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A B S T R A C T   

CO2 leakage from carbon capture and storage (CCS) networks may lead to ecological hazards, bodily injury and 
economic losses. In addition, captured CO2 often contains impurities which affect the leakage behavior of CO2. 
This paper presents a method for continuous and quantitative measurements of CO2 leakage flowrate and the 
volume fraction of impurities by combining data-driven models with acoustic emission (AE) and temperature 
sensors. Three data-driven models based on artificial neural network (ANN), random forest (RF), and least 
squares support vector machine (LS-SVM) algorithms are established. The outputs from the three data-driven 
models are then integrated to give improved results. Experimental work was conducted on a purpose-built 
CO2 leakage test rig under a range of conditions. N2 was injected to the CO2 gas stream as an impurity me-
dium. Results show that the integrated model yields a relative error within ±4.0 % for leakage flowrate and 
±3.4 % for volume fraction of N2.   

1. Introduction 

Fossil fuel power generation and other industrial emissions of carbon 
dioxide are threats to global climate. CCS is one of the important means 
to alleviate greenhouse gas emissions, especially CO2 emissions [1–3]. 
The technology for safe transportation and storage of pressurized liquids 
or gases has been established for years. These technologies have been 
well proven in practice, especially in oil and natural gas transportation 
and storage. In comparison with oil and natural gas, CO2 poses a number 
of different risks in the accidental leakage due to its unusual physical 
properties [4,5]. Potential CO2 leakages from high-pressure CO2 trans-
portation pipelines pose significant threat to the safety and health of 
those living in the vicinity of CCS pipelines. The possibility that CO2 may 
leak from transportation pipelines is a primary concern for the safety 
and effectiveness of the CCS technologies. Permanent, automated 
monitoring techniques for the continuous leakage measurement of CO2 
from transportation pipelines are necessary [6]. 

The conventional method for detecting pipeline leakage involves 
human examination using ground-penetrating radar [7,10]. However, 
this approach lacks real-time monitoring capabilities, which can lead to 
increased environmental pollution and financial losses [8]. In recent 
years, various techniques have been used for real-time monitoring of 

pipeline leakage, including infrared thermal imagers [9,10], electro-
magnetic sensors [11,12] and optical sensors [13,14]. Nevertheless, 
high-resolution infrared cameras are expensive and not suitable for 
accurately quantifying small leakages [8,15]. Additionally, electro-
magnetic sensors can only measure the flowrate of conductive liquids 
and cannot be used for detecting leakage flowrate of CO2. Moreover, the 
optical method is affected significantly by the on-site environment and 
cannot accurately measure the leakage flowrate. Consequently, there is 
a pressing need for CO2 leakage measurement methods with non- 
destructive sensing, real-time continuous monitoring, long-distance 
signal transmission, and high-pressure resistance. 

When a continuous leakage occurs from a CO2 pipeline, due to the 
pressure difference between the inside and outside of the pipeline, CO2 
emits rapidly from inside to outside through the leakage hole [8], and 
the AE sensor detects the leakage to generate an acoustic emission 
signal, and through the subsequent analysis and processing of the signal, 
leakage measurement is achieved [16,17]. In comparison with other 
methods, this technique uses only an AE sensor and a temperature 
transducer, which are low in cost and small in size. Therefore, the AE 
technique is more cost-effective than other methods. 

Various methods have been proposed using acoustic monitoring 
techniques for CO2 leakage measurement [18]. Through theoretical 
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analysis, numerical simulation and experimental validation of AE en-
ergy, Cui and Yan et al. [19,20] investigated key issues such as leakage 
source and acoustic wave propagation characteristics, and leakage 
localisation for CO2 transport and storage devices. In view of the ad-
vantages of the AE technique, there have been some qualitative studies 
with AE sensors for downhole in wellbore leakage detection. Ishida et al. 
[21] conducted hydraulic fracturing experiments using supercritical 
CO2 in a hole drilled into a granitic hot rock at a depth of 7.24 m− 7.40 
m. A total of 16 AE sensors were arranged around the pressurized section 
of the underground storage device to record AE events during leakage 
and analyze the location of leakage sources. Kim et al. [22] compared 
three deep-learning models (MLP, LSTM, and CISM–LSTM) via numer-
ical simulation for predicting the likelihood of CO2 leakage from a 
pipeline. Previous studies are mostly concerned with localization of leak 
points and qualitative analyses of leakage through feature 
characterization. 

Although AE sensors have been applied to locate a CO2 leakage 
source from a CCS pipeline [16–21], the leakage flowrate of CO2 still 
needs to be quantitatively measured. By combining the AE signal and 
relevant temperature and pressure data, an estimation model for leakage 
flowrate monitoring based on machine learning algorithms should be 
developed to ensure the safe and efficient operation of CCS pipeline 
networks [6]. 

Skaugen and Zanobetti [23,24] investigated the impact of CO2 
stream impurities on pipeline transport costs, showed that the level of 
impurities in the CO2 mixture may increase the pipeline transport costs 
by up to 22 %. As a result, the development of reliable quantitative 
methods for predicting leakage for CO2 pipelines in the presence of the 
typical impurities is of significant value [5]. 

Accidental leakage may occur through a damaged section of the 
pipeline caused by defects introduced into the pipeline such as me-
chanical damage, corrosion or material defects, and operational mis-
takes, for example technical or mechanical breakdowns of equipment 
and tools (e.g., valves and pumps from pipelines) [5,25–27]. Consider-
able negative effects and threats could be exerted on the local envi-
ronment and residents nearby due to the high CO2 concentration 
released from the high-pressure pipelines [28,29]. Continuous corrosion 
may lead to pipeline leakage and the corrosion is due to CO2 dissolved in 
water, which then forms carbonic acid (H2CO3) and reacts with the steel 
in the pipelines [24,30,31]. 

CCS capture processes can result in the presence of diverse impurities 
in CO2 flow stream, including but not limited to CH4, H2O, H2S, SOx, 
NOx, N2, O2, glycol, and other substances [31]. As a common and non- 
toxic impurity [32], N2 is used in this study as a test medium to inves-
tigate the effect of different content of impurity gas on acoustic emission 
signals and temperature changes. The contribution of this article is to 
propose a method to measure CO2 gas leakage from a CCS pipeline, and 
develop an integrated data-driven model with multiple feature param-
eters from different sensors as inputs to predict the leakage flowrate of 
CO2 gas and the volume fraction of impurity gas N2 under CCS 

conditions. 

2. Methodology 

2.1. Measurement strategy 

The strategy of the proposed measurement method is shown in Fig. 1. 
The strategy is realized through soft computing and data-driven 
modeling. The artificial neural network (ANN), random forest (RF), 
and least squares support vector machine (LS-SVM) algorithms have 
performed well in data-driven modelling for predicting the fluid flow-
rate in earlier research [6,33–36]. A method that integrates these three 
algorithms is proposed in this paper to measure the leakage flowrate of 
CO2 and the volume fraction of impurity gas N2. In this approach only an 
AE sensor and a temperature transducer are used to acquire signals from 
the pipeline. It should be pointed out that the signal from the AE sensor 
contains information about the pressure variations in the pipeline, so no 
separate pressure transducer is required in the sensing system. 

2.2. Inputs for data-driven models 

It has been shown that among the commonly used time-domain 
characteristic parameters (peak amplitude, raise time, energy, ring 
count, and threshold value) of an acoustic emission signal, the peak 
amplitude and energy can better characterise experimental objects, such 
as leakage localization [19,20]. The peak amplitude is the maximum 
amplitude of the time-domain signal waveform of acoustic emission, 
which is not affected by the threshold voltage. The strength of the 
acoustic emission event can be intuitively judged from the peak ampli-
tude and can therefore be used to quantitatively characterise the degree 
of CO2 leakage. Energy, as a statistical measure of a sensor signal, is 
inherently related to other characteristic parameters and can compre-
hensively reflect the strength of the signal. In this paper, the peak 
amplitude and energy from different frequency bands are used to anal-
yse the AE signal. The spectrum of the AE signal can also reflect the 
characteristics of the AE source to a certain extent [37]. This paper ex-
tracts the power spectral density (PSD) [38] of the AE signal. The peak 
frequency of the PSD is taken as one of the characteristic parameters for 
quantifying CO2 leakage. 

Several features are extracted from the raw AE signals: (1) peak 
amplitude in the time domain. (2) peak frequency from the PSD. (3) AE 
energy. Meanwhile, by measuring the temperature of the leakage pro-
cess in real time, the temperature drop before and after the leakage from 
the temperature transducer is extracted. The temperature drop, together 
with the three characteristic parameters from the AE sensor, are used as 
inputs to the data-driven model to monitor the CO2 leakage. 

2.3. Data driven models 

A back propagation (BP) ANN model is used to predict the leakage 

Fig. 1. Overall strategy for CO2 leakage measurement.  
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flowrate of CO2 and the volume fraction of N2. The ANN model is a 
multi-layer feedforward network trained by the error backpropagation 
algorithm. The structure of BP-ANN is shown in Fig. 2, the model adjusts 
the weights ω and thresholds a and b along the negative gradient descent 
direction to minimize the error between the input and output vectors of 
the training set. The inputs to the model are x1- x4, which are peak 
amplitude, peak frequency, AE energy and temperature drop. The out-
puts are yBP1 and yBP2 as predicted values for the leakage flowrate and 
the volume fraction of impurity gas N2. After repeated training and 
comparison, the appropriate number of hidden layer neurons is 4, and 
the appropriate structure of the BP-ANN model is 4: 4: 2. The Tansig 
function is chosen as an activation function because of its excellent 
performance in nonlinearity, differentiability, and monotonicity [34]. 
The algorithm stops iterating when the prediction accuracy reaches the 
minimum error requirement. The BP-ANN model is advantageous in 
nonlinear mapping and generalization and can thus approximate com-
plex nonlinear relationships between input and output data. 

The RF algorithm uses decision trees as basic models and introduces 
two random processes: random sampling and random feature selection, 
to generate multiple decision trees. The structure of RF is shown in 
Fig. 3, the final ensemble prediction result is obtained by averaging the 
prediction results of the basic models. Due to the independent physical 
construction process of each decision tree in the RF, parallel computing 
is readily implemented to improve the training speed. Meanwhile, the 
RF model not only avoids overfitting issues but also enhances the pre-
diction accuracy [39]. 

Fig. 4 shows the structure of LS-SVM, where yLS-SVM1 and yLS-SVM2 are 
the prediction results of the model, a is the Lagrange multipliers, b is bias 
and K is the kernel function [33]. A radial basis function (RBF) is chosen 
as the kernel function here due to the strong non-linear mapping abili-
ties. In the LS-SVM model, the role of RBF kernel is to map low 
dimensional data to a high-dimensional space and obtain prediction 
results through weighted summation. Meanwhile, the LS-SVM model 
has strong generalization capability and robustness, which can better 
handle noise and nonlinear problems. 

For the above three models, the mean relative error (MRE) is used as 
the evaluation index of the accuracy, which is given as follows, 

MRE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
ŷi − y

y

⃒
⃒
⃒
⃒ (1)  

where y is the desired value of the target variable, ŷi is the predicted 
value for a given model, and n is the number of validation data samples. 

The final result is obtained by combining the outputs from the three 
individual models, 

ŷ =
1
3
(
yBP− ANN + yRF + yLS− SVM

)
(2)  

where ŷ is the prediction result from the integrated model, yBP-ANN, yRF 
and yLS-SVM are the prediction results from the BP-ANN, RF and LS-SVM 
models, respectively. It should be pointed out that the three models are 
all supervised machine learning models with each model trained inde-
pendently. From a physical meaning perspective, the selected input 
variables to the models are from the AE and temperature sensors, which 
are all correlated with the physical properties of CO2 leakage. Mean-
while, due to their different data-driven modeling principles, the models 
have different sensitivities to the same dataset, resulting in different 
predictive performance. Averaging the outputs of the three models 
effectively reduces overall variance and bias, avoids overfitting in the 
individual models, and thus improves the accuracy of the final predicted 
output. Moreover, the usage of the combined model improves the 
robustness by reducing the spread or dispersion of the model outputs. 

In the present study straightforward averaging of the outputs from 
the three models is conducted instead of weighted averaging of the 
three. Further research is required in future under a wider range of 
leakage conditions, including trials of the developed method on actual 
CCS systems to assess if the weighted averaging method should be 
deployed for predicting leakage. 

3. Experimental setup and conditions 

The experimental CO2 platform used in this study is shown in Fig. 5. 
The leakage experiments were carried out for different initial pressures 
and volume fractions of impurity gas N2. The CO2 gas was set to leak into 
the atmosphere through a vent valve. Since the initial pressure at the test 
section is up to 5.7 MPa, opening holes on the test platform is dangerous 
and irreversible. An electric control valve was thus used to control the 
pipeline leakage and hence the leakage of CO2 under CCS conditions. 
The CO2 storage column is shown in Fig. 6(a), which mainly includes a 
storage tank and a pressure gauge for measuring gas pressure inside the 
tank. Figs. 5 and 6(b) depict that the vent valve is installed on the 25 mm 
bore CO2 pipeline made from 304 stainless steel. During the experiments 
the leakage valve was opened from 1 % to 10 % with an increment of 1 
%. Along the release pipeline, an AE sensor was installed 20 cm from the 
valve. The AE sensor (SR40M, Softland) has a bandwidth of 15 ~ 70 

Fig. 2. Structure of the BP-ANN model.  
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kHz. The AE signal is amplified via a linear voltage amplifier with a gain 
of 40 dB. 

The point to surface converter (Fig. 6(b)) is made of solid metal and 
the surface of the AE sensor is attached to the larger surface of the 
converter, while the smaller surface is attached to the pipeline. The 
converter converts pipeline vibration into surface vibration, which is 

then collected by the AE sensor. Since it is difficult to distinguish the CO2 
leakage with and without impurities only using AE signals, a tempera-
ture transducer is also incorporated to investigate the effect of impurity 
gases in the pipeline on the leakage temperature. 

Several tests were conducted to investigate the release behaviors of 
CO2 with and without the impurity gas. A volume fraction of N2 ranging 

Fig. 3. Structure of the RF model.  

Fig. 4. Structure of the LS-SVM model.  

Fig. 5. Schematic of the CO2 test platform.  
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from 2 % ~ 30 % was injected into the CO2 stream to observe the effect 
of N2 on the AE signal and temperature characteristics. The gas sources 
with different CO2-N2 ratios at the storage column determined the vol-
ume fraction of N2. The resulting gas volume fraction of CO2 was be-
tween 70 % and100% with an initial pressure from 3 to 5.7 MPa and an 
initial temperature 18℃. 

The actual (reference) leakage flowrate of CO2 was measured with a 
Coriolis mass flowmeter (Fig. 5). When the initial temperature (18℃) 
and pressure in the pipeline were the same, the same actual leakage 
flowrate was obtained at the same opening of the leakage valve, as 
shown in Table 1. It should be noted that the CO2 leakage flowrate varies 
under different initial pressures and increases with the initial pressure. 

The minimum CO2 leakage that can be measured in the current 
experimental setup is 12 kg/h, as shown in Table 1. The minimum 
volume fraction of N2 in this study is 2 %. According to reference [23], 
impurity level below 2 % does not affect the cost and operation of 
pipelines in CCS. 

4. Results and discussion 

4.1. AE signals 

The AE signal without CO2 leakage is plotted in Fig. 7. The amplitude 
of the signal is no more than 25 mV. As shown in Fig. 8, when a gas 
leakage occurs, the amplitude of the signal reaches its peak amplitude of 
about 5 V quickly at the initial stage. As the time goes by, the oscillation 
amplitude of the signal decreases and tends to stabilize. The peak 
amplitude can be used to quantitatively represent the degree of CO2 
leakage. 

Fig. 9 show the variations in the peak amplitude of the AE signal 
during pure CO2 leakage and CO2 with 2 % N2 leakage when the leakage 

Fig. 6. Photos of the experimental setup. (a) CO2 storage column. (b) Leakage valve and sensors.  

Table 1 
Actual leakage flowrate under different valve openings.  

Fig. 7. Typical AE signal waveform without leakage.  

Fig. 8. AE signal waveform during leakage.  
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flowrate increases gradually. As can be seen, at the same initial pressure, 
the higher the leakage flowrate, the higher the peak amplitude. In 
addition, a higher the initial pressure results in a greater pressure dif-
ference between the inside and outside of the leakage pipeline, which 
also produces a higher peak amplitude. The peak amplitude of CO2 with 
N2 leakage presents a similar trend with pure CO2 leakage, demon-
strating high correlation between the leakage flowrate and the peak 
amplitude. 

Figs. 10 and 11 exhibit the normalized PSD of the AE signal at 
leakage flowrates of 20 kg/h and 170 kg/h. Based on the normalised PSD 
of the AE signal in each set of experiments, the peak frequency between 
40 kHz and 60 kHz is extracted. The sampling frequency used in the data 
acquisition of the AE signal is 200 kHz with a length of 1024 data points. 
The frequency resolution in the PSD is thus 0.2 kHz. In the four sets of 
leakage experiments (Figs. 10 and 11), the peak frequencies are iden-
tified as 51.1 kHz, 50.0 kHz, 45.8 kHz and 45.2 kHz. It can be seen that 
the peak frequencies correspond to the CO2 leakage flowrate. When the 
leakage flowrate and initial pressure are the same, similar peak fre-
quencies of AE signals are observed. The molecular weight of N2 is 
relatively low, which leads to a reduction in the peak frequency of CO2 
with N2, compared to pure CO2 under the same experimental conditions. 

Fig. 12 shows the variations in the peak frequency of the AE signal as 
the leakage flowrate increases during pure CO2 leakage at different 
pressures. Since the valve is used to replicate the leak hole, the leakage 
flowrate increases with the size of the hole when the initial pressure is 
constant. When the size of the leakage hole is smaller, the velocity of the 
fluid at the leakage is higher, generating a higher peak frequency. It can 
be seen from Fig. 12 that the peak frequency decreases with the leakage 
flowrate. Experimental results of CO2 with N2 impurity yield similar 
conclusions. 

Fig. 13 shows the AE energy distribution during pure CO2 leakage for 
three different leakage flowrates. Five band-pass digital filters are used 
to extract the components in five frequency bands, 0–20 kHz, 20–40 
kHz, 40–60 kHz, 60–80 kHz and 80–100 kHz. 

It can be seen from Fig. 13 that, with the increase of leakage flowrate 
(size of leakage holes), the proportion of low-frequency components 
increases, while the proportion of high-frequency components de-
creases. Fig. 13(a) indicates that the AE signal due to a small opening of 
the valve (e.g. 1 %) is weak, but the frequency is relatively high. In 
contrast, the AE signal from a larger opening (e.g. 10 %) has a stronger 
amplitude but lower frequency, as shown in Fig. 13(c). 

Fig. 14 shows that the AE energy increases with the leakage flowrate 
and leakage pressure for pure CO2 leakage and CO2 with 20 % N2. When 
the volume fraction of impurity gas N2 is high, a significant impact is 
seen on the energy of the AE signal. The higher the volume fraction of 
N2, the lower density of the mixture gas, and hence the lower AE energy 
generated from leakage. 

4.2. Temperature drop 

As a result of a leakage, the expanded CO2 and N2 results in a tem-
perature drop of CO2 fluid and the surrounding air. Fig. 15 shows the gas 
temperature evolutions during pure CO2 leakage and CO2 with 2 % N2 
leakage when the flowrate is 20 kg/h and 170 kg/h, respectively. 
Clearly, the temperature variations at the leakage hole shows a similar 
trend which can be divided into two main stages: a rapid reduction stage 
and a slowly increasing stage. The sudden onset of the leakage results in 
a rapid drop in the gas temperature in the pipeline. As the leakage valve 
is closed at 20 s, the gas temperature begins to rise slowly. The lowest 
point of the temperature occurs a few seconds after the valve is closed. 

Fig. 9. Relationship between the peak amplitude of the AE signal and the leakage flowrate. (a) Pure CO2 leakage. (b) CO2 leakage with 2% N2 leakage.  

Fig. 10. Normalized PSD of the AE signal for leakage flowrate of 20 kg/h. (a) Pure CO2 leakage at 5 MPa. (b) CO2 leakage with 2% N2 leakage at 5 MPa.  
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The presence of N2 accelerates the rate of temperature reduction during 
the temperature drop. 

At the start of a sudden leakage, pressurized CO2 is released rapidly 
from the leaking point and experiences an explosive expansion. The 
expanded CO2 from the leakage results in a rapid temperature drop of 
CO2 fluid itself and the surrounding air [27], and the CO2 near the 
leakage point remains in the gaseous phase. Under fixed temperature 
and pressure conditions, the density of the mixed gas is related to its 
composition. The higher the volume fraction of N2 in the mixed gas, the 
lower the density, and the greater the temperature drop of CO2 with 
impurity gas [28,32]. Therefore, the temperature drop due to CO2 
leakage depends on the volume fraction of N2, i.e. the temperature drop 
become pronounced when more N2 is in the mixture [28]. The 

installation position of the thermocouple is very close to the leakage 
hole, which also causes a greater temperature drop of the gas inside the 
pipeline when the leakage occurs. 

The initial temperature (18℃) minus the measurement of the tem-
perature transducer during the leakage is the temperature drop. Fig. 16 
shows the maximum temperature drop for pure CO2 leakage and CO2 
with N2 leakage under different leakage flowrates. There are two 
physical reasons for the temperature drop in Fig. 16. Firstly, a higher 
leakage flowrate leads to a greater expansion of the medium volume and 
hence a greater temperature drop. Secondly, a higher N2 content results 
in a lower density of the leakage mixture and hence a greater temper-
ature drop. 

Fig. 11. Normalized PSD of the AE signal for leakage flowrate of 170 kg/h. (a) Pure CO2 leakage at 5 MPa.  (b) CO2 leakage with 2% N2 leakage at 5 MPa.  

Fig. 12. Relationship between the peak frequency of the AE signal and leakage 
flowrate of pure CO2. 

Fig. 13. AE energy distribution for pure CO2 leakage. (a) leakage flowrate of 20 kg/h. (b) leakage flowrate of 100 kg/h. (c) leakage flowrate of 170 kg/h.  

Fig. 14. Relationship between the AE energy and leakage flowrate for pure CO2 
and CO2 with 20% N2 leakage. 

C. Sun et al.                                                                                                                                                                                                                                      
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4.3. Leakage flowrate and volume fraction of N2 

Current industrial standards for CO2 leakage from pipelines, namely, 
ISO 27913:2016, ISO/TR 27921:2020 and GB/T 42797-2023 [40–42], 
do not indicate how much leakage is allowed. There is also no any 
indication of required detection accuracy. In this study, the minimum 
leakage rate is set to 12 kg/h. Reference instruments on the CO2 test 
platform were used to obtain reference data to evaluate the accuracy of 
the proposed method. There are a total of 250 data samples used for 
data-driven models to predict the CO2 leakage flowrate and volume 
fraction of N2. In the training data, the leakage flowrate ranges from 12 
kg/h to 220 kg/h and the volume fraction of N2 changes from 2 % to 30 
%. The optimal predictive model is obtained using a ten-fold cross 
validation method, and the MRE calculated from 10 validations is used 
as the evaluation index for predictive models. 20 sets of experimental 
data are selected as test data samples to predict the CO2 leakage flowrate 
and volume fraction of N2 by four characteristic parameters with the 
leakage flowrate of 12–170 kg/h and the N2 content of 2 %–30 %, 
respectively. 

Table 2 indicates that the relative errors of the predicted leakage 
flowrate of CO2 and volume fraction of N2. Among the three data-driven 
models, the BP-ANN model yields a relative error in the leakage flowrate 
within ±5.3 % and a relative error in the N2 volume fraction within 
±4.0 %. The RF model produces corresponding relative errors of ±5.5 % 
and ±4.3 %, respectively. The LS-SVM model predicts the leakage 
flowrate within ±4.3 % and N2 volume fraction within ±3.6 %, 
respectively. The integrated model performs the best, giving the leakage 

flowrate within ±4.0 % and N2 volume fraction within ±3.4 %, 
respectively. 

Fig. 17 shows the MREs of the leakage flowrate and volume fraction 
of N2 using the three models and the integrated models. The MRE of the 
leakage flowrate from the BP-ANN model is 1.7 %, and the MRE of N2 
volume fraction is 1.5 %. Similarly, the MRE of the leakage flowrate and 
N2 volume fraction from the RF model is 1.8 % and 1.3 %, respectively. 
The MRE of the leakage flowrate from the LS-SVM model is 1.4 %, and 
that of N2 volume fraction is 1.2 %. For the integrated model, the MRE 
are 1.0 % and 1.1 %, respectively. Fig. 17 indicates that the integrated 
model has effectively reduced the MRE further in both cases. 

Fig. 18 shows the relative errors of the predicted leakage flowrate 
using all four models for the testing data. With the opening of the valve, 
the leakage flowrate increases, the sensors can detect a more pro-
nounced AE signal, and the error decreases. It is evident that the data- 
driven models based on different working principles give different per-
formances for the same leakage flowrate. Among them, the results from 
the LS-SVM model is slightly better than those from the ANN and RF 
models. The integrated model outperforms all three individual models. 

Fig. 19 shows the relative errors in predicting the volume fraction of 
N2 using the four models for the testing data. It is clear that the inte-
grated model yields the lowest error in most cases throughout the range 
of volume fraction of N2 from 2 % to 30 %. If only one model is to be used 
in the data driving modelling, the LS-SVM model is a preferred option as 
it outperforms the other two individual models. 

5. Conclusions 

In this paper, the leakage flowrate of CO2 gas from a pipeline and the 
volume fraction of impurity N2 in the CO2 are measured continuously 
under CCS conditions. The measurement results have suggested that CO2 
leakage can be well characterised using characteristic parameters, 
which are extracted from the signals of the AE and temperature sensors. 
Moreover, the results have indicated that the temperature drop is the 
most sensitive to changes in the volume fraction of impurity gas in the 
CO2. It has also been found that the integrated model by averaging the 

Fig. 15. Temperature evolutions of pure CO2 leakage and CO2 with 2 % N2 
leakage under a pressure of 5.0 MPa. 

Fig. 16. Relationship between the temperature drop and flowrate of pure CO2 
leakage and CO2 with N2 leakage under the pressure of 5.0 MPa. 

Table 2 
Range of relative errors of the predicted leakage flowrate and N2 volume fraction 
from the established models.  

Models CO2 leakage flowrate N2 volume fraction 

BP-ANN ±5.3 % ±4.0 % 
RF ±5.5 % ±4.3 % 
LS-SVM ±4.3 % ±3.6 % 
Integrated model ±4.0 % ±3.4 %  

Fig. 17. MRE of the leakage flowrate and the volume fraction of N2 for the 
four models. 
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results from BP-ANN, RF and LS-SVM models yields a relative error 
within ±4.0 % for leakage rate measurement and ±3.4 % for N2 volume 
fraction measurement. These results are better than those from the three 
individual models. It is envisioned that the proposed method will pro-
vide a useful solution to the leakage detection in CO2 transportation 
pipeline networks for the practical deployment under CCS conditions. 
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