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Abstract: This paper proposes a light field (LF) three-dimensional (3D) particle 
image velocimetry (PIV) method based on a digital refocused algorithm and 3D 
U-Net neural network for 3D three-component (3D-3C) velocity measurement. A 
digital refocused algorithm is used to generate a stack of LF-refocused images of 
tracer particles for establishing the 3D U-Net. The 3D U-Net is then used for the 3D 
particle field reconstruction. Based on a pair of 3D particle fields, the 3D-3C velocity 
field is obtained through a 3D cross-correlation algorithm. Numerical simulations and 
experiments are conducted to analyze the accuracy and efficiency of the proposed 
method. The simulation results show that the elongation along the depth direction and 
the efficiency of the 3D particle field reconstruction are improved by the 3D U-Net. 
The 3D U-Net also provides a better correlation coefficient. The experimental results 
show that the reconstruction time of the proposed method is ~220 seconds which is 10 
times faster than the LF tomographic PIV. This further demonstrates that the proposed 
method improves the reconstruction efficiency without affecting the accuracy of 
velocity measurement. 
 

Keywords: Light field, Particle image velocimetry, 3D U-Net, 3D-3C, 3D particle 
field 
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1. Introduction 

The tomographic particle image velocimetry (Tomo-PIV) based on a single light 
field camera (LFC) was first proposed in [1]. In the LFC, due to a microlens array 
(MLA) placed in front of the CCD sensor, the intensity, direction and position of the 
particle can be captured simultaneously in a single exposure [2]. Therefore, a single 
LFC is used in Tomo-PIV to capture the tracer particle images instead of using 
multi-camera systems [3]. A single LFC to be placed conveniently, which greatly 
reduces the complexity of the Tomo-PIV [4]. Furthermore, the LFC overcomes the 
issues of the multi-camera systems such as a high degree of coupling and 
synchronization of multi-camera systems, making the operation and assembly of the 
system costly and inconvenient [5]. The single LFC-based Tomo-PIV enables the 
measurement of fluids through a narrow viewport [6].  
 

The recent studies focus on the LF Tomo-PIV mainly for the calculation of the 
weight matrix, LFC calibration, improvement of tomographic reconstruction 
techniques for the 3D particle field and optimization of the LFC parameters. The 
weight matrix is calculated by the forward and backward ray tracing techniques [1, 
7-8]. Usually, the calculation of the weight matrix is time-consuming [4, 8]. Thus, 
summed line-of-sight (SLOS) and multiplied line-of-sight (MLOS) techniques are 
used to improve the computational efficiency of the weight matrix [9-10]. The 
calculation of the weight matrix depends on the optical parameters of the LFC without 
lens distortion. However, the accuracy of the weight matrix is affected by the lens 
distortion of the LFC. To achieve an accurate weight matrix, an improved volumetric 
calibration method is used to achieve accurate pixel positions corresponding to the 3D 
voxel position [11-13]. To achieve an accurate 3D particle field, the effects of the 
optical parameters of the plenoptic and the focused LFCs on the tomographic 
reconstruction quality are studied, and the configuration of the LFC is further 
optimized [5, 14]. A single LFC combined with a mirror is proposed for the 3D 
particle field reconstruction [15], where the mirror produces two different views that 
are captured by a single LFC simultaneously. However, it records the flow field in 
two different views by using a single camera, which sacrifices the spatial resolution of 
the camera. Therefore, the flow field size captured by the mirror along with the LFC 
is smaller than that of the single LFC. The dual LFCs are used for the 3D particle field 
reconstruction and to mitigate the elongation of the reconstructed particle in the depth 
directions. This provided a better reconstruction quality compared to a single LFC 
[16-17]. However, the computational cost especially for the weight matrix calculation 
and the tomographic reconstruction increases. 

 
Besides, the reconstruction of the 3D particle field using a single LFC and 

tomographic technique is usually time-consuming and storage-intensive [4, 8], which 
decreases the measurement efficiency of the 3D-3C velocity field. Simultaneous 
Algebraic Iterative Technique (SART) and a dense ray tracing (DRT)-based 
Multiplicative Algebraic Reconstruction Technique (MART) (DRT-MART) are used 
to accelerate the 3D particle field reconstruction process [14, 18]. However, when the 
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particle concentration is high, the 3D particle field reconstruction using a single LFC 
is still time-consuming. This leads to a low temporal resolution of the velocity field. 
In the past few years, although the LF Tomo-PIV has made significant progress, the 
reconstruction efficiency of the 3D particle field achieved by the single LFC is not 
enough. Besides, the single LFC-based 3D particle field reconstruction is usually 
elongated along the depth directions (along the optical axis of the LFC system) due to 
its lower depth resolution. 

 
Deep learning (DL) has recently been applied to flow field diagnosis and other 

applications [19-22]. In PIV, DL is usually used to replace the traditional 
cross-correlation algorithm to estimate the velocity field of dense particle motion. A 
four-layer PIV-deep convolutional neural network (PIV-DCNN) is proposed for the 
flow velocity field prediction [23]. The simulated particle motion and the particle 
image deformation methods are used to generate the training data such as particle 
images and their corresponding velocity field. CNN is used to estimate the velocity 
field of dense particle motion instead of the traditional cross-correlation algorithms 
[24-25]. The CNN shows similar results with the traditional cross-correlation 
algorithms [26]. A super-resolution general adaptive network (SRGAN) is proposed 
for turbulent velocity field reconstruction [27]. In these studies, the DL is used for 
predicting the velocity field accurately and shows the advantages of high spatial 
resolution and calculation efficiency. However, most of the DL-based PIV studies are 
two-dimensional (2D) and use the conventional camera. There is a lack of studies for 
full 3D particle reconstruction of the flow field based on DL and a single LFC. The 
3D U-Net neural network (3D U-Net) only needs smaller training datasets to realize 
the recognition, cutting and extraction of representative information of the image [28]. 
It is widely used in different applications such as segmentation of the hippocampus, 
brain tumours, human organs, salt dome recognition and extraction, etc. [29]. The 3D 
U-Net fully considers the connectivity of the cut objects in the 3D volume. Thus, it 
can directly cut the 3D objects in the 3D volume and improve the segmentation 
accuracy. So, the LFC combined with the 3D U-Net has the potential to improve the 
computational efficiency for the 3D particle field reconstruction and increase the 3D 
particle field reconstruction quality. 

 
In this paper, a LF 3D-PIV technique based on the digital refocused algorithm 

and the 3D U-Net is proposed for reconstructing and measuring the 3D-3C velocity 
flow field. The refocused algorithm is developed based on backward ray tracing and 
used to calculate the stack of LF-refocused images due to its advantages of high 
computational efficiency. The LFC is used to acquire image datasets and the 3D 
U-Net is used to reconstruct the focused particle from the stack of LF-refocused 
images. The reconstruction efficiency and quality of the 3D particle field are achieved 
by the Expectation-Maximization (EM) tomographic reconstruction and the digital 
refocused algorithm along with 3D U-Net are numerically compared. A LF 3D-PIV 
setup is built to verify the applicability and feasibility of the digital refocused 
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algorithm along with 3D U-Net. Experiments on a laminar and a submerged water jet 
flow are carried out. Numerical and experimental results are presented and analyzed.  
2. Measurement principle 

2.1 Principle of LF camera 

Fig. 1 shows the structure of the traditional camera and the LFC. For the 
traditional camera [Fig. 1(a)], the relation between the object plane and the CCD 
sensor plane meets the conjugate relation, which can be calculated by 

                                
1 2

1 1 1

l l f
+ =                                   (1) 

where l1 is the distance between the object plane and the main lens, l2 is the distance 
between the main lens and the CCD sensor plane, and f is the focal length of the main 
lens. 

  
(a) Traditional camera                       (b) Standard plenoptic camera 

  

(c) Galilean mode                            (d) Keplerian mode 

 

(e) Raytrix R29 

Fig. 1. Structure of the traditional camera and the LFC. 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
0
5
8
7
2



5 
 

Compared to the traditional camera, the LFC [Fig.1 (b), (c), (d), and (e)] installs 
a MLA at a specific distance in front of the CCD sensor, allowing the CCD sensor to 
record the direction and position of the LF at a single snapshot simultaneously. Based 
on the distance difference between the MLA and the CCD sensor planes, the LFC is 
generally classified into the standard plenoptic camera (LFC1) and focused LF 
camera (LFC2) [30]. The LFC1 includes an object plane, main lens, MLA and CCD 
sensor [31]. The distance between the MLA and the CCD sensor is equal to the focal 
length of the MLA. The light emitted from a point in object space passes through the 
main lens and is imaged on a MLA. The MLA images are then transmitted onto the 
CCD. The main lens is focused on the MLA and the MLA is focused on infinity [32]. 
Thus, the MLA records the position information of the LF. Simultaneously, the pixel 
under the MLA (called the sub-image) records the direction information of the LF 
[33]. The relation between the object plane, main lens, MLA and CCD sensor plane 
meets the conjugate relation, which can be calculated by 

                            1 m

2 m

1 1 1

1 1 1

m

l l f

l d f

 + =

 + =


                           (2) 

where lm is the distance between the main lens and the MLA plane, fm is the focal 
length of the MLA, and d2 is the distance between the MLA and the CCD sensor. 

 
The structure of the LFC2 includes a virtual object plane (VOP), main lens, 

MLA, CCD sensor and a virtual image plane (VIP). The LFC2 is generally divided 
into the Keplerian and Galilean modes based on the positional difference of the VIP 
[34]. For the Keplerian mode, the distance between the MLA and the CCD sensor is 
greater than the focal length of the MLA, and the VIP is in front of the MLA. The 
main lens maps the 3D object outside of the camera into the VIP. Then, the virtual 
image is remapped into the CCD sensor by the MLA. The MLA records the direction 
of the LF and the pixel under the MLA records the position of the LF [35]. The 
relation between VOP, VIP, main lens, MLA and CCD sensor plane meets the 
conjugate relation, which can be calculated by 

                            1 2

1 2 m

1 1 1

1 1 1

l l f

d d f

 + =

 + =


                           (3) 

where l2 is the distance between the main lens and the VIP, and d1 is the distance 
between the VIP and the MLA plane. 
 

For the Galilean mode, the distance between the MLA and the CCD sensor is 
smaller than the focal length of the MLA, and the VIP is behind the CCD sensor. The 
relation between VOP, VIP, main lens, MLA and CCD sensor plane meets the 
conjugate relation, which can be calculated by 
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                            1 2

2 1 m

1 1 1

1 1 1

l l f

d d f

 + =

 − =


                           (4) 

The LFC1 has a higher depth resolution (along the Z-axis) than the LFC2. LFC2 
has a higher lateral resolution (along the X-axis and Y-axis) than the LFC1. Due to the 
special structure of the LFC, a single LFC replaces the multi-camera system to 
measure 2D velocity and the 3D velocity fields of the flow.  

Compared to the Galilean mode [Fig. 1(e)], the Raytrix R29 LFC has three 
MLAs with different focal lengths (fm1, fm2 and fm3). The relation between VIP, VOP, 
main lens, MLA and CCD sensor plane meets the conjugate relation, which can be 
calculated by 

                            

v1 v1

v2 v2

v3 v3

2 v2 m2

1 1 1

1 1 1

1 1 1

1 1 1

l l f

l l f

l l f

d l f

 + = 



+ = 

 + =
 

 − =
 

                          (5) 

where lv1, lv2, and lv3 are the distances between the main lens and the VOP1, VOP2 
and VOP3, respectively, l′v1, l′v2, and l′v3 are the distances between the main lens and 
the VIP1, VIP2 and VIP3, respectively. 
 
2.2 Proposed method 

The proposed method is developed based on LF 3D-PIV, a digital refocused 
algorithm along with a 3D U-Net neural network for the 3D-3C velocity flow field 
measurement as shown in Fig. 2. Small tracer particles are first immersed in the 
measurement volume. A pulse volumetric laser light source is used to illuminate the 
tracer particles [8, 36]. A pair of LF images of the tracer particles are captured by a 
single LFC at a time interval. The measurement volume of flow is discretized as a 3D 
array of the cubic voxel elements in the X, Y, and Z directions, respectively. The 
refocused algorithm is developed based on a backward ray tracing technique to trace 
the pixel’s line-of-sight (LOS) from the pixel’s center to the voxel [8]. Take the 
Keplerian mode as an example, the backward ray tracing technique includes three 
steps, such as 

 
Step 1: The coordinate of the intersection point between the pixel’s LOS and the 

main lens can be calculated by 

                      1 2 1

2

( ) y y

y

s m
y m l d

d

−
= − −                            (6) 
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where my is the central coordinate of the MLA along the Y-axis, and sy is the central 
coordinate of the sub-image along the Y-axis.  
 

Step 2: The coordinate of the intersection points between the pixel’s LOS and the 
arbitrary voxel plane (marked as the red line in Fig. 2) can be expressed by 

                  
1 1 2 3 2 11

3

2 2 1

( )y y y
s d m d d m z y yl

y
l d l

− + −−
= −                 (7) 

where z3 is the distance between the arbitrary voxel plane and the VOP in the Z-axis. 
 

Step 3: When the pixel’s LOS intersects the jth voxel, the 3×3×3 adjacent voxels’ 
intensity distribution of the jth voxel can be calculated by the Gaussian function and 
expressed by 

                              

2
,

22
, e

i jd

i jW A 
−

=                            (8) 

where σ is the standard deviation and is used to characterise the width of Gaussian 
distribution, and di, j is the perpendicular distance between the center of the voxel and 
the pixel’s LOS.  
 

The LF image of tracer particles is then re-projected onto each voxel in the 
measurement volume and creates a stack of LF-refocused images of tracer particles. 
The stack of LF-refocused images of tracer particles is elongated and the stack of 
LF-refocused images includes the focused particle and blurred particle from another 
voxel plane. The 3D U-Net is trained by the stack of LF-refocused images and then 
used to reconstruct the 3D particle field. From a pair of reconstructed 3D particle 
fields, the 3D-3C velocity field is calculated by a 3D cross-correlation technique.  

 

Fig. 2. Strategy of the LF 3D-PIV based on the digital refocused algorithm along with 3D U-Net. 

2.3 3D U-Net establishment 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
0
5
8
7
2



8 
 

The structure of the 3D U-Net model is shown in Fig. 3 [28]. The left side of the 
3D U-Net is the analysis path (surrounded by the red dashed lines in Fig. 3) which 
includes four groups of 3D convolution operations and three down-sampling 
processes. Each layer uses two 3×3×3 3D convolution layers (3D Conv) to extract the 
feature of the 3D volume, and each convolution is followed by a rectified linear unit 
(Relu) for correction. A 2×2×2 3D max pooling (3D Maxpool) is then used to reduce 
the size of the 3D feature map. The analysis path can provide essential high-resolution 
features of 3D volume input to the synthesis path (surrounded by the green dashed 
lines in Fig. 3). The right side of the 3D U-Net is the synthesis part which is used to 
reconstruct the 3D volume from the feature map. It also includes four groups of 
convolution operations and three up-sampling processes. Each layer uses a 2×2×2 3D 
up convolution (3D up-Conv) to enlarge the feature map of the 3D volume, followed 
by two 3×3×3 3D convolution layers and a Relu. In the final step, a 1×1×1 3D 
convolution is used to reduce the number of output channels to the number of labels. 

 
Fig. 3. Structure of the 3D U-Net. 

 
Fig. 4 illustrates a complete process of the 3D particle field reconstruction using 

the digital refocused algorithm along with the 3D U-Net. The process can be 
described by 
Step 1: 3500 different 3D particle fields are randomly generated at tracer particle 
concentrations from 0.0031 ppm to 1 ppm. The 3D positional coordinates of tracer 
particles (Xj, Yj, Zj) are then saved.  
Step 2: a forward ray tracing technique (linear Gaussian optics) is used to generate the 
LF image of the 3D particle field based on the coordinates [14].  
Step 3: the refocused algorithm is used to obtain the stack of LF-refocused images 
which are then used as the input data of the 3D U-net.  
Step 4: the stack of LF-refocused images includes the focused particle (marked as a 
red circle in Fig.4) lying at the waist of the stack of LF-refocused images and the 
blurred particle [37]. The reconstructed particle is characterized by a 3×3×3 
Gaussian-type blob [8]. According to the particle position (Xj, Yj, Zj), the adjacent 
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3×3×3 voxels’ intensity distribution of the tracer particle is extracted from the stack of 
LF-refocused images and is used as the output data of the 3D U-Net.  
Step 5: the 3D U-Net is trained and established according to the dataset between the 
stacks of LF-refocused images and the actual 3D particle fields.  
Step 6: the reconstruction of the 3D particle field is performed by the trained model. 

 
 

Fig. 4. Reconstruction strategy of the 3D particle field using the proposed method. 

 

3. Numerical simulations 

Numerical simulations are performed to validate the reconstruction efficiency 
and quality of the 3D particle field achieved by the proposed method [i.e., the digital 
refocused algorithm along with the 3D U-Net]. The proposed method is applied for 
both the standard plenoptic camera (LFC1) and the Raytrix (R29) for the 3D particle 
field reconstruction. Thus, the reconstructed 3D particle field between the LFC1 and 
R29 is compared. The optical parameters of the LFC1 and the R29 used in the 
simulation are listed in Table 1 [38]. The EM tomographic reconstruction and the 
proposed method are used for the 3D particle field reconstruction.  

Table 1 Parameters of the LFC1 and R29 

Type 

of 

camera 

d2 

(mm) 

fm 

(mm) 

fm1 

(mm) 

fm2 

(mm) 

fm3 

(mm) 

f 

(mm) 

l1 

(mm) 
lv2 

(mm) 

l′v2 

(mm) 
lm 

(mm) 

Pm 

(mm) 
Px 

(μm) 

LFC1 0.6 0.6 - - - 100 200 - - 200 0.1705 5.5 

      100     0.1705 5.5 

R29 1.317 - 1.936 1.626 2.335 100 - 200 200 193.07 0.1705 5.5 

      100     0.1705 5.5 

 
In the 3D U-Net, the input and output datasets are the stacks of LF-refocused 

images and 3D particle fields, respectively. The number of voxels of the 3D particle 
field is 128 (X-axis)×128 (Y-axis)×128 (Z-axis). The weights of the 3D U-Net are 
updated through the Adam optimizer with a learning rate of 0.001 over 30 iterations. 
The parameters of the Adam optimizer used in this study are beta1=0.8, beta2=0.999, 
epsilon=1×10-6 and decay=0.004, respectively. A Dice loss function is used to 
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measure the similarity between two samples. A server with a 36-core Intel (R) 
Xeon(R) CPU E5-2686 V4@2.3GHz and 128GB RAW is used for the generation of 
the synthetic LF images of the tracer particles, the calculation of the stack of 
LF-refocused images of tracer particles, the 3D particle field reconstruction and 3D 
cross-correlation. A server with an NVIDIA GeForce RTX4090 is used for the 3D 
U-Net training and testing. The 3D U-Net does not need to calculate a huge weight 
matrix and the generation of the training datasets is relatively convenient and faster. 
For the training of the 3D U-Net, 30 iterations are performed and the training time is 
~3057 seconds (s) per iteration. Although the 3D U-Net takes ~25.5 hours to establish, 
once the 3D U-Net is established successfully, it can be used to reconstruct any LF 
images within a range of particle concentrations. 

 

(a) Reference particle distribution 

  

(b) LFC1                             (c) R29 

Fig.5. Reference particle distribution and synthetic LF images of the reference particle 

distribution. 

 
Fig. 5 shows an example of synthetic LF images obtained for the LFC1 [Fig.5(b)] 

and R29 [Fig. 5(c)] and the reference 3D particle field distributions [Fig. 5a]. The 
synthetic LF images of the tracer particles of the LFC1 and R29 are generated by the 
forward ray tracing technique [9, 10]. It can be seen that the different positions of 
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particles exhibit different particle LF images. The LFC1 has only one type of MLA. 
Therefore, each MLA has the same defocusing ability for light rays. According to 
Equation (2), the LF image in the CCD sensor receives the light rays from the main 
lens plane. The Raytrix R29 LFC has three MLAs with different focal lengths. 
Therefore, there are three different VIPs, which are the imaging of three different 
VOPs through the main lens. Different types of MLA produce sub-images with 
different defocus levels. The EM algorithm and the proposed method are used for the 
reconstruction of the synthetic LF images, respectively. To reconstruct the 3D particle 
field by the 3D U-Net model, the stack of LF-refocused images is first calculated by 
the refocused algorithm. The stack of LF-refocused images is then used as training 
data for the 3D-Net model.  

  
(a) LFC1 and EM algorithm                           (b) R29 and EM algorithm 

  

(c) LFC1 and proposed method             (d) R29 and proposed method  

Fig.6. Reconstructed 3D particle field distribution achieved by the proposed method and 

EM algorithm. 

Fig. 6 shows the reconstructed 3D particle field obtained by the EM algorithm 
and the proposed method. Compared to the reference 3D particle [Fig. 5(a)], the 3D 
particle fields reconstructed by the EM algorithm are elongated along the depth 
direction as shown in Fig. 6(a) and (b). The particle elongation is closely dependent 
on the maximum angle β between pixel’s line-of-sights [39]. In the LFC, β is usually 
less than 20º [5]. Therefore, the reconstructed particle shape is elongated. Particle 
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distributions achieved by the proposed method are like reference distribution as 
shown in Fig. 6 (c) and (d). Also, the proposed method shows the alleviation of the 
elongation of the reconstructed particle along the depth direction compared to the EM 
algorithm [Fig.6 (a) and (b)]. 

 

The overall reconstruction time of the 3D particle field achieved by the proposed 
method includes the calculation time of the digital refocused algorithm and the 
prediction time of the 3D U-Net obtained during the reconstruction process. However, 
the prediction time of the 3D U-Net is almost 0s. Fig. 7 shows the comparison of the 
overall reconstruction time obtained for the proposed method at different particle 
concentrations. The calculation time of the digital refocused algorithm is 140s and 
150s for the LFC1 and R29, respectively. It can be seen that the calculation time of 
the digital refocused algorithm is almost constant with the different particle 
concentrations. Fig. 8 shows the reconstruction time achieved by the EM algorithm. 
The reconstruction time of the EM algorithm increases with increasing particle 
concentration. At the particle concentration of 1 ppm, the calculation time of the 
digital refocused algorithm is within 150s for the LFC1 and R29. However, to 
complete the whole reconstruction process, the EM algorithm takes ~3200s and 1400s 
for LFC1 and R29, respectively. Therefore, it demonstrates that the reconstruction 
efficiency is much higher for the proposed method compared to the EM algorithm. 

 
    Fig. 7. Calculation time of 3D U-Net.    Fig. 8. Comparisons of reconstruction time. 

The reconstruction times of the 3D particle field achieved by the EM algorithm 
and the proposed method under different numbers of voxels at a particle concentration 
of 0.1 ppm are compared and summarized in Table 2. The reconstruction times 
achieved by the EM algorithm increase with increasing the number of voxels [8]. 
When the number of voxels is 301×201×181, the EM algorithm takes tens of 
thousands of seconds which is very time-consuming. However, the time required for 
the proposed method is within the 320s. This shows a significant improvement in the 
reconstruction time. 

 
To evaluate the reconstruction quality of the 3D particle field achieved by the 

EM algorithm and the proposed method, a normalized correlation coefficient (Q) of 
the reference and the reconstructed 3D intensity distribution is calculated [40] which 
is expressed by 
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Q
E X Y Z E X Y Z



=




 
                       (9) 

where E0 and E1 are the reference and reconstructed 3D intensity distribution, 
respectively. The maximum value of Q is 1, indicating that the reconstructed 3D 
intensity distribution is equal to the reference 3D intensity distribution.  

Table 2 Reconstruction times of 3D particle field when the particle concentration is 0.1 ppm 

Number of voxels EM algorithm (s) Proposed method (s) 

128×128×128 1436 156 

301×201×181 10660 305 

331×221×151 8072 263 

 
The reconstruction quality of the 3D particle field at different particle 

concentrations is shown in Fig. 9. The reconstruction quality achieved by the EM 
algorithm and the proposed method decreases when the particle concentration 
increases. The Q of the EM for the LFC1 and R29 are less than 0.35 and 0.25 with the 
particle concentration increases, respectively. The Q of the proposed method is better 
than the EM algorithm. For the LFC1, when the particle concentration range is 
0.01~0.1 ppm, the Q of the proposed method is higher than 0.7. For the R29, when the 
particle concentration range is 0.01~0.03 ppm, the Q of the proposed method is higher 
than 0.6. The Q of a single LFC is generally lower than that of multi-camera systems 
[5, 8]. It shows that the Q achieved by the LFC1 is better than the R29. This is due to 
the focal length of the MLA of R29 being too long, resulting in low-depth resolution 
[5]. 

 

(a)LFC1                             (b) R29 

Fig. 9. Comparison of reconstruction quality. 

4. Experimental validation 

4.1 Measurement of a laminar flow 

To verify the applicability and feasibility of the proposed method, experiments 
were conducted on a laminar flow in a horizontal square pipe. Fig. 10 shows the 
experimental setup with the associated LF 3D-PIV system components [8]. A laminar 
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flow is produced by a submersible pump. A stable flow is then controlled by 
regulating valves 1 and 2. The acrylic channel is a 20mm (Y-axis)×18mm (Z-axis) 
square with a length of 2000 mm (X-axis). The average velocity and the Reynolds 
number (ReD) of the laminar are 0.0208 m/s and 389.7, respectively. The flow field is 
seeded with polyamide particles with a mean diameter of 50 μm, a density of 1.03 
g/cm3 and a particle concentration of 0.5 ppm. The measurement volume is 30mm 
(X-axis) × 20mm (Y-axis) × 18mm (Z-axis) and is illuminated by a double-pulsed 
laser source with a maximum output energy of 200 mJ per pulse at 532 nm and a 
pulse duration of 7 ns [8]. The measurement volume is discretized into 301×201×181 
voxels. In the 3D cross-correlation algorithm, the 3D cross-correlation window size is 
set to 48×16×16 with a 50% overlap of interrogation windows. 

  
Fig. 10. Schematic of the experimental setup with associated components of LF 3D-PIV system. 

The 3D-3C velocity field distribution achieved by the EM algorithm is shown in 
Fig.11. Fig.12 (a) and (b) show the 1D velocity distributions varying with the Y-axis 
at the XOY plane and the Z-axis at the XOZ plane corresponding to Fig. 11, 
respectively. The 3D-3C velocity field distribution achieved by the proposed method 
is shown in Fig.13. Fig.14 (a) and (b) show the 1D velocity distributions varying with 
the Y-axis at the XOY plane and the Z-axis at the XOZ plane corresponding to Fig. 13, 
respectively. The theoretical 1D velocity distributions of the laminar flow varying 
with the Y-axis at the XOY plane and the Z-axis at the XOZ plane are parabola [8]. 
From Figs.11, 12, 13 and 14, it can be seen that the 3D-3C velocity field and the 
parabolic characteristics of laminar flow are successfully measured by the EM 
algorithm and the proposed method. It shows that all the 1D velocity profiles along 
the Y-axis are in good agreement with the reference velocity. However, the 1D 
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velocity distribution along the Z-axis is poorer than along the Y-axis due to the lower 
depth resolution of the R29. The maximum velocities of the laminar flow are 0.04 m/s 
and 0.35 m/s achieved by the EM algorithm and the proposed method near the center 
of the channel. They correspond to the average velocities of 0.02 m/s and 0.175m/s, 
respectively. It indicates that the measured laminar velocity is very close to the 
reference velocity. Note that the theoretical velocity of laminar flow near the edge 
wall of the pipe is 0 m/s. However, in the actual PIV measurement, the velocity is not 
0 m/s and the measured maximum velocity near the center of the channel is less than 
the theoretical velocity. This is because the cross-correlation calculates the average 
velocity of a certain window size rather than the velocity of a single point. The 
measurement results achieved in this study are consistent with Refs. [8, 41].  

 
The reconstruction times of the 3D particle field required by the EM algorithm and 

the proposed method are also calculated. The time required for the digital refocusing 
of a LF image is 221s and the 3D U-Net takes 0s to reconstruct the 3D particle field 
after feeding a stack of LF-refocused images. Thus, the proposed method takes a total 
reconstruction time of 221 (221+0)s for the 3D particle field. However, the EM 
algorithm took 73629s, which is very time-consuming. Compared to the EM 
algorithm, the proposed method significantly improved the reconstruction efficiency 
of the 3D particle field. Therefore, the laminar flow measurement shows that the 
efficiency of the 3D particle field is improved significantly by LF 3D-PIV based on 
the digital refocused algorithm along with 3D U-Net. 

  

  

Fig. 11. (a) 3D-3C velocity field by EM algorithm (b) 2D velocity distribution at YOZ plane (c) 

2D velocity distribution at XOY plane and (d) 2D velocity distribution at XOZ plane. 
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Fig. 12. (a) 1D velocity distributions vary with the Y-axis at the XOY plane and (b) 1D velocity 

distributions vary with the Z-axis at the XOZ plane. 

  

  

Fig. 13. (a) 3D-3C velocity field by the proposed method (b) 2D velocity distribution at YOZ plane 

(c) 2D velocity distribution at XOY plane and (d) 2D velocity distribution at XOZ plane. 
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Fig. 14. (a) 1D velocity distributions vary with the Y-axis at the XOY plane and (b) 1D velocity 

distributions vary with the Z-axis at the XOZ plane. 

4.2 Measurement of a submerged water jet flow 

The 3D-3C velocity field of a submerged water jet flow is measured by the 
proposed method. Fig. 15 shows the experimental setup of the submerged water jet 
flow rig including the assembled LF 3D PIV system and R29. The rig includes a 
reservoir, valve, flow meter, jet nozzle, submersible pump, double-pulsed laser source 
and a synchronous controller. The outlet diameter of the jet nozzle is 5.5 mm. The 
submersible pump pumps purified water from the jet nozzle into the reservoir. The 
particle concentration is set to 0.5 ppm. The flow rate of the outlet of the jet nozzle is 
0.3 L/min in the experiment. The measurement volume is 33.1mm (X-axis) × 22.1mm 
(Y-axis) × 15.1mm (Z-axis) and discretized into 331×221×151 voxels. The voxel size 
is 0.1 mm. The window size of the 3D cross-correlation is 48×24×24 
(X-axis×Y-axis×Z-axis). The window size of the overlap is 50%. 

 

Fig. 15. Experimental setup of the submerged water jet flow rig and assembled LF PIV. 

Fig. 16 depicts the 3D-3C velocity field of the submerged water jet flow 
achieved by the EM. Fig. 16 (b), (c) and (d) show the 2D velocity distribution of the 
YOZ, XOY, and XOZ planes of the submerged water jet, respectively. Fig. 17 shows 
the measured 1D velocity field of the submerged water jet corresponding to Fig. 16 (c) 
and (d), respectively. Fig. 18 shows the 3D-3C velocity field of the submerged water 
jet flow achieved by the proposed method. Fig. 19 shows the measured 1D velocity 

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
0
5
8
7
2



18 
 

field of the submerged water jet corresponding to Fig. 18 (c) and (d), respectively. 
From Figs. 16, 17, 18 and 19, it can be seen that the submerged water jet continues to 
shoot into the water tank, thereby extending the boundary. From Fig. 16, it can be 
seen that the initial area of the submerged water jet is located in the area X=[-15,0], 
Z=0 and Y=0 mm. The flow rate of the core area of the jet is approximately 4.5 m/s. 
The submerged water jet is the basic area of the jet in the area of X=[0,15] mm Z=0 
and Y=0 mm, with a flow velocity in the range of 0.5-3.5 m/s, which is lower than that 
in the initial area. The highest velocity is in the central axis area of the jet. From 
Fig.17 and Fig. 19, the curve width of the 1D velocity field increases with the increase 
of the X-axis. It indicates that the width of the outer boundary of the jet increases 
along the positive X-axis direction, forming a triangular diffusion flow field. The flow 
velocity of the jet gradually weakens along the positive X-axis direction. The jet flow 
velocity gradually decreases with increasing |Y| and |Z| (|Y| and |Z| represent the 
absolute value of Y and Z, respectively). A similar trend is also observed in previous 
studies [42]. 

 
The reconstruction times of the 3D particle field by the EM and the proposed 

method are calculated. The time required for the refocused algorithm of a LF image is 
218s and the time required by the EM algorithm is 48362 s. Compared to the EM 
algorithm, the proposed method significantly improved the reconstruction efficiency 
of the 3D particle field. 

  
(a)                                            (b) 

 
   (c)                                       (d)  

Fig. 16. (a) 3D-3C velocity field by EM algorithm (b) 2D velocity distribution at YOZ plane (c) 

2D velocity distribution at XOY plane and (d) 2D velocity distribution at XOZ plane. 
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(a)                                         (b) 

Fig. 17. (a) 1D velocity distributions vary with the Y-axis at the XOY plane and (b) 1D velocity 

distributions vary with the Z-axis at the XOZ plane. 

  
(a)                                           (b) 

 

  
(c)                                             (d) 

Fig. 18. (a) 3D-3C velocity field by the proposed method (b) 2D velocity distribution at YOZ plane 

(c) 2D velocity distribution at XOY plane and (d) 2D velocity distribution at XOZ plane. 
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(a)                                                 (b) 

Fig. 19. (a) 1D velocity distributions vary with the Y-axis at the XOY plane and (b) 1D velocity 

distributions vary with the Z-axis at the XOZ plane. 

5. Conclusions 

In this paper, a novel LF 3D-PIV based on the digital refocused algorithm along 
with the 3D U-Net method is proposed to measure the 3D-3C velocity field of the 
flow field. Numerical simulations were conducted to investigate the reconstruction 
quality and efficiency of the 3D particle field. Experiments were also conducted to 
measure the 3D-3C velocity field of a laminar flow and a submerged water jet flow. 
The main concluding remarks are summarized as follows: 

 
• Simulation results showed that the elongation of the reconstructed particle 

along the depth and the reconstruction efficiency are improved by the 
proposed method.  

• The reconstruction quality of LFC1 is better than the R29. When the particle 
concentration is less than 0.1 ppm, the reconstruction quality achieved by the 
LFC1 is larger than 0.7.  

• Experiment results show that the reconstruction time of the proposed method 
is ~220s without affecting the accuracy of velocity measurement compared 
with the EM algorithm.  

• The proposed method does not require the calculation of the complex weight 
matrix. The reconstruction time of the proposed method is independent of the 
particle concentration. 
 

The proposed method provides better results when the LFC1 is used due to its 
higher depth resolution than the LFC2. In the LF 3D-PIV, the 3D-3C velocity field 
requires a high-depth resolution (along the Z-axis) for the flow field measurement, 
thus, the LFC1 is recommended for the flow field measurement. However, if the 
3D-3C velocity field requires a high lateral resolution (along the X-axis and Y-axis), 
the LFC2 is recommended. In the future, the improvement of the depth resolution of 
LFC and the measurement accuracy of depth direction for LF 3D-PIV will be 
investigated. 
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