) ∈ V𝑛

def

= (𝑣𝑘
1
, 𝑣𝑘

′
1
), (𝑣𝑣

1
, 𝑣𝑣

′
1
), . . . , (𝑣𝑘

𝑙
, 𝑣𝑘

′

𝑙
), (𝑣𝑣

𝑙
, 𝑣𝑣

′

𝑙
) ∈ V𝑛

(clos(𝑒𝑥𝑡, [𝑥1, . . . , 𝑥𝑙], 𝑒), clos(𝑒𝑥𝑡 ′, [𝑥1, . . . , 𝑥𝑙], 𝑒′)) ∈ V𝑛
def

=

(∀𝑚 < 𝑛 : ∀𝑣1, 𝑣 ′1, . . . , 𝑣𝑙 , 𝑣
′
𝑙
: (𝑣1, 𝑣 ′1), . . . , (𝑣𝑙 , 𝑣

′
𝑙
) ∈ V𝑚 =⇒

(𝑒 [mk_closlist(ext), 𝑥1 ↦→ 𝑣1, . . . , 𝑥𝑙 ↦→ 𝑣𝑙],
𝑒′ [mk_closlist(ext′), 𝑥1 ↦→ 𝑣 ′

1
, . . . , 𝑥𝑙 ↦→ 𝑣 ′

𝑙
]) ∈ E𝑚)

Finally, we define the logical relation for exceptions (denoted with

X𝑛 , where 𝑛 is a step counter). Two exceptions are related, when

their three subvalues are pairwise related (note that the exception

classes are always atoms, thus they are related if they are equal).

({𝑐, 𝑣𝑟 , 𝑣𝑑 }𝑋 , {𝑐′, 𝑣𝑟
′
, 𝑣𝑑

′
}𝑋) ∈ X𝑛

def

=

𝑐 = 𝑐′ ∧ (𝑣𝑟 , 𝑣𝑟
′
) ∈ V𝑛 ∧ (𝑣𝑑 , 𝑣𝑑

′
) ∈ V𝑛

Next, we also define logical relations for redexes (i.e., not only

for expressions but also for values, exceptions and holes). This con-

cept (generalised to open redexes) coincides with CIU equivalence

(Theorem 4.11).

Definition 4.2 (Logical relation for redexes).

(𝑟1, 𝑟2) ∈ R𝑛
def

= (∀𝑚 ≤ 𝑛, 𝐾1, 𝐾2 : (𝐾1, 𝐾2) ∈ K𝑚 =⇒
⟨𝐾1, 𝑟1⟩ ⇓𝑚 =⇒ ⟨𝐾2, 𝑟2⟩ ⇓)

Similarly to the related work, relations with higher indices can

distinguish more expressions, frame stacks, values, exceptions, and

redexes.

Theorem 4.3 (Monotonicity of the logical relations). For
all step counters 𝑛,𝑚, if𝑚 ≤ 𝑛, then 𝑅𝑛 ⊆ 𝑅𝑚 for 𝑅 ∈ {E,K,V,X,R}.

Next, we generalise the relations for closed elements of the syn-

tax to open elements too. For this, first we define related substitu-

tions.

Definition 4.4 (Logical relations with closing substitutions). We

denote the set of related substitutions with GΓ𝑛 , where 𝑛 is the usual

step counter, and Γ is the set of free variables that are substituted

with closed values by the substitutions.

(𝜎1, 𝜎2) ∈ GΓ𝑛
def

= Γ ⊢ 𝜎1 ⊸ ∅ ∧ Γ ⊢ 𝜎2 ⊸ ∅ ∧
(∀𝑥 ∈ Γ : (𝜎1 (𝑥), 𝜎2 (𝑥)) ∈ V𝑛)

With the concept of related closing substitutions, we can define the

logical relations for open expressions, values, exceptions, redexes.

(𝑣1, 𝑣2) ∈ VΓ
def

=

(∀𝑛, 𝜎1, 𝜎2 : (𝜎1, 𝜎2) ∈ GΓ𝑛 ⇒ (𝑣1 [𝜎1], 𝑣2 [𝜎2]) ∈ V𝑛)

(𝑒1, 𝑒2) ∈ EΓ
def

=

(∀𝑛, 𝜎1, 𝜎2 : (𝜎1, 𝜎2) ∈ GΓ𝑛 =⇒ (𝑒1 [𝜎1], 𝑒2 [𝜎2]) ∈ E𝑛)

(exc1, exc2) ∈ XΓ
def

=

(∀𝑛, 𝜎1, 𝜎2 : (𝜎1, 𝜎2) ∈ GΓ𝑛 =⇒ (exc1 [𝜎1], exc2 [𝜎2]) ∈ X𝑛)

(𝑟1, 𝑟2) ∈ RΓ
def

=

(∀𝑛, 𝜎1, 𝜎2 : (𝜎1, 𝜎2) ∈ GΓ𝑛 =⇒ (𝑟1 [𝜎1], 𝑟2 [𝜎2]) ∈ R𝑛)

IFL 2023, August 29–31, 2023, Braga, Portugal Bereczky, Horpácsi and Thompson

𝑥 ∈ Γ

(𝑥, 𝑥) ∈ VΓ
𝑓 /𝑘 ∈ Γ

(𝑓 /𝑘, 𝑓 /𝑘) ∈ VΓ (𝑎, 𝑎) ∈ VΓ (𝑖, 𝑖) ∈ VΓ ([], []) ∈ VΓ
(𝑣1, 𝑣 ′

1
), . . ., (𝑣𝑛, 𝑣 ′𝑛) ∈ VΓ

(<𝑣1, . . ., 𝑣𝑛>, <𝑣 ′
1
, . . ., 𝑣 ′𝑛>) ∈ RΓ

(𝑒1, 𝑒2) ∈ EΓ∪{𝑥1, . . . ,𝑥𝑛 }

(fun(𝑥1, . . ., 𝑥𝑛) → 𝑒, fun(𝑥1, . . ., 𝑥𝑛) → 𝑒2) ∈ EΓ
(𝑒1, 𝑒′

1
) ∈ 𝑋 Γ (𝑒2, 𝑒′

2
) ∈ 𝑋 Γ 𝑋 ∈ {E,V}

([𝑒1 |𝑒2], [𝑒′
1
|𝑒′
2
]) ∈ EΓ

(𝑒, 𝑒′), (𝑒1, 𝑒′
1
), . . ., (𝑒𝑛, 𝑒′𝑛) ∈ EΓ

(apply 𝑒 (𝑒1, . . ., 𝑒𝑛), apply 𝑒′ (𝑒′
1
, . . ., 𝑒′𝑛)) ∈ EΓ

(𝑒𝑚, 𝑒𝑚′), (𝑒 𝑓 , 𝑒 𝑓 ′), (𝑒1, 𝑒′
1
), . . ., (𝑒𝑛, 𝑒′𝑛) ∈ EΓ

(call 𝑒𝑚 :𝑒 𝑓 (𝑒1, . . ., 𝑒𝑛), call 𝑒𝑚
′
:𝑒 𝑓

′ (𝑒′
1
, . . ., 𝑒′𝑛)) ∈ EΓ

(𝑒𝑘
1
, 𝑒𝑘

′
1
), (𝑒𝑣

1
, 𝑒𝑣

′
1
), . . ., (𝑒𝑘𝑛 , 𝑒𝑘

′
𝑛), (𝑒𝑣𝑛, 𝑒𝑣

′
𝑛) ∈ 𝑋 Γ 𝑋 ∈ {E,V}

(∼{𝑒𝑘
1
⇒ 𝑒𝑣

1
, . . ., 𝑒𝑘𝑛 ⇒ 𝑒𝑣𝑛}∼,∼{𝑒𝑘

′
1

⇒ 𝑒𝑣
′

1
, . . ., 𝑒𝑘

′
𝑛 ⇒ 𝑒𝑣

′
𝑛 }∼) ∈ 𝑋 Γ

(𝑒1, 𝑒′
1
), . . ., (𝑒𝑛, 𝑒′𝑛) ∈ 𝑋 Γ 𝑋 ∈ {E,V}

({𝑒1, . . ., 𝑒𝑛}, {𝑒′
1
, . . ., 𝑒′𝑛}) ∈ 𝑋 Γ

(𝑒1, 𝑒′
1
), . . ., (𝑒𝑛, 𝑒′𝑛) ∈ EΓ 𝑎 = 𝑎′

(primop 𝑎(𝑒1, . . ., 𝑒𝑛), primop 𝑎′ (𝑒′
1
, . . ., 𝑒′𝑛)) ∈ EΓ

(𝑒, 𝑒′) ∈ EΓ∪names_of(𝑒𝑥𝑡) equiv_ext(Γ, ext, ext′)

(letrec ext in 𝑒, letrec ext′ in 𝑒′) ∈ EΓ

(𝑒1, 𝑒′
1
), . . ., (𝑒𝑛, 𝑒′𝑛) ∈ EΓ

(<𝑒1, . . ., 𝑒𝑛>, <𝑒′
1
, . . ., 𝑒′𝑛>) ∈ EΓ

(𝑒1, 𝑒′
1
) ∈ EΓ (𝑒2, 𝑒′

2
) ∈ EΓ∪{𝑥1, . . . ,𝑥𝑛 }

(let <𝑥1, . . ., 𝑥𝑛> = 𝑒1 in 𝑒2, let <𝑥1, . . ., 𝑥𝑛> = 𝑒′
1
in 𝑒′

2
) ∈ EΓ

(𝑒1, 𝑒′
1
) ∈ EΓ (𝑒2, 𝑒′

2
) ∈ EΓ

(do 𝑒1 𝑒2, do 𝑒′
1
𝑒′
2
) ∈ EΓ

(𝑒, 𝑒′) ∈ EΓ ∀𝑖 ≤ 𝑛 : (𝑒𝑔
𝑖
, 𝑒
𝑔′

𝑖
), (𝑒𝑏

𝑖
, 𝑒𝑏

′
𝑖
) ∈ EΓ∪vars(ps𝑖)

(case 𝑒 of ps
1
when 𝑒

𝑔

1
→ 𝑒𝑏

1
; . . . ; ps𝑛 when 𝑒

𝑔
𝑛 → 𝑒𝑏𝑛 end, case 𝑒′ of ps

1
when 𝑒

𝑔′

1
→ 𝑒𝑏

′
1
; . . . ; ps𝑛 when 𝑒

𝑔′
𝑛 → 𝑒𝑏

′
𝑛 end) ∈ EΓ

(𝑒1, 𝑒′
1
) ∈ EΓ (𝑒2, 𝑒′

2
) ∈ EΓ∪{𝑥1, . . . ,𝑥𝑘 } (𝑒3, 𝑒′

3
) ∈ EΓ∪{𝑥𝑘+1, . . . ,𝑥𝑘+𝑛 }

(try 𝑒1 of <𝑥1, . . ., 𝑥𝑘> → 𝑒2 catch <𝑥𝑘+1, . . ., 𝑥𝑘+𝑛> → 𝑒3, try 𝑒
′
1
of <𝑥1, . . ., 𝑥𝑘> → 𝑒′

2
catch <𝑥𝑘+1, . . ., 𝑥𝑘+𝑛> → 𝑒′

3
) ∈ EΓ

(𝑒, 𝑒′) ∈ EΓ∪names_of(𝑒𝑥𝑡)∪{𝑥1, . . . ,𝑥𝑛 } equiv_ext(Γ, ext, ext′)

(clos(ext, [𝑥1, . . ., 𝑥𝑛], 𝑒), clos(ext′, [𝑥1, . . ., 𝑥𝑛], 𝑒′)) ∈ VΓ
(𝑣, 𝑣 ′) ∈ VΓ

(𝑣, 𝑣 ′) ∈ EΓ
(𝑣𝑟 , 𝑣𝑟 ′) ∈ VΓ (𝑣𝑑 , 𝑣𝑑 ′) ∈ VΓ

({𝑐, 𝑣𝑟 , 𝑣𝑑 }𝑋 , {𝑐, 𝑣𝑟 ′ , 𝑣𝑑 ′ }𝑋) ∈ RΓ
(𝑒, 𝑒′) ∈ RΓ

(𝑒, 𝑒′) ∈ EΓ
(𝑒, 𝑒′) ∈ EΓ

(𝑒, 𝑒′) ∈ RΓ

Figure 10: Compatibility properties

Next, we show the most important properties of the logical

relations [11, 29, 36]. The first one is the compatibility property,

which is a form of congruence. For readability, we introduce the

following definition.

Definition 4.5 (Equivalence of function collections). Two function

collections (ext and ext′) are related, if they bind the same names,

and they are related element-wise. Function definitions (denoted

with 𝑓 /𝑘 = fun(𝑥1, . . . , 𝑥𝑛) → 𝑒 and 𝑓 /𝑘 = fun(𝑥1, . . . , 𝑥𝑛) →
𝑒′) of the collections ext and ext′ are related, if their bodies are

related expressions, i.e. (𝑒, 𝑒′) ∈ EΓ∪names_of(ext)∪{𝑥1,...,𝑥𝑛 }
. We use

equiv_ext(Γ, ext, ext′) to denote this property.

Theorem 4.6 (Expression Compatibility). The logical relations
satisfy the syntactical compatibility properties listed in Figure 10.

The compatibility theorem basically defines a way to construct

complex equivalent expressions by combining smaller equivalent

expressions. Based on the previous theorem, we can prove that the

logical relation for redexes and expressions coincide for related

expressions.

Corollary 4.7 (Eqivalence of logical relations). For all
expressions 𝑒1, 𝑒2 and scopes Γ, (𝑒1, 𝑒2) ∈ EΓ ⇐⇒ (𝑒1, 𝑒2) ∈ RΓ .

Another consequence of the compatibility theorem is the funda-

mental property of the relations, a form of reflexivity expressing

that any expression (and similarly, any value, exception, redex or

closing substitution) is indistinguishable from itself.

Theorem 4.8 (Fundamental property). For all scopes Γ the
following properties hold:

• For all expressions 𝑒 , if Γ ⊢ 𝑒 then (𝑒, 𝑒) ∈ EΓ ;
• For all values 𝑣 , if Γ ⊢ 𝑣 then (𝑣, 𝑣) ∈ VΓ ;
• For all exceptions exc, if Γ ⊢ exc then (exc, exc) ∈ XΓ ;
• For all redexes 𝑟 , if Γ ⊢ 𝑟 then (𝑟, 𝑟) ∈ RΓ ;
• For all closing substitutions 𝜎 , if Γ ⊢ 𝜎 ⊸ ∅ then for all step
counters 𝑛, (𝜎, 𝜎) ∈ GΓ𝑛 holds.

Last but not least, another important property of the logical

relations for values is that all related values should be equal by

the built-in equality of (Core) Erlang (simulated by the auxiliary

function eval(call(’erlang’, ’==’), 𝑣1, 𝑣2)) with the limitation that

two closures are always considered as equal values
2
. If this con-

sideration is not made, and only syntactically equal functions are

considered as equal (although, this still does not reflect the be-

haviour of the compiler), the converse of the following theorem

would be true.

Theorem 4.9 (Eqivalent values are eqal). For all values
𝑣1, 𝑣2, step counters𝑚,

(𝑣1, 𝑣2) ∈ V𝑚 =⇒ eval(call(’erlang’, ’==’), 𝑣1, 𝑣2) = ’true’.

2
Closure comparison is undocumented in the reference manual [1].

A Frame Stack Semantics for Sequential Core Erlang IFL 2023, August 29–31, 2023, Braga, Portugal

4.2 CIU Equivalence
Next, we introduce CIU (“closed instances of use”) preorder and

equivalence.

Definition 4.10 (CIU preorder). Two redexes are CIU equivalent

if they both terminate or diverge when placed in arbitrary frame

stacks.

𝑟1 ≤ciu 𝑟2
def

= ∅ ⊢ 𝑟1 ∧ ∅ ⊢ 𝑟2 ∧
(∀𝐾 : ∅ ⊢ 𝐾 ∧ ⟨𝐾, 𝑟1⟩ ⇓ =⇒ ⟨𝐾, 𝑟2⟩ ⇓)

𝑟1 ≡ciu 𝑟2
def

= 𝑟1 ≤ciu 𝑟2 ∧ 𝑟2 ≤ciu 𝑟1

We extend these concepts to open redexes with closing substitu-

tions.

𝑟1 ≤Γ
ciu 𝑟2

def

= ∀𝜎 : Γ ⊢ 𝜎 ⊸ ∅ =⇒ 𝑟1 [𝜎] ≤ciu 𝑟2 [𝜎]

𝑟1 ≡Γ
ciu 𝑟2

def

= 𝑟1 ≤Γ
ciu 𝑟2 ∧ 𝑟2 ≤Γ

ciu 𝑟1

In most cases, it is simpler to prove redexes CIU equivalent,

than using logical relations or contextual equivalence, because CIU

equivalence involves reasoning with respect to a single frame stack

instead of two related ones, or one syntactical context. One of the

most important properties of CIU equivalence is that it coincides

with logical relations on redexes.

Theorem 4.11 (CIU coincides with the logical relations).

For all redexes 𝑟1, 𝑟2, and scopes Γ, 𝑟1 ≤Γ
ciu 𝑟2 if and only if (𝑟1, 𝑟2) ∈

RΓ .

Another major property of CIU equivalence is that evaluating a

redex results in an equivalent value sequence or exception.

Theorem 4.12 (Redexes are eqivalent to their results).

For all closed redexes 𝑟 , and results res, if ⟨𝜀, 𝑟 ⟩ −→∗ ⟨𝜀, res⟩, then
𝑟 ≡ciu res.

Finally, we highlight one last property which expresses the fact

that reasoning about termination of programs is sufficient for the

final results to be equivalent.

Theorem 4.13 (Termination is sufficient). For all closed values
𝑣1, 𝑣2, if 𝑣1 ≤ciu 𝑣2 then for all step indices 𝑛, (𝑣1, 𝑣2) ∈ V𝑛 .

The idea to prove this theorem is (also described in [18, 27]) that

whenever two values are not related by V, then it is possible to con-

struct an evaluation context in which one of the values terminates

while the other one diverges.

This theorem together with Theorem 4.12 and the transitivity of

the equivalence relations (Section 4.3) means that whenever two

expressions are CIU equivalent, their values will be related by the

logical relation for values, which expresses exactly what we expect

from the behaviour of equivalent values.

4.3 Contextual Equivalence
Finally, we define contextual preorder and equivalence following

the techniques of Wand et al. [36].

Definition 4.14 (Contextual preorder). We define the contextual

preorder to be the largest family of relations 𝑅Γ that satisfy the

following properties:

• Adequacy: (𝑒1, 𝑒2) ∈ 𝑅∅ =⇒ ⟨𝜀, 𝑒1⟩ ⇓ =⇒ ⟨𝜀, 𝑒2⟩ ⇓.

• Reflexivity: (𝑒, 𝑒) ∈ 𝑅Γ .
• Transitivity: (𝑒1, 𝑒2) ∈ 𝑅Γ ∧ (𝑒2, 𝑒3) ∈ 𝑅Γ =⇒ (𝑒1, 𝑒3) ∈ 𝑅Γ .
• Compatibility: 𝑅Γ satisfies the compatibility rules for every

expression from Figure 10 (these are the rules that involve E
both in the premises and conclusion).

This definition is equivalent to the usual, syntax-based defini-

tion of contextual equivalence. We denote syntactical expression

contexts with 𝐶 (where one of the subexpressions is replaced by

a unique variable □), and use 𝐶 [𝑒] to denote the substitution of □
with expression 𝑒 in context 𝐶 .

Definition 4.15 (Syntax-based contextual preorder and equivalence).

𝑒1 ≤Γ
ctx 𝑒2

def

= Γ ⊢ 𝑒1 ∧ Γ ⊢ 𝑒2 ∧ (∀(𝐶 : Context) :
∅ ⊢ 𝐶 [𝑒1] ∧ ∅ ⊢ 𝐶 [𝑒2] =⇒ ⟨𝜀,𝐶 [𝑒1]⟩ ⇓ =⇒ ⟨𝜀,𝐶 [𝑒2]⟩ ⇓)

𝑒1 ≡Γ
ctx 𝑒2

def

= 𝑒1 ≤Γ
ctx 𝑒2 ∧ 𝑒2 ≤Γ

ctx 𝑒1

The concepts above are all defined only for expressions, and not

redexes. The reason for this is only expressions are syntactically

valid Core Erlang expressions. There is no way to include an ex-

ception as a syntactical subexpression, because it is a semantical

concept.

On the one hand, the previous definition of contextual equiv-

alence expresses the correctness property of refactorings, that is

replacing two equivalent expressions in any syntactical context pre-

serves the behaviour, On the other hand, reasoning about contextual

equivalence naively would require induction on the structure of the

context. To tackle this issue, we proved that contextual equivalence

coincides with CIU equivalence for expressions.

Theorem 4.16 (CIU theorem). For all expressions 𝑒1, 𝑒2, and
scopes Γ, 𝑒1 ≤Γ

ctx 𝑒2 if and only if 𝑒1 ≤Γ
ciu 𝑒2.

As a consequence, we can state the following corollary on the

connections between the equivalence concepts.

Corollary 4.17 (Coincidence of eqivalences). For all ex-
pressions 𝑒1, 𝑒2, and scopes Γ, the following equivalences hold:

(𝑒1, 𝑒2) ∈ EΓ ⇐⇒ (𝑒1, 𝑒2) ∈ RΓ ⇐⇒ 𝑒1 ≤Γ
ciu 𝑒2 ⇐⇒ 𝑒1 ≤Γ

ctx 𝑒2

4.4 Refactoring Correctness
With contextual equivalence, we can express the correctness prop-

erty of refactorings. A local refactoring which replaces a subexpres-

sion 𝑒 with 𝑒′ is correct, if 𝑒 ≡Γ
ctx 𝑒

′
(supposing that 𝑒 and 𝑒′ contain

the free variables in Γ). Proving the contextual equivalence implies

that the behaviour of the entire context (i.e., a whole program) does

not change when the two equivalent expressions are replaced.

As mentioned previously, reasoning about contextual equiva-

lence is not simple in most cases, thus we prove CIU equivalence

of expressions instead, and use Theorem 4.16 to establish the con-

textual equivalence. We proved the correctness of simple Erlang

refactorings (two examples are Figure 1 and 11). We note that these

two refactorings were motivated by the work of Poór et al. [31].

Moreover, a version of the example presented in Figure 1 is actually

implemented in a refactoring tool [31].

To argue about these transformations, first we translated these

programs to Core Erlang with the standard Erlang/OTP compiler

IFL 2023, August 29–31, 2023, Braga, Portugal Bereczky, Horpácsi and Thompson

case 𝑒1 of true -> 𝑒2;

_ -> 𝑒3
end →

if 𝑒1 -> 𝑒2;

true -> 𝑒3
end

Figure 11: Expression refactoring example

(which we handled as trusted component for the proving process).

Next, we encoded the Core Erlang programs in the Coq formal-

isation and proved their equivalence. We based the equivalence

proofs on the termination of the expressions, that is we inspected

all possible termination paths for one and proved the termination

of the other expression, based on the properties we obtained from

the first evaluation. For this step, the inductive definition of the

frame stack termination (remark after Definition 3.1) proved to be

extremely useful as its rules are (mostly) syntax-driven and most

of them are free of side conditions.

5 DISCUSSION
All results presented here are formalised in the Coq proof man-

agement system [32]. In this section, we highlight a number of

challenges we faced during the implementation.

Syntax. Initially, we considered two other approaches to for-

malise the syntax: (1) values are completely separated from expres-

sions and (2) there are only expressions and a judgement which

determines whether an expression is a value (i.e., is in normal form).

The issue with (1) is applying substitutions requiring the substi-

tuted values to be transformed to expressions, leading to loss of

information in case of closures (the list of recursive definitions

would simply be lost). The disadvantage of (2) is that the value

judgement relation needs to be used in most of the rules of the

semantics to ensure determinism, which on the other hand leads

to more proof steps about the evaluation. However, the approach

presented in Section 3.1 does not come without drawbacks either:

using mutually inductive types in Coq leads to more complicated in-

duction principles (which had to be defined manually) and theorem

statements about the syntax.

Semantics. The main advantage of the frame stack semantics

is that most of the rules can be applied in a syntax-directed way,

which significantly simplifies proving evaluation. The notion of pa-

rameter list frames was motivated by the implementation to avoid

the duplication of frames, reduction rules, theorems for similar

language elements: tuples, maps, inter-module calls, primitive oper-

ations, and function applications. With parameter list frames, these

features can be handled in a unified way. This notion was also used

for reduction contexts by Fredlund [13].

Logical relations. We formalised logical relations with definitions

that are parametrised by the step-indexed value relation (V𝑛) in-
stead of mutually inductive types, following the footsteps of Wand

et al. [36]. This way, we also avoided the strict positivity checks of

Coq for inductive types.

Induction principles. Further interesting points in the formalisa-

tion are induction principles. We highlight the induction principle

for the logical relation on values (V𝑛). While using induction on the

logical relation, only relevant cases that contain related values need

to be proved, this means the cases for equal literal pairs, related

tuple pairs, related list pairs etc., supposing that the subvalues are

related and satisfy the induction hypothesis. This way we do not

need to derive a contradiction from premises such as (𝑖, []) ∈ V𝑛
which would be needed if we used case separation on the structure

of the related value pairs.

Further examples of program equivalence. Besides the refactor-
ings described in Section 4.4, we formalised a number of other sim-

ple expression equivalences specifically for Core Erlang (namely,

different versions of beta-reduction, list folding and mapping). For

more details, we refer to the formalisation [32].

6 RELATEDWORK
Our previous work and the result here on Core Erlang is based on

the language specification [9] and related research. The most influ-

ential ones are reversible semantics for Erlang [19, 20, 25], a frame-

work for reasoning about Erlang [13], symbolic execution [35], and

abstraction and model checking [24].

In related work, CIU equivalence [3, 8, 11, 14, 22, 23, 36] and

logical relations (either type-indexed [28, 34] or step-(and type-)

indexed [3, 11, 29, 36]) were successfully applied for a wide variety

of languages (e.g., different variants of lambda calculi, imperative

languages). Most of the relatedworks—that define CIU equivalence—

use a continuation-style semantics, similarly to our case where the

frame stack can be seen as the continuation. The novelty of our

work lies with the choice of the language, the extent of the language

elements formalised, and the machine-checked implementation.

In the related literature, there are other options to formalise

program equivalence. The most simple notion is behavioural equiv-

alence [26] which is based on syntactical equality of values. Another

approach is using bisimulations [2, 21, 27, 33] which are relations

between programs preserved by the reduction steps; however, using

coinductively defined bisimulations in Coq is challenging [12] thus

we avoided this approach for the sequential sublanguage.

7 CONCLUSION AND FUTUREWORK
In this paper, we defined a formal syntax and a frame stack seman-

tics for sequential Core Erlang. Thereafter, we presented a number

of properties of this semantics, and defined three expression equiv-

alence concepts (based on logical relations, CIU equivalence, and

contextual equivalence). We showed that these termination-based

equivalences are sufficient to ensure the final results of equivalent

programs to be behaviourally indistinguishable. Moreover, we also

showed that these three equivalence concepts coincide for (Core

Erlang) expressions.

In the short term future, we are going to extensively validate the

frame stack semantics presented here by showing its equivalence

with the validated big-step semantics in our previous work [6]. In

the longer term, we are going to combine this work with related re-

search on the concurrent subset of Core Erlang [7, 21], first focusing

on the single-node semantics.

We also plan to investigate more complex (non-local) refactor-

ings based on the semantics and equivalence concepts defined here.

We plan to base the correctness of refactoring concurrent programs

on bisimulation-based program equivalence relations, and expect

challenges in reasoning about concurrent errors (e.g., exit signals)

and process termination.

A Frame Stack Semantics for Sequential Core Erlang IFL 2023, August 29–31, 2023, Braga, Portugal

ACKNOWLEDGMENTS
Supported by the ÚNKP-22-3 New National Excellence Program

of the Ministry for Culture and Innovation from the source of the

National Research, Development and Innovation Fund.

REFERENCES
[1] 2021. Erlang/OTP compiler, version 24.0. https://www.erlang.org/patches/otp-24.0

Accessed on 8th March, 2024.

[2] S. Abramsky and C.H.L. Ong. 1993. Full Abstraction in the lazy lambda calculus.

Information and Computation 105, 2 (1993), 159–267. https://doi.org/10.1006/

inco.1993.1044

[3] Amal Ahmed. 2006. Step-indexed syntactic logical relations for recursive and

quantified types. In Programming Languages and Systems, Peter Sestoft (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 69–83. https://doi.org/10.1007/

11693024_6

[4] Péter Bereczky, Dániel Horpácsi, and Simon Thompson. 2020. A proof assistant

based formalisation of a subset of sequential Core Erlang. In Trends in Functional
Programming, Aleksander Byrski and John Hughes (Eds.). Springer International

Publishing, Cham, 139–158. https://doi.org/10.1007/978-3-030-57761-2_7

[5] Péter Bereczky, Dániel Horpácsi, and Simon J. Thompson. 2020. Machine-checked

natural semantics for Core Erlang: exceptions and side effects. In Proceedings of
Erlang 2020. Association for Computing Machinery, New York, NY, USA, 1–13.

https://doi.org/10.1145/3406085.3409008

[6] Péter Bereczky, Dániel Horpácsi, Judit Kőszegi, Soma Szeier, and Simon Thomp-

son. 2021. Validating formal semantics by property-based cross-testing. In Pro-
ceedings of the 32nd Symposium on Implementation and Application of Functional
Languages (IFL ’20). Association for Computing Machinery, New York, NY, USA,

150–161. https://doi.org/10.1145/3462172.3462200

[7] Péter Bereczky, Dániel Horpácsi, and Simon Thompson. 2024. A Formalisation

of Core Erlang, a concurrent actor language. Acta Cybernetica (2024). https:

//doi.org/10.14232/actacyb.298977

[8] Lars Birkedal, Aleš Bizjak, and Jan Schwinghammer. 2013. Step-indexed relational

reasoning for countable nondeterminism. Logical Methods in Computer Science
Volume 9, Issue 4 (Oct. 2013), 22 pages. https://doi.org/10.2168/LMCS-9(4:4)2013

[9] Richard Carlsson, Björn Gustavsson, Erik Johansson, Thomas Lindgren, Sven-

Olof Nyström, Mikael Pettersson, and Robert Virding. 2004. Core Erlang 1.0.3

language specification. https://www.it.uu.se/research/group/hipe/cerl/doc/core_

erlang-1.0.3.pdf Accessed on 8th December, 2023.

[10] Francesco Cesarini and Simon Thompson. 2009. Erlang programming (1st ed.).

O’Reilly Media, Inc., Sebastopol, California, USA.

[11] Ryan Culpepper and Andrew Cobb. 2017. Contextual equivalence for probabilis-

tic programs with continuous random variables and scoring. In Programming
Languages and Systems, Hongseok Yang (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 368–392. https://doi.org/10.1007/978-3-662-54434-1_14

[12] Jörg Endrullis, Dimitri Hendriks, and Martin Bodin. 2013. Circular coinduction in

Coq using bisimulation-up-to techniques. In Interactive Theorem Proving, Sandrine
Blazy, Christine Paulin-Mohring, and David Pichardie (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 354–369. https://doi.org/10.1007/978-3-642-

39634-2_26

[13] Lars-Åke Fredlund. 2001. A framework for reasoning about Erlang code. Ph. D.
Dissertation. Mikroelektronik och informationsteknik.

[14] Andrew D Gordon, Paul D Hankin, and Søren B Lassen. 1999. Compilation and

equivalence of imperative objects. Journal of Functional Programming 9, 4 (1999),

373–426. https://doi.org/10.1007/BFb0058024

[15] Kofi Gumbs. 2017. The core of Erlang. https://8thlight.com/blog/kofi-gumbs/

2017/05/02/core-erlang.html Accessed on 8th December, 2023.

[16] Björn Gustavsson. 2020. EEP 52: Allow key and size expressions in map and binary
matching. https://www.erlang.org/eeps/eep-0052

[17] Dániel Horpácsi, Judit Köszegi, and Simon Thompson. 2016. Towards trustworthy

refactoring in Erlang. Electronic Proceedings in Theoretical Computer Science 216
(2016), 83–103. https://doi.org/10.4204/EPTCS.216.5 arXiv:1607.02228

[18] Dániel Horpácsi, Péter Bereczky, and Simon Thompson. 2023. Program equiva-

lence in an untyped, call-by-value functional language with uncurried functions.

Journal of Logical and Algebraic Methods in Programming 132 (2023), 100857.

https://doi.org/10.1016/j.jlamp.2023.100857

[19] Ivan Lanese, Naoki Nishida, Adrián Palacios, and Germán Vidal. 2018. CauDEr:

a causal-consistent reversible debugger for Erlang. In International Symposium
on Functional and Logic Programming, John P. Gallagher and Martin Sulzmann

(Eds.). Springer, Springer International Publishing, Cham, 247–263. https://doi.

org/10.1007/978-3-319-90686-7_16

[20] Ivan Lanese, Naoki Nishida, Adrián Palacios, and Germán Vidal. 2018. A theory of

reversibility for Erlang. Journal of Logical and Algebraic Methods in Programming
100 (2018), 71–97. https://doi.org/10.1016/j.jlamp.2018.06.004

[21] Ivan Lanese, Davide Sangiorgi, and Gianluigi Zavattaro. 2019. Playing with

bisimulation in Erlang. In Models, Languages, and Tools for Concurrent and

Distributed Programming, Michele Boreale, Flavio Corradini, Michele Loreti, and

Rosario Pugliese (Eds.). Springer, Cham, 71–91. https://doi.org/10.1007/978-3-

030-21485-2_6

[22] Ian Mason and Carolyn Talcott. 1991. Equivalence in functional languages

with effects. Journal of Functional Programming 1, 3 (1991), 287–327. https:

//doi.org/10.1017/S0956796800000125

[23] Craig McLaughlin, James McKinna, and Ian Stark. 2018. Triangulating Context

Lemmas. In Proceedings of the 7th ACM SIGPLAN International Conference on
Certified Programs and Proofs (Los Angeles, CA, USA). Association for Computing

Machinery, New York, NY, USA, 102–114. https://doi.org/10.1145/3167081

[24] Martin Neuhäußer and Thomas Noll. 2007. Abstraction and model checking of

Core Erlang programs in Maude. Electronic Notes in Theoretical Computer Science
176, 4 (2007), 147–163. https://doi.org/10.1016/j.entcs.2007.06.013 Proceedings of

the 6th International Workshop on Rewriting Logic and its Applications (WRLA

2006).

[25] Naoki Nishida, Adrián Palacios, and Germán Vidal. 2017. A reversible semantics

for Erlang. In International Symposium on Logic-Based Program Synthesis and
Transformation, Manuel V Hermenegildo and Pedro Lopez-Garcia (Eds.). Springer,

Springer International Publishing, Cham, 259–274. https://doi.org/10.1007/978-

3-319-63139-4_15

[26] Benjamin C Pierce, Chris Casinghino, Marco Gaboardi, Michael Greenberg,

Cătălin Hriţcu, Vilhelm Sjöberg, and Brent Yorgey. 2022. Software foundations.

https://softwarefoundations.cis.upenn.edu/ Accessed on 8th December, 2023.

[27] Andrew Pitts. 1997. Operationally-based theories of program equivalence. Cam-

bridge University Press, Cambridge, UK, 241–298. https://doi.org/10.1017/

CBO9780511526619.007

[28] Andrew M. Pitts. 2002. Operational semantics and program equivalence. In

Applied Semantics, Gilles Barthe, Peter Dybjer, Luís Pinto, and João Saraiva (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 378–412. https://doi.org/10.1007/

3-540-45699-6_8

[29] Andrew M. Pitts. 2010. Step-indexed biorthogonality: a tutorial example. In

Modelling, Controlling and Reasoning About State (Dagstuhl Seminar Proceedings
(DagSemProc), Vol. 10351), Amal Ahmed, Nick Benton, Lars Birkedal, and Martin

Hofmann (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,

Germany, 1–10. https://doi.org/10.4230/DagSemProc.10351.6

[30] Gordon D Plotkin. 1981. A structural approach to operational semantics. Aarhus
university, Aarhus, Denmark.

[31] Boldizsár Poór, Melinda Toth, and István Bozó. 2020. Transformations towards

clean functional code. In Proceedings of the 19th ACM SIGPLAN InternationalWork-
shop on Erlang (Virtual Event, USA) (Erlang 2020). Association for Computing

Machinery, New York, NY, USA, 24–30. https://doi.org/10.1145/3406085.3409010

[32] High-Assurance Refactoring Project. 2024. Core Erlang formalization. https:

//github.com/harp-project/Core-Erlang-Formalization/releases/tag/v1.0.4 Ac-

cessed on 11th March, 2024.

[33] Alex Simpson and Niels Voorneveld. 2019. Behavioural equivalence via modalities

for algebraic effects. ACM Trans. Program. Lang. Syst. 42, 1, Article 4 (Nov. 2019),
45 pages. https://doi.org/10.1145/3363518

[34] Benjamin C. Sumii, Eijiro; Pierce. 2003. Logical relations for encryption. Journal
of Computer Security 11 (2003), 521–554. https://doi.org/10.3233/JCS-2003-11403

[35] Germán Vidal. 2015. Towards symbolic execution in Erlang. In International
Andrei Ershov Memorial Conference on Perspectives of System Informatics, Andrei
Voronkov and Irina Virbitskaite (Eds.). Springer, Springer Berlin Heidelberg,

Berlin, Heidelberg, 351–360. https://doi.org/10.1007/978-3-662-46823-4_28

[36] Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew Cobb.

2018. Contextual equivalence for a probabilistic language with continuous

random variables and recursion. Proc. ACM Program. Lang. 2, ICFP, Article 87
(July 2018), 30 pages. https://doi.org/10.1145/3236782

[37] A.K. Wright and M. Felleisen. 1994. A syntactic approach to type soundness.

Information and Computation 115, 1 (1994), 38–94. https://doi.org/10.1006/inco.

1994.1093

https://www.erlang.org/patches/otp-24.0
https://doi.org/10.1006/inco.1993.1044
https://doi.org/10.1006/inco.1993.1044
https://doi.org/10.1007/11693024_6
https://doi.org/10.1007/11693024_6
https://doi.org/10.1007/978-3-030-57761-2_7
https://doi.org/10.1145/3406085.3409008
https://doi.org/10.1145/3462172.3462200
https://doi.org/10.14232/actacyb.298977
https://doi.org/10.14232/actacyb.298977
https://doi.org/10.2168/LMCS-9(4:4)2013
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://www.it.uu.se/research/group/hipe/cerl/doc/core_erlang-1.0.3.pdf
https://doi.org/10.1007/978-3-662-54434-1_14
https://doi.org/10.1007/978-3-642-39634-2_26
https://doi.org/10.1007/978-3-642-39634-2_26
https://doi.org/10.1007/BFb0058024
https://8thlight.com/blog/kofi-gumbs/2017/05/02/core-erlang.html
https://8thlight.com/blog/kofi-gumbs/2017/05/02/core-erlang.html
https://www.erlang.org/eeps/eep-0052
https://doi.org/10.4204/EPTCS.216.5
https://arxiv.org/abs/1607.02228
https://doi.org/10.1016/j.jlamp.2023.100857
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1016/j.jlamp.2018.06.004
https://doi.org/10.1007/978-3-030-21485-2_6
https://doi.org/10.1007/978-3-030-21485-2_6
https://doi.org/10.1017/S0956796800000125
https://doi.org/10.1017/S0956796800000125
https://doi.org/10.1145/3167081
https://doi.org/10.1016/j.entcs.2007.06.013
https://doi.org/10.1007/978-3-319-63139-4_15
https://doi.org/10.1007/978-3-319-63139-4_15
https://softwarefoundations.cis.upenn.edu/
https://doi.org/10.1017/CBO9780511526619.007
https://doi.org/10.1017/CBO9780511526619.007
https://doi.org/10.1007/3-540-45699-6_8
https://doi.org/10.1007/3-540-45699-6_8
https://doi.org/10.4230/DagSemProc.10351.6
https://doi.org/10.1145/3406085.3409010
https://github.com/harp-project/Core-Erlang-Formalization/releases/tag/v1.0.4
https://github.com/harp-project/Core-Erlang-Formalization/releases/tag/v1.0.4
https://doi.org/10.1145/3363518
https://doi.org/10.3233/JCS-2003-11403
https://doi.org/10.1007/978-3-662-46823-4_28
https://doi.org/10.1145/3236782
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1006/inco.1994.1093

