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ABSTRACT 
Optimisation modelling in healthcare has addressed a diverse range of challenges inherent 

to decision-making and supports decision-makers in determining the best solution under a 

variety of constraints. In contrast, optimisation models addressing planning and service 

delivery issues in mental healthcare have received limited attention. Mental healthcare 

services in England are routinely facing issues relative to scarcity of available resources, 

inequities in their distribution, and inefficiencies in their use. Optimisation modelling has the 

potential to support decision making and inform the efficient utilisation of scare resources. 

Mental healthcare services are a combination of several subsystems and partnerships 

comprising of numerous stakeholders with a diversity of interests. However, in optimisation 

literature, the lack of stakeholder involvement in the development process of optimisation 

models is increasingly identified as a missed opportunity impacting the practical applicability 

of the models and their results. This thesis argues that simulation modelling literature offers 

alternative modelling approaches that can be adapted to optimisation modelling to address 

the shortcoming highlighted. In this study, we adapt PartiSim, a multi-methodology 

framework to support facilitated simulation modelling in healthcare, towards facilitated 

optimisation modelling and test it using a real case study in mental healthcare. The case 

study is concerned with a Primary Care Mental Healthcare (PCMH) service that deploys 

clinicians with different skills to several General Practice (GP) clinics. The service wanted 

support to help satisfy increasing demand for appointments and explore the possibility of 

expanding their workforce.   

This research puts forward a novel multimethodology framework for participatory 

optimisation, called PartiOpt. It explores the adaptation and customisation of the and 

PartiSim framework at each stage of the optimisation modelling lifecycle. The research 

demonstrates the applicability and relevance of a ‘conceptual model’ to optimisation 

modelling, highlighting the potential of facilitated optimisation as a methodology. This thesis 

argues for the inclusion of conceptual modelling in optimisation when dealing with real world 

practice-based problems. The thesis proposes an analytics-driven optimisation approach 

that integrates descriptive, predictive, and prescriptive analytics stages. This approach is 

utilised to construct a novel multi-skill multi-location optimisation model. By applying the 

analytics-driven optimisation approach to the case study, previously untapped resource 

potential is uncovered, leading to the identification of various strategies to improving service 

efficiency. The successful conceptualisation of an optimisation model and the quantitative 

decision support requirements that emerged in the initial stages of the study drive the 
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analytics-driven optimisation. Additionally, this research also presents a facilitative approach 

for stakeholder participation in the validation, experimentation, and implementation of a 

mathematical optimisation model. Reflecting on the adaptation and subsequent 

amendments to the modelling stages, the final PartiOpt framework is proposed. It is argued 

that this framework could reduce the gap between theory and practice for optimisation 

modelling and offers guidance to optimisation modellers on involving stakeholders in 

addressing real world problems.  
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Chapter 1: Thesis Overview 
1.1. Introduction 

Mental illness significantly impacts individuals, society, and the economy. Before COVID-19, 

mental health services in England were already under considerable strain and facing issues 

of inadequate resourcing, access to care and overall patient outcomes (British Medical 

Association, 2020a). Many of these issues have worsened due to the pandemic (British 

Medical Association, 2020b). The pandemic has greatly affected the mental health and 

overall well-being of individuals, posing a significant and enduring public health concern 

(McCartan et al., 2021; Pierce et al., 2021). Recent data shows that the number of people 

contacting the National Health Service (NHS) seeking help for mental health problems is now 

at a record high (NHS Digital, 2022). These needs arise within the context of underfunded 

mental health services facing a care backlog, waiting lists, and a stretched, exhausted, and 

understaffed workforce. Workforce capacity has been a long-term concern, and shortages 

represent the biggest threat to national ambitions to improve mental healthcare (HM 

Government, 2021; NHS Confederation, 2022). Primary care, now at the forefront of the 

predicted increase in mental health presentations, plays a vital role in early intervention, 

reducing subsequent mental health problems, and proving to be a cost-effective approach 

(Park et al., 2020; Van't Veer-Tazelaar et al., 2010). 

Mental healthcare services primarily rely on their human workforce, which is a mix of 

collaboration between psychosocial and biomedical providers with varying levels of skills, 

spread across numerous locations. The system is a combination of several subsystems and 

partnerships comprising of numerous stakeholders with a diversity of interests. Scarcity of 

available resources, inequities in their distribution, and inefficiencies in their use, are the 

three major obstacles to better mental healthcare  (British Medical Association, 2017; 

Carbonell et al., 2020; Gask, 2005). Effective deployment of existing services has been 

recognised as having the potential to close this gap and reduce unmet need  (British Medical 

Association, 2020a; Kakuma et al., 2011). 

Optimisation modelling in healthcare has been used to address a diverse range of challenges 

inherent to decision-making in healthcare (Capan et al., 2017). Optimisation models can 

support decision-makers in determining the best solution under a variety of constraints, 

often by simultaneously considering multiple factors (Earnshaw & Dennett, 2003; Tüzün & 

Topcu, 2018). Optimisation models have been employed in emergency room planning, 

primary, outpatient and home health to address issues such as determine resource quantity 

to meet demand, determining size and composition of staff, creating shift rosters, allocating 
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appointments,  assigning care workers to patients, and scheduling patient visits (Cissé et al., 

2017; Grieco et al., 2021; Leeftink et al., 2020; Marynissen & Demeulemeester, 2019; 

Samudra et al., 2016; Zhu et al., 2019). In comparison, the application of optimisation 

modelling to address modelling service delivery issues in mental healthcare is an area of 

research that has received limited attention (Bradley et al., 2017; Long & Meadows, 2018; 

Noorain et al., 2022). In mental healthcare, optimisation modelling has the potential to 

support decision making and inform the efficient utilisation of scare resources, but there is 

a lack of research that sufficiently captures the complexities of the system.  

In traditional optimisation modelling, the lack of stakeholder involvement leads to missed 

opportunities throughout the modelling life cycle, starting with inadequate primary data 

collection, leading to the development of a realistic model, as opposed to a real case study, 

culminating in a lack of real implementation of the models (Amideo et al., 2019; Çoban et al., 

2021). In healthcare, building the model in isolation along with the use of opaque model 

design approaches is found to be associated with stakeholder resistance to trust the 

outcomes and implement the findings (Carter & Busby, 2022). Recently, case studies of 

optimisation modelling with stakeholder participation (Abuabara et al., 2022) along with the 

use of Problem Structuring Methods (PSMs) (Cardoso-Grilo et al., 2019) for conceptual 

modelling and scenario generation (Amorim-Lopes et al., 2021) utilising the 

multimethodology approach have emerged. In comparison, simulation modelling has 

developed several approaches that involve clients in the modelling process through 

facilitated simulation (Lane et al., 2019; Proudlove et al., 2017; Robinson et al., 2012; 

Robinson et al., 2014; Tako et al., 2019; Tako et al., 2021; Willis et al., 2018). Particularly 

relevant to this study is the Participative Simulation (PartiSim) multimethodology framework 

that uses Soft Systems Methodology (SSM) to engage stakeholders in developing a Discrete-

event Simulation (DES) model through facilitated workshops (Kotiadis et al., 2014; Kotiadis 

& Tako, 2018; Tako & Kotiadis, 2015). In facilitated simulation modelling, involving 

stakeholder groups is associated with improved information flow, better model quality, and 

acceptance and implementation of improvements identified in the study (Pessôa et al., 2015; 

Robinson et al., 2014). To the best of our knowledge, a facilitated modelling approach to 

support optimisation modelling does not exist. However, a facilitative, and participative 

framework such as PartiSim can be adapted to support the development of optimisation 

models in contexts where involving stakeholders is necessary.  

The work presented here introduces a novel multi-methodology framework by adapting 

PartiSim towards facilitated optimisation modelling. The proposed multi-methodology 
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framework is termed PartiOpt and provides a structured process for developing optimisation 

models by involving stakeholders through facilitated workshops. The study also required 

complementing optimisation with other analytics tools. The framework was developed in 

collaboration with a real-world Primary Mental Healthcare (PCMH) service provided by the 

Kent and Medway Mental Healthcare Trust (KMPT) based in Kent, UK. The service works 

alongside General Practice (GP) clinics and primary care partners and interfaces with KMPT 

services to provide care to people experiencing mild/moderate mental health conditions 

who do not require secondary care mental health services. At the time of the study, several 

change imperatives had highlighted the need for integrating mental health services into 

primary healthcare to foster closer integration of primary, secondary, and tertiary mental 

healthcare service, and improve patient access to services (NHS England, 2020). The 

stakeholders involved in the study included individuals from various levels in the 

organisation, such as local commissioners, trust executives, service managers, and clinicians. 

Given that the service had begun as an ad-hoc experiment, and evolved on a need basis, it 

did not have an overall operational design, or in other words, a narrative with consensus. 

Stakeholders were keen to evaluate the performance of the service and consider 

opportunities for improvement. The evaluation was prompted by a county level 

commissioning decision to increase funding for the service to enable KMPT (the providers) 

to hire more clinicians, based on population level demand forecasts. In light of this impending 

expansion, stakeholders sough decision support to determine ‘how’ the service has been 

functioning thus far, ‘what’ if any can be improved, and the direction of improvement, if any.  

The proposed multi-methodology contributes a structured framework by drawing on existing 

research, thereby addressing a key gap in optimisation literature. Specifically, the 

participative and facilitative multi-methodology framework developed in this research, will 

adapt, and extend the well-established PartiSim framework for the optimisation modelling 

lifecycle. The adaptation will introduce new tools and alter existing tools to fit the 

requirements of an optimisation model. From a methodological perspective to the best of 

the researcher’s knowledge, a facilitated optimisation multi-methodology framework 

covering the entire modelling lifecycle does not exist. Additionally, a comprehensive case 

study chronicling the application of multiple OR techniques in mental healthcare is a 

significant contribution of this study.  
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1.2. Aims and Objectives 
The overarching intention of this research is to introduce a structured framework that could 

aid optimisation modellers to consider all the key steps in the development of models. 

Additionally, the approach will allow stakeholders to actively engage in the model 

development process. This intention is further elaborated into aims and objectives. The aims 

are: 

1) To develop a comprehensive understanding of literature on the application of 

Operations Research (OR) methodologies in mental healthcare, with the objective of 

adapting and extending the PartiSim multi-methodology framework for optimisation 

modelling.  

2) To develop a facilitative multi-methodology framework that provides a pathway for 

developing optimisation models with stakeholder participation, particularly in the 

context of mental healthcare. 

Towards these aims, the following five objectives will be met. It is expected that by meeting 

these five objectives, the aims of this thesis will be realised. 

Objective 1: To investigate existing knowledge on the mental healthcare services and 

identify characteristic of the system that are relevant to the study. (In relation to aim 1). 

The mental healthcare system will be thoroughly investigated to identify features that are 

unique to the system as well as those that are comparable to other healthcare systems. This 

task will help contextualise the mental healthcare landscape, predominantly in relation to 

the UK. The findings will also be influential in engaging with stakeholders in the case study; 

identifying the social, clinical, political, and policy implications within the system; and 

classifying existing literature. 

Objective 2: To investigate the application of simulation and optimisation modelling 

techniques in mental healthcare to identify gaps and opportunities. (In relation to aim 1). 

An extensive review on the application of simulation and optimisation modelling in mental 

healthcare is conducted. Since the study adapts the PartiSim framework, a review of 

Discrete-Event simulation modelling is conducted to identify the extent of its application and 

gauge the potential for including simulation modelling techniques as an adjunct to the 

optimisation model. Additionally, a detailed review of optimisation techniques in healthcare 

is conducted to identify the scope and depth of existing research. This is followed by a review 

on the application of optimisation modelling specifically to mental healthcare. A comparative 

analysis is carried out to locate opportunities for transferability while highlighting differences 
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between the systems warranting special attention. Literature review on the two modelling 

techniques also helps recognise similarities and differences between the two modelling 

lifecycles, aiding the adaptation of PartiSim to optimisation.  

Objective 3: To iteratively adapt PartiSim for optimisation modelling through a case study 

in mental healthcare services. (In relation to aim 2). 

The PartiSim framework involves six stages, and each stage is considered individually for 

adaptation. The study begins by considering conceptual modelling for formulating an 

optimisation model. New participative tools are developed to enable problem definition in 

stakeholder workshops. The mapping of these new developments along with the utilisation 

of existing PartiSim tools are demonstrated and discussed. Following model development, 

the experimentation and implementation stages are also adapted for optimisation. New 

modes of conducting workshops are considered while also exploring new implementation 

tools.  

Objective 4: To investigate and identify OR/analytics techniques to support the 

development of an optimisation model for mental healthcare service provision, to be 

embedded within the overarching participative and facilitative multi-methodology 

framework. (In relation to aim 2). 

This objective covers the model coding stages in the framework. OR/analytics techniques are 

considered to support the development of an optimisation model. Using the conceptual 

model of the system, an optimisation model is developed and potentially mapped to an 

existing model in literature. Optimisation model being a prescriptive analytics technique, the 

study investigates the feasibility of employing descriptive and predictive analytics techniques 

in a multi-methodology framework, thereby creating a multi-methodology within the 

overarching multi-methodology. The utility, composition and choice of the OR/analytics 

techniques is determined by the outputs of the problem structuring/conceptual modelling 

stages of the framework.  

Objective 5: To propose a Participative Optimisation (PartiOpt) multi-methodology 

framework for developing optimisation models (In relation to aim 2). 

To realise this objective, the adapted framework is proposed based on the knowledge gained 

from its application to the mental healthcare system. The final framework will be refined and 

requisite stages along with respective tools will be described. Reflections on the proposed 

framework will highlight limitations and areas of further work. The impact of the case study 

will also be examined.  
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1.3. Research Methodology 
This thesis adopts a multi-paradigm, multi-methodology process, which can bridge ‘soft’ and 

‘hard’ OR practices. Mingers and Rosenhead (2004) define a multimethodology as “In use, 

multimethodology is a creative process of design, based on competence in a range of 

methods. Each project or intervention is seen as a unique situation…for which a particular 

combination of methods, or parts of methods, needs to be constructed. This is an on-going 

process throughout the project, as events occur, and the situation evolves”. 

Multimethodologies are seen as a possible means to facilitate rapid problem structuring, the 

analysis of alternative process design and then the specification through to implementation 

of systems solutions (Small & Wainwright, 2014). In OR, mixing and employing multiple 

methodologies have been deployed consistently in interventions (Gomes Júnior & Schramm, 

2021; Henao & Franco, 2016; Yearworth & White, 2013).  

Multimethodology is supported by critical realism, a theoretical framework that facilitates 

the use of multiple research methods from different methodical approaches (Mingers, 

2001a; Mingers, 2004). Critical Realism introduces a more nuanced version of a realist 

ontology by offering a pathway between positivism on the one hand and interpretivism on 

the other (Archer et al., 2013; Bhaskar, 2010). From a critical realist perspective, most 

important is how quantitative and qualitative methods are used (Pratschke, 2003). In this 

view, the strength of quantitative techniques is that they can be used to develop reliable 

descriptions and provide accurate comparisons. Specifically, in the exploratory phase of an 

intervention, quantitative techniques can identify patterns and associations that may 

otherwise be masked. This may help to tease out new and unexpected causal mechanisms 

and can also be used to test out theories about how causal mechanisms operate under 

particular sets of conditions (Mingers, 2004). The key strength of qualitative techniques, 

from a critical realist perspective, is that they are open ended. This may allow themes to 

emerge during an inquiry that could not have been anticipated in advance. Qualitative 

techniques can help to illuminate complex concepts and relationships that are unlikely to be 

captured by predetermined response categories or standardised quantitative measures. 

The critical realist approach is highly compatible with a case study research strategy. In 

literature, a critical realist approach to a case study involves developing research question or 

questions that identifying a research phenomenon of interest, in terms of discernible events, 

and asking what causes them to happen (Easton, 2010). The case study then involves 

provisionally identifying entities involves, their powers, liabilities, and relationships. 

Research then proceeds by capturing data with respect to ongoing or past events, always 
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asking why they happened or are happening and considering the problems and issues 

associated with interpreting the empirical data back to the real entities and their actions (Yin, 

2009). Hence, the research process is one of continuous cycles of research and reflection, or 

of moving back and forth between the diverse stages of the research project. (Verschuren, 

2003). The result is the identification of one or more mechanisms that can be regarded as 

having caused the events.  

This study adopts the facilitated mode of conducting the OR intervention. This is a process 

by which OR interventions are conducted jointly with clients in a facilitated mode (Franco & 

Montibeller, 2010). This choice has been made based on the nature of the problem situation 

and as facilitated mode is particularly suited for evaluating strategic decision options such as 

the impact of enhancing the primary care mental health service. Furthermore, the PartiSim 

framework that is being adapted in this study is a multimethodology framework for building 

Facilitated DES models. Therefore, the proposed research methodology matches that of 

PartiSim.  

The methodology described above is best suited to this study, particularly as a key aim of 

this research is to explore theory (combining Soft and Hard OR techniques to develop a multi-

methodology) in relation to practice. For the case study, this involves evaluating the impact 

of the primary care mental health team on bridging the primary and secondary care, 

analysing the operational efficiency of the service, and evaluating alternative futures for the 

service. The mental health setting of this research provides rich data about the 

generalisability and transferability of the proposed framework for planning mental health 

service delivery.  

The PartiOpt multimethodology will be proposed by following an iterative adaptation 

process, starting with a reflective consideration of the transferability of stages, activities, and 

tools from PartiSim for optimisation. After identifying appropriate components from 

PartiSim, necessary modifications and additions for PartiOpt will be determined. 

Subsequently, an initial PartiOpt multimethodology will be developed for each stage of the 

modelling lifecycle. This initial multimethodology will then be applied to the case study. 

Feedback and reflections from the case study will guide further adjustments to the 

multimethodology, thereby leading to the incorporation of knowledge gained from the 

application. Finally, based on the insights that will be acquired, modifications to refine the 

multimethodology will be proposed.    
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1.4. Thesis Structure 
This section describes the contents of each chapter of the thesis. Chapter’s 2 to 6 are 

research papers. Specifically, Chapters 2 and 3 are published, Chapter 4 is set to be submitted 

and Chapter 5 and 6 are in view for submission. Essentially, Chapters 2-6 are structured as a 

stand-alone paper and together with the remaining chapters, they make up the thesis. The 

stand-alone chapters have their own introduction and literature review section that is 

tailored to a focused subject matter. The following is a description of each chapter. 

Chapter Two: Literature Review - Discrete-Event Simulation in Mental 

Healthcare 

This chapter presents a critical review of simulation modelling, specifically Discrete-Event 

Simulation, in mental healthcare. It begins by providing background on mental healthcare 

services, followed by a literature review on the application of simulation techniques to 

healthcare. The chapter describes the search strategy and selection criteria for the review. 

The selected articles are then categorised based on the publication characteristics, 

simulation study’s objectives, modelling scope, model type, stakeholder engagement and 

implementation. The discussion focuses on gaps in literature relative to operational 

efficiency, stakeholder engagement, and methodological pluralism, followed by a 

conclusion. This chapter contributes to the first two objectives. 

Chapter Three: Literature Review - Optimisation Modelling in Mental 

Healthcare 

This chapter present a meta-analysis of optimisation literature in healthcare, followed by a 

critical review of optimisation modelling in mental healthcare. The chapter begins with a 

discussion on the history of optimisation modelling in healthcare in terms of problems 

addressed as categorised by planning levels, model types, problem types such as models that 

address planning, scheduling, routing, and supply chain management issues. The chapter 

then goes on to discuss mental healthcare services in terms of features such as care setting, 

uncertainty, risks and considers the difference between physical and mental health. The 

review of optimisation in mental healthcare is initiated with a discussion of the method 

adopted for review, followed by a description of results. The chosen articles are categorised 

based on planning level and planning decisions addressed, the type of care setting, model 

objectives and constraints, model formulation, and solution algorithms employed. The 

chapter ends with a discussion on gaps and opportunities identified through the review. In 

particular, the discussion covers the importance of incorporating uncertainty and risk in 
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mental health optimisation models, highlights the need for models to address timely access 

and continuity of care in services. The discussion also considers the challenge of developing 

models for multi-layered mental healthcare systems and identifies opportunities for 

developing new modelling and solution methodologies to address the challenges of mental 

healthcare delivery. Managerial insights are then highlighted followed by the conclusion. 

Chapter Four: Conceptual Modelling for Optimisation 

This chapter illustrates the conceptual modelling of the optimisation model for the mental 

healthcare case study. The chapter begins by introducing the notion of a ‘conceptual model’ 

and highlights its relevance to the case study and to optimisation modelling. The literature 

review section covers several intersecting topics in OR literature that are relevant to the 

proposed framework. In particular, the section discusses relevant literature on facilitated 

modelling in OR, outlines the conceptual modelling stages on the PartiSim framework, 

examines facilitation, participation and multimethodology in optimisation modelling, and 

finally investigates the application of the above in mental healthcare modelling. The 

literature review provides essential background information and rationale for the proposed 

framework, specifically for the initial stages of problem structuring and conceptual modelling 

for optimisation. The chapter then continues by describing specific aspects of the case study 

that are under consideration and provides details of the first three stages of the framework 

corresponding to problem structuring and conceptual modelling. The next section describes 

how the framework was applied in the case study, starting from the initial exploration of the 

problem situation to the mapping of workshop outputs to the objectives of the study, and to 

conceptualise an optimisation model. In the discussion section, a case for conceptual 

modelling in optimisation is made by drawing from historical OR practices. The section 

includes an examination of how facilitated optimisation can be a viable methodology, and 

reflections on the proposed framework are followed by the conclusion.  

Chapter Five: Analytics-Driven Optimisation Modelling 

This chapter proposes an analytics-driven optimisation approach that integrates the three 

stages of descriptive, predictive, and prescriptive analytics. The approach was developed 

following a successfully conceptualisation optimisation model and driven by the quantitative 

decision support requirements that emerged in the initial stages of the study. The chapter 

begins by making a case for the development of an analytics-driven optimisation modelling 

approach to address the full range of quantitative analysis needs of the mental healthcare 

service under consideration. The literature review section briefly reflects on optimisation in 

mental healthcare, followed by an examination of literature on personnel scheduling in 
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healthcare, with an emphasis on multi-skill multi-location personnel scheduling which is the 

type of model built for the case study. The section ends with an examination of analytics 

driven approaches to optimisation modelling in healthcare. The next section provides 

background on the case study and a problem statement for the integrated optimisation 

approach. An overview of the proposed approach is presented next followed by a discussion 

on the outputs of each analytics stage within the approach: descriptive, predictive, and 

prescriptive. The next section presents the mathematical formulation of the optimisation 

problem along with the notation used. Experiments with the model in terms of scenario 

analysis are highlighted in the next section, which also includes details on how and which 

data was used in each scenario. Computational results of the model with respect to scenarios 

are provided in the next section. The discussion focuses on the contributions of the 

integrated approach and future research directions. The chapter ends with some conclusive 

remarks.  

Chapter Six: How do stakeholders interact with optimisation models?  

This chapter explores stakeholder engagement and interaction with the solved model. 

Specifically, the chapter presents the adaptation of the post-model coding stages of the 

PartiSim framework for optimisation modelling in healthcare. A facilitative approach for 

stakeholder participation, focusing on the validation, experimentation, and implementation 

of a mathematical optimisation model is then derived and its effectiveness demonstrated 

using a real case study in mental healthcare. The chapter begins by introducing limitations, 

gaps and opportunities in optimisation model validation and implementation, while also 

highlighting how simulation modelling has successfully addressed these challenges. Proposal 

to address these gaps by drawing from existing research is outlined and specific contributions 

are outlined. The next section provides background literature by first presenting the Post-

Model Coding stages in PartiSim including experimentation and implementation of the 

model. Next, literature on optimisation model validation, experimentation, and 

implementation is explored by examining the present state of each theme relative to the use 

of Facilitation and Soft OR methodologies to these corresponding themes. The aim is to 

identify developments, gaps and recognise opportunities, while foregrounding the 

adaptation of the PartiSim framework. An overview on the adaptation to optimisation is 

provided in the next section followed by a description of how the framework was applied to 

the case study. The framework is then proposed in the next section, along with a reflection 

on the adaptations, and examination of the footprint of conducting facilitated workshop 

virtually. The chapter ends with some conclusive remarks.  
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Chapter Seven: Summary and Conclusion 

This chapter provides a summary of the research and discusses its contribution. This chapter 

highlights how the research aim and objectives have been achieved. It concludes with a 

reflection on the overall adaptation of PartiSim to optimisation and the researcher’s 

evolution over the course of the study. Limitations and key future research areas are also 

discussed.   
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Chapter 2: Application of Discrete-Event simulation for 
planning and operations issues in mental healthcare 

Abstract 

Mental health disorders are on the rise around the world. Inadequate service provision and 

lack of access have led to wide gaps between the need for treatment and service delivery. 

Despite the popularity of Discrete-event Simulation (DES) in healthcare planning and 

operations, there is evidence of limited application of DES in planning for mental healthcare 

services. This paper identifies and reviews all the papers that utilize DES modelling to address 

planning and operations issues in mental healthcare services. The aim is to contribute a 

roadmap for the future application of DES in mental healthcare services, with an emphasis 

on planning and operations. 

2.1. Introduction 
Mental disorders are an enormous burden to society. They account for 30% of non-fatal 

disease burden worldwide and 10% of overall disease burden, including death and disability 

(Mnookin et al. 2016). In addition to the health impact, mental disorders cause a significant 

amount of economic burden through health spending, social spending, and through the loss 

of labour (World Health Organization and Calouste Gulbenkian Foundation 2017). From a 

service planning and delivery point of view, the era of advanced deinstitutionalization brings 

with it significant challenges to provide high-quality coordinate care (OECD/EU 2016). 

Individuals who have a varying range of health and social needs must be organized by 

providers of care across three settings: care provided in the community, inpatient care and 

secure care, in a locked setting. For healthcare professionals in mental healthcare, improving 

efficiency of operations by optimally allocating scarce resources and improving access to 

treatment while minimizing delivery costs becomes imperative to delivering high quality 

care.  

Discrete-event simulation has long been a popular and widely accepted tool of decision 

support for decision-makers in healthcare operations planning, even before the widespread 

availability of computers and development of advanced simulation software (Papageorgiou 

1978; Tunnicliffe 1980; Günal and Pidd 2010). Despite its popularity, there is evidence of 

limited application of DES (six papers have been found) in operations planning for Mental 

Healthcare Services (MHSs) (Long and Meadows 2018). This knowledge gap warrants 

attention as DES has the potential to analyse and improve health services (Jacobson et al. 

2013). We conducted a systematic review to determine the extent to which studies have 
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used DES within MHSs. This paper builds on the review by Long and Meadows (2018) by 

contributing additional insights and a tailored roadmap for the future application of DES for 

planning and operations issues in Mental Healthcare (MH).  

This paper is organized into a further five sections. Section 2.2 provides an overview of 

background literature on MH and simulation modelling in MHSs. Section 2.3 describes the 

search methodology employed for the literature review. Section 2.4 offers an analysis and 

description of findings from the articles chosen to be reviewed. Section 2.5 discusses the 

future research directions for the application of DES in MH. Section 2.6 concludes this paper. 

2.2. Background Literature 
2.2.1. Mental Healthcare Services 

Mental disorders often follow a chronic course, albeit with periods of relapse and remission 

which can mimic acute disorders. Management of mental disorders- more particularly than 

other medical conditions- is said to require a balanced combination of three fundamental 

ingredients of care: pharmacological; psychological; and psychosocial interventions (World 

Health Organization 2001). Therefore, the needs of people with mental illness are multiple 

and varied and differ at different stages of the illness. These needs are met mainly through 

community-based services within a local setting. Community mental health can comprise of 

a variety of services such as outpatient services, acute inpatient services, long-term care, 

nursing services, mental health teams, therapy services, and community hospitals in co-

ordination with a number of external partners including primary care, specialist care, social 

care, voluntary services, emergency services, education, housing, and the justice system 

(Thornicroft et al. 2016; Carter 2018). 

From an operational aspect, there is little uniformity in the delivery of services (Carter 2018). 

It has been reported that in a single geographical location no two mental health service 

providers deliver the same set of services (Carter 2018).  This discord between how services 

are structured is both a global and national phenomenon. Patterns of services and provision 

of treatment for mental health not only differ between high- vs. low- and middle income 

countries, but also high- vs. low-resource areas within countries (Patel et al. 2018). A single 

global model of mental health care provision simply does not exist (Thornicroft et al. 2016).  

Additionally, a range of barriers limit the provision of care specifically for the MH sector, 

which include inadequate funding, high workload pressure on mental health workers, and 

understaffing among others (BMA 2017). For patients with mental health conditions, there 

remain a number of system-wide challenges. These include, long waiting times, poor 
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integration across services, bed shortages and inadequate service provision, to name a few 

(BMA 2017). With rising healthcare costs and continued prevalence of mental health 

disorders worldwide, the need to make comprehensive decisions in service delivery and for 

robust resource allocation add to the ever-increasing pressure to deliver quality care. The 

mental healthcare system consists of multiple stakeholders, inter-related and 

interconnected components, with complex interactions. Hence, OR techniques such as DES, 

can and should play a significant role in helping MH service managers to evaluate efficiency 

of existing systems, examine staffing levels, and investigate complex relationships in the 

system. 

2.2.2. Simulation in Mental Healthcare 
A number of reviews published in the timeframe 2009-2019, have explored the application 

of DES in a wide array of healthcare settings (Brailsford et al. 2009; Cardoen et al. 2010; Günal 

and Pidd. 2010; Mustafee et al. 2010; Katsaliaki and Mustafee 2011; Fakhimi and Mustafee 

2012; Mielczarek and Uziałko-Mydlikowska 2012; Mielczarek 2016; Long and Meadows 

2018). In striking contrast, analysis of these reviews reveals that prior to the review authored 

by Long and Meadows (2018), the paper by authors Mielczarek and Uziałko-Mydlikowska 

(2012) was the only one that cited a study related to mental health. 

MHS planning has been largely neglected by the discipline of Operations Research (OR), 

which by extension also holds true for DES (Bradley et al. 2017). A similar conclusion was 

arrived at by authors Long and Meadows (2018), having reviewed 160 papers that employed 

simulation modeling methods such as Markov modelling; Monte Carlo Simulation; 

Microsimulation; DES; Agent Based Modelling (ABM); and System Dynamics (SD) in mental 

healthcare. The authors found widespread applications in areas of medical decision making 

and epidemiology. However, application of simulation in healthcare system design, planning 

and operations were found to be relatively underrepresented (Long and Meadows 2018). 

Furthermore, the authors identified 19 articles that applied DES, of which four journal 

articles, one conference proceedings paper and one PhD thesis applied DES to address 

planning and operations issues in MHSs. The application of ABM and SD to inform mental 

health policy has also been reviewed by authors Langellier et al. (2019). They provide a 

narrative synthesis of eight articles included in their review and highlight opportunities for 

expanded use of complex systems approaches in mental healthcare (Langellier et al. 2019). 

Along similar lines, this paper aims to further contribute to the budding literature in MHS 

planning by reviewing and analyzing literature specific to the application of discrete-event 

simulation.  
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2.3. Search strategy and methodology 
We conducted a systematic review of literature to identify studies that utilized DES within 

MHSs. We retrieved relevant studies from a number of databases. The search strategy was 

designed to capture publications not only from OR journals but also to include articles from 

medical journals. The search term utilized was “discrete-event simulation” AND “mental 

health*”. Articles published between 2000 and 2018 were included. Figure 1 summarizes the 

search strategy employed for selecting articles (Liberati et al. 2009). The selection procedure 

included two screenings to determine the eligibility of the articles. In the first screening, 

articles were included if the answer to the questions: (i) has DES been applied; and (ii) has 

DES been applied to MHS was affirmative. Those excluded from the analysis were articles 

that were reviews, opinion pieces, debates and methodology focused papers. Furthermore, 

articles’ whose primary focus was to model epidemiology, disease progressing, screening, 

health promotions and hospital overcrowding where mental health clinics were not a key 

focus were also excluded. In the second round of screening, articles were excluded if they 

primarily dealt with health economics. Following screening, ten papers were selected for 

review. Data extracted for each paper is presented in Table 1. 

 

 

2.4. Results 
2.4.1. Publication Characteristics 

A total of ten publications were retrieved dating from 2000 to 2018 of which seven were 

published in journals and three were conference publications. Interestingly, of the seven 

Figure 1: Flow diagram of review paper selection. 
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journal publications, only one was from an Operations Research journal and six were from 

non-OR journals. Additionally, majority of publications were from the USA (seven papers), 

with Australia, Canada and UK constituting for one paper each.  

2.4.2. Study Objectives 
We categorized six papers as being predominantly concerned with capacity planning whilst 

four papers featured resource allocation issues. Studies focused on capacity planning largely 

involved increasing bed capacity to understand potential impacts on patient flow through 

the system (Kuno et al. 2005; La et al. 2016; Paton and Tiffin 2018; Roh et al. 2018). 

Furthermore, two studies examined capacity in terms of prospective requirement of 

practitioners to satisfy patient demand for a service (Patten and Meadows 2009) and 

investigated the optimum panel size (list of assigned patients) for a psychiatrist providing 

treatment to Post Traumatic Stress Disorder (PTSD) patients (Dursun et al. 2013). The lack of 

beds in mental healthcare services is a contentious issue where service providers have to 

find tradeoffs between increasing health outcomes for patients by decreasing waiting times 

and costs associated with increasing bed capacity. Especially when delay in treatment poses 

considerable health risks to patients with mental health conditions. 

Resource allocation is the second most investigated issue in MHS planning, wherein authors 

Konrad et al. (2017) have explored the impact of projected increase in patient volumes on 

resources, whilst authors Chepenik and Pinker (2017) developed a model to predict potential 

benefits of additional clinical staff to patient flow. Resource allocation has also been 

conducted along with rationalizing budgets for MHSs (Troy et al. 2017) and to improve 

service (Kim et al. 2013). 

Most studies reviewed in this paper have marked the beginning of DES in various aspects of 

MHSs, for instance: authors Konrad et al. (2017) have modelled an integrated clinic, thereby 

addressing a gap in simulation as well as in mental health; Troy et al. (2017) have applied 

simulation on a granular level for a large mental healthcare network for resource allocation; 

Dursun et al. (2013) used DES to design a panel (list of assigned patients) for a psychiatrist, a 

phenomenon commonly only associated with physicians in primary care; Roh et al. (2018) 

have addressed a gap in literature by considering the transition process for patients from an 

emergency department into external community and inpatient settings; and Patten and 

Meadows (2009) have demonstrated how service planning can be conducted by utilizing 

epidemiologic data.  
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Table 1: Summary of classification of review articles 

Title and 
Authors 

Purpose Modelling Scope Stakeholder 
Engagement 

Implementation Model’s Input 
Parameters 

Study Findings 

Kuno et al. 
(2005) 

 

Capacity Planning 
 

Multi-Unit  (Hospital 
and Residential 

Units) 

 
Suggested ▪ Length of Stay (LoS). 

▪ Bed capacity 
▪ Transition rate 

(between facilities). 

▪ Comparison of various bed capacity 
options. 

▪ Increased bed capacity improved system 
performance. 

Patten and 
Meadows 

(2009) 

Capacity Planning and 
Patient Demand 

Service Network 
 

Suggested ▪ Population size. 
▪ Treatment 

acceptability rate. 
▪ Recurrence rate. 

▪ Linked epidemiology data to service 
planning. 

▪ Estimated number of therapists 
required. 

Dursun et al. 
(2013) 

Capacity Planning Single Unit (Clinic) 
✓ 

Conceptualized ▪ Panel size 
▪ Treatment 

engagement (%) 

▪ The number of patients a psychiatrist 
should provide care to was identified. 

Kim et al. 
(2013) 

Service Redesign and 
Resource Allocation 

 

Single Unit 
(Clinic) 

✓ 
Conceptualized ▪ Clinical hours. 

▪ Staff composition. 
▪ Analysis of trade-offs between long 

service time and increasing staffing 
costs. 

▪ Extending clinic hours by two and an 
additional psychiatrist were 
recommended. 

La et al. (2016) Capacity Planning Single Unit 
(Hospital) 

✓ 
Conceptualized ▪ Bed capacity. ▪ A 165% increase in bed capacity required 

to reduce patient wait time. 
▪ Emphasized DES’s potential to solve 

complex operational problems in MH. 
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Troy et al. 
(2017) 

Resource Allocation 
and Budgetary 

Evaluation 

Service Network 
✓ 

Conceptualized 

▪ Staff composition 
▪ Clinic location 

▪ Experimentation revealed underutilized 
staff that were reallocated. 

▪ Rationalized staffing levels and improved 
service levels. 

Konrad et al. 
(2017) 

Resource Allocation 
 

Multi-Unit  
(Integrated Clinic) 

✓ 
Conceptualized 

 
 
 
 

▪ Patient volumes 
 

▪ Expanding patient coverage required 
four additional providers. 

▪ Inform the MH community to the 
benefits of DES. 

Chepenik and 
Pinker 
(2017) 

Resource Allocation 
 

Single Unit  
(Psychiatric 

Emergency Service) 

 
Conceptualized ▪ Number of 

practitioners 
 

▪ Modest addition of one half-time 
clinician produced biggest increase in 
patient flow metrics. 

▪ Explained service bottlenecks 

Paton and Tiffin 
(2018) 

Capacity Planning Single Unit 
(Clinic) 

 
Suggested ▪ Referral rate. 

▪ LoS. 
▪ Substantial increase in in-patient 

capacity needed to reduce wait times. 
▪ Call for a more complex approach within 

DES framework. 

Roh et al. 
(2018) 

Capacity Planning Multi-Unit 
(Hospital ED and 
Inpatient Wards) 

✓ 
Conceptualized ▪ Patient arrival rate 

▪ ED inpatient 
admissions (%) 

▪ Inpatient LoS (%) 

▪ Boarding time increase with high arrival 
rates and LoS. 

▪ Over-utilized inpatient units push urgent 
care for MH into the emergency 
department.  
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Clearly, all of the papers are primarily motivated by improving the quality of services being 

studied and demonstrating the utility of DES in mental health as opposed to enhancing the 

DES method and models.  

2.4.3. Modelling Scope and Model Type 
Scope represents the extent to which the MH system has been captured in models. Five 

articles under review were modelled on a single unit (such as MH clinics, Hospitals, 

Psychiatric Emergency Services) and four articles modelled multiple units in the MHS 

network (e.g. hospitals, residential units and inpatient wards).  

Additionally, DES models have broadly been classified into four types based on the purpose 

they serve. Based on this classification, models developed in eight of the ten articles were 

grouped as ‘Throwaway Models’, that is, models that are developed for the duration of a 

study to investigate one or more issues that are being address (Robinson 2014). In contrast, 

models from the two remaining studies were classified as “Generic Models”, that is models 

developed in a particular context that can be used across a number of organizations 

(Robinson 2014). Thus, the service planning model linking epidemiology data to service 

planning developed by authors Patten and Meadows (2009) and the model built by Troy et 

al. (2017), to rationalize staffing levels were generic models that could potentially be applied 

across organization in the context of MH. 

2.4.4. Stakeholder Engagement and Implementation 
Stakeholder engagement is said to play a key role in the success of a simulation project 

(Robinson and Pidd 1998). Six out of ten papers from this review describe varying degrees of 

stakeholder engagement. The paper that described a relatively high stakeholder 

engagement was authored by La et al. (2016). They describe the number of stakeholders that 

participated and enumerate who the stakeholders were while stating reasons for their 

involvement. A total of nine meetings were held at various points in the study. These allowed 

for goal communication and data collection as well as conceptualizing scenarios for analysis. 

Likewise, authors Konrad et al. (2017) have described adequate levels of stakeholder 

engagement with staff for a number of purposes including, data collection, conceptual model 

validation, base scenario modelling and incorporating feedback via a number of model 

iterations. On the other hand modest levels of engagement have been described by authors 

Dursun et al. (2013), Kim et al. (2013), Troy et al. (2017) and Roh et al. (2018), typically 

through model validation, reviewing model’s results, and interviews to quantify service 

parameters, validation of model’s assumptions and for conceptualizing service changes. 
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 Moreover, the nature of stakeholder engagement varies across studies. That is, we deduced 

from the description of the engagement that La et al. (2016) engaged with stakeholders in a 

group, while other authors engaged on a one-on-one basis (Dursun et al. 2013; Konrad et al. 

2017; Roh et al. 2018). However, for authors Kim et al. (2013) and Troy et al. (2017), we were 

unable to deduce the nature of stakeholder engagement owing to the lack of a detailed 

description. 

None of the papers being reviewed reported the use of their models in practice. This is in 

line with previous findings (Wilson 1981; Taylor et al. 2009). The papers were classified based 

on the three-level scale of implementation described by Brailsford et al. (2009). Accordingly, 

seven studies have ‘conceptualized’ (discussed with a client organization) their model’s 

results by describing the likelihood for improvement in services, if utilized. On the other 

hand, three studies have ‘suggested’ (theoretically proposed by authors) their model’s 

usefulness, specifically in the context of MHS. 

2.4.4.1.  Sponsor and Funding 

The primary initiator (sponsor) of seven of these studies was the health services, although 

sources of funding for these studies were not reported. Furthermore, one study was judged 

to be solely of academic origin, although the authors utilize data that was consolidated by 

the government, the study itself was an academic venture (Patten and Meadows 2009). 

Moreover, we found evidence of two studies that were sponsored and funded by 

government initiation/support via grants and/or by health services. Specifically, the study 

conducted by Kuno et al. (2005) was government funded and the study conducted by La et 

al. (2016) had elements of funding and support from government as well as health services. 

While the number of articles being analysed here is modest to come to a conclusion, it is 

however, indicative of a possible recognition from the mental health community and to some 

extent, the government of DES modelling’ s offerings. In support of this argument, Konrad et 

al. (2019) have highlighted the coming together of academics and clinicians in their study as 

having been successful in applying DES, which is not typically used in mental health 

workforce planning and have advocated for more such partnerships across mental health 

settings. Perhaps, future research can look to this study for academic-clinical partnerships in 

the context of mental health.   

2.5. Discussion 
The previous section illustrates the underrepresentation of DES in operations and planning 

of MHSs. The papers reviewed so far have made a case for robust application of DES to the 
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mental health community as well as to researchers and practitioners alike. Having said that, 

the application of simulation modelling to MHSs is anything but straightforward. The 

structural ambiguity of mental health service provision, pose significant challenges to model 

transferability and adaptability. However, certain contextual and structural similarities can 

be drawn from application of simulation to social care (Onggo 2012); stroke care systems 

(Churilov and Donnan 2012); and long-term care (Patrick et al. 2015). Each of these care 

systems consists of a diverse range of disparate services, which constitute interrelated parts 

of a whole system. Notwithstanding these similarities, it is important to recognize that 

mental healthcare services encompass elements of acute care, chronic care, social care and 

long-term care, which makes direct reapplication of previous research a matter of further 

inquiry.  

This section will draw on existing literature of DES and its application in healthcare, while 

examining the potential for reapplication or adaptation to aspects of MHSs. The subsequent 

roadmap has been conceived by carefully considering the complex dynamics within the 

system, while also acknowledging the characteristics of the MHSs discussed in the review. 

Besides, the roadmap is also consistent with emerging trends in modelling healthcare 

systems (Arisha and Rashwan 2016). 

2.5.1. Operational Efficiency 
Variations across mental health services have had a negative impact on workforce 

productivity, operational efficiency while adding to the escalating mental health related 

costs (Lagomasino 2010). According to the analysis, most studies have primarily focused on 

capacity planning and resource allocation. In contrast, only one study focused on service 

design. Whereas, DES has been utilized for these purposes in other areas of healthcare 

(Mustafee et al. 2010), such applications in mental health are negligible. For instance, DES 

has been used to evaluate service design options for stroke care pathways to determine the 

most effective alternative that reduces in-hospital delays (Monks et al. 2012); and DES was 

used to design a more efficient hospital pharmacy by comparing changes in staffing levels 

and skill-mix depending on workload (Reynolds 2011). Such evidence-informed analysis of 

service design and delivery alternatives, have the potential to improve outcomes and cut 

costs (Pitt 2016). Future research could focus on this aspect of MHSs as care pathways of 

mental health patients are highly variable. This is especially important as patients with 

mental health disorders present with considerable risks and poor quality of treatment can 

lead to poor outcomes (Gilburt 2015). 
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Length of Stay (LoS) has been a key performance indicator that most studies have tried to 

reduce owing to the financial constraints of increasing bed capacities. Lack of care in the 

community and decreasing provision of social care are said to prolong LoS (Paton and Tiffin 

2018). However, such influences have not been modelled or studied and can be a promising 

area of future research. 

2.5.1.1. Quality Improvement 

In response to huge pressures due to severe financial constraint and workforce shortage 

facing MHSs, a growing number are turning to ‘quality improvement’ (QI) approaches to 

achieve service improvements (Green et al. 2012; Ross and Naylor 2017). QI tools include, 

‘Plan-Do-Study-Act Cycle’; Six-Sigma; Lean methodology etc. (Varkey et al. 2007). In essence, 

these efforts proceed on the basis of anecdotal accounts of successful strategies and require 

multiple iterations to attain reliable improvements, which are likely to incur additional costs. 

Although such efforts in mental healthcare services are in their early days, there is limited 

evidence of impact (Ross and Naylor 2017).  

Alternatively, evidence in simulation literature demonstrates the potential for DES and QI as 

complementary methodologies that can be used together as they have similar motivations: 

to improve process and service delivery (Robinson et al. 2012). Indeed, the integration of 

DES and QI has also been advocated for by the medical community as well (Rutberg et al. 

2015) and there exist a number of instances in literature where such efforts have been 

successfully employed in healthcare (Robinson et al. 2012; Baril et al. 2016). This integration 

can help an already financially constrained mental health service in selecting the best option 

of service improvement by using DES, without having to dissipate precious resources.  

2.5.2. Stakeholder Engagement 
In MH, delays in decision making on improvements to patient pathways owing to stakeholder 

concerns and feedback, have been known to have substantial impacts on costs and patients’ 

health (Carter 2018). From the analysis, it appears that most papers have given limited 

attention to stakeholder engagement in terms of identifying relevant stakeholders, 

describing their level of decision-making or involving them explicitly from the outset of the 

study. The fragmented nature of MHSs across different local areas and the presence of a 

range of partners and stakeholders warrants cooperation and integration, to achieve long-

term efficiency and greater operational productivity (Carter 2018).  Therefore, future 

research offers ample opportunities to improve limitations of stakeholder engagement so 

far and enhance stakeholder engagement in the application of DES to MHSs. This could not 

only be beneficial to improving a DES models’ quality and with it, the chance of a successful 
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outcome, it could also help MHS providers and decision makers tackle some of their 

productivity issues. 

Stakeholder engagement is considered a key factor in simulation studies, and is critical to 

successful model implementation (Young et al. 2009). There is evidence of a direct causal 

link between weak or low stakeholder engagement and lack of implementation. Early 

involvement of stakeholders is often recommended for a simulation study. This is truer so in 

health care than in other areas of application as it increases the risk of loss of interest in the 

final results and recommendations (Roberts 2011). Furthermore, it is also suggested to 

involve a diverse group of stakeholders whose interests add an additional dimension to a 

simulation study (Roberts 2011).  

In literature, there are instances of simulation studies that utilize Problem Structuring 

Methods (PSMs) for stakeholder engagement through facilitated modelling (Kotiadis et al. 

2014; Robinson et al. 2014; Tako and Kotiadis 2015). Interestingly, PSMs are already being 

applied within mental health for systems improvement and policy (Powell and Mustafee, 

2017). Future research could use PSMs in combination with DES through facilitated 

modelling in MH. 

2.5.3. Methodological Pluralism 
Several aspects of mental health services that need further investigation have been 

identified by the studies that have been reviewed here. Most authors recognize the 

preliminary nature of their application and call for a more comprehensive approach.  

The dynamic structure of MHSs, often generates a number of inefficiencies at boundaries 

between different services and service providers in the system (Carter 2018). Therefore 

focusing on the wider mental healthcare continuum by modelling service integration and 

examining the interdependencies in the system could be a promising future research 

direction. For instance, service use by patients with mental illness is associated with habitual 

no-shows, which has a negative effects on both the patient and the service (Gondolf 2009). 

Such analyses have not been incorporated into simulation models of MHSs so far. Although, 

statistical analysis of such factors is usually conducted on a standalone basis (Crabb and 

Hunsley 2006). Coupling statistical analysis of demand factors such as age, gender, ethnicity 

with DES modelling could provide invaluable insight into the operational dynamics associated 

with them.  

Additionally, service improvements in MHSs are currently being carried out without 

thoroughly analyzing the impacts of implemented changes (Ross and Naylor 2017). It is also 
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reported that these improvements are being carried out in isolation or in single units (Gilburt 

2015). The combination of such practices can be detrimental to MHSs that are under 

immense pressure. Increasingly in healthcare, similar issues are being tackled by 

acknowledging that it is rarely possible to capture multiple aspects of a problem, and by 

employing hybrid simulation by combining two or more simulation methods such as DES, 

system dynamics (SD) and agent-based modelling (ABM) for one intervention (Brailsford et 

al. 2018). Indeed such advantages of hybrid simulation are progressively being discussed in 

literature while also being used to explore links between health and social care systems 

(Brailsford et al. 2013). Moreover, similar inquiries can also be found in mental healthcare, 

wherein hybrid simulation has been used for cost-effectiveness analysis of integrating 

mental health into primary care (Aringhieri et al. 2018). By further adapting approaches that 

address multiple aspects of service delivery in MH, current limitation could be overcome. 

 Furthermore, under the current system wide financial constraints facing MHSs, resource 

planning is essential to deliver quality care (Dunn et al. 2016). Increasingly, simulation-

optimization approaches are being used for identifying effective improvement factors in 

planning healthcare service resources (Fu et al. 2015). Simulation methods such as DES can 

be employed to model critical activities and scarce resources and optimization methods such 

as linear programming can be used to provide optimal resource configurations that best 

improve performance. For instance, authors Ozcan et al. (2016) have used the simulation-

optimization approach to evaluate and improve the performance of a surgery-based 

pathway. Simulation allowed for system variability to be tracked and for the evaluation of 

resource utilization. Whereas optimization allowed for the identification of optimal capacity 

decisions in delivering performance. This integration of simulation and optimization could be 

another interesting area of future research.  

2.6. Conclusion 
Mental illness is the next major global health challenge. Worldwide, there is widespread 

commitment to fill the gaps between the need for treatment and service delivery. Operations 

and service planning issues in mental healthcare present plenty of opportunities for 

researchers as well as practitioners, not only for the application of DES, but also for 

combining DES with other suitable methods that capture multiple aspects of the service 

delivery system. Our review analyzes the application of DES modelling for planning and 

operations issues in mental healthcare services so far. The analysis highlights several 

limitations and contributes a roadmap for the application of DES to tackle issues of 

operational efficiency and productivity in MHSs. We encourage simulation researchers to 
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direct their efforts towards tackling operations and planning of MHSs. This could be a step in 

the right direction towards addressing important problems faced by mental healthcare. 
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Chapter 3: Mind the gap: a review of optimisation in 
mental healthcare service delivery. 

Abstract 

Well-planned care arrangements with effective distribution of available resources have the 

potential to address inefficiencies in mental health services. We begin by exploring the 

complexities associated with mental health and describe how these influence service 

delivery. We then conduct a scoping literature review of studies employing optimisation 

techniques that address service delivery issues in mental healthcare. Studies are classified 

based on criteria such as the type of planning decision addressed, the purpose of the study 

and care setting. We analyse the modelling methodologies used, objectives, constraints and 

model solutions. We find that the application of optimisation to mental healthcare is in its 

early stages compared to the rest of healthcare. Commonalities between mental healthcare 

service provision and other services are discussed, and the future research agenda is 

outlined. We find that the existing application of optimisation in specific healthcare settings 

can be transferred to mental healthcare. Also highlighted are opportunities for addressing 

specific issues faced by mental healthcare services. 

3.1. Introduction 
Mental health is a significant global concern, not only for public health but also for economic 

development and societal welfare. Mental health disorders are on the rise around the world. 

Failure to respond to this growing crisis could cause lasting harm to individuals, societies, 

and economies worldwide. This crisis has been exaggerated by the COVID-19 pandemic 

(Pfefferbaum & North, 2020). The gap between the need for treatment and its provision is a 

global issue. The World Health Organisation (WHO) estimates that between 35% and 50% of 

people with severe mental health problems in developed countries and 76-85% in 

developing countries receive no treatment (World Health Organisation, 2019). Untreated 

mental health problems account for 13% of the total global burden of disease (Ibid). Concern 

for mental health as a pressing public health issue is also building as the magnitude of the 

problem is put in economic terms. The World Economic Forum estimates that the costs 

associated with mental illness at $2.5 trillion in 2010 can grow to $6 trillion in 2030 (Bloom 

et al., 2011). Mental illness costs exceed the cost of any other non-communicable disease, 

including cardiovascular disease, chronic respiratory disease, cancer, and diabetes (McDaid, 

Park, & Wahlbeck, 2019).  

http://www3.weforum.org/docs/WEF_Harvard_HE_GlobalEconomicBurdenNonCommunicableDiseases_2011.pdf
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At present, as the world confronts the COVID-19 pandemic, experts predict a looming mental 

health crisis on the horizon (Ahluwalia C. Sangeeta, Farmer M. Carrie, & Abir Mahshid, 2020). 

Before COVID-19 emerged, statistics on mental health conditions were already stark. As the 

situation unfolds, there is emerging evidence that healthcare workers are at significant risk 

of adverse mental health outcomes (Ho, Chee, & Ho, 2020; Kang et al., 2020; Lai et al., 2020). 

For patients living with existing mental health challenges, the pandemic carries a high risk of 

symptoms worsening, mental or emotional deterioration or full-blown relapse (Yao, Chen, & 

Xu, 2020). This constantly changing landscape has increased levels of loneliness, depression, 

harmful alcohol and drug use, and self-harm or suicidal behaviour (World Health 

Organization, 2020). Globally, the pandemic has exposed glaring health disparities and 

highlighted the weaknesses in seemingly robust healthcare systems (Tandon, 2020). 

Simultaneously, the pandemic has highlighted the significance of mental health and the 

pressing need for parity with other health services (Moreno et al., 2020). While several 

initiatives to strengthen mental health services have sprung up, the response has been 

hampered by the historical underinvestment (United Nations, 2020). The COVID-19 

pandemic is markedly a turning point, moving mental health up the list of global health 

priorities. As countries struggle to rebuild their damaged economies, they are being urged to 

accept the reality of the financial toll of mental ill-health and invest in efficient and good 

quality services (The Lancet Global Health, 2020). 

Operational Research (OR) encompasses a wide range of problem-solving techniques and 

algorithms that are applied in the pursuit of improved decision-making and efficiency. Over 

the last two decades, OR methodologies have been applied extensively to various health care 

systems. In contrast, the mental/psychological care services have been noted as an area of 

neglect in OR (Bradley et al., 2017). For instance, existing reviews explore the application of 

specific OR methodologies, such as simulation (Langellier et al., 2019; Long & Meadows, 

2018; Noorain, Kotiadis, & Scaparra, 2019), and Data Envelopment Analysis (García-Alonso, 

Almeda, Salinas-Pérez, Gutierrez-Colosia, & Salvador-Carulla, 2019), on mental healthcare 

services. In contrast, a comprehensive review of the application of optimisation 

methodologies to mental healthcare in the OR literature is lacking. We aim to provide a 

comprehensive and up-to-date account of the application of optimisation for planning and 

delivery in mental/psychological healthcare services.  

The contributions of this review are threefold. First, we provide a comprehensive overview 

of the application of optimisation in healthcare so far. Through this, we highlight gaps in 

existing optimisation literature and examine future research directions. Second, we analyse 
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the context of mental healthcare services to identify unique features and investigate if 

similar features have been considered in the healthcare literature. Our primary contribution 

though results from a scoping review on the application of optimisation techniques in mental 

healthcare services to identify issues for researchers to analyse, study and model.  

The remainder of this paper is organised as follows. Section 3.2 provides background 

information on the topic by examining existing optimisation literature in healthcare and 

analysing the context of mental healthcare services. Section 3.3 describes the search 

methodology employed in this review, followed by Section 3.4, which provides a thematic 

overview and presents an analysis of optimisation model components such as the objective 

function, model constraints, model formulation and solutions methodologies employed by 

the articles under review. Section 3.5 draws on the similarities between mental healthcare 

services and other healthcare settings and sets the agenda for future research. Section 3.6 

presents some conclusive remarks. 

3.2. Background 
This section is intended to serve four purposes: to provide a brief overview of planning levels, 

to describe the components of an optimisation model, to illustrate the use of optimisation 

in healthcare, to demonstrate the unique characteristics of mental illness, and to explore 

opportunities of synergy between the application of optimisation and mental healthcare 

services. 

3.2.1. Planning Levels 
The optimisation literature is often organised based on four hierarchical planning levels, 

including various planning decisions (Cissé et al., 2017; Hans, Van Houdenhoven, & Hulshof, 

2012). The four hierarchical levels are strategic, tactical, operational offline, and operational 

online (Hulshof, Kortbeek, Boucherie, Hans, & Bakker, 2012). Planning on a strategic level 

addresses structural decisions with a long planning horizon, whereas planning on a tactical 

level involves the translation of strategic planning decisions into guidelines that facilitate 

operational planning (Hans et al., 2012). Operational planning involves short-term decision-

making, reflecting the execution of tactical blueprints. Offline operational is about advance 

planning or operations, whereas online operational planning deals with reactive decision 

making in response to events that cannot be planned in advance (Cardoen, Demeulemeester, 

& Beliën, 2010; Hulshof et al., 2012).  

3.2.2. Optimisation Model 
There are three main components in an optimisation model: objective function, decision 

variables, and constraints. An optimization model seeks to find the values of decision 
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variables that optimize (maximize or minimize) an objective function among a set of values 

of the decision variables that satisfy given constraints (Winston & Goldberg, 2004). To 

illustrate, consider a simplified example. A hospital emergency room would like to minimize 

costs associated with scheduling nurses. The optimisation model would include the 

‘objective function’ (goal) to minimize costs related to nurses. The ‘decision variable’ would 

be the number of nurses to be deployed and, the ‘constraints’ would be the limits on the 

number of nurses required for a shift.  

The optimisation model is formulated using a wide range of prominent techniques, including 

linear programming (Dantzig, George B., 1951), integer programming (Wolsey & Nemhauser, 

1999), dynamic programming (Bellman, 1966), stochastic programming (Kall, Wallace, & Kall, 

1994), network programming (Bertsekas, 1991), combinatorial optimization (Wolsey & 

Nemhauser, 1999), and nonlinear programming (Bazaraa, Sherali, & Shetty, 2013). The type 

and complexity of a model will dictate the solution method of choice. Exact algorithms such 

as simplex (Dantzig, George B., Orden, & Wolfe, 1955), branch and cut (Padberg & Rinaldi, 

1991), and branch and bound (Little, John DC, Murty, Sweeney, & Karel, 1963) are employed 

to solve optimisation problems to optimality. If a model is too complex to be solved by exact 

algorithms, the search for an optimal solution is abandoned to seek a reasonable solution 

using heuristics or metaheuristics. Heuristics and metaheuristics use a collection of 

intelligent rules of thumb to find a suitable solution quickly (Horst & Pardalos, 2013). 

Examples include column generation heuristic (Taillard, 1999), Tabu Search (Glover, Fred, 

1986), and simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983). 

3.2.3. Optimisation in Healthcare 
A survey of recent literature reviews on the application of optimisation techniques in 

healthcare is presented in this section. Articles were identified on Scopus, and then a 

backward search was performed using the initial pool of papers to find additional reviews. 

We selected review articles for analysis if they were published in the period (2011-2019) and 

analysed the application of OR methodologies to planning issues in healthcare. In the past 

decade, 19 literature reviews on the application of Operations Research/Management 

(OR/OM) in healthcare have been published. These include reviews that are generic and 

specific in their scope. Generic reviews examine the nature of the application of OR/OM 

techniques to healthcare (Brailsford & Vissers, 2011; Hulshof et al., 2012; Rais & Vianaa, 

2011). In contrast, specific reviews are spread across application areas such as planning and 

scheduling, routing and scheduling, and supply chain management.  
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This analysis is primarily concerned with surveying articles that review research that has 

applied optimisation techniques in healthcare. Therefore, reviews with a specific scope are 

given preference. These include review articles from various application areas—specifically, 

nine reviews on planning, scheduling and routing and six on supply chain management. We 

build a comprehensive picture of the optimisation landscape in healthcare to identify the 

progress so far, highlight gaps and analyse the direction of future research. Table 2 depicts 

critical gaps and limitations specified in each research area that were identified in each 

review article. 

3.2.3.1. Planning, Scheduling & Routing  

In healthcare, planning, scheduling & routing decisions have been explored extensively. We 

classified reviews into several themes based on the area of research. We find that the 

planning of operating rooms has received the most attention (Cardoen et al., 2010; Samudra 

et al., 2016; Zhu, Fan, Yang, Pei, & Pardalos, 2019), followed by routing and scheduling in 

home healthcare (Cissé et al., 2017; Fikar & Hirsch, 2017; Gutiérrez & Vidal, 2013). We also 

identified reviews on physician scheduling (Erhard, Schoenfelder, Fügener, & Brunner, 2018) 

and appointment scheduling (Ahmadi-Javid, Jalali, & Klassen, 2017). Furthermore, we also 

include reviews on two budding research areas, namely the multi-appointment scheduling 

problems in hospitals (Marynissen & Demeulemeester, 2019) and multi-disciplinary planning 

and scheduling (Leeftink, Bikker, Vliegen, & Boucherie, 2020). Based on this classification, an 

analysis of literature reviews is presented in this section. 

Operating Room Planning & Scheduling 

Operating theatres are a hospital’s most significant cost and revenue centre, with substantial 

impacts on a hospital's performance as a whole (Macario, Vitez, Dunn, & McDonald, 1995). 

Several reviews have examined the literature on operating room planning and surgical care 

scheduling (Cardoen et al., 2010; Samudra et al., 2016; Zhu et al., 2019). This literature 

primarily deals with two categories of patients, namely elective or non-elective and inpatient 

or outpatient. Furthermore, operating room planning and surgical scheduling address a 

variety of issues, including the determination of resource quantity (surgeons, nurses, rooms, 

equipment, operations time) needed to meet demand; allocation of operating room capacity 

to various medical disciplines; assigning definite dates for operations; determining the start 

time of the operations and the allocation of resources. Zhu et al. (2019) observe that most 

research has been directed towards scheduling problems at the operational level (Kroer, 

Foverskov, Vilhelmsen, Hansen, & Larsen, 2018; Roshanaei, Luong, Aleman, & Urbach, 2017). 

Moreover, Samudra et al. (2016) notice that a large part of the literature is aimed at decision-
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making on a patient level (Agnetis et al., 2012). Particularly to the assignment of dates and 

room (Banditori, Cappanera, & Visintin, 2013). 

Performance measures are primarily in the interest of the three stakeholders in the system: 

hospital administrators, medical staff, and patients (Wachtel & Dexter, 2009). Consequently, 

performance measures that are considered as model objectives were financial, utilisation, 

levelling (resource occupancy), throughput, idle time, makespan (completion time), 

preferences, waiting time, and patient deferrals. Likewise, uncertainty related issues are a 

significant component of operating room planning and scheduling. Therefore, models 

account for uncertainties relative to surgery duration (deviation between actual and 

planned) (Denton, Viapiano, & Vogl, 2007), patient arrival (unpredictable arrival of 

outpatients) (Beliën, Demeulemeester, & Cardoen, 2009), resources (availability, 

applicability and usability of human and material resources) (Cardoen et al., 2010), and more 

recently, uncertainty relative to care requirement (Holte & Mannino, 2013). The most 

considered type of uncertainty in models is duration uncertainty, followed by arrival 

uncertainty. Although the arrival of non-elective patients generates significant operational 

deficiencies, few studies have modelled this (Arenas et al., 2002; Pham & Klinkert, 2008). 

Generally, planning and scheduling of elective patients has received more attention when 

compared to non-elective and outpatients (Lamiri, Grimaud, & Xie, 2009). This trend in 

research is despite the ongoing shift from inpatient to outpatient care (Koenig & Gu, 2013).  

Physician Scheduling 

Shortages in medical personnel are ubiquitous in most industrialized countries. The scarcity 

of physicians adds increasing pressure on managers to find efficient and effective ways to 

schedule their workforce. Therefore, physician scheduling has received a fair amount of 

attention over the last decade. Erhard et al. (2018) surveyed physician scheduling in hospitals 

by classifying them as problems of staffing (determining size and composition), rostering 

(creating shift rosters), and re-planning (short-term adjustments to schedules). Research in 

this area mainly concentrates on building mid-and long-term rosters (Bruni & Detti, 2014; 

Brunner & Edenharter, 2011), thereby foregoing the incorporation of realism in models. 

Moreover, model objectives/goals are either financial (minimizing wage costs, overtime, 

outside resource usage) or non-financial (minimizing demand under coverage, roster 

changes and maximising employee preference). As for constraints, models consider two 

types, hard (non-negotiable) and soft (negotiable). Hard constraints are classified into two 

types: compulsory, including meeting demand, single shift per period, restricted backwards 

rotation, and minimum rest periods. At the same time, soft constraints are relative to 
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ergonomics (preference, weekends off, days off, forward rotation, shift duration limits) and 

fairness (distribution of unpopular shifts, free weekends etc.). The most frequently used 

modelling methodologies are Integer Programming (Dexter, Wachtel, Epstein, Ledolter, & 

Todd, 2010), Mixed-Integer Programming (Bard, Shu, Morrice, & Leykum, 2017) and Linear 

Programming (Topaloglu, 2009). As for solution algorithms employed to solve models, exact 

algorithms (Shamia, Aboushaqrah, & Bayoumy, 2015) are preferred over heuristic algorithms 

(Samah, Zainudin, Majid, & Yusoff, 2012). However, since demand cannot be fully controlled, 

using deterministic demands to generate schedules is noted as a drawback. Moreover, the 

review highlights the increasing willingness of hospitals to provide data and conduct 

experimental studies. Specifically, of the 68 studies, 64 used real life data to test the 

performance of the proposed theoretical model and 24 (more than a third) reported on the 

implementation results in hospitals (Erhard et al., 2018).  

Appointment Scheduling 

Outpatient Appointment System (OAS) problems have been studied since 1952 (Bailey, 

1952). An early review classified appointment systems into three categories based on their 

environment: primary care, speciality care and elective surgical care (Gupta, D. & Denton, 

2008). While surgeries can be scheduled as either inpatient or outpatient, the other two 

types are predominantly outpatient. Surgical/operating theatre scheduling is addressed in 

the above section, here we discuss appointment scheduling in primary care and specialist 

care (outpatient). In the latest and most up-to-date review of literature by Ahmadi-Javid et 

al. (2017), it is observed that most OAS studies deal with operational decisions that are 

related to the execution of plans on an individual patient level. These include allocating of 

patients to servers/resources (Riise, Mannino, & Lamorgese, 2016), determining 

appointment day and time (Chen & Robinson, 2014; Kuiper, Kemper, & Mandjes, 2015), 

patient acceptance/rejection (Qu, Peng, Shi, & LaGanga, 2015), and patient selection from 

the waiting list (Saure, Patrick, Tyldesley, & Puterman, 2012). Furthermore, several studies 

also address problems at a tactical level, resulting in the determination of characteristics of 

the OAS that maximises resource utilization and accessibility (Wiesche, Schacht, & Werners, 

2017). Additionally, performance measures often pertinent to the three main stakeholders: 

patients, system owners and staff are used in OAS models. We also found that studies have 

used patient waiting time as a measure of patient satisfaction (Kemper, Klaassen, & Mandjes, 

2014), revenue is calculated as a measure of the number of patients seen (Balasubramanian, 

Muriel, & Wang, 2012), and costs are a measure of physician idle time (Vink, Kuiper, Kemper, 

& Bhulai, 2015). The most common performance measures used in OAS studies are the 
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patient waiting time, staff idle time, overtime (Anderson et al., 2015), number of patients 

seen, number of patients rejected (Gocgun & Puterman, 2014). Although exact methods are 

used extensively, they are most often used to compare some given policy and develop 

efficient algorithms (Huh, Liu, & Truong, 2013; Truong, 2015). Ergo, due to the complexity of 

OAS problems, most studies employ heuristic/metaheuristic/approximate methods 

(Anderson, Zheng, Yoon, & Khasawneh, 2015; Azadeh, Farahani, Torabzadeh, & Baghersad, 

2014; Castro & Petrovic, 2012). 

When compared to early review papers (Cayirli & Veral, 2003; Gupta, D. & Denton, 2008), 

several milestones concerning future research have been achieved in this last decade. In 

particular, models now incorporate environmental factors such as patient preferences, 

cancellations, no-shows, and indirect patient waiting (time between appointment request 

and allocation) (Anderson et al., 2015; Erdogan, Gose, & Denton, 2015). Although this area 

is growing and expanding, OAS has many open and complex research questions. For instance, 

Ahmadi-Javid et al. (2017) advocate adopting more realistic assumptions relative to 

environmental factors. They also highlight the need to include interruptions (writing up 

notes, talking with support staff, or emergency patient arrivals) into existing optimisation 

models (Klassen & Yoogalingam, 2013; Luo, Kulkarni, & Ziya, 2012).  Along similar lines, the 

review also highlights the need to study the effects of disruptions to OASs. Specifically, 

disruptions relative to natural disasters (earthquakes, floods and terrorist attacks) likely 

result in very high-level demands of urgent walk-ins; disruptions caused by economic or 

financial crises; and social events that could result in complete stoppage or severely reduce 

the availability of resources. 

Home Health Care (HHC) Routing & Scheduling 

Owing to a shifting trend in many countries where healthcare services are transitioning from 

a hospital setting to homes, HHC is a promising and growing research area (Genet et al., 

2011). Providers of HHC dispense a range of services, including healthcare provider care, 

nursing, therapy (physical or occupational), medical social services, health aides, attendant 

care, volunteer care, nutrition and meal support, medical equipment and supplies, 

laboratory and pharmaceutical services, and transportation (John Hopkins Medicine, 2020). 

Based on three planning levels (strategic, tactical and operational), several issues are 

addressed in literature: 1) partitioning of HHC service territory into patient clusters and 

assigning resources to each cluster; 2) identifying resource (people or materials) levels and 

assigning resources to districts, and 3) assigning care workers to patients and scheduling 

patient visits assigned to each care worker. Issues relative to HHC overlap considerably with 
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the problems addressed in logistics (Gutiérrez & Vidal, 2013). Therefore, reviews focusing 

primarily on the operational level of decision-making are discussed (Cissé et al., 2017; Fikar 

& Hirsch, 2017). A broader logistics oriented review is analysed under supply chain 

management.  

In the past decade, an increasing number of studies have addressed routing and scheduling 

issues in HHC (Cissé et al., 2017). The presence of certain salient features such as “full 

continuity of care”, where a unique care worker visits a patient over a planning horizon, 

generate challenges when modelling the system. Despite the challenges associated with 

incorporating such features into a model, Cissé et al. (2017) find that most researchers use 

several of the above features in their model’s objectives and constraints (Mankowska, 

Meisel, & Bierwirth, 2014). Additionally, Fikar & Hirsch (2017) identify that most models are 

tested on data originating from real-world operations. However, the models have not 

considered uncertainty relative to travel time, care service duration, emergencies, and 

unavailability of workers or patients. Nevertheless, some studies consider uncertainties 

concerning when and where, in the future, patients will request care (Hewitt, Nowak, & 

Nataraj, 2016). 

Multi-Appointment Scheduling in Hospitals (MASPH)  

Unlike HHC, MASPH is gaining momentum in the academic literature, as observed in the 

review by Marynissen & Demeulemeester (2019). MASPH problems address a patient’s need 

to sequentially visit multiple resource types in a hospital setting to receive treatment or 

diagnosis, for example, cancer treatments. Because MASPH is only just gaining momentum, 

it is currently only found in a limited number of hospital departments that have systems that 

directly address this. Several hospital resources are considered in MASPH including, doctors, 

specialists, beds, medical devices, diagnostic resources, chemotherapy chairs, and linear 

accelerators (used for radiotherapy). By extension, hospital departments included are 

rehabilitation (Braaksma, Kortbeek, Post, & Nollet, 2014; Kortbeek, van der Velde, M F, & 

Litvak, 2017), diagnostic facilities (Azadeh et al., 2014; Azadeh, Baghersad, Farahani, & Zarrin, 

2015), oncology (Leeftink, Vliegen, & Hans, 2019; Suss, Bhuiyan, Demirli, & Batist, 2018), and 

operating rooms (Burdett & Kozan, 2016; Kazemian et al., 2017). From a patient’s 

perspective, services that are considered for scheduling are either diagnostic or treatment. 

Furthermore, three types of patients are identified: outpatient, inpatient and emergency 

patients. In outpatient procedure planning, the main challenges are uncertain service times 

and patient no-shows (Tsai & Teng, 2014). For inpatient planning, most work has focused on 

minimising the length of stay (Conforti, Guerriero, Guido, Cerinic, & Conforti, 2011). For 
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emergency patients, although their arrival is unforeseen, studies have focused on scheduling 

diagnostic laboratories tied to the emergency department (Azadeh et al., 2014). Studies also 

address the scheduling of different treatment steps in a treatment path of a triaged 

emergency patient following the assignment of a treatment path (Luscombe & Kozan, 2016).  

In contrast to other application areas where exact methodologies are popular for solving 

models, because of the complexity, most models are solved using metaheuristics (Azadeh et 

al., 2015) and multi-agent models (Kanaga & Valarmathi, 2012).  

3.2.3.2. Supply Chain Management 

Supply chain management in healthcare refers to the information, supplies and finances 

involved with the acquisition and movement of goods, and services from the point of supply 

to the end-user, to enhance clinical outcomes while controlling costs (De Vries & Huijsman, 

2011; Dobrzykowski, Deilami, Hong, & Kim, 2014). These processes might relate to physical 

goods like drugs, pharmaceuticals, medical devices, health aids, and patients' flow (Beier, 

1995). In this section, we examine reviews relative to a specific component of SCM, logistics. 

Furthermore, activities associated with logistics, such as facility location and inventory 

management, are inspected.  

Logistics  

It is defined as the process of planning, implementing, and controlling procedures for the 

efficient and effective transportation and storage of goods including services, and related 

information from the point of origin to the point of consumption based on customer 

requirements (Cordeau, Pasin, & Solomon, 2006; CSCMP, 2013). This definition includes 

inbound, outbound, internal, and external movements. This section reviews literature 

articles on Home Health Care logistics (Gutiérrez & Vidal, 2013) and material logistics in 

hospitals (Volland, Fügener, Schoenfelder, & Brunner, 2017). 

Home health care logistics literature includes decision support across three contexts. These 

include 1. ‘design and planning decisions’: dealing with issues of facility location and 

districting (Blais, Lapierre, & Laporte, 2003); 2. ‘resource planning and allocation’: relative to 

issues of staff and inventory management (Chahed, Marcon, Sahin, Feillet, & Dallery, 2009; 

Kommer, 2002), and 3. ‘service scheduling’: concerned with staff routing and scheduling 

(Bredström & Rönnqvist, 2008). Gutiérrez & Vidal (2013) note that although most models 

support staff routing and scheduling decisions, a significant impact on system performance 

has not been observed. Therefore, a call for diversification of future research in strategic and 

tactical levels has been issued. 
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Volland et al. (2017) review literature on activities associated with handling physical goods 

in hospitals. These physical goods are related to the care of patients, including items such as 

pharmaceuticals, medical consumables, food, laundry, sterile items, laboratory samples, 

waste etc. The review categorized publications into four research topics, of which three 

employ optimization models. (1) ‘Supply & procurement’: relative to purchasing (Rego, Claro, 

& de Sousa, 2014), and aspects of the interface between drug manufacturers and 

wholesalers (Li, X., Zhao, Zhu, & Wyatt, 2011). (2) ‘Inventory Management’: includes 

literature on inventory policy (Rosales, Magazine, & Rao, 2014). (3) ‘Distribution and 

Scheduling’: distribution within (Lapierre & Ruiz, 2007) and outside a hospital (Medaglia, 

Villegas, & Rodríguez-Coca, 2009), and handling of sterile devices (Ozturk, Begen, & Zaric, 

2014). A significant rise in the application of optimisation techniques has been observed. 

Wherein most Optimization techniques are applied in streams (2) and (3). Optimization in 

inventory management has primarily sought to minimize costs. Specifically, heuristics are 

applied to minimize the total, ordering, and inventory costs (Baboli, Fondrevelle, Tavakkoli-

Moghaddam, & Mehrabi, 2011; Kelle. While in ‘Distribution and Scheduling’, some models 

have sought to minimise costs associated with transportation, the number of routes, and 

travel mileage (Augusto & Xie, 2009; Medaglia et al., 2009; Shih & Chang, 2001). 

Facility Location 

In its own right, this is an established topic of research within Operations Research. In 

healthcare, facility location problems concentrate on three main areas. These include 

healthcare facility location (involving community health clinics, primary care or specialist 

clinics, public and private hospitals), ambulance location and, hospital layout planning 

(Güneş, Melo, & Nickel, 2019). In essence, facility location problems locate a set of facilities 

(resources) to minimize/maximize specific objectives while fulfilling a set of demands 

concerning some constraints (Laporte, Nickel, & Saldanha-da-Gama, 2019). Objectives most 

commonly applied in healthcare facility location are: 1) minimize access cost for healthcare 

consumers, 2) maximise population with access to a healthcare facility, and 3) maximize the 

equity in access (Güneş et al., 2019). Increasingly, facility location has been proposed within 

the context of logistics as a sub-activity in several healthcare settings (Melo, Nickel, & Gama, 

2007). These settings, along with their respective review papers, are supply chain (De Vries 

& Huijsman, 2011; Dobrzykowski et al., 2014), pharmaceutical supply chain (Lemmens, 

Decouttere, Vandaele, & Bernuzzi, 2016; Narayana, Pati, & Vrat, 2012; Shah, 2004), 

healthcare waste management (Thakur & Ramesh, 2015) and emergency response (Daskin 

& Dean, 2005; Li, X. et al., 2011).   



 

53 
 

We surveyed two reviews on the emergency and non-emergency facilities location (Ahmadi-

Javid, Seyedi, & Syam, 2017; Li, X. et al., 2011). Li et al. (2011)  conclude that heuristics (Jia, 

Ordóñez, & Dessouky, 2007), simulation, and exact algorithms (Alsalloum & Rand, 2006) 

have been used to solve models that emphasized providing coverage for emergency calls. 

They also found that simulation has been used to either evaluate the performance of policies 

derived from the solutions of optimisation models (Maxwell, Henderson, & Topaloglu, 2009) 

or in conjunction with heuristics to provide better quality solutions (Slocum et al., 2021). 

Through their analysis, Ahmadi-Javid, et al. (2017) observe that cost minimization is a major 

objective used in location problems (Ghaderi & Jabalameli, 2013; Mestre, Oliveira, & 

Barbosa-Póvoa, 2015), and the minimization of distance (or time) is considered a key factor 

in enhancing efficiency and effectiveness of locations (Beheshtifar & Alimoahmmadi, 2015; 

Smith, Harper, & Potts, 2013). Furthermore, a large number of models are built using Integer 

Linear Programming (ILP) and Mixed-Integer Linear Programming (MILP) (Ares, De Vries, & 

Huisman, 2016; Beheshtifar & Alimoahmmadi, 2015; Mestre et al., 2015), as opposed to 

stochastic programming (Mitropoulos, Mitropoulos, & Giannikos, 2013) or dynamic 

programming (Elalouf, Hovav, Tsadikovich, & Yedidsion, 2015).  

Inventory Management 

This is another sub-activity of logistics management in supply chain management, with a 

focus on end-customer demand. Here, the aim is to improve customer service while lowering 

relevant costs (Cordeau et al., 2006). In the context of Healthcare, inventory management 

refers to the management and control of a large number and variety of stocked items. When 

needed, not having the supplies in-stock can seriously impact the quality of care (Moons, 

Waeyenbergh, & Pintelon, 2019), with consequences such as loss of life (Guerrero, Yeung, & 

Guéret, 2013). 
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Table 2: Key Future Research Directions from Optimisation Related Literature Reviews 

 Publication Key Future Research Directions 

P
la

n
n

in
g 

&
 S

ch
ed

u
lin

g 

Cardoen, B., Demeulemeester, E. and Beliën, J., 2010. Operating room 
planning and scheduling: A literature review. European Journal of Operational 
Research, 201(3), pp.921-932. 

- Account for stochastic activity duration. 
- Research non-elective patient scheduling 
- Model integrated facilities & resources 

Samudra, M., Van Riet, C., Demeulemeester, E., Cardoen, B., Vansteenkiste, N. 
and Rademakers, F.E., 2016. Scheduling operating rooms: achievements, 
challenges and pitfalls. Journal of Scheduling, 19(5), pp.493-525 

- Consideration of stochastic arrivals & patient bulking (leaving waiting list) 
- Research on outpatient and non-elective. 
- Inclusion of behavioural factors as performance measures. 
- Model integrated system (outpatient & inpatient) 
- Apply stochastic programming for real-life problems. 

Ahmadi-Javid, A., Jalali, Z. and Klassen, K.J., 2017. Outpatient appointment 
systems in healthcare: A review of optimization studies. European Journal of 
Operational Research, 258(1), pp.3-34. 

- Models to incorporate continuity of care, patient preferences, patient walk-ins. 
- Models to include environmental variables (no-shows, patient & physician unpunctuality). 
- Consider environmental factors such as disruption (natural disasters, economic or financial 

crises, social events) 
- Develop novel multi-decision models to address real-life situations. 

Erhard, M., Schoenfelder, J., Fügener, A. and Brunner, J.O., 2018. State of the 
art in physician scheduling. European Journal of Operational Research, 265(1), 
pp.1-18. 

- Estimation of realistic demand and demand fluctuation. 
- Models to incorporate physician absenteeism and break assignment 
- Consider simulation-optimization as an alternative solution approach. 
- Models to develop flexible shifts. 

Leeftink, A.G., Bikker, I.A., Vliegen, I.M.H. and Boucherie, R.J., 2018. Multi-
disciplinary planning in health care: a review. Health Systems, pp.1-24. 

- Account for variability in the care pathway and resource capacity with stochastic or robust 
programming 

- Model multi-disciplinary care outside hospitals. 
- Explore applicability of methods across health areas 

Marynissen, J. and Demeulemeester, E., 2019. Literature review on multi-
appointment scheduling problems in hospitals. European Journal of 
Operational Research, 272(2), pp.407-419. 

- Account for emergency patients in inpatient and outpatient scheduling by reserving 
capacity. 

- Monitor and report system performance before and after implementation 
- Report on implementation. 

Zhu, S., Fan, W., Yang, S., Pei, J. and Pardalos, P.M., 2019. Operating room 
planning and surgical case scheduling: a review of literature. Journal of 
Combinatorial Optimization, 37(3), pp.757-805. 

- Models to incorporate stochastic surgical duration. 
- Research non-elective patient scheduling 
- Focus on resource (human and material resource) uncertainty 
- Focus on uncertain medical requirements by patients. 
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R
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g 

&
 

Sc
h

ed
u

lin
g Cissé, M., Yalçındağ, S., Kergosien, Y., Şahin, E., Lenté, C. and Matta, A., 2017. 

OR problems related to Home Health Care: A review of relevant routing and 
scheduling problems. Operations Research for Health Care, 13, pp.1-22. 

- Capture uncertainty aspects (travel time between locations, care service duration, 
emergencies, workers’ or patients’ unavailability) with stochastic models. 

- Account for cancellation of appointments or last-minute absence of care workers. 

Fikar, C. and Hirsch, P., 2017. Home health care routing and scheduling: A 
review. Computers & Operations Research, 77, pp.86-95. 

- Models to consider emergencies, cancellation, unavailability of nurses & traffic delays. 
- Include ecological & social criteria. 

Su
p

p
ly

 C
h

ai
n

 M
an

ag
em

en
t 

Li, X., Zhao, Z., Zhu, X. and Wyatt, T., 2011. Covering models and optimization 
techniques for emergency response facility location and planning: a review. 
Mathematical Methods of Operations Research, 74(3), pp.281-310. 

- Models to incorporate different priorities requiring different types of services. 
- Models to consider survival rate as an objective function. 
- Incorporate equity in facility distribution. 

Gutiérrez, E.V. and Vidal, C.J., 2013. Home health care logistics management: 
Framework and research perspectives. International Journal of Industrial 
Engineering and Management, 4(3), pp.173-182. 

- Model long-term resource location and allocation issues. 
- Integrated analysis of logistic decision across planning levels 
- Models to include realistic features (patient pathologies, service references & legal work 

regulations) 

Ahmadi-Javid, A., Seyedi, P. and Syam, S.S., 2017. A survey of healthcare 
facility location. Computers & Operations Research, 79, pp.223-263. 

- Dynamic location models accounting population migration, changes in management 
objectives, transportation & facility capacities, patient population. 

- Statistical methods to estimate input parameters. 
- Models to include multiple services and service quality. 
- Capture realistic assumptions such as uncertain & multi-type demand, & multiple servers. 

Volland, J., Fügener, A., Schoenfelder, J. and Brunner, J.O., 2017. Material 
logistics in hospitals: a literature review. Omega, 69, pp.82-101. 

 

- Heuristics to address large-scale, real-life complex logistics problems. 
- Improve and incorporate forecasting mechanism to capture demand. 
- Employ optimisation to determine product characteristics or to define an optimal degree of 

outsourcing. 
- Models to incorporate lead times. 

Ahmadi, E., Masel, D.T., Metcalf, A.Y. and Schuller, K., 2019. Inventory 
management of surgical supplies and sterile instruments in hospitals: a 
literature review. Health Systems, 8(2), pp.134-151. 

- Stochastic models to incorporate operational and/or disruption risk factors. 
- Models to incorporate stochastic demand for instruments. 
- Models to determine location and quantity of supplies to stock. 
- Consider inventory cost and service levels simultaneously. 

Saha, E. and Ray, P.K., 2019. Modelling and analysis of inventory management 
systems in healthcare: A review and reflections. Computers & Industrial 
Engineering, p.106051. 

 

- Develop integrated model considering all types of medical products should be considered 
(e.g., pharmaceuticals, medical equipment, surgical instruments). 

- Heuristics to consider randomness and complexities (patient arrivals, illness, treatment 
stages, treatment responses). 

- Model uncertainty (demand for medicines, patient conditions, & physician prescribing 
behaviour) using robust optimization and probabilistic programming. 
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We survey two reviews. One, on inventory systems across various inventory items such as 

pharmaceuticals, medical equipment, surgical instruments, and other medical and surgical 

supplies (Saha & Ray, 2019). Two, inventory management of surgical supplies and sterile 

instruments (Ahmadi, Masel, Metcalf, & Schuller, 2019). Saha & Ray (2019) find that 

heuristics solve inventory problems under uncertainties (Rosales, Magazine, & Rao, 2015) 

and solve inventory allocation problems for surgical supplies stored in multiple locations. 

Through their analysis,  Ahmadi et al. (2019) observe that early studies examined classical 

inventory models that relied on simplified assumptions, leading to far from practical 

solutions (Burns, Cote, & Tucker, 2001; Machline, 2008). On the other hand, research 

incorporating stochastic models did not specify which sources of uncertainty they considered 

(Little, James & Coughlan, 2008; Rappold, Van Roo, Di Martinelly, & Riane, 2011). The review 

also demonstrated several strategies towards cost reduction and standardizing practices 

utilized by practitioners (Eiferman, Bhakta, & Khan, 2015; Park & Dickerson, 2009). 

3.2.4. Mental Healthcare 
In this section, the distinctive features of mental healthcare are elaborated. In particular, we 

examine the nature of service models in mental healthcare, the causes and diagnosis of 

mental illnesses and their impacts on services, risks associated with mental illness and their 

consequences on service delivery, and finally, the integrated nature of psychological and 

physical health.  

3.2.4.1. Care Setting 

The care of patients with mental illness has been subject to significant changes in the West 

over the last two centuries. In particular, from the 1960s onwards, many countries 

implemented the policy of deinstitutionalisation, which led to the movement of patients 

from large inpatient institutions into the community by establishing community services 

(Fakhoury & Priebe, 2007). Presently, it is widely recognised that effective mental healthcare 

services cannot be delivered exclusively within a hospital setting or exclusively within the 

community (Abdulmalik & Thornicroft, 2016). An optimal mix of hospital and community 

services is recommended (Thornicroft & Tansella, 2013). Yet, such a mix has only been 

achieved in a few high-income countries, where the relatively high availability of workforce 

and financial resources have been matched by political willingness to increase community 

care (Saxena, Thornicroft, Knapp, & Whiteford, 2007). A diverse collection of service delivery 

models are currently in use in both low-middle-income countries and high-income countries 

(Carter, 2019; Cohen et al., 2011). 
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Mental health care relies on its human resources rather than advanced technology or 

equipment. The mental health workforce is a mix of collaboration between psychosocial 

providers and biomedical providers wherein the workforce is generally composed of three 

groups of individuals (Gask, 2005; Kakuma et al., 2011). The first includes specialist workers, 

such as psychiatrists, neurologists, psychiatric nurses, psychologists, mental health social 

workers, and occupational therapists (Kakuma et al., 2011). The second group is composed 

of non-specialist health workers, such as general practitioners/doctors, nurses, lay health 

workers, and caregivers (Gupta, N., Bhalla, & Rosenheck, 2019). The final group is formed of 

other professionals such as community-level resources that include formally structured 

bodies such as international and indigenous non-governmental organisations (NGOs) (Patel 

& Thara, 2003). The heterogeneity of service models across the world is no doubt challenging 

to the modelling of such services.  

3.2.4.2. Uncertainty 

Unlike the rest of medicine, a psychiatric diagnosis does not have any specific identifiable 

biological or psychological markers (Timimi, 2014). This is reflected through the diagnoses 

listed on major psychiatric diagnosis manuals such as Diagnostic and Statistical Manual of 

Mental Disorders, Fifth Edition (DSM-5) (American Psychiatric Association, 2013) and 

International Classification of Diseases (ICD-10) (World Health Organization, 1994). Unlike 

the rest of medicine, where the cause of a symptom is clarified by diagnosis, the cause of 

various mental disorders does not share the same scientific security (Clark, Cuthbert, Lewis-

Fernández, Narrow, & Reed, 2017). The heterogeneous use of diagnostic manuals further 

complicates this, wherein DSM-5 is primarily used in the United States, and ICD-10 is used 

internationally. The widely used diagnostic manuals have been subject to various criticisms, 

particularly for being fundamentally descriptive systems, based primarily on self-reported 

symptoms and observed signs (Clark et al., 2017). 

The two widely used systems of diagnosis are increasingly bringing into question issues of 

clinical validity, reliability, impact on treatment and outcomes, and the uniformity of 

prognoses. Many psychiatrists have called for a shift from the current paradigm of a mental 

health diagnosis that focuses on the biomedical cause of mental disorders because of 

evidence-based research (Bracken et al., 2012). Research on the causes of mental illness has 

shown that it arises from several factors, including biological, behavioural, psychosocial, and 

cultural factors that interact in complex ways (Canino & Alegría, 2008). Research has also 

highlighted that, unlike the rest of medicine, outcomes of mental illnesses are not definable 

but are complex and variable combinations of psychological problems (Clark et al., 2017). 
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With diagnoses of psychological disorders often overlapping and criteria frequently 

changing, the uncertainty created by these factors is a particular concern in mental 

healthcare (American Psychiatric Association, 2013). 

3.2.4.3. Risks 

Research has linked service availability and quality of care to patient safety (Brickell & 

McLean, 2011). Although a lack of awareness on the issue of patient safety has been 

highlighted, researchers have identified many risk factors for patient safety in mental 

healthcare (Callaly, Arya, & Minas, 2005). Several patient risk factors from acute medical care 

settings apply to mental healthcare and are frequently adopted. However, safety issues exist 

that are unique to mental healthcare. Studies have identified medical errors to be the 

foremost risk to patients in hospitals for physical disorders. While in mental health, the main 

concern is self-destructive behaviour (suicide and attempted suicide), violence and self-harm 

(Brickell & McLean, 2011; Flewett, 2010). Furthermore, critical differences in risks between 

physical and mental healthcare are the prevalence of patients who do not believe they are 

ill and refuse treatment; staff safety is directly related to the specific manifestations of 

mental illnesses (Briner & Manser, 2013). 

3.2.4.4. Physical and Mental Health 

Although mental and physical illnesses have fundamental differences, as described above, 

they have been found to influence each other in several ways. Lifestyle changes in the 

modern population are said to contribute to poor physical health, affecting the incidence 

rates for mental illness (Hidaka, 2012). Research into the cross-effects between physical and 

psychological health has a strong link (Ohrnberger, Fichera, & Sutton, 2017). Studies have 

also found in-direct pathways through which mental health affects physical health and vice 

versa (Ohrnberger et al., 2017). Several reviews and studies have highlighted that for people 

with severe mental illness, including schizophrenia and bipolar disorder, there are higher 

morbidity and mortality rates of cardiovascular diseases than the general population (De 

Hert et al., 2011). They also have high rates of infectious diseases, diabetes, respiratory 

disease, some forms of cancers and HIV (Cournos, McKinnon, & Sullivan, 2005). On the other 

end of the spectrum, a similar trend can be observed. Here, for patients with physical 

disorders, particularly those with severe disorders such as stroke, cancer, and acute coronary 

syndrome, depression is prevalent and harms the course of these diseases. This information 

is integral to understanding the differences between physical and mental health and 

highlighting the connections and influence of one on the other as it shapes the service 
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provision to tackle these complex and debilitating associations. There is much ‘physical’ in 

‘mental’ disorders and much ‘mental’ in ‘physical’ disorders (Kendell, 2001).  

An acknowledgement of links described above has resulted in the re-conceptualization of 

care delivery into models of integrated care that involve co-location and interdisciplinary 

working of various health professionals, from mental health, physical health and social care 

(Hetrick et al., 2017). Although this integration improves outcomes, there are problems of 

sharing responsibility, uncertainties regarding the boundary between services and roles 

(Pomare, Ellis, Churruca, Long, & Braithwaite, 2018).  

3.2.5. Summary 
This section demonstrates how optimisation methodologies have a diverse history of 

application in healthcare. The application of optimisation methodologies has evolved to 

accommodate and address the ever-changing and often shifting contextual priorities of 

healthcare services. We have also examined the distinctive characteristics of mental 

healthcare and associated services.  

The optimisation literature appears to have examined characteristics similar to mental 

health services compared to other healthcare settings. However, a comprehensive account 

reviewing the optimisation literature in the context of mental healthcare services does not 

exist. With mental healthcare being one of the immediate healthcare priorities, the 

application of optimisation methodologies can address major obstacles of imbalances and 

inefficiencies often associated with mental healthcare services. Therefore, intending to 

identify the application of optimisation to mental healthcare services thus far, we conduct a 

literature review to define future research opportunities for the application of optimisation 

methodologies.  

3.3. Method of Review 
A literature search was conducted on Scopus and Web of Science for papers published any 

time before December 2020, with a particular focus on articles that applied optimisation 

methodologies to mental healthcare service delivery. Table 3 contains a sample search 

strategy used across search engines and depicts the search results for each query. 

Additionally, a backwards referencing search and manual search of reference lists were 

conducted from the relevant articles, which yielded results. 
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Table 3: Sample Search Queries  

Web of 
Science 

(ALL=("heuristic" OR "metaheuristic") AND ALL=("mental health*" OR "community 
mental health*" OR "psychi*") AND ALL=("service*" OR "planning" OR "allocation" OR 
"scheduling" OR "design")) 

22 

(ALL=("optimization" OR "optimisation") AND ALL=("mental health*" OR "community 
mental health*" OR "psychi*") AND ALL=("service*" OR "planning" OR "allocation" OR 
"scheduling" OR "design"))  

40 

(ALL=("programming" OR "non-linear programming" OR "nonlinear programming" OR 
"linear programming") AND ALL=("mental health*" OR "community mental health*" OR 
"psychi*") AND ALL=("service*" OR "planning" OR "allocation" OR "scheduling" OR 
"design"))  

153 

(ALL=("mathematical model*" OR "mathematical program*") AND ALL=("mental 
health*" OR "community mental health*" OR "psychi*") AND ALL=("service*" OR 
"planning" OR "allocation" OR "scheduling" OR "design")) 

11 

The identified articles underwent a set of rigorous screenings, based on two key inclusion 

criteria’s: 1. an optimisation methodology is used; 2. the problem addressed has a mental 

healthcare service delivery focus. A similar inclusion criterion has been previously employed 

by Bradley et al. (2017). Moreover, only papers published in peer-reviewed journals and full 

papers in conference proceedings were included. Articles with a primary focus on 

epidemiology, prevention, screening, alcohol and substance abuse, and smoking cessation 

were not included.  Following two screenings, a total number of 13 articles are included in 

the review, as depicted in Figure 2. Of the 13 articles published between 1976 and 2020, 7 

were published before the 2000s and six after.  Geographically, the majority of all articles 

were based on research conducted in the USA, followed by the UK.

 

 

 
 

Figure 2: Search Strategy 
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3.4. Analysis 
To analyse and classify the literature under review, taxonomies employed by existing 

literature reviews were referenced. Specifically, reviews on the application of OR 

methodologies to a specific healthcare context such as home care and those addressing a 

particular problem such as scheduling were drawn upon. We first describe a general 

overview of the literature, followed by an in-depth analysis of the optimisation models. 

Themes such as the level of planning, the type of planning decision, and the care setting 

where the study was conducted are described in this section and summarised in Table 4. 

3.4.1. Planning Level & Planning Decisions 
Seven studies were conducted before the 2000s. Specifically, the deinstitutionalisation of 

mental healthcare services- a dramatic movement of patients from state mental hospitals to 

the community- that began in the 1960s steered the development of optimisation models to 

provide transitional support. Four studies address planning decisions on a strategic level, and 

three address tactical level planning decisions (See Table 4).  As for the classification of 

articles post-2000s, six are identified, three of which address decisions on a tactical planning 

level, two on an offline operational level, and one on both tactical and offline operational 

level. Notably, studies addressing strategic level decisions are absent in recent mental 

healthcare literature. A similar trend is observed in healthcare, where operational level 

planning has received the most attention. Researchers have called for more diversification 

in strategic and tactical planning. In contrast, online operational level planning has not been 

investigated in the existing mental healthcare literature. Overall, the sporadic distribution of 

articles and the restricted number of publications on research in mental healthcare service 

planning and delivery as opposed to physical healthcare are telltale signs of the limited 

attention given to this aspect of healthcare. 

The classification of planning decisions is based on the taxonomic classification described in 

a review by Hulshof et al. (2012). We identify a variety of decisions across three planning 

levels. First, studies have tackled decisions on placement policy, regional coverage, and 

capacity dimensioning on a strategic level. Placement policy decisions aim to establish types 

of patients to the right treatment at an appropriate time through cost-effective means. 

Herein patients are classified based on their diagnosis, care required, and the location where 

care can be dispensed. These early optimisation models enabled mental health planners to 

simultaneously evaluate several uncertain parameters resulting from changing government 

fiscal policies and the availability of funds. In particular, optimisation models were used to 

analyse several policies to fulfil what was termed the “goal of deinstitutionalisation” of 
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reassigning noncritical patients to non-residential services while meeting demand using 

available resources (Franz, Rakes, & Wynne, 1984; Specht, 1993). Regional coverage involves 

decisions on the number, type, and location of care facilities. In our review, under conditions 

of centralized geographic demand, client accessibility and convenience strategies are 

assessed. In particular, Muraco et al. (1977) demonstrated that the deconcentrating of 

mental health services under conditions of centralised demand resulted in pseudo 

concentration that masked the actual concentration in the service delivery system. Capacity 

dimensioning involves the testing of alternative scenarios for staff size or availability to fulfil 

projected demand. Lyon & Young (1976) described a model for allocating staff within a large 

psychiatric hospital. The model formulation incorporated a patient needs survey for various 

therapeutic activities and activity analysis of staff functions.  

Several planning decisions have not been addressed on a strategic planning level in mental 

healthcare compared to healthcare. For instance, we found no evidence of studies 

addressing the ‘Facility Layout’ and ‘Care Unit Partitioning’ decision. The facility layout 

concerns the positioning and organisation of various physical areas in a facility. The decision 

related to dividing an inpatient facility into care units is called care unit partitioning decisions. 

These decisions are critical elements of in-care mental health safety and harm reduction. In 

particular, designing facilities with increased visibility to allow staff to monitor and observe 

at-risk patients closely has the potential to help minimise the risk of suicides (Reiling, Hughes, 

& Murphy, 2008).  

Additionally, ‘case mix’ which is the volume and composition of patient groups that the 

facility serves; ‘panel size’, the number of potential patients; and ‘service mix’, the particular 

services a facility provides, are all decisions that are yet to be addressed in mental healthcare 

literature. These decisions on a strategic level aim to help maintain a minimum standard of 

service while efficiently using scarce resources. Mental healthcare services could greatly 

benefit from deploying optimisation models to address these decisions, especially given the 

issues of accessibility and reduced resource availability. 

 Second, on a tactical level, admission control decisions, appointment scheduling, and staff-

shift schedule have been addressed. Admission control relates to determining rules on which 

a patient can be admitted from a waiting list into a service. Hertz & Lahrichi (2009) proposed 

a model that balances nurses' workload who provided long-term and short-term care to five 

categories of patients, including patients with serious mental health problems. At the same 

time, several studies developed models that allocated resources and various treatment 

modalities to patients categorised based on their needs and diagnosis. In particular, Heiner 
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et al. (1981) developed a resource allocation and evaluation model for several clusters of 

intellectually disabled patients in a multi-service delivery system based on efficiency, 

effectiveness, and equity measures. Leff et al. (1986) developed a planning model that 

allocated services to chronically mentally ill patients to improve care outcomes. 

Appointment scheduling has involved the development of a blueprint used to specify a time 

and date for patient consultation/treatment. Samorani & LaGanga (2015) set out to 

overbook appointments optimally given no-show predictions of patients in a large mental 

health centre with a high no-show rate. Pagel et al. (2012) allocate appointments subject to 

waiting times to maximise desired clinical outcomes in a primary mental healthcare system. 

Scheduling of shifts to staff determines which shifts are to be worked and by how many 

employees. A shift-staff schedule is developed for medical residents specialising in psychiatry 

at a medical university, spanning 365 days by Cohn et al. (2009). 

We could not find studies that addressed several tactical level decisions such as capacity 

allocation, patient routing, and unused capacity (re)allocation that are available in healthcare 

literature. Particularly relevant planning mental healthcare services are capacity allocation 

decisions where resource capacities settled on the strategic level are subdivided over patient 

groups. For many countries, increasing mental healthcare provision and ensuring that 

resources are distributed equitably are priorities (Anselmi et al., 2020). Increasingly, the 

geographical distribution of resources is encouraged to reflect need. As such, an optimisation 

model for capacity allocation can be a means to achieve equitable distribution of access.  

Lastly, operational decisions on staff-to-shift assignment, assessment and intake, visit 

scheduling, and patient-to-appointment location scheduling are addressed. Based on the 

staff-shift schedule, specific dates and times associated with shifts are assigned to staff in 

staff-to-shift assignments. For instance, Bester et al.  (2007) use their model to build duty 

rosters for nurses at a psychiatric facility that includes a fairness component. Assessment 

and intake decisions include a process wherein a patient referred to a service is assessed for 

eligibility (based on the placement policy), care requirements are determined, and a care 

provider is assigned. Such a model was built by Hertz & Lahrichi (2009) to assign a care 

provider with a workload-balancing component. Similar to staff-shift scheduling, visit 

scheduling involves determining which staff member will perform a visit on which day and 

time. Visit scheduling was modelled for travelling physicians (Li, Y., Kong, Chen, & Zheng, 

2016) and home care workers (Hertz & Lahrichi, 2009). Based on the appointment schedule 

blueprint developed on a tactical level, the scheduling of a particular patient to a specific 

location has been addressed in the literature. Specifically, to improve access to care, Li et al. 
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(2016) investigated the problem of scheduling patients with chronic mental disorders to an 

outreach clinic location.  

Some operational planning decisions that have not been considered in mental healthcare are 

decisions associated with short-term care planning, as observed in the context of home care 

services (Hertz & Lahrichi, 2009). Another set of planning decisions that have not been 

modelled in mental healthcare is scheduling a combination of appointments as observed in 

cancer care (Petrovic, Morshed, & Petrovic, 2011) and a series of appointments modelled in 

rehabilitation care (Chien, Tseng, & Chen, 2008). In particular, individuals with severe 

complex mental health needs often require support from several different agencies in the 

community. Internationally, “case management” policies have been devised to promote 

patient-centred care coordination and care planning for individuals with complex health 

needs combining multiple chronic conditions with psychosocial or mental health 

comorbidities (Hudon et al., 2017). Broadly speaking, case management is an umbrella term 

for various care models that ensure that service users are provided with coordinated, 

effective and efficient care based on an assessment of their needs. In mental healthcare, 

such a care model is concerned with comprehensively coordinating services to meet a 

patient’s mental health needs. Variants are found in the USA (Rapp & Wintersteen, 1989), 

the UK (Department of Health, 1990), Australia (Rickwood, 2006), New Zealand (Mental 

Health Commission, 2012), and the Netherlands (Van Veldhuizen, 2007). Although policy 

aspirations have created an expanded mental health system that encompasses large-scale 

care provision to people living in the community, a significant gap exists between policy 

aspirations and operational practices (Jones, Hannigan, Coffey, & Simpson, 2018). Services 

face challenges in designing operations that support staff and service users in realising 

personalised care. As discussed in the previous sections, MASPH is only just gaining 

momentum in the hospital settings to address a patient’s need to access multiple resources. 

In contrast, models for settings outside the hospital are still missing. In particular, the gap 

does extend to care provided in the community and to mental healthcare. 

In this section, we have established that optimisation models in mental healthcare have 

focused mainly on the application area of planning, scheduling and routing. We have 

demonstrated that a good proportion of healthcare optimisation literature has also focused 

on this area. We have found several parallel and gaps in the levels of planning and decision 

types between the two contexts in this area. However, we found no evidence of models for 

the supply chain management of mental healthcare. Notably, inventory management does 

not apply to mental healthcare, as it does not involve the use of medical instruments. 
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However, facility location as an area of research is highly relevant to mental healthcare as it 

is to extant healthcare. Among the challenges associated with reduced access or 

discontinuity of care in mental healthcare services is the geographical distance to services 

(Carbonell, Navarro‐Pérez, & Mestre, 2020). Existing optimisation models for healthcare 

facility location have been deployed to minimize access costs for healthcare consumers, 

maximise population with access to a healthcare facility, and maximize the equity in access 

(Güneş et al., 2019). This extensively researched area of application is unexplored in mental 

healthcare and is a promising avenue for future research.  

3.4.2. Care Setting 
Articles are classified into three care settings based on the number and distribution of care 

units that were the focus of modelling: single care unit, multi-care unit, and multi-site care 

network. A single care unit refers to one health centre, for instance, a single outpatient clinic, 

as observed in the study by Samorani & LaGanga, (2015). On the other hand, multi-care units 

refer to a single care organisation with multiple subunits, for instance, a psychiatric hospital 

with several wards, as seen in studies conducted by Lyons & Young (1976) and Bester et al. 

(2007). Moreover, a multi-site care network comprises multiple care units distributed over a 

geographic area. Most articles under review have built models to address planning issues in 

such networks, such as a regional hierarchical care system (Muraco et al., 1977); a conceptual 

network of community mental healthcare system spanning across local, state and federal 

bodies (Wolpert & Wolpert, 1976); a system composed of numerous distinct mental 

healthcare providers (Heiner et al., 1981; Leff et al., 1986); and a care system consisting of a 

hospital and community mental health care centre (Franz et al., 1984; Specht, 1993). More 

recently, models have been used to address planning issues in a network of multiple sites 

such as psychiatric hospitals (Cohn et al., 2009; Pagel et al., 2012); home care services (Hertz 

& Lahrichi, 2009); and outpatient speciality clinics (Li, Y. et al., 2016). Remarkably, models in 

mental healthcare literature are spread over a range of care settings, reflective of the 

diversity inherent in the services. In contrast, modelling multiple care settings is a relatively 

recent development in other healthcare services.  

3.4.3. Model Objectives 
This section describes objective functions used in optimisation models in planning mental 

healthcare services so far. Optimisation models can have single or multiple objective 

functions. In a single objective function model, the optimal decision is taken based on one 

objective. In a multi-objective function model, more than one objective must be satisfied 

(Hwang & Masud, 2012). Our analysis has found that 5 of the 13 papers have used multi-
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objective function models, as seen in Table 5. Furthermore, the objective functions are 

divided into five observed categories: maximization of patient outcomes, maximization of 

constraint/goal satisfaction, minimization of costs, maximization of resource allocation and 

utilisation, and minimization of patient dissatisfaction. Table 5 depicts the objective 

functions for each article.  

Table 4: Optimisation in Mental Healthcare Literature Thematic Overview 

Author 
Planning 
Level 

Planning Decision Care Setting 

Lyons & Young (1976) Strategic Capacity Dimensioning 
- Staff 

Multi-care units 

Wolpert and Wolpert 
(1976) 

Tactical Admission Control Multi-site care 
network 

Muraco et al. (1977) Strategic Regional Coverage 
- Care Centre Location 

Multi-site care 
network 

Heiner et al. (1981) Tactical Admission Control Multi-site care 
network 

Franz et al. (1984) Strategic Placement Policy Multi-site care 
network 

Leff et al. (1986) Tactical Admission Control Multi-site care 
network 

Specht (1993) Strategic Placement Policy Multi-site care 
network 

Bester et al. (2007) Operational 
(Offline) 

Staff-to-Shift Assignment Multi-care units 

Cohn et al. (2009) Tactical Staff-Shift Schedule Multi-site care 
network 

Hertz & Lahrichi (2009) Tactical Admission Control Multi-site care 
network 

Operational 
(Offline) 

Assessment and Intake 
Visit Scheduling 
- Short-Term Care Plan 
- Staff-to-Visit Assignment 

Pagel et al. (2012) Tactical Appointment Scheduling Multi-site care 
network 

Samorani & LaGanga 
(2015) 

Tactical Appointment Scheduling Single-care unit 

Li et al. (2016) Operational 
(Offline) 

Patient-to-Appointment 
Location  
Scheduling 
Visit Scheduling 
- Staff-to-Visit Assignment 

Multi-site care 
network 

 

3.4.3.1. Maximising Constraint/Goal Satisfaction 

As described by the Donabedian framework, quality of care includes the organisation of care 

(or structure), the influence of structure on care delivery processes, and patient-level health 

care outcomes (Kilbourne et al., 2018; McDonald et al., 2007). Therefore, to provide safe, 

effective, patient‐centred, timely, efficient, and equitable care, services are faced with 
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diverse priorities and competing goals. 4 of the 13 papers under review define multiple goals 

in their objective. Specifically, Franz et al. (1984) and Specht (1993) explore multi-objective 

optimisation using goal programming for resource allocation. Both models maximize and 

prioritise diverse, conflicting goals, including budget, patient load, patient 

admission/reassignment, community education, demand satisfaction, staff and service 

capacity. More recently, Cohn et al. (2009) found the most feasible schedule that satisfies 

constraints of staff availability, staff capacity, staff preference, and demand satisfaction 

while also emphasising schedule fairness. Similarly, Hertz & Lahrichi (2009) model fairness 

as a function of workload balancing, measured by minimising travel load, caseload and visit 

load of staff. 

3.4.3.2. Maximising Patient Outcomes 

In mental healthcare, patient outcomes measure whether the care received by a patient has 

led to improvements in their symptoms – e.g., improvement or remission – or functioning or 

treatment completion (Kilbourne et al., 2018). These measures assist service providers in 

planning, monitoring and adjusting treatment options. Similar outcomes have been 

modelled as objective functions of 4 articles. Leff et al. (1986) define an objective function in 

which patient outcome is the maximisation of the net forward movement of a patient in a 

care system in terms of functional improvement or regression. Along similar lines, Heiner et 

al. (1981) define an objective function that maximises the aggregate improvement in the 

functioning of each patient cluster (also called the deinstitutionalisation objective). Wolpert 

et al. (1976) define an objective function that maximises outcomes by reducing patient 

dependency on mental healthcare, social welfare and law enforcement. More recently, 

maximising the number of patients who complete treatment was considered as the objective 

in the model built by Pagel et al. (2012). 

3.4.3.3. Minimizing Costs 

Whilst mental illness accounts for 13% of health care costs globally, it receives on average 

3% of healthcare funding in mid, high-income countries and 0.5% in low-income countries 

(World Health Assembly, 2012). When mental health issues are recognised and responded 

to, they have sizeable impacts on budgets associated with treatments delivered in inpatient, 

outpatient, community and primary care settings (Knapp & Lemmi, 2019). Consequently, 

economic costs associated with mental disorders and disease are generally distinguished 

between direct and indirect costs (Trautmann, Rehm, & Wittchen, 2016). Direct costs—also 

referred to as ‘visible costs’—are associated with diagnosis and treatment in the healthcare 

system, including the use of hospital services, medication, staff time, ambulances, 
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psychotherapy, and primary and community care (Ride, Kasteridis, Gutacker, Aragon, & 

Jacobs, 2019). Indirect costs—also called ‘invisible costs'—include reduced labour supply, 

premature mortality, reduced health-related quality of life, lost output, lost tax revenue, 

transfer payments, and unpaid care by family or friends (Emily & Valerie, 2014). Costs 

associated with treatment in the mental healthcare system have been used in 3 of 13 papers 

we review. Specifically, Muraco et al. (1977) define a single objective function that minimises 

costs incurred by a client when travelling to treatment centre locations. Bester et al. (2007) 

describe a multi-objective function, which is a combination of remuneration costs and 

accumulated nurse dissatisfaction—a measure of mismatch between their schedule 

preference—corresponding to current and previous assignments. More recently, Samorani 

& LaGanga (2015) maximised the profits of a mental healthcare centre by overbooking 

appointments on a schedule. Herein, profits are maximised to minimise costs associated with 

patient waiting time and clinic overtime, besides also maximising the number of patients 

seen. 

Table 5: Classification of Literature Based on Objective Functions 

Authors 

Max. Objectives Min. Objectives 
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Lyons & Young (1976) ✓      

Wolpert & Wolpert (1976) 
  ✓    

Muraco et al. (1977) 
   ✓   

Heiner et al. (1981) ✓  ✓    

Franz et al. (1984) 
 ✓     

Leff et al. (1986) 
  ✓    

Specht (1993) 
 ✓     

Bester et al. (2007) 
   ✓   

Cohn et al. (2009)  ✓     

Hertz & Lahrichi (2009)  ✓     

Pagel et al. (2012) 
  ✓    

Samorani & LaGanga (2015) 
   ✓   

Li et al. (2016) 
    ✓ ✓ 

 2 4 4 3 1 1 

3.4.3.4. Maximise Resource Allocation & Utilization 

Many countries face the challenge of providing adequate human, material, technological, 

and financial resources for delivering essential mental health services. Lack of funding—
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described in minimizing costs—is compounded with a worldwide shortage of human 

resources for mental health (World Health Organization, 2018b). Therefore, mental 

healthcare services often consider allocating and utilising their human resources with 

outcome vs output and productivity (Daniels, 2016; Davies, 2006). Specifically, a fundamental 

trade-off is between meeting patient needs (medical outcome) and contractual agreements 

(outputs) in allocating staff. Of the papers under review, Heiner et al. (1981) define an 

objective function that minimises deviation from improvement in patient outcome by 

ensuring equitable distribution of resources (staff and services). Besides, efficient utilization 

of resources is about maximising productivity by matching staff to appropriate roles by 

considering skill mix, role design, staff shortages and inequities, and service requirements. 

Lyons & Young (1976) modelled an objective function that maximizes staff utilisation by 

maximising an aggregate appropriateness score for all personnel performing activities. 

Herein, appropriateness levels for 12 types of personnel for the performance of 13 planned 

therapeutic activities in the service were fed to the model.  

3.4.3.5. Minimize Patient Rejection/Dissatisfaction 

A recent study allocates optimal appointment locations for patients and includes the 

minimization of the penalty associated with unsatisfied appointment requests, in addition to 

minimizing the travel time for patients (Li, Y. et al., 2016). 

3.4.4. Model Constraints  
Constraints are generally interpreted as limits or boundaries governing the system being 

modelled. The nature of these limits is diverse and includes limits on the availability of 

resources, funding, time-based limits (temporal) and capacity. In this review, constraints 

have been grouped based on their primary focus and the nature of their application. 

Specifically, constraints have focused on the service provider, staff and patient, and the 

nature of the constraints are relative to service delivery, geography and temporality. Table 6 

provides a detailed overview of the constraints with respect to their publication. 

3.4.4.1. Service Delivery Constraints 

Service delivery constraints have been considered in relation to the service provider and 

service staff.  Constraints used in models are relative to budget, resource availability, service 

capacity, assignment of tasks to staff, assignment of service packages and mandatory 

services. 

A recent study produced country-level estimates in the Americas for the proportion of total 

disease burden to the health expenditure and found a striking imbalance in the ratio 

between disease burden of mental health and allocated spending (Vigo, Kestel, Pendakur, 
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Thornicroft, & Atun, 2019). The spending ranged from 3:1 in Canada and the USA to 435:1 in 

Haiti, with a median of 32:1 across 30 countries (Vigo et al., 2019). Because of such historical 

imbalances, models in literature have given considerable attention to budgeting. Articles 

under review have examined the allocation of a fixed budget (Franz et al., 1984; Heiner et 

al., 1981; Leff et al., 1986; Lyons & Young, 1976; Specht, 1993; Wolpert & Wolpert, 1976). 

These articles have included a diversity of budgetary constraints in their models, such as the 

maximum allowable monetary expenditure (Franz et al., 1984; Specht, 1993; Wolpert & 

Wolpert, 1976), per capita budget (Leff et al., 1986), total available personnel budget (Lyons 

& Young, 1976); and government-mandated budget (Heiner et al., 1981).  

Evidence indicates that mental health workers account for only 1% of the global health 

workforce. Approximately 45% of the global population resides in a country with less than 

one psychiatrist per 100,000 people (World Health Organization, 2018b). Two articles have 

defined limits on the availability of resources. Leff et al. (1986) set an upper limit on the 

amount of personnel available in the service, whereas (Lyons & Young (1976) have a fixed 

number of beds. Furthermore, mental health services continually experience rising demands 

and, in many cases, exceed available capacity. For instance, bed occupancy rates for inpatient 

services regularly exceeds recommended levels to maintain safety standards, highlighting 

the significant pressure the system is under  (World Health Organization, 2018b).  Therefore, 

a variety of service capacity constraints, such as the limitation on service provider capacity 

(Heiner et al., 1981), number of available service hours (Li, Y. et al., 2016; Lyons & Young, 

1976) and the maximum number of appointments (Pagel et al., 2012), have been formulated.  

From a staffing perspective, constraints focusing on task assignment, staff preferences, the 

sequence of shifts and skill requirements have been considered. Assignment of tasks to the 

staff mainly specifies permissible values of the maximum and the minimum number of staff 

per task or tasks per staff. Examples include constraints that specify the minimum and the 

maximum number of shift assignments for a nurse (Bester et al., 2007) and constraints 

limiting any physician's assignment to an outpatient appointment (Li, Y. et al., 2016). 

Additionally, staff preference constraints have been used to model vacation and weekly shift 

assignment requirements in the appointment-scheduling problem (Cohn et al., 2009). 

Instances of constraints corresponding to skill requirements include defining the minimum 

number of nurses of a particular rank to be assigned to a shift (Bester et al., 2007) and 

assigning a patient to a type of nurse (Hertz & Lahrichi, 2009).  

Several countries rely on government policies that specify values, principles and objectives 

of a population’s mental health (Zhou, Yu, Yang, Chen, & Xiao, 2018). These policies are 
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implanted in several domains such as service organizing, service provision, service quality, 

human resources etc. (Zhou et al., 2018). Countries face several challenges in the 

implementation of these policies. Articles under review have modelled such features as 

constraints related to mandatory (government or service organisation) service hours for a 

service or groups of services. Heiner et al. (1981) formulate the mandated number of service 

hours for each individual in a patient cluster—based on functional skills, social skills and 

motor disabilities. 

In contrast, Cohn et al. (2009) model the mandatory coverage for a network of hospitals as 

a constraint by specifying the compulsory presence of one primary and backup member of 

staff on any given day. A minimum limit on the number of three different types of 

appointments to be allocated is included by Pagel et al. (2012), and mandatory patient 

follow-up constraints are outlined by Specht (1993). Lastly, constraints ensuring appropriate 

service assignment to patients are defined in the resource allocation model built by Leff et 

al. (1986). A constraint ensures that patients at a functional level are assigned suitable 

service packages. Whereas, for booking outpatient appointments, a constraint allocates at 

most a single appointment slot to a patient (Samorani & LaGanga, 2015). 

3.4.4.2. Temporal Constraints  

In this section, temporal constraints relative to service providers, staff and patients are 

examined. These constraints are based on time relationships between entities. Specifically, 

these are used to orient an event on a timeline, specify the duration of an event, and 

determine the order of an event to other events. There are two main types of temporal 

constraints, sequencing and real-time (Kuhn et al., 2015). Sequencing constraints specify the 

order in which a sequence of actions or events is allowed to take place. For instance, a 

sequential constraint would specify that two night shifts should not be scheduled in 

sequence. On the other hand, a real-time constraint may specify the explicit references to 

time. For instance, an event must take place 10 minutes before another event. From a service 

provider perspective, Samorani & LaGanga (2015)  have included a lead-time (time between 

initiation and completion of process) constraint for booking appointment requests, which 

ensures that any request is assigned to at most one of the days that follow its arrival. 

From a staff perspective, because of limited resource availability, staff are said to experience 

‘brain drain’ resulting in low morale and high turnover. This leads to a significant obstacle in 

retaining staff required to deliver services (Thornicroft, Deb, & Henderson, 2016). For 

instance, the National Health Service in the UK has recorded a drop of 11% in the mental 
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healthcare nursing workforce between 2009 and 2019 (Buchan, Gershlick, Charlesworth, & 

Seccombe, 2019). Therefore, the prevention of overburdening workloads is a critical 

challenge in managing the workforce. In addition to addressing capacity issues described in 

the previous section, the distribution of tasks/work to staff is defined within a model through 

temporal constraints. Cohn et al. (2009) have included restrictions on the number of daily 

and weekly on-calls for staff. While studies published before the 2000s have formulated 

constraints that limit the number of hours staff spend supervising or receiving supervision 

(Lyons & Young, 1976) and constraints on total time available for psychiatrists to dispense 

services (Franz et al., 1984; Specht, 1993).  

Finally, for a patient, shorter waiting times are said to affect patient outcomes positively. 

This is particularly so for conditions such as psychosis and in services for children and 

adolescents (Reichert & Jacobs, 2018; Schraeder & Reid, 2015). Waiting times have been 

observed to be a contributing factor to high rates of ‘no shows’, greater likelihood of 

disengaging from services and worsening of conditions (Schraeder & Reid, 2015). By reducing 

waiting time, services have the potential for efficiency gains and cost savings. Furthermore, 

studies have found that rapid access reduces the ‘no show’ rates falling by more than half 

and reduces crisis hospitalisations (Williams, Latta, & Conversano, 2008). 

Additionally, from an economic point of view, poor outcomes related to an extended waiting 

period, which prevents patients from working, has associated costs (OECD, 2020; Reichert & 

Jacobs, 2018). While waiting time is often incorporated into the objective function, waiting 

times as temporal constraints have been included by Pagel et al. (2012) to facilitate 

introducing a new care systems model. These constraints specify the maximum allowable 

increase in waiting time for patients and define waiting-time periods for different service 

types. 

3.4.4.3. Geographic constraints 

Although mental health services do not adhere to a distinguished model of providing care, 

most services are in inpatient or community settings. While accessibility to services is 

impacted negatively by waiting lists, equally important is the uneven geographical 

distribution of service locations and staff (Samartzis & Talias, 2020). Geographic constraints 

in mental healthcare optimisation literature have primarily been associated with planning 

models built to aid deinstitutionalisation.  
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Therefore, they have been applied to a large region consisting of a network of care services. 

Franz et al. (1984) and Specht (1993) have considered two types of constraints. The first type 

satisfies patient demand in a region and increases the number of patients reached by 

community-based educational programmes. Second increases the flow/transition of patients 

from institutional care to community care. A single article addresses facility location of 

community mental health services in a geographical area by incorporating demand coverage 

constraints to equally assign demand amongst community centres (Muraco et al., 1977). In 

contrast, staff-related geographical constraints have taken the form of location preferences. 

For instance, preferences are taken into consideration for determining appointment 

locations for medical residents (Cohn et al., 2009), community staff (Franz et al., 1984) and 

physicians (Li, Y. et al., 2016).  

3.4.5. Model Formulation 
Five types of optimization techniques have been employed by the studies included in our 

review: linear, integer, mixed-integer, goal and stochastic programming. Linear 

programming is an optimization technique to determine the value of decision variables that 

maximize or minimize a linear objective function where decision variables are subject to 

linear constraints (Chong & Zak, 2004; Vanderbei, 2020). Linear programming is employed in 

various application areas, including production planning, inventory control, and workforce 

planning (Mula, Poler, García-Sabater, & Lario, 2006; Taha, 2017). Of the articles under 

review, linear programming has been used for locating care centres (Muraco et al., 1977), 

assigning patients to services (Heiner et al., 1981; Leff et al., 1986; Wolpert & Wolpert, 1976), 

and scheduling appointments (Pagel et al., 2012). Furthermore, Integer programming is the 

same as linear programming except that all decision variables are constrained to be integers. 

When some but not all decisions are restricted to be integers, the optimisation technique is 

referred to as mixed-integer programming (Taha, 2017). Integer programming is often used 

to formulate scheduling problems (Vanderbei, 2020). In this review, scheduling of patient 

appointments (Li, Y. et al., 2016) and staff (Bester et al., 2007; Cohn et al., 2009) have been 

modelled using integer programming.  While staff dimensioning (Lyons & Young, 1976) and 

assigning patients to services are addressed using mixed-integer programming (Hertz & 

Lahrichi, 2009). 

Goal programming can be thought of as an extension of linear programming to handle 

multiple, conflicting objectives. A target value to be achieved is specified for each goal, and 

unwanted deviations are then minimized (Winston & Goldberg, 2004). Often, goal 

programming is used to provide the best satisfying solution under conditions of multiple goal 
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priorities. Among the 13 articles under review, two have used goal programming to analyse 

alternative placement policies (Franz et al., 1984; Specht, 1993). Stochastic programming 

constitutes a framework for modelling optimization models in the presence of uncertainty 

(Ruszczynski & Shapiro, 2003).  Decision problems addressed by stochastic programming are 

canonically expressed as “some decisions must be made today, but important information 

will not be available until after the decision is made” (King & Wallace, 2012). Samorani & 

LaGanga (2015) incorporate uncertainty regarding appointment cancellation and no-show 

probability by formulating a model using stochastic programming. 

The optimisation techniques used to formulate problems in a mental healthcare setting are 

similar to techniques used in extant healthcare. However, as can be observed, optimisation 

in mental healthcare is limited and sporadically dispersed.  Therefore, it appears that the 

choice of formulation technique is essentially a reflection of ‘when’ the study was conducted 

and corresponds to the progressive development of optimisation techniques. Even so, the 

more recent study by Samorani & LaGanga (2015) is an exemplar in healthcare research for 

having been the first to integrate predictive analytics, optimisation and overbooking for 

scheduling. 

3.4.6. Solution Algorithm 
Once the model is defined, it can be solved by a solution algorithm. Formalised by Turing 

(1937) and Church (1936), an algorithm is a finite set of well-defined instructions for 

accomplishing a task. In optimisation, an algorithm's goal is to find a solution with minimal 

or maximal evaluation time (Rothlauf, 2011). Solution algorithms for optimization problems 

can be roughly distinguished into two types: exact algorithms and heuristics. Articles under 

review have been categorised based on the type of solution algorithm deployed, as seen in 

Table 7. Most often, the solution algorithm of choice speaks to the complexity and size of a 

problem. This section will explore each model solution based on the type.  

3.4.6.1. Exact Solution Algorithms 

Exact solution algorithms are designed in such a way that they guarantee finding an optimal 

solution in a finite amount of time. To do this, exact algorithms conduct an exhaustive search 

of every single solution in the solution space. Exact solutions algorithms were employed by 

10 (of 13) articles under review. The most used algorithm was simplex (n=6), whereas 

branch-and-bound, branch-and-cut, column generation and nested decomposition were 

used once by four different articles. 
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Wolpert and Wolpert (1976), Heiner et al. (1981) and Pagel et al. (2012) have solved their 

linear programming problem by directly applying the simplex algorithm. The simplex 

algorithm effectively solves Linear Programming (LP) problems with continuous decision 

variables (Dantzig, G. B., 1998). In particular, the algorithm finds an optimal solution to a 

problem, where the objective function depends linearly on the continuous decision 

variables. Specifically, the algorithm sequentially tests multiple values in a set of feasible 

values to improve the objective function until the optimal solution is found. Franz et al. 

(1984) and Specht (1993) used the goal programming variant of the simplex algorithm, which 

operates on multiple objective functions, where each objective is ranked. The algorithm 

prioritises goals with a higher priority, unlike in LP, where an objective function is optimized. 

Lyons and Young (1976) employ the Branch and Bound (B&B) algorithm to solve a mixed-

integer programming problem. B&B is a common enumerative approach to solving LP 

problems with discrete decision variables. Solving a problem using B&B involves recursively 

decomposing a problem into sub-problems, which are then solved using LP methods like the 

simplex algorithm (Land & Doig, 2010). Hertz and Lahirichi (2009) used Branch and Cut (B&C) 

to solve a mixed-integer programming problem. B&C algorithms combine B&B with cutting 

planes methods. Specifically, cutting plane methods add additional constraints (cutting 

planes) to a problem. The original constraints are replaced by alternative constraints closer 

to producing a feasible integral solution and exclude fractional solutions (Mitchell, 2002). 

Leff et al. (1986) deployed a nested decomposition algorithm (Glassey, 1973) to solve the 

resource allocation model. Decomposition algorithms split a problem into a master problem 

and one or more slave problems. The solution of the master problem is then fed to the slave 

problem to determine feasibility (Dantzig, G. B. & Wolfe, 1961).  

Samorani & LaGanga (2015) used column generation to solve an integer programming 

problem. This approach is selected for scheduling outpatient appointments to keep the 

number of constraints low. A column generation algorithm is typically applied to problems 

where it is not possible to consider all variables explicitly (Desaulniers, Desrosiers, & 

Solomon, 2006).  Therefore, a problem is split into two problems: the restricted master 

problem and the sub-problem. The master problem works only with a sufficient subset of 

variables. In contrast, the sub-problem is created to identify new promising variables with 

reduced negative cost, which are then added to the master problem and resolved. This 

process is repeated until no negative reduced cost variables are identified. 
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Table 7: Classification of Literature Based on Solution Algorithms 

3.4.6.2. Heuristics 

For large problems, which cannot be solved using exact algorithms, heuristics are employed. 

Heuristics do not guarantee an optimal solution and generally return suboptimal solutions. 

Furthermore, heuristics are often problem-specific. In literature, two types of heuristics are 

distinguished: construction heuristics and improvement heuristics (Rothlauf, 2011). 

Construction heuristics build a complete solution from scratch by following a step-wise 

creation process. On the other hand, improvement heuristics start with a complete solution 

and then try to improve the solution iteratively. Three studies have utilised heuristics to solve 

their optimisation problems. 

Samorani & LaGanga (2015) develop a new heuristics policy to schedule outpatient 

appointments. Since the ‘column generation’ approach took a long time to solve—if the 

rejection of patients is not allowed—a new heuristic policy was developed and solved to near 

optimality. The heuristic schedule predicted shows in the near future and predicted no-

shows into the future. This new procedure was found to outperform the exact solution. 

Further, Muraco et al. (1977) deployed an ‘alternating heuristic’ represented by alternate 

steps of location assignment and demand allocation, which continues until an optimal 

minimal configuration is achieved within the given constraints. This heuristic was used to find 

a location with minimum transport and then assign a service centre to each location, 

followed by the allocation of demand to these centres.  

Author Model Formulation Solution Type Solution Algorithms Solver 

Lyons & Young (1976) 
Mixed-Integer 
Programming 
 

Exact 
 

Branch and Bound   

Wolpert and Wolpert (1976) Linear Programming Simplex   

Heiner et al. (1981) Linear Programming Simplex   

Franz et al. (1984) Goal programming Simplex  IBM’s MPSX 

Leff et al. (1986) Linear Programming Nested Decomposition  

Specht (1993) Goal programming Simplex   

Cohn et al. (2009) Integer Programming Simplex  CPLEX 

Pagel et al. (2012) Linear Programming Simplex Microsoft Excel 

Muraco et al. (1977) Linear Programming 
Heuristics 

Alternating Heuristic   

Li et al. (2016) Integer Programming 
Primal and Local Search 
Heuristics 

CPLEX 

Bester et al. (2007) Integer Programming Metaheuristics Tabu Search 
Microsoft Visual 
Basics 

Hertz and Lahirichi (2009) 
Mixed-Integer 
Programming 

Exact & 
Metaheuristic 

Branch and Cut & Tabu 
Search 

CPLEX 

Samorani and LaGanga (2015) 
Stochastic 
programming  

Exact and Heuristic 
Column Generation & 
Heuristic 
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Li et al. (2016) employ both construction and improvement heuristics to construct physician 

assignments in an outpatient care network. Specifically, several column generation based 

primal heuristic algorithms were used to construct assignments, followed by several local 

search algorithms to improve the assignments further. In particular, heuristics that are based 

on exact methods are called primal heuristics (Joncour, Michel, Sadykov, Sverdlov, & 

Vanderbeck, 2010). In contrast, local search heuristics are applied to problems that are 

formulated to find a solution that maximises a criterion among several candidate solutions. 

Notably, the algorithm moves from solution to solution in the space of candidate solutions 

by applying local changes, until a time-bound elapses or an optimal solution is found. 

3.4.6.3. Metaheuristic 

Improvement heuristics that use a search strategy that is general, widely applicable and 

problem-invariant are denoted as metaheuristics (Glover, Fred W. & Kochenberger, 2006). 

Two of the articles under review have employed metaheuristics. Bester, Nieuwoudt et al. 

(2007) developed a decision support tool for nurse rostering that is underpinned by the tabu 

search method. While Hertz & Lahirichi (2009) use tabu search for a patient assignment. 

Specifically, tabu search is a metaheuristics search method that builds on local search by 

relaxing its basic rule (Glover, Fred W. & Kochenberger, 2006). Not unlike local search, tabu 

search takes a potential solution and checks its immediate neighbours in the hope of finding 

a solution. However, unlike local search, tabu search will accept moves that worsen the 

solution if no other improving move is available. Besides, the method uses a list of 

prohibitions (termed tabu list) to discourage the solution from returning to previously visited 

solutions. 

The choice of solution methods is dependent on how complex, large, and computationally 

cumbersome the problem is. The increase in computer power has also increased the scope 

of solvable applications. As can be observed in Table 7, early applications mainly deployed 

Simplex to solve their optimisation problem. More recently, the complexity of solutions is 

reflected in the type, algorithm of choice and the use of specialised software packages such 

as CPLEX. As noted earlier, the application of optimisation to mental healthcare is trailing 

compared to other healthcare settings. 

3.5. Discussion 
The application of optimisation to mental healthcare is in its nascent stages. We have 

assembled a purposefully broad-ranging future research agenda, drawing on several 

significant trends and characteristics from healthcare literature. For the future development 

of optimisation models in healthcare, we outline actionable themes such as incorporating 
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uncertainty and risk, timely access to care, continuity of care, multiple care settings, 

integrated care settings and, new modelling and solution methodologies. 

3.5.1. Incorporating Uncertainty and Risk in Mental Health 
Optimisation Models 

Models are beginning to incorporate dynamic aspects of the healthcare system by 

integrating sources of uncertainty and risk in application areas such as inventory 

management, facility location, and planning and scheduling of operating rooms. 

Uncertainties have been included in optimisation models in several care settings such as 

cancer care (Mahmoudzadeh, Purdie, & Chan, 2016), surgical care (Koppka, Wiesche, 

Schacht, & Werners, 2018), in the management of operation theatres (Kroer et al., 2018) and 

home healthcare (Yuan, Liu, & Jiang, 2015). In the context of mental healthcare, it appears 

that some studies have incorporated uncertainty either explicitly or implicitly. A recent study 

has explicitly modelled uncertainty regarding appointment cancellation and no-shows by 

using patient progress indicators to make no-show predictions (Samorani & LaGanga, 2015). 

Models built in the context of deinstitutionalisation have incorporated uncertainty implicitly 

corresponding to funding and budgets. Effectively, uncertainty in mental healthcare 

optimisation models is lagging in both scope and depth compared to broader healthcare. 

Particularly challenging to model is the uncertainty associated with diagnosing psychological 

disorders, which influences treatment pathways and subsequent treatment outcomes. 

Furthermore, mental health services' co-location and interdisciplinary nature pose 

uncertainties regarding the boundaries between services and roles. Indeed, healthcare 

literature has deemed it necessary to integrate uncertainty to expand the scope of 

application. Essentially, this assertion extends to mental healthcare.  

Risk factors in mental healthcare are predominantly related to the self-destructive behaviour 

of patients and staff safety relative to specific manifestations of mental illness. These risk 

factors are often associated with risk categories, including (but not limited to) individual risk 

factors, demographic variables, treatment history, and social variables (Franklin et al., 2017). 

Risk assessment tools are a central practice in mental health services. Often, they are used 

as a helpful adjunct to inform management plans (Appleby, Kapur, & Shaw, 2018). In mental 

health optimisation literature, Leff et al. (1986) use a similar approach to categorise patients 

based on a spectrum of functional levels, starting from ‘dangerous’ to ‘Recovering’. Patients 

from each category are then assigned to specific service packages. Even so, in recent studies, 

no such consideration of risk has been considered. In healthcare literature, risks associated 

with various care settings have been included in optimisation models in multiple contexts. 
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For instance, the risk of surgery cancellation (Wang, Y., Tang, & Fung, 2014), operational risk 

(Ahmadi et al., 2019), and longer procedure times have been modelled. In the context of 

mental healthcare, future research could look to existing models that incorporate risk. 

Besides, the inclusion of risk relative to both patients and staff is an essential strand of 

consideration for future research.  

3.5.2.  Models to Address Timely Access for Mental Health 
Services  

Several parallels can be drawn between the service provision of cancer care and specialist 

mental health care. Recent initiatives to improve specialist mental health services align with 

some principles that underpin good practice in cancer care (Larkin, Boden, & Newton, 2017). 

While acknowledging clinical differences between the two care systems, it has been argued 

that comparisons between cancer care and mental illnesses such as psychosis provide a 

valuable lens to examine service provisions (Larkin et al., 2017). Not unlike mental 

healthcare, cancer care combines hospital care, outpatient care, and home care 

(Gospodarowicz et al., 2015). Although cancer treatment is mainly hospital-based, and 

mental healthcare is mainly community-based. In both cancer care and specialist mental 

healthcare, the ethos of providing timely access to care is yet another parallel (Mulville, 

Widick, & Makani, 2019; National Academies of Sciences, Engineering, and Medicine, 2018). 

A substantial amount of research utilizing OR methods for cancer treatment planning and 

scheduling can be found in the literature (Saville, Smith, & Bijak, 2019).  

Despite the rhetoric of providing timely access to care, patients are often unable to access 

care on time, and long waiting times are a challenging barrier to improving mental health 

outcomes (British Medical Association, 2017). Instances from cancer care that have also 

explored improving access to treatment present a possibility for adaptation. Future research 

could consider optimising the location of treatment centres using performance measures like 

total demand-weighted distance, and total distance travelled (Cotteels, Peeters, Coucke, & 

Thomas, 2012).  

3.5.3. Modelling Continuity of Care for Mental Health Patients 
Continuity of care is considered a prerequisite for providing high-quality care and is regarded 

as a guiding principle in planning and delivering services in mental healthcare (Biringer, 

Hartveit, Sundfør, Ruud, & Borg, 2017; Freeman, Weaver, & Low, 2002). This aspect of 

mental health services warrants further inclusion in model development. Specifically, in 

home healthcare and outpatient care literature, continuity of care constraints are often used 

to assign patients to care workers (Ahmadi-Javid et al., 2017; Cissé et al., 2017). Furthermore, 
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continuity of care for mental health patients can be extended to a patient’s care pathway 

across multiple services in the mental healthcare network, which could include social 

services, community services, outpatient and inpatient mental health services (Slade, Leese, 

Cahill, Thornicroft, & Kuipers, 2005). When organizing treatment pathways, multidisciplinary 

teams are faced with a similar challenge of ensuring continuity of care.  Examples of multi-

disciplinary planning include modelling capacity fluctuations and planning care pathways 

(Leeftink et al., 2020). Future research could explore the applicability of such instances to 

planning mental healthcare service delivery. 

3.5.4. Models to Consider Multi-Layered Mental Healthcare 
Systems  

One of the main characteristics of care settings in mental healthcare is the 

interconnectedness of services. Also present are multiple types and levels of workers who 

work in tandem. It is known that mental healthcare is primarily focused on providing care in 

the community through several channels such as in a patient’s home, on the telephone, and 

at local clinics. In this context, to tackle common mental health issues or complex mental 

health issues in the community, patients increasingly receive care at their home, by 

telephone, and at local clinics by ‘wrapping services’ around primary care (Edwards, 2014). 

Herein teams of multidisciplinary skill-mix mental health staff are developed in collaboration 

with secondary care, around groups of primary care practices that serve a specified 

population in a geographic location (World Health Organization, 2018a; World Health 

Organization, 2018c).  

From a modelling perspective, incorporating features that are characteristic of complex 

systems in models is challenging. However, similar structural and workforce issues exist in 

healthcare literature, which are transferrable to mental healthcare services. For instance, 

parallels can be drawn from existing applications of optimisation in community services 

(Palmer, Fulop, & Utley, 2018), home healthcare (Cissé et al., 2017), outpatient Care 

(Ahmadi-Javid et al., 2017) and owing to the multidisciplinary nature of the teams, from 

multi-disciplinary planning (Leeftink et al., 2020). Besides, in situations where multiple 

workers with a mixed skill set are required to provide services to patients in multiple 

locations, future research could investigate the possibility of applying multi-skilled multi-

location models. Such models have been developed to address the food safety inspector 

scheduling problem (Cheng & Kuo, 2016) and for scheduling airline customer service agents 

to locations in a large international airport terminal (Kuo, Leung, & Yano, 2014). 
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The integrated nature of mental healthcare services poses another modelling challenge: 

developing models that aid decision-making across different systems and planning levels. In 

essence, integrated care delivery involves coordinating services across multiple healthcare 

professionals, organizations, and sectors and prioritizing patient needs and preferences 

(Tsasis, Evans, & Owen, 2012). There is a wide-ranging consensus in extant healthcare 

optimisation literature to develop models that aid decision-making across integrated 

systems. An example of optimization applied to an integrated care system can be found in a 

study by Braaksma et al. (2014), who present a methodology to plan treatment for a 

multidisciplinary rehabilitation centre and present an integer linear programming approach 

to implement combination appointments. Additionally, Marynissen & Demeulemeester 

(2019) have positioned the MASPH literature as an additional dimension to the spectrum of 

integrated healthcare. Several authors have encouraged future researchers to build models 

that capture realistic assumptions (multiple servers, multi-type demand, and uncertainty). 

This limitation also extends to capturing variability in care pathways. Although modelling the 

integration of services is an emerging application area, existing models can be adapted to 

model integrated care in mental healthcare. In addition, future work would need to consider 

the boundaries between healthcare professionals and organisations and incorporate multi-

level modelling and mixed methods, which involve some recognition and appreciation for 

the dynamic complexity of the mental healthcare system. Future research can be guided by 

a recent review article on clinical pathway modelling. Aspland, Gartner, & Harper (2021) 

propose a taxonomy of clinical pathway problems to improve the handling of multiple scopes 

within one model while encouraging interaction between the disjoint care levels.  

The findings suggest that future work should consider industrial engineering integrated with 

OR techniques. So far, this review has identified opportunities from several healthcare 

settings where optimisation models can be transferred to mental healthcare. Through this 

analysis, we have established that research gaps that were identified can also be extended 

to mental healthcare service planning.  In particular, models are far from comprehensively 

tackling complex real-world problems in healthcare planning. Several reviews have 

highlighted the absence of models that include environmental factors such as patient no-

shows, emergencies, resource absenteeism, unpunctuality, unavailability and traffic delays. 

Moreover, given the disruptions caused by the current public health crisis, researchers call 

attention to the absence of models that consider factors such as disruption relative to natural 

disasters, economic or financial crises, and social events. 



 

83 
 

3.5.5. Developing New Modelling and Solution Methodologies to 
Address Challenges of Mental Healthcare Delivery 

This review has identified the need to formulate complex models that capture mental 

healthcare systems. Increasingly, optimisation methods capable of solving complex real-

world problems in healthcare are being developed and deployed. By examining the latest 

advances in healthcare modelling, this section will attempt to carve out methodological 

avenues for future research in mental healthcare planning. 

In mental health care, lack of standardised information technology data sources and limited 

scientific evidence for mental health quality measures are critical barriers to measuring and 

improving mental health care quality (Kilbourne et al., 2018). Worldwide, quality of care in 

mental healthcare is suboptimal with persistent gaps in access to and receipt of mental 

health services (Demyttenaere et al., 2004; Wang, P. S. et al., 2007; Whiteford et al., 2013). 

Therefore, to close existing gaps, mental healthcare systems worldwide are also rolling out 

service standards similar to those in physical health services. Services are looking to increase 

capacity and set up access and waiting time standards (NHS England, 2014). Although 

significant advances are currently underway to identify mental health care quality measures, 

several obstacles are yet to be overcome. These systemic factors are challenging to model 

since quality measures are inextricably linked to measures of performance, which inform 

model building.  

As evidenced earlier, optimisation models for mental healthcare planning are predominantly 

deterministic; they do not capture the uncertainties inherent in the system. In other strands 

of healthcare optimisation literature, uncertainty related to service duration, patient 

preferences, patient arrivals, interruptions etc., have been modelled using methodologies 

such as stochastic programming and robust optimization. Specifically, an optimization 

problem is stochastic if some or all parameters are uncertain, but they follow a probability 

distribution (Birge & Louveaux, 2011). For instance, stochastic programming has been used 

for staffing and scheduling homecare employees by considering uncertain demand 

(Restrepo, Rousseau, & Vallée, 2020) and for operating room scheduling in the presence of 

cancellations and resource unavailability (Xiao, van Jaarsveld, Dong, & van de Klundert, 

2016). On the other hand, in the presence of unreliable data in a system with uncertainty, a 

robust optimization model can be used. Such a model aims to make a feasible decision no 

matter the constraints and is optimal for the worst-case objective function (Gabrel, Murat, 

& Thiele, 2014). For instance, physician capacity planning at a tactical level, in the presence 

of unreliable data and uncertain patient demand, is modelled using robust optimization 
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(Aslani, Kuzgunkaya, Vidyarthi, & Terekhov, 2020). Formulating planning problems by 

utilising such methods could be considered for future research.  

More than half the articles under review have used exact solution algorithms, while the rest 

have employed heuristics, metaheuristics, or hybrid algorithms. Notably, when the time or 

cost of determining the optimal solution is too large in decision problems, an acceptable and 

feasible solution is preferred (Capan et al., 2017). In this context, optimization models in 

healthcare are increasingly being solved by more than one solution method. Specifically, 

hybrid optimization approaches that combine exact and heuristic methods to deal with the 

complexity are used (Feldman, Liu, Topaloglu, & Ziya, 2014). Additionally, to solve large-scale 

problems, heuristics and metaheuristics are the methods of choice for their ability to provide 

satisficing solutions (Saha & Ray, 2019; Volland et al., 2017). While the use of such instances 

has been found in mental healthcare literature, in comparison to other strands of healthcare 

literature, it is limited in both size and scope.  

Researchers have recently identified the need to take a holistic approach that integrates 

planning decisions and have developed hybrid models that combine several OR techniques. 

In particular, forecasting, simulation and optimization are used in combination for capacity 

planning in a hospital (Ordu, Demir, Tofallis, & Gunal, 2020). Metaheuristics are used 

alongside simulation to schedule walk-in patients in clinics (Amaran, Sahinidis, Sharda, & 

Bury, 2016; Peng, Qu, & Shi, 2014). Such approaches often build on gaps identified in 

particular strands of research (Uriarte, Zúñiga, Moris, & Ng, 2017). Notably, such approaches 

are lacking in mental healthcare research. 

Globally, the increased awareness of the unmet need for mental health services is leading to 

the growth of several strategies that focus on coordination and communication between 

health services. Such care models are often collectively termed “mental health integration”, 

“behavioural health integration”, or “integrated care” (Unützer, Carlo, & Collins, 2020). In 

such a care setting, multiple stakeholders with diverse perspectives and views are likely to 

influence decision-making. Therefore, researchers have developed multi-methodology 

frameworks that combine hard and soft OR methods to gather information and knowledge 

about the system and help reflect multiple stakeholders' diversity of concerns (Pessôa, Lins, 

da Silva, Angela Cristina Moreira, & Fiszman, 2015). Simulation is often combined with 

Problem Structuring Methods (PSM) (Sachdeva, Williams, & Quigley, 2007; Tako & Kotiadis, 

2015). More recently, Soft Systems Methodology (SSM) tools were used to structure the 

medical training problem's objectives and specifications. The information was then fed to 

formulate a mixed integer-programming problem (Cardoso-Grilo, Monteiro, Oliveira, 
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Amorim-Lopes, & Barbosa-Póvoa, 2019). It is noteworthy that the combination of 

optimisation with PSMs is only just beginning in healthcare literature, with only one such 

application so far.  

3.5.6. Managerial insights 
Increasingly, to ensure safe, sustainable, and productive staffing of mental healthcare 

services, the planning priority is to make sure ‘the right people, with the right skills, are in 

the right place at the right time’ (Baker & Pryjmachuk, 2016). Central to achieving this goal 

is appropriate workforce planning and deployment. The planning and deployment of a skilled 

workforce are some of the most challenging problems a manager faces that have real-life 

implications. Our review has revealed that most planning models in mental healthcare were 

used in real world practical contexts. However, we have decidedly established that these 

models have a narrow scope and use simplified assumptions. Workforce planning in 

healthcare is a well-researched application area. Models have considered multiple skills, 

shifts, and criteria to build realistic models incorporating stochasticity and uncertainty (De 

Bruecker, Van den Bergh, Beliën, & Demeulemeester, 2015). Such considerations are missing 

in mental healthcare models and is a prominent area of future research.  

Additionally, when it comes to model building in practice, managers and researchers should 

be aware of a range of factors that differentiate healthcare modelling from other industries. 

Factors include the importance of using problem structuring, problems associated with data 

collection, and interpreting the model and its results (Virtue et al., 2013). The importance of 

using problem-structuring methods to facilitate stakeholder participation is the focus of 

many future research directions, also echoed by this article (Júnior & Schramm, 2021). In 

addition, by drawing on our own experience of building an optimisation model for a mental 

healthcare service, we acknowledge and confirm the importance of these practical factors 

described above. Notably, in our experience, problem-structuring methods such as SSM 

proved invaluable in eliciting stakeholder participation throughout the entire modelling cycle 

(Ranyard, Fildes, & Hu, 2015). Equally, we wish to emphasise the effort and difficulty 

associated with collecting data. We recognise that most services routinely collect crucial 

data. However, significant resources are required to understand and clean said data before 

being used in the model (Onggo & Hill, 2014). Likewise, researchers and managers ought to 

be aware of the intricacies of communicating technical information to stakeholders (Herrera, 

McCardle-Keurentjes, & Videira, 2016). Problem-structuring and multi-methodology 

methods have endeavoured to bridge this gap, and optimisation modellers can draw from 

these studies (Howick & Ackermann, 2011). However, it is worth noting that such 
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applications have developed visually interactive simulation models. In comparison, 

optimisation models do not have visualisation capabilities and are therefore challenging to 

translate (Waisel, Wallace, & Willemain, 2008).    

3.6. Conclusion 
This paper provides a scoping review of the application of optimisation methodologies in 

mental healthcare services. Half of the reviewed studies were conducted in the immediate 

period following deinstitutionalisation (the 1960s onwards). The research appears to have 

resumed in the past decade. We also survey the landscape on the application of optimisation 

to healthcare and provide an overview in Table 2. Through this survey, we identify gaps in 

current literature and highlight opportunities for transferability of existing applications to 

the context of mental healthcare services. Features associated with mental healthcare are 

also presented and contrasted with healthcare to identify similar characteristics or problems 

that have been addressed in other healthcare settings, which have the potential of being 

transferred.  

After establishing the background for the mental healthcare setting, we then conduct a 

scoping review and classify the identified studies. Articles are organised through a generic 

analysis of various characteristics. The number of publications associated with mental 

healthcare planning and delivery is restricted and sporadically distributed compared to 

physical healthcare, which indicates the limited attention habituated to this aspect of 

healthcare. We then conduct an in-depth analysis of the optimisation models built for mental 

health services and find that the models are predominantly deterministic; they do not 

capture the complexities inherent in the system.  We draw parallels between psychological 

and physical health to identify opportunities for transferability and propose a broad research 

agenda.  Based on the analysis of existing literature, features of mental healthcare services, 

and the results of our review, we find that although opportunities for transferability exist, 

gaps in healthcare optimisation literature also extend to mental healthcare.    Although 

COVID-19 is a physical health crisis, it has seeds of a major mental health crisis as well. Mental 

health services have had to switch to providing care remotely. While such approaches can 

be effective and scalable, they are not the answer for all mental health needs. Other tried 

and tested modalities of care continue to be of importance. Good mental health is a critical 

aspect of recovery from COVID-19. The pandemic could turn into an opportunity to catalyse 

change and comprehensively address the barriers that have prevented the widespread 

delivery of efficient services. Indeed, now is the time to expand access to provide cost-

effective delivery of effective mental health services. OR techniques have a proven track 
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record for their ability in aiding decision-making at strategic, tactical and operational levels. 

Healthcare managers can use optimisation models to plan patient pathways, efficiently 

manage and deploy their workforce, and evaluate the introduction of new treatment 

modalities such as telemedicine. Through this review, we have outlined a host of future 

research questions that optimisation modelling can answer. However, we do not assume to 

have identified all of them. This review is an open call to optimisation modellers and to the 

OR community to help support future planning of mental health services. 
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Chapter 4: Facilitative conceptual model development 
for mathematical optimisation: A case study in mental 
healthcare 

Abstract 

Facilitative modelling is an established mode of conducting an intervention in Operational 

Research (OR), especially in health care. Only some Hard OR approaches, such as simulation, 

have developed frameworks and guidance to support the facilitators in the modelling 

process. In this study, we introduce a facilitative framework for collaboratively 

conceptualising a mathematical optimisation model with stakeholders. Our novel approach 

to optimisation is demonstrated through a real case study in mental healthcare delivery. We 

showcase the practical implementation of our framework, which incorporates Soft Systems 

Methodology tools adapted from PartiSim. Additionally, we describe the development of 

new tools specifically tailored to conceptualise an optimisation model. These tools are 

utilised in workshops with a diverse group of stakeholders, including mental health clinicians 

and managers, to collectively frame the problem and arrive at a conceptual model. We 

analyse how the combined use of adapted and newly developed tools aligns with the overall 

framework and reflect on the generalisability of our approach towards facilitated conceptual 

modelling for optimisation.  

4.1. Introduction 
In the last four decades, optimisation modelling in healthcare has been used to address a 

diverse range of challenges inherent to decision-making in healthcare (Capan et al., 2017). 

Optimisation is an efficient tool for healthcare planning by assisting the decision maker in 

determining the best solution under a variety of constraints, often by simultaneously 

considering multiple factors (Earnshaw & Dennett, 2003; Tüzün & Topcu, 2018). Several 

healthcare settings employ optimisation models to address various service delivery issues. 

In emergency room planning, optimisation models are used to determine resource quantity 

(surgeons, nurses, rooms, equipment, operations time) needed to meet demand, allocate 

operating room capacity to various medical disciplines, assign definite dates for operations, 

determine the start time of the operations and the allocation of resources (Samudra et al., 

2016; Zhu et al., 2018). In the primary, outpatient and home health care settings, problems 

of staffing (determining size and composition), rostering (creating shift rosters), allocating 

appointments by maximising resource utilisation and accessibility, assigning care workers to 
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patients, and scheduling patient visits are addressed (Cissé et al., 2017; Grieco et al., 2021; 

Leeftink et al., 2020; Marynissen & Demeulemeester, 2019).  

Notwithstanding the range, depth, and significant benefits of employing optimisation 

modelling in healthcare, translating the models into action is an active challenge. Managing 

healthcare involves planning and coordinating several scarce resources (often expensive and 

highly specialised) and considering multiple stakeholders with often conflicting goals 

(Brailsford & Vissers, 2011; Clarkson et al., 2018; Eldabi, 2009). It is suggested that the lack 

of stakeholder involvement in traditional optimisation modelling leads to missed 

opportunities throughout the modelling life cycle, starting with inadequate primary data 

collection, leading to the development of a realistic model, as opposed to a real case study, 

culminating in a lack of real implementation of the model (Amideo et al., 2019). Furthermore, 

research has highlighted model inaccuracies, model simplifications, and challenges in the 

input data as negatively impacting the uptake of model recommendations by decision-

makers (Käki et al., 2019). In the context of healthcare, stakeholder resistance to viewing 

model outcomes as evidence is exacerbated if the model is constructed in isolation and the 

rationale for model design is not transparent (Carter & Busby, 2022).  

In a simulation study, conceptual modelling (CM) is a key first stage, followed by model 

coding, experimentation, and implementation (Robinson, 2014). A conceptual model is 

described as “a non-software specific description of the computer simulation model (that 

will be, is or has been developed), describing the objectives, inputs, outputs, content, 

assumptions and simplifications of the model” (Robinson, 2013). The aim of CM is to abstract 

a simulation model from the real world system that is being modelled  (Robinson, 2020).  CM 

as a process and tool assists in communication and trust building with stakeholders, aids 

model validation, supports credibility and transparency of the modelling process (Harper et 

al., 2021; Kotiadis et al., 2014; Pessôa et al., 2015).  

Simulation studies involve stakeholders for CM using participative approaches involving Soft 

Systems Methodology (SSM) and through facilitated modelling (den Hengst et al., 2007; 

Holm & Dahl, 2011; Kotiadis, 2007; Lehaney & Paul, 1994; Lehaney & Paul, 1996; Oliveira et 

al., 2023; Proudlove et al., 2017; Robinson et al., 2012; Robinson et al., 2014; Tako et al., 

2010; Tako & Kotiadis, 2012; van der Zee, 2010). Healthcare has been the key application 

area for facilitated simulation studies with several case studies (Lane et al., 2019; Proudlove 

et al., 2017; Robinson et al., 2012; Robinson et al., 2014; Tako et al., 2019; Tako et al., 2021; 

Willis et al., 2018). Particularly relevant to this study is the multi-methodology PartiSim 

framework combines Discrete-Event Simulation (DES) and SSM across six stages and contains 
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a strong element of model conceptualisation (Kotiadis et al., 2014; Kotiadis & Tako, 2016; 

Kotiadis & Tako, 2018; Tako et al., 2010; Tako & Kotiadis, 2015).  

In optimisation modelling, a handful of case studies have employed multimethodology 

approaches to enable stakeholder participation. Abuabara et al., (2022) develop a 

participatory approach that combines linear optimisation with Parsimonious Analytic 

Hierarchy Process to address a standard “Diet Problem”. The proposed methodological 

framework engages with stakeholders in three workshops. In a different study, Cardoso-Grilo 

et al., (2019) develop a multi-methodological framework that combines the structuring of 

objectives and specificities of the medical training problem with a Soft Systems 

Methodology. The study essentially presents a participative approach to conceptualise a 

specific optimisation problem. Both studies are significant as reference points for 

participatory and multimethodology approaches that integrate “Soft OR” with optimisation. 

We argue that a facilitated conceptual modelling approach for optimisation modelling is not 

currently available. Additionally, optimisation modelling can address issues of stakeholder 

involvement and opaque modelling processes by borrowing from simulation to realise the 

benefits intrinsic to participative and facilitative approaches.  

This study considers how a group of stakeholders can be involved in the conceptualisation of 

an optimisation model. We evaluate how and if the conceptual modelling elements of the 

PartiSim framework can be adapted to optimisation. The adaptation will be tested on a real 

case study in mental healthcare, an application area overlooked in OR healthcare modelling 

(Bradley et al., 2017; Long & Meadows, 2018; Noorain et al., 2019; Noorain et al., 2022). To 

the best of our knowledge, facilitated modelling approaches for optimisation have not been 

documented or formalised in the scientific literature. This study complements existing 

research efforts in different ways. First, it investigates the adaptation of CM element of 

PartiSim to conceptualise an optimisation model. Second, it contributes to the understanding 

of facilitated modelling for optimisation. Third, it expands multimethodology literature by 

combining SSM with optimisation modelling, and last, it contributes a case study in mental 

healthcare. 

The rest of the study is structured as follows. Section 4.2 presents background literature on 

facilitated modelling in OR; PartiSim; Soft OR, Participatory and Facilitated Approaches in 

Optimisation; and mental healthcare modelling. In Section 4.3, an overview of adapting 

PartiSim’s CM stages for optimisation is presented. In Section 4.4 we describe the case study, 

and presents the application. In Section 4.5, we reflect on the adaptation and propose a CM 

https://www.sciencedirect.com/science/article/pii/S0377221715007912?casa_token=g6M4rm3HOVQAAAAA:wCd2H9vSIOThxYWuB75JoVP434RqXJoh2s3BGOUyiD0xHxs2Qzrf-LbL94eL4mTGcJsawRngxsc#sec0002
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framework for optimisation. The section also highlights the contribution and present 

directions for future research. Section 4.6, presents some conclusive remarks.  

4.2. Literature Review 
4.2.1. Facilitated Modelling in OR 

Facilitated modelling is an established intervention tool involving group dialogue, facilitation, 

and participatory modelling, that enables the OR researcher-facilitator to carry out the whole 

intervention jointly with the client (Franco & Montibeller, 2010; Franco & Rouwette, 2011; 

Tavella & Franco, 2015). The facilitated modelling process involves developing models jointly 

with a client group, often face-to-face, with or without the assistance of computer support 

(Eden, 1982; Eden & Radford, 1990; Franco & Montibeller, 2010). Facilitated modelling is 

positioned as being antithetical to the traditional way of conducting OR interventions which 

adopts the expert mode. In the expert mode, the OR researcher/consultant uses Hard OR 

methods and models to conduct an ‘objective’ analysis of the client’s problem situation, 

together with the recommendation of optimal (or quasi-optimal) solutions to alleviate that 

problem situation (Ackoff, 1979; Franco & Montibeller, 2010; Rosenhead & Mingers, 2001). 

On the other hand, in facilitated modelling a subjective analysis of the problem 

(incorporating many views) is carried out with a view to identifying desirable and feasible 

outcomes (Eden & Sims, 1979; Eden, 1992; Franco & Montibeller, 2010).  

There are several types of facilitated modelling approaches, including facilitated problem 

structuring, facilitated system dynamics, facilitated discrete-event simulation, and facilitated 

decision analysis. In the facilitated mode, often a problem structuring intervention is framed 

by several interacting features such as a group of people involved in the problem structuring 

and, who outline the multiple perspectives. The intervention practice is mainly expressed by 

the interaction between the facilitator (or facilitators), and client group and the tools and 

techniques allow the construction of visually interactive models (Abuabara & Paucar-

Caceres, 2021; Eden & Ackermann, 2004; Franco & Montibeller, 2010; Hindle & Franco, 2009; 

Smith & Shaw, 2019). PSM approaches include SSM (Checkland, Peter & Poulter, 2020; 

Checkland, Peter B., 1989), Strategic Options Development and Analysis (SODA) (Abuabara 

& Paucar-Caceres, 2021; Ackermann & Eden, 2020), and Strategic Choice Approach (SCA) 

(Friend & Hickling, 2012).  

Facilitated modelling in the System Dynamics (SD) tradition is termed group model building. 

A term that is used to refer to the construction of an SD model whilst working directly with 

a group of clients (Vennix, 1995; Vennix, 1999). Two reviews cover over 130 empirical studies 

and identify how GMB improves communication, learning and agreement between 
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participants in group decision processes  (Rouwette et al., 2002; Scott et al., 2016). In 

healthcare, there are several examples of facilitated modelling with stakeholders, including 

the evaluation of cataract treatment in the Netherlands (van Nistelrooij et al., 2013), state 

health policy making (Minyard et al., 2014), improving acute patient flows (Lane & 

Husemann, 2018), strategic workforce planning (Willis et al., 2018), and understanding 

foodborne transmission mechanisms for Norovirus (Lane et al., 2019). 

Drawing on the extensive work of facilitation in system dynamics, the DES community have 

developed facilitated approaches to DES modelling, particularly in the context of healthcare. 

In general, the lifecycle of creating a simulation model is structured into four key stages: 

conceptual modelling, model coding, experimentation, and implementation (Robinson, 

2014). Existing research in facilitated DES has developed several approaches for one or more 

key stages of the modelling lifecycle.  SimLean is an approach that integrates DES to support 

facilitated-group with lean-based improvement (Robinson et al., 2012; Robinson et al., 

2014). Kotiadis et al. (2014) developed processes and tools for the conceptual modelling 

stage. Tako and Kotiadis (2015) present the PartiSim framework for facilitated simulation 

using SSM to involve stakeholders over the entire simulation project life cycle.  A PartiSim 

influenced approach that expands the scope of facilitation to the model coding stage is 

introduced by Proudlove et al. (2017). Kotiadis and Tako (2018) further elaborate on the 

processes followed as part of the experimentation and implementation stages of the 

PartiSim framework (and the simulation modelling lifecycle). More recently, Tako et al. 

(2019) have introduced a new facilitated simulation approach called SIMTEGR8, which stands 

for “Simulation for Great Care”, which is a combination of SimLean and PartiSim.   

Optimisation models are traditionally built in the expert mode (Currie et al., 2020; Smith & 

Shaw, 2019). However, issues with model outcome uptake and implementation have been 

linked to a lack of stakeholder involvement, while calls for integrating optimisation with 

techniques that support stakeholder involvement are gaining momentum (Amideo et al., 

2019; Carter & Busby, 2022; Çoban et al., 2021; Noorain et al., 2019). More generally, to 

expand the scope of OR practice, researchers are being encouraged to utilise Problem 

Structuring Methods (PSMs) to facilitate stakeholder participation (Gomes Júnior & 

Schramm, 2021; Ranyard et al., 2015). To the best of our knowledge, facilitated modelling 

approaches for optimisation have not been documented or formalised in the scientific 

literature.  
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4.2.2. Participative Simulation (PartiSim) 
PartiSim is a multimethodology facilitative and participative framework for conducting 

facilitated DES projects (Tako & Kotiadis, 2015). The framework is structured to follow the 

simulation modelling lifecycle of four key stages: conceptual modelling, model coding, 

experimentation, and implementation (Robinson, 2014). The framework consists of a set of 

consecutive, and iterative modelling stages, that blend modelling with project management 

as seen in Figure 3. It is supported by toolsets (tools, manuals, and scripts) that provide 

guidance to modellers. Tools have been adapted from Soft System Methodology (SSM), and 

new bespoke tools have been developed to enable undertaking a simulation study in a 

facilitated environment. Appendix A, Appendix B, and Appendix C include screenshots of 

tools that are prescribed for Stages 1, 2 and 3 respectively. Furthermore, several workshops 

enable stakeholders to engage in the study starting with problem structuring through to 

implementation. 

 

Figure 3: Stages of the PartiSim Modelling Framework Tako et al., (2010) 
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Each stage is accompanied by guidance in the form of scripts to support the modelling team 

achieve the prescribed outputs. As seen in Table 8, the framework has several tools to obtain 

the outcomes, such as CATWOE and root definition (Figure 32, Appendix B). The CATWOE is 

a mnemonic, the first letters of which consist of the elements of the system under study, 

namely Customers, Actors, Transformation process, Worldview, Owners, and Environmental 

constraints. These identified elements are then assembled into a root definition that defines 

the key transformation process that is the key activity that takes place in the system. The 

root definition acts as a mission statement for the system and follows the format “do X by 

using Y to achieve Z” (Checkland, Peter & Scholes, 1999).  

Additionally, the framework also includes the Performance Measurement Model (PMM) tool 

(Figure 34, Appendix C). The PMM is derived from SSM’s Purposeful Activity Model (PAM), 

which is a ‘device’ to stimulate, feed and structure debate’ (Checkland, Peter & Scholes, 

1999) assisted by the tools CATWOE, root definition and measures of performance. Kotiadis 

(2007) extend SSM’s performance measures to create a PMM (Figure 33, Appendix C). The 

performance measures are, typically known as 3Es are Efficacy, Efficiency, and Effectiveness 

are criteria used to define and monitor performance of the system represented in the PAM. 

In the PMM, the 3Es are broken down into monitoring activities (to examine performance 

measures identified), determine if activities (to assess the need for action), and suggest 

action to be taken (Kotiadis, 2007; Kotiadis et al., 2013). Using the PMM, objectives for a 

simulation study are obtained.  

An essential draw of PartiSim framework is the proposed guidance to adopt different roles 

of the project team, including roles for stakeholders. Essentially, the project team consists of 

two teams: the modelling and stakeholder team and descriptions for roles within the project 

team are elucidated extensively. Additionally, the framework provides guidance on 

organising facilitated workshops, including duration, location, and material required for the 

workshop. Although such guided frameworks are now gaining traction in simulation 

modelling, no such framework exists in optimisation modelling.  
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Table 8:  A participative and facilitative conceptual modelling framework for discrete event simulation studies in healthcare (Kotiadis et al., 2014) 

Stage and purpose  CM support activities  Facilitation support activities  Tools  CM outputs/deliverables  

1. Initiate Study  The modelling team undertake:  Determine a list of key 
stakeholders to be involved in 
study and timescales.  

Information 
Collection Tool  

Preliminary understanding of 
the problem situation.  

Purpose:  • informal meetings and/or  Modelling team and stakeholder 
team roles are decided.  • Identify stakeholder 

team  
• on-site observations and/or  

• Identify key problem 
situation(s)  

• one-to-one interviews  

• with project champion and key 
stakeholder(s), to address preliminary 
information needs  

1a. Pre-workshop stage 
Purpose: Preparations for 
Workshop 1  

Modelling team prepare preliminary 
materials for tools to be used in 
workshop 1  

Workshops 1 and 2 venues and 
time slots are determined.  

    

Stakeholders are invited to 
workshops  

Facilitator prepares for the 
workshop 1.  

2. Define system 
(Workshop 1) Purpose:  

Participating stakeholders take part in 
a facilitated workshop process to:  

During the workshop the 
facilitator guides the group of 
stakeholders through the process 
by proposing activities and 
providing tools, so they 
design/determine the 
deliverables.  

Problem statement 
form  

General study objective(s)  

Agree on the problem 
situation and the wider 
system, within which it 
exists.  

• Brainstorming problem area (s) to 
be addressed and identify study 
objectives  

CATWOE and root 
definition  

A bounded system within 
which the problem to be 
addressed exists  

• Define system boundaries  Care system model  

2a. Post-workshop1/Pre-
workshop 2 stage Purpose: 
Disseminate workshop 1 
outputs and prepare 
workshop 2  

Modelling team re-draw tools and 
disseminate workshop outputs to 
stakeholders  

The modelling team liaises with 
the stakeholder team over 
correctness of workshop 1 
outputs.  

    

Prepare preliminary materials for 
tools used in workshop 2  

Workshop 2 venue and timeslot 
is confirmed. The facilitator 
prepares for workshop 2  

3. Specify conceptual 
model (Workshop 2) 
Purpose: Define specific 

Participating stakeholders take part in 
a facilitated workshop process to:  

During the workshop the 
facilitator guides the group of 
stakeholders through the process 

Performance 
measurement 
model (PMM)  

Model inputs and outputs 
and model content  
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elements of the 
conceptual model  

• Put forward and agree on 
performance measures to address the 
problem identified in workshop 1  

by proposing activities and 
providing tools, so they 
design/determine the 
deliverables.  

Study objectives 
form  

Model objectives  

• Identify inputs, outputs and model 
content  

Patient Flow 
diagram  

A preliminary list of 
assumptions and 
simplifications  

• Define the model objectives  A communicative model  

• Produce communicative model 
(discuss model contents, model scope 
and level detail)  

A list of data requirements  

• Discuss responsibility for data 
collection.  

3a. Post-workshop 2 stage 
Purpose: Disseminate 
workshop 2 outputs and 
refine conceptual model  

Modelling team prepare report 
detailing:  

• Refined CM outputs from stage 
2.a and stage 3  

• Data requirements  

The modelling team liaises with 
the stakeholder team over 
correctness of workshop 2 
outputs.  

  An agreeable to all (study 
participants) and feasible 
conceptual model describing 
DES study  
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4.2.3. Optimisation Modelling 
Optimisation modelling consists of four phases: problem definition, problem formulation, 

problem solution, and model validation, as seen in Figure 4 (Horst & Tuy, 2013; Nocedal & 

Wright, 2006; Williams, 2013; Zamanifar & Hartmann, 2020). An optimisation model is made 

up of three basic ingredients: decision variables, objective function, and constraints. An 

objective function is the quantity that is to be maximised. The controllable inputs are the set 

of decision variables which affects the value of the objective function. Additionally, the 

uncontrollable inputs are parameters, which may be fixed input values. Constraints are 

relations between decision variables and the parameters. The basic goal of the optimisation 

process is to find values of the variables (the output) that minimise or maximise the objective 

function while satisfying the constraints. This result is called an optimal solution.  

 

Figure 4: Optimisation Modelling Phases, adapted from Zamanifar & Hartmann, (2020) 

 

In optimisation-based decision-making process, after recognising a problem, the task of 

problem definition includes identifying model components. Next, a mathematical translation 

of the defined problem and established set of relationships are formulated. In this step, an 

analyst will set up relationships among various decision variables and translate them into 

mathematical equations. In the problem solution phase, a matching and robust solution 

approach is selected and implemented with the aim of the quality of the model and the 

feasibility of outcomes, simultaneously. Following this, the model’s outputs are verified and 

validated, and the model is implemented. 
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4.2.4. Soft OR, Participatory and Facilitated Approaches in 
Optimisation 

Optimisation models have been combined with other quantitative methods, such as 

simulation and forecasting (Amaran et al., 2016; Ordu et al., 2020; Peng et al., 2014). 

Although such studies are not commonplace, several novel applications have been 

developed in the last decade. Similarly, the combination of optimisation with Soft OR 

methods is limited. We found three studies that have used tools adapted Soft OR and applied 

it to define an optimisation model with and without a participative modelling approach. As 

seen in Table 9, we classify the articles by considering the optimisation model building 

lifecycle and further segregating them based on factors including the methods employed, 

PSMs in the problem definition phase of optimisation modelling, and if the study included 

participatory or facilitated approaches. 

Table 9: Soft OR, Participatory & Facilitated Approaches for Defining an Optimisation Model 

Authors Methods 

PSM/Soft OR used at 

what stage Participatory Facilitated 

Mabin 

(2009) 
Evaporating Clouds (EC) & MILP Problem Definition 

 
 

Cardoso-

Grilo 

(2019) 

SSM (CATWOE) & MILP Problem Definition ✓  

Abuabara 

(2022) 

SSM (Rich Picture), AHP, Linear 

Programming 
Problem Definition ✓ ✓ 

Three studies have used Soft OR approached in the ‘Problem Definition’ phase. Mabin (2009) 

have explored the role of a process known as Evaporating Cloud (EC) to enhance OR 

modelling in a theoretical study. EC is a schematic approach to conflict resolution, also known 

as the Conflict Resolution Diagram, using which assumptions underlying the problem 

situation are surfaced, to then “evaporate” apparent conflicts, dilemmas, or trade-offs. In 

the study, EC is used to structure and provide a check on the assumptions underlying a 

facilities location problem formulated as a mixed integer programming model. The study 

makes a case for using soft approaches to better understand the system for both modeller 

and owner. Furthermore, the process is purported to lead to better outcomes as it goes 

beyond just ‘optimising’ a notional system based on unquestioned assumptions and implicit 

constraints.  
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Cardoso-Grilo et al. (2019) developed a multimethodology framework to assist in the 

planning of medical training for a National Health Service Structure. The framework 

combines the structuring of the objectives and specificities of the medical training problem 

with Soft Systems Methodology using the CATWOE tool, leading to the formulation of a 

multi-objective MILP model. Considering the specificities of countries based on a National 

Health Service structure, a multi-objective planning model informed how many vacancies 

should be opened/closed per year in medical schools and in each specialty. The use of SSM 

tools to build optimisation models is a relatively new development. The proposed 

methodology was participatory as it incorporated local knowledge into research and 

planning, and included collaborative activities in an iterative, flexible design  (Cornwall & 

Jewkes, 1995; Harper et al., 2021) In the study, data for the CATWOE tool was obtained using 

policy statements and official documents and authors mention conducting a workshop to 

develop policy questions for the model, but no other details were provided. However, the 

study does not explicitly state the adaptation of the facilitated mode of intervention 

involving a group of stakeholders for model building.  

More recently, Abuabara (2022) develop a novel participatory framework, which combines 

linear optimisation with the Parsimonious Analytic Hierarchy Process (PAHP). The framework 

includes Rich Pictures used for initial problem structuring, then 4 main sequential activities 

using PAHP as a participatory tool for formulating a linear programming model. The study 

examines a food planning problem for several families in the context of the COVID-19 

pandemic. The participatory linear programming model maximises diet preferences subject 

to constraints reflecting the lockdown-specific context. The framework employed Rich 

Picture to survey the problem at hand, followed by a set of three workshops, each with a 

defined task. Several examples of workshop questions are presented, to develop: 1) a tree 

of values and attributes, and 2) workable daily meal alternatives. The workshop outputs are 

provided as data inputs for the MCDA tool, AHP, to rank the various meal alternatives, 

culminating in the development of an optimisation model.  

4.2.5. Mental Healthcare Modelling 

Several distinguishing features of the mental healthcare system add to the complexity 

associated with modelling it. One of the main characteristics of care settings in mental 

healthcare is the interconnectedness of services with multiple types and levels of workers 

who work in tandem. Patients are primarily provided care in the community through several 

channels, such as in a patient’s home, on the telephone, and at local clinics. Common or 
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complex mental health issues are tackled in the community. Teams of multidisciplinary skill-

mix mental health staff are developed in collaboration with secondary care around groups 

of primary care practices that serve a specified population in a geographic location (World 

Health Organization, 2018a; World Health Organization, 2018c). The integrated nature of 

mental healthcare services is challenging as it involves coordinating services across multiple 

healthcare professionals, organisations, and sectors and prioritising patient needs and 

preferences (Tsasis et al., 2012). Naturally, mental healthcare services are increasingly 

developing strategies focusing on coordination and communication between health services. 

These integrated care settings involve multiple stakeholders with diverse perspectives and 

concerns likely to influence decision-making (Unützer et al., 2020). 

In OR, modelling service delivery of mental/psychological care services is an area of neglect 

(Bradley et al., 2017). A small pool of existing reviews explores the application of specific OR 

methodologies, such as simulation (Langellier et al., 2019; Long & Meadows, 2018; Noorain 

et al., 2019) and optimisation modelling (Noorain et al., 2022) on mental healthcare services. 

Noorain et al. (2022) identify the need to formulate complex models that capture the mental 

healthcare systems. Furthermore, gaps identified in optimisation literature, extend to 

mental healthcare and several opportunities for transferability have been identified. 

Future research in planning service delivery for mental healthcare services must account for 

context specific idiosyncrasies. For instance, the co-location and interdisciplinary nature of 

MH services pose uncertainties regarding the boundaries between services and roles. 

Furthermore, future research could consider the integrated nature of MH services and build 

models to optimise the location of treatment centres or improve access to care or to aid 

decision-making across different systems and planning levels. It is suggested that future 

research could develop holistic approaches that integrates planning decisions and developed 

hybrid models by combining several OR techniques (Ordu et al., 2020). Additionally, 

optimisation modelling can turn to multimethodology frameworks to better reflect the 

diversity of concerns of multiple stakeholders by combining hard and soft OR methods to 

gather information and knowledge about the system, and structure complex problem 

situations (Pessôa et al., 2015).  

4.3. Overview of PartiSim Adaptation for Optimisation 

In this study, we adapted the conceptual modelling stages of the PartiSim framework for 

optimisation (Kotiadis et al., 2014). To tailor the three CM stages to optimisation, we began 
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by comparing the components of a conceptual model for DES with optimisation, as seen in 

Table 3. Any updates and additions to the activities and tools in the framework were driven 

by the need to tailor these to accommodate the identified differences. 

In simulation modelling, a conceptual model is defined as “a non-software specific 

description of the simulation model that is to be developed, describing the objectives, inputs, 

outputs, content, assumptions and simplifications of the model” (Robinson, 2014). The key 

components of a conceptual model are objectives, inputs, outputs, and model content 

(Robinson et al., 2010). The objectives can be divided into two, one which describes the 

purpose of the simulation model and the modelling project and second which include 

timescales of the project and the nature of the model and its use. The inputs are elements 

of the model that can be altered to effect an improvement in, or provide a better 

understanding of, the problem situation; also known as experimental factors. These are 

often determined by the objective. Outputs report the results from a run of the simulation 

model and are used to determine whether the model objective is being achieved and to point 

out the reasons why the objective is not being achieved if they are not (Robinson, 2014). In 

other words, identifying responses leads to the determining of responses required from the 

model. The model content is made up of the components that are represented in the model 

and their interconnectedness. These are split into two dimensions such as the scope of the 

model, where a boundary of the real system that is to be included in the model (e.g., entities 

and events) is determined, and the level of detail, where details of each component within 

the model’s scope is defined (Robinson, 1994; Robinson, 2014). Table 10 summarises the 

main components of conceptual modelling for DES and provides a comparison of each 

corresponding component to an optimisation model.  

As depicted in Table 10, an optimisation model is made up of three key components: 

objective function, decision variables, and constraints (Hillier, 1967). An objective is 

performance measure that is maximised or minimised, decision variables represent 

controllable choices that the model seeks to optimise, and constraints define the limitations, 

requirements., or restrictions the model must satisfy. Besides these core components, an 

optimisation model also includes inputs that are parameters with a fixed value and be 

associated with the objective function, constraints, or decision variables. Additionally, 

outputs are results that are obtained after the model is solved and take the form of an 

optimal solution which is a set of values assigned to decision variables and the objective 
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value. When conceptualising an optimisation model, this could include the identification of 

expected model outcomes. 

Table 10: Differences in Conceptualising DES against Optimisation 

Conceptual Modelling for Discrete-Event 

Simulation 

Conceptual Modelling for Optimisation 

Determining the objectives of the 

simulation model and modelling study. 

Determining model objectives that represent 

performance measures to be maximised or minimised 

Determining the model content (scope 

and level of detail), identifying any 

assumptions and simplifications 

Determining decision variables that represent 

controllable choices that the model seeks to optimise.  

Identifying constraints that define the limitations, 

requirements., or restrictions the model must satisfy. 

Identifying the outputs or responses 

required from the model. 

Identifying expected model outcomes, including 

variables that quantify the objective function to be 

calculated by the model. 

Identifying the model Inputs; also known 

as experimental factors 

Identifying input parameters that have a fixed value or 

constants.  

- Can be associated with the objective function, 

constraints, or decision variables. 

- Derived from historical data, expert knowledge, 

or input assumptions. 

Generally, the components can be mapped and there are similarities in the overarching 

structure of requirements within the two approaches. However, the contents of an 

optimisation model must be defined specifically across the three aforementioned 

component and the scope and level are encompassed within the determination of the three 

key components. Both optimisation and simulation provide recommendations for specific 

action. Optimisation modelling utilises mathematical techniques to represent real-world 

situations. It considers essential variables, constraints, and trade-offs to determine a feasible 

optimal solution that accomplishes specific objectives (Pinedo, 2012; Winston, 2022). In 

simulation modelling, users explore and observe how a system responds to various inputs by 

evaluating multiple scenarios, with an aim to gain insights into system behaviour and 

performance. 



 

103 
 

Therefore, by acknowledging these structural differences, we recognised that stage 3 of the 

PartiSim framework would need to be customised in order to extract a conceptual model for 

optimisation. Stage 1 and 2 were generic in their exploration of the problem situation, and 

so we did not consider any modifications. In the next sections, we provide an overview of 

the adaptation grouped by stages that we determined to be transferrable (1 & 2), followed 

by an elaboration on stage 3 with a description of tools that were omitted and why. We then 

explore the development of new activities and that we considered to be more appropriate 

for conceptualising an optimisation model. Additional modifications to the framework that 

were based on lessons learnt through the case study are explored in the discussion. 

4.3.1. Initiate Study (Stage 1) and Define the Problem (Stage 2) 
An optimisation modelling study begins with problem exploration. Given the exploratory 

nature of this stage in the optimisation modelling life cycle, we deduced that the prescribed 

activities and tools in the ‘initiate study’ stage tools could be appropriately unrestricted and 

complementary to allow for an exploration of the problem context. Therefore, we did not 

consider making any modifications to Stage 1. Specifically, we recognised that the 

“information collection tools” (see Figure 27, Figure 28, Figure 29, Figure 30, and Figure 31, 

in Appendix A) could be used to explore and understand the problem situation and the 

crucial task of identifying relevant stakeholders would be aided by following the prescribed 

process. 

Assuming a generic exploration of the problem context takes place in the first stage, in the 

second stage, we believed that we could use the activities and tools to define system 

boundaries and identify the problem to be addressed. In the workshop, we hoped that we 

would be able to facilitate an understanding of the system by synthesising stakeholders’ 

perceptions. We determined after inspection that by using the Problem statement form, 

CATWOE, and root definition tools, we could gain a macro level understanding of what would 

make up the conceptual model (Appendix B). After the workshop, in sharing the outputs for 

reviewing/updating the outputs, stakeholders would be able to confirm the emergent view 

of the system, therefore, validating the data collected. From a modelling perspective, we 

recognised that the activities and tools prescribed in Stage 2 stage could be suitable to draw 

boundaries around the system under study and outputs from the workshop, including 

CATWOE and the care systems model could determine the scope and serve as springboards 

to conceptualise an optimisation model stage 3 (Appendix B). .  
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4.3.2. Define Conceptual Model (Stage 3) 
In this stage, we recognised that to obtain a conceptual model of an optimisation model, 

tools would need to be tailored to accommodate the differences identified earlier. 

Therefore, we began by considering which of the activities and tools could be retained, which 

might not be suitable and what, if any, new tools needed to be developed. The stage 

prescribes 3 tools: PMM, study objectives form, and patient flow diagram (Appendix C). 

We began by considering the PMM tools, using which, the ‘efficacy’, ‘efficiency’ and 

‘effectiveness’ of the system is determined (Kotiadis, 2007; Kotiadis et al., 2013). These are 

further broken down into performance criteria of monitoring, determine if, and suggested 

change activities. We recognised that by using the PMM we could explore the performance 

of the system in terms of an optimisation model. Specifically, this activity could identify 

potential inputs and model performance measures. In particular, the monitoring and 

determine if activities can be indicators of elements in the system that need to be included 

in the model either as decision variables (controllable inputs) or parameters (fixed inputs). 

Furthermore, we also recognised that the ‘suggested changes’ could be seen as early 

indicators of ‘scenarios’ that could be explored by experimenting with the model in 

subsequent stages.  

In PartiSim, the next set of activities are: Identify inputs, outputs, and model content; Define 

the model objectives; and produce communicative model (discuss model contents, model 

scope and level detail). We realised that this is tailored to the components of a DES as 

described earlier. After inspecting the tools ‘Study objectives form’ (Figure 33, Appendix C) 

and Patient Flow diagram, we determined they were not suitable for optimisation. At the 

time, we believed that we needed an activity that gathered information on model inputs that 

could identify controllable inputs using which we could derive a set of decision variables. To 

obtain this information, we would need to design a form or identify discussion points that 

support the emergence of relevant inputs and decisions in the workshop. Additionally, we 

realised that outputs of the CATWOE could be invoked to guide stakeholders in this activity. 

Specifically, stakeholders could be asked to consider Customers (C), Actors (A), and Owners 

(O) of the system, and depending on which of these are going to be included in the model, 

more information on the chosen elements could be obtained. Ideally, this activity along with 

the PMM, would highlight the data requirements leading to a discussion on how these 

identified data needs can be met. 

We also needed an activity that focuses on obtaining constraints. Again, outputs of CATWOE 

could be invoked to obtain this information from stakeholders. Specifically, constraints could 
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be captured by further expanding on Environmental (E) constraints of the Transformation 

Process (T). As for identifying the objective, we reasoned that since it is typical in 

optimisation modelling for a specific constraint to become the primary objective function 

and vice versa, we could derive the model’s objective through the constraint’s activity. 

Alternatively, it could be that the objective identified in workshop 1 would not require 

further elaboration. For these reasons, we did not consider developing a separate activity or 

tool to obtain the objective.  

The last activity for this stage in the PartiSim framework involves the development of a 

communicative model in the form of a Patient Flow Diagram. Communicative models are a 

representation of the conceptual model. These take the form of stock and flow or causal loop 

diagrams for System Dynamics (SD) (Coyle, 1997), process flow diagrams for Discrete-event 

Simulation (DES) (Oscarsson & Moris, 2002), and state diagrams for Agent Based Modelling 

(ABM) (Triebig & Klügl, 2009). We recognised that it would be necessary to develop a visual 

representation of the conceptualised optimisation model after the relevant information was 

gathered. We also identified that this would essentially be deconstruction of the 

mathematical structure and would integrate the information obtained through the new 

activities. It was decided that further exploration of this activity would be considered during 

the application of the case study.  And lastly, no updates were considered for the data 

collection activity.  

4.4. Primary Mental Healthcare Service Case Study 
The framework was developed in collaboration with a real-world PCMH service provided by 

the Kent and Medway Mental Healthcare Trust (KMPT) based in Kent, UK. The service works 

alongside GP clinics and primary care partners and interfaces with other KMPT services to 

provide care to people experiencing mild/moderate mental health conditions who do not 

require secondary care mental health services. During initial meetings with the project 

champion, it was highlighted that the trust was keen to evaluate the performance of the 

service and consider opportunities for improvement because of several change imperatives 

that highlighted the need for integrating mental health services into primary healthcare to 

foster closer integration of primary, secondary, and tertiary mental healthcare service, and 

improve patient access to services (NHS England, 2020). This evaluation was prompted by a 

county level commissioning decision to increase funding for the service to enable KMPT (the 

providers) to hire more clinicians and improve efficiency to prepare for an increase in 

demand based on population level forecasts.  
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Through these exploratory meetings, we gathered that the service had begun as an ad-hoc 

experiment and evolved on a need basis. This trajectory of development meant that 

appropriate considerations to service design and operational specifications were not given, 

as such it did not have an overall operational design, or a narrative with consensus. At the 

time of the study, the service comprised of 12 multi-skilled clinicians deployed who were 

deployed to 65 General Practice (GP) clinic locations to provide patient consultations across 

four types of appointments. The project champion wanted support to determine ‘how’ the 

service has been functioning thus far, ‘what’, if anything, can be improved, and the direction 

of improvement, if any. However, there was significant uncertainty and a lack of clarity 

around current and future capacity and demand.  Before officially starting the study, we 

discerned that there were pointers to a kind of workforce planning model, given the 

emphasis on expansion and/or efficiency of the pool of clinicians. However, from a modelling 

perspective, there was no immediate pathway to an optimisation model. Equally, it was 

evident that involving stakeholder’s and gathering their perspectives was essential. 

Moreover, because the service is a bridge between primary, secondary, and tertiary care 

services, the shaping of this service was of concern to many stakeholders. We adapt the 

PartiSim framework which has a strong CM element, to help explore the system under 

consideration and develop a conceptual model that captures key operational details and 

characteristics in order to extract an optimisation model.   

The next sections provides an account of implementing the participative and facilitative 

approach to develop a conceptual model for an optimisation model. The study began in April 

2019 both the workshops were conducted in September 2019. We describe how new 

activities and tools were shaped by outputs from previous stages, and discuss the 

development of new activities, tools and a communicative model. 

4.4.1. Initiate Study Stage  
In this stage, initiation activities included several on-site visits to gather a preliminary 

understanding of issues in the service. With the project champion, we identified several key 

shareholders using the stakeholder information forms (Table 41 and Table 42, Appendix D). 

Stakeholders from policy, strategic, tactical, and operational levels from the organisation 

were chosen for participation. Specifically, participants included public health consultants, 

representatives from the West Kent Care Commissioning Group (WKCCG), who fund the 

system under consideration, executives from KMPT, PCMH service manager, clinicians from 

the service, and IT personnel from KMPT. Additionally, reading material associated with the 

service and the wider system were supplied by the project champion (Table 40, Appendix D) 
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One-on-one interviews were conducted with these key stakeholders at the behest of the 

project champion to identify issues in the service using the ‘Situation of Interest’ form (Table 

39, Appendix D). The range of participant was crucial is gaining an exhaustive and all-

encompassing view of the service. A number of problems were identified through this 

process including the lack of a standard PCMH service model that could be extended across 

the whole county; limited information on past and present performance of the service and 

the clinical workforce; underutilisation of available data and its potential to provide 

benchmarks. The presence of underutilised data was repeatedly highlighted by the 

stakeholder group as significant to the study. Therefore, we explored availability of data and 

accessibility options using a form (Table 42, Appendix D). Information collected in this stage 

was wide in its scope and explored the PCMH service and its relationships to other services. 

Giving us a big picture view of the service and allowing the capture of complexities and 

interconnectedness within the system.   

At this point in the study, it became clear that data was going to play an important role in 

providing stakeholders a picture of the past, present and future. As stated before, the 

emphasis on the distribution and efficient utilisation of workforce capacity appeared to be 

critical concerns. This type of problem lends itself to mathematical programming, as opposed 

to DES which is usually used to model systems that involve queues. Moreover, we 

determined that the optimisation model would likely require integration with other analytics 

tools and techniques to fully utilise the available data. 

4.4.2. Pre - Define the PMCH Service Workshop 
Following the initial problem exploration, stakeholders were invited to the first facilitated 

workshop to define the system. This workshop took place in-person and was organised to 

take place on the premises of the University of Kent. We determined that it would be of 

duration 2 hours and eight key stakeholders would be gathered in a large room with a u-

shaped seating arrangement. Breaks and refreshments would also be scheduled. The 

modelling team would be composed of the first author (novice facilitator and modeller), 

supported by the second author (expert facilitator & PhD supervisor) and third author 

(expert optimisation modeller). In preparing for the workshop the PhD candidate (myself) 

prepared a script under the guidance of the expert facilitator. As described earlier, tools for 

this stage were not modified as we determined that existing tools were transferrable to 

exploring the problem situation. The prescribed tools included preliminary examples and 

prompts to facilitate discussion between stakeholders. Appendix G depicts images from the 

workshops. 
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4.4.3. Defining the PMCH Service - Workshop 1 
The aim of this workshop was to develop a common understanding of the PCMH service 

among project members and to agree on the overall study objectives. The workshop was 

structured around three prescribed activities: agree problem statement, define the system 

and draw a system model. Stakeholders were informed that this would be required to 

participate, brainstorm, and contribute throughout the workshop. The group was provided 

with handouts to help them gather their thoughts.  

In the first activity, stakeholders were asked to consider the questions “What major problems 

is the mental health local care service in West Kent facing, where quantitative information is 

not available to support your planning and decision making?”. Each stakeholder was asked 

to brainstorm and put forward three problems, and to support their thinking, several 

example issues were provided. After brainstorming, the group was invited to discuss the 

issues they had put forward and identify top three issues that could be considered in this 

study. Several issues were put forward and captured (Table 43, Appendix E). However, 

stakeholders were asked to choose three and the choice was informed by what was possible 

to deliver and whether data was available to take it forward. The top three issues that the 

group settled on were: 

1. Discharge from the service being too long for a service that is meant to be short-term. 

2. To streamline messy timetable in primary care by exploring issues with allocated primary 

care clinic locations.  

3. This relates to the previous problem, necessary to opportunities to centralise primary 

care mental health practitioners perhaps by pooling patients or identifying bases 

(locations) to reduce travel load and improve patient accessibility.   

In the next activity, stakeholders were taken through the process of defining the key 

elements in the PCMH service using the CATWOE tool. We began this activity by asking 

participants to decide on which/what is the Transformation that was to be the focus of this 

study. The group was given examples of what the T is and how to define one. Stakeholders 

were also informed that only one Transformation would be explored further. Stakeholders 

provided several transformation that they considered to be relevant to the PCMH service 

(Figure 38, Appendix E). To help the group narrow it down to one, they were asked to 

consider what captured the essence of their service and should be considered in more detail. 

Figure 5 represents the Transformation that was chosen following a discussion. 
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Figure 5: Transformation of the PCMH service 

In the next activity, the group is asked to define the elements in the system that support the 

Transformation and are supported by the CATWOE tool. To prompt discussion on the 

Weltanschauung element, the group is asked to the following questions: What is your belief 

for this T to hold true?, Why do you think this T should exist?, What would happen if this 

service was not in place?, How would it affect the individuals that you serve in this service, if 

it did not exist?. The C, A, O, and E elements were defined next, resulting in Table 11. 

Specifically, the first two columns were defined in the workshop and the information in the 

third column chosen to be taken forward during the post-workshop stage. In the next part 

of the session, the group was asked to define a root definition for the service. They were 

prompted to assemble this using the CATWOE elements that had already been defined. The 

following statement is the root definition of the PCMH service as conceived by stakeholders: 

The Primary Care Mental Health Service (PCMHS) owned jointly by Kent and Medway NHS 

and Social Care Partnership (KMPT) and West Kent Clinical Commissioning Group (WKCCG) 

operated by mental health specialist, assisted by professionals from the mental health & 

social care network, to support people with mental health needs by providing the right 

intervention by the right professional at the right time and location in order to dispense an 

effective clinical pathway whilst recognizing financial, workforce, structural and 

organizational constraints.  

The next activity is to draw a systems model (SM) which is a mapping of activities that is 

equivalent to a Purposeful Activity Model (PAM) in SSM. To produce the SM model, 

stakeholders are directed to build on the CATWOE and root definition that were previously 

put forward. The group was provided with a list of verbs to help formulate the definition, 

and examples of a sample SM were provided.   
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Table 11: CATWOE outputs 

CATWOE Elements Relevant Element Chosen 

Customer 
 

- General Practitioners in Primary Care 
(PC) 

- People with mental health needs and 
their carers/relatives 

- General Practitioners in Primary Care  

Actors 
 

- Advanced Care Practitioners (ACPs) 
- Mental health Nurses 
- Allied Health Professionals 
- Social prescribers 
- Voluntary sector 
- Health & social care coordinators 
- Secondary care mental health 
- Public Health 

- Advanced Care Practitioners  
- Mental health Nurses 
 
Collectively termed as ‘Clinicians’ 

Transformation 
Process 

To provide the right intervention by the 
right professional at the right time and 
location. 

Need met by deploying mental 
healthcare clinicians in primary care 

Weltanschauung - To provide an efficient patient pathway 
resulting in quality interventions that 
decreases patient & system risk. 

- To achieve parity between mental and 
physical health. 

To provide an efficient patient pathway 
resulting in quality interventions that 
decreases patient and system risk. 
 

Owners - KMPT 
- West Kent Clinical Commissioning 

Group (WKCCG) 
- Primary Care Networks (PCN) 
- Long Term: 
- Integrated Care Partnerships (ICPs) & 

Integrated Care Systems (ICSs) 

KMPT 

Environmental 
Constraints 

- Clinical Workforce 
- KPIs 
- Funding 
- Data 
- Contracts 
- Not being a strategic priority for ICPs 

- Clinical Workforce 
- Contracts 
- KPIs 

 

Next, the group were invited to brainstorm and produce a mapping of activities that take 

place in the system, and to identify activities that do not currently taking place that either 

need to be considered in the future or need improvement. Clinical, managerial and data 

collection activities were identified and are represented in Figure 6. Through this session, 

stakeholders admitted that the figure represented an ideal service, while the current service 

lacked several key activities and dependencies.  Establishing roles and developing standard 

operating procedures were two activities that stakeholders wanted to improve most. 
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Figure 6: PCMH Service Systems Model
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4.4.4. Post - Define the PCMH Service Workshop 
A report containing the outputs of the workshop is shared with stakeholders via email. When 

sharing the report, the group is directed to confirm the outputs, thereby agreeing to the 

focus of the study, and to inform us of any changes that should be made to the outputs. In 

essence, the first workshop helped draw a boundary and helped consolidated the scope and 

generate a joint focus within the modelling and stakeholders’ groups. In preparing for the 

next workshop, we recognised that it was essential to capture the operational details and 

characteristics of system elements that would make up the conceptual model. Specifically, 

we needed to discuss and agree on the inputs, objectives, decisions, constraints, and outputs 

of the CM. Based on the outputs of the workshop, we determined that for the modelling 

activity, two directions could be considered: 1) Utilising available data and apply analytics to 

derive insights that were keenly sought by stakeholders and 2) to examine MH clinician 

capacities (Actors) in relation to demand from clinic locations (Customers). We suspected 

that the PMM model could give us an idea of specific aspects that required analysis. 

Additionally, to conceptualise a workforce planning optimisation model that could 

investigates capacities in relation to demand, we needed to capture operational details and 

characteristics of the Actors (A) and Customers(C) and explore the Environmental Constraints 

(E) that limit or regulate A and C.  

In order to successfully capture the relevant information, we identified that the PMM, along 

with CATWOE and root definition would support the extraction of conceptual model 

components, and so these tools was not modified (Figure 32, Appendix B and Figure 34, 

Appendix C). We then identified the need for three new activities that were tailored to 

capture details specific to an optimisation model. Following the development of the PMM, 

we would direct stakeholders to consider the CATWOE output and expand on the Actors (A) 

and Customers (C) that were chosen for this study. Stakeholders would specifically be asked 

to consider characteristics and operational details relative to the Actors and Customers that 

are directly impacted or could impact the performance of the system. We hoped that this 

would lead to the extraction of model input data, using which, stakeholders would be asked 

to identify aspects of the Actors and Customers were controllable, leading to the 

identification of decision variables. In the workshop, we would capture the information 

emerging from this activity on a flip-board and a suitable representation that was sufficiently 

generalisable would be produced after the workshop.  

For the next activity, we would extract constraints as boundaries on the system, Actors, and 

Customers. To support this activity, we developed a ‘constraint form’ that was pre-populated 
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with prompts and examples to stimulate a discussion. For constraints, the group would be 

asked to expand on the Environmental Constraint (E) from the CATWOE output. On the back 

of all preceding activities, stakeholders would be asked to define a potential objective for the 

model. The group would be directed to consider the Transformation (T) or goal of the service 

and the PMM model. Stakeholders would be asked to consider how best they could achieve 

this goal, given what they can control and within the boundaries that have been defined. 

They would also be directed to consider which of the performance measures defined in the 

PMM has the most significance towards achieving the goal of the service. The objective and 

decision variables could be captured on a preliminary communicative model which we term 

the “Optimisation Component Map”.  

4.4.5. Defining the Conceptual Model - Workshop 2 
The aim of the second workshop is to identify key elements of conceptual model prior to 

developing a formal optimisation model. The optimisation model components include 

inputs, objective, constraints, decision variables, and outputs, mapped onto the 

communicative model we term Optimisation Component Map. To achieve this output, we 

considered the employing the following activities: draw the PMM model; identify inputs, and 

decision variables; define the model constraints and objectives, produce a communicative 

model in the form of an Optimisation Component Map; and discuss data collection.  

We began by introducing the 3Es to the stakeholder group using an examples and handouts 

were provided for further clarification. Stakeholders were asked to consider how they would 

define the Efficacy, Efficiency, and Effectiveness of the service. And the agreed definitions 

for the 3Es are depicted in column 1 of Table 12. Next, stakeholders were asked to examine 

which aspects of the system need to be monitored, controlled or changes to achieve these 

performance criteria. Each stakeholder was provided with a form with the same structure as 

Table 12. Following a discussion where stakeholders debated the aspects they put forward, 

an agreed PMM model was produced as by populating columns 2, 3, and 5 in Table 12. 

Stakeholders identified potential changes that the service could make to achieve intended 

service performance.  
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Table 12: 3E's of the PCMH System 

 
 Monitoring Activities Determine if activities Suggested Changes 

 
Efficacy (E1) –  
 
What? 
 
Will ensure a smooth 
and timely flow of 
patients through mental 
health service? 
 
 

What do you need to 
monitor (measure) to 
know that the system is 
providing the intended 
care? 
 

By undertaking each 
monitoring activity, what 
would you be able to 
determine? 
 

Based on each “Determine if” 
activity, what changes do you think 
are needed to ensure that the system 
provides the intended care to 
patient? 

I would like to monitor: 
 
‒ Length of Stay 
‒ Referral to service 
‒ Clinician utilisation 
‒ Serious Incidence 

Reports 
 

 

I would be able to determine 
if: 
‒ Patients are seamlessly 

moving through the 
systems. 

‒ Clinicians are conducting 
appropriate interventions 
and referrals to tackle 
mental health issues in 
primary care. 

I would suggest: 
 
To analyse and streamline nurse-
patient allocation based on patient 
needs and geographic concentration 
of referrals. 

 
Efficiency (E2) –  
 
How? 
 
Ensuring high quality 
clinical outcomes by 
establishing efficiency in 
the process. (Making 
Every Contact Count)? 
 

What do you need to 
monitor (measure) to 
know that the system 
works efficiently? 
 

By undertaking each 
monitoring activity, what 
would you be able to 
determine? 

Based on each “Determine if” 
activity, what changes do you think is 
needed to ensure that the system 
works efficiently? 

I would like to monitor: 
 
‒ Waiting time (backlog) 
‒ Length of Stay 
‒ Average number of 

patients seen in a week 
‒ Clinician case load 

(patients and locations) 
 
 

I would be able to determine 
if: 
‒ Meeting clinical targets of 

providing first appointment 
within 4 weeks of referral 

‒ Patients are being 
discharged from the 
service within six months. 

‒ Clinician capacity is utilised 
based on their band 

I would suggest: 
 
- Examine and fix bottlenecks in the 

patient pathway on both the 
demand and supply side. 

- Hire more clinicians if existing 
capacity is insufficient. 

- Consider having a single 
assessment procedure that 
devolves the need to have an 
assessment in secondary care 

Effectiveness (E3) –  
 
Why? 
 
Ensure improvement of 
health and well-being of 
the target population? 

What do you need to 
monitor (measure) to 
improve population well-
being? 
 

By undertaking each 
monitoring activity, what 
would you be able to 
determine? 

Based on each “Determine if” 
activity, what changes do you think is 
needed to ensure that the system 
ensures population well-being? 

I would like to monitor: 
 
‒ Signposting timelines 
‒ Number of people 

being discharged from 
SC after assessment and 
referral. 

‒ Discharge post 
screening and 
assessment 

‒ Number of referrals 
from GP to PCMH. 

I would be able to determine 
if: 
‒ If expectation set based on 

mental health needs data 
in population are being 
satisfied. 

‒ If pressures on CMHT have 
been alleviated owing to 
PCMHS. 

‒ If GPs are aware and 
actively referring to PCMHS 

 

I would suggest: 
 
‒ To find out which GP’s have low 

referral rates and make them 
aware of the service, so they do 
not refer to CMHT. 

‒ To explore the possibility of having 
a permanent mental health 
presence in GP services. 
Particularly for those with high 
referral rates. 

The PMM model paves the way for abstracting a system that could be modelled. To support 

this goal, we decided to deploy two activities: 1) define the inputs and decisions, 2) define 

the constraints and objective. In the first activity, stakeholders were asked to recall the 

Customers (C) and Actors (A) element from the CATWOE output, they had previously defined 

in the first workshop. To make the discussion more accessible, the group was asked to first 
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consider the Actors, collectively called ‘clinicians’, who make up the workforce in the service. 

We then asked the group to expand on clinician characteristics and their operational details. 

To prompt a discussion, for characteristics, the group was directed to provide details of 

clinician duties & responsibilities, who they report to, and what their role entails. For 

operational details relative to clinicians, the group was asked for specifics on clinician 

employment category, how many clinicians were currently employed in each category, is 

there a specific pattern to the geographical distribution of clinicians, and what type of 

appointments the group could conduct. 

Similarly for the Customer, in this case the GP clinics, clinicians were asked to expand on the 

location of these GP clinics and the describe the operational links between the clinicians (A) 

and the GP locations. For instance, the group was asked to consider the following questions: 

what defines the relationship between you the provider of the service and customers, the 

clinics? Where are the clinics located? How many clinicians are assigned to each location? 

How is this assignment made? How is the caseload/demand from these clinics distributed? 

Do clinicians have preferences for locations? 

We had prepared some initial questions to prompt a discussion on the Actors and Customers. 

However, several of the follow-up questions that were eventually asked were generated 

based on the information provided by stakeholders. During the workshop, we noted down 

the information that was discussed on a flipchart and after the workshop, the information 

was collated into a form, seen in Table 13. Given that this was a first attempt at 

conceptualising an optimisation model by involving stakeholders, besides having an idea of 

what sort of information was required and how the discussion could be prompted, the input 

form had not been pre-designed for use in the workshop.  

Returning back to the workshop, using the information that been provided by the 

stakeholders, we then asked them to consider for which operational aspect could the model 

provide decision support to meet their service goal of “Providing the right intervention by 

the right professional at the right time and location”. Stakeholders were asked if, for 

instance, they would like the model to help them decide how many clinics should be assigned 

to each clinician? Or if they needed support determining clinician caseload, or when the 

clinician should go to specific clinics?  
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Table 13: Inputs Form Output 

Actors  Characteristics Operational Details 

Advanced 
Clinical 
Practitioner 
(ACP) 

- Senior Specialist Clinician. Can 
diagnose, prescribe, mental health 
assessment, signpost, & risk 
assessment  

- Team lead & supervisor for Band 7.  
- Report to service manager 

- Band 7/8a 
- 3 ACPs on the team 
- Can conduct Assessments & Follow-ups 

& Telephone. 

Mental 
Health 
Specialist 
Nurse 

- Mental health assessment, signpost 
& risk assessment. 

- Reports to ACP & service manager 
- Supervisor for Band 6 

- Band 7 
- 4 on the team 
- Can conduct Assessments, Follow-ups, 

Community & Telephone. 
 

Mental 
Health 
Specialist 
Nurse 

- Signposting, advice, physical health 
checks, risk assessment 

- Reports to band 7 & service 
manager 

- Band 6 
- 5 on the team 
- Can conduct Follow-ups, Community & 

Telephone. 

MH Team  

- 12 in total 
- Number of clinics assigned to each 

clinician [not known] 
- Number of patients on each clinician’s 

caseload [not known] 
- Clinicians prefer or go to specific clinics 

[not known] 
- Each clinician decides when to hold 

appointments and clinics  

Customers  

General 
Practice (GP) 
Clinics 

- Scattered across West Kent. 
- Patients referred to PCMH service 

by GP’s 

- 65 clinics currently served by clinicians. 
- Locations divided across two 

geographical patches [not known] 
- Distance between clinics [not known] 
- Number of clinicians assigned to each 

clinic [not known] 
- Demand frequency from each clinic [not 

known] 
- Four types of appointments. Durations 

vary [not known] 

During the discussion, the group agreed that they did not have control over how many 

referrals (demand) they received from clinics and that they required quantitative support to 

help tackle the expected increase in demand from clinics. Equally, they did not want to 

disturb the current allocation of clinics and caseloads to clinicians as it would disrupt patient 

care. We then prompted them to consider what decision they did control, and many 

clinicians in the group reported making daily decisions about which appointments they 

would conduct at various locations. This was currently being done individually and on an ad-

hoc basis. They did not have information at the time to support the efficiency of this process 

and its impact on the service. We noted this as a potential set of decisions for the conceptual 
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model and suggested that this is a feasible direction for exploring model support in deciding 

an efficient strategy of deploying clinicians to clinics.  

In the next activity, we aimed to further explore and capture Environmental (E) constraints 

acting on the Transformation Process (T). We began this activity by asking stakeholders to 

consider the question “What are the regulations and limitations governing the service that 

must be respected in order to achieve the service goals?”. To direct the conversation, 

stakeholders are asked to expand on the environmental constraints identified in the 

CATWOE exercise and particularly rules relative to the Actors and Customers covered in the 

last activity. Prior to the workshop, the facilitation team developed a few potential categories 

of constraints to direct the discussion. To support this activity, we provided stakeholders 

with the “Environmental Constraints” form that had been pre-populated with some 

categories of optimisation modelling constraints. These categories are based on an initial 

understanding of the system that was gathered during the first stage of the framework, 

coupled with the knowledge of optimisation modelling. We found that the prepared 

groups/categories provided stakeholders with a reference point to begin identifying similar 

constraints. For instance, we proposed that the PCMH service could have constraints relative 

to “location”, “clinician skills”, “timeframe”, and “preferences” (clinician and clinic locations). 

To prompt a discussion for each pre-defined group, we asked questions such as “Does the 

service have rules for visiting clinic locations? For example, is there a maximum and minimum 

number of locations a clinician should visit in a planning period?”. Table 14 is the final output 

of this exercise. The discussion led to the identification of two additional groups of 

constraints, “caseload” and “appointments”. For each group example prompt questions are 

provided.  

In the last activity, stakeholders were asked to consider the performance measures identified 

in the PMM activity along with the Transformation goal. Stakeholders were then asked to 

consider several questions about attaining this goal such as “how can this goal be satisfied?”; 

“Can we consider maximising clinician capacity utilisation to meet the goal?”; “Is there a 

specific performance measure(‘s) that needs special attention to help us achieve this goal?”. 

Stakeholders debated the suggestions and examined the significance towards meeting the 

defined goal. Several stakeholders agreed that it was more important for appointment 

requests to be met in time and for there to be a minimum amount of carryover of 

appointment demand from one month to the next. Although clinician utilisation was an 

important aspect of the service, a more pressing concern was to see patients within a short 
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period of receiving an appointment request. The mapping of these activities to the 

“optimisation component map” was not undertaken in the workshop because of time 

constraints. Instead, we agreed to use the information that’s been gather so far and do the 

mapping in the post-workshop stage. 

Table 14: Constraints Form 

Environmental Constraints (E) 

Location 
E.g., specify a min & max number of 
locations to visit per clinician 

‒ Each nurse covers locations in a cluster. 
‒ Clinician travel need to be in geographic 

proximity of no more than 7 miles. 
‒ Clinicians can visit a min of 1 and max of 2 clinics 

in a working day 

Clinician Skills 
E.g., can a junior clinician conduct all types 
of appointments? 

‒  Lower band clinicians do not diagnose or 
prescribe (Assessments). 

‒ ACP’s provide support to complex patients. 
(assessments) 

‒ Clinicians in higher bands do not conduct 
community 

Timeframe 
E.g., specify the min or max number of 
appointments per day 

‒ 2 clinics in a day (morning & afternoon) 
‒ On average, clinicians to have 4 face-to-face 

appointments in a day 

Preference 
E.g., specify clinician and location 
preferences 

‒ Clinicians must be assigned appointments in 
clinics within their designated geographical patch.  
 

Appointments 
E.g., are the same type of appointments 
provided at all clinic locations? 

‒ 4 appointment types apply to all 65 clinic 
locations. 

‒ Appointments should be allocated based on skill. 
‒ Clinicians should have 4 appointments in a day. 
‒ Telephone screenings conducted by band 6 

clinicians 
‒ Patients to be given appointment within 4 weeks 

Caseload 
E.g., specify max and min number of 
patients and clinics on a clinician’s caseload 

‒ Each nurse may support 11 clinic locations. 
‒ More nurses to be deployed to locations with 

higher volumes. 

At the end of the workshop, we had a discussion on where data or if data is available for the 

key components that were identified. It was agreed that the service would provide 

operational data for the last 4 years as they were keen to evaluate service performance. The 

same data could also be used for model building. Stakeholders were also informed that the 

outputs of the workshop would be collated in a report that would also outline the direction 

of the model building activity.  
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Figure 7: Performance Measurement Model of the PCMH System 
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4.4.6. Post - Defining the Conceptual Model Workshop 
In this stage, outputs from workshop 2 were gathered, and several key activities were 

undertaken: identify activities from the PMM that can be included in the study; draw the 

PMM model with the chosen activities and identify potential inputs and outputs that could 

be mapped to the conceptual model; collate information collected for inputs and represent 

it in a format that can be validated by stakeholders; map information collected on model 

objectives, constraints, and decision onto a preliminary ‘optimisation component map’; liaise 

with project champion for data collection based on identified components.  

After inspecting the outputs obtained in Table 7, we determined that the model could 

address the highlighted activities. These were then included in the visually (see Figure 5) and 

we also identified potential inputs and outputs to the model, based on the overall 

information that was gathered in Workshop 2. We realised that monitoring activities 

“Referrals to service (also demand from clinicians) could be provided to the model as inputs 

to determine patient backlog levels and provide insights on how many patients can be seen 

given various demand values and under current service specifications. Additionally, the 

model could also be provided with clinician caseload data to evaluate utilisation of resources. 

Since the service had large amount of historical data, we determined that length of stay, 

waiting times, and service demand figures could be analysed by applying descriptive tools to 

the data. We resolved to also use predictive tools to forecast future service demand, given 

the emphasis on preparedness for an impending rise in demand.   

Table 15: Optimisation Component Map (Preliminary) 

Objective Constraints Decisions 

To meet demand for 
primary care from 
clinics 

- Limits on clinician availability to satisfy referral demand. 
- Clinicians must be assigned appointments based on their 

skill.  
- Clinicians must be assigned appointments in clinics 

within their designated geographical patch.  
- Clinicians cannot travel to clinics that are too far from 

each other.  
- Limits to how many appointments clinicians can have in a 

day & how many clinics they can visit. 
- Limits on the number of clinics on a clinician’s caseload.  
- Limits on number of clinicians to be assigned to any given 

clinic  

- We can decide what clinic 
a clinician goes to. 

- Also, for which 
appointment. 

- We can also decide when 
the clinician can hold 
these appointments.  

Information collected during the inputs and decisions activity was gathered and presented 

in the form of a table as seen in Table 13. We believe that this table is sufficiently generic to 

be used as a tool in workshops. It can be noticed in the table, that some input descriptions 

are suffixed with [not known]. This is because explicitly values were not provided during the 



 

121 
 

workshop, and the information was identified to be gathered from other sources. These 

points were highlighted in the report as requiring further clarification from stakeholders. 

The components of the model explored that were individually explored in the workshop 

were consolidated mapped onto the preliminary “Optimisation Component Map”, depicted 

in Table 15. Through the mapping activity, the modelling team also identified a preliminary 

list of assumptions for the model, and these were shared with stakeholders for approval. The 

list of assumptions and simplification are depicted in Table 16. 

                Table 16: Model Assumptions and Simplifications 

Assumptions 

Schedule generation/planning is centralised 

Four-week planning period with each week consisting of 5 working days 

A given working day is divided into two slots (AM & PM) 

Clinician availability is standardised 

Demand for appointments from clinics is known at the start of each planning period 

Appointment durations are standardised 

Physical space to run clinics at GP location assumed to be available 

Figure 8 represents the flow of information leading to the development of a communicative 

model.  This preliminary map contains the objective in column one that is derived from the 

Transformation (T); the second column contains constraints, that include a list of a high-level 

summaries derived from the constraints form; and the third column contains decisions, that 

would be identified as controllable inputs in the second activity.  

 

Figure 8: Workshop 2 Information Flow to Specify a Conceptual Model  

Chapter 5 describes the transformation of the conceptual model into a mathematical 

formulation and provides additional details on inputs that were fed to the model, describes 
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the coding of the model on a solves, and illustrates the outcomes of the solved model. Table 

17 presents the mathematical formulation of the model that was derived from the 

conceptual model. In particular, the table described the objective, decision variables and 

constraints that were formulated.   

Table 17: Mapping of the final Conceptual Model leading to Mathematical Formulation 

Objective 

- Minimising 
unmet 
demand 

- The objective of the model (1) is to minimise the number of 
unassigned appointments. In other words, to minimise unmet demand.  
 
M𝑖𝑛 ∑ ∑ 𝐹𝑙

𝑎
𝑙∈𝐿𝑎∈𝐴 − ∑ ∑ ∑ ∑ 𝑋𝑐𝑙𝑠

𝑎
𝑠∈𝑆𝑙∈𝐿𝑐∈𝐶𝑎∈𝐴  

Decision Variables 

- “Who” 
(clinician) 
goes 
“where” 
(clinic) for 
“what” 
(appointmen
t type) and 
“when” 
(week, day, 
& shift) 

- 𝒀𝒄𝒍𝒔 =

{
1, 𝑖f clinician 𝑐 ∈ 𝐶 𝑖𝑠 assigned to clinic location 𝑙 ∈ 𝐿 𝑖n shift 𝑠 ∈ 𝑆
0, otherwise                                                                                                       

      

- Integer value 
showing how 
many 
appointment
s to each 
clinician, 
“where” 
(clinic) for 
“what” 
(appointmen
t type) and 
“when” 
(week, day, 
& shift) 

- 𝑿𝒄𝒍𝒔
𝒂 = number of appointments of type 𝑎 ∈

𝐴  assigned to clinician 𝑐 ∈  𝐶 at clinic location 𝑙 ∈ 𝐿 in shift 𝑠 ∈ 𝑆 

Constraints 

- Assign 
demand 
from clinic 
locations 
based on 
available 
clinician 
capacities. 
 

 

- Constraints (2) ensure that the sum of durations of all appointments 
assigned to a shift does not exceed the length of each shift. 
 

   ∑  𝑅𝑎𝑋𝑐𝑙𝑠
𝑎

𝑎∈𝐴 ≤ 𝐿𝑠 ∀𝑐 ∈ 𝐶, ∀𝑠 ∈ 𝑆, ∀𝑙 ∈ 𝐿   (2) 
 
- Constraints (3) make sure that appointments assigned to any shift in a 
clinic do not exceed the demand of appointments in that clinic. 

 
   ∑ ∑ 𝑋𝑐𝑙𝑠

𝑎
𝑠∈𝑆𝑐∈𝐶 ≤ 𝐹𝑙

𝑎 ∀𝑙 ∈ 𝐿, ∀𝑎 ∈ 𝐴  (3) 
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- Constraints (4) assigns demand based on available clinician hours and 
captures any unassigned hours in the slack variable 𝑍𝑐

−.  
 
   ∑ ∑ ∑  𝑅𝑎𝑋𝑐𝑙𝑠

𝑎
𝑎∈𝐴𝑠∈𝐴𝑙∈𝐿 + Z𝑐

− = 𝐻𝑐   ∀𝑐 ∈ 𝐶  (4) 
 
- Constraints (5) prevent the allocation of appointments to clinicians in 
each location and shift unless the clinician has been assigned to the 
location (𝑌𝑐𝑙𝑠 = 1).  

   
   𝑀 𝑌𝑐𝑙𝑠 ≥ 𝑋𝑐𝑙𝑠

𝑎   ∀𝑙 ∈ 𝐿, ∀𝑐 ∈ 𝐶, ∀𝑎 ∈ 𝐴, ∀𝑠 ∈ 𝑆        (5) 

- Max shifts 
per day 

- Constraints (6) set the maximum number of shifts that can be 
assigned to a clinician per day. 
 
∑ 𝑌𝑐𝑙𝑠𝑙∈𝐿 ≤ 𝑆𝑡𝑐𝑑  ∀𝑐 ∈ 𝐶, ∀𝑠 ∈  𝑆𝑑      (6) 
 

- Constraints (7) ensure that a clinician can only be assigned to 1 or 0 
shifts in a clinic location.  
 
∑ 𝑌𝑐𝑙𝑠𝑐∈𝐶  

≤  1   ∀ 𝑠 ∈ 𝑆, ∀𝑙 ∈ 𝐿          (7) 

- Clinician 
travel 
constraints 
between 
clinic 
locations 
 

- Max travel 
distance 
between 
clinics 

 

- Constraints (8)-(9) prevent the assignment of a clinician to locations 
that are too far away on the same day.  
 

(𝑌𝑐𝑙1𝑠1 + 𝑌𝑐𝑙2𝑠2 ) − 1 ≤ 𝑀1𝑉𝑐𝑑𝑙1𝑙2
  ∀𝑐 ∈ 𝐶, ∀𝑠1,𝑠2 ∈ 𝑆, ∀𝑙1,𝑙2 ∈ 𝐿: 𝑙1 ≠

𝑙2, ∀𝑑 ∈ 𝐷                                   (8) 
 

𝑇𝑙1𝑙2
− 𝑇𝑚𝑎𝑥  ≤ 𝑀2(1 − 𝑉𝑐𝑑𝑙1𝑙2

)   ∀𝑐 ∈ 𝐶, ∀𝑙1,𝑙2 ∈ 𝐿: 𝑙1 ≠ 𝑙2, ∀𝑑 ∈ 𝐷                                                  

(9) 
 

- Max 
clinicians per 
clinic 

- Constraints (11) limit the number of clinicians that can be assigned to 
a clinic location.  

 
∑ 𝑊𝑐𝑙𝑐∈𝐶 ≤ 𝑁𝑙   ∀𝑙 ∈ 𝐿           (11) 

- Max clinics 
per clinicians 

 

- constraints (12) limit the number of clinic locations that can be 
assigned to a clinician.  

 
∑ 𝑊𝑐𝑙𝑙∈𝐿 ≤ 𝑁𝑐             ∀𝑐 ∈ 𝐶             (12) 

- Assign 
appointment
s based on 
clinic 
location 
preference 

- Constraints (13) ensure that clinicians are only assigned to clinic 
locations that they cover.  
 𝑊𝑐𝑙 ≤  𝑃𝑐𝑙               ∀𝑐 ∈ 𝐶, ∀ 𝑙 ∈ 𝐿   (13) 

- Assign shifts 
based on 
clinicians’ 
availability 

- Constraints (14) and (15) ensure that clinicians are only assigned to 
shifts based on availability.  

 
𝑌𝑐𝑙𝑠 ≤ 𝑄𝑐𝑠              ∀𝑙 ∈ 𝐿, ∀𝑐 ∈ 𝐶, ∀𝑠 ∈ 𝑆  (14) 
  
𝑄𝑐𝑠 ≤  𝐻𝑐𝑠            ∀𝑐 ∈ 𝐶, ∀𝑠 ∈ 𝑆                  (15) 
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- Assign 
appointment
s based on 
clinician 
skills. 

- Constraints (16) and (17) assign appointments to clinicians based on 
their skill level.  

 
𝑀 𝑈𝑐

𝑎 ≥ 𝑋𝑐𝑙𝑠
𝑎          ∀𝑙 ∈ 𝐿, ∀𝑐 ∈ 𝐶, ∀𝑠 ∈ 𝑆, ∀𝑎 ∈ 𝐴    (16) 

 
 𝑈𝑐

𝑎 ≤  𝐵𝑐
𝑎             ∀𝑐 ∈ 𝐶, ∀𝑎 ∈ 𝐴                                 (17) 

 

4.5. Discussion 
In section 4.5.1, we begin by reflecting on the application and development of the facilitated 

conceptual modelling approach for an optimisation model. Based on learning through the 

application, we then propose the framework along with the requisite activities, tools, and 

prescribed outputs. In section 4.5.2, we consider conceptual modelling for optimisation and 

lastly in section 4.5.3, a discussion for facilitated optimisation is presented. 

4.5.1. Reflections on the Proposed Framework 
Through the case study, we have provided proof of transferability for the first two stages of 

the PartiSim framework, which can be adapted to optimisation without any modification in 

order to initiate the study and define the system.  In the first stage, by following the 

prescribed process, we were to gain a good understanding of the PCMH service and the 

investigate the wider context within which the service operates. Identification of the 

stakeholder team was a key activity that led to the recognition of several. In the second stage, 

we were able to use the information gathered in the initial stages of the study to direct the 

conversation, supported by the tools. In preparing material for the workshop, it was 

determined that some of the activities, tools, and prescribed outputs within stage 3 would 

need to be tailored to illicit information relevant to an optimisation model.  

These new additions were developed by acknowledging the differences in the structures of 

a conceptual model between DES and optimisation. These new additions are not stand alone 

or disconnected from the outputs of the first workshop. In fact, they activity draw from 

preceding stages. Specifically, the CATWOE tool, and PMM drove the thought process in how 

to guide stakeholders to efficiently utilise these new tools. Table 18 is the proposed 

framework for conceptualising an optimisation model. The highlighted text within Table 18 

represents modifications that were made to the original framework. Specifically, we 

introduce three new activity and tools. 1) Activity to ‘Identify inputs and decision variables 

of the model’ and propose a corresponding tool ‘Inputs Form’; 2) Activity to ‘Define the 

model constraints and objectives’, supported by the ‘Constraint Form’; Activity to ‘Produce 

optimisation model component mapping’ by using the ‘Optimisation Component Map’. In 
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the remaining section, we will discuss the practical implementation of these new activities 

and share the valuable insights we gained from them. We will briefly revisit the development 

process of the 'Input Form' that emerged after the workshop and suggest modifications 

based on the lessons we learnt. Additionally, we will introduce a more generalisable 

'constraint Form'. Similarly, building upon the knowledge gained after workshop 2, we have 

enhanced the design of the communicative model and propose these improvements to be 

included in the framework. 

4.5.1.1. Reflections on the Input Form 

The input form was designed based on the information gathered in the workshop. The 

activity was structured to capture characteristics and operational details relative to the 

Actors(A) and Customers (C), in this case study were clinicians and clinics. Table 13 was the 

first iteration of this form. We proposed improvements to the form based on the insights 

derived from the data collection activity. Following the workshop, we liaised with the project 

champion to identify data sources for the components that had been identified in this activity 

and to conduct an analysis on the elements in the PMM that were not being captured in the 

optimisation model. Through this dialogue with the stakeholder team, it became apparent 

that data would need to be derived from multiple sources. Specifically, some of the data was 

known with certainty (such as the number of clinicians in the service, the number of 

appointments etc). The rest would need to be derived from the following sources: historical 

data using descriptive tools, expert knowledge, predictive tools, new data collection etc.  

Considering this knowledge, we realised that it would have been useful to have this 

conversation within the workshop as it has implications for the next stage: model coding. 

Specifically, we recognised that to build a realistic optimisation model with the potential for 

implementation, the modelling process would require the combined use of multiple analytics 

tools. Therefore, the new proposed ‘Input Form’ contains an extra column with a list of 

potential data options, using which additional data sources and the need to compliment the 

optimisation model with analytics techniques can be explored. Table 45 (Appendix F) is the 

proposed improved ‘Input Form’. The first iteration of this design emerged after workshop 

2, and the latest iteration is deemed most suitable for capturing the whole breath of data 

requirements and inform the modelling approach.  
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Table 18: Conceptual Modelling for Optimisation, adapted from PartiSim 
Stage and purpose  CM support activities  Tools  CM outputs/deliverables  

1. Initiate Study  The modelling team undertake:  

• informal meetings and/or  

• on-site observations and/or  

• with project champion and key stakeholder(s), to 
address preliminary information needs 

Information Collection 
Tool  

Preliminary understanding of the 
problem situation.  Purpose:  

• Identify stakeholder team  

• Identify key problem situation(s) 

1a. Pre-workshop stage  
Purpose: Preparations for 
Workshop 1  

Modelling team prepare preliminary materials for 
tools to be used in workshop 1  

    

2. Define system (Workshop 1)   Participating stakeholders take part in a facilitated 
workshop process to:  

• Brainstorming problem area (s) to be addressed 
and identify study objectives. 

• Define system boundaries  

- Problem statement 
form  

- CATWOE and root 
definition  

- Care system model  

 
 
 

- General study objective(s)  
- A bounded system within which the 

problem to be addressed exists  

Purpose: Agree on the problem 
situation and the wider system, 
within which it exists.  

2a. Post-workshop1/Pre-workshop 
2 stage Purpose: Disseminate 
workshop 1 outputs and prepare 
workshop 2  

Modelling team re-draw tools and disseminate 
workshop outputs to stakeholders  

    

Prepare preliminary materials for tools used in 
workshop 2  

3. Specify conceptual model 
(Workshop 2) Purpose: Define 
specific elements of the conceptual 
model  

Participating stakeholders take part in a facilitated 
workshop process to:  

• Put forward and agree on performance measures 
to address the problem identified in workshop 1  

• Identify inputs and decision variables of the 
model  

• Define the model constraints and objectives 

• Produce optimisation model component 
mapping   

• Discuss responsibility for data collection.  

 
 
 

- Performance 
measurement model 
(PMM)  

- Inputs Form 
- Constraints Form 
- Optimisation 

Component Map 
  

 
 
 
- Model inputs, decision variables 

and outputs 
- Model objectives and constraints 
- A preliminary list of assumptions and 

simplifications  
- A communicative model  
- A list of data requirements  

3a. Post-workshop 2 stage Purpose: 
Disseminate workshop 2 outputs 
and refine conceptual model  

Modelling team prepare report detailing:  

• Refined CM outputs from stage 2.a and stage 3 

• Data requirements  

  An agreeable to all (study 
participants) and feasible conceptual 
model describing an optimisation 
model  



 

127 
 

4.5.1.2. Reflections on the Constraint Form 

The “constraint form” uses the CATWOE output to draw a connection between the real 

system and the definition of constraints for the model. In determining the prompts to 

prepopulate the model for use in the workshop, only constraints that seemed relevant to the 

specific problem situation were considered. Using the knowledge about the PCMH service, 

that was gained in the prior stages, the form considered the following constraint prompts 

“location”, “clinician skills”, “timeframe”, “preference”, “appointments”, and “caseload”. A 

more generalised form that can be adapted for any optimisation model would include a 

combination of typical optimisation model constraints such as: Budget, Human resources, 

Physical resources, Time, Location / geographical, Preference / utility, Demand, Capacity, and 

Structural as seen in the Table 46 (Appendix F). Depending on the application context, each 

category can include a specific prompt to support stakeholders with identifying relevant 

constraints in the system of concern.  

4.5.1.3. Reflections on the Communicative Model 

This stage required the development of an ad-hoc, novel communicative model depicting 

the conceptualisation, which was named “Optimisation Component Map”. The first iteration 

of the map consisted of three key components of the optimisation model: objectives, 

constraints, and decision. After the second workshop, we gathered more information on the 

model inputs and realised they came from different sources. Additionally, during initial 

model formulation activity of Stage 4, we added more detail to the conceptual model as we 

recognised that we would build mixed-integer optimisation model. The output of this model 

would be a clinician to appointment and clinic location schedule. Therefore, we updated the 

optimisation model map and added the remaining components of an optimisation model: 

Inputs and Outputs, as seen in Table 19.  

Robinson (2020) have identified that the representation of the conceptual model in a way 

that is meaningful, comprehensive, and communicative is one of the grand challenges of 

conceptual modelling. We believe this is equally true for CM in optimisation modelling. The 

proposed a communicative model is a transparent representation of all components in the 

optimisation model. This iteration of the map was used in subsequent stages of the 

framework. We believe that the map was a useful tool in communicating the optimisation 

model and improved stakeholder understanding of the mathematical formulation presented 

in Chapter 5. However, we recognise that the communicative model could be further 

improved by conducting more case studies. Given how the modifications and subsequent 
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improvement have been informed by the case study. We believe that more studies are 

needed to develop greater agreement and uniformity in representing a conceptual model 

for optimisation.   

Table 19: Optimisation Component Map (Refined) 

Inputs Objective Constraints Decisions Outputs 

From Data: 
- Set of Clinicians, 

locations, 
appointment types, 
days, shifts 

- Demand per Clinic 
Location 

- Clinic locations 
assigned to 
clinicians 

- Appointment 
durations 

- Clinician skills and 
appointment 
matrix 

- Clinician to clinic 
preference 

 
Stakeholder 
Supplied: 
- Max shifts per day 
- Max clinics per 

clinicians 
- Max clinicians per 

clinic 
- Clinicians’ 

availability 
- Max travel distance 

between clinics 
- Shift Duration 

 
Generated: 
- Distance between 

clinics 

Minimising 
Unmet 
Demand 

- Assign demand from 
clinic locations based 
on available clinician 
capacities. 

- Assign appointments 
based on clinician 
skills 

- Assign appointments 
based on clinic 
location preference 

- Clinician travel 
constraints between 
clinic locations 

- Max shifts per day 
- Max clinics per 

clinicians 
- Max clinicians per 

clinic 
- Assign shifts based on 

clinicians’ availability 
- Max travel distance 

between clinics 

“Who” (clinician) goes 
“where” (clinic) for “what” 
(appointment type) and 
“when” (week, day, & 
shift) 

Planning 
Schedule 

4.5.1.4. Reflections on the overall application 

The development of this framework doubly benefitted from having the co-creator of the 

PartiSim framework, also an expert facilitator, on the modelling team. The first author, who 

was a novice facilitator at the start of the project had access to expert guidance and 

procedural insights throughout the project. Equally, the presence of an expert in the field of 

optimisation significantly contributed to bridging the gap between optimisation, soft OR and 

facilitation. Although we did not explore this aspect of the development process to the 

extent that it is possible, it is an interesting area of research that could yield important 

guidance to both new and seasoned researchers. It has been established that success in 

group facilitation is still dependent on the modellers leading each intervention  (Tako & 

Kotiadis, 2012). Therefore, future research could investigate the impact of roles and 
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modelling team composition by drawing in existing literature on the facilitated process 

(Tavella & Papadopoulos, 2015a; Tavella & Papadopoulos, 2015b).  

As stated before, the PartiSim framework provides a list of stages which include specific 

activities, suggested tools to be used with corresponding manuals to support the process of 

using the tools to reach to the prescribed dedicated outputs for each stage. The framework 

also provides some scripts, that are aimed mainly at the facilitator. Scripts are different from 

the tools or manuals in that they include advice to support the facilitation process for 

activities that do not require any specific tools to be used  (Tako & Kotiadis, 2015; Tako & 

Kotiadis, 2018). In facilitated modelling practice, scripts capture the expertise of facilitators 

in concise statements, enabling the transfer of knowledge and experience to beginners for 

effective workshop management (Hovmand et al., 2012; Smith & Shaw, 2019). They provide 

instructions on connecting activities to design the workshop and scheduling them 

throughout the event. The proposed framework is primarily focused on adapting the stages, 

activities, and tools to optimisation modelling. It goes some way in providing guidance to 

support the use of the tools to reach prescribed outputs, but is limited in the exploration of 

scripts, which is an opportune area for future work as facilitated optimisation evolves. Future 

research could explore opportunities for cross-fertilisation between Group Model Building 

and Facilitated DES, an avenue identified as having potential as PartiSim evolves (Kotiadis & 

Tako, 2018). Additionally, future work could also draw from studies that examine scripts the 

use of scripts to manage facilitated workshops for novice facilitators (Tavella & 

Papadopoulos, 2015b) 

4.5.2. Conceptual Modelling for Optimisation 
We contribute a framework for the conceptualising an optimisation model in a healthcare 

context, by adapting the PartiSim multi-methodology. However, as discussed in Section 2, 

for this category of OR methods, limited attention is given to problem exploration and 

conceptual modelling, where these are not regarded as key activities. In the systems view, 

the OR process consists of activities spanning four phases, namely, the problem situation, 

the conceptual model, the formal model, and the solutions and recommendations (Landry 

et al., 1983; Sagasti & Mitroff, 1973). In contrast to optimisation, simulation modelling 

processes prioritise extensive exploration of the problem situation and the development of 

a conceptual model before delving into creation of a formal model (Jones et al., 2022; 

Kotiadis, 2007; Kotiadis & Robinson, 2008; Kotiadis et al., 2014; Robinson, 2008; Robinson et 

al., 2010; Robinson, 2013; Robinson, 2014; Sterman, 2002; Tako & Robinson, 2009; Tako & 

Kotiadis, 2012).  
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 Although the development of a conceptual model receives limited attention in optimisation 

modelling, the notion of a “conceptual model” is applicable to mathematical programming, 

as it is to other modelling techniques in OR (Landry et al., 1983). In conceptual modelling for 

simulation literature, no single definition of CM exists (Robinson et al., 2015). However, 

Robinson  (2013) broadly defines CM as a non-software specific description of the computer 

model that will be or has been developed, that describes the objectives, inputs, content, 

assumptions, and simplifications of the model. In our case study, the conceptualisation of 

the optimisation involved defining the non-software specific description of nearly all the 

aforementioned aspects of CM for simulation modelling. In terms of model content, the CM 

developed for an optimisation model involves further describing the components decision 

variables and constraints, which are key structural elements alongside model objective.  

In literature, optimisation models are mainly developed for ‘prototype problems’, that 

address a specific managerial situation. In this modelling process, the ‘formal model’ takes 

precedence, while the conceptual model is a secondary or a non-issue (Oral & Kettani, 1993). 

A formal model is a translation of the conceptual model into mathematical symbols, 

computer languages, or both. The purpose of a formal model is to study the problem and 

obtain solutions to formulate recommendations. Many well-known problems fall into this 

category, such as vehicle scheduling problem (Kliewer et al., 2006), travelling salesman 

problem (Mosheiov, 1994), quadratic assignment problem (Loiola et al., 2007), 

transportation problem (Masson et al., 2016), location problem (Bélanger et al., 2019), and 

some production planning and scheduling problems (Wu et al., 2022). These problems are 

well-conceptualised and ‘formal models’ can be easily formulated, with the focus mainly on 

solution techniques and implementation procedures (Oral & Kettani, 1993).  

Looking at the multi-methodology proposed by Cardoso-Grilo et al. (2019) from this 

perspective, we argue that their study develops a conceptual model for a ‘medical training 

problem’. In other words, their study presents a sophisticated reformulation of a specific 

problem that supports health care workforce planning. Similarly, the participatory approach 

developed by Abuabara et al., (2022) addresses the ‘diet problem’, which is a classical 

application of linear programming in OR. Our approach is shares some similarities with these 

aforementioned studies, as it involves the conceptualisation and eventual development of 

an optimisation model for a specific context. However, our study did not aim to address a 

specific type of ‘problem’. Instead, the tools were employed to develop a conceptual model 

that could be applied to any type of optimisation model, tailored to fit a specific problem 

type.  
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Future research can use our framework for applications where stakeholder participation is 

deemed crucial in the conceptualisation of an optimisation model. Moreover, our approach 

is suitable for application for situations where a pragmatic and expedient conceptualisation 

of an optimisation model is required, regardless of problem type. Alternatively, as 

demonstrated in our case study, researchers can use our facilitative and participative 

approach to develop a conceptual model and identify an existing problem in literature, that 

aligns with the conceptualisation. 

Our work presents an important case study in linking conceptual modelling research with 

conceptual modelling practice. In CM literature, this aspect has been deemed a mini 

challenge (Robinson, 2020). The collaboration between academia and practice as 

implemented in our case study is a prime example of work where equal focus was granted 

to the method and tool development as well as the practical application of CM.  

4.5.3. Towards Facilitated Optimisation 
Our work contributes the first facilitative and participative multi-methodology framework 

for building an optimisation model, in the context of mental healthcare. In doing so, we 

demonstrate that the facilitated mode of intervention can be applied to optimisation 

modelling, thereby contributing to the facilitated modelling literature (Franco & Montibeller, 

2010; Lane & Husemann, 2018; Robinson et al., 2012). Furthermore, the combination of 

optimisation with SSM, adds to the limited pool of studies that mix soft OR approaches with 

optimisation (Abuabara et al., 2022; Amorim-Lopes et al., 2021; Cardoso-Grilo et al., 2019; 

Ferreira, 2013). Our framework employs tools from SSM to enable the development of a 

conceptual model for mathematical programming. By drawing from the PartiSim framework, 

we build on existing knowledge without re-inventing the wheel (Kotiadis & Tako, 2018; Tako 

& Kotiadis, 2015). Granted that the PartiSim framework was developed particularly for 

simulation modelling. We argue that the framework is compatible for optimisation as both 

modelling methods follow mostly similar modelling cycles (Pidd, 1997). Furthermore, Smith 

and Shaw (2019) have also demonstrated that that DES and Linear Programming (LP), are 

modelling approaches that are more similar than not when compared across several 

characteristics. For instance, although DES and LP build distinct models of a system, both 

approaches build objective models that represent a situation using interconnected 

quantitative variables. Additionally, we can link optimisation modelling to the stages of SSM 

based on existing research that compares the four stages involved in a DES modelling 

lifecycle with the 4 stages of SSM and established that both approaches cover the same 

stages at varying levels of detail (Tako & Kotiadis, 2015). We propose that our framework 
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can be applied for building optimisation models in other contexts characterised by multiple 

stakeholders with diverse perspectives and concerns likely to influence decision-making; 

where the problem definition is not well defined or even absent, as was the case in the 

mental healthcare service that was the focus of our case study. For example, the framework 

could be advantageous to other application in healthcare services (Unützer et al., 2020) and 

disaster management (Amideo et al., 2019; Çoban et al., 2021). Additionally, given that our 

framework is an adaptation of the PartiSim, future researchers considering both DES and 

optimisation for their intervention can draw from the work presented here and the original 

framework. Researchers looking to integrate optimisation with hybrid simulation can draw 

from the representation method that can aid the modeller in defining the modelling frame 

(i.e., the combination of methods forming the hybrid model)  (Jones et al., 2022). 

4.6. Conclusion 

This paper presents a facilitative and participative multi-methodology framework, adapted 

from PartiSim, for conceptualising an optimization model. The framework comprises tools 

and processes specifically designed for the initial stages of optimisation modelling. We 

provide proof of the practicality of the framework through a case study in mental healthcare, 

showcasing its effectiveness in conceptualising an optimization model. Additionally, the case 

study illustrates how the framework can be applied to structure problem situations in 

collaboration with stakeholders. We discuss the modifications made to the PartiSim 

framework to suit optimisation modelling needs. We argue that conceptual modelling plays 

a crucial role in developing a formal model. The proposed framework emphasises the 

usefulness of having more rigour for this stage of optimisation. The participative and 

facilitative elements of the framework are particularly valuable in contexts where 

stakeholder engagement is essential for optimization model development, such as 

healthcare and disaster management, where a sense of progress is prioritised over achieving 

optimality. We identify areas for potential improvement that can streamline the path to 

facilitated optimisation modelling based on the specific application context. Furthermore, 

we encourage researchers to conduct further investigations utilising real case studies to 

explore the potential of conceptual modelling for optimisation. 
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Chapter 5: An integrated optimisation and analytics 
approach for planning mental healthcare services. 

ABSTRACT 

Mental health services worldwide, including in the UK, face significant constraints that 

necessitate effective resource planning for delivering high-quality care. Applying analytics to 

healthcare has the potential of improving efficiency while enhancing the quality of care. 

However, achieving this vision is particularly challenging in the context of mental healthcare. 

This paper focuses the evaluation and redesign of a Primary Care Mental Health (PCMH) 

service located in Kent, UK. To address this problem, we propose an analytics driven 

approach that integrates the three stages of descriptive, predictive, and prescriptive 

analytics with an optimisation model. Through a case study, we illustrate how the integrated 

approach served as a valuable tool for experimentation within the PCMH service. The 

findings of our novel multi-skill multi-location model demonstrate the benefits of utilising 

optimised workforce planning to reduce unmet demand. We discuss the adaptability 

analytics approach and the potential applicability of the optimisation model in mental health 

and other care settings. 

Keywords: Healthcare Analytics; Optimisation; Multi-Skill Multi-Location; Integrated 
analytics approach; Mental Healthcare Service Planning 

5.1. Introduction 
Mental illness has a significant impact on individuals, society, and the economy. Primary care 

is now at the forefront of the predicted increase in mental health presentations (Park et al., 

2020). Early intervention in primary care reduces subsequent mental health problems and is 

cost-effective (Van't Veer-Tazelaar et al., 2010). In the UK, one mental health care model of 

care involves distributing mental health professionals from secondary care to primary care 

locations (Naylor et al., 2020). These heterogeneous mental health professionals work across 

multiple General Practitioner (GP)/primary care clinic locations in a geographic patch. The 

planning and scheduling of such healthcare workers have received limited attention in 

Operations Research (OR) (Al-Yakoob & Sherali, 2008; Cheng & Kuo, 2016). Furthermore, the 

application of OR techniques to planning mental healthcare services does not receive the 

same attention when compared to other healthcare services (Bradley et al., 2017; Howells 

et al., 2022; Long, K. M. & Meadows, 2018; Noorain et al., 2019; Noorain et al., 2022). 

Before COVID-19, mental health services in England were already under considerable strain. 

Issues included inadequate resourcing, patients' ability to access care and overall patient 

outcomes (British Medical Association, 2020a). Many of these issues have worsened due to 
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the pandemic (British Medical Association, 2020b). The impacts of the COVID-19 pandemic 

on people's mental health and wellbeing are a significant public health concern; while some 

are transient, others are likely to be long-term (McCartan et al., 2021; Pierce et al., 2021). 

Recent data shows that the number of people contacting the NHS seeking help for mental 

health problems is now at a record high (NHS Digital, 2022). These needs arise within the 

context of underfunded mental health services facing a care backlog, waiting lists, and a 

stretched, exhausted, and understaffed workforce. Workforce capacity has been a long-term 

concern, and shortages represent the biggest threat to national ambitions to improve mental 

healthcare (HM Government, 2021; NHS Confederation, 2022). Potential solutions could be 

found in telemedicine, which remains controversial, despite its efficiency in reducing the 

impact of the pandemic (Omboni et al., 2022). In OR literature, studies addressing 

telemedicine with respect to operational efficiency are limited (Zhou et al., 2023).  

In OR literature, optimisation modelling has a long history of supporting healthcare decision 

makers seeking to develop more efficient healthcare systems (Cissé et al., 2017; Grieco et 

al., 2021; Leeftink et al., 2020; Marynissen & Demeulemeester, 2019). Despite the 

widespread use of optimisation techniques in healthcare contexts, application in mental 

healthcare is still sparse (Noorain et al., 2022).  

In this paper, we consider the problem of evaluating and redesigning a mental health service 

for a primary care network in Kent, UK. Our approach demonstrates how OR can be used to 

support improvements to mental healthcare services. Specifically, our contribution is 

threefold. First, we contribute a novel multi-skill multi-location optimisation model that 

schedules itinerant mental health clinicians to multiple geographical locations across a 

planning horizon. Second, we contribute a real case study using real data, adding to the 

limited pool of optimisation literature applied to mental healthcare. Third, we develop an 

integrated three-stage optimisation-based analytics approach that combines descriptive, 

predictive, and prescriptive analytics. The integrated approach draws upon the principles 

and practices of OR and takes a holistic view of the problem situation (Hindle, Giles, Kunc, 

Mortensen, Oztekin, & Vidgen, 2020; Hindle, Giles A. & Vidgen, 2018). Furthermore, the case 

study enabled the development and demonstrated the utility of the analytics approach, 

which has the scope to be extended to other healthcare contexts with similar features.  

The remainder of this paper is organised as follows. In Section 5.2, we provide a literature 

review on the various components of this study, such as the application of OR and analytics 

approaches in mental healthcare. We also discuss a specific body of scheduling literature 

upon which our optimisation model draws. Section 5.3 provides contextual background on 
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the collaboration with a PCMH service. Section 5.4 describes the various elements of the 

integrated approach. Since the novel optimisation model is a central contribution, Section 

5.5 provides a comprehensive account of the prescriptive element, including model 

formulation, and Section 5.6 examines the computational results from the scenario analysis. 

Section 5.7 discusses the study's contributions and Section 5.8 provides some conclusive 

remarks. 

5.2. Literature Review 
We drew on several relevant literature themes to positioning our study. We begin by 

focusing on optimisation in mental healthcare, followed by a broader examination of 

personnel scheduling in healthcare, particularly on multi-skill multi-location scheduling. We 

then examine the literature for studies in healthcare that have applied analytics approaches 

spanning all three types of analytics.  

5.2.1. Optimisation in Mental Health  
Operational Research (OR) has contributed significantly to designing and organising 

processes, optimising operations, and managing healthcare systems (Hulshof et al., 2012; 

Rais & Viana, 2011). Optimisation for healthcare planning enables simultaneous 

consideration of multiple constraints and sensitivity analysis to find the best solution 

(Kahraman et al., 2018) and have been used to determine resource quantity, allocate 

capacity, scheduling, and allocating appointments to support planning of emergency rooms, 

primary, outpatient and home health (Cissé et al., 2017; Grieco et al., 2021; Leeftink et al., 

2020; Marynissen & Demeulemeester, 2019). 

Despite the widespread use of optimisation in healthcare, application in mental healthcare 

(MH) is only beginning (Noorain et al., 2022). MH systems are generally composed of a 

diverse range of services that comprise interrelated parts of a whole system and primarily 

rely on human resources, including a heterogeneous mix of specialists, non-specialists, and 

community workers (Gask, 2005; Gupta et al., 2019; Kakuma et al., 2011). A handful of 

studies have developed optimisation models in MH, such as to schedule appointments with 

patient no-show predictions (Samorani & LaGanga, 2015), allocate appointments subject to 

waiting times (Pagel et al., 2012), assign staff to shifts by considering preferences (Cohn et 

al., 2009) and workload balancing (Hertz & Lahrichi, 2009), schedule visits to outreach clinic 

locations (Li et al., 2016) and patients' homes (Hertz & Lahrichi, 2009), and build duty rosters 

for psychiatric nurses (Bester et al., 2007). It has been established that the strength of 

optimisation planning models in MH so far is that they were developed in real world practical 

contexts but had a narrow scope and used simplified assumptions (Noorain et al., 2022).  
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5.2.2. Personnel Scheduling in Healthcare  
In OR, scheduling problems have been studied extensively (Van den Bergh et al., 2013). In 

healthcare, personnel scheduling problems have been considered for nurses (Burke et al., 

2004; De Causmaecker & Berghe, 2011; Kellogg & Walczak, 2007), and physicians (Brunner 

et al., 2009; Brunner & Edenharter, 2011; Erhard et al., 2018; Thielen, 2018). Studies have 

also examined the scheduling of patients in outpatient clinics (Ahmadi-Javid et al., 2017; 

Cayirli & Veral, 2003), and operating rooms (Cardoen et al., 2010; Samudra et al., 2016; Zhu 

et al., 2018). Most nurse scheduling problems are addressed within the context of hospitals. 

Specifically, nurses are allocated to periods of work over a planning period. Such problems 

consider skill categories, shift types, coverage constraints, work regulations, nurse 

preferences etc. Although physician scheduling is part of the larger field of personnel 

scheduling, specific such as demand volatility, cost-intense resource, strict adherence to 

preferences differentiates it from other types (Erhard et al., 2018). The commonality 

between nurse and physician scheduling is that the schedules are developed in the context 

of a single location - a hospital.   

5.2.2.1. Multi-skill Multi-location Personnel Scheduling  

In literature, skills are classified into two categories: hierarchical and categorical. In 

hierarchical skills, workers with higher skills can do more complex tasks than workers with 

lower skills. With categorical skills, there is no difference in skill level, and a worker's skills 

define which tasks they can perform (De Bruecker et al., 2015). Workforce staffing and 

scheduling incorporating skills have been studied extensively in healthcare (De Bruecker et 

al., 2015; Respicio et al., 2018; Vermuyten et al., 2018). However, many recently published 

studies on personnel scheduling consider a single location, often a department (Dahmen et 

al., 2018; Restrepo et al., 2017) and few consider multi-department or multi-location 

(Nearchou et al., 2020). 

To the best of our knowledge, Franz et al. (1989) have studied the first multi-skill multi-

location situation in healthcare. A case study presents an application to schedule a 

hierarchically skilled workforce in a rural healthcare area comprising several clinic locations 

by minimising travel costs and maximising staff preferences. More recently, Maenhout & 

Vanhoucke (2013) studied the case of scheduling different category nurses to several wards 

in a hospital. The transfer of nurses depends on costs associated with staff shortages per 

ward. Similarly, Wright & Mahar (2013) centralise the scheduling of nurses across multiple 

departments at a hospital, with an objective that considers schedule desirability and costs.   
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Studies that consider personnel scheduling across multiple departments or locations enable 

the transfer of employees under specific rules (Van den Bergh et al., 2013). The skills feature 

is often considered along with the location feature, but not always. In recent studies, skills 

and the movement of workers are incorporated into models via transfer and labour costs, 

predominantly addressing problems in the service industry (Attia et al., 2019; Bard & Wan, 

2008; Dahmen et al., 2020; Nearchou et al., 2020). Models have also included objectives such 

as fairness, worker preference and satisfaction when considering the movement of a multi-

skilled workforce (Al-Yakoob & Sherali, 2007; Al-Yakoob & Sherali, 2008; Cheng & Kuo, 2016; 

Kuo et al., 2014). Al-Yakoob and Sherali (2007; 2008) assign a hierarchical workforce across 

several gas stations, where the model satisfies demand while minimising employee 

dissatisfaction. Kuo et al. (2014) schedule multi-skilled employees to various stations at an 

international airport by minimising staffing shortages and skills mismatches. Cheng and Kuo 

(2016) develop a model for scheduling food safety inspectors at an airport with travel 

restrictions relative to fairness, preference, and skill matches.    

In general, the heterogeneity in skills is relative to the heterogeneity of tasks, activities, 

departments, or locations in each application. Of the non-healthcare studies discussed 

above, many focus on formulating and solving complex problems by developing novel or 

heuristic solutions. Although the healthcare application considering multi-skill multi-location 

planning are limited, the focus has been on examining policies that would be necessary for 

today's scheduling environments. Of the three healthcare applications, two consider nurses 

with categorical skills and a single unit location consisting of multiple departments or wards. 

Present-day features of mental health services have not been considered. We address this 

gap in workforce planning in mental healthcare and present research demonstrating 

practical scheduling policies motivated by real data.  

5.2.3. Analytics Driven Approaches to Optimisation Modelling in 
Healthcare 

In OR literature, the interest in mixing methods is evidenced by the pool of publications, 

particularly in healthcare (Brailsford et al., 2019; Morgan et al., 2017; Yearworth & White, 

2013). Lately, we have seen the combination of traditional OR and analytics methods for 

interventions. Analytics, as a discipline, is composed of three distinct stages: descriptive 

analytics, or the study of systems, organisations and phenomena according to historical data; 

predictive analytics, or the informed estimation of future values of variables or 

configurations of systems to aid in anticipation of as yet unknown events; and prescriptive 
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analytics, or the design of policies, guidelines or practices based on optimal or best possible 

values of decision variables (Liberatore & Luo, 2010).  

When considering the application of each of the three stages of analytics in healthcare, 

researchers have found that predictive analytics is most prevalent, followed by prescriptive 

and then descriptive (Galetsi & Katsaliaki, 2020; Lepenioti et al., 2020). For this study, we 

investigate the intersection of descriptive, predictive, with optimisation in healthcare. 

Specifically, we examine literature from 2015 to present, by performing a literature search 

on Scopus, resulting in the identification of 13 articles as seen in Table 20. Studies that do 

not include a predictive element but did contain descriptive analysis along with optimisation 

were excluded (DuBois et al., 2021; Mazloumian et al., 2022; Restrepo et al., 2020; 

Zimmerman et al., 2021). On examination, it became evident that the extent of analysis 

conducted using historical data was spread across three categories where historical data was 

used as inputs for the predictive analytics techniques and for estimating optimisation model 

parameters, using summary statistics. In contrast, we found that only three studies 

conducted data analysis and produced visualisations to uncover patterns and trends in the 

data (Lee et al., 2015; Sir et el., 2017; Uriarte et al., 2017). Data was also used to validate 

either the predictive model (Andersen et al., 2019; Mizan and Taghipour 2022; Lee et al., 

2015; Ordu et al., 2020) or both the predictive and prescriptive optimisation model (Elleuch 

et al., 2021; Lee et al., 2015; Ordu et al., 2020). All three types of analysis using historical 

data have been classified under descriptive (or data processing) to demonstrate what’s been 

done and to highlight what could be done. The ‘predictive’ column indicates which type of 

method has been applied, and the ’optimisation model’ column provides information on the 

type of model developed. 

The integrated application of the three types of analytics, particularly with optimisation 

modelling is gaining momentum in the last decade as depicted in Table 20. These studies are 

based on real data from case studies, often conducted with stakeholder involvement (Lee et 

al., 2015; Ordu et al., 2015). In comparison to other application areas such as supply chains 

and manufacturing, combining predictive analytics with optimisation in healthcare is lagging 

(Galetsi & Katsaliaki, 2020; Lepenioti et al., 2020).  
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Table 20: Integrated Descriptive ∩ Predictive ∩ Prescriptive Approaches in Healthcare 

Author(s) 

Descriptive (or Date Processing) 

Predictive 
Optimisation 

Model 

Parameter 
Estimation + Input 

for Predictive 
Data Analysis + 

Visualisation Model Validation 

Ahmed & Frohn, (2021)  ✓   ML MOIP 

Andersen et al., (2019) ✓  ✓ (P) MCS ILP 

Elleuch et al., (2021) ✓  ✓ (P + O) ANN FIM 

Jang (2019) ✓   ML RO 

Lee et al., (2015) ✓ ✓ ✓ (P + O) ML MINLP 

Mizan and Taghipour (2022) ✓  ✓ (P) ML MOMILP 

Moradi et al., (2022) ✓  ✓ (P) ML MILP 

Olya et al., (2022) ✓  ✓ (P) ML MIP 

Ordu et al. (2020) ✓  ✓ (P + S) F IP 

Samorani & LaGanga, (2015) ✓  ✓ (O) DM SO 

Sir et al., (2017) ✓ ✓  CART MIP 

Uriarte et al., (2017) ✓ ✓  DM DES + SMO 

Wang et al., (2021) ✓   R MIP 
ANN: Artificial Neural Network; ML: Machine Learning; F: Forecasting; DM: Data Mining; R: Regression; CART: Classification and Regression Tree; MCS: Markov Chain 
Simulation; MIP: Mixed-Integer Programming; DES: Discrete-event Simulation; SMO: Simulation-based Multi-Objective Optimisation; SO: Stochastic Optimisation; 
IP: Integer Programming; MOMILP: Multi-Objective Mixed Integer Linear Programming; MINLP Mixed-Integer Nonlinear Programming; RO: Robust Optimisation; 
FIM: Fuzzy Interval Mathematical Model; ILP: Integer Linear Programming; MOIP: Multi-Objective Integer Programming. 
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Of the 13 articles identified in the review, two have used data from mental healthcare 

services (Samorani and LaGanga 2015; Wang et al., 2021). Samorani and LaGanga (2015) 

examine the scheduling of appointments in outpatient clinics given no-show predictions, 

while Wang et al., (2021) consider short-term physician scheduling by regressing daily 

demand. Within both articles, the primary focus is on developing and testing the 

optimisation model with uncertain inputs. We argue that use of descriptive analytics to gain 

insights on the systems under consideration is minimal. The analytics-driven optimisation 

modelling approach proposed in this paper is novel in its emphasis on multiple elements of 

a problem situation. In particular, the proposed approach explores the system to gain 

insights, uses historical data to estimate parameters (optimisation model) and as input for 

predictive analytics, and uses the model to validate the prescriptive and predictive models.  

5.3. Background and Problem Statement 
Primary care providers continue to encounter barriers when referring patients to secondary 

mental healthcare settings (Pomerantz et al., 2008). At the time of the study, several change 

imperatives had highlighted the need for integrating mental health services into primary 

healthcare (NHS England, 2020). Several key benefits of the primary care mental health 

model were highlighted, including the closer integration of primary, secondary, and tertiary 

mental healthcare and improved patient access to services.  

Several new models of PCMH services are in various stages of development across the UK. 

There is significant variability in the service models of newly established PCMH services. 

These services exist on a spectrum between a simple attached specialist working within the 

primary care setting and a fully integrated multidisciplinary team drawn from primary and 

specialist services. The deployment of these models represents a significant opportunity to 

consider how services can be redesigned to ensure the most effective and appropriate care 

provision.  

One such PCMH service was the focus of our study. We developed this approach in 

collaboration with a real-world PCMH service provided by the Kent and Medway Mental 

Healthcare Trust (KMPT) based in Kent, UK. The service works alongside GP clinics and 

primary care partners and interfaces with KMPT services to provide care to people 

experiencing mild/moderate mental health conditions who do not require secondary care 

mental health services. The workforce comprises 12 multi-skilled clinicians deployed to 65 

GP clinic locations to provide patient consultations across four types of appointments. 
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During problem exploration, stakeholders reported that the service was on the verge of 

expansion on two fronts: expanding service capacity by hiring more clinicians and adding 

more clinic locations to their service provision. These advances were being made in response 

to county-level population health forecasts' predictions. However, stakeholders conveyed 

high levels of uncertainty and a lack of clarity around current and future capacity and 

demand. Furthermore, stakeholders were aware of differences in clinician experience and 

variations in operating procedure. As such, stakeholders were keen to understand the service 

quantitatively, uncover operational patterns and explore opportunities to improve service 

efficiency. The service was driven by the goal of providing the right intervention, by the right 

professional, at the right time and location. Stakeholders sought our help to investigate 

current efficiency and consider several options for service transformation.  

At the time, the PCMH service was reporting high-level summaries of Key Performance 

Indicators (KPIs) generated from heterogeneous data sources. The lack of integration and 

visualisation presented the stakeholders a disjointed view of the service. There was tacit 

consensus amongst stakeholders that service data was inadequately leveraged for better 

decision-making. As such, we identified a course of actions that interlinked three areas of 

investigation: the presence and underutilisation of historical data with a potential for 

generating insights, elements of uncertainty regarding future service transformation, and 

the planning of a multi-skilled workforce across multiple locations. We further describe the 

components of the analytical framework in the next section.  

5.4. Overview of Analytics-Driven Optimisation Approach 
We developed an analytics driven optimisation modelling approach interlinking the 

descriptive, predictive, and prescriptive analytics, as seen in Figure 9. In this section, we 

describe the techniques, tools and processes that are embedded within the approach.  

The descriptive analytics phase involved collecting and integrating heterogenous data from 

several electronic patient record systems used by the PCMHS to manage administrative and 

clinical processes. The process begins with identifying sources, followed by the 

transformation of raw data, through data linkage, into a format that enables historical data 

analysis. Critical components within the service are identified for the data analysis, and 

performance measures relative to these components are explored using techniques such as 

visualisation, statistical summaries, and drill-down tables. Furthermore, data gathered in this 

stage is used as inputs to the predictive and prescriptive stages. 
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Figure 9: Analytics-Driven Optimisation Modelling Approach 

The predictive analytics stage is predominantly concerned with the demand for 

appointments. Here, a monthly service level demand forecast is generated using historical 

data and applying time series forecasting. We use Monte Carlo simulation to fill gaps in 

historical data to determine daily demand for each clinic location.  Guided by the upper and 

lower bounds of the predictive demand forecast and stakeholder recommendation, location-

level demand scenarios for four different appointments are generated. These scenarios are 

used to examine the impact of changes in operational specification on the service using the 

optimisation model.  

Finally, in the prescriptive analytics stage, we build a multi-skill multi-location optimisation 

model using Mixed-Integer Linear Programming (MILP). Based on skills, the model allocates 

clinicians to clinic locations on a given day and shift and assigns appointments to clinicians. 

Inputs to the model are obtained from both preceding stages of the multi-methodology. The 

main aim of this stage is to use the model to compare service performance for several 

alternative operational strategies. The next sections will examine specific findings of each 

stage and its impacts on the overall analytical strategy. 

5.4.1. Descriptive Analytics  
Historical data spanning four years was extracted from the service's electronic patient record 

system used by the PCMH service to manage administrative and clinical processes. This data 
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included information about referrals made to the service, clinician utilisation, and patient 

appointment logs.  The data was anonymised and altered only to depict the operational 

perspective of the service. We began by performing data profiling to clarify the structure, 

content, relationships, and derivation rules. We then conducted data linkage to join records 

and create a multi-dimensional integrated dataset. For this purpose, data was migrated to 

MySQL and transformed. The analysis was then conducted on this enhanced dataset. During 

the preliminary data analysis, we identified several gaps in information related to clinician 

working patterns. To redress these gaps, individual clinicians were required to provide a "Job 

Plan" detailing the division of working hours to various activities, including patient 

appointments, over a four-week planning horizon.  

Two defining operational guidelines of the PCMHs service were that a patient is assessed 

within four weeks of a referral and that it offers short-term interventions lasting at most six 

months. As such, we examined the waiting times for all active patients in the service, as seen 

in Figure 10. A significant proportion of patients wait two months before their first 

appointment (an assessment), and the second-highest duration is three months, followed by 

one month and three weeks. Additionally, some patients wait six months to a year, as 

highlighted by the red bars in Figure 10. On average, 90-150 patients are waiting to be 

assessed at any given month in the services' timeline.  

 

Figure 10: Patient Waiting Time 

 

The length of stay of patients in the service is depicted in Figure 11. Most patients stay in the 

service for two months following their assessment, closely followed by three, four, and five 
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months. However, the second highest length of stay is two years. Upon further investigation, 

we found that in each month, alongside the arrival of new referrals, clinicians were having 

to catch up with the backlog from the previous month, thereby creating delays in the service 

and leading to longer waiting times.  

 

Figure 11: Patient Length of Stay 

Next, we looked at clinician related analytics. At the time of this analysis, the services 

employed 12 multi-skilled clinicians, who were grouped into hierarchical categories called 

bands. Table 21 depicts the 12 clinicians with a code (C1, C2,.., C12) and their corresponding 

band. In addition to representing skill class, bands also provide information on clinician 

employment type. We have five bands: 8a, 7, 6a, 6b and 6c. Clinicians in bands 6b and 6c 

worked part-time, while all others worked full-time.  

Table 21: Clinician Code and Band 

Clinician C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

Band B-8a B-8a B-8a B-7 B-7 B-7 B-7 B-6a B-6a B-6b B-6c B-6c 

Individual clinician working patterns were grouped and quantified based on the time 

clinicians allocated to each task. Figure 12 represents the clinician's availability for 

appointments. Although clinicians also conduct other activities, in this study, we only 

consider the planning of appointments, as these make up the bulk of their duties and are 

directly related to service efficiency.  As seen in Figure 12, the expected availability for 

appointments is highly variable across all clinicians and clinicians of the same band. For 

instance, although clinicians C4, C5, C6 and C7 belong to band 7, the hours allocated for 
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patient appointments are highly variable. A small degree of variability in clinician activities 

was taken as a given by stakeholders. However, this analysis revealed the extent of individual 

variability perceived by each clinician. Stakeholders believed clinician availability for 

appointments in Figure 12 were either over or underestimated. Therefore, standardisation 

of clinician availabilities was proposed based on emergent patterns observed in job plans for 

clinicians at a single skill level and historical data. For instance, considering a 3-hour clinic 

shift, Band 8a clinicians often have five available weekly shifts, and Band 7 clinicians will have 

seven weekly shifts. 

 
Figure 12: Clinician Availability for Appointments 

We then analysed the clinician caseload for active patients in the service, as seen in Figure 

13. 12 clinicians conduct appointments at 65 different clinic locations (denoted by L1, L2,.., 

L65). As such, a clinician's caseload was examined based on two overlapping variables: the 

number of distinct clinic locations assigned to the clinician and the number of patients 

managed by a clinician within those locations.  

 

Figure 13: Clinician Caseload and Location Distribution 
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At the time of this analysis, only active patients were considered. As can be seen in Figure 

13, the distribution of clinic locations and patients among clinicians within a band varies. For 

instance, clinicians C1, C2, and C3, belonging to band 8a, have 11, 19 and 22 patients from 8, 

11, and 13 different clinic locations, respectively. In other words, clinician C1 manages 11 

patients across 8 clinic locations, whereas clinician C3 manages 22 patients across 13 clinic 

locations. An additional insight derived from Figure 13 is the distribution ratio of clinics to 

clinicians. For instance, clinician C1 has 11 patients from 8 different clinics, meaning the 

clinician most of the times, travels to a location to see one patient only. The same pattern 

can be observed for clinicians C2 and C5. This insight makes a case for not only a 

redistribution of caseload but also a reduction in the dispersal of different clinics managed 

by each clinician. A further drill-down on the distribution of clinicians to clinic locations based 

on the demand (active patients) was conducted, as seen in Figure 14.  

 

Figure 14: Clinic Demand against Assigned Clinicians 

We found that the number of clinicians managing referrals from a clinic did not necessarily 

correspond to the demand. In other words, as seen in Figure 14, two clinics with different 

referral frequencies were allocated the same number of clinicians. For instance, locations 

L34 and L10 have 18 active referrals. However, two clinicians are deployed in location L10, 

while five have been allocated to location L34. Although this analysis revealed undesirable 

variation in the distribution of clinics covered by each clinician and clinician caseload, an 

operational decision was made to preserve these allocations, seen in Figure 13 and Figure 

14, in favour of continuity of care. Besides, a higher clinician count in a clinic with low 

referrals could be due to historically high referral frequencies, but at the time, these did not 

match the active referrals.  
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One last feature stakeholders were keen to explore was appointment durations for each 

appointment type offered by the clinic. The four appointment types are: Assessment (A), 

Follow-up (F), Community (C), and Telephone (T). An assessment appointment is the first 

appointment where a clinician sees a newly referred patient and assesses the patient's needs 

and risks. Here the clinician will determine if the patient can immediately be signposted to 

other services or if a follow-up appointment is required. A follow-up appointment is either 

conducted in person or over the telephone, which the service dubs a telephone 

appointment. A patient can have several follow-up appointments following an assessment 

based on the outcomes of the assessment. A community appointment is given to patients 

who require ongoing medication to be administered by a clinician to support the transition 

of a patient from secondary care to the community. During workshops, clinicians stated 

varying preferences for appointment durations for each type. Clinicians perceived that most 

appointments were over 60 minutes.  Therefore, a graphical summary of duration is 

represented in a box-and-whiskers diagram using historical service data, as seen in Figure 15. 

The approximate upper range values for appointments of type A, F, T and C are 60, 60, 35, 

and 45 minutes respectively. We were particularly concerned with each appointment type's 

90th and 75th percentile values. 

 

Figure 15: Appointment Type Duration Box Plot 

Table 22 shows that 75% of all assessments were less than or equal to 60 minutes. Similarly, 

follow-up, telephone, and community appointments were 45, 30, and 45 minutes, 

respectively. The analysis provided empirical evidence to challenge clinicians' perceptions 

and to incentivise the standardisation of appointment durations.  
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Table 22: Appointment Types Duration Distribution 

 75th Percentile 
(Pa) 

90th Percentile 
(Pb) 

Assessment (A) 60 60 
Follow-up (F) 45 60 

Telephone (T) 30 45 
Community (C) 45 60 

 

5.4.1.1. Summary 

The descriptive analytics provided some critical insights about clinician capacity and 

utilisation drawn from a snapshot in the PCMH service timeline. As such, the insights are 

specific to the chosen period.  Some of the imbalances can be attributed to time-specific 

circumstances, such as the hiring and training of new clinicians, new clinics signing up for the 

service etc. Nevertheless, the investigation did show a lack of consistency in clinician profiles 

relative to their bands, the number of clinicians allocated to each clinic, and perceptions of 

appointment time durations. 

5.4.2. Predictive Analytics 
The electronic patient record system accurately captured patient demand for the service. 

We could use patient referral information to capture demand. We extracted monthly 

aggregate referrals from January 2018 to May 2020. We found that referrals peak at the start 

of the year, continue through May, and then taper off during summer, only to rise again at 

the beginning of winter. These properties were applied to all future predictions to assess 

risks or opportunities to guide decision-making. Using the" R" software, a monthly forecast 

for future referral values is obtained using ARIMA modelling.  Specifically, an ARIMA (1,1,0) 

(0,0,2) [12] model provided the best fit and included a differenced non-seasonal AR(1) term, 

a seasonal MA(2) term ,and the seasonal period is S = 12. The model outputs predict—with 

some certainty—future referral values to be within a range, as seen in Figure 16. Naturally, 

all projections are attached with a degree of error. These error values further enhance the 

forecast by providing upper and lower bounds. We also note that the forecast does not 

capture the impact of COVID-19.   

Having forecasted monthly demand, we then set out to disaggregate the demand values to 

generate daily demand values for 65 clinic locations across the four appointment types. Using 

Monte-Carlo simulation, we established the probability distributions for the four 

appointment types at each location using historical data. Several demand scenarios were 

developed, guided by the probability estimates and the upper and lower bounds of monthly 

demand forecasts. 
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Figure 16: Service Level Demand Forecast 
 

5.5. Prescriptive Analytics: Optimisation Model 
We built a multi-skill multi-location optimisation model using Mixed-Integer Linear 

Programming. Based on skills, the model allocates clinicians to locations at a given day and 

shift and assigns appointments to clinicians. Using this model, we examine the utilisation of 

resources under current operational specifications. We then determine if workforce 

deployment can be improved to match service needs and explore several service design 

alternatives to eliminate identified variations. 

As stated before, the model considers a service with 12 multi-skilled clinicians deployed to 

65 primary care clinic locations to conduct four types of appointments. Clinicians are 

assigned appointments based on their skill set. For instance, clinicians in bands 8a, and 7 

have the skills to conduct appointment type 'assessment', while clinicians 6a, 6b and 6c 

cannot. Additionally, 'community' appointments are conducted only by clinicians in bands 

6a, 6b and 6c. And clinicians 6b and 6c, only conduct 'Telephone' and 'Community' 

appointments. Furthermore, the service operates on weekdays (Monday to Friday) from 9 

AM until 6 PM. A working week consists of 5 days, and a clinician's working day is split into 

two shifts: AM and PM. In addition to consulting with patients at a clinic, clinicians also carry 

out other activities. Our application does not include these activities as they are pre-

scheduled and fixed. However, these activities are considered when determining clinician 
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availability in each shift. Clinicians travel to locations split over two geographic patches to 

hold clinics across the two shifts (AM and PM). 

Furthermore, each clinician manages patients from a predetermined set of clinic locations. 

They consult with patients for four kinds of appointments in each shift. It is assumed that the 

demand for each type of appointment at each clinic location throughout the planning 

horizon is known based on the predictive analytics stage results. On a given working day, a 

clinician can be assigned two shifts, either in one clinic or in two separate clinics. A clinician 

cannot be assigned to two locations if the travel distance is greater than a threshold value. 

The model determined the optimal allocation of clinicians to clinics, appointments and shifts 

over a planning horizon to minimise the number of unassigned appointments. Although the 

model is inspired by this real application, it is general in scope and can handle different 

numbers of shifts, appointment types, skills etc.  

5.5.1. Model Formulation 
The model formulation used the following notation.  

Notation: 

‒ 𝑨: Set of appointment types, each with a skill requirement, indexed by 𝑎  

‒ 𝑪: Set of clinicians , indexed by 𝑐 

‒ 𝑳: Set of clinic locations, indexed by 𝑙 

‒ 𝑺: Set of shifts, indexed by 𝑠 

‒ 𝑫: Set of days in the planning horizon, indexed by 𝑑 

‒ 𝐋𝒔: Length of shift s 

‒ 𝐒𝒅: Set of shifts 𝑠 ∈ 𝑆 for each day 𝑑 ∈ 𝐷 

‒ 𝑭𝒍
𝒂: Demand for appointment type 𝑎 ∈ 𝐴 in clinic location 𝑙 ∈ 𝐿 

‒ 𝑩𝒄
𝒂: 1, if clinician 𝑐 ∈ 𝐶 is skilled for appointment type 𝑎 ∈ 𝐴, 0 otherwise  

‒ 𝐓𝐥𝟏𝐥𝟐
: Distance between clinic locations  𝑙1,𝑙2 ∈ 𝐿: 𝑙1 ≠ 𝑙2 

‒ 𝐑𝒂: Duration of appointment type 𝑎 ∈ 𝐴  

‒ 𝐏𝒄𝒍: 1, if clinician 𝑐 ∈ 𝐶 can be assigned to clinic location 𝑙 ∈ 𝐿, 0 otherwise 

‒ 𝐓𝐦𝐚𝐱: Maximum travel distance between clinics 

‒ 𝐒𝐭𝐜𝐝: Maximum number of shifts per day 𝑑 ∈ 𝐷 per clinician  𝑐 ∈ 𝐶 

‒ 𝐍𝐜: Maximum number of clinic locations that can be assigned to a clinician      

‒ 𝐍𝒍: Maximum number of clinicians that can be assigned to a clinic location      

‒ 𝐇𝒄: Total available hours per clinician 𝑐 ∈ 𝐶 

‒ 𝐇𝒄𝒔: 1, if clinician 𝑐 ∈ 𝐶 is available in shift 𝑠 ∈ 𝑆, 0 otherwise  
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Decision variables: 

‒ 𝒀𝒄𝒍𝒔 = {
1, 𝑖f clinician 𝑐 ∈ 𝐶 𝑖𝑠 assigned to clinic location 𝑙 ∈ 𝐿 𝑖n shift 𝑠 ∈ 𝑆
0, otherwise                                                                                                       

      

‒ 𝑿𝒄𝒍𝒔
𝒂 = number of appointments of type 𝑎 ∈ 𝐴  assigned to clinician 𝑐 ∈

              𝐶 at clinic location 𝑙 ∈ 𝐿 in shift 𝑠 ∈ 𝑆  

‒ 𝑾𝒄𝒍 = {
1, 𝑖f clinic location 𝑙 ∈ 𝐿 𝑖s assigned to clinician 𝑐 ∈ 𝐶       
0, otherwise                                                                                     

      

‒ 𝑸𝒄𝒔 = {
1, 𝑖f  clinician 𝑐 ∈ 𝐶 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 shift 𝑠 ∈ 𝑆                   
 0, otherwise                                                                                    

      

‒ 𝑼𝒄
𝒂 = {

1, 𝑖f  clinician 𝑐 ∈ 𝐶 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 appointment type 𝑎 ∈ 𝐴
0, otherwise                                                                                          

      

‒ 𝒁𝒄
−

 
= 𝑈nassigned hours for each clinician 𝑐 ∈ 𝐶 

‒ 𝑽𝒄𝒅𝒍𝟏𝒍𝟐
=

{
1, 𝑖f clinician 𝑐 ∈ 𝐶 𝑐𝑎𝑛 𝑏𝑒 assigned to both clinic locations 𝑙1 and 𝑙2 ∈ L 

on the same day 𝑑 ∈ 𝐷
0, otherwise                                                                                                                  

  

 

Mathematical Model: 

𝑀𝑖𝑛 ∑ ∑ 𝐹𝑙
𝑎

𝑙∈𝐿𝑎∈𝐴

− ∑ ∑ ∑ ∑ 𝑋𝑐𝑙𝑠
𝑎

𝑠∈𝑆𝑙∈𝐿𝑐∈𝐶𝑎∈𝐴

 

 

(1) 

Subject to:   

∑  𝑅𝑎𝑋𝑐𝑙𝑠
𝑎

𝑎∈𝐴

≤ 𝐿𝑠 ∀𝑐 ∈ 𝐶, ∀𝑠 ∈ 𝑆, ∀𝑙 ∈ 𝐿 (2) 

∑ ∑ 𝑋𝑐𝑙𝑠
𝑎

𝑠∈𝑆𝑐∈𝐶

≤ 𝐹𝑙
𝑎 ∀𝑙 ∈ 𝐿, ∀𝑎 ∈ 𝐴 (3) 

∑ ∑ ∑  𝑅𝑎𝑋𝑐𝑙𝑠
𝑎

𝑎∈𝐴𝑠∈𝐴𝑙∈𝐿

+ Z𝑐
− = 𝐻𝑐 ∀𝑐 ∈ 𝐶 (4) 

𝑀 𝑌𝑐𝑙𝑠 ≥ 𝑋𝑐𝑙𝑠
𝑎  ∀𝑙 ∈ 𝐿, ∀𝑐 ∈ 𝐶, ∀𝑎 ∈ 𝐴, ∀𝑠 ∈ 𝑆 (5) 

∑ 𝑌𝑐𝑙𝑠

𝑙∈𝐿

≤ 𝑆𝑡𝑐𝑑 ∀𝑐 ∈ 𝐶, ∀𝑠 ∈  𝑆𝑑 (6) 

∑ 𝑌𝑐𝑙𝑠

𝑐∈𝐶  

≤  1 ∀ 𝑠 ∈ 𝑆, ∀𝑙 ∈ 𝐿  (7) 

(𝑌𝑐𝑙1𝑠1 + 𝑌𝑐𝑙2𝑠2 ) − 1

≤ 𝑀1𝑉𝑐𝑑𝑙1𝑙2
 

∀𝑐 ∈ 𝐶, ∀𝑠1,𝑠2 ∈ 𝑆, ∀𝑙1,𝑙2 ∈ 𝐿: 𝑙1 ≠ 𝑙2, ∀𝑑

∈ 𝐷  
(8) 

𝑇𝑙1𝑙2
−  𝑇𝑚𝑎𝑥  ≤ 𝑀2(1 − 𝑉𝑐𝑑𝑙1𝑙2

) ∀𝑐 ∈ 𝐶, ∀𝑙1,𝑙2 ∈ 𝐿: 𝑙1 ≠ 𝑙2, ∀𝑑 ∈ 𝐷 (9) 

𝑌𝑐𝑙𝑠 ≤   𝑊𝑐𝑙 ∀𝑙 ∈ 𝐿, ∀𝑐 ∈ 𝐶, ∀𝑠 ∈ 𝑆 (10) 
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∑ 𝑊𝑐𝑙

𝑐∈𝐶

≤ 𝑁𝑙  ∀𝑙 ∈ 𝐿 (11) 

∑ 𝑊𝑐𝑙

𝑙∈𝐿

≤ 𝑁𝑐 
∀𝑐 ∈ 𝐶 

 

(12) 

 𝑊𝑐𝑙 ≤  𝑃𝑐𝑙 ∀𝑐 ∈ 𝐶, ∀ 𝑙 ∈ 𝐿 (13) 

𝑌𝑐𝑙𝑠 ≤ 𝑄𝑐𝑠 ∀𝑙 ∈ 𝐿, ∀𝑐 ∈ 𝐶, ∀𝑠 ∈ 𝑆 (14) 

𝑄𝑐𝑠 ≤  𝐻𝑐𝑠 ∀𝑐 ∈ 𝐶, ∀𝑠 ∈ 𝑆 (15) 

𝑀 𝑈𝑐
𝑎 ≥ 𝑋𝑐𝑙𝑠

𝑎  ∀𝑙 ∈ 𝐿, ∀𝑐 ∈ 𝐶, ∀𝑠 ∈ 𝑆, ∀𝑎 ∈ 𝐴 (16) 

 𝑈𝑐
𝑎 ≤  𝐵𝑐

𝑎 ∀𝑐 ∈ 𝐶, ∀𝑎 ∈ 𝐴 (17) 

𝑌𝑐𝑙𝑠 ∈ {0,1}  ∀𝑐 ∈ 𝐶, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆 (18) 

𝑋𝑐𝑙𝑠
𝑎  ∈ ℤ ∀𝑙 ∈ 𝐿, ∀𝑐 ∈ 𝐶, ∀𝑎 ∈ 𝐴, ∀𝑠 ∈ 𝑆 (19) 

𝑊𝑐𝑙 ∈ {0,1}  ∀𝑐 ∈ 𝐶, ∀𝑙 ∈ 𝐿 (20) 

𝑄𝑐𝑠 ∈ {0,1}  ∀𝑐 ∈ 𝐶, ∀𝑠 ∈ 𝑆 (21) 

𝑈𝑐
𝑎 ∈ {0,1} ∀𝑐 ∈ 𝐶, ∀𝑎 ∈ 𝐴 (22) 

𝑍𝑐
− ∈ ℤ  ∀𝑐 ∈ 𝐶 (23) 

𝑉𝑐𝑑𝑙1𝑙2
∈ {0,1} ∀𝑐 ∈ 𝐶, ∀𝑑 ∈ 𝐷, ∀𝑙1,𝑙2 ∈ 𝐿  (24) 

 

The objective of the model (1) is to minimise the number of unassigned appointments. In 

other words, to minimise unmet demand. Constraints (2) ensure that the sum of durations 

of all appointments assigned to a shift does not exceed the length of each shift. Constraints 

(3) make sure that appointments assigned to any shift in a clinic do not exceed the demand 

of appointments in that clinic. Constraints (4) assigns demand based on available clinician 

hours and captures any unassigned hours in the slack variable 𝑍𝑐
−. Constraints (5) prevent 

the allocation of appointments to clinicians in each location and shift unless the clinician has 

been assigned to the location (𝑌𝑐𝑙𝑠 = 1). In these constraints M1 denotes a large constant 

that can be set, for example, to the value 𝐹𝑙
𝑎. Constraints (6) set the maximum number of 

shifts that can be assigned to a clinician per day. Constraints (7) ensure that a clinician can 

only be assigned to 1 or 0 shifts in a clinic location. Constraints (8)-(9) prevent the assignment 

of a clinician to locations that are too far away on the same day. Note that for the constraints 

to work, the constant M2 in (9) can be set equal to 𝑇𝑙1𝑙2
. Constraints (10) - (13) are location 

specific. Constraints (11) limit the number of clinicians that can be assigned to a clinic 

location. In contrast, constraints (12) limit the number of clinic locations that can be assigned 

to a clinician. Constraints (13) ensure that clinicians are only assigned to clinic locations that 

they cover. Constraints (14) and (15) ensure that clinicians are only assigned to shifts based 
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on availability. Constraints (16) and (17) assign appointments to clinicians based on their skill 

level. Finally, constraints (18)-(24) define the domain of the variables.  

The verification and validation of the model with the stakeholders took place during the 

COVID-19 pandemic. At the time, wide-ranging changes were being reported in the 

organisation of mental health services, including the pausing of services that were deemed 

"non-essential", staff deployment to new and unfamiliar roles, and move to remote working 

(Liberati et al., 2021). Given the unprecedented nature of the pandemic and a complete lack 

of face-to-face appointments, the service decided to offer longer appointments to patients 

to counteract the lack of in-person contact. During the pandemic, the operational policy 

changed to accommodate a potential increase in demand. The organic but unexpected 

change in service operations called for some indication of resource utilisation and service 

capacity, therefore, leading to the development of a COVID model variant to support 

planning operations during a pandemic.  

The initial model also dubbed the "Non-COVID" model, assumes that clinicians deliver the 

service as usual. On the other hand, the COVID variant of the model assumes that all 

demand/appointments are of one type (telephone-based) and does away with constraints 

on the clinic location and clinician travel. Constraints (8) and (9) are removed, and there is 

only one kind of appointment (telephone), which further simplifies constraints (2)-(4) and 

(16)-(17). The model was coded and solved on CPLEX (see Appendix H for code).  

5.5.2. Inputs and Scenario Generation 
Based on discussion with stakeholders, several alternative service design options were 

derived for scenario analysis. In the descriptive stage of the methodology, we identified 

problems relating to clinic shift duration, appointment duration, and clinician hours. We 

were guided by stakeholders to explore these issues as well as an increase in demand. 

Scenarios were generated using experimental model input values derived from the 

prescriptive and descriptive analytics stages. For the analysis, data from the service for a 

specific planning period of 4 weeks (1st to 30th of May 2021) was extracted to compare 

service improvements and model performance. This period was considered for its high 

demand values. For appointment durations, two profiles (Pa and Pb) discussed in Section 

5.4.1, Table 22 were used. For clinician availability over a 4-week planning period, 

stakeholders supplied shift durations of 2.5 and 3 hours for the Non-COVID and COVID 

scenarios, and weekly shifts for clinicians grouped by band are based on the discussion in 

Section 5.4.1, Figure 12. Table 23 depicts the standardisation strategy for clinician 

availability. In practice, the service did not have standardised specifications for appointment 
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durations, clinician availability, and appointments were being scheduled on an ad-hoc basis 

by each clinician.  

                     Table 23: Standardised Clinician Availability 

Clinician Band 

Standardised Availability 

Available Shifts 
(4 Weeks) 

Weekly Shifts 
Available Hours 

(2.5hr shift) 
Available Hours 

(3hr shift) 

8a 20 5 50 60 

7 28 7 70 84 

6a 32 8 80 96 

6b 12 3 30 36 

6c 16 4 40 48 

 

5.5.2.1. The Scenarios 

Table 24 summarises the scenario options. Scenarios 1 to 4 use the perceived clinician 

availability, while scenarios 5 to 8 use standardised availability in Table 23. Then in scenarios 

1, 2, 5 and 6 we use current appointment demand, whereas scenarios 3, 4, 7, and 8 uses an 

increase of about 15% which was the result of the forecasting and stakeholders’ intuition. 

For each of the previous combinations we consider two duration profiles (Pa and Pb). 

Scenarios 9-16 in the table are COVID-variant counterparts of scenarios 1-8. Note that in this 

case, the appointment duration profiles Pa and Pb only include telephone appointments.  

                     Table 24: Summary of Scenario Options 

Scenarios Clinician Available Hours 
(𝐇𝒄) 

Appointment Demand 
(𝑭𝒍

𝒂) 
Appointment Duration 

(𝐑𝒂) Non-COVID COVID 

1 9 Perceived Current Pa 

2 10 Perceived Current Pb 

3 11 Perceived Increased Pa 

4 12 Perceived Increased Pb 

5 13 Standardised Current Pa 

6 14 Standardised Current Pb 

7 15 Standardised Increased Pa 

8 16 Standardised Increased Pb 
 

Table 25 depicts scenario specification for the non-COVID model variant. The second column 

has clinician available hours, the third has the number of appointments for each type across 

all locations and the appointment duration with total duration of appointments is given in 

the last column.   
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Table 25: Non-COVID Scenario Specifications  

Scenario 

Clinician Available Hours Appointment Demand Appointment Duration 

C1   C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Total A F T C Total A F T C Total Hrs 

1 45 50 48 45 60 58 40 73 73 30 43 30 593 53 264 269 6 592 60 45 30 45 390 

2 45 50 48 45 60 58 40 73 73 30 43 30 593 53 264 269 6 592 60 60 45 60 525 

3 45 50 48 45 60 58 40 73 73 30 43 30 593 137 425 96 41 699 60 45 30 45 535 

4 45 50 48 45 60 58 40 73 73 30 43 30 593 137 425 96 41 699 60 60 45 60 675 

5 47 47 47 67 67 67 67 75 75 40 30 30 663 53 264 269 6 592 60 45 30 45 390 

6 47 47 47 67 67 67 67 75 75 40 30 30 663 53 264 269 6 592 60 60 45 60 525 

7 47 47 47 67 67 67 67 75 75 40 30 30 663 137 425 96 41 699 60 45 30 45 535 

8 47 47 47 67 67 67 67 75 75 40 30 30 663 137 425 96 41 699 60 60 45 60 675 

Likewise,  

Table 25 displays scenario specifications for the COVID model variant. 

                               Table 26: COVID Scenario Specifications 

Scenario 

Clinician Available Hours Total 

Appointment 

Demand 

Appointment 

Duration 

Total Appointment 

Hours C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Total 

9 45 50 48 45 60 58 40 73 73 30 43 30 711 592 45 444 

10 45 50 48 45 60 58 40 73 73 30 43 30 711 592 60 592 

11 45 50 48 45 60 58 40 73 73 30 43 30 711 699 45 524 

12 45 50 48 45 60 58 40 73 73 30 43 30 711 699 60 699 

13 47 47 47 67 67 67 67 75 75 40 30 30 795 592 45 444 

14 47 47 47 67 67 67 67 75 75 40 30 30 795 592 60 592 

15 47 47 47 67 67 67 67 75 75 40 30 30 795 699 45 524 

16 47 47 47 67 67 67 67 75 75 40 30 30 795 699 60 699 

5.6. Computational Results  

The ultimate output of the model, as seen in Figure 17, is a planning schedule that decides 

"who" (clinician) goes "where" (clinic), for "what" (appointment type) and "when" (shift, day, 

and week). A specific colour represents each clinician, while a pattern indicates the 

appointment type. To compute the distance between clinics, a distance matrix was 

developed based on the location of each GP location. Distances (in miles) were generated 

from Google Maps using JavaScript. 

As highlighted in the results of the descriptive analytics, the service has between 90-150 

patients on the waiting list at any given time, and patients wait between 2-8 weeks for their 

first appointment. By building a 'baseline' using historical operational data from the service, 

we aim to investigate the possibility of reducing patient waiting times and retrospectively 

examine clinician utilisation against availability to prevent carry-over of the waiting list to the 

next planning period. The following sections discuss the scenario outputs for the two model 

variants.   
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GP pm am pm am pm am am pm am pm pm pm am pm am pm am pm am pm am pm am pm am pm am pm am pm

L1 3 3 1 1 8
L2 3 2 3 2 3 3 3 19
L3 3 3 3 3 2 3 3 3 3 26
L4 3 3
L5 3 3 1 7
L6 2 1 1 3 3 3 13
L7 3 2 5
L8 3 3 3 3 3 3 3 3 24
L9 3 3 3 3 3 15
L10 3 3 3 2 3 3 3 3 23
L11 2 2
L12 3 3 6
L13 3 3 2 3 3 1 3 18
L14 3 3 3 3 3 3 3 3 3 27
L15 2 2
L16 3 3 1 3 2 12
L17 3 2 3 3 11
L18 3 3
L19 1 3 4
L20 1 2 3 6
L21 1 1
L22 2 3 3 8
L23 3 1 4
L24 3 2 5
L25 2 2
L26 3 3 2 3 11
L27 3 3 3 3 12
L28 2 3 1 3 9
L29 3 3
L30 1 2 3
L31 3 3 3 3 2 3 17
L32 3 3
L33 3 2 5
L34 1 3 3 3 3 3 3 19
L35 3 3 2 8
L36 3 2 3 3 11
L37 2 2 3 3 3 3 16
L38 1 1 2
L39 2 3 3 3 3 3 3 3 3 3 1 30
L40 3 1 4
L41 3 2 5
L42 3 3 6
L43 3 1 3 3 1 3 3 3 3 3 26
L44 1 1
L45 1 1
L46 3 3 3 3 3 3 3 3 24
L47 3 3 3 9
L48 3 3 3 3 2 14
L49 3 3 2 3 3 1 15
L50 1 3 1 3 8
L60 3 3 3 3 3 1 3 3 22
L61 1 3 1 5
L62 2 3 2 3 3 3 16
L63 3 1 3 3 1 11
L64 3 3 6
L65 1 3 3 7
L66 2 1 3 6
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Figure 17: Sample Model Output 
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5.6.1. Non-COVID Model Scenarios Results 

We begin by establishing the utility of using the optimisation model to schedule clinicians by 

comparing the model’s outputs with the historical appointment assignment data from the 

service. Since scenario’s 1, 2, 5 and 6 use historical demand, we compare the number of 

appointments conducted by each clinician and compare these to the number of 

appointments assigned by the model, as seen in . We then examine scenario results primarily 

using clinician unassigned hours and unmet demand measures summarised in Table 27. For 

all scenarios, we also compare the impact of 'perceived' against standardised availabilities 

on clinician utilisation, as seen in Figure 19.  

 

For each scenario in Figure 18, the orange area depicts the variation in number of 

appointments conducted by each clinician during the chosen planning period of 4 weeks (1st 

to 30th of May 2021). The blue area is the assignment of appointments produced by the 

model. The variation between each clinician is clearly discernible in each scenario. 

Consistently low values can be seen for clinicians C1, C3, C5 and C8. Meanwhile clinicians C5 

and C7 conducted a higher number of appointments compared to other clinicians.  
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Figure 18: Number of historical Appointment Allocated vs Model Allocation 
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The model’s allocation of appointments irons out most under and over assignment of 

appointments. We can also observe a scalable increase in the number of appointments for 

clinicians C2, C3, C4, C5, C8 and C11 as seen in each scenario. However, disparities persist in 

the distribution of appointment between clinicians of the same band. However, when 

clinician’s availability is standardises, peaks observed in scenario 1 (C1) and scenario 2 (C11) 

are removed as seen in scenarios 5 and 6. 

Model results in Table 27 indicates that in scenarios 1 and 2, which are baseline, we observe 

that the unmet demand is zero or minimal (15). These highlight that if appointments are 

allocated optimally, with current demand, the waiting list should not grow by 90-150 

appointments as noted in the descriptive analytics. Standardisation of clinician availability in 

most cases results in the elimination of unmet demand as seen in scenarios 6 and 7 as 

opposed to 2 and 3. In scenario 8 with increased demand and long appointment duration, 

even if standardisation doesn’t eliminate unmet demand, it reduces it significantly (from 93 

to 50). Given these findings, the model shows that in each planning period, clinicians have 

the available capacity to offer appointments to patients on the waiting list, as seen in 

scenarios 1, 5, 6 and 7.      

 

   Table 27: Non-Covid Model Output Summary  

Scenario 

Unassigned Hours per Clinician 

Unmet Demand Per 

Appointment Type 

Total Unmet Demand C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Total A F T C 

1 12 12 30 2 18 38 13 8 32 18 10 11 203 0 0 0 0 0 

2 0 1 11 0 22 17 1 0 16 7 0 10 83 6 9 0 0 15 

3 0 1 5 0 7 28 0 0 26 8 1 3 78 20 0 0 0 20 

4 0 0 0 1 2 3 0 0 4 0 0 1 11 9 79 0 5 93 

5 18 11 18 21 39 44 10 22 45 10 20 15 273 0 0 0 0 0 

6 3 17 6 1 20 44 11 9 9 9 1 11 138 0 0 0 0 0 

7 8 5 8 9 32 22 0 5 29 9 0 1 128 0 0 0 0 0 

8 0 0 1 0 23 10 0 0 4 0 0 1 38 10 37 0 3 50 
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Figure 19: Appointment Hours vs Available Clinician Hours 
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The improvements to clinician utilisation because of standardisation are depicted in Figure 

19. In the figure, the blue line indicates hours available, the yellow line indicates hours 

assigned by the model and the green line is the recorded hours (service databases) for each 

clinician. The model is realistic and comparable to the real situation because it does not 

allocate appointments fairly among clinicians of the same band. With standardisation, the 

distribution of appointments to clinicians is improved, but variations persist. Specifically, the 

distribution of assigned hours among clinicians of the same band is not uniform. For example, 

in scenario 6, band 7 clinician C4 and C7 are fully utilised while C6 has significant spare 

capacity.  Therefore, our approach uncovers that the uneven distribution plays a consistent 

role in the unfair allocation of appointments.  

5.6.2. COVID-19 Model Scenarios Results 
Table 28 summarises the outputs of the eight COVID scenarios. Compared to the non-COVID 

model results, where demand is unmet in four scenarios, in the COVID model unmet demand 

only occurs in two scenarios. Although, the number of unassigned appointments in the 

COVID model solutions is lower and the service efficiency seems improved, a model that only 

includes telephone appointments was not a viable long-term solution for the service as they 

felt that it would not benefit patients or prove meaningful to clinicians of varied skillset. 

Nonetheless, the analysis did provide stakeholders value as it provided insights into the 

service’s performance under COVID versus Non-COVID situations.   

 Table 28: Covid Model Output Summary 

Scenario 

Unassigned Hours per Clinician 

Total Unmet Demand C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Total 

9 7 13 13 18 45 41 6 14 56 20 29 6 267 0 

10 9 0 10 0 32 34 0 0 21 5 3 5 119 0 

11 1 20 9 21 39 38 2 0 35 11 3 9 187 0 

12 0 4 0 0 15 11 0 0 34 3 0 0 67 55 

13 14 13 18 41 59 53 28 32 49 18 11 17 351 0 

14 3 11 9 13 37 38 16 23 30 12 8 3 203 0 

15 15 41 5 32 37 44 11 2 50 6 23 5 271 0 

16 0 1 10 0 22 34 0 0 32 1 0 0 100 4 

 

5.7. Discussion and Future Research Directions 
The growing repositories of data have fuelled interest in analytics, which has proven valuable 

for businesses, governments, and communities (Davenport, 2013). Numerous studies have 

emphasised the influence of analytics and its potential for Operations Research (OR) 

(Liberatore & Luo, 2010; Mortenson et al., 2015; Ranyard et al., 2015; Vidgen et al., 2017). 
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Within the field of OR, there has been a surge in interest in methods such as business 

analytics and artificial intelligence since 2015, alongside traditional methodologies like 

optimisation, simulation, and decision analysis  (Romero-Silva & De Leeuw, 2021). Analytics 

is widely regarded as highly influential and relevant to OR(Burger et al., 2019; Hindle et al., 

2020). However, a gap exists in effectively combining these two disciplines (Hindle et al., 

2020; Vidgen et al., 2017). Meanwhile, industries such as airlines, retail, finance, and 

marketing have increasingly leveraged analytics methodologies to drive system-level 

innovation, while the healthcare sector has been slower to adopt these advancements, 

though it is making significant progress (Copenhaver et al., 2019).  

This article contributes to healthcare analytics by demonstrating the integration of 

descriptive, predictive, and prescriptive analytics, an area with limited prior cases (Galetsi & 

Katsaliaki, 2020; Lepenioti et al., 2020). The proposed approach employs these analytics 

stages in a logical sequence to guide the development of a prescriptive optimisation model. 

This integrated approach incorporates existing and supplementary data while incorporating 

stakeholder assumptions and experiences into formulating alternative scenarios through 

optimisation modelling. The proposed approach initially employs descriptive analytics to 

identify system problems and highlight data gaps. Stakeholders gain an understanding of 

performance measures and challenge perceptions of clinician utilisation. In the predictive 

stage, we extrapolate current demand trends through forecasting, providing stakeholders 

with a view of future service demand. Additionally, the Monte-Carlo simulation generates 

missing location-specific demand data. The prescriptive optimisation model benefits from 

the contextual and parametric information provided by the descriptive and predictive 

analytics tools, influencing the model and its results (Abbasi et al., 2016; Grover et al., 2018). 

The strength of this integrated approach lies in the collaboration between different OR 

methods across all three analytics stages (see Figure 1). It offers a structured framework for 

developing analytics-driven optimisation models in various contexts. Furthermore, the 

approach can be enhanced by exploring other analytics techniques, including Machine 

Learning. 

The findings of our multi-skill multi-location model demonstrate the advantages of using 

science-based workforce planning instead of ad-hoc procedures employed by the PCMH 

service. Moreover, our approach generates reliability in assessing the impact of service 

changes using the optimisation model. The model and corresponding scenario analysis 

identify and quantify the trade-offs that stakeholders should consider, providing several 

recommendations to improve service efficiency. By optimally allocating clinicians, the service 
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can better manage patients on the waiting list and effectively respond to increasing demand. 

These benefits can be realised by standardising service specifications, such as appointment 

durations, clinician shift duration, and clinician availability. The optimisation model and 

scenario analysis demonstrate how incremental changes to service specifications can 

eliminate operational inefficiencies, leading to improvements in mental healthcare delivery. 

The results also indicate that expanding service capacity may not be strictly necessary under 

current demand levels. 

Our model emphasises the incorporation of first-order hard constraints derived from clinical 

and cultural factors. The outputs are adapted to match the decision and workflow processes 

inherent to clinicians. However, there are aspects of the optimisation model that can be 

further adapted and improved in future modelling efforts. For example, variations in clinic 

locations and caseload distribution emerge as the main factors hindering a fairer distribution 

of appointments. In our application, redistribution of clinics and caseload was not possible 

to maintain continuity of care for patients and foster the clinician-patient relationship. This 

feature was set aside for future consideration. Future research could allow the model to 

decide locations for clinicians and incorporate workload distribution fairness, as seen in 

existing studies (Cheng & Kuo, 2016; Ladier et al., 2014).  

We also explored increased workforce flexibility by considering the relaxation of skill-based 

constraints, although it was not relevant to the PCMH service. However, this analysis can 

provide insights for other contexts. By relaxing the skill requirements for each appointment 

type, we investigated whether unmet demand in critical scenarios could be resolved. Our 

findings indicate that by upskilling clinicians, unmet demand can be eliminated or 

significantly reduced. Additionally, allowing higher-skilled clinicians to conduct low-skilled 

appointments did not affect overall unmet demand. If considered feasible, future research 

could incorporate strategies such as substitution and cross-training, commonly employed to 

increase workforce flexibility (Bard & Purnomo, 2005; Bard & Wan, 2008; Burke et al., 2010; 

De Bruecker et al., 2015; Golalikhani & Karwan, 2013; Krishnamoorthy et al., 2012). For 

services considering expanding their workforce in response to rising demand, the 

optimisation model can highlight bottlenecks, guide decisions on the number and type of 

clinicians required and identify necessary training. 

Future research could explore the development of ad-hoc solution methodologies to address 

larger problems. While our application could be solved using commercial software, larger 

problem instances or additional complexities, such as fairness and workforce flexibility, may 

require the deployment of novel heuristics (Attia et al., 2019; Dahmen et al., 2018; Nearchou 
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et al., 2020). Furthermore, incorporating demand as a stochastic element within the model 

itself could be a promising area of future research. In our application, demand is generated 

in the predictive analytics stage and supplied as input to the optimisation model. Robust 

optimisation, which considers uncertain demand, is an approach that could be explored 

(Cappanera et al., 2018).  

Enabling the ongoing use of the analytics-driven optimisation approach within the service 

presents a challenge. For the PCMH service to utilise our approach continuously, they must 

possess continuous analytics capabilities, which was not the case. Our involvement was an 

'Aspirational' venture for the PCMH service, focusing on understanding the situation at a 

particular point in time without considering their ongoing needs for using the model. To 

further the insights gained from the study, the PCMH service can embed analytics and better 

utilise information to identify challenges and justify actions (Shanks & Bekmamedova, 2012). 

With the exponential growth in health data volumes, analytics-driven insights must be 

integrated into organisational processes and closely linked to operational management for 

them to trigger new actions (LaValle et al., 2011; Shanks & Bekmamedova, 2012). A top-

down approach to analysing, structuring, mapping, and innovating an organisation's 

analytics capability is integral to successful analytics implementation (Hindle et al., 2020). 

Methodologies such as the Business Analytics Methodology (BAM) can help healthcare 

organisations develop a sustained analytics strategy that aligns with their value system, 

business goals, and data utilisation capabilities (Hindle et al., 2020). However, it's essential 

to recognise that analytics is primarily a means to an end, with the ultimate goal being the 

improvement of decision-making and workflow processes (Copenhaver et al., 2019). In our 

case study, considering the organisation's analytics maturity, the findings of our approach 

were translated into practical operational policies for clinicians to implement (Long, E. F. et 

al., 2022). In organisations with appropriate analytics capabilities, prototypes of decision 

support tools can be considered to enable sustained implementation of new process designs, 

as seen in large medical centres (Copenhaver et al., 2019). 

Our case study contributes to the limited application of optimisation modelling in mental 

healthcare service planning (Bradley et al., 2017; Howells et al., 2022; Long, K. M. & 

Meadows, 2018; Noorain et al., 2019; Noorain et al., 2022). Additionally, we present a novel 

multi-skill multi-location optimisation model that considers practical scheduling policies 

using real data, a first in the context of mental healthcare (Al-Yakoob & Sherali, 2008; Cheng 

& Kuo, 2016). The approach is relevant not only to mental healthcare but also to other care 

contexts with varied workforce compositions, inter-organisational teams, and integrated 
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care delivery such as primary mental healthcare, community care, and multidisciplinary care 

teams (Leeftink et al., 2020; Palmer et al., 2018). Moreover, the approach is relevant in care 

contexts where multiple organisations collaborate to design and deliver integrated care 

across localities and neighbourhoods(Charles, 2020; Wright & Turner, 2021). By addressing 

practical challenges and considering future research directions, this study contributes to the 

advancement of analytics-driven optimisation models in diverse contexts. 

The analytics-driven optimisation modelling approach can also serve as a tool to investigate 

the impact of introducing telemedicine in mental healthcare. The COVID-19 pandemic has 

led to increased demand for mental healthcare, and telemedicine is reported to enhance 

access and reduce waiting times (Aknin et al., 2022; Hohman et al., 2022). In our study, we 

modelled the PCMH service operating with telephone consultations, which is conceptually 

similar to exploring telemedicine in practice. As telemedicine gains interest, future research 

could adapt our model to explore hybrid systems that combine in-person and telephone 

consultations. 

5.8. Conclusion 
This paper introduces an analytics-driven optimisation modelling approach to assess and 

redesign a mental healthcare service. The effectiveness of this approach is demonstrated 

through a case study, where we find that the analysed mental healthcare service had 

untapped capacity to address an increase in demand without the need for additional 

resources.  Further, the case study highlights the potential for efficiency improvements by 

reallocating workload. By employing the analytics-driven optimisation modelling approach, 

other similar care contexts such as primary mental health, community, multidisciplinary care 

teams and integrated care models can be evaluated. Future research should aim to 

incorporate complexities into the model and integrate various descriptive and predictive 

techniques within the framework. We have presented a practical optimisation model with 

recognised benefits that can be extended to other contexts. We encourage researchers to 

undertake further research utilising real case studies to explore the potential of analytics-

driven optimisation modelling. 
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Chapter 6: How do stakeholders interact with 
optimisation models? A case study in mental healthcare 

ABSTRACT 

In healthcare optimisation literature, the implementation of models poses a significant 

challenge, with limited or no information provided on stakeholder engagement and 

interaction with the solved model. Additionally, there is a lack of insight into real-world 

challenges that hinder implementation, and the process of implementation itself is 

inadequately described. In this study, we have adapted the post-model coding stages of the 

PartiSim framework specifically for optimisation modelling in healthcare. By leveraging this 

framework, we have derived a facilitative approach for stakeholder participation, focusing 

on the validation, experimentation, and implementation of a mathematical optimisation 

model. To demonstrate the effectiveness of our approach, we have conducted a real case 

study involving mental health care delivery. In our case study, we illustrate how stakeholders 

engaged with the optimisation model following its development using tools based on Soft 

Systems Methodology (SSM) adapted from the PartiSim framework. This chapter builds upon 

the adaptation of PartiSim stages, aligning them with the model building lifecycle. In Chapter 

4, we present the conceptualisation of the optimisation model, while Chapter 5 delves into 

the model coding and the analytics process employed to construct and solve a multi-skill 

multi-location model. The focus of this chapter is to provide insights into the post-model 

coding stages and present a framework comprising custom-made tools to support the 

validation, experimentation, and implementation of an optimisation model. By highlighting 

stakeholder interactions and incorporating the PartiSim framework, we contribute to 

addressing the existing gaps in healthcare optimisation literature. 

6.1. Introduction 
Optimisation modelling has found extensive application in various domains of Operational 

Research (OR), including healthcare, manufacturing, logistics, transportation, supply chain 

management, and others (Abdalkareem et al., 2021; Archetti et al., 2022; Bortolini et al., 

2018; Carter & Busby, 2022; Govindan et al., 2017; Noorain et al., 2022). In the optimisation 

literature, the primary focus of studies is to address a range of problems by formulating 

mathematical models, and developing sophisticated solution techniques and algorithms that 

can identify optimal or near-optimal solutions  (Amin & Zhang, 2012; Liu et al., 2021; 

Marynissen & Demeulemeester, 2019; Saha & Ray, 2019; Schwerdfeger & Boysen, 2020; 

Soleimani et al., 2022). 
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The modelling lifecycle in hard OR disciplines is divided into four phases: conceptual 

modelling, model coding, experimentation, and implementation (Robinson, 2014). Amideo 

et al., (2019) have aligned the steps involved in optimisation modelling with these four 

phases. Specifically, in the conceptual modelling phase, the focus is on problem recognition, 

problem definition, and data collection. Model coding pertains to the formulation and 

solution of the model. During the experimentation phase, the model is validated and verified 

using data or case studies, and sensitivity analysis is conducted. Finally, the implementation 

phase involves disseminating the model to stakeholders. 

After model coding, an optimisation model undergoes rigorous validation and verification 

processes to ensure accuracy and reliability. Validation involves assessing the model's ability 

to predict system behaviour and confirming proper functionality (Gass, 1983; Pala et al., 

1999; Robinson, 1997; Sargent, 2020; Taha, 2017). In optimisation modelling, there are 

several different interpretations of model validation ranging from model validation by 

‘computational testing’, or comparing solution algorithm performance, sensitivity analysis, 

validation by simulation, testing using benchmark datasets or using real-data (Harris & 

Claudio, 2022; Humagain et al., 2020; Kim & Mehrotra, 2015; Zamanifar & Hartmann, 2020). 

A recent analysis of model validation literature has found that data plays an important role 

in current validation practices (Eker et al., 2019). However, it is highlighted that current 

model validation procedures lack methodological reliability and future studies are 

encouraged to provide a deeper analysis on how a model fits its purpose conceptually and 

technically. Several studies recommend the utilisation of soft and participatory approaches 

to involve stakeholders throughout the optimisation modelling lifecycle (Amideo et al., 2019; 

Carter & Busby, 2022), given that such approaches have positively impacted the uptake of 

models as seen in simulation modelling (Harper et al., 2021; Pessôa et al., 2015; Robinson et 

al., 2014). 

The implementation of an optimisation model involves translating the model’s 

recommendations into actionable plans, integrating them into existing operational systems, 

and ensuring smooth execution  (Taha, 2017). In domains such as manufacturing, 

transportation, production, and logistics, implementation of optimisation models is 

widespread due to increased computational power alongside established data systems, 

centralised decision-making structures, and cultures more amenable to change  (Archetti et 

al., 2022; Kuo et al., 2023). In OR healthcare literature, several reviews have pointed out that 

only a few studies discuss implementation of model outcomes and recommendation. This is 
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because the practical use of models in healthcare is unique, due to factors such as ethical 

considerations, patient‐centric focus, and engagement of diverse stakeholders (Bradley et al., 

2017; Brailsford & Vissers, 2011; Lamé et al., 2016; Long & Meadows, 2018; Mahdavi et al., 

2013; Mohiuddin et al., 2017; Palmer et al., 2018). In healthcare optimisation literature, 

model implementation is a significant challenge for reasons such as complexity of the 

models, ill-fitted performance measures in models, failure to understandably report on 

method-related assumptions, lack of performance data prior to model development, and 

lack of practical relevance to stakeholders (Ahmadi-Javid et al., 2017; Marynissen & 

Demeulemeester, 2019; Samudra et al., 2016). Studies that do report on implementation, 

provide little detail about the process of implementation and so researchers are encouraged 

to provides information on the behavioural factors that intersect with actual 

implementation, and to discuss real-world challenges that impede implementation (Samudra 

et al., 2016; Zhu et al., 2019). Some studies found that implementation success was 

associated with data-driven modelling strategies, engaging, and receiving buy-in from 

leadership, and through receiving feedback on potential changes from services within the 

organisation (Zenteno, Ana C., Carnes, Levi, Daily, Price, Moss, & Dunn, 2015). In general, 

stakeholder involvement and ethical considerations play a critical role in healthcare 

optimisation, while transportation, logistics, and manufacturing domains emphasise 

collaboration, real‐time data integration, and stakeholder engagement (Aringhieri et al., 

2022). 

In OR, Soft approaches or problem structuring methods have been utilised to enable 

stakeholders to provide inputs, challenge assumptions, and collectively build a shared 

understanding of the problem and the model's representation of the real-world system 

(Ackermann, 2012; Dyson et al., 2021; Powell & Mustafee, 2017). Participatory approaches 

to modelling involve enhanced stakeholder engagement throughout the model's lifecycle. 

By involving those affected by the model's outcomes, participatory approaches ensure that 

the model aligns with the stakeholders' needs, captures their knowledge and perspectives, 

and incorporates their feedback. Driven by an interest in supporting decision-makers facing 

complex problems, the simulation modelling community have developed several 

participatory research practices. In facilitated simulation participative methodologies such 

as PartiSim (Kotiadis et al., 2014; Kotiadis & Tako, 2018; Tako et al., 2010; Tako & Kotiadis, 

2015), SimLean (Robinson et al., 2012) and Simtegr8 (Tako et al., 2019) have successfully 

demonstrated how stakeholders can be involved in the modelling lifecycle while also 

focusing on implementation and change. Similarly, facilitated modelling in System Dynamics 
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(SD), termed group model building (GMB) refers to the construction of an SD model whilst 

working directly with a group of clients (Rouwette et al., 2002; Scott et al., 2016; Vennix, 

1995; Vennix, 1999). There are several examples of GMB in healthcare (Lane & Husemann, 

2018; Lane et al., 2019; Minyard et al., 2014; van Nistelrooij et al., 2013; Willis et al., 2018).  

Compared to other Hard OR methods such as simulation modelling, the utilisation of Soft OR 

and participatory approaches in optimisation modelling is limited (Amideo et al., 2019; 

Çoban et al., 2021; Jones et al., 2022; Noorain et al., 2022; Robinson, 2008; Robinson, 2014; 

Sterman, 2002; Tako & Kotiadis, 2012; Tako & Kotiadis, 2015; Vennix, 1999). The 

opportunities offered by facilitation for involving stakeholders in optimisation modelling 

have not been fully explored, especially by considering existing work that have developed 

participative approaches (Franco & Montibeller, 2010; Tako & Kotiadis, 2015). In this study, 

our contributions focus on the post-model coding stages of the PartiSim framework. We 

present evidence demonstrating the feasibility of model validation, building scenarios, and 

considering model implementation in collaboration with stakeholders by following a 

structured facilitated approach. Through the case study, we offer insights into real-world 

factors that impact the actual implementation of optimisation models. Furthermore, we 

emphasise how stakeholder engagement through workshops fosters acceptance and 

support for the model's recommendations. Notably, we contribute a case study where 

facilitated workshops were conducted in a virtual setting.  

The rest of the article is structured as follows. Section 6.2 presents a background, including 

a literature review on the use facilitation, soft OR, and PSM’s for model validation and 

implementation of an optimisation model. We then examine the post-model coding stages 

of the PartiSim framework. Section 6.3 provides an overview on the adaptation. In Section 

6.4 we describe the development of the framework with the use of a case study in mental 

healthcare. In Section 6.5, we discuss the proposed framework, reflect on the adaptations, 

and examine the footprint of conducting facilitated workshop virtually. In Section 6.6 we 

present some conclusive remarks.  

6.2. Background 
In this section, the post-model coding stages of the PartiSim framework are explored. Stages 

5 and 6 comprise the post-model coding stages. Appendix I and Appendix J contains 

screenshots of tools that are prescribed for Stages 5 and 6. Additionally, these stages include 

validation, experimentation and/or implementation of the model. Following an exploration 

of PartiSim, we examine literature on optimisation model validation, experimentation, and 

implementation and analyse the present state of each theme. We also explore the 

https://www.sciencedirect.com/science/article/pii/S0377221715007912?casa_token=g6M4rm3HOVQAAAAA:wCd2H9vSIOThxYWuB75JoVP434RqXJoh2s3BGOUyiD0xHxs2Qzrf-LbL94eL4mTGcJsawRngxsc#sec0002
https://www.sciencedirect.com/science/article/pii/S0377221715007912?casa_token=g6M4rm3HOVQAAAAA:wCd2H9vSIOThxYWuB75JoVP434RqXJoh2s3BGOUyiD0xHxs2Qzrf-LbL94eL4mTGcJsawRngxsc#sec0025
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application of Soft OR, participatory and facilitative methodologies to these corresponding 

themes. The aim is to identify developments, gaps and recognise opportunities, while 

foregrounding the adaptation of the PartiSim framework. 

6.2.1. Optimisation in Mental Health  
In stage 4 of the PartiSim framework, the conceptual model is converted into a computer 

simulation model using specialist software (Tako & Kotiadis, 2015). This activity is primarily 

driven by the modeller and does not involve a workshop. However, lines of communication 

with the project champion and other requisite members of the stakeholder team are 

maintained for data collection purposes. During this stage, the conceptual model could 

undergo modifications where elements of the model could be refined, updated, simplified, 

or removed based on their relevance. Furthermore, in preparation of the 3rd workshop, the 

project champion is presented with the model for validation and preliminary scenarios for 

the experimentation stages for clarification, as part of the pre-workshop 4.a stage.  

Following the model coding stage, the PartiSim framework consists of two stages that include 

two workshops for experimentation (stage 5) and implementation (stage 6) (Kotiadis & Tako, 

2018). Collectively, these stages are described as post-model coding to reflect their position 

on the framework’s timeline. Table 29 provides a description of each stage’s purpose, with 

associated activities, suggested tools, and prescribed outputs. Manuals with instruction on 

using the suggested tools and scripts containing advice for facilitators to support the 

facilitation process are also provided (Tako & Kotiadis, 2018). 

Stage 5 involves a workshop and is primarily associated with model validation and 

verification and for choosing scenarios for experimenting with the model. In the model 

validation activity, the structure and contents of the model are demonstrated to 

stakeholders to gather confidence in the model and its results. Using the Model Validation 

tool (Figure 46 and Figure 47, Appendix I), stakeholders are invited to reflect on the model 

and suggest changes that improve the model validity. Although the full acceptance of the 

model is not to expected, in some instances, it could become evident that additional data 

collection or coding changes are necessary based on stakeholder suggestions. In such cases, 

the focus of the workshop shifts towards identifying ways to improve the model and/or the 

conceptual model. The workshop and remaining activities will need to be rescheduled to 

continue model validation after requisite changes have been made.  

The next activity is to rate performance measures, supported by the Rating the Performance 

Measures tool (Figure 48, Appendix I). Here, stakeholders revisit performance measures 
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identified during conceptual modelling and rate them according to their importance. This 

activity is said to contribute to identifying scenarios that achieve improvement of 

performance measures and also help in reducing the solution space. The next activity is 

where stakeholders debate desirable and feasible scenarios, using the Debating the 

Alternative Scenarios tool (Figure 47 and Figure 50, Appendix I), after being shown the 

preliminary future scenarios. In encouraging debate, this activity is intended to help 

stakeholders determine the feasible and desirable solution space. The solution space is the 

total range of conditions under which the model might be run (Robinson, 2014). It is a region 

that represents all possible combinations of values of the experimental factors. In the post 

workshop 3 sub-stage 5.a, following the successful completion of these activities a report 

outlining the model results and findings is prepared and sent to stakeholders for reflection.  

The final stage is undertaken in a workshop setting and is concerned with the 

implementation of findings. Stakeholders are invited to reflect on the learning achieved so 

far during the simulation study and debate their plans for the future. The aim is to move the 

stakeholder away from the model and its finding towards gaining an understanding on the 

present and future implications of each scenario. To this end, three activities are conducted 

in the workshop: review learning and changes implemented, risk analysis and feasibility of 

change, and agree action trail.   

In the first activity, the facilitator creates awareness of the learning generated throughout 

the study. A prescribed script is available in the framework to support facilitators. In the next 

activity, the risks and feasibility of change in potential scenarios are discussed to agree on a 

preferred scenario/scenarios to be pursued. This activity is supported by Feasibility and Risks 

Scale tool (Figure 51, Appendix J). The aim of this activity is to allow tacit knowledge to 

surface so that an action to tackle this change can be assigned in the next activity. Once an 

agreement on a promising scenario (or scenarios) is reached, additional analysis to explore 

any additional changes for the implementation of scenario is undertaken. This activity utilises 

the Barriers to Change tool (Figure 50, Appendix J) to explore the expected benefits of any 

additional changes. If the stakeholder group is sufficiently confident in the chosen scenario, 

an action and communication plan tool is utilised to record the action and the responsibility 

for it. 
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Table 29: Post-model coding stages in PartiSim (Kotiadis & Tako, 2018) 

Stage & Activities Activities Tools Outputs 

4. Model Coding 
Purpose: 
Conceptual model is 
converted into a computer 
model 

-Data collection (modeller and stakeholders) 
-Build simulation model on the computer 
(modeller)  

  
 
Model Results 
 
 
Model validation and 
verification 
 
 
Preliminary future scenarios 

4.a Pre-workshop 3 sub-stage 
Purpose: 
Preparations for workshop 3 

 Prepare preliminary materials for use in 
workshop 3 (stage 5): 
-Liaise with the project champion over correctness 
of model and its results (modeller and project 
champion) 
-Review preliminary scenarios with project 
champion scenarios 
-Prepare preliminary materials for use in the next 
workshop 

5. Experimentation stage 
(workshop 3) 
Purpose: 
Define alternative scenario to 
experiment with model 

Stakeholders are invited to: 
- Validate the simulation model and its results 
- Rate performance measures (linked to model 
results)   

Model validation tool 
Rating the Performance 
Measures tool with manual 
Debating the Alternative 
Scenarios tool with manual 

Model validation and 
verification 
Alternative future scenarios 

5.a Post-workshop 3/Pre-
workshop 4 sub-stage  
Purpose: 
Refine alternative scenarios 
and prepare for workshop 4 

Modelling team: 
- Tweak or correct simulation model  
- Implement additional scenarios suggested 
(based on stakeholder feedback from workshop 
3.) 
- Liaise with the stakeholder team over 
correctness of model results 
- Prepare preliminary materials for use in 
workshop 4 
 

 New alternative future 
scenarios 
Revised simulation model 
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6. Implementation stage 
(workshop 4) 
Purpose: 
Define an implementation 
plan 

Stakeholders are invited to: 
- Review learning and changes implemented 
- Risk analysis and feasibility of change 
- Agree action trail 
 

Script for identifying 
changes in the system 
Feasibility and Risks Scale 
tool with manual 

Agreeable and feasible 
scenario(s) to be taken 
forward 

 Barriers to Change tools 
with manual 
Action and Communication 
Plan tool with manual 

Action plan with 
deliverables (including due 
date and person 
responsible) 
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6.2.2. Model Validation and Experimentation  
In OR, validation is an important activity undertaken to ensure a model is sufficiently 

accurate for the intended application of the model (Balci, 1994; Gass, 1977; Gass, 1983; Gass, 

1993; Landry et al., 1983; Landry et al., 1996; Oral & Kettani, 1993; Sargent, 1984; Sargent, 

2013; Taha, 2017; Tsioptsias et al., 2016; Whitner & Balci, 1989). This activity is integral to 

the model development process in OR, including for optimisation and simulation modelling. 

However, the utilisation and application of validation differs between the two approaches. 

Table 30 presents a comparison of validation between optimisation and simulation by 

drawing on descriptions put forward by Robinson (2014) and Oral and Kettani (1993). It 

should be noted that forms of validation are not necessarily named explicitly in literature 

(Oral & Kettani, 1993; Tsioptsias et al., 2016). Therefore, the type of validation is often 

implicit and embedded within the modelling process.  

Data validity is an activity that spans all stages of model development and mainly concerns 

the availability, reliability, appropriateness, sufficiency, maintainability, correctness, 

completeness, and cost of data (Balci, 1994; Landry et al., 1983; Oral & Kettani, 1993; Pala et 

al., 1999; Robinson, 1997; Sargent, 2013; Tsioptsias et al., 2016). In simulation modelling, it 

involves ensuring sufficient accuracy of contextual data and the data necessary for model 

implementation and validation for the purpose at hand (Robinson, 2014). In optimisation, 

data validation is linked to model and solution validation (Dominguez-Ballesteros et al., 

2002). Data plays a key role in assessing the robustness and logical acceptability of model 

results. Data instances are utilised to exercise the models and ensure their reliability. Issues 

with model formulation and solution are diagnosed through model and data debugging 

(Dominguez-Ballesteros et al., 2002).  

Conceptual model validation is an integral activity that is conducted in the simulation 

modelling process (Balci, 1994; Gass, 1983; Landry et al., 1983; Pace, 2004; Pala et al., 1999; 

Robinson, 1997; Sargent, 2013; Tsioptsias et al., 2016). This activity involves determining that 

the content, assumptions, and simplifications of the proposed model are sufficiently 

accurate for the purpose at hand (Robinson, 2014). In optimisation, conceptual modelling is 

a secondary or non-issues, as formulation and developing solutions are key activities. 

Therefore, the emphasis is on formulation validation, which is conducted when prototype 

OR models, that are well conceptualised managerial problem, are reformulated (Arrigo et 

al., 2022). The main concern is to determine the degree to which the new formulation 

correctly and accurately describes the well-conceived problem (Oral & Kettani, 1993). In 
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reformulating a prototype problem, the logical and conceptual validity is implicitly 

maintained as the concept and definition of a well-defined problem is not changed.  

Table 30: Comparison of Validation between Simulation and Optimisation 

Simulation Optimisation 
Data Validation 
Determining data required is sufficiently 
accurate for purpose at hand. 

Data Validation  
Diagnosing issues between model 
formulation and solution. Debugging 
mismatches between model and data.  

Conceptual Validation 
Determining the content, assumptions and 
simplifications of the proposed model are 
sufficiently accurate. 

 

 Formulation Validation 
Determination of degree to which new 
formulation’s accuracy to a well-
conceptualised model 

Verification 
Process of testing the fidelity with which 
the conceptual model is converted into a 
computer model. 

Verification 
Related to the verification of claims made 
by modellers about the merits of the model 
and/or solution. 

White-box Validation 
Determining that the parts of the computer 
model represent real-world elements with 
sufficient accuracy. 

Operational Validation 
Involves the examination of model results 
(often termed “computational results”) to 
confirm they do not contradict the model 
builder’s user’s and/or associated “experts” 
perceptions of reality.  

Black-box Validation 
Determining that the overall model 
represents the real world with sufficient 
accuracy. 

Experimentation Validation 
Determining that the experimental 
procedures are providing results that are 
sufficiently accurate. 

Experimentation Validation 
Comparing the performance of several 
solution algorithms, output comparison 
with similar models, analysing the 
sensitivity of the solutions to input 
variations, and by using simulation models, 
benchmark data or real-world test-data. 

Solution Validation 
Determining that the results from the 
model of the proposed solution are 
sufficiently accurate. 

In simulation, after a model is conceptualised and transformed into a computer model, it 

undergoes verification, which is seen as a subset of the wider issue of validation (Robinson, 

2014). This process tests the level of fidelity in converting the conceptual model into a 

computer model (Gass, 1983; Landry et al., 1983; Oral & Kettani, 1993; Pala et al., 1999). In 

contrast, for optimisation, verification is associated with the development of abstract 

concepts and generalisations rather than for a current and immediate ‘problem situation’ 

(Oral & Kettani, 1993). Often the contribution is theoretical with research having to justify 

that the proposed ‘model’ and solutions are useful and useable (Kimbrough et al., 2008). A 

more technical view is related to the verification of claims made by modellers about the 
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merits of the model and/or solution. This could involve comparing the suggested 

contribution with other existing works, highlighting the superiority and accessibility of a 

solution, and outlining the contribution to the extension of pertinent knowledge (Mishra et 

al., 2015; Samadi-Dana et al., 2017). 

Operational validity in simulation is concerned with model usability, usefulness, timeliness, 

synergism, speed, effort, and costs of the model (Gass, 1983; Landry et al., 1983; Sargent, 

2020). It is conducted across two activities: White-box validation, which is intrinsic to model 

coding; and black-box validation which is performed once the model code is complete 

(Robinson, 2014). White-box validation determines if the constituent parts of the computer 

model represent the corresponding real world elements, while black-Box Validation 

determines that the overall model represents the real world with sufficient accuracy for the 

purpose at hand (Kleijnen, 1995; Robinson, 1997; Sargent, 2013). For optimisation, 

operational validation involves the examination of model results (often termed 

“computational results”) to confirm they do not contradict the model builder’s user’s and/or 

associated “experts” perceptions of reality (Alkaabneh & Diabat, 2023; Kim & Mehrotra, 

2015). Additionally, it also includes systematically comparing model results against 

corresponding real-world observations. Operational validity is strongly linked to 

experimental validity and often there is considerable overlap between the two for simulation 

as well as optimisation model (Landry et al., 1983; Sargent, 2020). 

Experimental validity for simulation is an indication of the quality, efficiency, sufficient 

accuracy and robustness of solutions, mechanisms and techniques used. Quality is 

determined by the level of insight gained, sensitivity to changes in values of model 

parameters, acceptability, applicability, and usefulness in leading to a “decision” (Robinson, 

2014). Experimental validity is associated with running sensitivity analysis, or designing 

experiments etc. In optimisation, experimentation can take the form of comparing the 

performance of several solution algorithms, output comparison with similar models, 

analysing the sensitivity of variables, and by using simulation models, benchmark data or 

real-world test-data (Humagain et al., 2020; Zamanifar & Hartmann, 2020). Several non-

mutually exclusive categories of validation experiments are conducted to yield information 

on a model’s ability to replicate real world outcomes. For instance, validation experiments 

where the model is used to generate several solutions for a series of parameter sets, to study 

the magnitude of adjustments between alternative scenarios (McCarl & Apland, 1986).  

Presently, within healthcare optimisation literature, operational and experimentation 

validation corresponds to testing and is concerned with whether researchers used data, 
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either theoretical or real, to examine their model’s effects (Harris & Claudio, 2022). Testing 

is said to serve two purposes. First, it can provide insights into the computational efficiency 

of the model. Second, it can show whether or not the model improves the desired 

performance measures (Samudra et al., 2016). As such, studies examine the impact of 

specific changes to the problem setting by selecting a set of parameters of interest and 

assuming changes to these parameters. This process is termed scenario analysis and includes 

multiple scenarios, settings or options which are compared to each other with respect to 

performance measures (Banditori et al., 2014; Cardoso et al., 2012; Duma & Aringhieri, 2019; 

Laesanklang & Landa-Silva, 2017). 

Solution validation, in simulation, involves comparing the implemented solution to the final 

model of the proposed solution (Robinson, 2014). This type of validation occurs after 

implementation and is not inherent to the simulation study itself. However, it provides 

valuable feedback to the modeller. In optimisation model, a direct mapping of solution 

validation is not possible. However, comparisons can be drawn to the experimentation 

validation, with its emphasis on the performance of solution algorithms.  

In facilitated simulation, model validation and experimentation are critical activities 

undertaken during facilitated workshops with stakeholders (Franco & Montibeller, 2010; 

Happach et al., 2012; Kotiadis & Tako, 2018; Robinson et al., 2014; Tako & Kotiadis, 2015).  

In comparison, there exists a gap in optimisation literature addressing the process of 

involving stakeholders for model validation and experimentation in a facilitated setting. To 

the best of our knowledge, two studies use participatory approaches during the problem 

definition stage of the optimisation modelling cycle. Cardoso-Grilo (2019) develop a 

conceptual model for a ‘medical training problem’ and present a sophisticated reformulation 

of a specific problem that supports health care workforce planning. Similarly, the 

participatory approach developed by Abuabara et al., (2022) addresses the ‘diet problem’, 

which is a classical application of linear programming in OR. Through deploying participatory 

approaches, these studies conduct implicit conceptual and formulational model validation 

for a specific type of problem.  

Similarly, to the best of our knowledge, we found one study that conducts operational model 

validation and experimentation through scenario analysis using SSM and participatory 

methods of online surveys, interviews, and a facilitated workshop (Amorim-Lopes et al., 

2021). The study builds on the multimethodology of enhanced optimisation proposed by 

Cardoso-Grilo (2019), in the context of Human Health Resource (HHR) planning by 

embedding scenario building within the mathematical planning model. In particular, the 
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study provides concepts and a path to generate scenarios by capturing the views and 

stimulating the involvement of relevant stakeholders and experts, to produce coherent 

combinations of parameters for scenarios.  

As optimisation modelling advances towards developing approaches to involve stakeholders 

in model building, the development and validation of conceptual models in a structured 

facilitated setting will become increasingly important. Optimisation modelling can draw from 

facilitated simulation to address identified limitations. 

6.2.3. Model Implementation  
Table 31 presents a comparison of model implementation between optimisation and 

simulation modelling, in healthcare. In simulation modelling, implementation has been 

extensively examined (Brailsford, 2005; Brailsford et al., 2013; Brailsford et al., 2009; Eldabi, 

2009; Jahangirian et al., 2012; Long & Meadows, 2018; Long et al., 2020; Monks et al., 2015; 

Moretto et al., 2019; Soorapanth et al., 2023; Tako & Robinson, 2015; Thompson et al., 2016; 

van Lent et al., 2012). The word implementation takes on different meanings including the 

practical use of model results to inform a real-world decision, stakeholders learning about 

the problematic situation and/or an agreed action plan, and it is also used to describe the 

process of coding a model in computer software (Brailsford et al., 2019; Kotiadis & Tako, 

2010; Long et al., 2020; Tako & Kotiadis, 2015).  

Researchers have found several factors affect the implementation of simulation models, 

including stakeholder involvement, organisational and problem characteristics, relevance to 

stakeholders, availability of quality data, perceived usefulness of the model, model validation 

(with data, expert opinion and sensitivity analysis), well defined model scope and modelling 

process  (Brailsford, 2005; Brailsford et al., 2013; Long et al., 2020; van Lent et al., 2012). 

These challenges are being addressed in several ways, as depicted in Table 3. For instance, 

studies have utilised Soft OR tools to involve stakeholders in the modelling process through 

facilitated modelling (Jones et al., 2022; Kotiadis, 2007; Kotiadis & Robinson, 2008; Kotiadis 

et al., 2014; Kotiadis & Tako, 2016; Kotiadis & Tako, 2021; Robinson, 2008; Robinson et al., 

2010; Robinson, 2013; Robinson, 2014; Sterman, 2002; Tako & Robinson, 2009; Tako & 

Kotiadis, 2012; Tako & Kotiadis, 2015; Tako & Kotiadis, 2021; Vennix, 1999); pursued flexible 

definitions of implementation success; and realising unexpected ways in which a model adds 

value to a situation (Kotiadis & Tako, 2010; Long et al., 2020; Tako & Kotiadis, 2015). 
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Table 31: Comparison of Model Implementation between Optimisation & Simulation 

Simulation Optimisation 

What constitutes implementation 
- Model results inform real-world 

decisions. 
- Stakeholder learning about the 

problematic situation and/or an agreed 
action plan. 

- Process of coding a model in computer 
software 

- Developing good solution procedures 
- Implementing well-known algorithms, 

testing prototypes (software products) in 
real-world environments, applying the 
model in practice. 

- Developing nearly realistic models. 

Factors identified as affecting implementation 

- Organisational & problem 
characteristics. 

- Relevance to stakeholders 
- Availability of quality data 
- Stakeholder involvement 
- Perceived usefulness of model 
- Model validation with data, expert 

opinion & sensitivity analysis 
- Well defined model scope & modelling 

process 
- Tension for change and leadership 

engagement  

- Lack of information on behavioural factors 
intersecting implementation. 

- Lack of data-driven modelling strategies 
- Lack of engagement with stakeholders 
- Lack of reporting in literature on problems 

encountered during implementation. 
- Limited understanding of whether models 

work in practice.  
- Lack of performance data prior to 

implementation for comparing results 
- Gap between theory & practical 

implementation 

How are implementation challenges being addressed?  
- Uncovering factors and barriers 

affecting implementation 
- Evaluating dynamic interplay of 

implementation  
- Rigorous post-implementation studies. 
- Methodological development 

formalising methods of analysis 
- Collecting data on intangible benefits. 
- Reframing success through collaborative 

model-building leading to critical 
learning incidents for the client. 

- Development of participative and 
facilitated modelling. 

- Growing consensus on flexibility in the 
definition of implementation success 

- Realising and pursuing other 
unexpected possible ways in which a 
model adds value in a situation. 

- Cost evaluation of implementation 
strategy  

- Utilising implementation science 
approaches to examine how and why 
key decision makers adopt modelling.  

- Encouragement for testing models with 
real data 

- Some emerging instances of model 
validation involving stakeholders using 
participatory approaches (surveys, 
interviews & facilitated workshops) 

- Some advancements in involving 
stakeholders in multi-methodology (SSM 
tools with optimisation) approaches for 
testing models using fit-for-purpose 
scenarios. 

- Reviews highlighting the need for involving 
stakeholders in model building 
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In healthcare optimisation, model implementation has been identified as a significant 

challenge (Ahmadi-Javid et al., 2017; Marynissen & Demeulemeester, 2019; Samudra et al., 

2016). As seen in Table 31, implementation can have a range of meanings. For instance, it is 

viewed as a function of developing good solution procedures in terms of quality, speed, and 

implementing nearly realistic models (Ahmadi-Javid et al., 2017). It can also include the 

implementation of well-known mathematical algorithms, developing of a prototype (a 

software product), and testing prototypes in real world environments (Humagain et al., 

2020).  

Several factors have been recognised to contribute to issues in the implementation of 

optimisation models in healthcare. These include a lack of information on how behavioural 

factors intersect with implementation, the need for data-driven modelling strategies, 

stakeholder engagement, reporting of implementation problems, insufficient performance 

data for comparing results prior to implementation, limited understanding of the practical 

effectiveness of models, and a general gap between theory and practical implementation 

(Harris & Claudio, 2022; Kortbeek et al., 2017; Marynissen & Demeulemeester, 2019; 

Samudra et al., 2016; Visintin et al., 2017; Zenteno, Ana C. et al., 2015; Zenteno, Ana Cecilia 

et al., 2016; Zhu et al., 2019). 

Optimisation modelling is just getting started in addressing these challenges with 

implementation. Recent advances have focused on using increasing the utilisation of data-

driven approaches, using Soft OR tools with stakeholder participation in conceptual 

modelling and scenario building, and applying comprehensive validation and testing 

procedures (Abuabara et al., 2022; Amideo et al., 2019; Amorim-Lopes et al., 2021; Cardoso-

Grilo et al., 2019; Çoban et al., 2021; Humagain et al., 2020). There is growing consensus in 

the community to develop procedures that involves stakeholders in the process. However, 

these remain open challenges and areas of research that have the potential to fill the gap 

between theory and practice for optimisation models.  

6.3. Overview of PartiSim Adaptation for Optimisation 
PartiSim was developed using an action research approach (Tako & Kotiadis, 2015). Action 

research is based on action, evaluation, and critical analysis of practices based on data 

collected to introduce improvements in relevant areas. It enables the creation of knowledge. 

As such, the creators of PartiSim first developed the framework, then specific modelling 

activities, followed by a phase of testing and reflection. The proposed framework was a result 

of the amendments made during the development, while also paving the way for future work 

to further develop and improve the framework.    
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The developers of PartiSim advise that in adopting the framework for an intervention, the 

individuals conducting the intervention could consider an ongoing loop of reflecting on their 

knowledge and experience by asking questions such as “What did I do well?” and “What 

should I have done differently to engage clients?  (Kotiadis & Tako, 2021) The loop that leads 

to better practice in case studies, starts and ends at the same point, with reflection. As such, 

the rest of this chapter follows a similar loop of reflection on the adaptation of the post-

model coding stages to optimisation modelling, followed by the description of application, 

and ending with a reflection of the adaptation.  

When considering the adaptation of model validation tools for optimisation, we determined 

that the tools would need to be more specific to each optimisation model component. In 

workshop 3 of Stage 5, stakeholders are given a demonstration of the simulation model and 

then invited to reflect on contents. Using the model validation tools, stakeholders are then 

asked to comment on a particular aspect they want to update and/or change. The validation 

of an optimisation model is dissimilar to a simulation model, particularly since there is no 

visual component that could be utilised to enable stakeholder understanding. To tailor the 

validation to the optimisation framework, we determined that validation of the model and 

its output would need to be conducted by examining each component of the model and then 

viewing it as a whole. For instance, stakeholders would first be given an overview of the 

model and its solution, followed by a component-by-component analysis to determine if it 

accurately represents the system under consideration and if the behaviour is being captured 

appropriately. Therefore, each component is examined with a dedicated validation form. 

Therefore, the validation tools from PartiSim, would need to be extended to each 

optimisation model component.   

Furthermore, it is agreed that of the five optimisation model components: inputs, 

constraints, objectives, decisions, and outputs; constraints and inputs would be most critical. 

Specifically, constraints are critical, as too many restrictions would not yield a feasible 

solution, while relaxing constraints may generate solutions that are not feasible in practice. 

Often constraints can be moved into the objective and vice versa. Therefore, model 

validation would need to begin by debating the constraints where stakeholders are asked to 

verify the accuracy of the formulation, followed by the validation of input parameters, as 

constraints essentially represent relationships between parameters and decision variables.  

Material for workshop 3 was readied with the anticipation that it would be a fairly smooth 

process because of activities conducted in the conceptual modelling and model coding 

stages. Therefore, it was anticipated that in the workshop, the model and its outputs would 
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be validated, additional data needs would be identified, and scenarios would be defined. 

Equally, it was recognised that the process of validating objectives, decisions, constraints, 

and inputs may be lengthy, and it would not be possible to easily modify the model during 

the workshop for immediate re-validation.    

For scenario building, PartiSim links scenarios to the Performance Measurement Model 

(PMM), where stakeholders identify performance measures and establish monitoring and 

control activities to support those measures (Kotiadis, 2007; Kotiadis et al., 2013). These 

activities are grouped as monitoring activities (to examine performance measures 

identified), determine if activities (to assess the need for action), and suggest action to be 

taken. In PartiSim, stakeholders rank each performance measure to determine which 

simulation scenario is most feasible and desirable. This is done using the Rate Performance 

Measures tool (Figure 48, Appendix I). In adapting this approach to optimisation, we 

acknowledged that each scenario will be associated with a combination of model inputs. 

Each combination of input parameters would play a critical role in scenario building and 

impact decision variables and subsequent model solutions. Therefore, by recognising that 

scenario analysis for optimisation grants more emphasis on inputs, rather than outputs 

(performance measures), it was determined that the Rate Performance Measures tool would 

not be used. Moreover, in PartiSim, alternative scenarios are generated using the Debate 

Alternative Scenario tools (Figure 47 and Figure 50, Appendix I). This tool links each scenario 

with performance indicators. Based on understanding that the scenario generation for 

optimisation would be more focused on identifying input combinations, it was determined 

that the scenario tools from PartiSim would need to be updated for optimisation. 

Furthermore, it was determined that while performance measures may not directly influence 

the scenario building activity for optimisation in the same manner as PartiSim, each scenario 

would still incorporate the performance activities identified in the PMM. Initially, a baseline 

scenario would be constructed to represent the existing system, allowing stakeholders to 

assess examine the identified performance measures (monitoring activity) to assess the need 

for action (determine if activities). Based on the ‘suggested actions’ specific in the PMM, the 

modelling team would develop additional scenarios that improve the baseline. In workshop 

3, stakeholders would be walked through this process as depicted in Figure 20. Specifically, 

using the model outputs from the baseline, the group would be asked if the service is 

performing to the degree specified in the PMM. With the suggested changes in view, 

stakeholders would be asked if the suggestions are still relevant, and if yes, which of the 
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model inputs that are within their control, could be changed in the model, to then examine 

the expected impact of these changes.    

 

Figure 20: Scenario Building Process 

For the implementation stages, we anticipated recommendation for future decision would 

derive from the optimisation model and from the overall application of the framework. 

When considering the tools for debating recommendation, adapting the Feasibility and Risks 

Scale tool (Figure 51, Appendix J) and Barriers to Change tool (Figure 50, Appendix J) for 

online implementation was the main concern. To address this, we explored several virtual 

application to identify the most suitable environment to host the tools. 

6.4. Case Study 
This approach was developed through a partnership with the Kent and Medway Mental 

Healthcare Trust (KMPT), a real-world PCMH service located in Kent, UK. KMPT collaborates 

with GP clinics and primary care partners to offer support to individuals with mild/moderate 

mental health conditions who don't require secondary care services. The service was 

conceived to address the growing emphasise on enhancing patient accessibility by 

integrating mental healthcare into primary care to promote better coordination with 

secondary, and tertiary mental healthcare services (NHS England, 2020).  

The stakeholder group consisted of clinicians, service managers, executive members of the 

trust, personnel from the local Clinical Commissioning Groups (CCG) and a public health 

consultant from the local council. Table 32 provides a comprehensive list of workshop 

participants that took part in this study and their respective roles. The table also highlights 
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which of the participants attended the three workshops that were conducted for the post-

model coding stages described in this case study.  

Table 32: Workshop Participants and Roles 

Workshop 
Participants 

Roles Workshop 
3a 

Workshop 
3b 

Workshop 
4 

Project Champion (A) Programme Manager 
Transformation and 
Improvement Team, KMPT  

✓ ✓ ✓ 

Key Stakeholder (B) Clinical Commissioning Group 
Project Lead 

✓ ✓ ✓ 

Key Stakeholder (C) Deputy Chief Operating Officer, 
KMPT 

✓ ✓ ✓ 

Key Stakeholder (D) PCMH Service Manager, KMPT ✓ ✓ ✓ 
Workshop Participant 
(E) 

Head of Service West & North 
Kent 

✓  ✓ 

Workshop Participant 
(F) 

Business Intelligence Analyst, 
KMPT 

✓ ✓ ✓ 

Key Stakeholder (G) Benefits Realisation Manager, 
KMPT 

✓ ✓ ✓ 

Workshop Participant 
(H) 

Service Manager of Maidstone 
Community Mental Health 
Team 

✓   

Workshop Participant 
(I) 

Research and Development, 
KMPT 

✓ ✓ ✓ 

Key Stakeholder (J) Primary Care Mental Health 
Specialist 

✓ ✓ ✓ 

Workshop Participant 
(K) 

Primary Care Mental Health 
Specialist 

✓ ✓ ✓ 

Workshop Participant 
(L) 

Primary Care Mental Health 
Clinicians 

✓   

Workshop Participant 
(M) 

Primary Care Mental Health 
Clinicians 

✓   

Workshop Participant 
(N) 

Consultant Psychiatrist & 
Assistant Medical Director 
(KMPT) 

   

Workshop Participant 
(0) 

Public Health Consultant (West 
Kent County Council) 

   

During the pre-model coding stages described in Chapter 4, it was revealed that the PCMH 

service had originated to address immediate mental health concerns in primary care and to 

ease the in-flow of referrals to secondary care. In essence, the service had started as an ad-

hoc experiment, and as such, lacked proper considerations for service design and operational 

specifications. The workshops revealed a lack of clarity regarding current and future service 

capacities, while demand was expected to rise. Stakeholders identified several problems 

including the absence of a standardised service model, limited information on service 

performance and clinical workforce utilisation, and the lack of benchmarking due to 

underutilisation of available data. Workforce distribution and efficiency were identified as 

key concerns, with specific emphasis on long discharge times, messy timetables, and the 
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potential for improving patient accessibility. Stakeholders acknowledged that the existing 

service falls short and expressed a need for standard operating procedures. 

Table 33 provides a description of the workshops that were conducted in this study across 

several dimensions. For each workshop, we first establish if there is any deviation from 

PartiSim. In this study, the experimentation stage was conducted over two workshops (3a 

and 3b) instead of one, as prescribed in PartiSim. Furthermore, the first two workshops were 

conducted in person before the onset of the COVID-19 pandemic. However, due to the 

unprecedented circumstances and subsequent restrictions, transitioning to a virtual 

environment became necessary. Each workshop had a duration of 2 hours, with a specific 

group of stakeholders participating. This chapter focuses on the stages spanning April 2020 

to October 2020, that occurred after a six-month gap since workshop 2.  

Table 33: Details of Workshops in this Study 

 Maps to 
PartiSim? Mode When Length 

Workshop 
Participants 

Workshop 
1 

✓ 
Face to 
Face 

September, 
2019 

2 Hours A, B, C, D, E, G, N, 0 

Workshop 
2 

✓ 
Face to 
Face 

September, 
2019 

2 Hours A, B, C, D, E, G, N, 0 

Workshop 
3a 

✓ Virtual April, 2020 2 Hours 
A, B, C, D, E, F, G, H, I, 
J, K, L, M 

Workshop 
3b 

 Virtual July, 2020 2 Hours 
A, B, C, D, E, F, G, I, J, 
K 

Workshop 
4 

✓ Virtual 
October, 
2020 

2 Hours 
A, B, C, D, E, F, G, I, J, 
K 

We discovered that validating the initial optimisation model and its solution required a 

dedicated workshop of its own before experimentation through scenario generation. As a 

result, Stage 5 was split into two workshops instead of one. Details of the variations between 

PartiSim and the modified post-model coding stages for optimisation are described in the 

following sections. Also included are excerpts from the workshops highlighting stakeholder 

engagement with the tools, activities, and specific instances of learning. 

Chapter 5 describes the technical implementation of the final validated model and the 

scenario analysis. Here, the focus is on presenting the process of validating the model, 

generating scenarios, and detailing the subsequent implementation process. During model 

development, the modelling team liaised with the project champion and service manager to 

acquire data for the model and for clarifications on model components. After developing the 

initial model, preliminary results from the scenario analysis including outputs from the data 

analysis were emailed to the stakeholder group in preparation for Workshop 3.  



 

185 
 

For the workshop, we extended and streamlined the Model Validation tool (Figure 47, 

Appendix I). Based on the premise discussed in Section 6.3, the original tool was extended 

for each of the five components. It was streamlined by omitting the middle column. And each 

validation form’s first column was populated with the corresponding information from the 

“Conceptual Model Map” developed in the pre-model coding stages. Therefore, we prepared 

five validation forms, each for: Inputs, Objectives, Decisions, Constraints and Outputs. 

Similarly, presupposing successful validation of all model components, and particularly 

inputs, the Debating the Alternative Scenarios tool (Figure 47, Appendix I) was adapted to 

capture a combination of optimisation model inputs for each scenario. Specifically, the 

columns of the new adapted tool were populated with model inputs, as described in the 

“Optimisation Component Map”. These tools were prepared on the virtual platform ‘Google 

Docs’ to be shared with stakeholders during virtual workshop (Appendix K).  

6.4.1. Experiment with Model - Workshop 3a 
In workshop 3a, we sought to validate the optimisation model and its results, and then 

develop alternate scenarios for experimentation. The validation forms, prepared on Google 

Docs were shared with stakeholders. These forms had editing access for participants to make 

changes to the document during the workshop.  

In general, the process of validation followed these steps in sequence: 1) reviewing results 

of the descriptive and predictive analysis to highlight inefficiencies; 2) viewing conceptual 

model; 3) reviewing initial mathematical model and its components including inputs, 

decision variables, objective, and constraints; 4) explaining initial model assumptions; 5) 

reviewing the PMM and baseline scenario  6) assessing model output (schedule of which 

clinician allocated to which clinic for what appointment and in which week, day, & shift) and 

solution; 7) Considering the level of detail, scope, and accuracy of the model and solution; 8) 

reviewing other preliminary scenarios and the corresponding model results 9) generating 

alternative scenarios.   

In the first step, stakeholders received a walkthrough of results from the data analysis which 

provided many critical insights about clinician capacity and utilisation. For instance, it 

showed a lack of consistency in clinician profiles relative to their bands, the number of 

clinicians allocated to each clinic, and challenged perceptions of appointment time 

durations. The analysis also highlighted the size of the waiting list, that was primarily 

perceived to be linked to the relatively small size of the clinician workforce. Additionally, the 

predictive analysis supported stakeholder intuition about a rising upward trend in demand 

for the service.  
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Next, stakeholders received a walkthrough of steps 2 to 5. When reviewing the scenarios, we 

started with the baseline scenario. Stakeholders were told how this scenario was built using 

information collected in previous workshops. For examples, the group was reminded that in 

the PMM developed in workshop 2, they had determined that for the PCMH system to be 

efficacious, clinician utilisation would need to be monitored, to determine if clinicians are 

conducting appropriate interventions. Stakeholders were then informed that to monitor this 

aspect of the service, the initial model was supplied with current clinician capacity data. That 

is, data from a recent four-week period of service operation was used for comparing the 

accuracy of the model’s output with real service performance. The group was then told that 

this is done to determine how the model would allocate appointments to clinicians, under 

the specified constraints and to check the overall performance of the system, if 

appointments were allocated centrally. 

The baseline scenario solution, generated by the model, was then assessed. There were 

several components to the solution, including the schedule and service performance 

measures. The schedule is a visual representation of which clinician is allocated to which 

clinic for what appointment and in which week, day, & shift. Additionally, stakeholders were 

also provided with levels of clinician utilisation based on current availabilities, and the 

number of unmet appointments.  

The discussion began by examining clinician utilisation, which varied significantly in the 

model solution and was also confirmed by the data analysis. During model conceptualisation, 

stakeholders assumed that clinicians in the service, especially in the same skill group would 

have similar capacity utilisation. In other words, a degree of standardisation was assumed 

and the same was expected to be seen through the analysis. However, in assessing the model 

solution, supported by the results of the data analysis, stakeholders recognised the gap 

between practice and assumption. This challenged the general view that service operations 

were organised to a satisfactory degree, and a rise in demand could only be handled by hiring 

more clinicians. Given the mix within the stakeholder group, several perspectives of how the 

model could be used to address the gap emerged. For instance, in conveying what they 

understood about the model, some stakeholders were keen to confirm if the model could 

support the group in taking forward a particular operating strategy. 

Stakeholder B: I think we should use this information to set a benchmark for ourselves so we 

can monitor how we are doing and how many patients we are seeing or if we are meeting 

our target of seeing patients within a certain duration. 



 

187 
 

Stakeholder D: I agree. Also, so that we are appropriately positioned whilst we are working 

in the PCMHS network, we could direct our clinicians to where the demand is. Let’s say we 

take the readily available data and do an analysis like the one you have conducted, we can 

see which GP’s have the highest referrals, we should be able to calibrate and match those 

using the model, is that correct? 

A walkthrough of model solution in Step 6 demonstrated that there was room for 

improvement within the service, leading to then debating the accuracy of the mode and its 

solution. Here, the group stakeholders acknowledged how the allocation of clinicians is a 

direct result of model inputs and the constraints governing the system.  

Stakeholders were supplied with the five model component validation tools and based on 

the information they had just received; the group was asked to consider whether the 

information is still accurate or if additions/changes were required. The group agreed that the 

objective, decisions, and outputs components of the model were satisfactory, and no 

changes were suggested for these components. However, stakeholders wanted to change 

the values of some inputs, add additional constraints and review some of the corresponding 

assumptions for these components. Table 5 is the validation tool for model inputs and Table 

35 is the validation tool for constraints.  

As seen in Table 34, direct updated values were provided for five of the six input values that 

were to be changed. For clinician availability (available capacity), stakeholders realised that 

an overview of this information was not currently available, and so they wanted us to collect 

data reflecting actual working patterns of clinicians to assess the impact of these availabilities 

on the service. It was recognised that the operating policy of the service did not explicitly 

state a standard for the division of working hours across activities. This feature was also 

identified as being crucial to the service and had previously been assumed to have a loose 

set of guidelines that clinicians were to follow. Now that this assumption was dispelled, the 

clinicians as well as the management personnel present at the workshop were keen to 

examine how clinicians were dividing their time, specifically for clinical activities and perhaps 

explore developing a generic template that stipulates or guides clinicians.  

The validation of inputs was closely linked to gathering updates for constraints, as seen in 

Table 35. For instance, after agreeing to collect more data to determine clinician availability 

patterns, stakeholders also noted that the initial model assumes that clinicians’ time is 

entirely dedicated to seeing patients, when this was not the case. The availability constraint 

needed to account for other clinical activities such as trainings, meetings, and supervision 
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and part-time clinicians. Furthermore, as clinicians from the service were present at the 

workshop, they noted that in the schedule, although clinicians were being assigned to clinics 

within their designated geographic region, some clinicians were being allocated 

appointments in clinic locations that were not currently on their caseload. This was deemed 

to be disruptive to continuity of care. A decision was made to remove the geographical region 

constraint and replace that with a stricter constraint that would assign appointments to 

clinicians in specific locations that were currently on their caseload. Other updates to the 

constraints in the model were minor, where a constraint limiting the number of appointment 

per day was added.  

Table 34: Inputs Validation Tool 

Inputs Validation Updates 

From Data:  

- Set of clinicians, locations, appointment 
types, days, shifts 

 

- Demand per clinic location  

- Clinic locations assigned to clinicians  

- Appointment durations Consider average and not median duration 

- Clinician skills and appointment matrix  

- Clinician to clinic preference  

Stakeholder Supplied:  

- Max shifts per day No more than two 

- Max clinics per clinicians  

- Max clinicians per clinic Between 4 and 8 per clinic  

- Clinicians’ availability matrix Not standardised for all clinicians, collect 
data to determine availability based on 
clinician band. 

- Max travel distance between clinics Consider 7.5 miles 

- Shift Duration Give a one-hour window between each shift 
to account for lunch time and travel 
between locations. 

Generated:  

- Distance between clinics  

Given that the model with its current input values, and constraints was not sufficiently 

reflective of their service, this workshop, as it went, became primarily about discussing 

updates to the inputs and constraints. It was agreed that scenario building would have to be 

an activity that is conducted in another workshop along with the validation of the updated 

model.  
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Table 35: Constraints Validation Tool 

Constraints Validation Updates/ New Constraints 

- Assign demand from clinic locations 
based on available clinic capacities. 

 

- Assign appointments based on clinician 
skills 

 

- Assign appointments in clinics within 
designated geographical region  

Remove and replace with continuity of 
care constraint 

- Clinician travel constraints between 
clinic locations 

 

- Clinicians to be assigned less than or 
equal to utmost number of shifts 

 

- Clinics to be assigned less than or equal 
to utmost number of clinicians 

 

- Clinicians to have less than or equal to 
utmost number of clinics 

 

- Clinicians’ availability Clinician not available during training 
days, and community meeting days. More 
data needed to determine when not 
available. 

- Travel distance between clinics to be 
limited by a threshold value 

 

 - Per day appointment allocation limit = 5 
per day 

 - Continuity of care constraint, clinicians 
with patients from a specific clinic on their 
caseload, need to continue seeing these 
patients. 

In general, it was agreed that more data was needed for the model to improve stakeholder 

understanding of how resource capacity was being divvied up. Therefore, steps 8 and 9 were 

not conducted in this workshop and were shelved for further exploration in a second 

workshop. At the end of the workshop, feedback from an executive stakeholder was as 

follows: 

Stakeholder C: I think what you’ve given us today, we as a team need to really sit down and 

look at all of the data related to demand, caseloads and everything else. We need to think 

about how we want to develop the service going forward. I think the next workshop will be 

about bringing all of this together and then to have a look at the new data again to explore 

where we go next. 

6.4.2. Post - Experiment with Model Workshop 3a 

After the completion of Workshop 3a, data collection was conducted to gather information 

on clinician availabilities. After data collection, it was found that each clinician’s availability 

varied across the entire team as well as within their respective bands. When this information 
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was relayed to the project champion, it was suggested that for the next workshop, model 

results should be presented for both perceived availability and with a loose standardisation, 

so stakeholders are able to compare the two and suggest other scenarios for 

experimentation. Hence, the model was updated and resolved with the new inputs and 

updated constraints in preparation for the next workshop. Preliminary scenarios included 

the baseline, and two other future scenarios where one had the combination of perceived 

clinician availability and high demand and the other with high demand and standardised 

availability.  

With reference to tools, the Inputs Validation Tool (see Table 34) and Constraints Validation 

Tool (see Table 35) were prepared and pre-populated with the most up-to-date information. 

Additionally, the Scenario Parameter Combination Tool (Figure 56, Appendix K) that had 

previously been adapted from the Debating the Alternative Scenarios tool (Figure 47, 

Appendix I), in preparation for workshop 3a was also included.   

6.4.3. Experiment with Model - Workshop 3b 
The primary goal of this workshop was to validate the updated model and the corresponding 

solution.  Results from the updated model were collated on a presentation and stakeholder 

were provided with a walkthrough by following the sequence of steps described in Section 

6.4.1. In essence, this workshop was a continuation of workshop 3a.  

The workshop began with a demonstration of how updates from the previous workshop 

were incorporated into the model. Stakeholders were then presented with the outputs of 

the model for the three preliminary scenarios, including the new baseline. Stakeholders were 

invited to discuss updates to the model and suggest any additional changes using the input 

and constraint validation tools. In this case, there was consensus within the group that the 

new model and the corresponding input parameter values were an appropriate 

representation of their service. Stakeholders recognised that many operational specification 

in the service could be improved, as evidenced by the results of the new data analysis, 

updated future demand predictions, as well as the persisting inefficiencies identified in the 

system through the updated optimisation model’s outputs.  

Once again, stakeholders were asked to view the model’s results with a view to the PMM, to 

generate alternative scenarios through the process described in Figure 20, Section 6.3. 

Specifically, they were asked if the service, with its current operational specifications, was 

satisfying their desired performance measures. If not, stakeholders were asked to consider 
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the suggested changes defined in the PMM, and consider which aspect of the service, that 

was under their control could be changed to improve the current situation.   

Stakeholders were presented with a Scenario Parameter Combination Tool (Figure 56, 

Appendix K), made available on Google Docs. This tool was prepopulated with the model’s 

input parameters. Table 36 is a condensed version of the final output from the scenario tool. 

Stakeholders were then asked to consider each model input and determine if the current 

value could be changed, either on its own, or in combination with other input values. Of all 

the model inputs available on the form, the group agreed that they would like to experiment 

with “appointment durations”, “clinician availability”, and “Demand from each clinician 

location for each appointment type”. Additionally, the group acknowledged that the 

allocation of clinics to clinicians was not a suitable parameter for experimentation or change 

as continuity of care could not be disturbed. For the input “appointment durations”, in round 

one of the validation, median values were considered while round two used average values. 

Stakeholders were not keen to move forward with either of these as they believed that 

clinicians often have appointments that last at least 60 minutes. Therefore, duration profiles 

derived from the data analysis were chosen as values for experimentation. Specifically, in 

profile 1, the durations for appointment types ‘Assessments’, ‘Follow-Ups’, ‘Telephone’, and 

‘Community’ were set at 60, 60, 45, and 60 minutes respectively. Similarly, in profile 2, the 

durations considered were, 60, 45, 30, and 45 minutes, respectively. 

Table 36: Scenario Parameter Combination Tool (condensed) Output 

Scenarios Clinician Available Hours Appointment Demand Appointment Duration  

1 From Historical Data Current Profile 1 

2 From Historical Data Current Profile 2 

3 From Historical Data 15% Increase Profile 1 

4 From Historical Data 15% Increase Profile 2 

5 Standardised Current Profile 1 

6 Standardised Current Profile 2 

7 Standardised 15% Increase Profile 1 

8 Standardised 15% Increase Profile 2 

Clinician availability was a point of contention and led to a discussion between stakeholders 

on how to proceed. Eventually, stakeholders were directed to contemplate the patterns 

observed in clinicians within the same band as seen in the data collected post workshop 3a. 

Springboarding off this, a standardisation template based on clinician skills was agreed upon 

(described in Chapter 5). The study itself was conceived in anticipation of rising demand from 

primary mental healthcare service users. As such stakeholders wanted to examine the impact 

of higher demand values on clinician utilisation and the waiting list. Based on the predicted 
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forecast, the group was asked what percentage of rise in demand they would like to be 

prepared for. It was agreed that as things stand, in terms of capacity and funding, they would 

like to be prepared to handle an increase of 15%. Therefore, values for input parameters and 

their corresponding combinations were gathered from stakeholders and a total of eight 

scenarios were generated using the Scenario Parameter Combination Tool (Figure 56, 

Appendix K). Table 36 is depicts the condensed version of the output, containing only the 

inputs that were chosen for scenario analysis. 

In July 2020, it became apparent that an end to the pandemic was not in sight. In view of this 

fact, stakeholders were keen to understand how the service would perform under COVID 

induced PCMH service specifications. Following the discussion that resulted in Table 36, the 

project champion suggested using the model to inform the service on its capacity to continue 

operating in anticipation of an influx in referrals because of pandemic-related restrictions. 

They were also keen on understanding the impact of moving to virtual only appointments on 

clinician utilisation. The stakeholder group unanimously agreed to this proposal and 

suggested the development of a COVID-version of the model by stripping away travel and 

skill-based constraints and only consider one type of appointment. The same scenarios were 

to be utilised for experimentation with the COVID variant of the model.  

6.4.4. Post – Experiment with Model Workshop 3b 
Following workshop 3b, we developed the COVID-version of the model and ran scenario 

analysis for the two models. In addition to obtaining a planning schedule for each scenario, 

the results compare baseline performance measures of clinician utilisation and unmet 

demand values across each scenario. The stakeholders are sent a report containing a 

summary of the results and recommendations that draw from scenario results. An 

implementation workshop is then scheduled to discuss which of these scenarios would be 

taken forward and to develop an action plan. 

The modelling team prepared for the workshop and considered how the prescribed tools 

could be adapted for online implementation. Several digital whiteboard platforms such as 

Padlet, Mentimeter, Canva, and Mural were explored to determine how paper based tools 

could be implemented virtually for stakeholders to collaborate and contribute to the 

workshop. Mural was selected as the preferred platform because of its versatile features 

including resizable canvas options, the ability to create mappings and diagrams, 

customisable templates, and facilitations aids such as timer and summoning participants to 

specific content. The Feasibility and Risks Scale tool (Figure 51, Appendix I) from PartiSim was 

explored and adapted for online implementation, and a template consisting of diagrams was 
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designed on Mural. Any action items that emerged from the workshop would be recorded 

and incorporated onto the Action and Communication Plan (Figure 51, Section Chapter 

7:Appendix I) that would be shared with stakeholders post workshop. Implementation tools 

manuals prescribed in the PartiSim framework would be used to facilitate the discussion in 

the workshops (www.partisim.org). 

6.4.5. Implement Findings - Workshop 4 
The final workshop of this study took place three months after workshop 3b – October 2020. 

Stakeholders were aware of the recommendation of the study following on form stage 5. 

The report also included key insights that were gained from the conceptual modelling stages, 

the model coding stage which included descriptive and predictive analytics whose results 

inform what goes into the optimisation model and help structure the scenario building. Not 

unlike the last two workshops which were conducted in 2020, this was organised virtually. 

The stakeholder group composition is presented in Table 32. 

The workshop began with a presentation of the project timeline and key insights that were 

gained from each. Stakeholders were reminded of the study’s inception with the exploration 

of root definition, service components, performance management model, and the systems 

model that depicted all the components of an ideal PCMHS. There was a general 

acknowledgement that the stages of model conceptualisation led to a common 

understanding of what was missing from the framing of the service and equally, what was in 

place to enable the delivery of primary mental healthcare to patients. Additionally, 

stakeholders were also quick to appreciate that there were several other transformations 

that were recognised in Workshop 1 that could warrant attention and perhaps be the focus 

of their own studies. At the same time, the group conceded that the Transformation 

addressed in this study was one that was a top priority for the continuation of the service, 

and one that was useful and transferrable to other community-based services provided by 

the mental health trust and commissioned by the local council. 

Nex stakeholders were reminded of insights gained form the analytics conducted using 

historical data. There was agreement that the results revealed performance issues as well as 

patient backlog, they suspected but were unaware of and did not previously have evidence 

for. The group also recognised how the outputs of the analytics aided their understanding of 

what specifically needed attention. In other words, the analysis dispelled vagueness 

surrounding an otherwise opaque set of metrices. Some excerpts of this discussion are as 

follows: 

https://www.partisim.org/
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Stakeholder D: I think to answer your question of anything that has directly changed since 

we started the study. I think the work has highlighted certain areas that we are not covering. 

Especially, the data that you have explored and presented to us, we went back to the Business 

Intelligence (BI) team and said to them that these aspects are not being reported on and 

should be included in the report.  

Stakeholder J: We also saw that there are certain things we are not capturing in the database 

that we should capture. 

Project Champion: And also, raising our awareness about areas where we can do some 

efficiency savings in clinical time and that is a direct impact of this work. 

We then arrived at the recommendations that were the result of the optimisation model, 

and some emerged from the data collection activity that clinicians identified as warranting 

attention in the future. Specifically, the recommendations deriving from the scenarios were 

grouped as follows: 

1. Standardise Service Delivery 

‒ Standardise length of a clinic slot and duration of appointments.  

‒ Extend intervention coding to standardise clinician availability across all 

clinicians and between clinicians of the same band.  

2. Standardise Intervention Coding 

‒ For a given planning period, consider developing a standard coding—

including frequency and duration—of each intervention across all clinicians. 

3. Distribute Workload Equitably 

‒ Explore redistribution of clinics managed by clinicians, in proportion to the 

number of referrals. 

‒ Consider redistributing caseload for a more equitable sharing of workload. 

4. Deploy Optimisation Model 

‒ Estimate effective service design and operating policy variables. 

‒ Evaluate ongoing performance levels. 

‒ Compare predicted performance with desired service goals or objectives. 

Additionally, during both historical data analysis and subsequent data collection activities, 

stakeholders realised that they should be capturing one additional type of appointment that 

clinicians in higher bands were conducting. In particular, the database system did not have a 

provision to capture patient-related consultations with GP’s conducted by band 8 clinicians. 

Seeing as these set of clinicians were hired recently as part of the service’s ongoing 



 

195 
 

expansion, the capture of all their duties was deemed an important future implementation 

that emerged from the study. As such, the recommendation was to: 

5. Capturing all patient-related interventions 

‒ Consider expanding the list of direct patient-related activities to include GP 

consultations on the database management system. 

All the above qualified as learning that emerged from the study. Additionally, as confirmed 

in the discussion snippet above, the reports that the service manager routinely requested 

form the in-house BI team had undergone a protracted transformation that included many 

of the key metrices that were reported in this study and as such, the clinicians had a wider 

and deeper view of their performance and that related to patient waiting time and length of 

stay. This was acknowledged as an improvement derived from this study that was not a 

mainstay in their daily operations.  

In the next activity, stakeholders were invited to discuss and debate which of the 

recommendations were feasible for implementation, which of these were desirable but 

cannot be implemented and those that were both feasible and desirable to be carried 

forward. This activity was conducted on Mural where the adapted visual templates of the 

Feasibility and Risks Scale tool (Figure 51, Appendix I) were staged and prepopulated. The 

group were given editing access to the digital environment. The output of this discussion is 

depicted in Figure 21. Of the five recommendations, four were deemed to be both feasible 

and desirable. 

To further the discussion, we then asked the stakeholders to discuss both benefits and 

potential barriers to each of these recommendations. The Feasibility and Risks Scale tool 

(Figure 51, Appendix I) adapted for online implementation was replicated for each 

recommendation to facilitate discussion, as seen in Figure 22. Each recommendation that 

was both desirable and feasible was debated in terms of associated benefits and 

barriers/risks. In general, we observed a pattern, where a recommendation would be 

desirable, but not feasible because it would not be practical to implement. Key points raised 

by a stakeholder would then be echoed by some others. At the same time, when prompted 

to consider how these practical issues could be dealt with, solutions would be put forward 

or attention to an overlooked detail would be called upon. This then led to a change in the 

opinion and a realisation of the feasibility as well as the desirability of a recommendation. 
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Figure 21: Feasibility and Risks Scale- Output 1 

 

Recommendations 1 and 2 were deemed necessary to improve efficiency, reduce waiting 

times, improve patient access to care, prevent burnout among clinicians and prepare the 

service for increasing demand. It emerged through the discussion that both these activities 

had already been given the green light, where clinicians within the service had been 

identified to lead these changes. The force-field analysis was useful in identifying barriers 

that the implementation would need to account for. Given the variety of stakeholders 

present in the workshop, the benefits and barriers of each recommendation spanned the 

operational, tactical, strategic and policy levels. As seen in Figure 22, for the standardisation, 

the benefits outweighed the barriers, and furthermore, and an action trail emerged where 

collaborators to assist the lead for the implementation were identified.  
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Figure 22: Feasibility and Risks Scale- Output 2 

 

Next, we debated the equitable distribution of workload, as seen in Figure 23. Stakeholders 

recognised that workload distribution was not included as a decision variable in the model 

as continuity of care was not to be disturbed. However, in making a case for exploring this 

aspect of the service, stakeholders admitted that this was an activity that needed to be 

conducted to reduce the caseload of certain clinicians and identify training opportunities for 

other clinicians, allowing them to level up. However, the service manager admitted that 

moving forward, the allocation of new patients and new clinic locations would consider the 

existing caseload of the team (aided by the new robust reporting). The group also agreed 

that the model would again be called upon to support this activity. The following discussion 

is a demonstration of the patten described above: 

Stakeholder D: We know which clinics have a high referral rate and the clinicians that are 

currently assigned to these. Often these are high deprivation areas, and GPs are not keen on 

changing the clinicians that hold clinics there. But, because the clinicians were experiencing 

burn out, we did try to add more clinicians to these locations for screenings, but they would 

eventually be referred to the main clinicians. Basically, in practice this can cause issues. 

Project Champion: We can take aspects of the recommendation forward. For clinicians who 

have allocated clinics that are in proximity, we can redistribute.  
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Stakeholder B: I wonder if the new restructuring and creating of Primary Care Networks, 

where clusters of GPs are now working together and providing services, does that have an 

impact or could that improve the distribution and reduce the travel load. 

 

Figure 23: Feasibility and Risks Scale- Output 3 for Recommendations 3 & 4 

 

Stakeholder D: Yes! I did see that this made a huge positive impact, where I was seeing more 

patients, and it reduced my travel time.  

Stakeholder J: Yes. What we have noticed is that some of the GP’s have come forward and 

said that if you want to hold a clinic, because they are in close proximity, you can hold one 

clinic to see patients form several GPs. So yes, it’s good. This is good. Albeit we haven’t started 

seeing the true impact because of the pandemic. 

Stakeholder D: I am actually looking at this right now. Trying to decide how many clinics a 

full-time and a part-time clinician should have respectively. Yeah, I am looking at this right 

now and its based on demand.    

The deployment of the model and the benefits of doing so outweighed the barriers. 

Stakeholders unanimously agreed of the insights gained throughout the study, and 

particularly appreciated the ability to experiment with the model that gave them insights 

into what can be expected from a particular change to the system. The executive members 

of the team highlighted several other services provided by the trust that could also benefit 

from the model and the overall framework. The group clearly situated confidence, value, and 

utility of the model in supporting them make informed decisions. However, the continually 
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evolving nature of mental health services was identified as a barrier. Given the attention 

mental health is receiving globally and specifically in the UK, the ever-evolving policy 

environment would likely lead to changes in constraints or open doors to new data collection 

needs. In any case, it was recognised by the group that a considerable proportion of the 

groundwork conducted for this study would be transferrable, therefore making the 

adaptation relatively quicker and smoother. Leads for each of these actionable were re-

confirmed and several other participants then volunteered to support the lead reach their 

goal. The following is an excerpt from the discussion and Figure 24 provides an overview of 

key themes that were discussed in this activity. 

Stakeholder B: I think it’s very useful to have a comparison, as you’ve put there between the 

predicted and the actual. It’s good to compare the variance of what is actually happening 

and investigating that. 

Stakeholder D: It would useful if the team remains stable and if the restructuring settles 

down. As soon as we think we that it is a bit more stable and we have some clear processes, 

something new is being introduced.  

Project Champion: So, I have connected with the director of performance, and I was really 

inspired by what Stakeholder B said, and so I am trying to facilitate wider conversations. And 

I think the role of this group now is to make a recommendation to the wider trust about the 

work that this study has conducted. 

Stakeholder J: I completely agree, and I think with the new way of working having these 

structures in place will let everyone know what is expected of them and also help provide 

evidence about what they are doing. Especially when now an evidence base is the norm for 

any kind of quality improvement. 

Stakeholder G: Personally, I would like to use the optimisation model with other services that 

I am working with but I realise this is outside the scope of this work but I would put it down 

as an aspiration. 

After workshop completion, an action plan was developed as per the Action and 

Communication Plan tool (Figure 51, Appendix J) and based on the agreed action trail in the 

workshop. The action plan was shared with stakeholders for approval post workshop.  
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Figure 24: Feasibility and Risks Scale- Output Overview 
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6.5. Discussion 
In this section, we begin by reflecting on the development and application of the facilitated 

post-modelling stages for optimisation. The framework along with the requisite activities, 

tools and prescribed outputs is proposed. We also discuss the implications of conducting 

virtual workshops for these stages, unlike the face-to-face workshops conducted for 

conceptual modelling (described in Chapter 4).  

The case study presents a detailed description of the development of a facilitated framework 

for the validation, experimentation, and implementation of an optimisation model. In the 

next few sections, we reflect on each stage of the adaption and propose modification based 

on what was learnt from the application. Subsequently, we propose the Post-Model Coding 

stages for facilitated optimisation.  

6.5.1. Reflections on Stage 5 
Validation of the optimisation was to check whether the proposed model adequately 

predicts the behaviour of the system under study (Taha, 2017). In the proposed framework 

this involved checking if all the components of the optimisation model: decision variables, 

inputs, constraints, objective function, and outputs, were fit-for-purpose. The tools 

developed to validate each model component came directly from the ‘Optimisation 

Component Map’ developed during conceptualisation, described in Chapter 4. Each 

component and its contents were presented stakeholders to either confirm or suggest 

changes. During the first experimentation workshop described in Section 6.4.1, it transpired 

that the debate as well as the updates were concentrated around the model inputs and 

constraints. Given that constraints represent relationships between decision variables and 

input parameters, and that they are interchangeable with the objective, it does make logical 

sense for the two components to take centre stage. Therefore, based on the emphasis on 

two components, we settled on the “Model Constraints Validation Tool” and “Model Input 

Parameters Validation Tool” in the proposed framework. 

A significant deviation from the PartiSim framework was the requirement of a second model 

validation workshop. As described in Section 6.4.3, in addition to significance of inputs and 

constraints, stakeholders identified several additions and changes that were required for the 

model and its outputs to be more representative of their service. Therefore, round one of 

model validation activity was conducted in Workshop 3a, followed by a sub-stage where the 

model was revised and run for new preliminary scenarios. Model validation was completed 

in Workshop 3b along with the generation of alternative future scenarios. We believe that 

the two workshops conducted for the Stage 5 were necessary for the successful validation 
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of the optimisation model. However, on reflection, it could be possible to combine the two 

into a single workshop provided there is sufficient acceptance of model components and 

solution, and suggested changes do not require additional data collection. We also speculate 

whether for simulation models, the visual depiction of the model and the relatively faster 

model update time plays a positive role in quicker model validation. In comparison, an 

optimisation model requires more time to accommodate updates and perhaps will continue 

to require two workshops for satisfactory model validation.  

The PartiSim framework does suggested the possibility of needing two workshops for model 

validation, should the situation call for it (Tako & Kotiadis, 2018). We found that once 

stakeholders fully grasped the model contents in Workshop 3.a, this new understanding gave 

way to a more perceptive and material discussion about the contents in workshop 3.b. 

Therefore, this stage could require two cycles of model validation, where the first dedicated 

round takes place in Workshop 3.a, followed by the second round in Workshop 3.b, which 

also includes scenario building. Therefore, in the final framework we divide Stage 5 into Stage 

5.1, and an optional Stage 5.2. If validation is completed in Stage 5.1, scenario generation 

could be taken forward. However, if required, Stage 5.1 should entirely focus on model 

validation and scenario generation should be rescheduled for Stage 5.2, in workshop 3b. The 

addition of the optional stage also requires the introduction of an optional sub-stage 5.1.a, 

where the model is revised and material for workshop 3b is prepared. Future research could 

consider these factors when determining if model validation will occur over two or one 

workshop. This is likely dependent on the application area, the complexity of the model and 

the availability of data. We also note that in our case study, inputs and constraints were the 

model components that required updates during the validation. However, in other 

applications, it might be that the objective and decision variables will also need to be 

updated. Further studies are required to determine the need for tools to validate these 

specific components of an optimisation model. 

In workshop 3b, the updated model is re-validated and validation procedure completed, 

leading to the scenario generation activity. Recent advances in healthcare optimisation are 

highlighting the relevance of scenario building with the involvement of experts that better 

know their reality (Amorim-Lopes et al., 2021). Our study contributes a structured process 

of involving stakeholders through a facilitated workshop in scenario-building for an 

optimisation model. Reflecting on the application to the case study, the scenario building 

process gave stakeholders the opportunity to imagine different futures for the service. In 

considering which of the inputs or service specification they would like to change in the 
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future, the stakeholders grappled with evaluating several aspects of the service that needed 

changing for the better but could not be changed because of clinical priorities. This revealed 

to us that what might be operationally sound does not necessarily translate to clinically 

sound. Without the involvement of stakeholders, such rich perspectives would not otherwise 

be captured. 

In terms of tools, we recognise that the “Scenario Parameter Combination Form” should 

have been preceded by another activity to narrow the scope of input parameters that would 

be taken forward for the scenarios. In other words, an equivalent to PartiSim’s ‘Rate the 

Performance Measures’ tool (Figure 48, Appendix I) should have been prepared for 

narrowing the scope of input combinations to be considered for scenario generation. 

Specifically, in the workshop, stakeholders were presented with the form that included all 

inputs and were asked to consider each of these as an option for scenario analysis (Figure 

56, Appendix K), while also putting forward potential values of the input. This activity could 

have been separated where first stakeholders are given a list of all inputs and asked to 

choose those they would like to experiment with. The “Scenario Parameter Combination 

Form” would then include the chosen inputs making its design much more streamlined, like 

that seen in Table 36. The form used in the workshop (Figure 56, Appendix K), was formatted 

after workshop 3b, to produce Table 36. We believe that an additional tool proposed here 

would be an improvement to the framework and conducive for stakeholder engagement. 

The proposed ‘Scenario Input Selection’ tool would be populated with the model’s input 

values as presented in Table 48 (Appendix M). Stakeholders would then be asked to use 

symbols to indicate their choices. Specifically,  would represent input variable that will not 

be chosen, while variable with the symbol ✓  would be chosen and those with the symbol * 

would be inputs that stakeholders recognised as impacting service performance but will not 

be chosen for experimentation for reasons unique to the system under consideration. In our 

case, these are variables that cannot be changed in favour of continuity of care for service 

users. Table 48 (Appendix M) is an example of how this tool might have been used in 

workshop 3b. 

6.5.2. Reflections on Stage 6 
In the implementation stage, the main challenge was adapting the prescribed activities and 

paper based tools for online implementation. As described in Section 6.4.4, the Feasibility 

and Risks Scale tool (Figure 51, Appendix I) from PartiSim was explored and adapted for 

online implementation, while the Barriers to Change tool (Figure 50, Appendix J)) was not 

explored for online implementation. This was done for several reasons. We determined that 
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stakeholders would need to be provided with sufficient time to become familiar with the 

new environment and it would be unwise to overwhelm the team with multiple tools. 

Therefore, we reasoned that we would be better positioned to focus on adapting a single 

tool effectively rather than attempting to use both. Furthermore, we had concerns about 

how the recommendations would be received, given the implementation challenges 

highlighted in optimisation literature and the factors affecting implementation discussed in 

simulation literature. Therefore, to exercise caution, the Feasibility and Risks Scale tool was 

adapted and modified for online implementation.  

This adaptation was driven by the move to a virtual environment and had this workshop 

taken place in an in-person setting, the Barriers to Change tool (Figure 50, Appendix J) would 

have been employed. Given the utility of other tools and activities that are prescribed in 

Stage 6 of PartiSim, most of which have been demonstrated in the adaptation, this specific 

tool is included in the proposed framework for future consideration. Additionally, the online 

adaptation of the Feasibility and Risks Scale tool offers an alternative to the paper-based tool 

and is a key contribution.  

6.5.3. Reflections on Virtual Workshops 
This study ended up having a hybrid workshop approach, more as a situational adaptation 

and less as an active choice. The first two workshop in this study were conducted face-to-

face, in conjunction with site-visits, interviews, and informal conversations leading up to the 

study and in the initiation stage. We believe that these in-person interactions were crucial 

to instilling confidence, trust and secure a buy-in with the stakeholder group for the overall 

aims and objectives of the study. Additionally, the transition to the virtual environment was 

successful and although challenging, it was without a significant concern for a continuity in 

participation and interest of the stakeholders. Without this foundation, we believe ‘games’ 

as described by Tako & Kotiadis (2021) would need to be undertaken diligently to build the 

rapport and trust between the modelling team and the stakeholder group and within the 

stakeholder group. 

We believe the advantages of moving to a virtual environment such as the elimination of 

travel and improved access and participation were reflected in our work presented here 

(Hofstädter-Thalmann et al., 2022). Specifically, with healthcare professionals, finding the 

space and more importantly a time that works for everyone is a significant challenge. 

Moreover, in our specific study, clinicians within the service were often at different locations, 

and these were challenges that led to longer durations between workshops in the conceptual 

modelling stages. However, we observed consistency in attendance, and sometimes even an 
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increase in the number of participants during virtual workshops (Table 32). Equally, the 

duration between each meeting was relatively shorter. We agree that this is a descriptive 

analysis based on observation and perceptions and some empirical evidence (the duration 

between workshops, and to some degree the successful completion of all 5 workshops). As 

for the disadvantages, we can confirm that we experienced technical glitches such as bad 

network connection, inability to participate in third-party tools such as Mural (because of 

restrictions in the NHS firewall on stakeholder’s computers). As suggested by Tako & Kotiadis 

(2021), we overcame these by taking over the note taking, while sharing the screen. These 

considerations were discussed prior to the workshops and contingency plans were agreed 

upon.  

In workshops 3a and 3b, we used Google Docs for conducting our brainstorming sessions, 

and at the time, it served the purpose for collaboration as it allows for concurrent working 

on the same document. However, we subsequently found this platform to be insufficient as 

it lacked utilities for creating imaginative tools and the visualisations. A finding similar to that 

of adapting PartiSim to a virtual environment (2021). Therefore, for the implementation 

workshop, we used Mural. In fact, we found that Mural’s features allowed us to create 

visually engaging templates that contained several tools on a single page. The ability to zoom 

in and out of each tool led to the creation of a mosaic that fit the chronology of activities. 

This utility was particularly useful in the implementation workshop which required more 

creative approaches to engaging stakeholders in a debate. In contrast, we did not find Google 

Docs lacking in workshops 3a and 3b, as the goal was more focused on validating the and 

building scenarios. In other words, the activities we investigative were procedural and did 

not require visual aids imagining the impacts of potential changes.  

6.5.4. Towards Facilitated Post-Model Coding  
In this chapter, we provide proof that it is possible to validate, build scenarios, and consider 

model implementation with stakeholders by following a structured facilitated approach. The 

proposed framework is adapted from PartiSim and modified for optimisation modelling by 

testing it in a real case study. The proposed framework including activities, tools and outputs 

are depicted in Table 37.  

 The activities highlighted in the table are new additions, while others are directly drawn 

from the PartiSim framework. Collectively, experimentation, and implementation are 

termed post-model coding, as these activities take place after a model has been developed 

(Kotiadis & Tako, 2018). In sub-stage 4.a, the new activity is the development of the baseline 

scenario that draws from the analytics elements described in Chapter 5. These aspects of the 
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integrated optimisation model played a crucial role in this study in not only aiding the 

validation of the model, but also in building scenarios. That being said, the framework is 

focused on optimisation modelling, and should future studies not require such analytics, this 

can be an optional activity. However, with the recent push for data driven modelling and 

validation, particularly in a practice-based study, we believe the inclusion of this activity can 

be beneficial to both stakeholder engagement by providing a direction for scenario analysis 

and to making the optimisation model more realistic. 

The main stages are 5.1 and the optional stage 5.2 for Experimentation along with stage 6. 

Implementation. The sub-stages either prepare for workshops or handle outputs following a 

workshop.  Sub-stage 5.1.a is to be undertaken only if additional model validation is required, 

in the lead up to Stage 5.2 where model validation is completed.  

We recognise that several aspects of validation were captured in the application, including 

operational, experimental, and data. Recall that operational validation is associated with the 

quality and comparability of the model’s outputs to real world data (Gass, 1983; Landry et 

al., 1983; Sargent, 2020). In workshop 3a, following the walkthrough of the model 

components and the output, it was plain that for stakeholders, the operational validity was 

not at an acceptable level. In our case, this led to updates in the conceptual model and 

reformulation of the optimisation model. Closely linked is the experimental validation which 

in our case was not entirely in alignment with the stakeholder’s perception of reality 

(Alkaabneh & Diabat, 2023; Kim & Mehrotra, 2015). In examining the data that was being 

supplied to the model as inputs, concerns relating to completeness, correctness and 

appropriateness of data emerged, particularly about clinician availability data were explored 

and additional data collection needs were identified. Taking note of these concerns, the 

scenario generation activity was abandoned in favour of incorporating the updates and data 

collection needs that were raised during validation. Since the model was being built for a real 

problem situation, these concerns warranted the attention they were given, to increase 

stakeholder confidence in the outputs. In healthcare, model building in isolation, with 

opaque model design approaches is associated with stakeholder resistance to trust 

outcomes and implement findings (Carter & Busby, 2022). The transparent validation 

approach described in this chapter negotiates and addresses these concerns. Furthermore, 

the incorporation of new perspectives from stakeholders enforced a reformulation and 

enhanced model specifications (Amorim-Lopes et al., 2021).   
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Table 37: Facilitated Post-Model Coding for Optimisation, adapted from PartiSim 

Stage & Activities Activities Tools Outputs 

4.a Pre-workshop 3 sub-stage 
Purpose: 
Preparations for workshop 3a 

 Prepare preliminary materials for use in workshop 
3a (stage 5): 
- Liaise with the project champion over correctness 
of model and its results (modeller and project 
champion) 
- Review preliminary scenarios with project 
champion  

-Baseline scenario to depict current system 
performance (drawing from historical data 
analysis) 
-Future scenarios including uncertain 
inputs (generated using predictive 
analysis) 

- Prepare preliminary materials for use in the next 
workshop 

  
- Model validation and 
verification 

 
 
 
 
- Preliminary future 
scenarios 

5.1 Experimentation stage 
(workshop 3a) 
Purpose: 
Validate optimisation model 
& examine model solution 

Stakeholders are invited to: 
- Validate the optimisation model components and 
its output 
- Debate constraints & input parameters 
 
 
 
 
- Choose model inputs for scenario building   
- Identify input parameter combinations for 
scenario analysis 

- Model constraints 
validation tool 

- Model input 
parameters validation 
tool 

 
- Model input selection 
form 

 
- Scenario parameter 
combination form  

- Model validation and 
verification 

 
 
 
 
- Alternative future 
scenarios 

(If required) 
 
5.1.a Post-workshop 3a/Pre-
workshop 3b sub-stage  
Purpose: 

- Tweak or correct the optimisation model  
- Data collection (if required) 
- Implement additional scenarios suggested (based 

on stakeholder feedback from workshop 3a.) 

  
- Revised optimisation 
model 
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Preparations for workshop 3b - Liaise with the stakeholder team over correctness 
of model results 

- Prepare preliminary materials for use in 
workshop 3b 

- New preliminary future 
scenarios 

(If required) 
 
5.2 Experimentation stage  
(Workshop 3b)  
Purpose: 
Complete validation & define 
alternative scenario to 
experiment with model 

 
- Validate Updated Model  
- Choose model inputs for scenario building   
- Identify input parameter combinations for 
scenario analysis 

- Model input selection 
form 

- Scenario parameter 
combination form  

- Updated model validation 
and verification 
 

- Alternative future 
scenarios 

5.2.a Post-workshop 3b/Pre-
workshop 4 sub-stage  
Purpose: 
Refine alternative scenarios 
and prepare for workshop 4 

Modelling team: 
- Tweak or correct optimisation model  
-Implement additional scenarios suggested (based 
on stakeholder feedback from workshop 3b.) 
- Liaise with the stakeholder team over correctness 
of model results 
- Prepare preliminary materials for use in workshop 
4 

 - New alternative future 
scenarios 
 

- Revised optimisation 
model 

6. Implementation stage 
(workshop 4) 
Purpose: 
Define an implementation plan 

Stakeholders are invited to: 
- Review learning and changes implemented 
- Risk analysis and feasibility of change 
- Agree action trail 

- Script for identifying 
changes in the system 

- Feasibility and Risks 
Scale tool with manual 

- Barriers to Change tool 
with manual 

- Action and 
Communication Plan 
tool with manual 

- Feasible & desirable 
scenario(s) to be taken 
forward 
 

- Action plan with 
deliverables (including due 
date and person 
responsible) 
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Experimental, and operational validation are routinely conducted in optimisation literature 

as described in Section 6.2 (Humagain et al., 2020; Zamanifar & Hartmann, 2020). However, 

our case study is an example of how reconceptualisation and reformulation of the model is 

conducted when the model is conceptualised and built for a real-world problem situation. 

Additionally, deviating from majority of validation procedures in healthcare optimisation 

literature, computational efficiency, and the model’s ability to improve the desired 

performance measures were not the most prioritised concerns of the validation process 

(Harris & Claudio, 2022; Samudra et al., 2016). Instead, the focus was on building a model 

that represented the PCMH service to an acceptable degree, to instil confidence in the model 

and its results. These types of validations are largely explicitly conducted in simulation 

modelling.  

Many recommendations derived by the model and the study were agreed to be taken 

forward by the stakeholder group. Admittedly, the model was not implemented according 

to the traditional definition that involves the implementation of well-known mathematical 

algorithms or the development of a prototype (Ahmadi-Javid et al., 2017; Humagain et al., 

2020). However, it does add to the growing literature of optimisation models utilising real 

data for testing (Samudra et al., 2016). A major factor contributing to the lack of sustained 

model application or integration of the analytics framework into the service was the lack of 

analytics capabilities within the service, as described in Chapter 5. Additionally, the IT 

systems did not have the ability to integrate the model into their overall system, as these 

were propriety, and accommodating new features would require significant redevelopment 

of a system that is not just used by the PCMH service, but by all the services within the trust. 

Add to that, we the modelling team did not have the expertise or the funding to develop a 

bespoke product that could be implemented without integrating into the existing IT system. 

Moreover, the project was conceived by stakeholders primarily to seek insights to support 

decision making. This is similar to a recent study that utilised participative approaches to 

develop an optimisation model (Abuabara et al., 2022). In examining these aspects of the 

implementation, this study contributes to healthcare optimisation literature by providing 

information on factors that intersect with actual implementation (Samudra et al., 2016; Zhu 

et al., 2019).  

We argue that this study’s implementation success is more appropriately viewed through 

the increasingly flexible definition from simulation modelling which values the process and 

context of the study, as much as tangible and measurable outcomes (Eldabi, 2009; Long et 

al., 2020; Pitt et al., 2008). We also assert that the collaborative model-building led to critical 
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learning incidents for the stakeholders (Thompson et al., 2016). This study argues for 

optimisation literature to reframe what constitutes success for an intervention and to draw 

from the evolving research on implementation from simulation modelling literature. 

6.5.5. Future research 
In our case study, the optimisation model only has one objective. However, in many real-

world problems, there is more than one objective. Even with two objectives, it is possible to 

have a multitude of Pareto optimal solutions. The proposed framework does not consider 

the possibility of engaging stakeholders when dealing with multiple-objectives or even when 

dealing with uncertainty. It is likely that new tools will have to be developed to help 

stakeholders identify the most desirable and feasible solution and is a key area of future 

research. Facilitated decision analysis could offer solutions for addressing these challenges. 

In particular, facilitated decision analysis includes a set of methods that aid modelling 

decision involving multiple objectives and/or uncertainty in. These include Multiple Criteria 

Decision Analysis (MCDA) methods, that are used to quantify benefits, risks, and 

uncertainties by explicitly considering criteria’s along with their relative importance through 

a transparent process that incorporates stakeholder views outcomes (Durbach & Stewart, 

2012; Tzeng & Huang, 2011). One of the main aims of MCDA methods is to enable decision-

makers to reach a decision by facilitating an understanding of the problem, objectives, 

associated values, by organising and synthesising information that is complex and conflicting 

in nature  (Belton & Stewart, 2002; Phillips & Bana e Costa, 2007). These frameworks have 

been successfully applied to solve decision problems in many areas, including energy 

management (Kumar et al., 2017), Transportation (Pamucar et al., 2021), budgeting and 

resource allocation (Zavadskas & Turskis, 2011) and health technology assessment  (Oliveira 

et al., 2019), and healthcare commissioning decisions (Marsh et al., 2016).    

For post-model coding, Kotiadis and Tako (2018) have utilised MCDA at an exploratory level 

to get an understanding of the performance of scenarios by utilising an existing MCDA 

computer software called VISA. The activity utilising The Rating Performance Measures tool 

was guided by MCDA tool to represent model results (performance measures) with 

stakeholders attaching corresponding weights to each one. More recently, in optimisation 

literature, Abuabara (2022) develop a novel participatory framework for a meal planning 

problem. In this study, the Rich Picture tool is deployed to survey the problem and build a 

linear programming model that maximised diet preferences. The model is provided with 

inputs from an MCDA tool, using where stakeholders rank the various meal alternatives.  

Clearly there is scope for MCDA methods to be utilised in situations where there are 
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competing objectives and/or uncertainty in the system being modelled. For the proposed 

framework, the potential incorporation of MCDA tools is relevant to the post-model coding 

stages and is a key area of future research.  

6.6. Conclusion 

This study presents a facilitative framework for stakeholder participation, focusing on the 

validation, experimentation, and implementation of a mathematical optimisation model. 

The proposed approach was derived by applying it to a real case study in mental healthcare 

and subsequently modifying it by incorporating improvements. The case study illustrates 

how stakeholders engage and interact with the optimisation model after it has been coded. 

By conducting model validation in a facilitated setting, we demonstrate how the 

incorporation of stakeholder perspectives can enforce reformulation and enhance the 

model’s specification. Furthermore, by describing the process of validation the study 

highlights how model validation is linked to stakeholder’s perception of model usefulness. 

When considering model implementation, the study contributes to healthcare optimisation 

literature by providing information on factors that intersect with actual implementation. We 

argue that implementation success is more appropriately viewed through the increasingly 

flexible definition from simulation modelling which values the process and context as much 

as more tangible and measurable outcomes. We identify areas where the proposed 

framework can be improved in the path towards facilitated optimisation. We encourage 

researchers to conduct further investigations utilising real case studies to explore and 

expand on the advantages of applying participative approaches for optimisation model 

validation and implementation. 
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Chapter 7: Summary, Future Research and Conclusion 
7.1. Introduction 

The facilitated optimisation modelling framework, adapted from PartiSim, has been 

developed and evaluated using a case study in mental healthcare. This chapter reflects upon 

the adaptations and discusses the knowledge gained from its application with a view to 

discuss limitations and future research directions. In Section 7.1.1, the aims and objectives 

of this thesis are revisited. In Section 7.1.2, contributions of this research are presented. In 

Section 0, reflections on the adaptation and proposed framework and future research 

directions are presented in 7.1.4. 

7.1.1. Aims and Objectives Revisited 
As outlined in Chapter 1, this research intended to introduce a structured framework that 

can aid optimisation modellers to consider the key steps in the modelling lifecycle and 

involve stakeholders in the model development process. The aims of this research are: 1) To 

develop a comprehensive understanding of literature on the application of Operations 

Research (OR) methodologies in mental healthcare, with the objective of adapting and 

extending the PartiSim multi-methodology framework for optimisation modelling; and 2) To 

develop a facilitative multi-methodology framework that provides a pathway for developing 

optimisation models with stakeholder participation, particularly in the context of mental 

healthcare.  Figure 25 depicts the structure of the thesis and a mapping of research 

objectives to thesis chapters.  

Chapters 2 and 3 present a critical review of the application of DES and optimisation in 

mental healthcare. Both reviews helped in gaining an in-depth understanding of the mental 

healthcare landscape in the UK, which also shares several similarities with mental healthcare 

delivery systems in OECD (Organization for Economic Cooperation and Development) 

countries. In chapter 2, through the examination of the application of DES to mental 

healthcare, it is found that although DES is a popular tool for operations planning in 

healthcare, application to mental healthcare is limited. In chapter 3, through the meta-

review, it is found that optimisation techniques have a rich history of application in 

healthcare to tackle a wide range of issues, including planning, scheduling, routing, and 

supply chain management in various healthcare settings. However, despite these advances, 

in mental healthcare, application of optimisation is found to be in its nascent stages. Several 

opportunities for transferability are highlighted.  
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Chapter 1: Introduction 

 

Chapter 2: Application of Discrete-Event simulation for planning and operations issues in 
mental healthcare. 
 
Chapter 3: Mind the gap: a review of optimisation in mental healthcare service delivery. 
 

Objective 1: Investigated existing knowledge on the mental healthcare services 
and identified characteristic of the system that are relevant to the study. (In 
relation to aim 1). 
 
Objective 2: Investigated the application of simulation and optimisation modelling 
techniques in mental healthcare and identified gaps and opportunities. (In 
relation to aim 1). 

 

Chapter 4: Facilitative conceptual model development for mathematical optimisation: A 
case study in mental healthcare 
 

Objective 3: Iteratively adapted PartiSim for optimisation modelling through a 
case study in mental healthcare services. (In relation to aim 2). 
 
Objective 5: Proposed a Participative Optimisation (PartiOpt) multi-methodology 
framework for developing optimisation models (In relation to aim 2). 

 

Chapter 5: An integrated optimisation and analytics approach for planning mental 
healthcare services. 
 

Objective 4: Investigated and identified OR/analytics techniques to support the 
development of an optimisation model for mental healthcare service provision 
and embedded within the overarching participative and facilitative multi-
methodology framework. (In relation to aim 2). 
 
Objective 5: Proposed a Participative Optimisation (PartiOpt) multi-methodology 
framework for developing optimisation models (In relation to aim 2). 

 

Chapter 6: How do stakeholders interact with optimisation models? A case study in mental 
healthcare 
 

Objective 3: Iteratively adapted PartiSim for optimisation modelling through a 
case study in mental healthcare services. (In relation to aim 2). 
 
Objective 5: Proposed a Participative Optimisation (PartiOpt) multi-methodology 
framework for developing optimisation models (In relation to aim 2). 

 

Chapter 7: Summary and Conclusion 

Figure 25: Chapters that meet the objectives of this thesis. 
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The exploration conducted within these two chapters provided providing an appreciation of 

the context of mental healthcare from a dual perspective of service provider and service 

user. The characteristics and salient features of service users and the care model they access 

helped frame the case study. This knowledge allowed the researcher to ask directional 

questions during initial problem exploration. The literature review helped recognise the 

collective influence of the social, clinical, political, and public health factors on the mental 

healthcare system. It became clear that these contextual factors would guide the modelling 

process and direct the outcomes of this study.  

From a methodological perspective, the literature review highlighted the differences and 

similarities in the modelling lifecycles between optimisation and simulation. Optimisation 

literature is predominantly focused on model formulation and application of solution 

algorithms, while simulation modelling emphasises the entire modelling lifecycle starting 

from conceptual modelling and ending with implementation. It was recognised that these 

factors will have to be considered in the adaptation of PartiSim to optimisation.  

Chapter 4 contributes to the realisation of objective 3 and 5. Here, the CM stages of the 

PartiSim framework are adapted for problem exploration and conceptualisation of an 

optimisation model. Through this adaptation Stages 1, 2 and 3 of the PartiOpt multi-

methodology framework, are proposed, thereby contributing to Objective 5. 

Chapter 5 presents the modelling approach that is employed for the case study, following 

model conceptualisation. Based on decision-support requirements gathered during the 

conceptualisation, descriptive and prescriptive analytics techniques are integrated to 

enhance the optimisation model. The conceptualisation also led to the development of a 

novel multi-skill multi-location optimisation model whose formulation is very specific to the 

problem put forward by the stakeholders. The analytics-driven optimisation modelling 

approach draws from the conceptualisation stages and influences the post-model coding 

stages of the proposed PartiOpt framework. Therefore, this chapter contributes to the 

realisation of objectives 4 and 5.  

Chapter 6 contributes to the realisation of Objective 5 by considering the adaption of Stages 

5 and 6 (post-model coding) of PartiSim to propose components of the PartiOpt framework. 

In particular, the validation, experimentation and implementation stages are tested through 

the case study and at the end of chapter 6, the remaining stages of PartiOpt are proposed, 

closing the loop on Objective 3 & 5.  
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7.1.2. Contributions of this research 

7.1.2.1. Review of literature 

Reviews in Chapters 2 and 3 highlight that people with mental health disorders have diverse 

and changing needs throughout the course of their illness. These needs are primarily 

addressed through community-based services in local settings in co-ordination with primary 

care, specialist care, social care, voluntary services, emergency services, education, housing, 

and the justice system. The mental healthcare system involves multiple stakeholders and 

interconnected components, resulting in complex interactions. Furthermore, there is a lack 

of uniformity in the delivery of services, with no single model of care available. Patients face 

various system-wide challenges including long waiting times, insufficient integration among 

services, bed shortages, and inadequate service provision. Inadequate funding, high 

workload pressure on mental health workers, and understaffing are barriers to adequate 

care provision. Given the escalating healthcare costs and persistent prevalence of mental 

health disorders, these challenges contribute to the urgency of making comprehensive 

decisions in service delivery and robust resource allocation. 

In Chapter 3, the contribution is a systematic review to determine the extent to which studies 

have used DES within mental healthcare. This chapter builds on an existing review and 

contributes additional insights and a tailored roadmap for the future application of DES for 

planning and operations issues in Mental Healthcare (MH). In this chapter, several similarities 

are found between simulation application in social care, stroke care systems, and long-term 

care. However, the distinctive makeup of mental healthcare services necessitates further 

investigation for direct application of previous research. Opportunities for the combined use 

of simulation and optimisation are highlighted. In particular, simulation could be deployed 

to track system variability and scarce resources, while optimisation can be used to provide 

optimal resource configurations that best improve performance.  

In Chapter 3, the contribution is threefold. First, a comprehensive overview of the application 

of optimisation in healthcare so far is provided. Through this, gaps in existing optimisation 

literature are highlighted and future research directions are examined. Second, the context 

of mental healthcare services is analysed to identify unique features and the consideration 

of similar features in healthcare literature is investigated. The primary contribution derived 

from results of the scoping review on the application of optimisation techniques in mental 

healthcare services, is the identification of issues for researchers to analyse, study and 

model.    
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Through the meta-review, it is found that optimisation techniques have a rich history of 

application in healthcare to tackle a wide range of issues, including planning, scheduling, 

routing, and supply chain management in various healthcare settings. These settings 

encompass operating rooms, outpatient systems, physician and nurse scheduling, home 

health care, emergency response planning, healthcare facility location, material logistics, 

inventory management, and surgical care planning.  

However, despite these advances, in mental healthcare application of optimisation is found 

to be in its nascent stages. Existing research does not capture realistic model assumptions, 

variability in care models, and integrated services. Through the comparative analysis, several 

opportunities for transferability from existing healthcare literature and expansion of 

optimisation in mental healthcare are located.  

7.1.2.2. Conceptual Modelling for Optimisation 

Chapter 4 considers how a group of stakeholders can be involved in the conceptualisation of 

an optimisation model. Through the case study, an evaluation of how and if the conceptual 

modelling elements of the PartiSim framework can be adapted to optimisation is conducted. 

This chapter contributes a formalised facilitated modelling approaches for optimisation. To 

the best of the researcher’s knowledge, the documentation or formalisation of a facilitated 

modelling approach for optimisation is not found in the scientific literature. Furthermore, 

the study complements existing research efforts in different ways. First, it investigates the 

adaptation of CM element of PartiSim to conceptualise an optimisation model. Second, it 

contributes to the understanding of facilitated modelling for optimisation. Third, it expands 

multimethodology literature by combining SSM with optimisation modelling, and last, it 

contributes a case study in mental healthcare. 

The conceptualisation framework proposed in Chapter 4 is suitable for application in 

situations where a pragmatic and quick conceptualisation of an optimisation model is 

required, irrespective of problem type. The framework emphasises the practicalities of 

modelling new real and complex problems where conceptualisation is likely a necessity. 

Additionally, it is demonstrated through the case study that researchers can also use the 

facilitative and participative approach to develop a conceptual model and identify an existing 

problem in literature that can be adapted to fit the conceptualisation. 

7.1.2.3. Analytics-driven optimisation modelling approach 

Chapter 5 makes three contributions. First, a novel multi-skill multi-location optimisation 

model that schedules itinerant mental health clinicians to multiple geographical locations 
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across a planning horizon is presented. Second, the model is applied to a real case study, 

adding to the limited pool of optimisation literature applied to mental healthcare. Third, an 

integrated three-stage optimisation-based analytics approach that combines descriptive, 

predictive, and prescriptive analytics, is proposed. Furthermore, the chapter highlights the 

utility of the analytics approach, demonstrated through the case study, which has the scope 

to be extended to other healthcare contexts that share similarities to mental healthcare.  

From a PartiOpt perspective, the work presented in this chapter bridges the pre-model 

coding to the post-model coding stages. Specifically, outputs of the pre-model coding stage 

informed the model coding in three distinct ways: 1) To build a realistic optimisation model 

with the potential for implementation, the modelling process would require the combined 

use of multiple analytics tools; 2) Following the development of the conceptual model, a 

literature search led to the realisation that the resultant components of the formal model 

can be mapped to an existing type of optimisation model, namely a multi-skill multi-location 

model. Although the components were mapped to a specific model type, the model itself is 

novel and the formulation is very specific to the problem put forward by the stakeholders; 

3) The outputs from pre-model coding laid the foundations for a scenario analysis that is 

subsequently conducted. Therefore, the direction for model coding is determined because 

of the preceding stages of the PartiOpt framework. 

Additionally, the modelling activities within this chapter were executed without stakeholder 

participation. However, stakeholders were active participants in the model validation and 

experimentation process, described in Chapter 6. The flowchart in Figure 26 depicts the 

generalised process of how the coding of an optimisation model is embedded into the 

overarching framework and how the analytics option can be a choice informed from the pre-

model coding stages. The flowchart also depicts how model validation and experimentation 

stages draw from the model coding.  
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Figure 26: Model Coding Flowchart Linking Pre- and Post-Model Coding Stages 



 

219 
 

7.1.2.4. Facilitated post-modelling for optimisation. 

This chapter contributes to the limited pool of studies that utilise Soft OR and participatory 

approaches in optimisation modelling. By adapting PartiSim, the study utilises existing work 

to explore opportunities offered by facilitation for involving stakeholders in optimisation 

modelling.  The contributions are focused on the post-model coding stages of the PartiSim 

framework. Through the case study, the chapter presents evidence demonstrating the 

feasibility of validating, constructing scenarios, and considering model implementation in 

collaboration with stakeholders by following a structured facilitated approach. The chapter 

also offers insights into real-world factors that impact the actual implementation of 

optimisation models and emphasises how stakeholder engagement through workshops 

fosters acceptance and support for the model's recommendations. The chapter also 

contributes a case study where facilitated workshops were conducted in a virtual setting. 

The researcher argues for implementation success to viewed through the increasingly 

flexible definition from simulation modelling which values the process and context as much 

as measurable and tangible outcomes.  

7.1.2.5. PartiOpt Multi-methodology framework 

The proposed facilitated optimisation modelling framework adapted from PartiSim is 

presented in Table 38. Modifications and additions within the framework are presented in 

bold letters, specifically in Stages 3, 4, 5 and 6. Stages 1 and 2 were not modified and were 

used to initiate the study and define the system under consideration. Adaptations to Stage 

3 were driven by the need to tailor tools to accommodate differences between the 

simulation and optimisation modelling components. The first new tool is the “Inputs Form”, 

which captures all known specifications of the system under consideration, that were within 

the defined scope of the study and identifies the source of the information provided. 

Similarly, the “Constraint Form” uses the CATWOE output to draw a connection between the 

real system and the definition of constraints for the model. The “Optimisation Component 

Map” is an ad-hoc communicative model depicting the conceptualisation of the model 

components using descriptive text.  

Model coding is an activity conducted by modellers independently of the stakeholders. 

Modifications to Stage 4 were informed by the results of the pre-model coding. Specifically, 

in addition to mapping the “Optimisation Component Map” to a formal optimisation model, 

additional requirements emerged from the pre-model coding stage. Therefore, the 

framework is structured to incorporate these analytics requirements, should the need arise. 
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Equally, the framework is easily modified to fit an intervention that only requires the 

development of an optimisation model, as depicted in the Flowchart in Figure 26.  

Stage 5 is divided into two activities that are to be conducted over two successive workshops. 

In workshop 3a, it is identified that additional model input parameters would be required, 

and updates to the model were needed. Therefore, this stage could require two cycles of 

model validation, where the first dedicated round takes place in Workshop 3.a, followed by 

the second round in Workshop 3.b, which also includes scenario building. To support model 

validation, “Model Constraints validation tool” and “Model Input Parameters validation tool” 

are introduced. Similarly, for scenario generation, two new tools are introduced, namely 

“Model input selection form” and “Scenario parameter combination form”. In stage 6, the 

Feasibility and Risks Scale tool was adapted and modified for online implementation, while 

the Barriers to Change tool was not explored, but has been included in the proposed 

framework for future consideration.  

7.1.3. Reflections on the adaptation and proposed PartiOpt 
Framework 

In optimisation modelling literature, there is limited research on the modelling process and 

facilitation. This was challenging to navigate particularly given the nature of this thesis. 

PartiSim is positioned within simulation modelling, where there is ample literature on both 

the process and facilitation. In adapting PartiSim to optimisation, comparisons had to be 

made between conceptual modelling, model structure and components, model validation 

and experimentation, and model implementation. Information corresponding to each 

category was easily obtained for simulation while the same was not true for optimisation. 

These comparisons are most evident in Chapters 4 and 6. Information on modelling stages, 

besides model formulation and solution algorithm development, was mostly secured 

through older publications that were focused on gathering and framing the theoretical 

foundations of OR techniques including optimisation.  Using these ideas, current 

optimisation literature was inspected for patterns that were echoes of these foundations or 

to identify current patterns of practice, which did and did not necessarily provide information 

on the process of model building. Additionally, the use of participative methods to engage 

with stakeholders is an important advancement in optimisation modelling literature. 

However, there is limited knowledge on facilitating stakeholder engagement for 

optimisation modelling. The thesis draws heavily on existing research on modelling processes 

and facilitation in simulation modelling, while also shedding some light into optimisation 

modelling processes and highlights the potential for facilitation.  
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Table 38: Proposed PartiOpt Framework 

Stage and Purpose  Activities  Tools  Outputs 

1. Initiate Study  
Purpose:  
 
Identify stakeholder team & key 
problem situation(s) 

The modelling team undertake:  
- informal meetings and/or  
- on-site observations and/or  
- with project champion and key stakeholder(s), 

to address preliminary information needs. 

Information Collection 
Tool  

- Preliminary understanding of the 
problem situation.  

1a. Pre-workshop stage  
 
Purpose: 
Preparations for Workshop 1  

Modelling team prepare preliminary materials 
for tools to be used in workshop 1  

    

2. Define system (Workshop 1)   
 
Purpose:  
Agree on the problem situation and 
the wider system, within which it 
exists.  

Participating stakeholders take part in a 
facilitated workshop process to:  
- Brainstorming problem area (s) to be 

addressed and identify study objectives  
- Define system boundaries  

- Problem statement form  
- CATWOE and root 

definition  
- Care system model  

 
- General study objective(s)  
- A bounded system within which the 

problem to be addressed exists  

2a. Post-workshop1/Pre-workshop 
2 stage  
 
Purpose: 
Disseminate workshop 1 outputs 
and prepare workshop 2  

- Modelling team re-draw tools and 
disseminate workshop outputs to 
stakeholders  

- Prepare preliminary materials for tools used 
in workshop 2  

    

3. Specify conceptual model 
(Workshop 2)  
 
Purpose:  
Define specific elements of the 
conceptual model  

Participating stakeholders take part in a 
facilitated workshop process to:  
- Put forward and agree on performance 

measures to address the problem identified in 
workshop 1  

- Identify inputs and decision variables of the 
model  

- Define the model constraints and objectives  
- Produce optimisation model component 

mapping   
- Discuss responsibility for data collection.  

 
 

- Performance 
measurement model 
(PMM)  

- Inputs form 
- Constraints form 
- Optimisation 

Component Map 
  

 
 
- Model inputs and decision variables  
- Model objectives and constraints 
- A preliminary list of assumptions and 

simplifications  
- A communicative model  
- A list of data requirements  
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3a. Post-workshop 2 stage  
Purpose:  
Disseminate workshop 2 outputs 
and refine conceptual model  

Modelling team prepare report detailing:  
- Refined CM outputs from stage 2.a and stage 

3  
- Data requirements  

  An agreeable to all (study participants) 
and feasible conceptual model 
describing an optimisation model  

4. Model coding  - Data collection (modeller & stakeholder) 
- Data analysis: descriptive and predictive 

(modeller) 
- Formulate, code, and solve optimisation 

model  

 - Optimisation Model Solution 
- Model Results 

4.a Pre-workshop 3a sub-stage 
Purpose: 
Preparations for workshop 3a  

Prepare preliminary materials for use in 
workshop 3a  
- Liaise with the project champion over 

correctness of model and its results (modeller 
and project champion) 

- Review preliminary scenarios with project 
champion: 

- Baseline scenario to depict current system 
performance (drawing from historical data 
analysis) 

- Future scenarios including uncertain inputs 
(generated using predictive analysis) 

- Prepare preliminary materials for use in the 
next workshop 

  
 
 
 
 
 

- Model validation and verification 
 
 
 

- Preliminary future scenarios 

5.1 Experimentation stage 
(workshop 3a) 
Purpose: 
Validate optimisation model & 
examine model solution 

Stakeholders are invited to: 
- Validate the optimisation model components 
and its output 
- Debate constraints & input parameters 
 

- Model constraints 
validation tool 

- Model input parameters 
validation tool 

- Model validation and verification 
 
 

- Choose model inputs for scenario building   
- Identify input parameter combinations for 
scenario analysis 

- Model input selection 
form 

 
- Scenario parameter 
combination form  

- Alternative future scenarios 



 

223 
 

(If required) 
 
5.1.a Post-workshop 3a/Pre-
workshop 3b sub-stage  
Purpose: 
Preparations for workshop 3b 

- Tweak or correct the optimisation model  
- Data collection (if required) 
- Implement additional scenarios suggested 

(based on stakeholder feedback from 
workshop 3a.) 

- Liaise with the stakeholder team over 
correctness of model results 

- Prepare preliminary materials for use in 
workshop 3b 

  
- Revised optimisation model 

 
 

- New preliminary future scenarios 

(If required) 
 
5.2 Experimentation stage  
(Workshop 3b)  
Purpose: 
Complete validation & define 
alternative scenario to experiment 
with model 

 
- Validate Updated Model  
- Choose model inputs for scenario building   
- Identify input parameter combinations for 
scenario analysis 

- Model input selection 
form 

- Scenario parameter 
combination form  

- Updated model validation and 
verification 
 

- Alternative future scenarios 

5.2.a Post-workshop 3b/Pre-
workshop 4 sub-stage  
Purpose: 
Refine alternative scenarios and 
prepare for workshop 4 

Modelling team: 
- Tweak or correct optimisation model  
-Implement additional scenarios suggested 
(based on stakeholder feedback from workshop 
3b.) 
- Liaise with the stakeholder team over 
correctness of model results 
- Prepare preliminary materials for use in 
workshop 4 

 - New alternative future scenarios 
 

- Revised optimisation model 

6. Implementation stage (workshop 
4) 
Purpose: 
Define an implementation plan 

Stakeholders are invited to: 
- Review learning and changes implemented 
- Risk analysis and feasibility of change 
- Agree action trail 

- Script for identifying 
changes in the system 

- Feasibility and Risks Scale 
tool with manual 

- Barriers to Change tool 
with manual 

- Action and 
Communication Plan tool 
with manual 

- Feasible & desirable scenario(s) to be 
taken forward 
 

- Action plan with deliverables 
(including due date and person 
responsible) 
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Kotiadis and Tako (2021) have acknowledged that workshop facilitation is an art that requires 

ongoing refinement and update of competencies though reading or practice activity.  In this 

study, a total of five workshops were conducted. The first two were held in person and the 

remaining three were held virtually. The researcher, a novice facilitator, was guided by the 

expert facilitator (second supervisor), especially for the first two workshops. In particular, 

the organisation, goals and contents of the workshop were explored under the expert 

facilitators’ guidance. Prior to the in-person workshops, scripts detailing activities, allocated 

time, and prompts were developed to aid the novice facilitator. On reflection, the researcher 

can say that the guidance and the preparations that were undertaken prior to the workshops 

were significant in laying the foundations of facilitation competencies. The guidance and 

subsequent practice in workshops acted as a bridge between theoretical knowledge and 

practical implementation.  

The in-person workshops were much harder to conduct, in comparison to the virtual 

workshops. This could be due to several reasons. First, the in-person workshops were the 

researchers’ (a novice facilitator) first and with no prior experience there were struggles 

managing unexpected surprises such as power imbalances and limited participation among 

stakeholders. The researcher did not have the flexibility to appropriately respond and adapt 

to these challenges which required the expert facilitator to intervene to stay on track to 

achieving workshop outcomes (Tavella & Papadopoulos, 2015). On reflection, watching the 

expert facilitator manage and manoeuvre these challenges in practice was a vital learning 

experience towards developing future competencies.  

The virtual workshops were easier in comparison to the in-person workshops, perhaps 

because they were conducted in the second half of the study. A rapport had been established 

with the stakeholder group and there was a degree of buy-in for the study and its pursuits. 

This made navigating stakeholder interactions relatively easier. Additionally, the researcher 

had developed some competencies that provided a confidence boost in their ability to 

facilitate a workshop. More importantly, the researcher was able to actively refer to the 

script during each virtual workshop, which was not possible during in-person workshops. The 

level of preparedness that is required for in-person workshops was relatively less in a virtual 

setting. Furthermore, the virtual workshops were conducted following conceptualisation and 

model development. Meaning the scope and direction of each workshop was significantly 

narrow in comparison to the first two workshops where the boundaries were quite wide. The 

effect of virtual versus in-person workshops on a novice facilitator’s skills and competencies 

were not examined to the extent that is potentially possible. Future research in facilitated 
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optimisation could explore this aspect which has the potential to yield important guidance 

to both new and seasoned researchers.  

In general, the pre-model coding stages of PartiSim were harder to adapt when compared to 

post-model coding. The level of difficulty was likely due to the wide scope, lack of literature 

on conceptual modelling in optimisation, and the researcher being a novice facilitator and 

modeller. And for the rather apparent reason that pre-model coding stages took place before 

post-model stages, allowing for experience, knowledge, and confidence to accrue in the later 

parts of the study. Tako and Kotiadis (2015) have highlighted that a key factor in using the 

PartiSim framework is the ability and preparedness to move from one paradigm to another 

or from the hard to soft paradigm and vice versa. As a novice modeller and facilitator, the 

researchers can attest to facing the challenge of overly identifying with the hard OR 

paradigm, given that the researchers’ previous educational background and experience was 

predominantly in computer science and analytics. The researchers spent considerable time 

and energy into grasping the premise of Soft OR and its theoretical underpinnings to 

eventually begin to understand SSM tools. The theoretical knowledge led to an appreciation 

of the benefits of utilising SSM and since this effort was running in parallel to negotiations 

with the mental healthcare service, the importance of using Soft OR tool for the project 

became increasingly evident.  

Admittedly, the researcher’s understanding of Soft OR, and facilitated modelling practices is 

evolving to this day and is informed by retrospective reflection on the case study. The 

researcher concurs with the advice provided by the developers of PartiSim, of adapting a 

continuous improvement plan at a personal level to reflect on the knowledge and experience 

gained (Kotiadis & Tako, 2021).  

The optimisation model developed for the case study was mapped to a specific model type 

and was formulated for the specific problem put forward by the stakeholders. Additionally, 

the model emphasises the incorporation of first-order hard constraints derived from clinical 

and cultural factors. The developed model could be coded and solved using a commercial 

software. In situations where the model requires the inclusion of additional complexities 

such as additional constraints, stochastic elements, and uncertainties, and for a larger 

system, it might become necessary to explore the deployment of novel heuristics, stochastic 

optimisation, and robust optimisation. This could change the way the proposed PartiOpt 

framework is utilised and could very well lead to further modifications to accommodate 

these methodological complexities. It is anticipated that the changes could be isolated to the 

post-model coding stages which predominantly deals with the results of the model solution. 
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It is possible that the pre-model coding stages can be used to conceptualise an optimisation 

model that will capture the complexities that require an enhanced solution strategy. 

However, it is true that if the model is too complex there may be the need for an additional 

stage/workshop to discuss simplifications to the conceptual model if the resulting 

optimisation model is intractable. These factors were not considered in this thesis and are 

an opportune area of research. 

7.1.3.1. When to use the proposed framework? 

Based on the experience of developing and implementing the proposed framework, the 

researcher believes that the building of an optimisation model using the proposed 

framework would be most suited for application and further development to situations with 

the following criteria: 

Multiple Stakeholders: The framework can be applied for building optimisation models in 

contexts characterised by multiple stakeholders with diverse perspectives and concerns 

likely to influence decision-making; where the problem definition is not well defined or even 

absent, as was the case in the mental healthcare service that was the focus of our case study. 

Such an environment is also conducive to stakeholder leaning about the system of interest.  

Improvement over Optimality is Preferred: Optimisation literature is primarily concerned 

with developing sophisticated model formulations and developing novel solution algorithms 

that are not always conducive to practical implementation. Often the goal is to produce an 

optimal or near-optimal solution. The proposed framework is suitable for practical and real-

life applications where exploration of the problem situation and a sense of progress is 

preferred over optimality.  

Simple to model: Following on from the last point, in preferring progress over optimality, a 

model that is simple, realistic, and intuitive to stakeholders will be developed. In healthcare, 

the complexity of the model and opaqueness of the model building process are deterrents 

to stakeholder uptake of model recommendations. In such an environment, it is 

advantageous to build simple optimisation models, gradually fostering trust and 

comprehension of the process, similar to the approach followed in simulation and system 

dynamics literature.   

Visualisation: The framework has introduced a communicative model that is used to 

represent the conceptualisation of an optimisation model. In situations involving medical 

professionals or non-OR literate personnel, the researcher found that breaking down of 

complex concepts into digestible visual and descriptive representations was key to build trust 
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and understanding of the model and the modelling process. In the proposed framework, a 

thread connects the initiation of the study all the way to the development of the conceptual 

model. The combined use of tools and visual depictions leading to the conceptual model 

make up the visualisation aspect of the framework. The framework is suitable for problem 

situations where this aspect is identified as desirable. 

Multiple data sources: The PCMH service was keen to leverage the data that was available in 

the system. In fact, the project was commissioned on the premise of using this untouched 

data to evaluate the service and generate insights. The presence of unutilised data spread 

across several sources is a common feature in healthcare services, particularly in the UK. In 

situations where the utilisation of existing data for a modelling project is a key factor, the 

framework provides a so called “plug-and-go” structure to manage, analyse, and use the 

data. Presupposing relevant Ethics and GDPR approval are sought and received.  

7.1.4. Future Research 
The literature review on optimisation in mental healthcare highlighted several avenues for 

applying existing research from the healthcare field and outlined opportunities for growth 

that leverage the unique characteristics of mental healthcare, that are increasingly 

acknowledged as significant for future healthcare applications. Currently within optimisation 

literature, studies are emphasising the need to incorporate the inherent uncertainty and 

accessibility issues prevalent in healthcare systems such as cancer care. Future applications 

in mental healthcare can utilise these advances from cancer care to tackle issues related to 

risk and accessibility to care. Optimisation models in the future can model features such as 

continuity of care and planning multi-disciplinary patient care pathways by learning from 

application in community care, home healthcare and outpatient care, where such features 

are frequently explored.  

Apart from identifying elements that can be incorporated into the models for future research 

in mental healthcare, there is a recognised requirement to develop holistic approaches that 

promote the involvement of multiple stakeholders. This requirement is applicable 

throughout the field of optimisation in healthcare. Specifically, the utilisation of advanced 

solution technologies like stochastic and robust optimisation can be beneficial in addressing 

planning issues in mental healthcare. However, the utilisation of modelling methodologies 

such as mixed-methods and multi-methodology can provide even greater benefits in 

addressing the challenges of mental healthcare planning and these methodologies can also 

be extended to other healthcare settings.  
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The case study in this thesis demonstrates the merits of shifting the focus of an optimisation 

model. In literature, most optimisation model, and by extension modellers are focused on 

computational efficiency and developing efficient algorithms that generate “the” optimal 

solution to problems that are often simplifications of reality. In contrast, the case study 

exemplifies reality wherein stakeholders are primarily concerned with having an accurate 

representation of the problem at hand and are particularly interested in identifying solutions 

that enhance current practices. The proposed framework was key in highlighting these 

factors that are otherwise not considered in the traditional mode of building optimisation 

models. This thesis puts forward a fundamental claim that the proposed framework has the 

potential to be used for developing optimisation models that can tackle problems not only 

within mental healthcare but also across the broader healthcare domain. The proposed 

framework has proved its value by offering crucial decision-support to a real-world problem. 

This assertion holds true for the healthcare domain and is reinforced by multiple existing 

reviews in healthcare optimisation literature, which emphasise the importance of 

incorporating stakeholder priorities, including realistic features, capture realistic 

assumptions, address real-life problems, and report on model implementation (Ahmadi et 

al., 2019; Ahmadi-Javid et al., 2017; Erhard et al., 2018; Marynissen & Demeulemeester, 

2019; Samudra et al., 2016; Volland et al., 2017). 

The proposed framework puts forward a structured approach to engage stakeholder’s 

throughput the optimisation modelling lifecycle. The case study demonstrates how the 

framework supports the contextualise of the optimisation modelling through a thorough 

examination of the problem context by involving stakeholders. In the last two decades, six 

studies developed optimisation models for mental healthcare planning, as reviewed in 

Chapter 3 (Bester et al., 2007; Cohn et al., 2009; Hertz and Lahrichi, 2009; Pagel et al., 2012; 

Samorani and Laganga, 2015; Li et al., 2016). These application could have further enhanced 

their practical applicability if an approach like the one proposed in this thesis were 

implemented. For instance, most of these studies focused on developing optimisation 

models in a multi-care network, or in a real world practical context. However, limited 

information is provided on the influence of this type of setting on the problem situation and 

the model itself, aside from providing detailed information about the problem context 

relative to model formulation. Additionally, very little insights were provided about 

contextual factors like how the problem was structured, if there were any problems with 

data collection, how was technical information relative to the model and its results, 

communicated to stakeholders (Virtue et al., 2013). These systemic factors are inextricably 
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linked to practical applicability and useability of the model. The case study reveals and 

highlights these factors, establishing a clear connection between the context and the 

optimisation model. It also provides insights into how these factors influenced the model 

and foregrounded the subsequent practicality and usefulness of the model’s 

recommendations. Future research can utilise the proposed framework to capture these 

contextual factors within a problem of interest and develop optimisation models that are 

applicable in practice. 

The framework can be applied to address problems in supply chain management, 

manufacturing, logistics, and disaster management, to address the dynamic nature of 

stakeholders' requirements. For instance, the framework can be particularly useful to 

collaboratively capture stakeholders' sustainability requirements and align sustainable 

practices to an organisations’ strategies and capabilities (Chowdhury et al., 2019). In logistics 

and manufacturing, it could be deployed to provide context-specific insights to stakeholders 

and inform the design and implementation of innovative solutions (Malik et al., 2019; 

Petruzzelli et al., 2023). In disaster management, involving stakeholders in the model 

building process, particularly for conceptual modelling, experimentation and calibration is a 

key area of future research (Amideo et al., 2019; Çoban et al., 2021). It might be necessary 

to adapt the post-modelling stages for more comprehensive testing using random and 

realistic instances that is a characteristic requirement in the domain to establishing the 

optimisation model’s applicability.   

From a methodological view, it is likely that new tools will have to be incorporated into the 

proposed framework for engaging with stakeholders in situations with multiple-objectives 

or even when dealing with uncertainty. As highlighted before, the proposed framework does 

not consider these features, but it is argued that Facilitated decision analysis, and in 

particular, Multiple Criteria Decision Analysis (MCDA) methods, can be used to explicitly 

organise and synthesise information that is complex and conflicting in nature through a 

transparent process that incorporates stakeholder views outcomes (Belton & Stewart, 2002; 

Durbach & Stewart, 2012; Phillips & Bana, 2007; Tzeng & Huang, 2011). Additionally, given 

that the framework is an adaptation of the PartiSim, future researchers considering both DES 

and optimisation for their intervention can draw from the work presented here and the 

original framework. Researchers looking to integrate optimisation with hybrid simulation can 

draw from the representation method that can aid the modeller in defining the modelling 

frame (i.e., the combination of methods forming the hybrid model) (Jones et al., 2022).  
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In summary, the facilitated optimisation framework developed in this thesis is – to the best 

of the researcher’s knowledge- the first instance of utilising a structured approach to involve 

stakeholders throughout the optimisation modelling lifecycle. The scope of the framework is 

broad and extends beyond healthcare, allowing for the construction of optimisation models 

in various domains. Admittedly, the title of the thesis serves as a signpost towards the 

trajectory of becoming an established approach for building optimisation models, while also 

indicating the position this work occupies on the journey towards establishing itself as well-

defined area of research. Undoubtedly, the future of this framework will be supported by its 

sustained utilisation for optimisation modelling. Through application to real case studies, the 

framework will likely evolve and expand to include new tools and lead to improved guidance 

for optimisation modellers in addressing real world problems.  
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Appendix A : PartiSim Tools – Initiate Study (Stage 1) 

This section contains screenshots of tools prescribed by the PartiSim framework for Stage 1. 

 
Figure 27: Screenshot of Study Initiation Tool 1: Situation of interest 

 

 
Figure 28: Screenshot of Initiate Study Tool 2: Recording Observations 
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Figure 29: Screenshot of Study Script 2: Bank of Questions 

 

 
Figure 30: Screenshot of Initiate Study Tool 3: Stakeholders' Contact details 

 

 
Figure 31: Screenshot of Initiate Study Tool 4: List of reading materials 
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Appendix B : PartiSim Tools – Define the Problem 
Workshop (Stage 2) 
This section contains screenshots of tools prescribed by the PartiSim framework for Stage 2. 

 
Figure 32: Screenshot of Conceptual Modelling Tool 1: Define the System 
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Appendix C : PartiSim Tools – Define the Conceptual 
Model Workshop (Stage 3) 
This section contains screenshots of tools prescribed by the PartiSim framework for Stage 3. 

 

 
Figure 33: Screenshot of Stakeholder Form 1: Write Study Objectives 
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Figure 34: Screenshot of Stakeholder Form for Conceptual Modelling Tool 3 
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Figure 35: Screenshot of Conceptual Modelling Tool 3: Drawing the Performance Measurement Model 
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Figure 36: Screenshot of Conceptual Modelling Tool 4: Identify model inputs and outputs. 

 

 

Figure 37: Screenshot of Conceptual Modelling Tool 4: Determine Study Objectives 
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Appendix D : Case Study Outputs – Initiate Study (Stage 
1) 

This section contains screenshots of tools that were used directly from the PartiSim 

framework for the initiate study stage. 

Table 39: Situation of Interest Form Output 

Problem Situation Source 

Preliminary problem situation 1 
A primary mental healthcare service model for the whole county 
Presently, trust executives acknowledge that there are a number of 
separate ideas floating around various CCG’s for the service model.  

Source 1 
Stakeholder 
B 

Preliminary problem situation 2 
Lack of information on KPI’s to check if the new service provides value 
for money or is having a clinical impact 

Source 2 
Stakeholder 
B, A, C, D, E.  

Preliminary problem situation 3 
How much time are clinicians spending in tasks and seeing patients. 
Is there an increase in productivity with all the recent changes (hiring of 
admin staff, CPA burden released, MDT team involvement. 

Source 3 
Stakeholder 
B, A, C, E.  

Preliminary problem situation 4 
GP referral data for the past 5 years is available and could be used as 
benchmark to capture service performance 

Source 4 
Stakeholder 
B, A, C. 

Potential improvements/change   

Change 1 
It would be beneficial to also have a primary care model for the whole 
county.  

Source 1 
Stakeholder 
B 

Change 2 
Empirical analysis of service operations to identify opportunities  

Source 2 
Stakeholder 
B, A, C, D, E.  

Change 3 Source 3  
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Table 40: List of Reading Material Form Output 
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Table 41: Stakeholder Contact Details Output 
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Table 42: Stakeholder Influence & Engagement Form Output 
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Table 43: Data Availability & Accessibility Form Output 
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Appendix E : Case Study Outputs – Define the Problem 
Workshop (Stage 2) 
This section contains screenshots of outputs from Stage 2 of the case study that were not 

taken forward. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

‒ Liaison psychiatry referrals being discharged into GP and not LC 

‒ Inequalities: Addressing and meeting needs 

‒ Unmet needs: what, where? 

• People who do not require SC but need LC 

• People requiring care, but do not fit a box 

• No information on demand for digital technologies such 

as e-consultation. 

• No clinical outcomes to measure impact (PREM & PROM) 

‒ Information about people referred by GP to other services 

• Electronic information sharing between services. 

‒ Three different database’s currently in use by the service. 

‒ Information on how many are transitioning back to GP from LC 

‒ How many are transitioning back to GP from LC 

‒ How many avoided re-referrals 

‒ How many avoided crisis (by CMHT or acute) 

‒ No control over number of referrals (managing expectation) 

‒ Staff-patient ratios. 

‒ SI’s and complaints on people being stepped down into PC (Is 

there enough support?) 

‒ Effects of dual diagnosis: care pathway, demand. 

‒ Effects on primary prevention: where does mental wellbeing 

present 

‒ Unmet needs assessment 

 

Table 44: Problem Exploration Outputs that were not taken forward 
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Figure 38: Transformations that were not explored in the study. 

 

 

 

 

 

 

 

 

 

More mental health provision in 

primary care 

Decreased demand in 

secondary care mental health 

Enhanced primary care service Decreased provision in 

secondary care-less duplication 

Set up annual mental health 

reviews 

Mental health prevention, 

promotion, awareness, & better 

physical health 

Create therapeutic interventions 

for patients with EUPD 
That need met 

Common communication thread 

access across organisational 

boundaries 

Decreased in duplication and 

risk management. 

MDT working in primary care 
Decreased number of people 

waiting for specialist care i.e., 

psychological interventions. 

Discharge patients after 6 

months of specific clinical 

intervention 

Quick referral throughout 

Early diagnosis and medication 

reviews by using ACPs 
Patients are seen and diagnosed 

within 28 days 

Increase in capacity Increase in face to face contact 

High CMHT workload 
Capacity to accept  CMHT 

referrals 
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Appendix F : New Proposed Tools – Facilitated CM for 
Optimisation  
This section contains new tools proposed for the CM stages of PartiOpt. 

Table 45: Proposed 'Input Form'  

Actors  Characteristics Operational Details Data Sources 

 -  -  

☐Known with certainty. 

☐Derive using descriptive 

tools. 

☐Collect new data. 

☐Derive using predictive 

tools. 

☐Stakeholder estimation 

☐Scenario based data 

Customers  

 -  -  

☐Known with certainty. 

☐Derive using descriptive 

tools. 

☐Collect new data. 

☐Derive using predictive 

tools. 

☐Stakeholder estimation 

☐Scenario based data 

 

Table 46: Generic Constraints Form 

Environmental Constraints (E)  

Budget 
E.g., at least X amount needs to be allocated for service 
A and at most Y amount for service B 

 

Human Resources 
E.g., balance health resource with patient load 

 

Physical Resources 
E.g., allocate appointments when consultation room 
available 

 

Time 
E.g., clinicians cannot do two consecutive night shifts 

 

Location/ Geographical 
E.g., clinicians in band X can only travel to locations A, B 
and C. 

 

Preference/ Utility 
E.g., clinician preference for night shifts 

 

Demand 
E.g., demand of severe patients must be satisfied 

 

Capacity 
E.g., limits on total number of beds or nurse work hours 
in a week 

 

Structural 
E.g., appointments in a given location cannot be 
assigned to a clinician who is not allocated to that 
location 
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Appendix G : Images from Case Study – Workshop 1 & 2 
 

 
Figure 39: CATWOE Tool Output (Workshop 1) 

 

 
Figure 40: Care Systems Model Flipchart (Workshop 1) 
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Figure 41: Stakeholder G Brainstorming Transformation (T) 
 

 
Figure 42: Stakeholder C Brainstorming Transformation (T) (Workshop 1) 
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Figure 43: Project Champion Brainstorming Transformation (T) (Workshop 1) 

 

 
Figure 44: Workshop 2 Setup - Angle 1 
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Figure 45: Workshop 2 Setup - Angle 2 

 

Appendix H : CPLEX Code – Optimisation Model Coding 
(Stage 4) 
 
int Fd=...; int Ad=...; int Td=...; int Cd=...; int L=...; int M=...; 
int Smax=...; // maximum number of shifts per day 
int Smin=...; //minimum number of shifts per day 
float Tmax=...; // maximum travel distance between clinics 
int shifts=...; int clinic=...; int nurses=...; int appointments=...; 
int days=...; int Nc=...; int Nn=...; range Nurses=1..nurses; 
range Shifts=1..shifts; range Clinics=1..clinic; range Days=1..days; 
range Appointments=1..appointments; int Demand=...; int H[Nurses]=...; 
int Followup[Clinics]=...; int Assessment[Clinics]=...; 
int Telephone[Clinics]=...; int Community[Clinics]=...; 
int Hns[Nurses][Shifts]=...; 
float distance[Clinics][Clinics]=...; // distance between clinics 
int Pnc[Nurses][Clinics]=...; // nurse preferences to clinics 
int Bna[Nurses][Appointments]=...; // Appointment skill preferences to 
clinics string stS[Days]=...; {int} shift1[Days]; {int} shiftAM=...; 
{int} shiftPM=...; 
 
execute convert_strings1 
{ 
for(var b in Days) 
{ 
   var ar=stS[b].split(","); 
   for(var i=0;i<ar.length;i++) shift1[b].add(Opl.intValue(ar[i]));} 
} 
execute 
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{ 
writeln(shift1; 
} 
 
dvar int+ Xf[Nurses][Clinics][Shifts];  
dvar int+ Xa[Nurses][Clinics][Shifts]; 
dvar int+ Xt[Nurses][Clinics][Shifts]; 
dvar int+ Xc[Nurses][Clinics][Shifts]; 
dvar boolean U[Nurses][Appointments]; 
dvar boolean Y[Nurses][Clinics][Shifts]; 
dvar boolean w[Nurses][Clinics]; 
dvar boolean Q[Nurses][Shifts]; 
dvar boolean yy; 
dvar int+ Z[Nurses]; 
 
dexpr int TotAssigned  = 
  sum(n in Nurses, c in Clinics, s in Shifts) 
(Xf[n][c][s]+Xa[n][c][s]+Xt[n][c][s]+Xc[n][c][s]); 
dexpr int AAssigned  = 
  sum(n in Nurses,c in Clinics, s in Shifts) Xa[n][c][s]; 
  dexpr int FAssigned  = 
  sum(n in Nurses,c in Clinics, s in Shifts) Xf[n][c][s]; 
  dexpr int TAssigned  = 
  sum(n in Nurses,c in Clinics, s in Shifts) Xt[n][c][s]; 
  dexpr int CAssigned  = 
  sum(n in Nurses,c in Clinics, s in Shifts) Xc[n][c][s]; 
dexpr int UnmetDemand = Demand-TotAssigned; 
 
 
 
minimize UnmetDemand; 
 
subject to { 

// assign followup appointments in clinics to shifts 
forall(c in Clinics) 
sum(n in Nurses,s in Shifts) Xf[n][c][s]<=Followup[c]; 
  
// assign assessetment appointments in clinics to shifts   
forall(c in Clinics) 
sum(n in Nurses, s in Shifts) Xa[n][c][s]<=Assessment[c];  
    
 // assign telephone appointments in clinics to shifts   
forall(c in Clinics) 
sum(n in Nurses,s in Shifts) Xt[n][c][s]<=Telephone[c];  
    
 // assign community appointments in clinics to shifts   
forall(c in Clinics) 
sum(n in Nurses,s in Shifts) Xc[n][c][s]<=Community[c];  
 
//The sum of duration of all appointments assigned to a shift should not 
exceed the length of each shift 
forall(n in Nurses,s in Shifts,c in Clinics) 
(Fd*Xf[n][c][s] +   Ad*Xa[n][c][s] + Td*Xt[n][c][s] +Cd*Xc[n][c][s])<=L;  

//The sum of duration of all appointments assigned across shifts and 
clinics should not exceed the length of available hours 
forall(n in Nurses) 
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sum(s in Shifts,c in Clinics)(Fd*Xf[n][c][s] +   Ad*Xa[n][c][s] + 

Td*Xt[n][c][s] +Cd*Xc[n][c][s])<=H[n]; 

 //Assign a clinic to a nurse in a given shift, only if that clinic and 
shift have been assigned assesstment appointments 
forall( n in Nurses, c in Clinics, s in Shifts) 
M*Y[n][c][s]>= Xa[n][c][s]; 
 //Assign a clinic to a nurse in a given shift, only if that clinic and 
shift have been assigned follow-up appointments 
forall( n in Nurses, c in Clinics, s in Shifts) 
M*Y[n][c][s]>= Xf[n][c][s]; 

//Assign a clinic to a nurse in a given shift, only if that clinic and 
shift have been assigned telephone appointments 
forall( n in Nurses, c in Clinics, s in Shifts) 
M*Y[n][c][s]>= Xt[n][c][s]; 

//Assign a clinic to a nurse in a given shift, only if that clinic and 
shift have been assigned community appointments 
forall( n in Nurses, c in Clinics, s in Shifts) 
M*Y[n][c][s]>= Xc[n][c][s];  

// nurse can only be assigned to 1 or 0 shifts in a clinic. 
forall(c in Clinics, s in Shifts) 
sum(n in Nurses) Y[n][c][s]<= 1;  

//Maximum number of shifts per day for each nurse 
forall(n in Nurses, d in Days, s in shift1[d]) 
sum(c in Clinics) Y[n][c][s]<=Smax; 

//second shift assignment for a nurse cannot be made to that clinic. 
forall(n in Nurses, d in Days, s in shiftAM, c1,c2 in Clinics:c1!=c2) 
(Y[n][c1][s]+Y[n][c2][s+1])-1 <=M*yy; 

forall(c1,c2 in Clinics:c1!=c2) 
distance[c1][c2] - Tmax <= M*(1-yy); 

//Assign a clinic to a nurse in a given shift, only if that clinic is 
assigned to that nurse 
forall (c in Clinics, n in Nurses, s in Shifts) 
Y[n][c][s]<= w[n][c]; 

//Each clinic can only be assigned utmost n nurse 
forall (c in Clinics ) 
sum(n in Nurses) w[n][c]<=Nn; 

//Each nurse can be assigned to utmost a threshold value of clinics   
forall (n in Nurses) 
sum(c in Clinics) w[n][c]<=Nc;  

//Clinic Prefernce 
 forall(n in Nurses,c in Clinics)  
 w[n][c]<=Pnc[n][c];  

//Assign a clinic to a nurse in a given shift, only if that clinic is 
assigned to that nurse 
forall (c in Clinics, n in Nurses, s in Shifts) 
Y[n][c][s]<= Q[n][s]; 
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//Shift Prefernce     
forall(n in Nurses, s in Shifts)  
Q[n][s]<=Hns[n][s];  

forall (n in Nurses) 
Z[n]-(H[n]-(sum(c in Clinics, s in Shifts) 
(Fd*Xf[n][c][s]+Ad*Xa[n][c][s]+Td*Xt[n][c][s]+Cd*Xc[n][c][s])))>=0; 
forall(n in Nurses, c in Clinics, s in Shifts, a in Appointments) 
M*U[n][a]>= Xc[n][c][s];  

forall(n in Nurses, c in Clinics, s in Shifts, a in Appointments) 
M*U[n][a]>= Xf[n][c][s];  

forall(n in Nurses, c in Clinics, s in Shifts, a in Appointments) 
M*U[n][a]>= Xa[n][c][s];  

forall(n in Nurses, c in Clinics, s in Shifts, a in Appointments) 
M*U[n][a]>= Xt[n][c][s];   

forall(n in Nurses, a in Appointments) 
U[n][a]<= Bna[n][a]; 
}; 
 
execute writeoutput 
{writeln("solution"); 
writeln(+AAssigned+","+FAssigned+","+TAssigned+","+CAssigned); 
for(var n in Nurses){ 
writeln(+n+","+Z[n]);} 
for(var n in Nurses){ for (var c in Clinics){ for (var s in Shifts){ 
if(Y[n][c][s]==1){\writeln(+n+","+c+","+s+","+Xa[n][c][s]+","+Xf[n][c][s]+
","+Xt[n][c][s]+","+Xc[n][c][s]);}}}}}; 
 

Appendix I : PartiSim Tools – Experiment with Model 
(Stage 5) 
 

This section contains screenshots of tools prescribed by the PartiSim framework for Stage 5. 

 

Figure 46: Screenshot of Experimentation Tool 1: Model Validation (Facilitator Form) 
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Figure 47: Experimentation Tool 1: Model Validation (Stakeholder Form) 

 

 

Figure 48: Screenshot of Experimentation Tool 2: Rate the Performance Measures 
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Figure 49: Screenshot of Experimentation Tool 3: Debate Alternative Scenarios (Form for Facilitator) 
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Figure 50: Experimentation Tool 3: Debate Alternative Scenarios (Form for Stakeholders) 

Appendix J : PartiSim Tools – Implement Findings (Stage 
6) 
 

 

Figure 51: Screenshot of Implementation Tool 1: Feasibility and Risks Scale 
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Figure 52: Screenshot of Implementation Tool 2: Barriers to Change 
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Figure 53: Snapshot of Implementation Tool 3: Action and Communication Plan 
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Appendix K : Case Study Outputs: Experiment with Model (Stage 5) 
This section contains screenshots of tools that were used directly from the PartiSim framework and presents new tools that were adapted for 

optimisation modelling. 

 

Figure 54: Google Docs Model Input Parameters Validation Tool (workshop 3a) 
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Figure 55: Google Docs Model Constrains Validation Tool (Workshop 3a) 
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Figure 56: Google Docs Scenario Parameter combination form (Workshop 3b) 
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Appendix L : Case Study Outputs: Implement Findings (Stage 6) 
 

Table 47: Action and Communication Plan Output (Workshop 4) 

Action for change 
Action and 
communication tasks 

Action Leader 
Stakeholders to 
communicate with 

Date expected to 
complete action 

Data 
achieved 
action 

Comments 

Standardise 
intervention coding 

In the pipeline, will be 
informed by study 

Stakeholder J Stakeholders K, L, 
and M 

End of 2021   

Capture all patient 
related interventions 

 Stakeholder D Stakeholders K, and L Potentially mid 
2022 

  

Standardise service 
delivery 

In the pipeline, will be 
informed by study 

Stakeholder J Stakeholders K, L, 
and M 

Potentially mid 
2022 

  

Distribute workload 
equitably 

Ongoing Stakeholder D Stakeholders J, K, L, 
and M 

End of 2021   

Deploy optimisation 
model 

To be put forward to 
wider trust 

Project 
Champion (A) 

Stakeholders C, D, J 
and Facilitator  

Ongoing   
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Appendix M : New Proposed Tool – Facilitated Post-
Model Coding for Optimisation 

 

 

 
Table 48: Scenario Input Selection Form  

Model Inputs Selection 

Controllable Input Parameters 

Number of Appointment Types   

Appointment duration for each type ✓ 

Number of Clinicians  

Number of clinic locations  

Number of days in the planning horizon  

Number of available shifts in the planning horizon  

Number of shifts per day  

Length of each shift ✓ 

Maximum travel distance between clinics  

Clinician to appointment skill-based allocation.  

Clinician to clinic location allocation (& caseload) * 

Maximum number of shifts per day for each clinician  

Maximum number of clinic locations that can be assigned to a clinician  

Maximum number of clinicians that can be assigned to a clinic location  

Total available hours per clinician   

Clinician Availability ✓ 

Uncertain Input Parameters (generated) 

Demand from each clinician location for each appointment type ✓ 

Assumed/Generated Input Parameters 

Distance between clinic locations   

     


