

AUTOMATED MACHINE LEARNING FOR

POSITIVE UNLABELLED LEARNING

A THESIS SUBMITTED TO

THE UNIVERSITY OF KENT

IN THE SUBJECT OF COMPUTER SCIENCE

FOR THE DEGREE

OF PHD.

By

Jack Duke Saunders

August 2023

ii

Abstract

Positive-Unlabelled (PU) learning is a field of machine learning that involves learning classifiers

from data consisting of positive class and unlabelled instances. That is, instances that may be either

positive or negative, but the label is unknown. PU learning differs from standard binary classification

due to the absence of negative instances. This difference is non-trivial and requires differing

classification frameworks and evaluation metrics. This thesis looks to address gaps in the PU learning

literature and make PU learning more accessible to non-experts by introducing Automated Machine

Learning (Auto-ML) systems specific to PU learning. Three such systems have been developed, GA-

Auto-PU, a Genetic Algorithm (GA)-based Auto-ML system, BO-Auto-PU, a Bayesian

Optimisation (BO)-based Auto-ML system, and EBO-Auto-PU, an Evolutionary/Bayesian

Optimisation (EBO) hybrid-based Auto-ML system.

These three Auto-ML systems are three primary contributions of this work. EBO, the optimiser

component of EBO-Auto-PU, is by itself a novel optimisation method developed in this work that

has proved effective for the task of Auto-ML and represents another contribution. EBO was

developed with the aim of acting as a trade-off between GA, which achieved high predictive

performance but at high computational expense, and BO, which, when utilised by the Auto-PU

system, did not perform as well as the GA-based system but did execute much faster. EBO achieved

this aim, providing high predictive performance with a computational runtime much faster than the

GA-based system, and not substantially slower than the BO-based system.

The proposed Auto-ML systems for PU learning were evaluated on three versions of 40 datasets,

thus evaluated on 120 learning tasks in total. The 40 datasets consist of 20 real-world biomedical

iii

datasets and 20 synthetic datasets. The main evaluation measure was the F-measure, a popular

measure in PU learning. Based on the F-measure results, the three proposed systems outperformed

in general two baseline PU learning methods, usually with statistically significant results. Among

the three proposed systems, there was no statistically significance difference between their results in

general, whilst a version of the EBO-Auto-PU system performed overall slightly better than the other

systems, in terms of F-measure.

The two other main contributions of this work relate specifically to the field of PU learning.

Firstly, in this work we present and utilise a robust evaluation approach. Evaluating PU learning

classifiers is non-trivial and little guidance has been provided in the literature on how to do so. In

this work, we present a clear framework for evaluation and use this framework to evaluate the

proposed systems. Secondly, when evaluating the proposed systems, an analysis of the most

frequently selected components of the optimised PU learning algorithm is presented. That is, the

components that constitute the PU learning algorithms produced by the optimisers (for example, the

choice of classifiers used in the algorithm, the number of iterations, etc.). This analysis is used to

provide guidance on the construction of PU learning algorithms for specific dataset characteristics.

iv

Acknowledgements

First and foremost, I would like to give thanks to Professor Alex Freitas. Attending university was

not something I had ever considered an option for myself, let alone the pursuit of a PhD. The patience

and time given by Professor Freitas has been unwavering and invaluable, and I am profoundly

grateful for the opportunity that he has given me.

I would also like to give thanks to the University of Kent computing department, in particular

the members of my supervisory panel and the Director of Graduate Studies, Daniel Soria, Fernando

Otero, and Rogério de Lemos. The feedback and guidance given throughout the previous years of

study have been instrumental to the formation of this work.

My research has been funded by a studentship granted by the Engineering & Physical Sciences

Research Council (EPSRC), and as such I would like to give thanks to EPSRC for this opportunity.

I am grateful to the anonymous reviewers who have given time to evaluating my publication

submissions and providing feedback and insight on this work.

There are also several key individuals in my personal life to whom I would like to give thanks.

Firstly, to Ryan, for encouraging me to undertake the PhD and for constantly being a source of

support and inspiration. Secondly, to Jess, for her time, patience, and for keeping me sane over the

last few years. And, finally, to Annabel - without you, none of this would have been possible.

v

Contents

Abstract ... ii

Acknowledgements ..iv

Contents ... v

List of Tables ... viii

List of Figures ...xiv

List of Procedures’ Pseudocodes ..xvi

Glossary .. xvii

Chapter 1 ... 1

1.1 Positive-Unlabelled Learning (PU Learning) ... 3

1.2 Automated Machine Learning (Auto-ML) ... 4

1.3 Objectives ... 5

1.4 Contributions .. 6

1.5 Thesis Structure .. 7

1.6 Publications Derived from this Research ... 8

Chapter 2 ... 10

2.1 Supervised Learning ... 10

2.1.1 Basic Concepts .. 10

2.1.2 Predictive Performance Evaluation ... 12

2.1.3 Base Classification Algorithms ... 20

2.2 Evolutionary Algorithms (EAs) ... 29

2.2.1 Individual Representation.. 30

2.2.2 Fitness Function .. 32

2.2.3 Population Initialisation .. 33

2.2.4 Variation Operators ... 35

2.2.5 Parent Selection Mechanism ... 39

2.2.6 Survivor Selection Mechanism ... 41

2.2.7 Termination Criteria .. 43

2.2.8 Genetic Programming (GP) ... 44

2.2.9 Practical Considerations and Challenges ... 45

2.3 Bayesian Optimisation (BO) .. 50

2.3.1 Surrogate Models .. 52

vi

2.3.2 Acquisition Functions ... 53

2.3.3 Optimisation Algorithm .. 56

2.3.4 Practical Considerations and Challenges ... 58

2.4 Automated Machine Learning (Auto-ML) ... 62

2.4.1 Evolutionary Algorithms (EAs) for Auto-ML ... 63

2.4.2 Bayesian Optimisation (BO) for Auto-ML ... 67

2.4.3 Practical Considerations and Challenges ... 70

2.5 Positive-Unlabelled (PU) Learning .. 72

2.5.1 PU Learning Assumptions... 74

2.5.2 Approaches to PU Learning .. 76

2.5.3 Practical Considerations and Challenges ... 83

Chapter 3 ... 90

3.1 A Summary of the Two-Step Approach for PU Learning .. 91

3.2 Search Spaces and Objective Function ... 92

3.2.1 Base Search Space ... 92

3.2.2 Extended Search Space (Based on the Spy Technique) .. 95

3.2.3 Objective Function .. 96

3.3 Classification Datasets ... 99

3.3.1 Real-World Biomedical Datasets .. 100

3.3.2 Synthetic Datasets ... 101

3.4 Experimental Methodology .. 102

3.4.1 Cross-Validation.. 102

3.4.2 Statistical Significance Analysis ... 104

3.4.3 Correlation Coefficient Analysis ... 104

Chapter 4 ... 106

4.1 Description of GA-Auto-PU .. 107

4.1.1 The GA Procedure ... 107

4.1.2 The GA’s Hyperparameters ... 111

4.2 Experimental Setup .. 111

4.2.1 Structure of the Results’ Sections.. 112

4.3 Results for GA-Auto-PU .. 112

4.3.1 Results comparing GA-Auto-PU with TPOT .. 112

4.3.2 Results comparing GA-Auto-PU with two baseline PU learning methods 120

4.4 The Most Frequently Selected Hyperparameter Values of the Optimised PU Learning Algorithm 126

4.4.1 The Hyperparameter Values Most Frequently Selected by GA-1 (with Base Search Space) 127

4.4.2 The Hyperparameter Values Most Frequently Selected by GA-2 (with Extended Search Space) 129

4.5 Summary .. 131

Chapter 5 ... 133

5.1 Description of BO-Auto-PU ... 134

5.1.1 The BO Procedure for PU learning ... 135

5.1.2 The BO’s Hyperparameters ... 138

5.1.3 Computational Efficiency.. 139

vii

5.2 Experimental Setup .. 140

5.2.1 Structure of the Results’ Sections.. 140

5.3 Results for BO-Auto-PU .. 140

5.3.1 Results comparing BO-Auto-PU with GA-Auto-PU .. 140

5.3.2 Results comparing BO-Auto-PU with two baseline PU learning methods 147

5.4 The PU Learning Algorithm’s Hyperparameter Values Most Frequently Selected by BO-Auto-PU .. 152

5.4.1 The Hyperparameter Values Most Frequently Selected by BO-1 ... 153

5.4.2 The Hyperparameter Values Most Frequently Selected by BO-2 ... 154

5.5 Summary .. 156

Chapter 6 ... 159

6.1 Description of EBO-Auto-PU .. 161

6.1.1 The EBO Procedure for PU Learning ... 161

6.1.2 The EBO Procedure’s Hyperparameters ... 165

6.1.3 Computational Efficiency.. 165

6.2 Experimental Setup .. 167

6.2.1 Structure of the Results Section .. 167

6.3 Results for EBO-Auto-PU .. 168

6.3.1 Results comparing EBO-Auto-PU with GA-Auto-PU and BO-Auto-PU PU 168

6.3.2 Results comparing EBO-Auto-PU with two baseline PU learning methods 175

6.4 The PU Learning Algorithm’s Hyperparameter Values Most Frequently Selected by EBO-Auto-PU 180

6.4.1 The Hyperparameter Values Most Frequently Selected by EBO-1 ... 181

6.4.2 The Hyperparameter Values Most Frequently Selected by EBO-2 ... 183

6.5 Comparing the Auto-PU Systems’ Learning Rates .. 185

6.6 Summary .. 189

Chapter 7 ... 192

7.1 Summary of Contributions ... 192

7.1.1 A Framework for Evaluating the Predictive Performance of PU Learning Algorithms 193

7.1.2 An Auto-ML Framework for PU Learning ... 193

7.1.3 The Proposed Auto-PU Systems ... 194

7.1.4 Analysis of Frequently Selected PU Learning Algorithm Components .. 196

7.1.5 Evolutionary Bayesian Optimisation (EBO) ... 197

7.2 Future Research Directions .. 197

7.2.1 Experiments with More Datasets... 197

7.2.2 Further Comparisons Against Other Baseline PU Learning Methods ... 198

7.2.3 Alternative Search Spaces ... 198

7.2.4 Optimising the Hyperparameters of the Auto-ML Systems .. 198

7.2.5 Developing New Multi-Objective Auto-ML Systems ... 199

References .. 200

Appendix A .. 218

Appendix B .. 225

viii

List of Tables

2.1 Evaluation approaches used by papers proposing PU learning algorithms. 87

2.2 PU learning goals in reviewed papers using genuine PU data. 88

3.1 Main characteristics of the biomedical datasets used in the experiments. 100

3.2 Main characteristics of the synthetic datasets used in the experiments. 102

4.1 Hyperparameters of the GA-Auto-PU system, with their values used in

this thesis’ experiments. 111

4.2 F-measure results of GA-1 and TPOT on real-world biomedical datasets. 114

4.3 Results of Wilcoxon signed-rank tests when comparing GA-1 against TPOT

regarding F-measure, Precision and Recall, for the 3 δ values on the biomedical

datasets. 114

4.4 F-measure results of GA-2 and TPOT on real-world biomedical datasets. 115

4.5 Results of Wilcoxon signed-rank tests when comparing GA-2 against TPOT

regarding F-measure, Precision and Recall, for the 3 δ values on the biomedical

datasets. 116

4.6 F-measure results of GA-1 and TPOT on synthetic datasets. 116

4.7 Results of Wilcoxon signed-rank tests when comparing GA-1 against TPOT

regarding F-measure, Precision and Recall, for the 3 δ values on the synthetic

datasets. 116

4.8 F-measure results of GA-2 and TPOT on synthetic datasets. 117

4.9 Results of Wilcoxon signed-rank tests when comparing GA-2 against TPOT

regarding F-measure, Precision and Recall, for the 3 δ values on the synthetic

datasets. 117

ix

4.10 Linear (Pearson’s) correlation coefficient value between the F-measure and

the percentage of positive examples in the original dataset (before hiding

some positive examples in the unlabelled set) for each combination of a

method and a δ value, for the biomedical datasets, for all methods. 119

4.11 Linear (Pearson’s) correlation coefficient value between the F-measure and

the percentage of positive examples in the original dataset (before hiding

some positive examples in the unlabelled set) for each combination of a

method and a δ value, for the synthetic datasets, for all methods. 120

4.12 F-measure results of GA-Auto-PU with base search space and baseline

PU learning methods on real-world biomedical datasets. 121

4.13 Results of Wilcoxon signed-rank tests with Holm correction for multiple

hypothesis when comparing GA-1 against S-EM and DF-PU regarding

F-measure, Precision and Recall, for the 3 δ values for the biomedical datasets. 122

4.14 F-measure results of GA-Auto-PU with extended search space and two baseline

PU learning methods on real-world biomedical datasets. 122

4.15 Results of Wilcoxon signed-rank tests with Holm correction for multiple

hypothesis when comparing GA-2 against S-EM and DF-PU regarding

F-measure, Precision and Recall, for the 3 δ values for the biomedical datasets. 123

4.16 F-measure results of GA-Auto-PU with base search space and baseline PU

learning methods on synthetic datasets. 124

4.17 Results of Wilcoxon signed-rank tests with Holm correction for multiple

hypothesis when comparing GA-1 against S-EM and DF-PU regarding

F-measure, Precision and Recall, for the 3 δ values for the synthetic datasets. 124

4.18 F-measure results of GA-Auto-PU with extended search space and two baseline

PU learning methods on synthetic datasets. 125

4.19 Results of Wilcoxon signed-rank tests with Holm correction for multiple

hypothesis when comparing GA-2 against S-EM and DF-PU regarding

F-measure, Precision and Recall, for the 3 δ values for the synthetic datasets. 125

4.20 Selection frequency of hyperparameter values by GA-1 for the biomedical

datasets. 128

4.21 Selection frequency of hyperparameter values by GA-1 for the synthetic

datasets. 128

4.22 Selection frequency of hyperparameter values by GA-2 for the biomedical

datasets. 130

4.23 Selection frequency of hyperparameter values by GA-2 for the synthetic

datasets. 130

5.1 Hyperparameters of the BO-Auto-PU system, with their default values. 138

5.2 F-measure results of BO-1 and GA-1 on real-world biomedical datasets. 141

x

5.3 Results of Wilcoxon signed-rank tests when comparing BO-1 against GA-1

regarding F-measure, Precision and Recall, for the 3 δ values on the biomedical

datasets. 142

5.4 F-measure results of BO-2 and GA-2 on real-world biomedical datasets. 142

5.5 Results of Wilcoxon signed-rank tests when comparing BO-2 against GA-2

regarding F-measure, Precision and Recall, for the 3 δ values on the biomedical

datasets. 142

5.6 F-measure results of BO-1 and GA-1 on synthetic datasets. 143

5.7 Results of Wilcoxon signed-rank tests when comparing BO-1 against GA-1

regarding F-measure, Precision and Recall, for the 3 δ values on the synthetic

datasets. 143

5.8 F-measure results of BO-2 and GA-2 on synthetic datasets. 144

5.9 Results of Wilcoxon signed-rank tests when comparing BO-2 against GA-2

regarding F-measure, Precision and Recall, for the 3 δ values on the synthetic

datasets. 144

5.10 Linear (Pearson’s) correlation coefficient value between the F-measure and the

percentage of positive examples in the original dataset (before hiding some

positive examples in the unlabelled set) for each combination of a method and

a δ value, for the biomedical datasets, for all methods. 146

5.11 Linear (Pearson’s) correlation coefficient value between the F-measure and the

percentage of positive examples in the original dataset (before hiding some

positive examples in the unlabelled set) for each combination of a method and

a δ value, for the synthetic datasets, for all methods. 146

5.12 F-measure results of BO-1 and baseline PU learning methods on real-world

biomedical datasets. 148

5.13 Results of Wilcoxon signed-rank tests with Holm correction for multiple

hypothesis when comparing BO-1 against S-EM and DF-PU regarding

F-measure, Precision and Recall, for the 3 δ values for the biomedical datasets. 148

5.14 F-measure results of BO-2 and two baseline PU learning methods on real-world

biomedical datasets. 149

5.15 Results of Wilcoxon signed-rank tests with Holm correction for multiple

hypothesis when comparing BO-2 against S-EM and DF-PU regarding

F-measure, Precision and Recall, for the 3 δ values for the biomedical datasets. 150

5.16 F-measure results of BO-1 and baseline PU learning methods on synthetic

datasets. 150

5.17 Results of Wilcoxon signed-rank tests with Holm correction for multiple

hypothesis when comparing BO-1 against S-EM and DF-PU regarding

F-measure, Precision and Recall, for the 3 δ values for the synthetic datasets. 151

5.18 F-measure results of BO-2 and two baseline PU learning methods on synthetic

datasets. 151

xi

5.19 Results of Wilcoxon signed-rank tests with Holm correction for multiple

hypothesis when comparing BO-2 against S-EM and DF-PU regarding

F-measure, Precision and Recall, for the 3 δ values for the synthetic datasets. 152

5.20 Selection frequency of hyperparameter values by BO-1 for the biomedical

datasets. 153

5.21 Selection frequency of hyperparameter values by BO-1 for the synthetic

datasets. 154

5.22 Selection frequency of hyperparameter values by BO-2 for the biomedical

datasets. 155

5.23 Selection frequency of hyperparameter values by BO-2 for the synthetic

datasets. 155

6.1 Hyperparameters of the EBO-Auto-PU system, with their default values. 165

6.2 F-measure results of EBO-1 against BO-1 and GA-1 on real-world biomedical

datasets. 168

6.3 Results of Wilcoxon signed-rank tests when comparing EBO-1 against

GA-1 and BO-1 regarding F-measure, Precision and Recall, for the 3 δ values. 169

6.4 F-measure results of EBO-2 against BO-2 and GA-2 on real-world biomedical

datasets. 169

6.5 Results of Wilcoxon signed-rank tests when comparing EBO-2 against BO-2

and GA-2 regarding F-measure, Precision and Recall, for the 3 δ values on the

biomedical datasets. 170

6.6 F-measure results of EBO-1 against BO-1 and GA-1 on synthetic datasets. 170

6.7 Results of Wilcoxon signed-rank tests when comparing EBO-1 against GA-1

and BO-1 regarding F-measure, Precision and Recall, for the 3 δ values on the

synthetic datasets. 171

6.8 F-measure results of EBO-2 against BO-2 and GA-2 on synthetic datasets. 172

6.9 Results of Wilcoxon signed-rank tests when comparing EBO-2 against BO-2

and GA-2 regarding F-measure, Precision and Recall, for the 3 δ values on the

synthetic datasets. 172

6.10 Linear (Pearson’s) correlation coefficient value between the F-measure and the

percentage of positive examples in the original dataset (before hiding some

positive examples in the unlabelled set) for each combination of a method and

a δ value, for the biomedical datasets, for all methods. 174

6.11 Linear (Pearson’s) correlation coefficient value between the F-measure and the

percentage of positive examples in the original dataset (before hiding some

positive examples in the unlabelled set) for each combination of a method and

a δ value, for the synthetic datasets, for all methods. 175

6.12 F-measure results of EBO-1 and baseline PU learning methods on real-world

biomedical datasets. 176

xii

6.13 Results of Wilcoxon signed-rank tests with Holm correction for multiple

hypothesis when comparing EBO-1 against S-EM and DF-PU regarding

F-measure, Precision and Recall, for the 3 δ values for the biomedical dataset. 176

6.14 F-measure results of EBO-2 and two baseline PU learning methods on

real-world biomedical datasets. 177

6.15 Results of Wilcoxon signed-rank tests with Holm correction for multiple

hypothesis when comparing EBO-2 against S-EM and DF-PU regarding

F-measure, Precision and Recall, for the 3 δ values for the biomedical datasets. 178

6.16 F-measure results of EBO-Auto-PU with base search space and baseline PU

learning methods on synthetic datasets. 178

6.17 Results of Wilcoxon signed-rank tests with Holm correction for multiple

hypothesis when comparing EBO-1 against S-EM and DF-PU regarding

F-measure, Precision and Recall, for the 3 δ values for the synthetic datasets. 179

6.18 F-measure results of EBO-Auto-PU with extended search space and two

baseline PU learning methods on synthetic datasets. 180

6.19 Results of Wilcoxon signed-rank tests with Holm correction for multiple

hypothesis when comparing EBO-2 against S-EM and DF-PU regarding

F-measure, Precision and Recall, for the 3 δ values for the synthetic datasets. 180

6.20 Selection frequency of hyperparameter values by EBO-1 for the biomedical

datasets. 181

6.21 Selection frequency of hyperparameter values by EBO-1 for the synthetic

datasets 182

6.22 Selection frequency of hyperparameter values by EBO-2 for the biomedical

datasets. 183

6.23 Selection frequency of hyperparameter values by EBO-2 for the synthetic

datasets. 184

A.1 Precision results of the Auto-PU systems with base search space on real-world

biomedical datasets. 217

A.2 Precision results of the Auto-PU systems with base search space on synthetic

datasets. 218

A.3 Precision results of the Auto-PU systems with extended search space on

real-world biomedical datasets. 218

A.4 Precision results of the Auto-PU systems with extended search space on

synthetic datasets. 219

A.5 Precision results of the baseline methods on real-world biomedical datasets. 219

A.6 Precision results of the baseline methods on synthetic datasets. 220

A.7 Recall results of the Auto-PU systems with base search space on real-world

biomedical datasets. 220

xiii

A.8 Recall results of the Auto-PU systems with base search space on synthetic

datasets. 221

A.9 Recall results of the Auto-PU systems with extended search space on real-world

biomedical datasets. 221

A.10 Recall results of the Auto-PU systems with extended search space on synthetic

datasets. 222

A.11 Recall results of the baseline methods on real-world biomedical datasets. 222

A.12 Recall results of the baseline methods on synthetic datasets. 223

B.1 F-measure results of Auto-PU-NAS compared with EBO-1 on real-world

biomedical datasets. 227

B.2 F-measure results of Auto-PU-NAS compared with EBO-1 on synthetic

datasets. 228

B.3 Precision results of Auto-PU-NAS compared with EBO-1 on real-world

biomedical datasets. 228

B.4 Precision results of Auto-PU-NAS compared with EBO-1 on synthetic datasets. 229

B.5 Recall results of Auto-PU-NAS compared with EBO-1 on real-world biomedical

datasets. 229

B.6 Recall results of Auto-PU-NAS compared with EBO-1 on synthetic datasets. 230

xiv

List of Figures

2.1 Rosenblatt’s Perceptron. 𝒙𝒏 is input 𝒏, 𝒘𝒏 is the weight applied to input 𝒏,

∑ 𝒙𝒘 is the sum of the weighted feature values, and 𝒐𝒖𝒕𝒑𝒖𝒕 is the class

assigned to the input instance. 28

2.2 Example of single-point crossover. 35

2.3 Example of multipoint crossover. 36

2.4 Example of uniform crossover. 37

2.5 Example of mutation. 38

2.6 Example of roulette wheel selection. Fitness values have been scaled to sum

to 1 and are represented by the slices of the pie chart. 41

3.1 Representation of a candidate solution, with a linear encoding. 93

3.2 Example candidate solution for the base search space. 94

3.3 Example candidate solution for extended search space. 96

4.1 Example of a randomly generated individual in GA-Auto-PU. 108

4.2 Example of uniform crossover in GA-Auto-PU. 110

4.3 Example of mutation in GA-Auto-PU. 110

4.4 Average F-measure results comparison for TPOT, GA-1, GA-2, DF-PU and

S-EM, across the three values of δ for the biomedical datasets. 118

4.5 Average F-measure results comparison for TPOT, GA-1, GA-2, DF-PU and

S-EM, across the three values of δ for the synthetic datasets. 118

5.1 Example input dataset for learning Surr_model in BO-Auto-PU with the base

search space. 136

xv

5.2 Average F-measure results comparison for BO-1, BO-2, GA-1, GA-2, DF-PU

and S-EM, across the three values of δ for the biomedical datasets. 144

5.3 Average F-measure results comparison for BO-1, BO-2, GA-1, GA-2, DF-PU

and S-EM, across the three values of δ for the synthetic datasets. 145

6.1 EA/BO hybridisation. 164

6.2 Average F-measure results comparison for EBO-1, EBO-2, BO-1, BO-2, GA-1,

GA-2, DF-PU and S-EM, across the three values of δ for the biomedical datasets. 173

6.3 Average F-measure results comparison for EBO-1, EBO-2, BO-1, BO-2, GA-1,

GA-2, DF-PU and S-EM, across the three values of δ for the synthetic datasets. 174

6.4 Learning rates of the Auto-PU systems on Kidney Disease dataset, varying the

δ value. 186

6.5 Learning rates of the Auto-PU systems on Parkinson’s Biom. dataset, varying the

δ value. 187

6.6 Learning rates of the Auto-PU systems on PI Diabetes dataset, varying the

δ value. 188

xvi

List of Procedures’ Pseudocodes

Procedure 2.1 Outline of the Bayesian optimization procedure. 57

Procedure 2.2 Basic Phase 1A implementation of a two-step PU learning

algorithm. 78

Procedure 2.3 Basic Phase 1B implementation of a two-step PU learning

algorithm. 78

Procedure 2.4 S-EM (“Spy” method). 80

Procedure 2.5 DF-PU. 81

Procedure 3.1 Objective function (Candidate solution, Training set). 97

Procedure 3.2 Phase 1A-Spies(P, U). 98

Procedure 3.3 Phase 1A(P, U). 98

Procedure 3.4 Phase 1B(P+RN, U). 99

Procedure 4.1 Outline of the GA Procedure. 108

Procedure 5.1 Outline of the Bayesian optimization procedure for

Positive-Unlabelled Learning. 135

Procedure 6.1 Outline of the Evolutionary Bayesian Optimization procedure

for Positive-Unlabelled Learning. 162

xvii

Glossary
AUC-ROC Area under the receiver operating characteristic curve

Auto-ML Automated machine learning

BO Bayesian optimisation

CASH Combined algorithm selection and hyperparameter optimisation

CWA Closed world assumption

DF-PU Deep Forest for Positive-Unlabelled learning

EA Evolutionary algorithm

EBO Evolutionary Bayesian Optimisation

EDA Estimation of distribution algorithm

EM Expectation maximisation

EI Expected improvement

FN False negative

FP False positive

FPGA Field-programmable gate array

GA Genetic algorithm

GGP Grammar-based genetic programming

GP Genetic programming

GPC Gaussian process classifier

GPU Graphics processing unit

LDA Linear discriminant analysis

kNN K-nearest neighbour

MAE Mean absolute error

ML Machine learning

xviii

MLC Multilabel classification

MLP Multilayer perceptron

MSE Mean squared error

PEBL Positive example based learning

PI Probability of improvement

PN Positive-negative

PU Positive-unlabelled

RECIPE Resilient Classification Pipeline Evolution system

ReLU Rectified linear unit

RN Reliable negative

SAR Selected at random

SCAR Selected completely at random

S-EM Spy method with Expectation Maximisation

SGD Stochastic gradient descent

SMBO Sequential model-based optimisation

SVM Support vector machine

TGP Tree-based GP

TN True negative

TP True positive

TPOT Tree-based Pipeline Optimisation Tool

1

Chapter 1

Introduction

Classification is a type of supervised machine learning task where an algorithm essentially learns,

from data, a model (classifier) to categorise objects (instances) based on the characteristics (features)

of those objects [1][2]. Standard binary classification methods have proved an invaluable type of

machine learning in recent years across a wide variety of application domains.

However, certain learning tasks that do not fit the binary classification paradigm are often treated

as though they do. When curating real-world datasets, obtaining fully labelled data may prove

challenging. There are many scenarios where labelling data is expensive or impractical. Consider

data regarding the classification of genes (instances) into class labels representing gene functions.

Genes either have evidence associating them with a certain function (class label), or they do not,

characterizing a binary classification problem. If there is evidence that a gene has a certain function

(as a result of a biological experiment), the instance representing that gene will be labelled with the

positive class for that function. However, it is harder to find reliable instances of the negative class

because a lack of evidence associating a gene with a specific function is not evidence for a lack of

association. Biological experiments are expensive and time-consuming to conduct; hence, it is likely

that a given gene has simply not had any experiments conducted on it to confirm whether it is

associated with the particular function or not. If we were to train a standard binary classifier on such

data with the given class labels, we would train the classifier to predict whether a gene is labelled as

having a certain function, rather than whether a gene actually is associated with that function.

2

Consider another example where obtaining fully labelled data is impractical. Web scraping is

commonly used to collect vast amounts of data from the internet, which is then used for various

purposes such as sentiment analysis, market research, or predictive modelling. However, the

enormous volume and diversity of this scraped data make it almost impossible to manually label

every single instance. Instead, a sample of the instances to be considered may be labelled, whilst the

rest of the instances are left unlabelled. In this case, the resulting dataset would consist of a set of

labelled positive instances (web pages which belong to the class of interest) and a set of unlabelled

instances, which may be positive or negative, but whose class is unknown.

These examples characterise Positive-Unlabelled (PU) learning problems, which differ from

standard binary classification due to the absence of a separately defined negative class in the dataset

(that is, the concept of a negative class exists, but as the unlabelled instances may be either positive

or negative, the negative class is not explicitly observed in the dataset) [3], a common scenario in

domains such as bioinformatics [4], text classification [5], pharmacology [6], and others [3]. PU

learning has not, however, been widely adopted in the literature. Many studies simply employ the

closed world assumption (CWA) [7], assuming that unlabelled instances are negative instances. This

work looks to address this issue.

Automated Machine Learning, often referred to as Auto-ML, is a rapidly advancing subfield of

machine learning, which aims to automate complex aspects of the machine learning process. It

focuses on algorithm selection and hyperparameter tuning, effectively optimizing algorithm

configurations to ensure the best performance with minimum manual intervention [8][9]. The goal

of Auto-ML is to simplify the machine learning process for non-experts and increase efficiency in

model development by automatically searching for the best machine learning algorithm or pipeline

(a set of algorithms applied in order) and their best hyperparameter settings for a given task. For a

more detailed discussion of Auto-ML, see Sections 1.2 and 2.4.

In this work, we aim to make PU learning methods more accessible and robust with the

introduction of new Auto-ML systems specific to PU learning. An Auto-ML system for PU learning

will limit the need for expert involvement and make PU learning accessible to those with little

knowledge of PU learning. Furthermore, we look to fill gaps in the current PU learning literature to

allow for a more reliable and effective classification framework, aiming at producing an Auto-ML

3

system for PU learning that would achieve higher predictive performance than current PU learning

methods. The proposed type of Auto-ML system, called Auto-PU, is developed as three separate

Auto-ML systems utilising three types of optimisation methods: two well-known methods, a Genetic

Algorithm (GA) and Bayesian optimisation (BO), and a new hybrid optimisation method named as

evolutionary Bayesian optimisation (EBO). The three Auto-PU systems are novel contributions to

the area of machine learning and particularly PU learning in general since they currently represent

the only Auto-ML systems for PU learning in the literature.

The rest of this chapter is structured as follows: Sections 1.1 and 1.2 give an overview of PU

learning and Auto-ML, highlighting the motivation for this work. Section 1.3 outlines the objectives

to be achieved. Section 1.4 outlines the contributions of this thesis. Section 1.5 gives the structure of

this thesis. Finally, Section 1.6 details the three publications derived from this work.

1.1 Positive-Unlabelled Learning (PU Learning)

PU learning is a classification paradigm that involves learning a machine learning classifier (model)

that can distinguish between positive and negative classes, given only positive and unlabelled data

[3]. PU learning is discussed in detail in Section 2.5 but is briefly outlined here to explain the

motivation of this work.

Over the previous two decades, many PU learning algorithms have been developed with the aim

of learning classifiers from positive and unlabelled data [3]. The need for these systems has grown

with the vast amount of data that has become available in recent years. Labelling enough data to

effectively learn machine learning models is a challenging and expensive task, making it impractical

for many researchers. However, as a field, PU learning has not received as much attention as it is

arguably warranted, given its applicability. There are many possible reasons for the oversight,

including a lack of guidelines in the literature, and a lack of widely applicable PU learning tools.

Most PU learning algorithms are developed for specific application domains, such as [10-19].

Therefore, the field could benefit from general purpose PU learning tools that can be easily applied

to any application domain. Regarding the lack of guidelines, before this work there was relatively

little guidance regarding evaluation of PU learning models. This is a non-trivial issue, as discussed

4

in Section 2.5, therefore established practices are essential to ensure that proposed PU learning

methods can be effectively compared to those that already exist.

This work looks to address these issues by, firstly, establishing guidelines for the evaluation of

PU learning methods as published in [20], and, secondly, proposing novel Auto-ML systems specific

to PU learning. The need for Auto-ML systems is discussed next.

1.2 Automated Machine Learning (Auto-ML)

Auto-ML is a growing area of machine learning that involves optimising a classification algorithm

or pipeline for each specific input dataset [8][9]. The primary goals of Auto-ML are to increase the

effectiveness of classification algorithms or pipelines for given learning tasks through optimisation

of the components of the pipeline and their respective hyperparameter settings, as well as making

machine learning more accessible for those without extensive domain knowledge [8][9].

There are several approaches to Auto-ML, such as evolutionary computation and Bayesian

optimisation, both of which are addressed in this work (see Sections 2.2-2.4). By using such

optimisation methods, the aim is to remove the need for a trial-and-error approach to algorithm or

pipeline optimisation¸ which is a time-consuming and laborious task that may not find an optimal or

a near-optimal solution. Furthermore, machine learning algorithms are complex and often have many

hyperparameters, each of which impacting the output of the classification model. Conducting a

thorough and informed search of the available algorithms and their respective hyperparameters

traditionally requires expert-level knowledge of, not just machine learning, but the classifiers

themselves. This presents a barrier that Auto-ML looks to remove.

Given the issues discussed in relation to the PU learning literature and the aims of Auto-ML, it

follows that PU learning could benefit from Auto-ML systems specifically applied to the area. Auto-

ML systems for binary classification are not good in this area as applying the standard binary

classification paradigm to PU learning datasets is sub-optimal, as discussed in Section 2.5. Therefore,

Auto-ML systems that construct algorithms specifically designed for PU learning are required.

5

1.3 Objectives

There are three primary objectives of this work. The first is to establish a framework for evaluation

of PU learning algorithms. This objective is addressed in Section 2.5 and Chapter 3.

The second objective is to investigate the use of Auto-ML systems and compare their

performance to baseline PU learning methods. This objective involves contributing a new proposed

Auto-PU learning framework (an Auto-ML framework specifically for PU learning), described in

Chapter 3, as well as three new Auto-PU systems that were developed with the aims of high

predictive performance and computational efficiency in mind, as follows.

The first proposed Auto-ML system, GA-Auto-PU (described in Chapter 4), based on a Genetic

Algorithm as the optimiser (see Section 2.2), was successful in outperforming some baseline PU

learning methods with statistical significance, but its good predictive performance came at a large

computational expense.

The second system developed, BO-Auto-PU (described in Chapter 5), addressed this issue

through the use of Bayesian optimisation (see Section 2.3). However, whilst addressing the large

runtime issue (i.e., it was much faster than GA-Auto-PU), BO-Auto-PU achieved overall a predictive

performance somewhat lower than the performance achieved by GA-Auto-PU.

Finally, EBO-Auto-PU was developed (as described in Chapter 6), proposing a new hybrid

optimisation approach between an evolutionary algorithm and Bayesian optimisation, and

successfully acted as a trade-off between the two systems. That is, EBO-Auto-PU achieved overall

somewhat better predictive performance than both GA-Auto-PU and BO-Auto-PU, whilst EBO-

Auto-PU was also much faster than GA-Auto-PU.

The final objective is to identify guidelines for designing PU learning algorithms, in regard to

recommending specific algorithmic components that should be used for specific learning scenarios,

based on the experimental results reported in this thesis. This objective is addressed in Sections 4.4,

5.4 and 6.4 of Chapters 4, 5 and 6 (for each of the three aforementioned types of Auto-PU systems).

6

1.4 Contributions

This section lists the contributions of this work, as follows. Firstly, this work has proposed a PU

learning evaluation framework. That is, through a literature review the primary evaluation metrics of

PU learning (in terms of predictive accuracy) were identified and mapped to their appropriate PU

learning goals. An evaluation methodology for utilising different types of datasets (both real-world

and synthetic datasets) was identified, and datasets created specifically for PU learning evaluation

were made publicly available for PU learning researchers1. This results of this contribution have been

published in [20].

Second, this work has proposed an Auto-ML framework specific to PU learning. This framework

will make it easier for other PU learning researchers to develop their own Auto-ML systems, with

defined search spaces and an objective function to serve as a starting point. Parts of the proposed

framework were published in [21][22].

Third, this work has proposed three new Auto-ML systems specific to PU learning, each of which

a contribution in itself. The first system, GA-Auto-PU (Chapter 4), performed a global search in the

defined space of PU learning algorithms using a Genetic Algorithm as the optimiser, which as

mentioned earlier led to very long runtimes. The design of GA-Auto-PU and parts of its

computational results reported in this thesis were published in [21][22]. The second system, BO-

Auto-PU (Chapter 5), performed a much more computationally efficient (faster) search using

Bayesian optimisation, enabling the use of the Auto-PU framework for researchers without access to

high performance computing systems. Finally, EBO-Auto-PU (Chapter 6) was built based on a new

hybrid approach combining aspects of evolutionary computation and Bayesian optimisation.

Out of these three systems, EBO-Auto-PU is the most novel contribution since it is based on a

new hybrid evolutionary and Bayesian optimisation method. That is, EBO-Auto-PU can be deemed

a novel contribution to both the area of PU learning and the area of Auto-ML. GA-Auto-PU and BO-

Auto-PU are using standard GA and BO methods. Hence, although arguably they are not new

contributions to the area of Auto-ML (since they use standard optimisers), they can still be deemed

1 https://github.com/jds39/Unlabelled-Datasets/

7

novel contributions to the area of PU learning, since they were the first Auto-ML systems proposed

specifically for PU learning.

All the three systems were shown in the experiments to achieve statistically significantly better

predictive accuracy than some baseline PU learning methods. Overall, regarding predictive

performance, EBO-Auto-PU had somewhat higher performance than GA-Auto-PU and BO-Auto-

PU. In addition, EBO-Auto-PU was much faster than GA-Auto-PU and somewhat slower than BO-

Auto-PU.

Finally, this work provides an analysis of the PU learning algorithm components most frequently

selected by these systems, in order to provide guidance to researchers designing PU learning

algorithms. Two major outcomes of this were a demonstration of the preference for simple linear

classifiers used in the first step of the two-step procedure, and a preference against utilising the spy

method.

1.5 Thesis Structure

Chapter 2 details the relevant background information needed to understand this thesis. This covers

the fundamental concepts of classification (a type of supervised learning) and classifier evaluation,

evolutionary algorithms, Bayesian optimisation, Auto-ML and positive-unlabelled learning.

Chapter 3 proposes a novel framework for Auto-ML applied to PU learning, called Auto-PU.

This chapter details the search spaces used by the optimisation methods, and how the PU learning

algorithms produced by the proposed Auto-PU systems are evaluated. The evaluation is conducted

on two types of datasets, engineered PU datasets and synthetic datasets. The engineered datasets are

created from standard binary datasets, the procedure for which is described in Section 3.3.

Chapter 4 details GA-Auto-PU [21][22], the first Auto-ML system for PU learning, utilising a

Genetic Algorithm (GA) as the optimiser. This chapter details the GA procedure that the system

follows and compares the system with a well-established binary classification Auto-ML system and

two PU learning baseline methods, before discussing the PU learning algorithm components most

frequently selected by the system.

Chapter 5 details BO-Auto-PU, a Bayesian optimisation-based Auto-ML for PU learning. This

chapter details the BO procedure and compares the system against GA-Auto-PU and the two PU

8

learning baselines, before discussing the PU learning algorithm components most frequently selected

by the system.

Chapter 6 details EBO-Auto-PU, utilising a new hybrid evolutionary/Bayesian optimisation

method. This chapter details the hybrid optimiser as applied to the system, before comparing against

GA-Auto-PU, BO-Auto-PU, and the two PU learning baselines, before discussing the PU learning

algorithm components most frequently selected by the system.

Chapter 7 concludes this work, summarising the main research contributions and suggesting

research directions for future work.

Appendix A reports the detailed results of precision and recall measures for each dataset for all

the evaluated systems, since those results were presented only in summarised form across the main

chapters with computational results (Chapters 4, 5 and 6).

Appendix B briefly describes and reports the results for another type of Auto-ML system for PU

learning, which optimises the hyperparameters of a multi-layer perceptron (neural network)

algorithm, among other hyperparameters of PU learning algorithms. Hence, this system can be

considered a type of neural architecture search system. This system’s brief description and its results

are reported in this Appendix, rather than in the main body of the thesis, mainly because its predictive

accuracy results were quite poor in general, clearly inferior to the other three Auto-ML systems

proposed in this thesis (GA-Auto-ML, BO-Auto-ML and EBO-Auto-ML).

1.6 Publications Derived from this Research

This section provides the bibliographical details of the author’s three papers that were peer-reviewed

and accepted for publication throughout the course of this work.

Saunders, J.D. and Freitas, A.A., 2022. GA-auto-PU: a Genetic Algorithm-based Automated

Machine Learning system for Positive-Unlabeled learning. In Proceedings of the 2022 Genetic

and Evolutionary Computation Conference Companion (pp. 288-291). ACM Press, 2022. ISBN:

978-1-4503-9268-6/22/07. DOI: https://doi.org/10.1145/3520304.3528932.

This work introduced GA-Auto-PU, the first Auto-ML system for PU learning. As detailed in

Chapter 4, GA-Auto-PU utilised a simple genetic algorithm as the optimiser and, in this work, it

outperformed a state-of-the-art PU learning algorithm.

9

Saunders, J.D and Freitas A. A., 2022. Evaluating a new Genetic Algorithm for Automated

Machine Learning in Positive-Unlabelled learning. In Proceedings of the 15th International

Conference on Artificial Evolution (EA 2022). Lecture Notes in Computer Science, Vol. 14091,

42-57. Springer.

This work presented an extension of the previous work by proposing a second version of GA-Auto-

PU, with an extended search space of candidate PU learning algorithms, and conducting a more in-

depth analysis of the system, comparing it with two (rather than just one) baseline PU learning

methods.

Saunders, J.D. and Freitas, A.A., 2022. Evaluating the Predictive Performance of Positive-

Unlabelled Classifiers: a brief critical review and practical recommendations for

improvement. ACM SIGKDD Explorations Newsletter, 24(2), pp. 5-11.

In this work, a literature review was conducted assessing the current PU learning literature and the

evaluation methods utilised by work proposing new PU learning algorithms. In this work, guidelines

for evaluation of PU learning methods were established.

10

Chapter 2

Background

This chapter details the relevant background information necessary for this thesis. Section 2.1

outlines the fundamental concepts of supervised learning, detailing performance metrics and the

classifiers used throughout this work. Section 2.2 and 2.3 detail evolutionary algorithms and

Bayesian optimisation respectively, two optimisation methods used in this work. Section 2.4 outlines

Automated Machine learning (Auto-ML). Section 2.5 explains Positive-Unlabelled (PU) learning.

2.1 Supervised Learning

2.1.1 Basic Concepts

Supervised learning is a fundamental area of machine learning that involves training a model to make

predictions based on a set of labelled examples (instances) [1][2]. These instances, known as the

training set, consist of pairs of input and output data, where the input data represents the

characteristics of an instance (also referred to as features or attributes), and the output (labelled) data

represents the desired predictions for those instances (also known as the class variable for

classification tasks, or output/target variable for regression tasks). The goal of supervised learning

is to learn a generalisable model that can make accurate predictions or decisions for new instances

(not observed in the training set), based on the patterns learned from the training set.

This differs from unsupervised learning, a machine learning area that involves finding

relationships among variables without distinguishing between input and output variables, i.e., from

11

data which is not labelled. A typical unsupervised learning task is clustering, where the goal is to

divide the instances into clusters (groups) based on their similarities (i.e., maximising the similarities

of instances within each cluster and minimising the similarities of instances between different

clusters). The produced clusters can then be interpreted as “classes” for the subsequent application

of a classification algorithm.

There are two main types of supervised learning tasks: classification and regression. In

classification, the goal is to predict a categorical class label for each instance, such as whether an

email is spam or not. In this example, the features of the instance could be characteristics of the text

included in the body of the email, like a set of binary variables indicating whether or not a given

word occurs in the text of the email. The class variable of this instance would be a binary variable,

indicating “spam” (often represented as 1) or “not spam” (often represented as 0). In regression, the

goal is to predict a continuous value for each instance, such as the price of a house. In this example,

the features of the instance are the characteristics of the property, such as its location, square footage,

and architectural style. The output variable of this instance would be a real-valued number,

representing the price of the property.

Formally, the supervised learning task is defined as:

Given a training set 𝑇, consisting of pairs of a feature vector and a scalar label [(�̅�1, 𝑦1), (�̅�2, 𝑦2),

…, (�̅�𝑛, 𝑦𝑛)], where 𝑦 is related to �̅� by way of a function 𝑓 and n is the number of training instances,

discover a function ℎ that approximates 𝑓 [23].

Training a supervised learning model generally involves splitting the data into training and test sets.

The training set is a set of labelled instances used to train a predictive model. The learned model

captures patterns and relationships between the features and the class labels. The test dataset is a

separate set of labelled instances used to evaluate the performance of the trained model. The test set

allows for an estimation of how well the learned model generalises to new, unseen data (i.e., not

included in the training set) [1].

It is important to note that the training and test sets must be independent and non-overlapping.

Independent meaning that the data for the sets are selected in such a way that the characteristics of

the data in the training set do not influence the selection of the test set. Non-overlapping meaning

12

that no data point appears in both the training and the test set, the test set should contain completely

unseen data. That is, the test set should not be used during the model training process. Maintaining

separation gives a more realistic indication of predictive performance on unseen data.

For evaluating a predictive model, it is common to use a k-fold cross-validation procedure, where

the data is divided into k folds of approximately equal size, and the model is trained on k-1 of the

folds before being tested on the remaining fold. This process is repeated k times, with a different fold

being used as the test set in each iteration. The predictive performance of the model is then averaged

over all k iterations.

Cross-validation is advantageous over using of a single test set, providing a more robust estimate

of model performance, by evaluating it on multiple subsets of the data which are used as test sets

(separated from the data subsets used as training sets). This helps to avoid reporting an overly

optimistic measure of predictive performance that may result from overfitting the training set, if the

model was learned from the full data (as a training set) and evaluated on the same full data. It also

provides an indication of the generalisability of the model, as the performance is evaluated over

multiple test sets.

Overfitting is a common problem in machine learning that occurs when a model is too complex

and becomes too specialised to the training data, making it unable to generalise to new, unseen data.

This generally occurs as a result of over tuning a model to the input dataset [1].

2.1.2 Predictive Performance Evaluation

A key part of supervised learning is the evaluation of the learned predictive model. This is typically

done by comparing the model’s predictions on a test set to the true labels of those instances and

measuring the extent to which those predictions match the true labels. Popular evaluation metrics

include accuracy, precision, recall, and F-measure for classification tasks [24] and mean squared

error (MSE) and mean absolute error (MAE) for regression tasks [25].

Before detailing the specifics of these metrics, the following definitions are required:

• True Positives (TP): The number of instances that truly belong to the positive class and

are correctly predicted as belonging to the positive class.

13

• True Negatives (TN): The number of instances that truly belong to the negative class and

are correctly predicted as belonging to the negative class.

• False Positives (FP): The number of instances that truly belong to the negative class but

are falsely predicted as belonging to the positive class.

• False Negatives (FN): The number of instances that truly belong to the positive class but

are falsely predicted as belonging to the negative class.

• 𝑦𝑖: The true (actual) value of the class/target variable in the 𝑖th instance of the dataset.

• �̂�𝑖: The predicted value of the class/target variable for the 𝑖th instance.

• �̅�: The arithmetic mean of the true values of the target variable over all instances of the

dataset.

• 𝑛: The number of instances in a given dataset.

Note that TP, TN, FP, and FN are defined only for classification and �̅� is defined only for regression

tasks, whilst 𝑦𝑖 and �̂�𝑖 are defined for both classification and regression tasks. It is also worth

emphasising that, although these statistics can be calculated for the training and test sets, in order to

measure generalisation performance what matters are the values of these statistics in the test set.

Accuracy

Accuracy is defined as the ratio of the number of correct predictions to the total number of predictions

[24][26] (Equation 2.1).

Accuracy =
TP + TN

TP + FP + TN + FN
 (2.1)

Accuracy is a popular metric due to its ease of interpretation as it provides a direct measure of the

proportion of correct predictions made by the classifier, out of all predictions made [24].

Furthermore, it is a simple and intuitive measure that can be easily understood by a wide range of

audiences and does not require the use of probability estimates or threshold settings, unlike

performance metrics such as the Receiver Operating Characteristic curve metric [27].

However, accuracy also has a number of limitations when used as the sole measure of

performance. One of the most significant, particularly for the datasets used in the experiments

reported later in this thesis, is that it can be misleading when applied to datasets with imbalanced

14

class distributions. That is, data where there is not an equal proportion of instances belonging to each

class. In such scenarios, a classifier can achieve a high accuracy by simply predicting all instances

as belonging to the majority class, despite not providing any useful information about the minority

class. This can result in a misleadingly high representation of predictive performance as the classifier

may not actually be capable of identifying instances of the minority class [24][26]. This is particularly

problematic for supervised learning tasks that involve anomaly detection, as the instances that users

are interested in identifying as anomalies will constitute a very small minority class, i.e., only a very

small proportion of the full set of instances.

Another important limitation of accuracy is that it does not account for false negatives (FN) and

false positives (FP) separately [26]. As a result, it is incapable of capturing the trade-offs between

these different types of errors. Obtaining values for these statistics separately is important for tuning

a supervised learning model to a specific learning task where the cost of identifying a FN is

substantially greater or smaller than the cost of identifying a FP. For example, in the case of medical

diagnosis, a false negative may result in a missed diagnosis, which is potentially far more costly than

a false positive, which may result in the patient undergoing some unnecessary treatment. In these

cases, a high accuracy may not reflect the real-world predictive performance of the classifier.

In summary, accuracy is a widely used and easily interpretable measure of classification

performance. However, accuracy has limitations when used on datasets with imbalanced classes and

does not consider false positives and false negatives separately, limitations which are addressed by

the following metrics.

Note that the metrics of Precision, Recall and F-measure, described next, are defined with respect

to a given class of interest, out of all classes. Typically, the class of interest is the minority class,

usually referred to as the “positive” class, whilst the other class(es) is(are) referred to as the

“negative” class. Sometimes, however, these measures are calculated for each class separately and

then its results are averaged over all the classes. Two common approaches for performing such

average will be discussed later, after the description of these three measures considering only the

minority (positive) class as the class of interest.

15

Precision

Precision is defined as the proportion of true positive predictions out of all positive predictions,

calculated as shown in Equation 2.2 [24]. Precision is a useful metric for evaluating the predictive

performance of a classification model in situations where it is more important to avoid false positives

than to identify all actual positive instances. Unlike accuracy, precision considers only the positive

predictions made by the classifier, making it more informative when working with imbalanced-class

datasets where the minority class is of interest.

Precision =
TP

TP + FP
 (2.2)

One advantage of precision as a metric is that is provides a way to measure how exact a classifier is

in its positive predictions. That is, it provides information regarding precisely how many of the

instances predicted as positive are actually positive. It is a particularly useful measure when the class

of interest is rare and false positives are highly undesired, such as gene function prediction.

Conducting experiments to verify gene function are very time consuming and expensive. Therefore,

any classifier looking to identify gene function should minimise false positives to provide a list of

genes that are promising.

However, precision, when used in isolation, can be misleading, as classifiers that just identify a

few positive instances correctly can have high precision even though they are not actually identifying

the majority of the positive instances. Additionally, precision does not consider the false negatives,

and therefore it does not give the full picture of the model’s performance [26].

In summary, precision measures the proportion of true positive predictions out of all positive

predictions. It is an especially useful metric in scenarios where false positive are highly undesirable,

and it is informative in situations where there is a high cost of false positives. Due to the limitations

identified, precision is not generally used a solitary evaluation metric. Generally, precision is

reported in conjunction with recall.

Recall

Recall, also known as sensitivity or the true positive rate, is defined as the proportion of true positive

predictions out of all actual positive instances, calculated as shown in Equation 2.3 [24]. Recall is a

16

useful metric for evaluating the performance of a classification model in situations where it is more

important to identify all actual positive instances rather than avoiding false positives. Recall

considers both the true positive predictions made by the classifier and the actual number of positive

instances in the dataset, making it more informative when working with imbalanced-class datasets

where the minority class is of interest.

Recall =
TP

TP + FN
 (2.3)

One advantage of recall as a metric is that it provides a way to evaluate how well a classifier is able

to identify all of the positive instances within a dataset. That is, how many of the actual positive

instances are identified by the classifier. This is particularly useful when the class of interest is rare

and false negatives are highly undesired, such as in the medical diagnosis example given previously.

However, when used in isolation, recall can be misleading, as a model that simply predicts the

positive class for all instances would achieve the maximum recall score (100%), despite not

providing any useful information about the negative class and having a high number of false positives

(low precision) [26].

In summary, recall measures the proportion of true positive predictions out of all actual positive

instances. It is especially useful in scenarios where false negatives are highly undesired. However, it

has limitations and should be used in conjunction with other metrics such as precision.

F-measure

F-measure, also known as F1-score, is defined as the harmonic mean of precision and recall,

calculated as shown in Equation 2.4 [24]. F-measure is a useful metric for evaluating the performance

of a classification model in situations where both precision and recall are important, as it provides a

balance between them. F-measure is high when both precision and recall are high, and low when

either precision or recall are low. As such, it does not have the same drawbacks described for using

either precision or recall as a solitary metric.

F-measure = 2 ×
Precision × Recall

Precision + Recall
 (2.4)

17

One advantage of F-measure is that it provides a way to balance the trade-off between precision and

recall. In many cases, precision and recall can be in conflict with each other, where an increase in

one metric leads to a decrease in the other. In these cases, using F-measure can give a better

understanding of the model’s performance than using precision and recall separately.

Additionally, F-measure is not impacted by class imbalance in the way described for accuracy,

as a model that overwhelmingly predicts the negative majority class with a few minority class

predictions can still be shown to be performing poorly by utilising the F-measure.

However, F-measure also has its limitations as precision and recall are combined into a single

metric. As such, detailed performance of the classifier is not forthcoming and no description of the

specific FP and FN errors is given. Therefore, it is often useful to report F-measure in conjunction

with precision and recall in order to better understand the predictive performance of a model.

In summary, F-measure combines precision and recall into a single metric, providing a balance

between them. It is particularly useful in scenarios where precision and recall are both important and

when the dataset’s class distribution is highly imbalanced. However, it has limitations and should

often be reported in conjunction with other metrics, such as precision and recall.

Micro/macro averaging

The aforementioned metrics of precision, recall, and F-measure can be calculated with different

degrees of granularity by using micro or macro averaging. Micro-average is a method of calculating

precision, recall, and F-measure by considering the performance of the model over all the samples,

regardless of the class. Micro-average is calculated by summing the TP, FP, and FN values for all

the classes together, and then calculating precision, recall, and F-measure using these summed

values. Note that the labels ‘True’ and ‘False’ in this case refer to the class under consideration. That

is, to consider TP as an example, a TP instance is a True Positive in the context of a specific class.

Thus, when calculating the metrics for the next class, TP will then refer to that new class of interest.

As a more practical example, if the two classes are “A” and “B”, first the class “A” is considered as

the positive class, and then TP is the number of examples annotated with class “A” in the dataset

which were correctly predicted by the classifier as class “A”, and analogously for the calculation of

FP and FN. Next, the class “B” is considered as the positive class, and then TP is the number of

18

examples annotated with class “B” in the dataset which were correctly predicted by the classifier as

class “B”, and analogously for the calculation of FP and FN. Macro-average is calculated by

calculating precision, recall, and F-measure for each class, and then taking the average of these values

[28].

Micro-average is useful when the samples are imbalanced across classes and the classification of

each instance is considered equally important. In this case, since micro-average considers the

performance of the model over all instances regardless of the class, micro-average will in practice

assign greater importance to the classification of the majority class (with most instances). However,

it is important to note that in certain situations, such as when the performance on a minority class is

of particular importance, other measures like macro-average may be more suitable. Macro-average

is useful when it is necessary to consider the performance of the model separately for each class.

This is the case when the classes are of equal importance and the performance of the model on each

class should be considered equally. Macro-average calculates precision, recall, and F-measure for

each class and then takes the average of these values, providing a representation of the model's

performance on each class.

Mean squared error

Mean Squared Error (MSE) is a metric used for evaluating the performance of regression models. It

measures the average squared difference between the predicted values and the true values of the

target variable, calculated as shown in Equation 2.5 [29]. MSE gives an indication of how far the

predictions are from the true values. A low MSE indicates that the model is making accurate

predictions and a high MSE indicates that the model’s predictions are far from the true values. For

the metrics discussed previously, the goal is to maximise the metrics in order to increase model

performance. For metrics which describe the error of a system, like MSE, the goal is to minimise the

metric.

MSE =
∑(𝑦𝑖 − �̂�𝑖)2

𝑛
 (2.5)

One advantage of MSE as a metric is that it is differentiable, that is, the rate of change can be

calculated at any point, which makes it a useful metric for optimising model parameters, enabling

19

the use of optimisation methods such as gradient descent. Additionally, it penalises large errors more

than small errors, so it is particularly useful in cases where it is important to minimise large predicted

errors [29].

However, MSE has some limitations. Primarily, it is sensitive to outliers. That is, a single large

error can significantly increase the overall value of the MSE. In addition, it does not provide

information about the direction of the errors, i.e., whether they are overestimations or

underestimations of the true value of the target variable.

In summary, MSE is a widely used metric for evaluating the performance of regression models;

it measures the average squared difference between the predicted values and the true values. It is

particularly useful in cases where it is important to minimise large prediction errors, or for tuning

model performance in the training process. However, it is limited by sensitivity to outliers, meaning

that a single large error can decrease this interpretation of model performance; and it does not provide

any information about the direction of the errors.

Mean absolute error

Mean Absolute Error (MAE) is a metric used for evaluating the performance of regression models.

It measures the average absolute difference between the predicted values and the true values,

calculated as shown in Equation 2.6 [30]. It gives an indication of the average magnitude of

prediction errors. A low MAE indicates that the model is making accurate predictions and a high

MAE indicates that the model’s predictions are far from the true values.

MAE =
∑ |𝑦𝑖 − �̂�𝑖|

𝑛
 (2.6)

One advantage of MAE as a metric is that it is robust to outliers, meaning that it is not affected by a

small number of large errors, unlike MSE [30]. This can be particularly useful for data that contains

outliers or extreme values that may not be representative of the majority of the data. Additionally, it

also provides a more intuitive interpretation of the error since it reflects the magnitude of the errors.

However, MAE is not without limitations. Like MSE, MAE does not give any information about

the direction of the errors. That is, there is no information regarding whether an error is the result of

an overestimation or underestimation of the true value of the target variable.

20

In summary, MAE is a widely used metric for evaluating the performance of regression models.

It measures the average absolute difference between the predicted values and the true values. It is

robust to outliers, providing an intuitive interpretation of the errors, but does not provide any specific

details about the direction of the errors.

2.1.3 Base Classification Algorithms

Throughout this work, we utilise 18 base classification algorithms in the proposed Auto-ML systems

(to be described in detail in Chapters 4, 5, 6). These are standard binary classification algorithms, all

implemented with Sci-Kit Learn [31], with the exception of the deep forest algorithm which was

implemented with the deep-forest library2. These classification algorithms were selected simply

because they are popular and easily accessible through Sci-Kit Learn. Deep forest was selected for

use as it is used by one of the baseline methods. Furthermore, their implementations each allow for

the prediction of both a discrete class variable (1 or 0 in our case) and the (continuous) probability

of an instance belonging to the positive class. Throughout this work, these classification algorithms

are implemented with the default value of their hyperparameters as given in the Sci-Kit Learn

documentation3. The remainder of this subsection gives a brief overview of each of these 18

classification algorithms.

Gaussian naïve Bayes

Gaussian Naïve Bayes is an algorithm based on Bayes’ Theorem that makes the strong assumption

that features are independent from each other given the class variable [32]. It is particularly useful

for classification tasks that involve continuous features which are normally distributed. This

algorithm is called “naïve” as its aforementioned assumption is often not the case in real-world data.

Given a set of features 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and a target variable 𝑦, the Gaussian naïve Bayes

algorithm estimates the probability of 𝑦 given 𝑋 as shown in Equation 2.7.

P(𝑦|𝑋) =
P(𝑦) × P(𝑋|𝑦)

P(𝑋)
 (2.7)

2 https://pypi.org/project/deep-forest/
3 https://scikit-learn.org/stable/user_guide.html

21

Where 𝑃(𝑦) is the prior probability of 𝑦, 𝑃(𝑋|𝑦) is the likelihood of the features given the class, and

𝑃(𝑋) is the probability of the set of features 𝑋. 𝑃(𝑋|𝑦) is estimated as the product of the probability

density functions of each feature, assuming a Gaussian distribution of each feature. The class that

maximises 𝑃(𝑦|𝑋) is chosen as the predicted class.

The Gaussian naïve Bayes algorithm is simple and computationally efficient, a distinct advantage

over more complex classification algorithms when working with large datasets. However, it is

important to emphasise that the class-conditional independence assumption between features is often

violated, which can potentially lead to learn an ineffective classification model. Though, despite the

assumption often not holding, the naïve Bayes algorithm still performs well in practice [33]

Bernoulli naïve Bayes

The Bernoulli naïve Bayes algorithm, like the Gaussian naïve Bayes algorithm, is based on Bayes’

Theorem, also assuming that the features are independent from each other given the class variable

[32]. Unlike Gaussian naïve Bayes, Bernoulli naïve Bayes works best on datasets with binary

features. The formula for determining a class is the same as for Gaussian naïve Bayes, shown in

Equation 2.7. The difference lies in the estimation of 𝑃(𝑋|𝑦).

𝑃(𝑋|𝑦) is estimated as the product of the Bernoulli probabilities of each feature. The Bernoulli

probability of a feature conditioned on the class, P(𝑥𝑖|𝑦) is the probability that feature 𝑥𝑖 takes the

value 1 given the class 𝑦. The class that maximises 𝑃(𝑦|𝑋) is chosen as the predicted class.

The advantages and disadvantages are the same as those for Gaussian naïve Bayes.

Logistic regression

The logistic regression algorithm learns a type of generalised linear model that predicts the

probability of an instance belonging to a specific class by calculating the function [33] shown in

Equation 2.8.

𝑃(𝑦 = 1|𝑋) =
1

1 + 𝑒−𝑧
 (2.8)

Where 𝑃(𝑦 = 1|𝑋) is the probability of instance 𝑋 belonging to the positive class, and 𝑧 is the linear

combination of the input features and the model’s parameters (the features coefficients, or weights).

22

Logistic regression is another fast and simple classification algorithm that is efficient on large

datasets. However, Logistic Regression assumes linearity and, as such, is often unsuitable for

complex datasets [32].

Linear discriminant analysis

Linear Discriminant Analysis (LDA) is a classification algorithm that generates a linear decision

boundary by fitting class conditional densities to the data and using Bayes’ rule [33]. That is, the

classes are linearly separated in the feature space by calculating the probability densities that describe

the probability of an instance belonging to a particular class. Bayes’ rule (given in Equation 2.7) is

then used to calculate the probability of new instances belonging to a given class.

LDA suffers the same advantages and disadvantages as the previous classification algorithms, it

is a simple and efficient algorithm, but assumes linearity. Furthermore, LDA is sensitive to outliers,

making it a potentially poor choice for complex datasets [33].

K-nearest neighbours

K-Nearest Neighbours (kNN) is a simple classification algorithm that is based on measuring the

distances between instances in the feature space. In essence, k training instances are found which are

closest to the current test instance, and that test instance is assigned the majority class (or the mean

value for regression tasks) of those k nearest training instances [32]. The distance between instances

can be calculated using a variety of metrics, but a common choice is the well-known Euclidean

distance. However, whilst the kNN algorithm is conceptually simple, the resulting model can be

highly non-linear, and thus effective for complex datasets.

The kNN algorithm is very simple but can be computationally expensive for large datasets with

a large number of instances and features. However, it is generally robust to outliers in the data and

is non-parametric, meaning that no assumptions are made about the distribution of the data [32].

Support vector machine

The Support Vector Machine (SVM) algorithm learns a decision boundary separating the classes in

the feature space [34]. The decision boundary is chosen such that it maximizes the margin, the

distance between the decision boundary and the closest training instances from each class (known as

23

the “support vectors”). SVMs can be used for both linear and non-linear classification, an advantage

over some of the previously defined classifiers. For linearly separable data, the decision boundary is

simply defined as the linear hyperplane separating the data. For non-linear data, the data is

transformed into a higher dimension space, where a linear boundary can potentially be found.

One major advantage of SVMs is their ability to handle high dimensional spaces and their

versatility, allowing for a wide range of kernel functions for the decision function. However, this

does entail some complexity as a suitable kernel needs to be found for a given task [32].

Decision tree

A decision tree algorithm is a versatile type of classification algorithm which learns decision trees

from the data [35]. The basic idea behind decision trees is to divide the feature space into smaller

regions, leaves, that correspond to a particular value of the class variable. The process of dividing

the feature space is done by successfully splitting the data on one feature at a time, based on a

condition that maximises the separation of the different classes. The result is a tree-like structure,

where each internal node represents a test on a feature, each branch represents the outcome of that

test, and each leaf node represents a predicted class [32].

This process is based on a greedy search strategy that recursively selects the feature with the

highest information gain [32]. The information gain is a measure of how much a feature helps to

reduce the uncertainty of the class variable. Decision trees are usually pruned to prevent overfitting

by removing branches that do not contribute much to the accuracy of the tree.

Given a set of features 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and a class variable 𝑦, a decision tree classifier

estimates the probability of 𝑦 given 𝑋 by traversing the tree from the root to a leaf node. The path

followed depends on the values of the features and the conditions specified at each internal node.

The primary advantage of decision trees is that they are often simple to understand and interpret,

since they are graphical models. One can understand the decision making process simply by

following the path taken through the tree. Furthermore, they are computationally efficient, making

them an effective choice for large datasets in regard to speed. However, sometimes the decision trees

learned from the data are too large to be interpreted by users (even after some tree pruning). Also,

24

they are sensitive to small variations in the data. A small variation can lead to a completely different

decision tree, which is one of the reasons why they are sensitive to overfitting [35].

Random forest

The Random Forest algorithm produces an ensemble of decision trees, meaning that they utilise a

large number of decision trees to perform their classification. The basic idea of a Random Forest

algorithm is to combine (typically via voting) the predictions of multiple decision trees, each

generated using a technique called bootstrap aggregating, or bagging [36]. Bagging consists of

randomly sampling instances from the data, with replacement (a single instance can be sampled

multiple times) and building a decision tree from those sampled instances [37].

As previously discussed, a single decision tree is prone to overfitting. By averaging the

predictions of many trees, each built on a different sample of the data, random forests can reduce

overfitting and improve the generalisation of the model.

Given a set of features 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} and a target variable 𝑦, a random forest algorithm

learns a large number of decision trees, each built with a randomly sampled subset of the data, and

aggregates the predictions of the trees by assigning the class 𝑦 as the majority vote, in the case of

classification, or the average predicted value, in the case of regression.

Random forests are effective classifiers as they are less prone to overfitting than a single decision

tree and can efficiently handle a large number of features and instances [37].

Extra tree

The extra tree algorithm, also referred to as the extremely randomised tree algorithm, learns a model

similar to a decision tree in that a tree-like structure is built and traversed for calculating the class of

an instance. The difference is that the extra tree algorithm does not use a greedy approach to calculate

the split at a given node. Instead, a random value is used, hence “extremely randomised” [38].

This results in a tree that is far less predictable than a standard decision tree, and as a result

generally less effective when used in isolation. As such, the extra tree classifier is generally used as

the ensemble extra trees classifier, described next. However, the extra tree classifier has still be

included in this work as an option for our systems for completeness.

25

Extra trees

The extra trees algorithm is a variation on the standard random forest, utilising an ensemble of extra

trees, as opposed to standard decision trees [38]. The increased randomness can result in a learned

model that is more robust to overfitting than a standard decision tree, but the model is generally less

easily interpretable as the randomness of the splitting threshold can diminish the ease of inference

regarding feature significance.

Bagging

Bagging, or bootstrap aggregating, is an ensemble learning technique used to improve the

performance of machine learning models by training the base classification algorithm many times,

each time on a different (randomly sampled) subset of the instances and aggregating their predictions

[39]. The Sci-Kit Learn implementation used in this work uses a decision tree algorithm as the base

algorithm. As such, when the base classification algorithm is a decision tree algorithm, the bagging

technique is similar to the random forest algorithm. The primary difference is that the random forest

algorithm uses a randomly sampled subset of the features for learning the decision trees, whilst all

features are used with the bagging technique for learning the decision trees. As such, the trees learned

by the bagging technique are less diverse (i.e., more similar) than the trees learned by the random

forest algorithm. This is because bagging is trained using data subsets differing only by the training

instances used, whilst random forest is trained using data subsets different by both the features and

the training instances used. It is important to emphasise, though, that bagging is a generic ensemble

method that can be used with any base classification algorithm, not just decision tree algorithms.

Bagging shares the advantage of the random forest algorithm regarding preventing overfitting.

AdaBoost

AdaBoost, or adaptive boosting, is an ensemble learning technique that iteratively trains weak

models and combines them to create a final, stronger model [32]. A weak model is defined as a model

that performs only slightly better than random guessing. The algorithm chosen as the base

classification algorithm for producing weak models in the Sci-Kit Learn implementation is the

decision stump algorithm (which learns a decision tree with a single internal node).

26

In each iteration, AdaBoost adjusted the weight of the misclassified instances, so that the next

model pays more attention to the instances that were misclassified in the previous iteration. By

iteratively adjusting the weights, AdaBoost helps the model focus on areas of the search space which

are more difficult to interpret. After many iterations, the final model is a weighted combination of

the models, where the weights are proportional to the accuracy of each model.

This implementation of AdaBoost shares the advantage of the random forest algorithm in terms

of reducing overfitting but is slightly more prone to overfitting as it is sensitive to noise and outliers

[33].

Gradient boosting

Gradient boosting is an ensemble learning technique that builds a model by iteratively building

decision trees, with each tree used to correct the mistakes of the previous tree – like AdaBoost. This

technique is called gradient boosting as it optimises a loss function using gradient descent [33] –

unlike AdaBoost. The loss function calculates the rate of error of the classification models. In the

Sci-Kit Learn implementation used in this work, the loss function is the log loss, also referred to as

the cross-entropy loss, which compares the predicted probability with the true class label.

The algorithm starts by fitting a simple base model (decision tree) to the data and then iteratively

adds new decision trees. In each iteration, the algorithm uses the gradient of the loss function with

respect to the predictions of the current ensemble of trees to fit the next tree. By iteratively fitting

new trees, the algorithm is able to improve the accuracy of the model by reducing the residual errors.

Gradient boosting can handle large datasets with high-dimensional feature spaces but requires a

high computational cost and is sensitive to overfitting with too many iterations [33].

Histogram-based gradient boosting classification tree

The histogram-based gradient boosting classification tree (HGBoost) algorithm is an extension of

the gradient boosting algorithm that improves the accuracy and scalability by using histograms to

approximate the distributions of the feature values. Instead of using the traditional decision tree

structure, the algorithm uses histograms to represent the feature values. This approach allows the

algorithm to handle large datasets and high-dimensional feature spaces more efficiently by

discretizing the feature values into bins and storing the bin frequencies, used by the histograms to

27

approximate the distribution of the features [40]. In each iteration, HGBoost fits a new histogram-

based decision tree to the residuals of the previous iteration, using the histograms to select the best

split points for each feature and using gradient descent to find the optimal histograms.

The primary advantage of HGBoost is that it is better able to handle large datasets and high-

dimensional feature spaces than the gradient boosting algorithm. However, it has several parameters

to tune and as such an ineffective classification model can be built with poor parameter selection.

Deep forest

The deep forest algorithm was proposed as an attempted improvement upon some drawbacks of deep

neural networks (particularly their very large computational time). Rather than using a layered

network of neuron-like nodes, deep forest uses a layered network of forests of decision trees. As

such, it is described as “an ensemble of ensembles” [41]. Each forest outputs an estimated class

probability vector, with each component of the vector representing the class probability estimated by

the random forest for the corresponding class label. The class probability vectors of each forest in

the layer are concatenated and used, together with the original features in the dataset, as predictive

features for the random forests to be trained in the next layer [41].

The deep forest algorithm is much more recent and lesser known that several of the other

algorithms included in the Auto-ML systems proposed in this thesis, and it does not have a Sci-Kit

Learn implementation. However, it is the base classification algorithm for one of the baseline

Positive-Unlabelled learning methods in this work (see Section 2.5), and as such it has been included.

The deep forest algorithm has been implemented with the deep-forest python package4.

Stochastic gradient descent

Gradient descent is an optimisation algorithm used to minimize a function by iteratively moving in

the direction of the steepest descent as defined by the negative of the gradient. It involves adjusting

the parameters step-by-step, based on the learning rate and the gradient of the loss function at the

current position. This process is repeated until the algorithm converges to a minimum (ideally the

global minimum but it can become trapped in local minima) of the function. The stochastic gradient

4 https://pypi.org/project/deep-forest/

28

descent (SGD) algorithm is an extension of the basic gradient descent algorithm that updates the

model’s parameters using random subsets, or mini-batches, of the data. The Sci-Kit Learn

implementation utilises SVM as the base classifier that is optimised using the SGD algorithm. Firstly,

the SVM is initialised with random parameter values, which, in each iteration, are updated to

minimise the loss function using gradient descent [32].

The SGD algorithm is relatively computationally efficient as it uses mini-batches of the data to

update the parameters, meaning that it can handle large datasets [32]. However, there are many

parameters for the algorithm, each of which can have a substantial impact on the output.

Multilayer perceptron

A multilayer perceptron (MLP) is a type of artificial neural network that consists of multiple layers

of interconnected neurons, known as perceptrons [42]. The perceptron, originally proposed by

Rosenblatt in 1958, is a linear classification device modelled on a neuron. Essentially, the perceptron

assigns a weight to each feature value of an input instance and determines if the sum of the weighted

feature values is greater than a given threshold. See Figure 2.1.

Figure 2.1. Rosenblatt’s Perceptron. 𝒙𝒏 is input 𝒏, 𝒘𝒏 is the weight applied to input 𝒏, ∑ 𝒙𝒘 is the

sum of the weighted feature values, and 𝒐𝒖𝒕𝒑𝒖𝒕 is the class assigned to the input instance.

The limitations of a single perceptron were highlighted by Minsky and Papert in their seminal 1988

book “Perceptron” [43]. However, many of these limitations are overcome when using a network of

perceptrons, producing an MLP. The layers in the MLP are typically fully connected, meaning that

each neuron in one layer is connected to every neuron in the next layer. The MLP consists of three

different types of layers: an input layer, hidden layers, and an output layer. The input layer receives

the input and will have a number of neurons equal to the number of features of the data. The hidden

layers sit between the input and output layers and extract complex features from the input data. The

output layer uses the processed data from the hidden layers to calculate an output class value.

29

MLPs are effective classifiers for complex datasets, able to learn both linear and non-linear

relationships between inputs and outputs. However, they are computationally expensive (particularly

when they have many hidden layers, which is the case in deep neural networks), and they can be

prone to overfitting. They also have a number of hyperparameters that need to be tuned to achieve a

high predictive accuracy. For a review of MLPs and their applications see [44].

Gaussian process

The Gaussian Process Classifier (GPC) uses a probabilistic model that defines a distribution over

functions, which can be used to make predictions about the target variable given new input features.

In GPC, it is assumed that the target variable is a random variable distributed according to a Gaussian

distribution, with the mean and the variance of the distribution being determined by the input

features. Predictions are made about the target variable given new input by finding the mean and

variance of the distribution at the new input values [32].

GPC is generally accurate and robust, even for datasets with a limited number of instances.

However, the classifier is computationally expensive as its run-time increases cubically with the

number of instances [32].

2.2 Evolutionary Algorithms (EAs)

EAs are powerful methods for solving complex optimization and search problems across various

domains [45]. Inspired by the principles of natural evolution, EAs simulate the processes of selection,

variation, and adaptation to efficiently explore solution spaces. With their ability to handle high-

dimensional, non-linear, and multi-modal problem landscapes, EAs have gained significant attention

from researchers [46][47][48][49][50][51]. In recent years, EAs have been extensively applied in

diverse fields such as engineering [49], computer science [47], biology [52], economics [53], and

social sciences [54]. In addition, EAs are frequently applied to machine learning tasks

[55][56][57][58]. The inherent flexibility and adaptability of EAs allow them to tackle problems that

are challenging for traditional optimization techniques, making them particularly useful in scenarios

where analytical models or problem-specific algorithms are not readily available or feasible [59].

30

The core idea behind EAs is the concept of population-based search. Unlike traditional

optimization methods that focus on generating and evaluating a single solution at a time, EAs

maintain a population of candidate solutions and iteratively improve them over iterations

(generations, in EA terminology). By employing mechanisms inspired by natural selection, such as

selection, crossover, and mutation, EAs can explore a vast search space in parallel, effectively

searching for promising regions that tend towards optimal or near-optimal solutions, although this is

dependent on computational budget and hyperparameter settings. To that end, [59] defined six

primary components of EAs, namely:

• Individual representation

• Fitness function

• Population initialisation

• Variation operators

• Parent selection mechanism

• Survivor selection mechanism

The next subsections outline these components as well as termination criteria, primarily in reference

to Genetic Algorithms (GAs) as GAs are the type of EAs that are the focus of this work.

One of the key advantages of EAs is their ability to handle complex and dynamic problem

environments. EAs possess inherent mechanisms for robustness and adaptability, as they can

continuously explore the solution space, responding to changes in the problem landscape. This makes

EAs particularly suitable for problems that involve uncertainty, noisy or incomplete information, and

time-varying conditions [59].

This background section aims to provide an overview of EAs, their fundamental concepts and

principles. Sections 2.2.1 – 2.2.7 detail the primary components of EAs described above. Section

2.2.8 briefly discusses genetic programming, and 2.2.9 outlines practical considerations and

challenges.

2.2.1 Individual Representation

In EAs, the individual representation defines how candidate solutions are encoded and therefore

manipulated. Each element within the encoding is commonly referred to as a "gene". Different types

31

of individual representations have been developed to accommodate diverse problem domains and

solution spaces. This section will explore several commonly used individual representations,

including binary encoding, real-valued encoding, and categorical encoding, highlighting their

characteristics and applications.

Binary encoding is one of the most widely employed individual representations in EAs. It utilizes

binary genes, where a value of 1 represents the presence or truth of a certain attribute or feature,

while a value of 0 denotes its absence or falsehood. This encoding scheme is particularly suitable for

problems that involve binary decision variables or binary-encoded features. For example, in a GA

for feature selection, each gene can represent the inclusion or exclusion of a specific feature from a

set of features.

Real-valued encoding employs genes that are real numbers within a predefined range. This

representation is suitable for optimization problems involving continuous variables, such as

parameter tuning or function optimization. By allowing the genes to take on real values, the algorithm

can search for optimal solutions in a continuous solution space. Real-valued encoding offers a more

fine-grained representation, enabling the algorithm to explore and exploit the solution space with

greater precision. Additionally, real-valued encoding facilitates the application of mathematical

operators, such as arithmetic crossover and mutation, which can be used to generate offspring with

intermediate values of features, as opposed to just binary feature values.

In certain problem domains, categorical encoding is utilized to represent individuals. With

categorical encoding, each gene takes on a value from a predefined set of categorical values. This

representation is commonly used when the problem involves discrete or categorical variables that

are not naturally represented by binary or real-valued encodings. For instance, in a classification

problem, each gene may correspond to a specific category or class label. Categorical encoding allows

EAs to effectively explore and select from a discrete set of options, making it suitable for problems

with a finite number of possibilities.

It is important to note that an individual need not be represented by a sole type of representation.

That is, an individual can be composed of a combination of binary, real-valued, and categorical

representations. This is the case for the GA that forms the basis of the GA-Auto-PU system proposed

in Chapter 4. This hybrid representation approach enables the algorithm to effectively represent

32

various types of variables or features within the candidate solutions, accommodating the complexity

and heterogeneity of the problem domain.

In summary, individual representation is a crucial aspect of EAs as it defines how candidate

solutions are encoded. Binary encoding is commonly used for problems with binary decision

variables or binary-encoded features. Real-valued encoding is suitable for optimization problems

involving continuous variables, facilitating fine-grained exploration of the solution space.

Categorical encoding is employed when the problem involves discrete or categorical variables. The

hybrid approach used in GA-Auto-PU (Chapter 4) combines multiple encoding schemes to handle

the complexity and diversity of the problem domain, ensuring the algorithm's effectiveness and

versatility, as will be discussed in greater detail later in this work.

2.2.2 Fitness Function

In EAs, the fitness function plays a pivotal role in evaluating the quality of candidate solutions within

the population. It measures how well an individual performs in solving the target problem. The fitness

function serves as a guide for the evolutionary process, allowing an EA to distinguish between better

and poorer solutions and driving the search towards more promising regions of the solution space.

The design of a fitness function is problem-dependent and requires careful consideration to

ensure its effectiveness and relevance. The fitness function should capture the key performance

criteria or objectives of the problem at hand. For instance, if the EA aims to optimize the

hyperparameters of a predictive model, the fitness function might assess the model's performance

using a specific metric, such as accuracy, F-measure, or mean squared error. By evaluating the

candidate solutions based on their ability to achieve the desired outcome, the fitness function guides

the algorithm towards finding solutions that exhibit desirable characteristics.

It is essential to note that the fitness function is often the most computationally intensive

component of an EA. Evaluating the fitness of each individual in the population can be very time-

consuming, especially for complex problems or when the evaluation requires resource-intensive

computations, such as running simulations or training machine learning models. To mitigate the

computational burden, it is crucial to evaluate fitness only when necessary. By minimising the

number of fitness evaluations, the algorithm can allocate computational resources more efficiently.

33

Various techniques, such as surrogate modelling and adaptive fitness evaluation, can be employed to

reduce the computational cost associated with fitness evaluations. These approaches aim to strike a

balance between the accuracy of fitness assessment and the computational efficiency of the

algorithm. See [60][51] for in-depth discussions of these methods.

In summary, the fitness function plays a critical role in EAs by evaluating the quality of candidate

solutions based on their ability to solve the target problem or achieve the desired objectives. It guides

the EA's search by distinguishing between better and poorer solutions. Due to its computational

intensity, it is important to evaluate fitness only when necessary, employing techniques to reduce the

number of fitness evaluations.

2.2.3 Population Initialisation

The population in an EA represents a set of individuals, where each individual represents a potential

solution to the problem at hand. The most basic and commonly used population constraint is size.

That is, the number of individuals is specified by the user, and the system sticks to this number each

generation. However, implementations do exist with variable population size and additional selection

criteria to compensate (for examples see [53][61]). Population initialization is the process of creating

the initial set of individuals that will form the starting point for the evolutionary search. This section

explores different approaches to population initialization, namely: random, deterministic, and

heuristic initializations.

Random initialization is one of the most commonly used approaches in population initialization.

In this method, individuals are generated randomly within the search space. Random initialization

leads to high population diversity, as the individuals are distributed randomly across the solution

space. This diversity is beneficial as it allows the algorithm to explore a wide range of potential

solutions from the start. Random initialization is generally a good choice for most applications,

particularly when the problem involves high-dimensional search spaces. However, it is important to

note that random initialization does not guarantee the generation of high-quality solutions, as the

initial population might contain individuals with poor fitness values.

Deterministic initialization, on the other hand, generates a predefined set of individuals according

to a specific rule or pattern. This approach is typically less desirable in high-dimensional search

34

spaces, as it may result in a less diverse population, unless diversity is explicitly enforced, which can

involve substantially more implementation time. However, deterministic initialization can be useful

in certain scenarios where prior knowledge or specific constraints guide the generation of individuals.

Heuristic initialization utilizes a rule or principle to generate individuals. This approach aims to

direct the search space towards potentially good solutions based on domain-specific knowledge or

problem characteristics. Heuristic initialization can prevent computational "waste" by starting the

search closer to promising regions of the solution space. However, one challenge of heuristic

initialization is the risk of getting trapped in local optima, as the search may be biased towards a

particular region and fail to explore other potentially better solutions. The selection of an appropriate

heuristic for initialization is crucial, as it should strike a balance between computational efficiency

and exploration capabilities.

Experiments conducted by Surry and Radcliffe [62] provided insights into the impact of different

initialization methods. They compared the effects of heuristic and random initializations on the

fitness improvement of populations. The results showed that while the average fitness of a population

increased more with heuristic initialization, random initialization resulted in better fitness

improvement, especially for the best individuals. These findings were supported by subsequent

studies in various domains, where "chaotic" approaches were found to generally enhance the

performance of EAs [63].

In summary, population initialization is a critical step in EAs as it determines the starting point

for the search. Random initialization is commonly used due to its ability to generate diverse

populations. Deterministic initialization may be suitable in specific scenarios with prior knowledge

or constraints. Heuristic initialization can guide the search space towards potentially good solutions,

but careful consideration is required to prevent getting trapped in local optima. The choice of

initialization method should be based on the problem characteristics and desired trade-offs between

exploration and exploitation. The findings from previous studies highlight the advantages of random

initialization in terms of fitness improvement and the potential benefits of "chaotic" approaches.

35

2.2.4 Variation Operators

Variation operators are fundamental components of EAs that generate new candidate solutions from

existing ones. The two main types of variation operators are crossover and mutation.

Crossover

Crossover is analogous to natural reproduction, where children inherit genetic material from their

parents. In the context of EAs, parents are selected from the population based on their fitness, and

children are generated by combining the genetic material of these parents. Each child inherits specific

genes from each parent with a certain probability. Several mechanisms determine how genes are

inherited, with single-point, multipoint, uniform, and arithmetic crossover being common approaches

[64][65][66]. All types described below are in reference to two-parent crossover, where two parents

are selected from a population and two children are generated from these two parents. Other multi-

parent crossover mechanisms are possible, but two-parent crossover is by far the most commonly

used.

In single-point crossover, the child inherits genes up to a specific point from one parent and genes

after that point from the other parent. The crossover point is typically randomly determined. This

process is illustrated in Figure 2.2. Single-point crossover is straightforward to implement but may

result in a lack of diversity compared to other crossover mechanisms. One limitation of single-point

crossover is its positional bias, meaning that adjacent genes are more likely to be swapped together.

Figure 2.2. Example of single-point crossover. The red line indicates the crossover point.

0 0 0 0 0 0 0 0

Parents:

1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1

Children:

1 1 1 1 0 0 0 0

36

Multipoint crossover is a variation of crossover commonly used in EAs to generate offspring from

parent individuals. Unlike single-point crossover that involves a single crossover point, multipoint

crossover involves multiple crossover points along the chromosome. The crossover points are

randomly selected or predetermined, and segments between these points are exchanged between the

parents to create the offspring. This process leads to a more diverse recombination of genetic

material, as multiple segments from each parent contribute to the offspring's genetic makeup.

Multipoint crossover can facilitate the exploration of different regions of the solution space and

promote the combination of favourable traits from both parents. By allowing for more intricate

combinations of genetic information, multipoint crossover enhances the algorithm's ability to search

for promising solutions and adapt to complex problem landscapes. However, multipoint crossover is

not without positional bias. An example of multipoint crossover is shown in Figure 2.3.

Figure 2.3. Example of multipoint crossover. The red lines indicate the crossover points.

Uniform crossover overcomes the positional bias by treating each gene individually. Instead of

specifying specific crossover points, each gene has a probability of being inherited from either parent.

Figure 2.4 provides an example of uniform crossover. This mechanism allows for greater variance

in the offspring compared to single-point crossover or multipoint crossover and is not victim to

positional bias. However, it may not be suitable for all encoding schemes, especially when certain

genes need to be grouped together based on the decoding procedure of a candidate solution.

0 0 0 0 0 0 0 0

Parents:

1 1 1 1 1 1 1 1

0 0 0 1 1 0 0 0

Children:

1 1 1 0 0 1 1 1

37

Figure 2.4. Example of uniform crossover.

For individuals utilising real-valued encoding, arithmetic crossover is an option. In arithmetic

crossover, the genetic material of two parents is combined by performing a weighted average of their

corresponding gene values. Each gene in the offspring is computed as a linear combination of the

corresponding genes from the parents, where the weights are determined by a crossover parameter.

The crossover parameter controls the degree of influence each parent has on the gene values of the

offspring. This parameter should be set depending on the relative importance of the parents, which

is scenario dependent. For example, if one wishes for each parent to have the same influence on the

genes of the offspring, the crossover parameter should assign equal weighting to each parent.

However, if one wishes for parent 1 to have a greater influence on the genes of the offspring, the

crossover parameter should assign as greater weighting to parent 1.

Mutation

Mutation is a critical operator in EAs that introduces additional variation into the population by

modifying individual genes. The purpose of mutation is to explore new regions of the solution space

and prevent the algorithm from converging prematurely to suboptimal solutions.

For binary genes, the mutation process involves swapping the value of the gene for its opposite.

If a gene has a value of 1, it is mutated to 0, and vice versa. This simple operation introduces

variability into the population and allows for the exploration of different binary configurations.

In the case of real-valued genes, mutation typically involves adding or subtracting a

predetermined or randomly generated value to or from the gene's current value. This value, often

referred to as the mutation step, is typically small to ensure that the mutation introduces only minor

0 0 0 0 0 0 0 0

Parents:

1 1 1 1 1 1 1 1

0 1 0 0 1 1 0 1

Children:

1 0 1 1 0 0 1 0

38

changes. By perturbing the gene's value, mutation allows the algorithm to explore the neighbourhood

of the current solution and potentially discover better solutions.

Mutation of categorical values can be more complex, particularly when there is a specified order

among the candidate values. In such cases, the mutation process may involve setting the gene to the

previous or next candidate value from its current assignment. This preserves the ordering and allows

for controlled exploration within the categorical space. Alternatively, if no specific order is defined,

a random candidate value can be selected for mutation.

The probability of mutation determines how often the mutation operator is applied. Typically,

the mutation probability is set to a low value, such as ranging from 0 to 0.1. This ensures that only a

small proportion of genes undergo mutation in each generation. The low mutation probability strikes

a balance between introducing variability into the population and maintaining the genetic information

that contributes to good solutions.

Figure 2.5 provides an illustrative example of mutation, showcasing how the mutation operator

alters the gene values in a population. This example mutation shows how to make slight variations

to the gene values.

Figure 2.5. Example of mutation.

By incorporating mutation into the evolutionary process, an EA can prevent stagnation, escape local

optima, and explore diverse areas of the solution space. Mutation complements the crossover

operator by introducing additional genetic diversity and facilitating the exploration of the search

landscape. Together, these variation operators contribute to the algorithm's ability to adapt and

improve over generations.

Parent: 0 0 0 0 0 0 0 0

Child: 0 0 0 0 0 1 0 0

39

2.2.5 Parent Selection Mechanism

In EAs, selecting appropriate parents for crossover and/or mutation is crucial to ensure the overall

improvement of the population's fitness over generations. Two commonly used parent selection

mechanisms are tournament selection and roulette wheel selection, which are summarised next.

Tournament selection

Tournament selection is a widely employed parent selection mechanism in EAs. This method

involves randomly sampling a subset of individuals, known as the tournament subset, from the

population. The size of the tournament subset is typically much smaller than the total population size.

The fitness values of the individuals within the subset are then compared, and the individual with the

highest fitness is chosen as a parent for crossover and/or mutation. This process is repeated until the

desired number of parents is obtained.

Tournament selection strikes a balance between promoting variation and favouring individuals

with higher fitness. By randomly sampling individuals for each tournament, all individuals in the

population have a chance to participate in the selection process, ensuring diversity. At the same time,

the selection of the fittest individual within the subset increases the probability of selecting

individuals with superior fitness. This favours the propagation of favourable traits and improves the

overall fitness of the population over time.

The size of the tournament subset is an important parameter that needs to be carefully determined.

It represents a trade-off between variation and short-term population fitness. A larger tournament

size includes more individuals in each competition, increasing the likelihood of certain individuals

being selected multiple times. This can lead to higher population fitness for a short term, due to the

concentration of individuals with superior fitness. However, a larger tournament size also poses a

risk of premature convergence, where the population may converge to a suboptimal solution due to

a lack of diversity. On the other hand, a smaller tournament size reduces the competition among

individuals, resulting in a lower chance for those with high fitness to be selected. This can temporarily

decrease population fitness. However, a smaller tournament size can also benefit long-term diversity,

as it allows a wider range of individuals to have opportunities for crossover.

40

A commonly used tournament size is 2 individuals. However, the optimal tournament size

depends on the specific problem and population characteristics. It is recommended to consider the

size of the entire population when determining the tournament size, as a larger population may

require a larger tournament size to ensure sufficient competition.

Roulette wheel selection

Roulette wheel selection assigns the probability of an individual being selected directly proportional

to its fitness value. This selection mechanism, resembling a roulette wheel, ensures that all

individuals have a chance of being selected, but those with higher fitness have a higher probability

of being selected. Roulette wheel selection promotes population diversity while still favouring

individuals with better fitness.

In roulette wheel selection, each individual is assigned a segment on the roulette wheel

proportional to its fitness value. The size of the segment corresponds to the individual's probability

of being selected. The hypothetical roulette wheel is then spun, and the selection process proceeds

by landing on one of the segments, determining the selected individual. In practice, the individuals

are generally assigned a value between 0 to 1, with the value of all individuals summing to equal 1.

The size of the value assigned to the individual is directly proportional to their fitness, with a higher

range between the value of the previous individual and the value of the current individual if the

current individual has a high fitness. A random number is then generated, and if it falls within the

range for a given individual, that individual is selected. For example, individual 1 may be assigned

the value of 0.1, meaning that if the randomly generated number is between 0 and 0.1, individual 1

will be selected. Individual 2 may be assigned the value of 0.15, meaning that if the randomly

generated value is between 0.1 and 0.15, individual 2 is selected. It can thus be inferred that

individual 1 has a higher fitness than individual 2, as the range for individual 1 is 0 to 0.1, whilst the

range for individual 2 is half the size at 0.1 to 0.15 (thus a range of 0.05). Figure 2.6 provides an

example illustrating the concept of roulette wheel selection.

41

Figure 2.6. Example of roulette wheel selection. Fitness values have been scaled to sum to 1 and

are represented by the slices of the pie chart.

Both tournament selection and roulette wheel selection offer advantages in terms of allowing all

individuals to be considered for selection while still favouring individuals with higher fitness. The

choice between these mechanisms depends on the specific problem, population characteristics, and

the desired balance between variation and population fitness improvement.

In summary, parent selection mechanisms play a crucial role in EAs by determining which

individuals are chosen for crossover. Tournament selection and roulette wheel selection are widely

used methods. Tournament selection ensures a balance between variation and short-term population

fitness, while roulette wheel selection allows for diversity while favouring individuals with higher

fitness. The selection mechanism should be carefully chosen based on the problem requirements and

the desired trade-off between exploration and exploitation.

2.2.6 Survivor Selection Mechanism

The survivor selection mechanism plays a crucial role in determining which individuals from the

current generation will be included in the next generation of the population. While the majority of

the next generation typically consists of offspring generated through variation operators, survivor

selection mechanisms allow for the survival of some individuals from the current generation. This

mechanism ensures that the genetic material of high-performing individuals is preserved and carried

forward in the evolutionary process.

42

One commonly used survivor selection mechanism is elitism, which is based on the fitness of the

individuals. In elitism, the individual or individuals with the highest fitness in the current generation

are directly carried over to the next generation without any changes. This strategy guarantees that the

highest fitness observed in the population will not decrease over generations. By preserving the best

individuals, elitism ensures that valuable genetic material is maintained, potentially leading to the

preservation and propagation of desirable traits. Elitism serves as a form of exploitation, as it focuses

on preserving the best solutions found so far and prevents their loss due to selection pressure.

Alternatively, survivor selection mechanisms can be based on the age of the individuals. In such

strategies, younger (i.e., more recently created) individuals are given a higher chance of survival into

the next generation. This approach recognizes that younger individuals may not have had enough

opportunities to contribute their genetic material to the population and allows them to persist for a

longer period, increasing their potential impact on the evolutionary process. However, these

strategies often require a variable population size or a low crossover rate to accommodate the

inclusion of younger individuals without overwhelming the population.

The choice of survivor selection mechanism depends on the problem requirements and the

specific goals of the EA. Elitism is a popular choice when the aim is to maintain the best solutions

over generations and promote convergence towards optimal or near-optimal solutions. Age-based

strategies can be advantageous when there is a need to ensure sufficient exploration and diversity in

the population, particularly in dynamic or changing environments. The appropriate survivor selection

mechanism should be carefully selected to strike a balance between preserving high-performing

individuals and promoting the exploration of new solutions.

In summary, the survivor selection mechanism determines which individuals from the current

generation are allowed to survive and be included in the next generation. Elitism, based on fitness,

preserves the best individuals, preventing a decrease in the highest fitness observed. Age-based

strategies prioritize younger individuals, providing them with a higher chance of survival. The choice

of survivor selection mechanism depends on the desired goals of the algorithm and should be tailored

to strike a balance between exploitation and exploration.

43

2.2.7 Termination Criteria

While not explicitly listed as a key component of an EA by Eiben and Smith [59], the specification

of termination criteria is essential for defining when the algorithm should stop. Jain et al. [67]

categorize termination criteria into three types: direct termination criteria, derived termination

criteria, and cluster-based termination criteria.

Direct termination criteria are predefined. Common examples include a maximum generation

count (most commonly used), a maximum run time threshold, and (less commonly) a specific fitness

value. The primary issue with the first two criteria is that their specification is likely arbitrary with

regard to algorithm performance. Whilst a maximum run time threshold may be necessary in terms

of computational resources, there is no guarantee that the EA will reach a desired solution within that

timeframe. This also applies for a maximum generation count. Specifying a specific fitness value to

be reached has a separate but possibly greater issue: there is no guarantee that the system will reach

this particular value. Thus, the user could end up with a system that would run indefinitely if left

undisturbed.

Derived termination criteria are calculated based on data regarding the current generation.

Examples of derived termination criteria are: (a) the best-vs-average (referred to as the “running

mean” by [67]), where the difference between the best fitness and the average fitness is calculated

and execution is terminated if the difference is less than a specified threshold; (b) the standard

deviation, where the execution is terminated if the standard deviation of the population fitness is less

than a specified threshold; and (c) the best-vs-worst criteria, where the execution is terminated if the

difference between the best fitness and the worst is less than a specified threshold. Other derived

termination criteria exist (see [68] for a more extensive list), but the vast majority suffer from the

same drawback: an arbitrary threshold value. Whilst criteria such as the best-vs-average may appear

a less ad-hoc stopping criterion than a direct termination criterion, a value for which we consider the

best fitness and the population fitness mean similar enough to justify terminating execution must be

defined, a value which is also likely arbitrary. However, a derived termination criteria is potentially

preferable as a more adaptive stopping criterion. Termination will be based on a reasonably

justifiable quantity, rather than computational resource.

44

Cluster-based termination criteria employ clustering techniques to analyse the current fitness

diversity. An example of such a method is ClusTerm [67] where clusters of high-fitness individuals

(termed “elitist clusters”) are identified, and execution is terminated when the aggregated size of the

elitist clusters reach a predetermined threshold. As this relies on a predetermined threshold, the same

drawbacks described regarding derived termination criteria apply. In fact, as cluster-based techniques

determine stopping criteria based on data regarding the current generation and very few examples of

this type of stopping criteria exist, they can be considered a subset of derived termination criteria.

In summary, termination criteria are crucial for determining when an EA should stop. Direct

termination criteria, derived termination criteria, and cluster-based termination criteria offer different

approaches to defining stopping conditions. However, most of these criteria rely on arbitrary

threshold values, which can make termination decisions subjective and lacking a solid justification.

While derived termination criteria and cluster-based termination criteria offer more adaptive stopping

criteria, the choice of threshold values remains a challenge. Determining appropriate termination

criteria should consider the problem at hand and strike a balance between computational resources,

diversity, and the desired quality of the obtained solutions.

2.2.8 Genetic Programming (GP)

Discussion on EAs thus far has focussed on GAs with linearly encoded individuals. However, GP is

an important topic to introduce before discussing Auto-ML. The primary difference between GP and

previously discussed EAs is that GP methods evolve programs. That is, a GP method will evolve

computer programs as a solution to a given task [69]. Despite the conceptual difference, GP follows

a similar general procedure as GAs, including population initialization, fitness assessment,

reproduction through variation operators, and survivor selection. However, the common approaches

to individual representation in GP differ significantly from linear encoding employed in GAs. In GP,

individuals are typically represented using a tree structure, making it tree-based GP (TGP) [70]. The

tree structure represents the program's structure, with the tree nodes corresponding to functions or

operators (e.g., +, -, ÷, ×), and the leaf nodes representing variables or constants [71]. The tree nodes

serve as the building blocks for creating more complex programs, and the leaf nodes provide the

necessary inputs or values for the program's execution. This tree-based representation allows for the

45

expression of complex program structures and facilitates the exploration of a wide range of program

architectures. An extensive list of TGP systems across a variety of domains can be found in Table 2

of [72].

Another approach is grammar-based GP (GGP). GGP systems replace the set of terminals and

functions by a grammar [73]. There are two types of GGP individual encoding, namely solution-

encoding and production-rule-sequence-encoding. In solution-encoding, an individual is represented

by a tree. In production-rule-sequence-encoding, the individual is mapped from its original encoding

to the desired output. Often, this is mapping from a linear encoding according to the grammar. Recent

examples of GGP systems are [74][75][76].

In addition to TGP and GGP, several other GP approaches exist, each with its own individual

encoding and manipulation techniques. Stack-based GP, cartesian GP, and linear GP are among the

notable variations. These different approaches provide flexibility in encoding programs and

manipulating their structures, enabling a diverse range of applications. For a more extensive

introduction to different GP frameworks, see [72].

In summary, GP is a powerful paradigm that allows for the evolution of programs as solutions to

complex problems. Unlike linearly encoded GAs, GP employs a tree-based or grammar-based

representation of individuals. This representation enables the evolution of program structures and

facilitates the exploration of complex solution spaces. TGP and GGP are popular branches of GP,

with TGP utilizing tree structures and GGP employing grammars. The variety of GP approaches

provides a versatile framework for solving a wide range of problems that require the evolution of

program-like structures.

2.2.9 Practical Considerations and Challenges

While EAs offer powerful problem-solving capabilities, there are several practical considerations

and challenges that researchers and practitioners need to address when applying EAs in practice.

These considerations can significantly impact the success and efficiency of the algorithm, and

understanding these challenges is crucial for achieving optimal results.

46

Computational complexity

Computational complexity is a crucial practical consideration when implementing and applying EAs.

EAs are computationally expensive, since they need to evaluate the fitness of a large population of

individuals for many generations, and fitness evaluation is usually a very expensive operation –

particularly in machine learning, where fitness often involves running a supervised learning

algorithm. As the population size, number of generations and problem complexity (affecting the

fitness evaluation time) increase, the computational cost of these operations an EA can grow

exponentially, posing challenges in terms of time and resource requirements.

Efficient implementation plays a significant role in managing computational complexity.

Researchers often strive to optimize the algorithm's performance by leveraging efficient data

structures and algorithms. For example, when evaluating solutions against large datasets, employing

algorithmic optimizations, such as caching or approximation techniques, can significantly reduce the

computational burden and improve the efficiency of fitness evaluations [60].

Parallelization is another strategy to address computational complexity. EAs can benefit from

parallel and distributed computing techniques to accelerate the execution time by performing

multiple fitness evaluations or variation operations simultaneously. Parallelization can be achieved

through multi-core processors, cluster computing, or even utilizing cloud computing resources.

Distributing the computational load across multiple processing units allows for more efficient

exploration of the search space and can help tackle larger and more complex optimization problems

within a reasonable time frame [60].

Furthermore, efficient utilization of distributed computing resources can enable researchers to

explore multiple regions of the search space concurrently, enhancing the diversity of the population

and potentially improving the quality of solutions. Load balancing techniques and task scheduling

strategies become crucial in distributed EAs to ensure optimal resource utilization and minimize

communication overhead.

However, it is important to note that parallelization introduces additional challenges, such as

synchronization, load balancing, and scalability. Researchers need to carefully design parallel

algorithms and address potential bottlenecks to fully exploit the computational power of parallel and

distributed computing systems.

47

Additionally, advancements in hardware technologies, such as graphics processing units (GPUs)

and field-programmable gate arrays (FPGAs), provide opportunities to accelerate the execution of

EAs further. These specialized hardware platforms can be leveraged to perform parallel computations

and accelerate fitness evaluations and variation operators. However, harnessing the potential of these

hardware platforms requires specific expertise and tailored algorithm implementations.

Parameter tuning

Parameter tuning is a critical aspect of effectively applying EAs. EAs involve several parameters that

directly influence the algorithm's behaviour and performance, such as population size, mutation

probability, crossover probability, selection mechanisms, and termination criteria. Selecting

appropriate parameter values is a challenging task because different parameter settings can lead to

vastly different optimization outcomes [77].

One of the key goals in parameter tuning is to strike a balance between exploration and

exploitation. Exploration aims to search a wide range of the solution space to discover diverse and

potentially superior solutions, while exploitation focuses on refining promising solutions to converge

towards the optimal or near-optimal regions. Finding the optimal balance is problem-specific and

often requires a deep understanding of the problem domain.

Empirical analysis is a common approach to parameter tuning. Researchers perform multiple

runs of the EA with different parameter settings and analyse the impact on the algorithm's

performance metrics, such as convergence speed, solution quality, and diversity. By systematically

varying one or more parameters while keeping others fixed, researchers can gain insights into how

changes in parameter values affect the optimization process. This analysis helps identify parameter

configurations that yield desirable outcomes and informs the selection of appropriate values.

Sensitivity studies are another valuable technique for parameter tuning. Sensitivity analysis

involves systematically varying one parameter while keeping others constant and observing the

corresponding changes in the algorithm's performance. This analysis helps determine which

parameters have a significant impact on the optimization process and which have a minor effect.

Sensitivity studies guide researchers in prioritizing parameters that require more attention during the

tuning process [78].

48

It is also possible to use adaptive techniques that utilize feedback mechanisms or statistical

analyses to dynamically adjust parameter values based on the observed behaviour of the algorithm

during runtime. Adaptive parameter control methods enable EAs to adapt to the problem's

characteristics and the changing landscape of the solution space, enhancing the algorithm's

robustness and convergence performance [77]. Self-adaptive frameworks allow the algorithm to

autonomously adjust its internal parameters based on the feedback from the optimization process.

Self-adaptive EAs use evolutionary principles to evolve the parameter values themselves, by

encoding candidate parameter values into an individual together with the encoding of a candidate

solution and letting both the parameter values and the candidate solution components be optimised

by the evolutionary process [79].

It is worth noting that parameter tuning is an iterative process that often requires several iterations

of experimentation, analysis, and refinement. Thus, this will increase the difficulties around

computational expense discussed previously. Researchers should consider the problem's

characteristics, domain knowledge, and insights gained from previous studies to guide the parameter

tuning process effectively.

Premature convergence

Convergence is a fundamental goal in EAs, as they aim to reach optimal or near-optimal solutions.

However, a common challenge in EAs is premature convergence, where the algorithm gets trapped

in suboptimal regions of the search space and fails to explore potentially better solutions. Premature

convergence hinders the algorithm's ability to fully exploit the search space and can lead to

suboptimal or unsatisfactory results. The issue of premature convergence is closely tied with the

issue of hyperparameter tuning, in the sense that successful hyperparameter tuning can mitigate

premature convergence, as discussed next.

To address the issue of premature convergence, a delicate balance between exploitation and

exploration is essential. Exploitation involves intensifying the search around promising solutions,

refining them to achieve higher quality solutions. On the other hand, exploration focuses on

expanding the search to discover new regions of the search space that may contain better solutions.

49

Striking the right balance between exploitation and exploration allows EAs to escape local optima

and explore the search space more effectively.

One strategy to mitigate premature convergence is to employ diverse selection mechanisms.

Traditional selection methods, such as roulette wheel selection, tend to favour individuals with higher

fitness values. While this bias towards selecting fitter individuals helps exploit good solutions, it can

also lead to a loss of diversity within the population. Employing selection mechanisms that explicitly

promote diversity, such as rank-based selection or tournament selection with a small tournament size,

can help maintain a diverse population and prevent premature convergence. These mechanisms

ensure that individuals with lower fitness values have a chance to contribute to the next generation,

preserving genetic diversity and exploration potential [79].

Introducing genetic diversity through mutation is another crucial approach to combat premature

convergence. Mutation operators introduce random changes to individuals' genetic material,

promoting exploration by generating novel solutions. By using a low mutation probability, the

algorithm explores the search space beyond the immediate neighbourhood of the current solutions.

Mutation enables the algorithm to escape local optima and encourages the discovery of new regions

with potentially better solutions. However, it is important to strike a balance with the mutation

probability, as an excessively high mutation probability may hinder convergence and impede the

exploitation of promising solutions [80].

Interpretability and transparency

Interpretability and transparency are crucial considerations when applying EAs in certain domains

where understanding the evolved solutions is important. While EAs are powerful tools for

discovering complex solutions, these solutions can often be difficult to interpret or explain, posing

challenges in domains where interpretability is a requirement. Achieving transparency and

interpretability in the evolved solutions is a complex task, particularly when using highly flexible

representation schemes.

One of the challenges in ensuring interpretability and transparency is the trade-off between

complexity and performance. EAs can generate solutions that are highly complex and exhibit

intricate interactions among variables or components. While these complex solutions may achieve

50

high performance on the optimization task, they can be challenging to interpret and understand,

especially for domain experts who need to make informed decisions based on the solutions. In this

case, a balance must be struck between complex solutions that achieve high performance and

solutions that are comprehensible and interpretable to domain experts.

To address this challenge, researchers can adopt specific strategies during the optimization

process. One approach is to utilize representations that naturally lend themselves to interpretability.

For example, in the area of automated machine learning, an EA can be designed such that it favours

machine learning pipelines utilising interpretable classifiers, such as decision trees, over black box

classifiers such as neural networks.

Furthermore, post-processing techniques can be employed to enhance the interpretability of

evolved solutions. These techniques involve extracting useful insights, visualizing the solutions, or

summarizing their behaviour in a way that is more understandable to domain experts. For example,

sensitivity analysis can help identify the most influential variables or components in the evolved

solutions. Visualization techniques, such as heat maps, decision trees, or rule-based representations,

can provide a visual understanding of the returned solution's behaviour and decision-making process.

Addressing these practical considerations and challenges requires a combination of domain expertise,

algorithmic knowledge, and careful experimentation. Researchers and practitioners need to

understand the nuances of the problem at hand, select appropriate algorithmic techniques, and

continuously refine and adapt the algorithm to achieve the best possible results in practical

applications. By addressing these challenges, EAs can be effectively applied to a wide range of real-

world problems, offering valuable insights and solutions that would otherwise be difficult to obtain

using traditional optimization methods.

2.3 Bayesian Optimisation (BO)

BO is a powerful meta-learning technique that involves learning a surrogate function to optimise an

objective function [81][82]. That is, we optimise an objective function by calculating an estimation,

where in general the estimation can be computed much faster than the evaluation of the objective

function. The core idea behind BO is to iteratively select the next set of input parameters to evaluate

51

based on the previous evaluations. These previous evaluations are used to train a surrogate model

that is then used to predict the score that would be assigned by the objective function, and thus

identifies areas of the search space to be evaluated. By calculating (relatively fast) an estimation,

rather than assessing all input parameters according to the computationally expensive objective

function, BO efficiently identifies promising areas of the search space. This characteristic makes BO

particularly well-suited for problems with limited resources or in situations where the cost of

experimentation is high.

Specifically, a set of instances are evaluated according to an objective function. The objective

function will depend on the specific application domain but should reflect the purpose that the

instances have been created for. Recall the concept of a fitness function in the context of an EA, the

objective function is analogous. For example, in the context of machine learning, the input could be

a decision tree algorithm’s configurations. That is, the hyperparameters that the candidate decision

tree algorithm configuration should utilise. The objective score in this scenario could be the accuracy

achieved by the decision tree learned by the algorithm on a specific dataset. A model, generally a

Gaussian process regressor [83][84] or random forest [85], referred to as the surrogate model, is then

trained using the characteristics of the input as features, and a performance metric obtained from the

evaluation by the objective function as the target. To continue the decision tree example, the input to

the surrogate model may have the maximum depth as one feature, the minimum samples required to

split an internal node as another, etc., and the accuracy achieved by the learned decision tree as the

target. This model is then used to estimate the performance of newly generated algorithm

configurations, assigning a “surrogate score” to each. This process of performance estimation is

generally much faster than calculating the performance of a configuration using the objective

function when applied to an optimisation task that involves an expensive objective function.

These new configurations are generated according to the defined search strategy, a process that

guides exploration of the search space (consisting of all candidate algorithm configurations) by

determining how new candidate solutions are generated. A very naive search strategy would generate

individuals randomly, playing no role in “guiding” exploration, whereas a more intelligent approach

would utilise heuristics, leveraging information from the surrogate model to determine promising

areas within the search space.

52

Once the generated configurations have been evaluated by the fast surrogate model, the most

promising configurations (i.e., the ones with the highest estimated score) are evaluated with the slow

objective function (the real optimisation target), and their configuration details and scores are used

to update the surrogate model. There are several approaches to selecting the most promising

individuals, defined by the acquisition function, discussed later in this text.

This section will discuss the main components of the BO algorithm in more detail, beginning

with surrogate models in Section 2.3.1. Section 2.3.2 will focus on acquisition functions, whilst

Section 2.3.3 will outline the specific algorithm steps, including a pseudocode of a basic

implementation. Finally, Section 2.3.4 will describe practical considerations and challenges.

2.3.1 Surrogate Models

Surrogate models serve as approximations to the true objective function and are used to predict the

performance of new candidate solutions in the search space. By utilizing the surrogate model, BO

can efficiently explore the search space and identify promising areas for further evaluation, without

needing to assess all configurations according to the objective function [81][82]. The choice of

surrogate model in BO depends on various factors, including the problem domain, available data,

and computational resources. Two commonly used surrogate models are Gaussian process regressors

[83][84] and random forests [85].

Gaussian process regressors are flexible and powerful models that can capture complex

relationships between input parameters and the objective function’s performance [32]. They are

particularly well-suited for problems with relatively small datasets or when the underlying

relationship is expected to be smooth and continuous. A Gaussian process defines a prior distribution

over functions and updates this distribution based on observed data, providing a posterior distribution

that represents the uncertainty in predictions. The posterior distribution can be used to estimate the

objective function’s performance for unobserved configurations.

Random forests, on the other hand, are an ensemble learning method that combines multiple

decision trees to make predictions. Each tree is trained on a subset of the available data, and the final

prediction is obtained by averaging the predictions of individual trees. Random forests are known

for their ability to handle high-dimensional data and capture complex interactions between input

53

parameters [37]. They can be used as surrogate models in BO by training them on the evaluated

configurations and their corresponding objective function values.

To train the surrogate model, the input configurations are represented by their characteristics or

features, which could include hyperparameters, design choices, or any other relevant attributes. The

objective function's performance on these configurations serves as the target variable. For example,

in the context of optimizing machine learning algorithms, the features could be the algorithm's

hyperparameters, and the target variable could be the algorithm's accuracy on a specific dataset. The

features will need to be encoded in such a way as to be interpreted by the surrogate model. For

example, unordered categorical variables may be one-hot encoded.

Once the surrogate model is trained, it can be used to predict the performance of new, unobserved

configurations. These predictions provide an estimate of the objective function's value without the

need for expensive function evaluations. BO utilizes these estimates to guide the search process

towards regions of the search space that are likely to yield better performance.

It is important to note that the surrogate model approximates the true objective function and

carries some inherent uncertainty. The uncertainty captures the surrogate model's estimation error

and plays a crucial role in the selection of candidate solutions for evaluation. Acquisition functions,

as discussed in Section 2.3.2, leverage this uncertainty to balance exploration and exploitation and

guide the search towards promising areas of the search space [84]. Unlike random forests, Gaussian

process regressors return an uncertainty value with their predictions, making them a natural choice

when working with acquisition functions such as probability of improvement and expected

improvement. A random forest regressor would need to be modified in order to return these values.

However, in general, a random forest regressor can be trained much faster than a Gaussian processor

regressor.

2.3.2 Acquisition Functions

Acquisition functions play a crucial role in BO by guiding the selection of the most promising

configurations to evaluate [84]. These functions determine the utility or potential of different

candidate solutions within the search space. The choice of an appropriate acquisition function is

54

essential to balance exploration and exploitation, as it influences the trade-off between exploring new

areas of the search space and exploiting regions that are likely to yield high performance.

The acquisition function considers the surrogate model's predictions and its associated

uncertainty or confidence. The uncertainty captures the model's estimation error, which is crucial for

efficient exploration. There are several popular acquisition functions used in BO, each with its own

characteristics and advantages. Three such acquisition functions are described next.

Predicted value

This is the simplest acquisition function as it takes only the value predicted by the surrogate model

without alteration. That is, the promising areas of the search space are identified only as those which

contain instances for which the surrogate model calculates high estimated values. The following

acquisition functions attempt a trade-off between exploration and exploitation, whereas this simple

approach looks only to exploit existing knowledge regarding the search space.

Probability of improvement

The Probability of Improvement (PI) acquisition function is a popular choice in BO. It aims to select

the configuration that has the highest probability of improving upon the best-known performance

observed thus far during the optimization process. The PI function focuses on exploiting regions

within the search space that have a high probability of yielding better results [86].

The PI acquisition function calculates the probability that a new configuration will improve upon

the current best-known performance. It does this by comparing the surrogate model's predictions

with the current best performance. If the predicted value at a particular configuration exceeds the

current best performance plus a certain threshold, that configuration is considered promising. PI is

calculated as shown in Equation 2.9.

PI(x) = Φ(f(x) > xbest + ε) (2.9)

Where PI(x) is the probability of improvement at a particular configuration x in the search space,

f(x) is the surrogate model’s prediction for configuration x, xbest is the best-known performance

observed so far during the optimisation process, Φ is the cumulative distribution function of the

standard normal distribution, and ε is the threshold parameter that determines the level of

55

improvement required for a configuration to be considered valuable. ε can be defined based on a

user-specified parameter or adaptively adjusted during the optimization process. A higher threshold

encourages more exploration, as it allows for the consideration of configurations that may have a

lower probability of improvement but still offer a significant potential gain. On the other hand, a

lower threshold favours exploitation, focusing on configurations that have a higher probability of

surpassing the current best performance.

By selecting configurations based on their probability of improvement, the PI acquisition

function tends to direct the optimization process towards promising areas of the search space. It

exploits regions that are likely to yield better results while gradually refining the estimate of the

objective function. However, this behaviour leads to a system that is overly exploitative, rather than

exploratory [86].

Expected improvement

The expected improvement (EI) acquisition function is another popular choice in the BO literature

that quantifies the expected improvement over the current best performance. First proposed by

Močkus et al. [87], it provides a balance between exploration and exploitation by considering both

the probability of improvement and the potential magnitude of improvement.

To calculate the expected improvement, the EI function utilizes the predictions of the surrogate

model and its associated uncertainty. The surrogate model estimates the performance of different

configurations within the search space based on the observed evaluations. The uncertainty captures

the model's estimation error or lack of confidence in its predictions. EI is calculated as shown in

Equation 2.10.

EI(x) = E[max(f(x) – xbest, 0)] (2.10)

Where EI(x) is the probability of improvement at a particular configuration x in the search space,

f(x) is the surrogate models prediction for configuration x, and xbest is the best-known performance

observed so far during the optimisation process. E[…] is the expected value operator. This calculates

the average value of improvement considering the uncertainty associated with the surrogate model’s

predictions. It considers the probability distribution of f(x) and computes the weighted average of

max(f(x) – xbest, 0) over the distribution [86].

56

The EI function evaluates the potential improvement by comparing the surrogate model's

predictions with the current best performance observed so far. It considers areas where the surrogate

model predicts a higher improvement than the current best performance and weighs this improvement

by the probability of its occurrence. In other words, EI encourages exploration by giving more

importance to configurations with higher likelihood of improving upon the current best performance.

One of the key advantages of the EI function is its ability to explore regions of the search space

where the surrogate model is uncertain. By considering areas with high uncertainty, EI promotes

exploration and helps to avoid premature convergence to suboptimal solutions. This exploration

aspect is crucial, especially in the early stages of optimization when the surrogate model has limited

information about the search space.

The magnitude of improvement also plays a role in the calculation of the expected improvement.

The EI function considers not only the probability of improvement but also the potential gain in

performance. It prioritizes configurations that not only have a higher probability of improvement but

also offer a larger expected gain in performance. This consideration ensures that the algorithm

focuses on configurations that have the potential for significant improvements, rather than just minor

incremental gains. Furthermore, it is non-parametric, unlike the PI acquisition function.

2.3.3 Optimisation Algorithm

The BO algorithm follows a systematic process to iteratively search for the optimal solution within

the search space. This section outlines the key steps involved in the algorithm, including the

evaluation of candidate configurations, updating the surrogate model, and selecting the most

promising configurations for further evaluation. This description is outlined in ref [84].

The algorithm begins by initialising the surrogate model using an initial set of evaluated

configurations. These configurations are typically selected based on random sampling or domain

knowledge to cover a representative portion of the search space. The surrogate model is trained using

the characteristics of these configurations as features and their corresponding objective function

values as targets. Based on the surrogate model and a defined search strategy, new candidate

configurations are generated for evaluation. The search strategy determines how the algorithm

explores the search space to generate promising configurations. It can be as simple as random

57

sampling or incorporate more intelligent techniques that leverage information from the surrogate

model to guide the exploration.

The surrogate model is then used to estimate the performance of the newly generated

configurations. Each configuration is assigned a "surrogate score" based on its predicted

performance. The acquisition function plays a crucial role in selecting the most promising

configurations for further evaluation. Depending on the acquisition function utilised, it can balance

exploration and exploitation by considering the surrogate model's predictions and associated

uncertainties. Different acquisition functions, such as Probability of Improvement or Expected

Improvement, can be used to guide the selection process.

The most promising configuration(s), as determined by the acquisition function, are selected for

evaluation using the objective function. These configurations undergo the costly evaluation process

to obtain their actual objective function values. The evaluations provide additional information to

update the surrogate model in the following iteration and refine the estimation of the objective

function's performance.

The algorithm repeats the evaluation, surrogate model update, and selection steps for a predefined

number of iterations or until a convergence criterion is met. The convergence criterion can be based

on the improvement in the objective function value or the stability of the surrogate model's

predictions. If the convergence criterion is met, the algorithm terminates, and the configuration with

the highest observed objective function value is considered the optimal solution. Otherwise, the

algorithm continues to iteratively refine the estimation and search for better solutions.

Procedure 2.1 Outline of the Bayesian optimization procedure

1. Candidate_solutions = randomly generate #Candidate_solutions configurations;

2. Scores = run objective function for all configurations in Candidate_solutions;

3. Fit Surr_model with Candidate_solutions as features, Scores as target;

4. 𝑖 = 0;

5. While 𝑖 < It_count:

a. New_Candidate_solutions = randomly generate #Candidate_solutions configurations;

b. �̂� = calculate a surrogate score for each new config with Surr_model;

c. Best_config = config with highest score according to �̂�;

d. Score = run objective function for Best_config;

e. Add Best_config to Candidate_solutions, add Score to Scores;

f. Retrain Surr_model on Candidate_solutions and Scores;

g. 𝑖 += 1;

Output: Best configuration according to objective score;

58

An example of a basic implementation of BO is given in Procedure 2.1, which works as follows.

First, #Candidate_solutions PU learning configurations are randomly generated (step 1) and

evaluated, with their scores as calculated by the objective function saved as Scores (step 2). A

Surr_model, is then trained, using Candidate_solutions as features, and Scores as the target variable

(step 3). This involves processing the Candidate_solutions in such a way as to be suitable input for

Surr_model. How they are processed will depend on the component types. The iteration index 𝑖 is

set to 0 (step 4). A new set of #Candidate_solutions configurations, New_Candidate_solutions, are

randomly generated (step 5.a) and a surrogate score for each is calculated by Surr_model and saved

as �̂� (step 5.b). The best configuration, Best_config, with the highest score according to �̂� is evaluated

using the objective function (steps 5.c,d), and added to Candidate_solutions, with the objective Score

(F-measure) added to Scores (step 5.e). Surr_model is then retrained with Best_config added to

Config (step 5.f). 𝑖 is incremented by 1 (step 5.g). This process (steps 5.a-g) is repeated It_count

times. Finally, the best configuration, according to the objective score, is returned.

This is an example of a basic implementation, using the predicted value as the acquisition

function and random candidate solution initialisation. This procedure can be easily adapted to include

more complex acquisition functions, candidate solution initialisation, and specific components of the

given optimisation task.

2.3.4 Practical Considerations and Challenges

While BO offers a powerful framework for optimizing complex objective functions, there are, as

with any optimisation approach, several practical considerations and challenges that need to be

considered.

Computational expense

Training surrogate models, such as Gaussian process regressors or random forests, involves fitting

the models to the evaluated configurations and their corresponding objective function values. The

complexity of these models can vary depending on the problem domain and the amount of available

59

data. Training more complex models may require more computational resources and time. Therefore,

it is essential to consider the trade-off between model complexity and computational expense. In

some cases, simpler models may be preferred to reduce the computational burden, especially when

the computational resources are limited.

Evaluating candidate configurations using the surrogate model is generally computationally

cheaper than evaluating the objective function directly. The surrogate model provides estimates of

the objective function's performance without the need for time-consuming evaluations. However, the

efficiency of this estimation process depends on the surrogate model's complexity and the number of

candidate configurations to be evaluated. It is important to strike a balance between the number of

evaluations performed by the surrogate model and the computational expense required for each

evaluation. Techniques such as parallelization or efficient sampling strategies can be employed to

mitigate the computational cost of evaluating candidate configurations.

The choice of acquisition function also affects the computational expense. Some acquisition

functions, such as the Probability of Improvement or Expected Improvement, require additional

computations to determine the most promising configurations for evaluation. These computations

may involve optimizing acquisition functions or estimating probability distributions. The complexity

of these computations can impact the overall computational expense of the optimization process.

However, given that the objective function is expensive enough to justify the use of a surrogate

model, these extra computations may prove negligible.

Note that the computational expense should be justified by the complexity of the objective

function and the optimization problem. If the objective function is relatively simple and inexpensive

to evaluate, the benefits of using a surrogate model and BO may be outweighed by the computational

overhead. In such cases, alternative optimization methods that directly evaluate the objective

function may be more suitable.

Surrogate model selection

The choice of the surrogate model depends on several factors, including the characteristics of the

problem domain, the available data, and the computational resources at hand. Different surrogate

60

models have different strengths and limitations, and selecting the most appropriate one is essential

for achieving accurate predictions and efficient optimization.

Gaussian process regressors are commonly used surrogate models in Bayesian optimization

[83][84]. They are flexible and powerful models that can capture complex relationships between

input parameters and the objective function's performance. Gaussian process regressors define a prior

distribution over functions and update this distribution based on observed data, resulting in a

posterior distribution that represents the uncertainty in predictions. The posterior distribution can be

used to estimate the objective function's performance for unobserved configurations [32]. Gaussian

process regressors are particularly suitable when the underlying relationship between input

parameters and the objective function is expected to be smooth and continuous. They are also

advantageous when dealing with relatively small datasets, as they provide a probabilistic framework

for incorporating uncertainty in predictions.

Random forests are another popular choice for surrogate models in Bayesian optimization. They

are ensemble learning models that combine multiple decision trees to make predictions. Each tree is

trained on a subset of the available data, and the final prediction is obtained by averaging the

predictions of individual trees [36]. Random Forests are known for their ability to handle high-

dimensional data and capture complex interactions between input parameters. They are especially

effective when dealing with noisy or heterogeneous data [37]. Random forests can be used as

surrogate models in BO by training them on the evaluated configurations and their corresponding

objective function values. However, utilising a random forest classifier with an acquisition function

such as EI or PI (see Section 2.3.2) requires a modification of the standard implementation to return

uncertainty metrics. For example, the approach utilised by Thornton et al. [90] calculates the

predictive variance for all the trees in the forest for each prediction and uses this as the uncertainty

metric. The higher the variance, the higher the uncertainty.

In addition to Gaussian process regressors and random forests, other surrogate models can also

be considered based on the specific problem characteristics. Neural networks, for example, have

shown success in various domains and can capture complex non-linear relationships. Support vector

models can handle high-dimensional data and incorporate kernel functions to capture non-linearities.

61

When selecting a surrogate model, it is important to assess the strengths and limitations of each

model and consider how well it aligns with the problem domain and available data. Factors to

consider include the complexity of the model, the interpretability of the predictions, the ability to

handle noisy or heterogeneous data, and the computational resources required for training and

prediction. It may be necessary to experiment with different surrogate models and evaluate their

performance using appropriate metrics.

Hyperparameter tuning

Surrogate models and acquisition functions often involve hyperparameters that control their

behaviour and performance. These hyperparameters determine important aspects such as the

flexibility of the surrogate model, the balance between exploration and exploitation, and the level of

uncertainty considered in the optimization process. Properly tuning these hyperparameters is

essential to ensure optimal performance and achieve meaningful results. The choice of

hyperparameter values of a classifier can significantly impact the output of that classifier [88], thus

it follows that it can drastically alter performance of the surrogate models and acquisition functions.

Suboptimal hyperparameter settings may lead to poor predictive accuracy, inadequate exploration or

exploitation, or inefficient use of computational resources. Therefore, it is important to carefully tune

these hyperparameters to achieve the best possible performance.

It is worth noting that hyperparameter tuning is an iterative and time-consuming process [88]. It

may require multiple rounds of experimentation and evaluation to find the optimal hyperparameter

settings. The computational expense involved in hyperparameter tuning should be considered

alongside other practical considerations such as the computational cost of the optimization process

and the available resources.

Convergence

Bayesian optimization aims to find the optimal solution within the search space. However, several

challenges can hinder convergence, such as premature convergence to suboptimal solutions. Proper

exploration of the search space is essential to overcome these challenges and improve the

convergence of the optimization process. Exploration and exploitation are two key components in

BO that address the trade-off between searching for new, unexplored regions and exploiting the

62

currently known promising areas of the search space. The choice of acquisition function significantly

influences this balance [84].

It is important to note that achieving convergence in BO can be a complex task, and the optimal

strategy for exploration and exploitation may vary depending on the problem domain and the specific

optimization goals. Therefore, it is crucial to carefully select or design the acquisition functions and

employ appropriate techniques that suit the characteristics of the problem at hand.

2.4 Automated Machine Learning (Auto-ML)

Auto-ML is a rapidly growing field of machine learning (ML) that looks to limit the human

involvement in ML applications [8], reducing the demand for domain experts and allowing those

without extensive ML knowledge to operate complex ML pipelines [9]. Algorithm performance is

largely dependent on input data [89]. Auto-ML can assuage this issue by searching for the best model

specific to the target ML task (e.g., the best model for a given classification dataset).

Whilst [9] defines an Auto-ML system as developing a full ML pipeline, from data preparation

to model evaluation, some researchers approach Auto-ML as a combined algorithm selection and

hyperparameter optimisation (CASH) task, defined by [90] as automatically and simultaneously

choosing a learning algorithm and corresponding hyperparameter settings to optimise empirical

predictive performance on a given input dataset.

Early approaches to Auto-ML involved grid search, in which a grid of configurations is

developed, and each configuration is evaluated [91]. This has the benefit of completeness (in the

context of the grid’s elements), as it evaluates all desired configurations for a pre-defined set of

algorithms and hyper-parameter settings. Furthermore, implementation is trivial [92] in comparison

to other optimisation frameworks. The primary drawback of grid search is the computational

expense. The number of evaluations grows exponentially with the number of hyperparameters [93].

By evaluating all desired configurations, many low-quality configurations will be evaluated that

would be overlooked by a more intelligent optimisation method. As the evaluation function is often

the largest bottleneck in an Auto-ML system, an intelligent (heuristic) selection of promising

configurations to be evaluated is a fundamental advantage that many more sophisticated systems

63

have over grid search. This drawback renders grid search infeasible for high-dimensional grids (with

many hyperparameters having their candidate values as elements of the grid), see e.g., [94].

Random search alleviates the expense of grid search in high-dimensional search spaces to a

degree by evaluating fewer configurations [91]. Random search draws hyperparameter

configurations randomly from the configuration search space, independently from previously drawn

configurations [92]. This has the benefit of a more exploratory search (since the latter evaluated only

pre-defined configurations), but no guarantee of an optimal solution within the search space [95].

Neither grid search nor random search exploits information gained from previous evaluations

and thus are not, in their traditional form, considered intelligent optimisation approaches.

Due to the computational expenses of grid and random searches, there is a strong need for

approaches which utilise information from previously tested configurations. This section will focus

on two of the most popular, namely EAs and BO. Other strategies exist, such as gradient descent-

based methods, which was used by [96] for neural architecture search, and reinforcement learning,

which was used by [97]. However, these optimisation techniques are outside the scope of this work

and will not be discussed further. For a relatively recent review of such topics see [9].

2.4.1 Evolutionary Algorithms (EAs) for Auto-ML

As previously discussed, EAs are powerful optimisation tools and are well established within the

literature. As such, they are a suitable choice for Auto-ML and much work has been done applying

EAs to particular Auto-ML tasks. For a general review of EAs, the reader is referred to Section 2.2.

In this current subsection the discussion is focused on EAs specifically for Auto-ML, where an

individual represents a candidate algorithm or classification pipeline configuration, i.e., a

combination of one or more classification algorithms or methods (e.g., data pre-processing methods)

and their hyperparameters. In this context, EAs provide a flexible and robust framework for exploring

the space of algorithms and hyperparameter settings.

EAs offer several advantages for Auto-ML. They can handle high-dimensional search spaces and

explore a wide range of algorithms and hyperparameter combinations. EAs perform a global, rather

than a local, search [98][99], making them suitable for highly non-linear environments, such as those

often present for Auto-ML tasks. Moreover, the population-based nature of EAs allows for parallel

64

evaluation of candidate configurations, making them suitable for distributed computing

environments. However, even when parallelising the evaluation of candidate solutions,

computational expense is a large drawback of EAs when applied to Auto-ML tasks. Unlike BO (see

Section 2.3), EAs generally evaluate all candidate solutions in the population. The fitness function

associated with evaluating candidate solutions is generally expensive, especially for classifiers that

are already expensive, such as neural networks. This computational expense, however, has not

deterred research into Auto-ML utilising EAs, as discussed next.

Olson et al. [100] proposed the Tree-based Pipeline Optimisation Tool (TPOT), an Auto-ML

system using Genetic Programming (GP). The GP uses tree-based encoding such that the individuals

in the population are ML pipelines. Rather than mathematical operators as the functions (as shown

in Section 2.2.8), the functions are pipeline operators and hyper-parameters, e.g., specifying the

number of trees in a random forest or the number of features selected during feature selection. Each

individual is evaluated by the classification accuracy of the pipeline produced. Experiments on 150

benchmark datasets showed statistically significant improvement over random forest on 21 of the

datasets, no statistically significant difference on 125 datasets, and statistically significantly worse

results on 4 datasets by a metric of “balanced accuracy”, where accuracy is adjusted for class

imbalance [101]. Whilst random forest is an excellent classification algorithm, as it is not an Auto-

ML system its usefulness as a comparison is limited. A major drawback of the original version of

TPOT is that it can produce individuals that represent invalid pipelines, with a large computational

cost in terms of evaluation and generation [74]. This issue has been addressed by other EA-based

Auto-ML systems, such as the Resilient Classification Pipeline Evolution system (RECIPE).

Like TPOT, RECIPE, proposed by [74], is an GP-based Auto-ML system that evolves ML

pipelines. However, RECIPE uses a grammar to ensure that all generated individuals are valid, so

that it does not waste resources on invalid individuals. Furthermore, RECIPE evaluates a larger

search space than TPOT and Auto-Sklearn (see Section 2.4.2) which, whilst making for a more

complex search space, allows for a greater variety of solutions [74]. Experiments [74] showed

RECIPE outperforming TPOT and Auto-Sklearn with regards to F-measure with statistical

significance 2 out of 20 times. 13 out of 20 experiments showed no statistically significant difference.

Of the further 5 experiments, TPOT outperformed RECIPE and Auto-Sklearn 4 times, and Auto-

65

Sklearn performed best 1 time. The authors suggest that the increased search space of RECIPE, whilst

having the advantage of diverse solutions, may have hindered its performance in these experiments.

A more recent version of TPOT named layered TPOT (LTPOT) looked to assuage the issue of

wasted computational resource by evaluating individuals on a subset of the data before allowing them

to be fully evaluated [102]. Whilst this does not eliminate the issue of invalid individuals as RECIPE

does, it limits the computational resources used by them. Experimental results showed that LTPOT

generally found a pipeline as good as that found by TPOT sooner than TPOT found it [102].

Another very recent version of TPOT has been proposed utilising Bayesian optimisation. This

will be discussed in Section 2.4.2.

Zöller & Huber [91] provide a comparison between several Auto-ML frameworks that produce

whole ML pipelines. The results showed that TPOT outperformed the other methods on the majority

of the 137 classification tasks tested. Also, it is estimated that TPOT overfit the data less than all

other techniques.

Whilst TPOT is a broad Auto-ML system in that it generates whole pipelines for generic learning

tasks, there are several specialist Auto-ML approaches. For example, [103] used an EA to develop

an Auto-ML system that focuses on classifier ensembles. Ensemble classifiers, such as random

forest, utilise multiple models of a single type of classifier (e.g., decision tree) to make a

classification. Ensembles often outperform their base classifiers [104] and thus a specialised Auto-

ML system specific to ensembles may outperform a more generic Auto-ML system. The proposed

method, named PBIL-Auto-Ens, uses an Estimation of Distribution Algorithm (EDA), a type of EA

that differs from the genetic algorithm (GA) approach outlined in Section 2.2. EDAs generate a

population of individuals by sampling from a probability distribution, and after sorting by fitness, a

proportion of the individuals are selected, and the probability distribution is re-estimated. New

solutions are generated according to this distribution, without using any crossover or mutation, and

the process is repeated until a stopping criterion (like a fixed number of generations) is satisfied. The

proposed system was compared against Auto-WEKA (see Section 2.4.2) over 15 datasets and

outperformed it on 12 of the 15 according to the error rate.

Another recent example of a specialised Auto-ML system is Auto-MEKAGGP, proposed by

[74], which focusses on multilabel classification (MLC). An MLC task is one in which an instance

66

can be associated with more than one class label. Much like RECIPE, Auto-MEKAGGP uses

Grammar-based Genetic Programming (GGP). Unlike RECIPE, Auto-MEKAGGP is a CASH

system, rather than one that builds whole ML pipelines. As Auto-ML systems built for standard

binary classification (single label classification) associate an instance with only one class, they are

not (without extension) applicable to MLC. As such, systems specific to MLC are needed. Auto-

MEKAGGP searches the space of algorithms and configurations available in the MEKA tool (an

open-source extension to the WEKA library (see Section 2.4.2) that provides access to multi-label

classifiers). Compared to another EA-based Auto-ML system specific to MLC and two baseline

approaches, Auto-WEKAGGP showed best performance on average [74].

Whilst generic systems such as TPOT and RECIPE are good tools for a wide range of learning

scenarios, often better results can be achieved by finding a system specific to the target problem,

which could involve e.g., a given type of algorithm like ensembles or multilabel classification

algorithms. As such, systems such as PBIL-Auto-Ens and Auto-MEKAGGP are invaluable.

A recent Auto-ML system is AutoML-Zero [105] developed by researchers at Google. The

primary idea behind AutoML-Zero is to evolve machine learning algorithms from scratch, without

prior knowledge or human expertise. Instead of relying on predesigned algorithms or architectures,

AutoML-Zero utilises an EA to evolve sequences of mathematical operations which are then used as

classifiers. This is a relatively novel approach, primarily due to the computational expense involved

in the search, prohibiting the development of such a system by many researchers without access to

state-of-the-art high-performance computing systems, and achieved seemingly excellent results,

developing, without human intervention, advanced ML techniques such as stochastic gradient

descent, the ReLU activation function, and gradient normalisation. It was even applied to

traditionally challenging machine learning scenarios, such as datasets with few training examples,

and datasets with multiple classes. In the case of few training examples, a technique that has been

established in the machine learning literature referred to as noisy ReLU [106][107] was discovered

by the AutoML-Zero system. In the case of multiple classes, AutoML-Zero developed a technique

that used the transformed mean of the weight matrix as the learning rate. It was unclear as to why,

but it appeared to aid in the case of multiple classes.

67

However, a major drawback of the paper proposing AutoML-Zero is that the system was not

compared with any other Auto-ML system. That said, it remains an exciting contribution to the Auto-

ML field, considering its high degree of novelty, and a promising tool for future work. Recently,

AutoML-Zero has been extended in the work of Guha et al. [108] for multi-objective optimisation.

This new version of AutoML-Zero considers computational efficiency as well as predictive

performance. However, this new version is only compared against the old version of AutoML-Zero,

and thus suffers the same limitations.

In summary, EAs have emerged as powerful optimization tools, making them well-suited for

Auto-ML tasks. These algorithms offer a flexible and robust framework for exploring the space of

algorithms or pipelines and their hyperparameter settings. The process essentially involves

initializing a population of candidate configurations representing algorithm/pipeline-hyperparameter

combinations, evaluating their performance, selecting the fittest configurations, introducing variation

through genetic operators, replacing individuals in the population, and terminating the process based

on predefined criteria. EAs have several advantages for Auto-ML, including their ability to handle

high-dimensional search spaces, explore a wide range of solutions, and perform global searches in

highly non-linear environments. However, computational expense is a drawback, as EAs often

evaluate all candidate solutions at each generation. Despite this, researchers have proposed both EA-

based generic Auto-ML systems such as TPOT, RECIPE AutoML-Zero, and EA-based Auto-ML

systems tailored to specific learning scenarios such as PBIL-Auto-Ens and Auto-MEKAGGP, which

complement more generic Auto-ML frameworks, In general, these EA-based Auto-ML systems have

demonstrated promising results in experiments and comparisons with other non-EA-based

techniques, highlighting the importance of finding solutions specific to the target problem for

improved performance.

2.4.2 Bayesian Optimisation (BO) for Auto-ML

BO is a type of sequential model-based optimisation (SMBO) method. The configurations of

previously tested solutions are assessed to inform where in the search space to consider the generation

of new candidate solutions [91]. Once a new configuration is assessed, this is also used alongside the

68

previous configurations to inform the future generation of candidate configurations. As such, BO

systems will exploit promising regions and often converge to a local minima in the search space [91].

In the context of Auto-ML, an initial set of candidate configurations, representing classification

pipelines, is sampled based on prior knowledge or randomly generated. Each candidate configuration

is evaluated using a performance metric, typically through cross-validation, to estimate its quality.

The performance metric provides a measure of how well the configuration performs on the given

task, such as accuracy or F-measure. A probabilistic surrogate model, often a Gaussian process or

random forest, is then fitted to the evaluated data, capturing the relationship between the

configurations and their corresponding performance. The surrogate model serves as a proxy for the

true performance landscape and allows for efficient exploration and exploitation of the design space.

Using the surrogate model, an acquisition function is defined to determine the next configuration to

evaluate. The acquisition function balances the exploration of unexplored regions and the

exploitation of promising regions in the design space. Popular acquisition functions include Expected

Improvement (EI) and Probability of Improvement (PI) (see Section 2.3.2). Once a new configuration

is selected, it is evaluated, and its performance is added to the existing data. The surrogate model is

retrained, incorporating the new information. This iterative process of evaluating, updating the

model, and selecting new configurations continues until a termination criterion is met, such as

reaching a maximum number of evaluations or convergence of the surrogate model.

The primary advantage of BO is its ability to efficiently handle expensive-to-evaluate functions,

which is particularly beneficial for Auto-ML tasks with computationally expensive algorithms or

pipelines. BO focuses the evaluation efforts on promising configurations, exploiting the knowledge

gained from previous evaluations to estimate the performance of a classification algorithm or

pipeline, rather than calculating the actual value using the often expensive objective function. Zöller

and Huber [91] explain that the trade-off between exploration and exploitation is determined by the

use of an acquisition function such as Expected Improvement (EI). However, if an acquisition

function that focusses only on exploitation is used, rather than exploration, this will lead to the

optimisation procedure becoming susceptible to being trapped in local optima [86].

BO is commonly used throughout the Auto-ML literature and is the basis for several well-known

Auto-ML systems, such as Auto-WEKA and Auto-Sklearn. Auto-WEKA is a tool that approaches

69

Auto-ML using BO to search the classification and regression search-space of WEKA algorithms

and hyperparameter configurations. WEKA is an open source machine learning library with tools for

a variety of machine learning tasks [109]. Auto-WEKA was initially proposed by [90] as an Auto-

ML tool for classification, and later updated by [110] to handle regression tasks. Auto-WEKA was

compared to 39 baseline classifiers with default parameter settings in WEKA and a random grid

search (an approach where a grid of candidate solutions is specified, and a random search performed

on that grid) on 21 datasets [90]. Auto-WEKA outperformed the baseline classifiers according to

error rate on 14/21 datasets and performed equally on the remaining 7. In comparison to random grid

search, Auto-WEKA outperformed on 20/21 datasets, and performed worse on 1. Whilst [90] did not

compare to any other Auto-ML framework, it is worth noting that Auto-WEKA was generally

outperformed by the PBIL-Auto-Ens method described in Section 2.4.1 [103]. It is also worth noting

the performance of Auto-Sklearn, a sister package of Auto-WEKA specific to Scikit-Learn, in

experiments by [91].

Auto-Sklearn is largely similar to Auto-WEKA, also utilising BO, but specific to the Scikit-Learn

python library [111]. Whilst results comparing Auto-Sklearn to other Auto-ML methods are not

directly analogous to Auto-WEKA as Auto-Sklearn has a slightly reduced search space, the results

are still indicative. Auto-Sklearn was generally outperformed by TPOT, but generally outperformed

all other techniques [91]. However, it is estimated that Auto-Sklearn tended to overfit more than all

other techniques except random search. This indicates that TPOT is a more desirable framework than

Auto-Sklearn generally due to the increased performance and lack of overfitting.

Two new versions of TPOT, TPOT-BO-S and TPOT-BO-ALT, were proposed by Kenny et al.

[112]. These new versions loosely couple the standard TPOT, utilising GP, with BO. The first version

TPOT-BO-S, switches to a BO procedure at a specified point in the procedure. TPOT-BO-ALT

alternates between the standard TPOT and BO procedures throughout the run. Overall, these new

variations did not add substantial improvement over the original TPOT system.

In summary, BO is a sequential model-based optimization technique used in Auto-ML tasks. It

leverages Bayesian inference to efficiently search the space of machine learning algorithms or

pipelines and their hyperparameters. BO involves sampling an initial set of candidate configurations,

evaluating their performance, fitting a surrogate model to capture the performance landscape, and

70

using an acquisition function to select new configurations for evaluation. The iterative process

continues until a termination criterion is met. BO excels in handling expensive evaluations and

focuses on promising configurations, exploiting knowledge gained from previous evaluations.

However, it can become trapped in local optima due to a lack of population diversity. BO has been

successfully employed in Auto-ML frameworks like Auto-WEKA and Auto-Sklearn, which utilize

BO to search algorithm and hyperparameter spaces. These frameworks have shown competitive

performance compared to baseline classifiers and other Auto-ML methods. Auto-WEKA and Auto-

Sklearn, however, have demonstrated some limitations, such as being outperformed by specific

methods like PBIL-Auto-Ens and TPOT in certain scenarios. Overall, BO is a valuable approach in

Auto-ML, but careful consideration of its limitations and appropriate framework selection is essential

for achieving optimal results.

2.4.3 Practical Considerations and Challenges

While Auto-ML holds promise for automating the machine learning pipeline, there are practical

considerations and challenges that need to be addressed to ensure its effective implementation and

deployment, as follows.

Computational expense

Searching a large space of algorithms and hyperparameters requires substantial computational

resources and can be time-consuming. The complexity of the dataset and the use of classifiers that

are themselves expensive, such as deep learning classifiers, further exacerbate this challenge. To

assuage this issue, efficient resource management techniques can be utilised. Optimizing the

utilization of available computational resources, such as CPUs and GPUs, can significantly speed up

the Auto-ML process. Techniques like parallel computing, where multiple computations are

performed simultaneously, help distribute the workload and reduce time required for optimization.

Another approach to mitigate computational expense is the use of approximation techniques,

such as those used in BO. Instead of exhaustively evaluating all possible configurations, surrogate

models can be used to estimate the performance of candidate configurations. These surrogate models

71

provide a fast and computationally inexpensive alternative to direct evaluation, allowing for more

efficient exploration of the algorithm-hyperparameter space.

Furthermore, embedding computational expense as a criterion to be minimised by the Auto-ML

system can benefit the process by favouring pipelines that need fewer computational resources.

However, it is important to strike a balance between computational expense and the quality of the

Auto-ML results. While it is desirable to minimize the computational time and resources required, it

is crucial to ensure that the optimization process explores a wide area of the algorithm-

hyperparameter space and finds high-performing configurations.

Evaluation

Another consideration is the selection of appropriate evaluation metrics and validation strategies.

The performance of different algorithm-hyperparameter configurations needs to be evaluated to

identify the best models for a given task. However, the choice of evaluation metrics can vary

depending on the specific problem domain and the goals of the application. Using inappropriate

metrics may lead to suboptimal results and misinterpretation of the model's performance.

The selection of evaluation metrics should align with the objectives of the problem. For example,

in classification tasks, metrics like accuracy, precision, recall, F-measure, or area under the receiver

operating characteristic curve (AUC-ROC) are commonly used. These metrics measure different

aspects of the model's performance, such as overall correctness, trade-offs between precision and

recall, or the ability to distinguish between classes. It is important to carefully consider which metrics

are most relevant and meaningful for the specific problem at hand. For example, for perfectly

balanced datasets, accuracy may be the most appropriate metric. It is important to consider the

limitations and potential biases of the chosen evaluation metrics and validation strategies. For

example, in imbalanced datasets, accuracy alone may not provide a comprehensive understanding of

the model's performance. Metrics like precision, recall, or F-measure are often more appropriate for

evaluating the model's performance on minority classes.

Generalisation

Ensuring the generalization and transferability of Auto-ML models is a critical consideration in the

development and deployment of machine learning systems. While Auto-ML aims to automate the

72

model selection and hyperparameter optimization process, it is important to ensure that the selected

models can perform well on unseen data.

One of the main challenges in generalization is the potential for overfitting. Overfitting occurs

when a model becomes overly specialized to the training data and fails to generalize well to new,

unseen data (test data). This is a concern in Auto-ML because the optimization procedure may

inadvertently select models that perform well on the training data but fail to generalize to new

instances. This problem also occurs in standard machine learning, but Auto-ML has been shown to

be especially vulnerable to overfitting [113].

To mitigate the risk of overfitting and enhance generalization, robust validation techniques are

crucial. Cross-validation is a commonly used approach that helps assess the model's performance on

unseen data. By dividing the data into multiple subsets or folds, and iteratively training and

evaluating the model on different combinations of these subsets, cross-validation provides a more

reliable estimate of the model's generalization performance. Additionally, the selection of

appropriate evaluation metrics can contribute to better generalization. Evaluation metrics that focus

on the overall performance and robustness of the model, such as area under the precision-recall curve,

can provide a more comprehensive assessment of the model's ability to generalize.

2.5 Positive-Unlabelled (PU) Learning

PU learning is a field of machine learning that focusses on learning models from datasets that consist

of only positive-class and unlabelled instances [3]. PU learning shares the goal of binary

classification – to accurately predict the class of an unseen example by learning to distinguish

between two classes. However, since a standard binary classifier requires a training set with two class

labels, a standard binary classifier built using a PU dataset would have to treat all unlabelled instances

as a separate class, and so such classifiers will predict the probability of an instance being labelled

(Pr (𝑠=1)) as opposed to the probability of an instance belonging to the positive class (Pr (𝑦=1)) [4]

– where 𝑠 is a variable taking 1 or 0 to indicate whether or not an instance is labelled, and 𝑦 is the

true label of an instance, taking values 1 or 0 to denote the positive or negative class, respectively.

PU learning models, on the other hand, are trained to predict Pr(𝑦=1) using PU data and have been

73

shown theoretically to improve upon standard binary classification models when applied to PU

datasets [114].

PU learning is an important area of machine learning as it naturally arises in many different

domains, such as bioinformatics [115][116][117], text mining [118][119][120], and cyber security

[121][122]. For example, reference [115] utilises PU learning for the prediction of genes associated

with diseases. This is a PU learning task where disease-associated genes are positive instances, as

confirmed by biomedical experiments. However, the vast majority of the genes not associated with

diseases have not undergone such experiments, since these experiments are expensive. As such, the

genes not associated with diseases are better thought of as unlabelled instances as there is no

experimental evidence indicating either association or disassociation. An example from the domain

of text mining is found in [118], which proposed a text classification system utilising PU learning

for web page classification. This is another learning task where PU learning is appropriate. Scraping

web pages is an easy and quick task, so assembling a large dataset is a simple process. However, the

majority of the instances (webpages) will be unlabelled as manually labelling each instance is an

expensive task. As illustrated by these examples, PU learning is appropriate when the dataset consists

of a small sample of reliable positives and a larger remaining sample of unknown-label instances.

PU learning is related to semi-supervised learning [123] in the sense that it specialises the semi-

supervised scenario [3]. In both semi-supervised and PU learning, typically the large majority of

training instances is unlabelled; but a semi-supervised learning’s training set includes small

proportions of both positive and negative instances, whilst a PU learning’s training set does not

include any negative instance.

Over the past two decades, many PU learning algorithms have been developed for a wide array

of applications [3][124]. However, little has been written on the subject of evaluation metrics for PU

learning, which is a challenging task. To address this shortcoming, Saunders & Freitas [20] reviewed

evaluation approaches for PU learning and provided practical recommendations for improvement.

The evaluation approaches will be discussed in Section 2.5.3.

The next three subsections detail common assumptions made to enable PU learning, the three

most popular PU learning frameworks, and practical considerations.

74

2.5.1 PU Learning Assumptions

To enable PU learning, assumptions are commonly made about the data. The most common

assumptions are negativity, separability and smoothness, selected completely at random, and selected

at random [3].

Negativity

The most basic assumption to enable learning from PU data is the assumption of negativity. That is,

it is assumed that all unlabelled data is simply negative [3]. This is the most naïve of the four

assumptions discussed in this section, as the unlabelled set can contain a substantial amount of

unlabelled positive instances, depending on the dataset. However, despite the naivety of this

assumption, it can be effective if utilising a classification algorithm that produces a model that is

robust to noise within the data.

Despite the assumption of negativity not holding in practice, it is still widely used [3]. The

popularity of this assumption is due to the fact that it allows for the use of standard machine learning

methods, without any modification to the classification algorithm or processing pipeline. In other

words, making the negativity assumption means transforming the original PU learning problem into

a standard classification problem, denying the true unlabelled nature of the original data. Conversely,

treating the original data as a PU learning problem and using a PU learning algorithm means rejecting

this naïve negativity assumption, which is the approach followed in this thesis.

Separability and smoothness

The assumption of separability states that the positive and negative instances are separable in the

feature space. That is, it is assumed that a classifier hypothetically exists that can perfectly separate

the positive and negative instances [3]. The assumption of smoothness states that instances which

are close to each other in the feature space are likely to belong to the same class [3].

These assumptions are foundational to the two-step approach (see Section 2.5.2), arguably the

most popular approach to PU learning.

75

Selected completely at random (SCAR)

The SCAR assumption, formalised by [4], states that the positive instances are labelled irrespective

of their features, and thus the labelled set is an independent and identically distributed sample from

the positive distribution. That is, for the given data, Pr(s=1) = Pr(s=1|x), where Pr(s=1)

represents the probability of an instance being labelled and x is an instance’s feature vector. Or, put

simply, the sample of positive instances in the labelled positive set is representative of the entire set

of positive instances, both labelled and unlabelled. Making the SCAR assumption allows us to

assume that the instances in the labelled positive set are representative of the instances within the

positive unlabelled set, and thus, if a classifier can accurately predict the labelled positive instances,

it should, in theory, be able to predict the unlabelled positive instances also. For this reason, the

SCAR assumption is foundational to some PU learning approaches.

Elkan & Noto [4] show that an implication of the SCAR assumption is Equation 2.11.

𝑓(𝑥) =
𝑔(𝑥)

𝑐
 (2.11)

In other words, 𝑔(𝑥) differs from 𝑓(𝑥) by a constant factor, where 𝑔(𝑥) is a probabilistic classifier

trained to distinguish the labelled set and the unlabelled set and thus predicts Pr(𝑠=1|𝑥) (referred to

as a non-traditional classifier by [4]), and 𝑓(𝑥) is a probabilistic classifier trained to distinguish a

positive and negative set and thus predicts Pr(𝑦=1|𝑥) (referred to as a traditional classifier).

One major implication of this formula is that if we are simply looking to rank instances by their

predicted probability of belonging to the positive class, e.g., in target prioritisation, we can simply

use 𝑔(𝑥), as the instances predicted as having the highest probability of belonging to the positive

class will be the same for both 𝑔(𝑥) and 𝑓(𝑥). This approach alone is satisfactory for simple PU

problems, such as a scenario where we have a reasonably balanced set of positive and unlabelled

instances. However, PU problems are rarely this simple. The majority of PU datasets will consist of

a small number of positive instances and a large number of unlabelled instances. As such, the

standard approach to model training will yield poor results with the positive class being overwhelmed

by the unlabelled class, resulting in poor recall of labelled instances. It is for this reason that the

instances predicted as having the highest probability of belonging to the positive class by 𝑔(𝑥) cannot

be trusted without further model evaluation, 𝑔(𝑥) may simply be an inaccurate classifier. As such,

76

PU learning methods that produce more reliable classifiers are needed. PU learning model evaluation

is discussed in Section 2.5.3.

Selected at random (SAR)

The SAR assumption states that an instance is labelled depending on its features. That is, the labelling

mechanism depends on the features of an instance [125]. It is thought that many PU learning datasets

suffer from a labelling bias [3], thus the motivation for this assumption. Formalised, this assumption

states that e(x) = Pr(s=1|x, y=1). Where e is the propensity score (the probability of a selected

instance being labelled). In order to enable use of the SAR assumption, one must know the labelling

mechanism. If the labelling mechanism is known, a standard classifier can be trained with the output

values processed to incorporate it. However, if it is unknown, the SAR assumption cannot be used.

2.5.2 Approaches to PU Learning

In this section, the three major approaches to PU learning are discussed. Namely, the two-step

framework, biased learning, and incorporation of the class prior.

Two-step framework

The most common PU learning framework is the “two-step” approach. The first step of this approach

consists of identifying a set of reliable negative instances among the unlabelled set. That is, a set of

instances that are substantially different from the labelled positive instances and are likely not

unlabelled positive instances. The second step consists of building a classifier to distinguish the

labelled positive instances from the reliable negative set. These two steps use only the training set.

The resulting classifier is then used to classify the remaining unlabelled instances in the testing set

[126]. Providing that the reliable negative set is an accurate representation of the negative class, this

model will predict Pr(𝑦=1) rather than Pr(𝑠=1). This approach assumes separability and smoothness

of the data. That is, it is assumed that there is a natural separation between the positive and negative

classes (separability), and it is assumed that instances that are similar to each other have a similar

probability of belonging to the positive class (smoothness) (see Section 2.5.1) [3].

77

Arguably the most well-known two-step technique in the PU literature is the “S-EM” method

[120]. This technique selects a subset of positive instances (known as “spies”) to be added to the

unlabelled set. All instances in the unlabelled set (spies included) are then assigned the negative class

label, and a naïve Bayes classifier is built to distinguish between the positive and the unlabelled set.

The resulting classifier is then used to classify the unlabelled set (spies included) and the Pr(𝑦=1) of

each of the spy instances is used to determine a threshold under which an unlabelled instance’s

Pr(𝑦=1) must fall to be considered a “reliable negative” instance. Several variations on this technique

have been proposed, including that by [127] which utilises the multilayer perceptron classifier and

an altered threshold calculation. Other well-known two-step techniques include the “Roc-SVM”

method specific to PU text classification proposed in [5] which utilises the Rocchio classifier and an

iterative SVM approach, and the “Positive Example Based Learning” (PEBL) method for web page

classification, as proposed in [128].

Whilst the literature generally refers to two individual steps (Step 1, Step 2) when discussing

two-step methods, this thesis uses a slightly different terminology. Instead, we reference the steps as

phases, and recognise that “Step 1” actually often consists of two distinct phases. As such, when

discussing two-step techniques, this work will reference Phase 1A, used to extract an initial reliable

negative set, Phase 1B, an optional step that several methods take to use the initial reliable negative

to further extract reliable negative instances from the unlabelled set, and Phase 2, “Step 2” in the

usual description, which builds a classifier using the positive and reliable negative set and classifies

the remaining unlabelled instances.

This notation is advantageous as it recognises that “Step 1” often consists of two distinct phases,

and the use of “phase” rather than “step” allows us to reference the individual steps of the algorithms

in each phase without confusion.

A generic implementation of Phase 1A of a two-step PU learning algorithm is given in Procedure

2.2 for the reader’s reference.

In Procedure 2.2, U is the set of unlabelled instances, P is the set of labelled positive instances,

Classifier is the classifier used in the implementation, RN is the set of reliable negative instances,

y(x) is the class predicted for instance x by the classifier, and threshold is a predefined threshold for

classing an instance as reliably negative.

78

Procedure 2.2 Basic Phase 1A implementation of a two-step PU learning algorithm

1. RN ← { };

2. Split 𝑈 into multiple subsets;

3. For each subset::

a. 𝑁 = subset;

b. Build Classifier(P, N);

c. Classify(U);

d. For every instance x in U:
i. If y(x) < threshold then RN ← RN ∪ x

ii. U ← U – x;

Output: U, RN;

Several Phase 1A methods follow the generic procedure shown in Procedure 2.2 with minor

alterations. One variation on this procedure is the method proposed by [129]. The difference is that

Phase 1A iterates a set number of times (5) and then only the top 1% of the instances predicted by

the classifier to most likely be negative are added to RN. Also, the classifier used is the deep forest

classifier (see Section 2.1). The [129] method will henceforth be referenced as “DF-PU” and is shown

in Procedure 2.5.

To complement Procedure 2.2, Procedure 2.3 gives a basic implementation of Phase 1B.

Procedure 2.3 Basic Phase 1B implementation of a two-step PU learning algorithm

1. RN ← predefined reliable negative set, determined in Phase 1A;

2. While loop condition:

a. Build Classifier(P, RN);

b. Classify(U);

c. For every instance x in U:
i. If y(x) < threshold then RN ← RN ∪ x

ii. U ← U – x;

Output: RN;

In Procedure 2.3, RN is the set of reliable negative instances output by Phase 1A, P is the set of

labelled positive instances, Classifier is the classifier used in the implementation, U is the set of

unlabelled instances returned by Phase 1A, with the reliable negative instances removed, and y(x) is

the class predicted for instance x by the classifier. Phase 1B is more akin to a standard semi-

supervised machine learning algorithm. Phase 1B is an optional step, not always employed by two-

step PU learning algorithms. Furthermore, the while loop in both Phase 1A and Phase 1B is optional,

as a single iteration is a valid approach. The while loop generally involves splitting the unlabelled

79

set into multiple sets in order to handle the class imbalance often present in PU learning datasets.

This is illustrated in the pseudocode by splitting the unlabelled set (𝑈) into multiple subsets.

However, should no class imbalance be present, a single iteration is valid. In fact, the systems

proposed in this thesis do not utilise a while loop condition in Phase 1B at all. The reasons for this

are two-fold. Firstly, class imbalance is often not present in the Phase 1B (when discriminating

between the positive and the reliable negative sets), since the parameter that determines whether to

classify an instance as reliably negative is often conservative. Secondly, inclusion of this parameter

increases the size of the search space and offered no improvements in performance in preliminary

experiments. As such, it can be argued that a while loop condition in Phase 1B is not necessary.

No procedure is given for Phase 2 as this phase simply consists of building a classifier to

distinguish the positive and the reliable negative set and using that classifier to predict the class of

the unlabelled instances.

A variation on the standard implementation that is used as a baseline approach in this work is the

S-EM method, proposed by Liu et al. [120]. As previously mentioned, S-EM (also referred to as the

“Spy” method) is one of the most well-known PU learning methods in the literature and, despite

having been proposed two decades ago, remains a popular choice of baseline given its impressive

performance [130-136]. S-EM primarily differs from the standard implementation due to the use of

hidden positive instances to determine which instances to classify as reliably negative. That is, a set

of the labelled positive instances are hidden in the unlabelled set and, when classified, their predicted

probability of belonging to the positive class is used to determine the predicted probability under

which genuine unlabelled instances should fall to be considered reliably negative. A pseudocode of

this implementation is given in Procedure 2.4.

In Procedure 2.4, U is the set of unlabelled instances, P is the set of labelled positive instances,

S is the spy set, sample size% is the percentage of labelled positive instances to be hidden in the

unlabelled set, Classifier is the classifier used in the implementation, RN is the set of reliable negative

instances, Pr(y=1) is the probability of belonging to the positive class, noise level is the level of noise

to account for in the positive set, and |S| is the number of instances in the spy set. Naïve Bayes is

used as the classifier in both Phase 1A and Phase 2 of the S-EM method.

80

 Procedure 2.4 S-EM (“Spy” method)

1. N ← U;

2. S ← sample(P, sample size%), P ← P − S;

3. N + S ← N ∪ S;
4. Run EM(Classifier, P, N + S);

5. Sort instances by their Pr(y=1);

6. ϴ ← Pr(y=1) of the instance in position (noise level × |S|) in sorted S;

7. RN ← { }; # initialised empty set

8. For every instance x in N: # i.e., instances in N + S that are not spies

a. If Pr(y=1|𝑥) < ϴ then RN ← RN ∪ x;

b. U ← U – x;

9. Build Classifier(P, RN);

Output: Classifier

First, the data sets are initialised (steps 1-3). The Expectation Maximisation (EM) algorithm is run

using classifier, computing Pr(y=1) for each instance in N+S, and rebuilding classifier with the

updated Pr(y=1) values as an additional feature (step 4). The process iterates until the values of

Pr(y=1) no longer change. A full explanation of how the EM procedure is applied can be found in

[120]. After sorting the instances in S in decreasing order of their Pr(y=1) values (step 5), the

probability threshold 𝜃 is set (step 6) and used to determine which instances in N+S that are not spies

are added to the RN set and removed from U (step 8). The classifier is then built on P and RN (step

9). Steps 1-8 are Phase 1A, Phase 1B is skipped in this method, and step 9 is Phase 2. This method

differs from the generic procedure of Phase 1A (Procedure 2.2) with the addition of the “spy”

component as well as the inclusion of the Expectation Maximisation (EM) algorithm in step 4. So,

the convergence criterion of the EM algorithm is analogous to the for loop of Procedure 2.2.

Several variations on this method have been proposed, but the original implementation remains

a popular choice for comparison of newly proposed PU learning algorithms. Preliminary experiments

showed S-EM outperforming a more recently proposed modified version, so the original

implementation was selected as a baseline method for the experiments reported later in this thesis.

Procedure 2.5 outlines the DF-PU procedure. First, RN is initialised as an empty set, and U is

split into 5 sets, each with 20% of the data, randomly sampled. For each Set, a deep forest classifier

is trained to distinguish the positive instances and the instances in Set, treated as the negative

instances. All instances in U are then classified, and the 1% of instances with the lowest Pr(y=1) are

added to RN. Finally, a deep forest classifier is trained on P and RN.

81

Procedure 2.5 DF-PU

1. RN ← { }; # initialised empty set

2. Sets = U randomly split into 5 sets, each with 20% of the data;

3. For Set in Sets:

a. Train deep forest classifier on P and Set;

b. Classify U and sort instances by their Pr(y=1);

c. RN ← RN ∪ 1% of instances with lowest Pr(y=1);

4. Build deep forest classifier on P and RN;

Output: Classifier

Implementations of both versions of the baselines can be found on GitHub5.

Biased learning

Whilst biased learning is not utilised in this work, it is a prominent PU learning framework and as

such will be briefly described in this section.

Biased learning is a PU learning framework that treats the unlabelled set as negative class

instances and applies a higher penalty to the misclassification of positive instances. The unlabelled

set is, as such, treated as a negative set with noise [3]. Deciding exactly how much more to penalise

the misclassification of positive instances is non-trivial. Some papers, e.g., [137][138] tune their

models according to an evaluation metric proposed by [139], shown in Equation 2.12.

𝑝 × 𝑟

Pr(𝑦 = 1)
 (2.12)

Where 𝑝 is the precision, 𝑟 is the recall, and Pr(𝑦 = 1) is the probability of an instance belonging to

the positive class. This metric, however, is a weighted formula that considers both precision and

recall equally. This approach is potentially inefficient as, depending on the goal of the PU learning

classifier (PU learning goals are discussed in Section 2.5.3), it may be that either precision or recall

should be considered more than the other. This metric has not been widely adopted in the literature,

and there is no commonly used evaluation or tuning criteria specific to PU learning.

Many biased learning methods for PU learning are based on the support vector machine (SVM)

classifier (see Section 2.1), mostly stemming from the biased SVM classifier proposed by Liu et al.

[126]. This is, essentially, a standard SVM that applies a higher penalty to misclassification of the

5 https://github.com/jds39/GA-Auto-PU

82

positive class, thus increasing the number of identified true positive instances, whilst also increasing

the number of false positives. However, it is worth noting that these may not be truly false positives

as their labels are unknown. Several extensions to the biased SVM approach have been proposed

[15,119,138,140].

Incorporation of the class prior

As with biased learning, class-prior based learning is not utilised in this work but will be briefly

described in this section. Class-prior based PU learning techniques use the known or estimated class-

prior at various stages in the classification pipeline. Those that utilise it in the preprocessing stage

seek to change the dataset before training the classifier [3]. One approach is to weight the instances

in the dataset. I.e., assign a weight to the instances of each class that reflects the class prior [141].

Another approach is to consider unlabelled instances as both positive and negative when training the

model. This can be done by duplicating the unlabelled instances and assigning a weight equivalent

to the class-prior for the specific class [4].

Some studies look to alter standard binary classification methods to utilise the true class prior.

The positive naïve Bayes algorithm, proposed by [142] and extended by [143], is a naïve Bayes

classifier specific to PU learning. Rather than calculating the class probability as described in Section

2.1, another formula that calculates a higher prior probability for the positive class is used. This has

a benefit over the preprocessing techniques discussed above as the prior probability does not need to

be known, it can be estimated.

Finally, some studies use post-processing techniques that alter the class probabilities assigned to

instances after classification. As discussed earlier, the SCAR assumption implies that the predictions

of a model trained on a PU dataset differ from the predictions of a model trained on positive and

negative data by a constant factor. If this constant factor is calculated or estimated, a standard binary

classifier could be trained on the PU data and the assigned probabilities can be altered [3]. However,

as previously discussed, a classifier trained on PU data may be inaccurate.

83

2.5.3 Practical Considerations and Challenges

This section details practical considerations and challenges of PU learning. Several of these have

been highlighted in this chapter already but will now be discussed in detail.

Model evaluation

The absence of negative instances presents an issue to the evaluation of PU learning models as

predictive accuracy metrics usually rely on knowledge of the true class labels of each instance.

However, in PU learning we have only knowledge of the true class label of a sample of positive

instances. The remaining positive instances, and all negative instances, are unlabelled. Due to these

unlabelled instances, popular metrics such as true positive and false negative rates, precision, recall,

and the F-measure [144], cannot be correctly calculated.

Under the SCAR assumption, given that the sample of positive instances in the labelled positive

set is representative of the entire set of positive instances, both labelled and unlabelled, we can

estimate several performance metrics for models tested on genuine PU data. That is, PU data that has

not been engineered from a standard positive-negative (PN) dataset (with positive and negative

labels). However, as these metrics represent performance estimates, they are not entirely robust.

Arguably, a more robust approach is to evaluate a PU learning method on an engineered PU dataset

before applying that method to a genuine PU learning task.

As identified in [20], the approach most frequently taken in the literature is to evaluate proposed

methods on engineered PU data created from a standard PN dataset by hiding a certain percentage of

positive instances in the negative set, thus creating an unlabelled set (i.e., all negatives and the hidden

positives will be indistinguishably treated as ‘unlabelled’). This is done for the training set, whilst

leaving the test set untouched. That is, the test set will contain positive and negative instances as in

the original dataset. Hence, the model is trained on PU data but evaluated on fully labelled data.

Therefore, we can accurately calculate standard PN metrics. This is arguably a more robust approach

as the performance is not estimated based on the SCAR assumption (i.e., that assumption is not

required) for the test set, as the test set is left untouched (i.e., positive instances are only hidden in

the negative set in the training set, not the test set); we can rely on values of performance metrics that

are accurately calculated based on the known class labels of the instances in the test set. However,

84

this approach assumes that a method that demonstrates good performance on an engineered PU

dataset will also perform well on a genuine PU dataset. A table demonstrating the approach taken

(either using genuine PU data or engineered) and the evaluation metrics used was given in [20] and

repeated here as Table 2.1 for the readers reference.

Regarding metrics used to evaluate PU learning models, F-measure, precision, and recall should

be reported, with an emphasis on the metric that most closely matches the goal of the learning task

[20]. As shown by Table 2.1, F-measure was the most reported metric, reported in 37 of the 51

reviewed papers. There are two primary goals of PU learning – prioritisation and anomaly detection.

Depending on the goal, either precision or recall may be more important than the other. As explained

in [138], if the goal of the learning task is prioritisation, precision is the most important metric. If the

goal is anomaly detection, recall is the most important metric, as follows.

In the task of prioritisation, one wishes to identify highly ranked targets. That is, instances that

have the highest predicted probability of belonging to the positive class. As we are interested in

prioritising instances, it is important that our model identify few unlabelled positives. Prioritisation

is required when we need to identify a few top-ranked (most likely positive) instances for performing

expensive or time-consuming future experiments on those few high-priority instances, and so

minimising the number of false positives (maximising precision) is particularly important, to avoid

doing experiments that produce negative results. Maximising recall is not so crucial because it would

be too expensive or too time-consuming to perform future experiments to validate a large number of

instances predicted as positives. An example is gene prioritization, where each gene is an instance

and the positive class represents a biological function (or associated disease) of the gene, since

biological experiments to verify gene functions tend to be expensive and time-consuming.

In the task of anomaly detection, one wishes to accurately identify positive class instances, which

are usually a very small minority (“anomalies”). In anomaly detection, usually the cost of a false

negative is usually much higher than the cost of a false positive. Therefore, maximising recall

(minimising false negatives) is usually more important than maximising precision (minimising false

positives). For example, when classifying a bank’s transactions into fraud (anomaly) vs non-fraud

(normal), the cost of misclassifying a fraud transaction as a non-fraud transaction is usually much

higher than vice-versa.

85

Table 2.2, also given in [20] but repeated here for the reader’s reference, shows, for the 12 papers

from Table 2.1 using real-world datasets for PU learning (i.e., genuine PU datasets, rather than

engineered PU datasets), whether their goal is anomaly detection or prioritisation and whether they

reported precision or recall. Unfortunately, out of the 3 papers addressing anomaly detection in Table

2.2, only one is reporting recall, and out of the 9 papers addressing prioritisation, only 4 are reporting

precision. Without these results, the suitability of the proposed method for the given target

application cannot be determined. This shows that the importance of reporting precision and recall

separately (particularly in prioritisation or anomaly detection tasks) is still not well appreciated in

the PU learning area.

Whilst precision and recall may be important metrics for a given learning task, considering either

precision or recall in isolation is flawed, since it is well-known that it is relatively easy to maximise

one of these measures at the expenses of obtaining a poor value for the other. Hence, it is important

to report the F-measure, precision, and recall. This will allow researchers looking to utilise a PU

learning method to make an informed decision on which algorithm is most appropriate for their use

case, favouring those with a high F-measure and precision for prioritisation tasks, and those with a

high F-measure and recall for anomaly detection. To further analyse the performance of a PU learning

algorithm, it is important, when feasible, to assess the performance of its learned model on multiple

distributions of unlabelled instances. That is, testing on different versions of the same dataset with

differing percentages of the positive instances hidden in the unlabelled set in the training set, when

doing experiments with engineered PU datasets. Due to the nature of PU learning, it is often hard to

know the distribution of positive instances, and what proportion of them remain unlabelled.

However, there are scenarios in which the distribution is known, or can be estimated [145][146]. In

such scenarios, by providing results of experiments conducted on multiple distributions, we can

provide a more comprehensive analysis of PU methods and inform on their appropriate use case.

To summarise, the evaluation of PU learning models poses challenges due to the absence of

negative instances. Traditional metrics that rely on true class labels cannot be accurately calculated.

The SCAR assumption allows for estimating performance metrics on genuine PU data, but they are

not entirely robust. Alternatively, models can be evaluated on engineered PU datasets, where a

percentage of positive instances is hidden in the negative set. This approach relies on accurately

86

calculated standard metrics but assumes the method will perform well on genuine PU datasets.

Assessing the model's performance on multiple distributions of unlabelled instances provides a more

comprehensive analysis. The choice of evaluation metrics depends on the goal of the learning task:

prioritization or anomaly detection. Precision is crucial for prioritization, while recall is more

important for anomaly detection. The importance of these metrics is determined by the cost

associated with false positives and false negatives in each task, respectively.

87

Table 2.1. Evaluation approaches used by papers proposing PU learning algorithms.

Reference

Engineered or Genuine

PU Data F-measure Accuracy Precision Recall AUROC

[147] E ✓

[148] E ✓

[143] E ✓ ✓

[149] E ✓

[150] E ✓

[138] E

[151] E ✓

[146] E ✓

[4] E ✓ ✓

[152] E ✓

[153] E ✓

[154] E ✓

[155] E ✓ ✓

[156] E ✓

[157] E ✓

[158] E ✓ ✓ ✓

[140] E ✓ ✓

[119] E ✓

[132] E ✓

[159] G ✓

[142] E ✓ ✓

[139] E ✓

[160] G ✓

[5] E ✓ ✓

[161] E ✓

[162] E ✓

[163] E ✓

[11] E&G ✓ ✓ ✓

[164] E ✓ ✓

[126] E ✓

[120] E ✓

[118] E ✓ ✓

[122] G ✓ ✓ ✓

[165] E&G ✓

[166] E ✓

[115] G ✓ ✓ ✓

[167] E ✓

[168] E ✓ ✓

[116] G ✓ ✓ ✓ ✓

[169] E ✓ ✓

[117] G ✓

[170] E&G ✓ ✓

[171] E ✓

[129] G ✓ ✓

[172] E ✓

[173] E ✓

[121] G ✓

[174] E ✓

[6] G ✓ ✓ ✓ ✓

[175] E ✓

[176] E ✓

Totals E:42 G:12 37 19 5 7 8

88

Table 2.2. PU learning goals in reviewed papers using genuine PU data.

Reference Anomaly detection Prioritisation Precision Recall

[35] ✓

[38] ✓

[43] ✓

[10] ✓ ✓

[46] ✓

[3] ✓ ✓ ✓

[4] ✓ ✓ ✓

[5] ✓

[50] ✓ ✓

[52] ✓ ✓ ✓

[9] ✓

[56] ✓ ✓ ✓

Total 3 9 4 6

Imbalanced data

As previously stated, class imbalance is often present in PU learning datasets, given the expense or

difficulty associated with identifying positive instances. Therefore, PU learning datasets commonly

consist of a large number of unlabelled instances and a very small number of labelled positive

instances. Handling the imbalanced data presents a challenge [177][178], but each of the three

previously discussed PU learning frameworks employ strategies to do so. If utilising the two-step

framework, the unlabelled set can be split into multiple subsets that create a more even distribution

with the positive set. This is often referred to as undersampling in machine learning literature. In the

biased learning approach, class imbalance is handled by modifying the error or loss function in the

learning algorithm. This modification, often called cost-sensitive learning, adjusts the penalties

associated with misclassification of instances from different classes. Specifically, it increases the

penalty for misclassifying instances from the minority class (positive instances in this case). By doing

so, the algorithm is pushed a higher rate of classification of the positive class, hence countering the

effects of class imbalance. When incorporating the class prior, the approach directly incorporates the

prior probability of the classes into the learning algorithm. This prior probability can be estimated

from the dataset itself or provided based on domain knowledge. When class priors are incorporated

correctly, the learning algorithm should be able to naturally handle the class imbalance. The decision

threshold is adjusted based on these priors, thus compensating for the imbalance in the class

distribution.

89

In summary, class imbalance is a significant challenge in PU learning, but it can be effectively

handled using various strategies, depending on the specific learning approach adopted. These

methods aim to adjust the learning process in a way that ensures the algorithm does not overlook the

minority class, leading to more accurate and robust models.

Assumption violation

As previously discussed, PU learning is underpinned by various assumptions, such as negativity,

separability, smoothness, Selected Completely at Random (SCAR), and Selected at Random (SAR).

These assumptions guide the learning process and form the basis of the algorithm's “understanding”

of the data. However, when the actual data does not conform to these assumptions, the performance

of the PU learning method may be significantly impacted.

In practice, it is unlikely that the data used will adhere completely to the assumptions made.

However, PU learning methods still show good predictive performance when applied. Therefore, so

long as the data adheres to the assumptions made somewhat, it can be argued that the impact of areas

of the data that do not adhere is relatively small.

90

Chapter 3

The Proposed Auto-ML Framework for

Positive-Unlabelled Learning

This chapter details the proposed Automated Machine Learning (Auto-ML) framework used for

Positive-Unlabelled (PU) learning throughout this work.

Recall that there are three main approaches to PU learning (outlined in Chapter 2.5), namely the

two-step framework, biased learning, and methods that incorporate the class prior. The Auto-ML

systems proposed in this thesis focus only on the development of two-step PU learning methods,

given that this is the most popular approach.

This chapter is organised as follows. Section 3.1 presents a summary of the two-step approach

for PU learning – for details, see Section 2.5. Section 3.2 specifies the search spaces and the objective

function used by all Auto-ML systems proposed in this thesis. This section also gives pseudocodes

with specific implementation details of Phases 1A, 1B, and 2. Section 3.2 is the core of the proposed

Auto-ML framework for positive-unlabelled learning, and the search spaces and objective function

specified in this section will be used by all three types of Auto-ML systems proposed in Chapters 4,

5 and 6. Section 3.3 describes the classification datasets used in this thesis’ experiments, which

includes both synthetic datasets and real-world biomedical datasets which were engineered for PU

learning. Section 3.4 details the experimental methodology used throughout this work.

91

3.1 A Summary of the Two-Step Approach for PU

Learning

Recall that a two-step PU learning algorithm consists of three main components, namely: Phase 1A,

Phase 1B, and Phase 2 [21][22]. Phase 1A and IB curate a set of reliable negative instances from the

unlabelled set, and Phase 2 builds a classifier to distinguish the labelled positive and reliable negative

instances. In Phase 1A, a probabilistic classifier is trained using the labelled positive instances as the

positive set and a subset of the unlabelled instances as the negative set. Typically, the unlabelled set

is divided into multiple subsets, and each is used in turn as the negative set in this Phase 1A, so that

this phase typically involves multiple iterations of classifier training. The number of such subsets,

which is also the number of iterations training a classifier, is a user-specified parameter. In each

iteration, the learned model classifies the instances in the current unlabelled subset and those

instances that have a probability of belonging to the positive class of less than a given threshold are

added to the set of reliable negative instances and removed from the unlabelled set. This process is

then repeated for each unlabelled subset. Note that this subset count parameter can simply be 1,

meaning that the entire unlabelled set would be used to learn the classifier, and only one iteration

would be performed in Phase 1A. The result of Phase 1A is the initial reliable negative set, sometimes

referred to as the reliable negative seed set in methods that opt to use Phase 1B.

Phase 1B is an optional phase that some methods choose to undertake to further expand the

reliable negative set [5][167][179]. This phase is more akin to traditional semi-supervised

classification, expanding the reliable negative set using the initial reliable negative instances as a

seed set. A classifier is built to distinguish the positive and reliable negative instances, and the

resulting model is used to classify the unlabelled set. Those instances classified by the model as

having a predicted probability of belonging to the positive class of less than a given threshold are

then added to the reliable negative set.

The final Phase 2 simply involves learning a classifier to distinguish the positive and the reliable

negative set.

Each of the phases described here involve their own set of hyperparameters. These

hyperparameters and the values they can take in the Auto-ML systems are defined in Section 3.2.

92

3.2 Search Spaces and Objective Function

In Auto-ML in general, a search space is defined as the set of all possible candidate solutions that

can be found by the search algorithm, consisting of a pre-defined set of algorithms with their

hyperparameters and their respective values. For our Auto-ML systems for PU learning, the search

space is defined by the two-step PU learning framework. That is, a candidate solution is a two-step

PU learning method, consisting of Phases 1A, 1B, and 2, as defined in Section 3.1 and discussed in

detail in Section 2.5.2. Each phase has a distinct set of hyperparameters and values that these

hyperparameters can take. It is these hyperparameters and values that define the search space of the

proposed Auto-ML systems.

Throughout our experiments we have utilised two variations of the search space. The first,

referred to as the base search space, is detailed in Section 3.2.1. The second, referred to as the

extended search space, is detailed in Section 3.2.2.

3.2.1 Base Search Space

The base search space, proposed in previous work [21], allows the system to build simple two-step

PU learning methods that do not utilise any heuristics for determining the values of the

hyperparameters. Specifically, the search space is defined by the following 7 hyperparameters and

their corresponding candidate values:

• Iteration_count_1A: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }

• Threshold_1A: { 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 }

• Classifier_1A: { Candidate_classifiers }

• Threshold_1B: { 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 }

• Classifier_1B: { Candidate_classifiers }

• Flag_1B: { True, False }

• Classifier_2: { Candidate_classifiers }

Where Candidate_classifiers represents 18 different candidate classification algorithms, namely:

Gaussian naïve Bayes, Bernoulli naïve Bayes, random forest, decision tree, multilayer perceptron,

support vector machine, stochastic gradient descent classifier, logistic regression, k-nearest

93

neighbour, deep forest, AdaBoost, gradient boosting classifier, linear discriminant analysis, extra tree

classifier, extra trees classifier (an ensemble of extra trees), bagging classifier, Gaussian process

classifier, and histogram-based gradient boosting classification tree. For an overview of these

classification algorithms, see Section 2.1.

Figure 3.1. Representation of a candidate solution, with a linear encoding.

Together, these hyperparameters constitute Phase 1A, Phase 1B, and Phase 2 of the two-step PU

learning framework described in Section 2.5.2 and outlined in Section 3.1. Figure 3.1 shows how

these hyperparameters form these phases.

Phase 1A consists of the hyperparameters Iteration_count_1A, Threshold_1A, and

Classifiers_1A. The iteration count determines the number of subsets to split the unlabelled set into

when learning a classifier to distinguish between the positive and the unlabelled set, and also the

number of iterations that a classification algorithm is run in Phase 1A. E.g., if the iteration count is

5, the unlabelled set will be split into 5 subsets, each with 20% of the unlabelled data, and the

classification algorithm will be run 5 times, each using a different subset of unlabelled instances in

the training set. This helps to handle the class imbalance present in many PU learning datasets. The

Threshold_1A hyperparameter determines the predicted probability of belonging to the positive class

that an instance must fall under to be considered a reliable negative instance. The Classifier_1A is

simply the classifier used to predict the reliable negative instances.

Phase 1B consists of the hyperparameters Threshold_1B, Classifier_1B, and Flag_1B.

Threshold_1B and Classifier_1B are analogous to those used in Phase 1A. The Flag_1B

hyperparameter indicates whether to skip Phase 1B or not. Phase 1B is not always utilised in PU

learning techniques, and therefore the Auto-ML system can generate individuals that are able to skip

this phase. Given the similarities between Phase 1A and Phase 1B, a natural question arises as to

why we exclude an iteration count parameter from Phase 1B. There are two main reasons for this

exception. Firstly, the iteration count parameter was introduced in order to handle the class imbalance

inherent to PU learning datasets. However, this is not generally an issue once an initial reliable

negative set has been created as this set is simply a small subset of the unlabelled set. Furthermore,

class imbalance is indirectly handled by the Threshold_1A parameter, which will evolve to be a

Phase 2

Iteration_count_1A Threshold_1A Classifier_1A Threshold_1B Classifier_1B Flag_1B Classifier_2

Phase 1A Phase 1B

94

smaller value (and thus fewer instances will be added to the reliable negative set) if the reliable

negative set becomes large enough to detriment predictive accuracy. Secondly, this hyperparameter

increases the size of the search space and, in preliminary experiments, did not improve predictive

performance.

Phase 2 simply consists of the hyperparameter Classifier_2. This classifier will be trained to

distinguish the positive set and the reliable negative set extracted from the unlabelled set in phases

1A and potentially 1B. The size of the original search space is thus calculated as follows:

10 × 10 × 18 × 10 × 18 × 2 × 18 = 11,664,000 possible candidate solutions.

However, this calculation is an upper bound calculation of the number of candidate solutions,

given the dependencies between the Phase 1B hyperparameters. That is, given that whether or not

the hyperparameters Threshold_1B, and Classifier_1B have an impact on the candidate solution is

determined by the Flag_1B hyperparameter.

Figure 3.2 shows an example candidate solution.

Figure 3.2. Example candidate solution for the base search space.

So, in Phase 1A of the example candidate solution shown in Figure 3.2, the unlabelled set would be

split into 3 subsets (defined by the Iteration_count_1A hyperparameter). Each of these subsets in

turn, along with the labelled positive set, would be used to train a random forest classifier

(Classifier_1A) which would then predict the probability of the unlabelled instances in the current

subset belonging to the positive class. Those instances with a predicted probability of less than 0.4

(the Threshold_1A parameter) would be added to the reliable negative set and removed from the

unlabelled set. Then, as the Flag_1B parameter is set to True, a linear discriminant analysis classifier

(Classifier_1B) would be built using the labelled positive instances as the positive set and the reliable

negative instances identified in Phase 1A as the negative set. It would then be used to classify the

remaining unlabelled instances, and those with a predicted probability of belonging to the positive

class of less than 0.25 (the Threshold_1B hyperparameter) would be added to the reliable negative

set. Finally, a Bernoulli naïve Bayes classifier (Classifier_2) would be trained on the labelled positive

and the reliable negative sets.

Phase 2

3 0.4 Random forest 0.25 Linear Discriminant Analysis TRUE Bernoulli Naïve Bayes

Phase 1A Phase 1B

95

3.2.2 Extended Search Space (Based on the Spy Technique)

The second search space, proposed in previous work [22] and referred to as the extended search

space, introduces three new hyperparameters based on the spy technique for PU learning. Essentially,

spy-based approaches are used to heuristically determine the Threshold_1A parameter. A percentage

of labelled positive instances (determined by Spy_rate) are hidden in the unlabelled set. A classifier

(Classifier_1A) is built, using the labelled positive instances as the positive set and the unlabelled

instances with the spy instances as the negative set. The spy instances are then classified, and

Threshold_1A is determined such that a percentage of spy instances (determined by Spy_tolerance)

have a predicted probability of belonging to the positive class of less than Threshold_1A (e.g., if

Spy_tolerance is set to 0.05, 5% of the spy instances can have a predicted probability of belonging

to the positive class of less than Threshold_1A). Note that the Threshold_1A parameter defined by

the candidate solution is thus redundant and its value is not used when building the PU learning

model for candidate solutions with a value of True for Spy_flag. However, Threshold_1A is still

needed as a component of a candidate solution during the search performed by the Auto-ML system,

since some candidate solutions generated along the search will not use the spy technique (depending

on the value of the Flag_1B hyperparameter).

Hence, the three new hyperparameters introduced into the extended search space are as follows:

• Spy_flag: { True, False }

• Spy_rate: { 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 }

• Spy_tolerance: { 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 }

Spy_flag is a Boolean value used to indicate whether or not to use a spy-based method in Phase 1A.

Spy_rate determines the percentage of positive instances to use as spies. Spy_tolerance determines

what percentage of spies can remain in the unlabelled set when the threshold is calculated. The

inclusion of these three new hyperparameters increases the size of the size space to:

10 × 10 × 18 × 10 × 18 × 2 × 18 × 2 × 7 × 11 = 1,796,256,000 candidate solutions.

The extended search space is thus 154 times larger than the original search space. Note, however,

that this is also an upper bound, given that the spy hyperparameters have the same dependency

considerations as the Phase 1B hyperparameters.

96

The motivation for expanding the search space was to attempt to increase predictive performance

of the system by utilising spy-based methods, as initially proposed by [120]. This approach has been

used frequently in the PU learning literature with success [180][127][163][181][182].

Figure 3.3. Example candidate solution for extended search space.

Figure 3.3 shows an example candidate solution for the extended search space. As Spy_flag is set to

True, 15% of the labelled positive instances (determined by Spy_rate) are hidden in the unlabelled

set in Phase 1A. The RN threshold is determined as the value at which only 2% of spy instances have

a predicted probability of belonging to the positive class of less than the determined value.

Spies are utilised in Phase 1A, but not in Phase 1B. This decision was made as preliminary

experiments showed no increase in predictive performance when the system allowed spies in Phase

1B. Also, the search space would be greatly expanded if spies were used in Phase 1B, as the three

new hyperparameters introduced in this expanded search space would all need to be repeated for

Phase 1B. Thus, if spies were used in Phase 1B, the size of the search space would be:

10 × 10 × 18 × 10 × 18 × 2 × 18 × 2 × 7 × 11 × 2 × 7 × 11 = 276,623,424,000

Therefore, given that no increase in performance was shown in our preliminary experiments using

spies in Phase 1B and the system had a much larger search space to explore (154 times larger than

the extended search space, 23,716 times larger than the base search space), we opted simply for

inclusion of the spy-based heuristic method in Phase 1A only.

3.2.3 Objective Function

The objective function assesses the quality of a given configuration of PU learning hyperparameter

settings for a specific PU learning task, i.e., a specific input dataset. This is done by applying the PU

method configuration defined by the candidate solution to the training set. To describe the process

of obtaining the objective score of a candidate solution, we use the following notation:

RN: The set of reliable negative instances.

P: The set of labelled positive instances.

U: The set of unlabelled instances.

Phase 2

3 0.4 Random forest TRUE 0.15 0.02 0.25 Linear Discriminant Analysis TRUE Bernoulli Naïve Bayes

Phase 1A Phase 1B

97

P(y=1): The probability of an instance belonging to the positive class, as calculated by the

classifier.

Procedure 3.1 Objective function (Candidate solution, Training set)

1. Split Training set into 5 Learning and Validation sets;

2. For each Learning set and corresponding Validation set:

a. P = all labelled positive instances in Learning set;

b. U = all unlabelled instances in Learning set;

c. If Spy_flag then RN, U = Phase 1A-Spies(P, U) // call Procedure 3.2

 else RN, U = Phase 1A(P, U); // call Procedure 3.3

d. If Flag_1B then RN, U = Phase 1B(P, RN, U); // call Procedure 3.4

e. Train Classifier_2 (using the Learning set) to distinguish P and RN;

f. Classify Validation set;

Output Candidate solution’s objective score = average F-measure over the 5 Validation sets;

The objective score of each candidate solution is computed as specified in Procedure 3.1. The

Training set is split into 5 folds for internal cross-validation, creating 5 pairs of Learning and

Validation sets (step 1). For each pair of Learning and Validation sets, all labelled positive instances

are added to P (step 2.a) and all unlabelled instances are added to U (step 2.b). The RN set is

determined with either the Phase 1A-Spies(P, U) or Phase 1A(P, U) algorithm, depending on the

Spy_flag parameter, which returns a refined U set (step 2.c, executing Procedure 3.2 or 3.3). If the

flag for running Phase 1B is set to true, RN and U sets are further refined with the Phase 1B(P, RN,

U) algorithm (step 2.d, executing Procedure 3.4). Classifier_2 is then trained to distinguish P and RN

(step 2.e), and then used to classify the Validation set (step 2.f). The objective score of the Individual

is assigned as the F-measure over the 5 Validation set classifications (output). The F-measure is

calculated by evaluating the individuals on a validation set considering all unlabelled instances as

negative. That is, whilst in the test set there are positive and negative instances (i.e., no unlabelled

set), in the validation set there is a positive and an unlabelled set, with the unlabelled set considered

as the negative set. An alternative approach would be to have the validation set reflect the true class

labels of the instances (i.e., a positive and a negative set, rather than a positive and an unlabelled set)

so that the F-measure can be accurately calculated. That is, in the procedure for creating a PU dataset

from a PN dataset, rather than simply changing the training set to a PU dataset, and leaving the test

set as a PN dataset, we could have gone a step further and, for the learning and validation sets,

converted the learning set into a PU dataset, but leave the validation set as a PN dataset, rather than

having both the learning and validation sets as PU datasets, as they are created from the training set,

98

which is also a PU dataset. However, by evaluating the candidate solution on positive and unlabelled

data, it is a truer reflection of how the individual would perform when given genuine PU data. This

procedure, and the subsequent procedures 3.2-3.4, have also been presented in [22].

Procedure 3.2 Phase 1A-Spies(P, U)

1. RN = { };

2. Sets = split U into Iteration_count_1A subsets;

3. For every Set in Sets:

a. Spies = Spy_rate% instances, randomly selected from P; P = P – Spies;

b. Set_with_spies = Set ∪ Spies

c. Train Classifier_1A on P and Set_with_spies;

d. Classify all instances in Set_with_spies;

e. Set threshold to a value such that Spy_tolerance% spies have Pr(y=1) less than threshold;

f. For each unlabelled Instance in Set_with_spies:

i. If Pr(y=1) < threshold then RN = RN ∪ Instance, U = U – Instance;

Output RN, U;

Procedure 3.2 describes Phase 1A of the two-phase PU learning method, executed when Spy_flag is

True. The RN set is initialised empty (step 1). The set U of unlabelled instances is split into

Iteration_count_1A subsets (step 2). For each Set in the list of subsets, Spies is initialised with

Spy_rate% of instances of P, randomly selected and removed from P (step 3.a), and Set and Spies

are combined to form Set_with_spies (step 3.b). Next, Classifier_1A is trained on P and

Set_with_spies (step 3.c) and all instances in Set_with_spies are classified and the threshold is set so

that Spy_tolerance% of spies have Pr(y=1) less than threshold (step 3.d-e). For each unlabelled

Instance in Set_with_spies (excluding the spies), if Pr(y=1) is less than threshold, they are added to

RN and removed from U (step 3.f). The resulting RN and U sets are then returned.

Procedure 3.3 Phase 1A(P, U)

1. RN = { };

2. Sets = split U into Iteration_count_1A subsets;

3. For every Set in Sets:

a. Train Classifier_1A on P and Set;

b. Classify all unlabelled instances in Set;

c. For each unlabelled Instance in Set:

i. If P(y=1) < Threshold_1A then RN = RN ∪ Instance, U = U – Instance;

Output RN, U;

Phase 1A of the two-phase PU learning method, executed when Spy_flag is False, is described in

Procedure 3.3. The RN set is initialised as an empty set (step 1). The set U of unlabelled instances is

99

split into Iteration_count_1A subsets (step 2). For each Set in the list of subsets, Classifier_1A is

trained to distinguish P and Set (step 3.a) and used to classify all unlabelled instances in Set (instances

previously treated as the negative set during training) (step 3.b). For each unlabelled Instance, if the

instance’s calculated P(y=1) is less than Threshold_1A then Instance is added to RN and removed

from U (step 3.c.i). The resulting RN and U sets are then returned.

Procedure 3.4 Phase 1B(P, RN, U)

1. Train Classifier_1B on P, RN;

2. Classify U;

3. For each Instance in U:

a. If P(y=1) < Threshold_1B then RN = RN ∪ Instance, U = U – Instance;

Output RN, U;

Phase 1B of the two-phase learning method is described in Procedure 3.4. Classifier_1B is trained to

distinguish the positive and reliable negative instances in P, RN (step 1) and the resulting classifier

is then used to classify U (step 2). For each Instance in U, if the Instance’s calculated P(y=1) is less

than Threshold_1B, Instance is added to RN and removed from U (step 3). The resulting RN and U

sets are returned (step 4).

As Phase 2 simply consists of building Classifier_2 from P and RN, no pseudocode is needed.

This objective-function evaluation process is used for all Auto-PU systems described in this

work, which includes systems based on evolutionary algorithms, Bayesian optimisation, and a hybrid

evolutionary Bayesian optimisation system. For those experiments that utilise the base search space,

rather than the extended search space, Procedure 3.2 is not used as there are no spy parameters, and

therefore the step 2.c of Procedure 3.1 is simplified, as follows: “RN, U = Phase 1A(P, U); // call

Procedure 3.3”.

3.3 Classification Datasets

To assess the proposed Auto-PU systems, experiments were conducted on two types of datasets,

namely real-world biomedical datasets and synthetic datasets. Both types of datasets are originally

binary classification datasets and therefore need to be adapted for PU learning, as discussed in

Section 2.5. To do so, we have hidden 𝛿% of the positive instances in the negative set (where 𝛿 is a

100

user-specified parameter), thus creating an unlabelled set. This process of engineering a PU dataset

from a binary dataset is common throughout the PU learning literature [120][155][183][20]. 𝛿 takes

the values 20%, 40%, and 60% throughout this work, meaning that each dataset is engineered into

three datasets, thus creating 120 datasets total (20 original real-world datasets, 20 original synthetic

datasets, with each original dataset being used to produce three datasets, using the aforementioned

three different values of 𝛿).

3.3.1 Real-World Biomedical Datasets

The experiments reported in this thesis used 20 publicly available biomedical datasets, including 13

classical benchmark classification datasets from the well-known UCI dataset repository [184], and 7

datasets introduced in [185-191]. These datasets all involve real-world learning scenarios in the task

of disease or health-risk prediction. The main characteristics of these datasets are shown in Table

3.1. All these 20 datasets are originally binary-class datasets (with positive and negative instances),

and they were engineered for PU learning as described earlier.

Table 3.1. Main characteristics of the biomedical datasets used in the experiments.

Dataset No. instances No. features %Pos

Alzheimer’s [185] 354 9 10.73

Autism [184] 288 15 48.26

Breast cancer Coimbra [184] 116 9 55.17

Breast cancer Wisconsin [184] 569 30 37.26

Breast cancer mutations [186] 1416 53 32.42

Cervical cancer [184] 668 30 2.54

Cirrhosis [187] 277 17 25.72

Dermatology [184] 359 34 13.41

Pima Indians Diabetes [184] 769 8 34.90

Early Stage Diabetes [188] 521 17 61.54

Heart Disease [184] 304 13 54.46

Heart Failure [189] 300 12 32.11

Hepatitis C [184] 590 13 9.51

Kidney Disease [184] 159 24 27.22

Liver Disease [184] 580 11 71.50

Maternal Risk [184] 1014 6 26.82

Parkinsons [184] 196 22 75.38

Parkinsons Biomarkers [190] 131 29 23.08

Spine [184] 311 6 48.39

Stroke [191] 3427 15 5.25

Biomedical datasets are good candidates for PU learning given the inherent uncertainty involved in

labelling biomedical data. For example, consider a learning task that involves assessing a person’s

101

risk of developing a given disease (as is the scenario for many of these datasets). A classifier may

learn to distinguish between a positive set, consisting of data from patients who have been diagnosed

with a specific disease, and a negative set, consisting of data from patients who have not been

diagnosed with a specific disease. From this data, we wish to identify whether an unseen patient has

a specific disease. However, consider the wording of this scenario. We are looking to identify

whether a patient has a disease, by learning from data consisting of patients who have or have not

been diagnosed with a disease. In other words, we are looking to identify true positives by learning

only from labelled positives. The negative set, in this scenario, can be more precisely considered an

unlabelled set, given that “not diagnosed” does not mean that a patient does not have a disease. It

might simply be that this patient has not undergone any tests to determine whether the disease is

present. Or, this patient may have undergone some tests, but the tests may not be wholly accurate, or

the disease may be undetectable with the given test. For examples of studies detailing the reliability

of specific diagnostic tests see [192-197]. Furthermore, biomedical tests are expensive, and thus the

presence of unlabelled data may simply be a practicality to minimise the cost of data curation. Thus,

we have used biomedical datasets in our experiments as they are appropriate for PU learning and

have been referred to as “one of the most significant usage areas in PU learning” [198]. For examples

of PU learning applications to biomedical datasets, see [3,115,199,200,201].

3.3.2 Synthetic Datasets

The second type of dataset used in the experiments reported in this thesis were synthetic datasets,

which have been computationally generated using sklearn’s make_classification method [31]. 20

datasets were created, using the following parameter settings of the make_classification method:

• Number of samples: 500 to 2,000

• Number of features: 50 to 200

• Number of informative features: 2 to (number of features / 2)

• Number of redundant features: 0 to (number of features – number of informative

features)

• Number of clusters per class: 1 to 10

• Percentage of instances belonging to positive class: 1 – 50%

102

All other parameters were kept at their default. The exact characteristics of each dataset can be found

in Table 3.2. Samples is the number of instances in the dataset, features is the number of features (or

attributes) of an instance, informative is the number of informative (relevant) features, redundant is

the number of redundant features, clusters is the number of clusters per class, and Pos is the

percentage of instances in the dataset that are positive. Note that the %Pos columns in both Tables

3.1 and 3.2 show the percentage of positive instances before 𝛿% are hidden in the unlabelled set.

Testing on synthetic datasets is also used in the PU learning literature [154,156] and allows us to

evaluate our systems on datasets with a variety of characteristics.

Table 3.2. Main characteristics of the synthetic datasets used in the experiments.

Dataset Samples Features Informative Redundant Clusters %Pos

1 1209 167 12 74 5 15.76

2 1366 147 7 57 7 29.31

3 944 192 83 65 2 12.78

4 1799 97 29 10 3 21.57

5 1156 148 56 59 5 19.27

6 1489 113 54 1 2 25.30

7 1365 95 8 76 1 12.98

8 761 169 16 67 4 32.02

9 1258 100 17 2 3 11.56

10 1428 79 12 36 3 26.83

11 1903 58 27 25 5 38.02

12 1969 56 10 38 9 23.93

13 1502 73 7 15 4 24.45

14 1342 78 35 31 3 1.64

15 898 98 41 42 5 43.48

16 1132 75 25 8 1 35.64

17 976 82 39 24 8 6.45

18 640 116 15 55 8 23.35

19 1271 56 8 7 9 32.04

20 516 72 19 47 8 22.45

3.4 Experimental Methodology

3.4.1 Cross-Validation

Throughout this work, the experiments use a nested cross-validation procedure, with an external

cross-validation used to measure predictive performance (generalisation ability) and an internal

cross-validation used to evaluate candidate solutions during a run of an Auto-PU system.

103

For the external cross-validation, the experiments use the well-known stratified 5-fold cross-

validation procedure. This involves randomly splitting the data into 5 folds and using those folds as

training and test sets. Training sets are created by combining 4 of the 5 folds, and the test set is the

remaining fold. This process is repeated for all folds, so each is used as the test set exactly once. The

cross-validation is stratified in the sense that in each of the 5 folds the distribution of class labels is

approximately the same as the distribution in the full dataset. We chose 5 folds, rather than the more

popular 10 folds, as the number of positive instances in some of our classification datasets are small.

Thus, in some datasets 10 folds would split the positive set into folds that are so small as to be

practically unsuitable. As we utilise the stratified cross-validation procedure, the folds each have

roughly the same number of positive instances.

Inside the 5-fold external cross-validation, the Auto-PU system runs a 5-fold internal cross-

validation procedure. This involves splitting the training set into 5 pairs of learning and validation

sets. The model is then built using the learning set and tested on the validation set. This process is

repeated for each pair of learning and validation sets, with the performance of the model averaged

over the 5 sets. Performing this internal cross-validation procedure helps to prevent overfitting, by

having the model performance generalised over multiple subsets of the training data.

For each version of the Auto-PU system, for each training set, we run the system to evolve the

best candidate solution that it is able to find within the search space. During the search performed by

the Auto-PU system, each candidate solution is assessed on the 5 pairs of learning and validation

sets, and the performance of the candidate solution is determined by the average F-measure value

achieved over the 5 validation sets. When the Auto-PU system’s search ends, the best candidate

solution returned by the system is thus the one with the highest average F-measure calculated over

the 5 validation sets inside the training set. Then, a PU learning classifier is built from the training

set with the configuration defined by that best candidate solution. The classifier is then used to predict

the class of all instances in the test set. This process is repeated for the 5 pairs of training and test

sets in the 5-fold cross-validation.

We report precision, recall, and F-measure as the evaluation metrics for comparison. F-measure

is the most relevant measure in the experiments reported in this thesis, since it is the measure being

optimised by the Auto-PU systems, but the separate values of precision and recall are also important

104

metrics for determining the suitability of a PU learning method for a given learning task [20]. For

details of precision, recall, and F-measure, see Section 2.1. When comparing a version of the Auto-

PU system against another version or method, all systems/methods tested use the same 5-fold cross-

validation procedure, with the same folds, to ensure a fair comparison.

3.4.2 Statistical Significance Analysis

Regarding statistical analysis of the computational results, for each performance measure (F-

measure, recall, and precision), we compare the performance of the system tested against the

performance of the other methods using the non-parametric Wilcoxon Signed-Rank test [202]. Since

this involved testing multiple null hypotheses, we use the well-known Holm correction [203] for

multiple hypothesis testing. This procedure involves comparing the best method against each of the

other methods, ranking the p-values from the smallest to largest (i.e., from most to least significant),

and adjusting the significance level 𝛼 according to the p-values’ ranking. We set 𝛼 = 0.05 as usual

before adjusting it according to the position of the p-value in the ranked list. 𝑝1 (the smallest p-value)

is deemed significant if less than
𝛼

𝑛
, where 𝑛 is the number of hypotheses tested, which is the number

of methods tested minus 1. For example, 𝑛 = 2 for 3 methods, since the best method is compared

against each of the other two methods, and so 2 hypothesis are tested. If this condition is not satisfied,

the procedure stops and all 𝑝 values are deemed non-significant. If 𝑝1 is deemed significant, 𝑝2 is

deemed significant if less than
𝛼

𝑛−1
, etc.

3.4.3 Correlation Coefficient Analysis

In this work, the correlation between a hyperparameter’s values and a dataset’s characteristic is

analysed using the Pearson’s linear correlation coefficient. This correlation coefficient, denoted as 𝑟

in Equation 3.1, measures the strength and direction of the linear relationship between two variables.

It can have a value between -1 and 1, where -1 indicates a perfectly negative linear correlation, 1

indicates a perfectly positive linear correlation, and 0 signifies no linear correlation. The closer the

coefficient is to either -1 or 1, the stronger the correlation between the variables. The formula for the

correlation coefficient is given in Equation 3.1, as defined in [204].

105

𝑟 =
∑ 𝑧𝑥𝑧𝑦

𝑛 − 1
 (3.1)

Where 𝑧𝑥 and 𝑧𝑦 are the z-scores of the two variables being analysed for their correlation, and 𝑛 is

the number of observed instances. For an explanation of z-scores, see [204].

For the purposes of this work, we use the categorisation of correlation coefficient values as

defined in [205]. The converse of these values apply with the same categorisations for the negative

correlations. The categorisations are as follows:

• 0.00 – 0.09: Negligible correlation

• 0.10 – 0.39: Weak correlation

• 0.40 – 0.69: Moderate correlation

• 0.70 – 0.89: Strong correlation

• 0.9 – 1.00: Very strong correlation

106

Chapter 4

A Genetic Algorithm-based Auto-ML

System for Positive Unlabelled

Learning (GA-Auto-PU)

GA-Auto-PU is a Genetic Algorithm (GA)-based Automated Machine Learning (Auto-ML) system

for Positive-Unlabelled (PU) learning. Before proposing this system in previous work [21], no Auto-

ML system for PU learning existed in the literature. The value of Auto-ML systems was discussed

in Section 2.4, but to briefly summarise, the performance of any machine learning algorithm is largely

dependent on the input data. Thus, constructing an algorithm customised to the input data, from a set

of algorithmic components, is a valuable approach for any machine learning research area; and it is

particularly important in PU learning, given the lack of Auto-ML systems in this area.

In this chapter we evaluate the performance of the GA-Auto-PU system against TPOT (see

Section 2.4), an Auto-ML system for standard binary classification, and against two baseline PU

learning methods (see Section 2.5). For evaluation we test on two types of datasets, real-world

biomedical datasets, and synthetic datasets, each with three different values of 𝛿 (20%, 40%, 60%),

indicating the percentage of positive instances hidden in the negative class to create an unlabelled

dataset. For details of both types of datasets, see Section 3.3.

This chapter first gives a detailed description of the GA-Auto-PU system (Section 4.1), including

details of its main procedure and its hyperparameters. Then, the experimental setup is detailed in

Section 4.2, with a description of the experimental datasets, the nested cross-validation procedure,

107

the statistical significance testing, and the structure of the results sections. Next, the results are

presented (Section 4.3), firstly the GA-Auto-PU with the base search space, and then for the GA-

Auto-PU version with the extended search space. For details of the difference between the base and

search spaces, see Section 3.2. For each of these two GA-Auto-PU versions, the reported results

compare GA-Auto-PU against TPOT and two baseline PU learning methods. Next, the algorithmic

components most frequently selected by GA-Auto-PU in the experiments are discussed and analysed

(Section 4.4), before summarising this chapter (Section 4.5).

4.1 Description of GA-Auto-PU

As mentioned in the previously, GA-Auto-PU is a Genetic Algorithm (GA)-based Automated

Machine Learning (Auto-ML) system specific to PU learning. This section describes the

pseudocodes detailing the procedure followed by the GA-Auto-PU system. Recall that a GA

iteratively evolves a population of individuals, where each individual represents a candidate solution,

and the quality of an individual is evaluated by a fitness (objective) function. In GA-Auto-PU, in

essence, an individual represents a PU learning algorithm configuration. This is encoded as a list of

genes, where each gene represents the value chosen for a hyperparameter of a PU learning algorithm.

Details of the individual representation (encoding), as well the fitness (objective) function used by

GA-Auto-PU can be found in Chapter 3. Details of evolutionary computing concepts such as

selection, crossover, mutation, and elitism can be found in Section 2.2.

4.1.1 The GA Procedure

Procedure 4.1 outlines the procedure that the GA follows to evolve a PU learning algorithm

configuration. Initially, a Population of Pop_size individuals (candidate solutions) is randomly

generated (step 1). This random generation involves, for each gene, randomly selecting a value from

the list of candidate values of that specific gene. The probability of a specific gene value being

ramdomly selected is proportional to the number of candidate solutions. For example, for the

hyperparameter (gene) Iteration_count_1A there are 10 candidate values, being 1 to 10. The chance

of the number 1 being randomly selected as the value for Iteration_count_1A is 10%.

108

Figure 4.1. Example of a randomly generated individual in GA-Auto-PU.

An example of a randomly generated individual could have the values shown in Figure 4.1. As

described in Section 3.2, the 7 gene values in Figure 4.1 represent the values of the following PU

learning algorithm hyperparameters, respectively: (a) Phase_1A_Iteration_Count, (b)

Phase_1A_RN_Threshold, (c) Phase_1A_Classifier, (d) Phase_1B_RN_Threshold, (e)

Phase_1B_Classifier, (f) Phase_1B_Flag, (g) Phase_2_Classifier.

Procedure 4.1 Outline of the GA Procedure

1. Population = Generate population();

2. Repeat #generations times:

a. For each Individual in Population:

i. If Individual configuration has not already been assessed, then assess fitness(Individual,

Training set); // see Procedures 3.1-3.4, Chapter 3.

ii. Else Individual’s Fitness values are assigned as the output of the previous assessment;

b. Fittest_individual = Get fittest individual(Population);

c. New_pop = Select individuals from Population using tournament selection;

d. New_pop’s individuals undergo crossover with probability cross_prob;

e. New_pop’s individuals undergo mutation with probability mutat_prob;

f. Population = New_Pop ∪ Fittest_individual;

Return Best Individual in Population

At each generation, for each Individual, its configuration (genome) is checked against a list of

previously assessed configurations, and if it has not already been assessed, the Fitness of Individual

is calculated (step 2.a.i), as described in detail in Section 3.2.3, including Procedures 3.1-3.4. To

recap briefly, this fitness calculation is conducted by running 5-fold cross-validation over the training

set (without using the test set). That is, the two-step PU learning procedure is executed with the

hyperparameter values encoded in the individual 5 times, each time with 4/5 of the training set used

as a “learning set” (to learn a PU model) and with 1/5 of the training set used as a “validation set”

(to measure the predictive performance of the learned model); and then the individual’s fitness value

is set as the average F-measure achieved over these 5 validation sets.

If the configuration has already been assessed, the fitness values of the previous assessment are

assigned to Individual (step 2.a.ii). This saves unnecessary execution time, meaning that whilst,

hypothetically, the system could be assessing 100 unique PU learning algorithm configurations at

Phase 2

2 0.45 Random forest 0.25 Gaussian NB FALSE Logistic regression

Phase 1A Phase 1B

109

each generation, this is a worst-case scenario in regard to computational efficiency, and in practice

the system is likely assessing fewer configurations, simply because some configurations have already

been assessed.

Once all individuals have been evaluated, the fittest Individual is saved for the following

generation (step 2.b). This is elitism, which was covered in Section 2.2; but to explain briefly, the

best individual of each generation is passed without any modification (i.e., without undergoing

crossover or mutation) to the next generation. This is to ensure that the potentially highest quality

individual is not lost as the generations progress, and to help maintain a high quality population.

Population then undergoes tournament selection (step 2.c), uniform crossover (step 2.d), and

mutation (step 2.e). These three steps are evolutionary operations that were described in detail in

Section 2.2 but will be briefly described here for the reader’s reference. In tournament selection, a

fixed number of individuals, determined by the tournament size, are randomly sampled from the

population, and the individual with the highest fitness among the sampled ones is selected for

potentially undergoing uniform crossover. In GA-Auto-PU, a tournament size of 2 is used.

Uniform crossover is a process whereby new (child) individuals are created by swapping genes

from selected (parent) individuals. For each pair of individuals selected by tournament selection

(where selected individuals are randomly assigned to pairs), the chance of that pair of individuals

undergoing uniform crossover is determined by the crossover probability (90% in GA-Auto-PU). If

the two individuals do not undergo uniform crossover, they skip this evolutionary stage. GA-Auto-

PU uses 2 selected parents to produce 2 children. The 2 children begin as clones (copies) of the

parents, with child 1 as a clone of parent 1 and child 2 as a clone of parent 2. Then, for each gene, a

random number is generated which, if lower than a predefined value referred to as the gene crossover

probability (0.5 in GA-Auto-PU), the values of that gene for the two children are swapped. An

example of uniform crossover in GA-Auto-PU is given in Figure 4.2.

110

Figure 4.2. Example of uniform crossover in GA-Auto-PU.

After potentially undergoing crossover, individuals can potentially undergo mutation. This involves

altering a gene in order to introduce further genetic diversity to the population. Mutation works as

follows for each gene. For the Iteration_count_1A hyperparameter, as this gene takes an integer

value, its value is mutated by adding or subtracting 1 from the current value, within the bounds

specified by the candidate values (1 – 10). Whether the value is added or subtracted is a random

choice, with both actions having a 50% probability of occurring. For the two threshold

hyperparameters (Phase_1A_RN_Threshold and Phase_1B_Threshold), as these can take values

from 0.05 to 0.5 in increments of 0.05, a value of 0.05 is added or subtracted to the current value,

within the specified bounds. For the Flag_1B hyperparameter, the mutation is a simple bit flip,

changing to false if the value is true, and vice versa. For the three Classifier hyperparameters

(Classifier_1A, Classifier_1B, Classifier_2), as these are categorical, a new value is randomly

selected from the candidate classifier names. For each gene, the probability of undergoing mutation

is determined by the mutation probability, set to 10% in GA-Auto-PU. An example of the effect of

the mutation operator is shown in Figure 4.3, where the gene encoding the Flag_1B hyperparameter

has undergone mutation.

Figure 4.3. Example of mutation in GA-Auto-PU.

2 0.45 Random forest 0.25 Gaussian NB FALSE Logistic regression

Parents:

4 0.25 Decision tree 0.5 SVM TRUE Deep forest

2 0.25 Random forest 0.25 SVM TRUE Logistic regression

Children:

4 0.45 Decision tree 0.5 Gaussian NB FALSE Deep forest

Parent: 2 0.45 Random forest 0.25 Gaussian NB FALSE Logistic regression

Child: 2 0.45 Random forest 0.25 Gaussian NB TRUE Logistic regression

111

After undergoing the operations of selection, crossover and mutation, the evolved individuals are

added to Population (step 2.f in Procedure 4.1).

Finally, the fittest Individual is re-added to Population (elitism) (also in step 2.f). This process

of fitness calculation, selection, crossover, mutation, and elitism is repeated #generations times. The

fitness of an individual is assigned as the F-measure achieved over the 5 folds of the cross-validation

procedure applied to the training set (see Section 3.2.3).

4.1.2 The GA’s Hyperparameters

Table 4.1 shows the default hyperparameter settings of the GA underlying GA-Auto-PU. The

#generations parameter determines the number of generations to evolve the population. Pop_size

determines the number of individuals in the population. Cross_prob is the probability that two

individuals will undergo uniform crossover. Gene_cross_prob is the probability that each specific

gene will be swapped when two individuals undergo uniform crossover. Mutat_prob is the

probability that each gene of an individual will undergo mutation. Tournament_size is the number of

individuals randomly sampled for tournament selection.

Table 4.1. Hyperparameters of the GA-Auto-PU system, with their values used in this thesis’

experiments.

Hyperparameter Value

#generations 50

Pop_size 101

Cross_prob 0.9

Gene_cross_prob 0.5

Mutation_prob 0.1

Tournament_size 2

4.2 Experimental Setup

The experimental procedure is explained in detail in Chapter 3. However, to briefly recap, two types

of datasets are used in these experiments (biomedical and synthetic), each with 3 versions (varying

the % of positive instances hidden in the unlabelled set), thus creating 120 datasets total.

A nested cross-validation procedure is used, with a simple 5-fold cross-validation procedure as

the external layer. The internal layer splits the training set into 5 learning and validation sets, which

is used to evaluate the candidate solutions.

112

To compare the performance of the methods, we use the Wilcoxon signed rank test [202], with

Holm correction for testing multiple hypotheses [203]..

4.2.1 Structure of the Results’ Sections

In the next section, we present experimental results evaluating two versions of the GA-Auto-PU

system, implemented with the two search spaces described in Chapter 3. Firstly, GA-Auto-PU is

compared against TPOT. Secondly, GA-Auto-PU is compared against the two PU learning baselines.

Experiments were conducted on both the real-world biomedical datasets and the synthetic datasets,

for three values of 𝛿 (the percentage of positives hidden in the unlabelled set): 20%, 40%, and 60%.

Each section will report the F-measure results in full and will provide a summary of the precision

and recall results. The full precision and recall results (for each dataset) can be found in the Appendix.

For the sake of brevity, the GA-Auto-PU system utilising the base search space will be referred to as

GA-1, whilst the system utilising the extended search space (which includes the Spy technique of

PU learning) will be referred to as GA-2.

4.3 Results for GA-Auto-PU

4.3.1 Results comparing GA-Auto-PU with TPOT

In this section, results for GA-Auto-PU are given and compared to TPOT, beginning with a

comparison of GA-1 (using the base search space) and TPOT on the biomedical datasets, as shown

in Table 4.2. Recall that TPOT was designed for standard classification, rather than PU learning, so

this comparison is unnatural, but it is still justifiable, given that PU learning datasets are often treated

as standard binary datasets as discussed in Section 2.5, and that no Auto-ML system for PU learning

existed before GA-Auto-PU. By comparing with a state-of-the-art Auto-ML system for standard

binary classification, if GA-Auto-PU substantially outperforms TPOT, it can be argued that this

shows the benefits of using an Auto-ML system for PU learning, rather than a standard binary

classification Auto-ML system, and thus show the limits of the assumption of negativity (see Section

2.5).

113

Although TPOT was not designed for PU learning, it can still be applied to a PU learning dataset

by simply treating all unlabelled instances as negative instances, and then learning a model to

discriminate between positive and ‘negative’ (in reality unlabelled) instances. In this case TPOT will

make no attempt to identify ‘reliable negatives’, it will implicitly consider all unlabelled instances as

‘reliable negatives’. As a result, intuitively, TPOT is expected to achieve a smaller predictive

accuracy than a proper Auto-ML system for PU learning, which first learns to identify the reliable

negatives among the unlabelled instances and then uses only the reliable negatives for learning the

final classification model. Therefore, the comparison of GA-Auto-PU with TPOT is, of course, unfair

for TPOT, as it is not designed for PU learning. However, this comparison serves a purpose by

showing the improvement on predictive performance that can be achieved by using an Auto-ML

specific to PU learning for PU learning datasets, rather than using the naïve approach of treating such

datasets as standard binary-classification (positive-negative) datasets and simply applying a standard

Auto-ML system to such datasets. In addition, note that the truly positive instances hidden in the

unlabelled instance set will be effectively acting as ‘noisy data’ for TPOT (since TPOT will treat all

unlabelled instances as negative instances), and TPOT has been shown to outperform other Auto-

ML systems on datasets with noise [206], further suiting it for comparison with the GA-Auto-PU

system.

For a fair comparison, TPOT is evaluated using the same nested cross-validation procedure used

to evaluate GA-Auto-PU. In addition, GA-Auto-PU uses the default hyper-parameter settings –

reported in Table 4.1, whilst TPOT uses the default settings (reported in [100]) with the exception of

number of candidate solutions and number of generations, which are set to 101 and 50 respectively

to match those of the GA systems. Also, TPOT tunes for accuracy as default, but we have changed

this to F-measure for a fair comparison with GA-Auto-PU.

114

Table 4.2. F-measure results of GA-1 and TPOT on real-world biomedical datasets.

Dataset

δ = 20% δ = 40% δ = 60%

GA-1 TPOT GA-1 TPOT GA-1 TPOT

Alzheimer’s 0.529 0.531 0.551 0.400 0.456 0.313

Autism 0.960 0.964 0.927 0.956 0.910 0.896

Breast cancer Coi. 0.705 0.559 0.687 0.586 0.510 0.466

Breast cancer Wis. 0.954 0.946 0.932 0.915 0.906 0.673

Breast cancer mut. 0.893 0.891 0.868 0.890 0.854 0.833

Cervical cancer 0.828 0.733 0.903 0.000 0.714 0.000

Cirrhosis 0.573 0.494 0.464 0.466 0.443 0.356

Dermatology 0.860 0.776 0.780 0.761 0.828 0.698

PI Diabetes 0.677 0.661 0.649 0.548 0.606 0.575

ES Diabetes 0.958 0.950 0.895 0.850 0.930 0.821

Heart Disease 0.843 0.818 0.801 0.806 0.785 0.784

Heart Failure 0.770 0.660 0.652 0.615 0.674 0.563

Hepatitis C 0.953 0.865 0.771 0.804 0.588 0.458

Kidney Disease 0.976 0.988 0.988 0.687 0.754 0.667

Liver Disease 0.834 0.726 0.803 0.446 0.804 0.628

Maternal Risk 0.476 0.838 0.812 0.766 0.735 0.649

Parkinsons 0.860 0.906 0.836 0.664 0.818 0.628

Parkinsons Biom. 0.476 0.237 0.265 0.192 0.233 0.111

Spine 0.652 0.963 0.907 0.877 0.818 0.728

Stroke 0.474 0.218 0.255 0.203 0.255 0.164

Table 4.3 summarises the statistical significance of the results from Table 4.2 (for biomedical

datasets), as well as the results for precision and recall. In Table 4.3, for each combination of a

performance measure (F-measure, precision, recall) and a δ value (δ= 20%, 40%, 60%), the table

reports the average (Avg.) rank of GA-1 vs TPOT (GA-1 is the left rank, TPOT is the right one) and

the corresponding p-value. The better (lower) avg. rank in each cell is shown in boldface, and

significant p-values (smaller than α) are also shown in boldface. For example, in the cell for F-

measure, δ = 20%, the average ranks for GA-1 is 1.3 and TPOT is 1.7. Hence, GA-1 was the winner,

but the p-value (0.09) was greater than the significant level α (0.05), so this result was not statistically

significant. The following discussion of results will focus mainly on the F-measure, the most

important measure in Table 4.3, whilst precision and recall results are reported for completeness.

Table 4.3. Results of Wilcoxon signed-rank tests when comparing GA-1 against TPOT regarding F-measure,

Precision and Recall, for the 3 δ values on the biomedical datasets.

δ (%) F-measure Precision Recall

Avg. ranks p-value Avg. ranks p-value Avg. ranks p-value

20% 1.3 vs 1.7 0.09 1.6 vs 1.4 0.913 1.1 vs 1.9 0.0002

40% 1.25 vs 1.75 0.001 1.4 vs 1.6 0.202 1.2 vs 1.8 0.0007

60% 1.0 vs 2.0 0.00002 1.02 vs 1.98 0.0001 1.22 vs 1.78 0.003

The results in Table 4.3 show GA-1 outperforming TPOT for F-measure and recall, with statistical

significance in 5 out of the 6 cases. For precision, TPOT performs best for δ=20% but does not

115

achieve statistical significance. GA-1 performs best for δ = 40% and 60%, achieving statistical

significance for 60%. Regarding recall, GA-1 outperforms TPOT in all cases, achieving statistically

significantly better performance for all values of δ.

In summary, on the biomedical datasets, GA-1 consistently outperforms TPOT for F-measure

and recall, whilst TPOT performs slightly better for precision.

Moving next to a comparison of GA-2 (with the extended search space) and TPOT on the

biomedical datasets, Table 4.4 presents the results of both systems. Note that the TPOT results in

these tables are the same as those given in Table 4.2 showing results for GA-1 (with the base search

space), but these results are included in Tables 4.4 for the reader’s reference.

Table 4.4. F-measure results of GA-2 and TPOT on real-world biomedical datasets.

Dataset

δ = 20% δ = 40% δ = 60%

GA-2 TPOT GA-2 TPOT GA-2 TPOT

Alzheimer’s 0.548 0.531 0.576 0.400 0.529 0.313

Autism 0.982 0.964 0.940 0.956 0.927 0.896

Breast cancer Coi. 0.711 0.559 0.671 0.586 0.553 0.466

Breast cancer Wis. 0.956 0.946 0.936 0.915 0.866 0.673

Breast cancer mut. 0.896 0.891 0.739 0.890 0.872 0.833

Cervical cancer 0.867 0.733 0.839 0.000 0.350 0.000

Cirrhosis 0.446 0.494 0.397 0.466 0.204 0.356

Dermatology 0.901 0.776 0.896 0.761 0.692 0.698

PI Diabetes 0.642 0.661 0.646 0.548 0.634 0.575

ES Diabetes 0.978 0.950 0.887 0.850 0.894 0.821

Heart Disease 0.836 0.818 0.780 0.806 0.786 0.784

Heart Failure 0.751 0.660 0.670 0.615 0.671 0.563

Hepatitis C 0.944 0.865 0.863 0.804 0.610 0.458

Kidney Disease 0.925 0.988 0.951 0.687 0.806 0.667

Liver Disease 0.831 0.726 0.817 0.446 0.748 0.628

Maternal Risk 0.862 0.838 0.813 0.766 0.738 0.649

Parkinsons 0.935 0.906 0.843 0.664 0.792 0.628

Parkinsons Biom. 0.282 0.237 0.259 0.192 0.280 0.111

Spine 0.923 0.963 0.917 0.877 0.761 0.728

Stroke 0.241 0.218 0.239 0.203 0.243 0.164

Table 4.5 details the statistical significance of the F-measure results shown in Table 4.4 and

summarises the results for precision and recall. These results are an improvement on the results for

GA-1 (shown in Table 4.3), with GA-2 performing best for all metrics across all values of δ and

achieving statistical significance in 7 out of the 9 cases.

116

Table 4.5. Results of Wilcoxon signed-rank tests when comparing GA-2 against TPOT regarding F-measure,

Precision and Recall, for the 3 δ values on the biomedical datasets.

δ (%) F-measure Precision Recall

Avg. ranks p-value Avg. ranks p-value Avg. ranks p-value

20% 1.2 vs 1.8 0.021 1.45 vs 1.55 0.396 1.25 vs 1.75 0.015

40% 1.2 vs 1.8 0.004 1.4 vs 1.6 0.154 1.2 vs 1.8 0.0005

60% 1.1 vs 1.9 0.0004 1.0 vs 2.0 0.000002 1.25 vs 1.75 0.033

Looking now to a comparison of the systems on the synthetic datasets, Table 4.6 compares GA-1

and TPOT.

Table 4.6. F-measure results of GA-1 and TPOT on synthetic datasets.

Dataset

δ = 20% δ = 40% δ = 60%

GA-1 TPOT GA-1 TPOT GA-1 TPOT

1 0.661 0.524 0.718 0.419 0.603 0.369

2 0.136 0.065 0.044 0.033 0.065 0.017

3 0.788 0.760 0.693 0.585 0.637 0.576

4 0.831 0.781 0.818 0.571 0.674 0.449

5 0.618 0.563 0.616 0.446 0.609 0.365

6 0.759 0.804 0.769 0.681 0.684 0.619

7 0.520 0.536 0.515 0.315 0.478 0.309

8 0.525 0.436 0.477 0.509 0.381 0.308

9 0.111 0.037 0.080 0.000 0.146 0.000

10 0.903 0.843 0.872 0.643 0.742 0.637

11 0.604 0.525 0.567 0.450 0.531 0.436

12 0.674 0.700 0.666 0.642 0.609 0.626

13 0.644 0.596 0.623 0.565 0.516 0.508

14 0.975 0.936 0.962 0.903 0.925 0.806

15 0.601 0.411 0.593 0.329 0.519 0.324

16 0.477 0.505 0.388 0.356 0.301 0.145

17 0.347 0.267 0.496 0.231 0.412 0.270

18 0.559 0.242 0.389 0.186 0.326 0.163

19 0.472 0.412 0.468 0.279 0.381 0.230

20 0.705 0.613 0.692 0.551 0.625 0.502

The results in Table 4.7 show the superiority of GA-1 over TPOT for F-measure and recall, achieving

statistically significantly better performance than TPOT across all values of δ. For precision, TPOT

performs best and achieves statistical significance when δ=20%, whilst GA-1 achieves best

performance (although not with statistical significance) when δ = 40% and 60%.

Table 4.7. Results of Wilcoxon signed-rank tests when comparing GA-1 against TPOT regarding F-measure,

Precision and Recall, for the 3 δ values on the synthetic datasets.

δ (%) F-measure Precision Recall

Avg. ranks p-value Avg. ranks p-value Avg. ranks p-value

20% 1.2 vs 1.8 0.0002 1.7 vs 1.3 0.007 1.1 vs 1.9 0.0002

40% 1.05 vs 1.95 0.00001 1.45 vs 1.55 0.841 1.1 vs 1.9 0.0002

60% 1.05 vs 1.95 0.00001 1.45 vs 1.55 0.368 1.2 vs 1.8 0.0003

117

Table 4.8. F-measure results of GA-2 and TPOT on synthetic datasets.

Dataset

δ = 20% δ = 40% δ = 60%

GA-2 TPOT GA-2 TPOT GA-2 TPOT

1 0.640 0.524 0.709 0.419 0.545 0.369

2 0.176 0.065 0.105 0.033 0.111 0.017

3 0.759 0.760 0.702 0.585 0.612 0.576

4 0.824 0.781 0.809 0.571 0.692 0.449

5 0.612 0.563 0.571 0.446 0.559 0.365

6 0.762 0.804 0.751 0.681 0.672 0.619

7 0.528 0.536 0.496 0.315 0.448 0.309

8 0.571 0.436 0.484 0.509 0.390 0.308

9 0.098 0.037 0.000 0.000 0.143 0.000

10 0.896 0.843 0.850 0.643 0.716 0.637

11 0.574 0.525 0.579 0.450 0.525 0.436

12 0.681 0.700 0.692 0.642 0.599 0.626

13 0.648 0.596 0.612 0.565 0.576 0.508

14 0.977 0.936 0.966 0.903 0.934 0.806

15 0.595 0.411 0.575 0.329 0.565 0.324

16 0.431 0.505 0.402 0.356 0.299 0.145

17 0.384 0.267 0.470 0.231 0.382 0.270

18 0.576 0.242 0.408 0.186 0.373 0.163

19 0.462 0.412 0.483 0.279 0.385 0.230

20 0.701 0.613 0.664 0.551 0.594 0.502

Table 4.8 details the results of GA-2 and TPOT on the synthetic datasets; whilst Table 4.9 details the

statistical significance of the F-measure results shown in Table 4.8 and summarises the results for

precision and recall. These results largely reflect the results for GA-1 when compared with TPOT

(shown in Table 4.7). However, GA-2 performs slightly worse in regard to the average ranks for

precision and fails to achieve statistical significance in any case regarding precision. However,

statistically significantly better performance against TPOT is achieved by GA-2 for F-measure and

recall for all values of δ.

Table 4.9. Results of Wilcoxon signed-rank tests when comparing GA-2 against TPOT regarding F-measure,

Precision and Recall, for the 3 δ values on the synthetic datasets.

δ (%) F-measure Precision Recall

Avg. ranks p-value Avg. ranks p-value Avg. ranks p-value

20% 1.25 vs 1.75 0.001 1.7 vs 1.3 0.021 1.15 vs 1.85 0.0004

40% 1.05 vs 1.95 0.000004 1.3 vs 1.7 0.475 1.1 vs 1.9 0.00005

60% 1.05 vs 1.95 0.000004 1.5 vs 1.5 0.756 1.15 vs 1.85 0.0003

Figure 4.4 shows graphically how the average F-measure of each of the Auto-ML systems changes

over the different values of δ, for the biomedical datasets. In order to reduce the number of figures

across this chapter, this Figure shows the results for all Auto-ML systems (GA-1, GA-2 and TPOT)

and all baseline PU learning methods (DF-PU and S-EM) investigated in this chapter, but in this

118

current part of the text the analysis is focussed on the results for TPOT, GA-1 and GA-2 only – the

results for DF-PU and S-EM will be discussed later.

Figure 4.4. Average F-measure results comparison for TPOT, GA-1, GA-2, DF-PU and S-EM,

across the three values of δ for the biomedical datasets.

Focusing on the results of GA-1 and GA-2 vs. TPOT, it is evident that as the value of δ increases,

the performance of TPOT rapidly declines. The performance of GA-1 and GA-2 also decline, though

at a smaller rate than that of TPOT. In fact, the average F-measure of TPOT for all values of δ does

not exceed the average F-measure of GA-1 or GA-2 at δ=40%, with the average F-measure of TPOT

at δ=40% below even the average F-measure of GA-2 at δ=60%. This chart shows that, whilst the

average F-measure for TPOT at δ=20% is somewhat comparable to GA-1 and GA-2 for δ=20%, as

the percentage of positive instances available in the labelled positive set decreases, the performance

decline is very substantial, making TPOT no longer comparable for more challenging PU learning

tasks.

Figure 4.5. Average F-measure results comparison for TPOT, GA-1, GA-2, DF-PU and S-EM,

across the three values of δ for the synthetic datasets.

0.000 0.200 0.400 0.600 0.800 1.000

S-EM

DF-PU

GA-2

GA-1

TPOT

δ = 20% δ = 40% δ = 60%

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700

S-EM

DF-PU

GA-2

GA-1

TPOT

δ = 60% δ = 40% δ = 20%

119

Figure 4.5 shows graphically how the average F-measure of each of the systems changes over the

different values of δ, for the synthetic datasets. The results in this figure largely reflect the results

shown in Figure 4.4. As with the biomedical datasets, this chart shows that, whilst the average F-

measure for TPOT at δ=20% is somewhat comparable to GA-1 and GA-2 for δ=20%, as the

percentage of positive instances available in the labelled positive set decreases, the performance

decline is significant, making TPOT no longer comparable for more challenging PU learning tasks.

In order to further analyse the results, Table 4.10 shows the values of Pearson’s linear correlation

coefficient between the F-measure values achieved by GA-1, GA-2, TPOT, DF-PU, and S-EM and

percentages of positive examples in the original dataset, for each δ value, for the biomedical datasets.

Again, in order to reduce the number of tables across this chapter, the results for all the

aforementioned systems or methods are reported in Table 4.10, but in this current part of the text the

analysis is focused on the results for GA-1, GA-2 and TPOT only – the results for the baselines will

be discussed later. The purpose of this analysis is to understand how reliant the performance of each

method is on the percentage of positive examples in the original dataset.

Table 4.10. Linear (Pearson’s) correlation coefficient value between the F-measure and the

percentage of positive examples in the original dataset (before hiding some positive examples in

the unlabelled set) for each combination of a method and a δ value, for the biomedical datasets, for

all methods.

Method δ = 20% δ = 40% δ = 60%

GA-1 0.333 0.385 0.504

GA-2 0.340 0.357 0.580

TPOT 0.406 0.432 0.606

DF-PU 0.988 0.988 0.988

S-EM 0.646 0.558 0.652

Table 4.10 shows the same trends of positive correlations as Figure 4.4. For δ=20% and 40%, GA-1

and GA-2 exhibit a weak correlation between percentage of positive instances and F-measure, whilst

for δ=60% the correlation is moderate, with correlation categorisation defined as outlined in Section

3.4.3. Whereas, for TPOT, the correlation is moderate for all values of delta. In other words, the

performance of TPOT is more closely tied to the percentage of positive instances than the

performance of GA-Auto-PU.

120

Table 4.11. Linear (Pearson’s) correlation coefficient value between the F-measure and the

percentage of positive examples in the original dataset (before hiding some positive examples in

the unlabelled set) for each combination of a method and a δ value, for the synthetic datasets, forall

methods.

Method δ = 20% δ = 40% δ = 60%

GA-1 0.712 0.682 0.687

GA-2 0.700 0.702 0.696

TPOT 0.624 0.667 0.674

DF-PU 0.990 0.990 0.990

S-EM 0.794 0.793 0.776

Table 4.11 shows the values of Pearson’s linear correlation coefficient between the F-measure values

achieved by GA-1, GA-2, TPOT, DF-PU, and S-EM and the percentages of positive examples in the

original dataset, for each δ value for the synthetic datasets. Table 4.11 shows much stronger trends

than those shown in Table 4.10 for the biomedical datasets. For now, we focus on the results of GA-

1, GA-2 and TPOT, with the other results discussed in their appropriate sections. GA-1, GA-2 and

TPOT show moderate correlations for δ=40% and 60%, but GA-1 and GA-2 show a strong

correlation for δ=20%. This is in contrast to the results of Table 4.10, which showed TPOT exhibiting

a stronger trend than GA-1 and GA-2. This helps to highlight the importance of examining methods

on multiple types of datasets to gain a fuller understanding of the performance of that system. Due

to the differing results of Tables 4.10 and 4.11, it is hard to draw conclusions on this analysis. The

purpose was to investigate which methods are more reliant on a high number of positive instances,

but limited distinctions between GA-Auto-PU and TPOT are shown. These distinctions are more

pronounced for the baseline methods, as discussed later.

4.3.2 Results comparing GA-Auto-PU with two baseline PU

learning methods

This section details the results achieved by GA-Auto-PU and two baseline PU learning methods (DF-

PU and S-EM, see Section 2.5) when applied to 20 real-world biomedical datasets and 20 synthetic

datasets. Note that the results in the GA-1 and GA-2 columns in the tables reported in this section

are the same as those reported in the previous section, but they are repeated in this section for the

reader’s convenience.

Table 4.13 summarises the statistical significance of the F-measure results from Table 4.12, as well

as the results for precision and recall.

121

Table 4.12. F-measure results of GA-Auto-PU with base search space and baseline PU learning

methods on real-world biomedical datasets.

Dataset

δ = 20% δ = 40% δ = 60%

GA-1 DF-PU S-EM GA-1 DF-PU S-EM GA-1 DF-PU S-EM

Alzheimer’s 0.529 0.195 0.321 0.551 0.194 0.370 0.456 0.171 0.373

Autism 0.960 0.648 0.820 0.927 0.648 0.841 0.910 0.645 0.835

Breast cancer Coi. 0.705 0.697 0.711 0.687 0.711 0.704 0.510 0.697 0.699

Breast cancer Wis. 0.954 0.543 0.898 0.932 0.543 0.903 0.906 0.539 0.904

Breast cancer mut. 0.893 0.489 0.892 0.868 0.489 0.893 0.854 0.485 0.892

Cervical cancer 0.828 0.061 0.054 0.903 0.042 0.053 0.714 0.044 0.046

Cirrhosis 0.573 0.405 0.436 0.464 0.401 0.442 0.443 0.405 0.459

Dermatology 0.860 0.228 0.718 0.780 0.229 0.718 0.828 0.219 0.719

PI Diabetes 0.677 0.516 0.534 0.649 0.516 0.525 0.606 0.515 0.544

ES Diabetes 0.958 0.762 0.792 0.895 0.756 0.859 0.930 0.759 0.793

Heart Disease 0.843 0.705 0.811 0.801 0.705 0.828 0.785 0.702 0.829

Heart Failure 0.770 0.487 0.529 0.652 0.486 0.508 0.674 0.481 0.557

Hepatitis C 0.953 0.176 0.695 0.771 0.171 0.708 0.588 0.160 0.609

Kidney Disease 0.976 0.428 1.000 0.988 0.428 1.000 0.754 0.428 0.951

Liver Disease 0.834 0.834 0.816 0.803 0.832 0.587 0.804 0.834 0.788

Maternal Risk 0.476 0.403 0.454 0.812 0.395 0.433 0.735 0.390 0.438

Parkinsons 0.860 0.856 0.815 0.836 0.860 0.748 0.818 0.860 0.762

Parkinsons Biom. 0.476 0.354 0.333 0.265 0.354 0.261 0.233 0.367 0.331

Spine 0.652 0.652 0.820 0.907 0.652 0.839 0.818 0.652 0.830

Stroke 0.474 0.086 0.102 0.255 0.094 0.102 0.255 0.094 0.102

The results in Table 4.13 show GA-1 largely outperforming the baseline PU learning methods in

regard to F-measure and precision, but the baseline methods largely outperforming GA-1 in regard

to recall. Regarding F-measure, GA-1 outperforms the baseline method in regard to average rank for

every value of δ. All of these results are statistically significant, with the exception of against S-EM

when δ = 60%. Regarding precision, the results for GA-1 are even better, achieving statistical

significance in all cases. Regarding recall, the results are the opposite, with GA-1 outperformed by

the baseline methods with statistical significance in almost all cases. However, the performance

regarding recall by the baseline methods was largely due to their overprediction of the positive class,

coming at a substantial cost to precision. It is for this reason that, even though the recall of the

baseline methods is such that they outperform GA-1 in most cases with statistical significance, they

are themselves outperformed with statistical significance by GA-1 regarding F-measure as their

precision is lacking so much as to largely reduce their F-measure. DF-PU performed best in regard

to recall, but worst for both precision and F-measure. This was likely due to the default

hyperparameter settings of DF-PU, which selected a subset of 20% of the unlabelled instances as the

negative set and only the bottom 1% of instances with the lowest probability of belonging to the

positive class as the reliable negative set in Phase 1A of the PU learning algorithm. These parameters

may work well for large and highly imbalanced datasets, but they are not suitable as a general use

122

case as they may identify very few reliable negative instances, resulting in a classifier that greatly

over-predicts the positive class.

These results highlight the importance of the iteration count and the reliable negative threshold

hyperparameters of GA-Auto-PU and the need for a system that can tune these parameters for a

specific dataset.

Table 4.13. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis when

comparing GA-1 against S-EM and DF-PU regarding F-measure, Precision and Recall, for the 3 δ values for

the biomedical datasets.

δ

(%)

Methods

compared

F-measure Precision Recall

Avg.

ranks

p-

value

α Avg.

ranks

p-value α Avg.

ranks

p-value α

20% GA-1 vs

DF-PU

1.05 vs 1.95 0.0002 0.025 1.05 vs

1.95

0.0002 0.025 1.75 vs

1.25

0.013 0.025

GA-1 vs

S-EM

1.15 vs 1.85 0.001 0.05 1.18 vs

1.82

0.003 0.05 1.58 vs

1.42

0.523 0.05

40% GA-1 vs

DF-PU

1.2 vs 1.8 0.0001 0.025 1.0 vs

2.0

0.000002 0.025 1.98 vs

1.02

0.0001 0.025

GA-1 vs

S-EM

1.2 vs 1.8 0.0003 0.05 1.08 vs

1.92

0.0003 0.05 1.8 vs

1.2

0.008 0.05

60% GA-1 vs

DF-PU

1.2 vs 1.8 0.0007 0.025 1.0 vs

2.0

0.000002 0.025 2.0 vs

1.0

0.000002 0.025

GA-1 vs

S-EM

1.4 vs 1.6 0.216 0.05 1.02 vs

1.98

0.0001 0.05 1.85 vs

1.15

0.0004 0.05

Next, the performance of GA-2 is compared with the baseline methods on the biomedical datasets.

Table 4.14. F-measure results of GA-Auto-PU with extended search space and two baseline PU

learning methods on real-world biomedical datasets.

Dataset

δ = 20% δ = 40% δ = 60%

GA-2 DF-PU S-EM GA-2 DF-PU S-EM GA-2 DF-PU S-EM

Alzheimer’s 0.548 0.195 0.321 0.576 0.194 0.370 0.529 0.171 0.373

Autism 0.982 0.648 0.820 0.940 0.648 0.841 0.927 0.645 0.835

Breast cancer Coi. 0.711 0.697 0.711 0.672 0.711 0.704 0.553 0.697 0.699

Breast cancer Wis. 0.956 0.543 0.898 0.936 0.543 0.903 0.866 0.539 0.904

Breast cancer mut. 0.895 0.489 0.892 0.739 0.489 0.893 0.872 0.485 0.892

Cervical cancer 0.867 0.061 0.054 0.839 0.042 0.053 0.350 0.044 0.046

Cirrhosis 0.446 0.405 0.436 0.397 0.401 0.442 0.204 0.405 0.459

Dermatology 0.901 0.228 0.718 0.896 0.229 0.718 0.692 0.219 0.719

PI Diabetes 0.642 0.516 0.534 0.645 0.516 0.525 0.634 0.515 0.544

ES Diabetes 0.978 0.762 0.792 0.887 0.756 0.859 0.894 0.759 0.793

Heart Disease 0.836 0.705 0.811 0.780 0.705 0.828 0.786 0.702 0.829

Heart Failure 0.751 0.487 0.529 0.670 0.486 0.508 0.671 0.481 0.557

Hepatitis C 0.944 0.176 0.695 0.863 0.171 0.708 0.610 0.160 0.609

Kidney Disease 0.925 0.428 1.000 0.951 0.428 1.000 0.806 0.428 0.951

Liver Disease 0.831 0.834 0.816 0.817 0.832 0.587 0.748 0.834 0.788

Maternal Risk 0.862 0.403 0.454 0.813 0.395 0.433 0.737 0.390 0.438

Parkinsons 0.935 0.856 0.815 0.842 0.860 0.748 0.792 0.860 0.762

Parkinsons Biom. 0.282 0.354 0.333 0.259 0.354 0.261 0.280 0.367 0.331

Spine 0.923 0.652 0.820 0.917 0.652 0.839 0.761 0.652 0.830

Stroke 0.241 0.086 0.102 0.241 0.094 0.102 0.247 0.094 0.102

123

Table 4.15. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis when

comparing GA-2 against S-EM and DF-PU regarding F-measure, Precision and Recall, for the 3 δ values for

the biomedical datasets.

δ

(%)

Methods

compared

F-measure Precision Recall

Avg.

ranks

p-value α Avg.

ranks

p-value α Avg.

ranks

p-value α

20% GA-2 vs

DF-PU

1.1 vs

1.9

0.00002 0.025 1.0 vs

2.0

0.000002 0.025 2.0 vs

1.0

0.000002 0.025

GA-2 vs

S-EM

1.12 vs

1.88

0.0008 0.05 1.12 vs

1.88

0.0003 0.05 1.72 vs

1.28

0.053 0.05

40% GA-2 vs

DF-PU

1.25 vs

1.75

0.0003 0.025 1.05 vs

1.95

0.00001 0.025 2.0 vs

1.0

0.000002 0.025

GA-2 vs

S-EM

1.3 vs

1.7

0.007 0.05 1.12 vs

1.88

0.001 0.05 1.75 vs

1.25

0.014 0.05

60% GA-2 vs

DF-PU

1.25 vs

1.75

0.002 0.025 1.0 vs

2.0

0.000002 0.025 2.0 vs

1.0

0.000002 0.025

GA-2 vs

S-EM

1.5 vs

1.5

0.546 0.05 1.02 vs

1.98

0.0001 0.05 1.9 vs

1.1

0.00001 0.05

Table 4.15 details the statistical significance of the F-measure results shown in Table 4.14 and

summarises the results for precision and recall. Overall, GA-2 outperforms the baseline PU learning

methods for F-measure and precision across all values of δ in all 12 cases, and the results are

statistically significant in nearly 11 cases. As was the case for GA-1, the baseline methods outperform

GA-2 for recall for all values of δ and with statistical significance in 5 out of the 6 cases. The reasons

for this are the same as those given when discussing the comparison between the baseline methods

and GA-1, namely the large overprediction of the positive class by the baseline methods.

Looking now to the synthetic datasets, Table 4.16 presents the results for GA-1 and the baseline

methods.

Table 4.17 summarises the statistical significance of the F-measure results from Table 4.16, as

well as the results for precision and recall for the synthetic datasets. The results follow a largely

similar trend to those reported in Table 4.13, with GA-1 outperforming the baseline methods with

statistical significance in all but one case for F-measure and precision, failing to achieve statistical

significance when δ = 60%, whilst being outperformed with statistical significance in 2 cases for

recall, both by DF-PU when δ = 20% and 60% respectively. The performance of the baseline methods

in regard to recall is due to the same reasons discussed previously, i.e., the massive overprediction

of the positive class instances.

124

Table 4.16. F-measure results of GA-Auto-PU with base search space and baseline PU learning

methods on synthetic datasets.

Dataset

δ = 20% δ = 40% δ = 60%

GA-1 DF-PU S-EM GA-1 DF-PU S-EM GA-1 DF-PU S-EM

1 0.661 0.484 0.616 0.718 0.484 0.602 0.603 0.483 0.613

2 0.136 0.125 0.194 0.044 0.120 0.130 0.065 0.112 0.120

3 0.788 0.552 0.589 0.693 0.552 0.587 0.637 0.552 0.600

4 0.831 0.454 0.644 0.818 0.416 0.633 0.674 0.417 0.630

5 0.618 0.357 0.402 0.616 0.356 0.436 0.609 0.357 0.465

6 0.759 0.403 0.477 0.769 0.402 0.525 0.684 0.402 0.582

7 0.520 0.285 0.433 0.515 0.283 0.462 0.478 0.282 0.451

8 0.525 0.326 0.468 0.477 0.326 0.457 0.381 0.326 0.439

9 0.111 0.035 0.099 0.080 0.000 0.044 0.146 0.000 0.120

10 0.903 0.233 0.612 0.872 0.234 0.627 0.742 0.233 0.663

11 0.604 0.491 0.505 0.567 0.491 0.520 0.531 0.490 0.517

12 0.674 0.397 0.550 0.666 0.397 0.567 0.609 0.394 0.586

13 0.644 0.500 0.551 0.623 0.460 0.556 0.516 0.456 0.549

14 0.975 0.529 0.817 0.962 0.529 0.840 0.925 0.529 0.873

15 0.601 0.387 0.423 0.593 0.387 0.425 0.519 0.385 0.422

16 0.477 0.239 0.414 0.388 0.239 0.401 0.301 0.240 0.299

17 0.347 0.214 0.262 0.496 0.214 0.281 0.412 0.214 0.267

18 0.559 0.372 0.444 0.389 0.373 0.433 0.326 0.373 0.422

19 0.472 0.378 0.426 0.468 0.378 0.429 0.381 0.376 0.413

20 0.705 0.610 0.615 0.692 0.610 0.620 0.625 0.610 0.613

Table 4.17. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis when

comparing GA-1 against S-EM and DF-PU regarding F-measure, Precision and Recall, for the 3 δ values for

the synthetic datasets.

δ

(%)

Methods

compared

F-measure Precision Recall

Avg.

ranks

p-

value

α Avg.

ranks

p-value α Avg.

ranks

p-

value

α

20% GA-1 vs

DF-PU

1.1 vs 1.9 0.00002 0.025 1.0 vs 2.0 0.000002 0.025 1.82 vs

1.18

0.006 0.025

GA-1 vs

S-EM

1.12 vs

1.88

0.0008 0.05 1.1 vs 1.9 0.000002 0.05 1.55 vs

1.45

0.701 0.05

40% GA-1 vs

DF-PU

1.25 vs

1.75

0.0003 0.025 1.05 vs

1.95

0.000004 0.025 1.75 vs

1.25

0.026 0.025

GA-1 vs

S-EM

1.3 vs 1.7 0.007 0.05 1.1 vs 1.9 0.0001 0.05 1.55 vs

1.45

0.430 0.05

60% GA-1 vs

DF-PU

1.25 vs

1.75

0.002 0.025 1.15 vs

1.85

0.00004 0.025 1.78 vs

1.22

0.020 0.025

GA-1 vs

S-EM

1.5 vs 1.5 0.546 0.05 1.35 vs

1.65

0.245 0.05 1.58 vs

1.42

0.573 0.05

Table 4.18 details the results of GA-2 and the baseline methods on the synthetic datasets.

Table 4.19 details the statistical significance of the F-measure results shown in Table 4.18 and

summarises the results for precision and recall. GA-2 largely outperforms the baseline methods

regarding F-measure and precision for all values of δ, with the results being statistically significant

in 10 out of the 12 cases. For recall, as expected based on the results previously reported in this

chapter, the baseline methods outperform GA-2 for all values of δ with statistical significance in 2

out of the 6 cases.

125

Table 4.18. F-measure results of GA-Auto-PU with extended search space and two baseline PU

learning methods on synthetic datasets.

Dataset

δ = 20% δ = 40% δ = 60%

GA-2 DF-PU S-EM GA-2 DF-PU S-EM GA-2 DF-PU S-EM

1 0.640 0.484 0.616 0.709 0.484 0.602 0.545 0.483 0.613

2 0.176 0.125 0.194 0.105 0.120 0.130 0.111 0.112 0.120

3 0.759 0.552 0.589 0.702 0.552 0.587 0.612 0.552 0.600

4 0.824 0.454 0.644 0.809 0.416 0.633 0.692 0.417 0.630

5 0.612 0.357 0.402 0.571 0.356 0.436 0.559 0.357 0.465

6 0.762 0.403 0.477 0.751 0.402 0.525 0.672 0.402 0.582

7 0.528 0.285 0.433 0.496 0.283 0.462 0.448 0.282 0.451

8 0.571 0.326 0.468 0.484 0.326 0.457 0.390 0.326 0.439

9 0.098 0.035 0.099 0.000 0.000 0.044 0.143 0.000 0.120

10 0.896 0.233 0.612 0.850 0.234 0.627 0.716 0.233 0.663

11 0.574 0.491 0.505 0.579 0.491 0.520 0.525 0.490 0.517

12 0.681 0.397 0.550 0.692 0.397 0.567 0.599 0.394 0.586

13 0.648 0.500 0.551 0.612 0.460 0.556 0.576 0.456 0.549

14 0.977 0.529 0.817 0.966 0.529 0.840 0.934 0.529 0.873

15 0.595 0.387 0.423 0.575 0.387 0.425 0.565 0.385 0.422

16 0.431 0.239 0.414 0.402 0.239 0.401 0.299 0.240 0.299

17 0.384 0.214 0.262 0.470 0.214 0.281 0.382 0.214 0.267

18 0.576 0.372 0.444 0.408 0.373 0.433 0.373 0.373 0.422

19 0.462 0.378 0.426 0.483 0.378 0.429 0.385 0.376 0.413

20 0.701 0.610 0.615 0.664 0.610 0.620 0.594 0.610 0.613

Table 4.19. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis when

comparing GA-2 against S-EM and DF-PU regarding F-measure, Precision and Recall, for the 3 δ values for

the synthetic datasets.

δ

(%)

Methods

compared

F-measure Precision Recall

Avg.

ranks

p-value α Avg.

ranks

p-value α Avg.

ranks

p-value α

20 GA-2 vs

DF-PU

1.05 vs

1.95

0.0002 0.05 1.0 vs

2.0

0.000002 0.02

5

1.88 vs

1.12

0.007 0.02

5

GA-2 vs S-

EM

1.15 vs

1.85

0.0001 0.025 1.15 vs

1.85

0.0004 0.05 1.65 vs

1.35

0.277 0.05

40 GA-2 vs

DF-PU

1.2 vs

1.8

0.0001 0.025 1.1 vs

1.9

0.00001 0.02

5

1.75 vs

1.25

0.053 0.02

5

GA-2 vs S-

EM

1.2 vs

1.8

0.0003 0.05 1.15 vs

1.85

0.0001 0.05 1.55 vs

1.45

0.784 0.05

60 GA-2 vs

DF-PU

1.2 vs

1.8

0.0007 0.025 1.02 vs

1.98

0.0001 0.02

5

1.75 vs

1.25

0.017 0.02

5

GA-2 vs S-

EM

1.4 vs

1.6

0.216 0.05 1.4 vs

1.6

0.154 0.05 1.35 vs

1.65

0.522 0.05

Referring back to Figures 4.4 and 4.5, the trend in the average performance for both DF-PU and S-

EM is interesting. Whilst the Auto-PU systems have a decline in performance as the δ value

increases, the performance of both DF-PU and S-EM remains relatively stable. This is, again, likely

due to the massive overprediction of the positive class instances. That is, if we predict almost all

instances to be positive for all datasets, the performance is going to be about the same regardless of

the value of δ, since the percentage of positive instances in the test set has not been altered. This poor

126

performance is likely due to the use of the default hyperparameter settings for the algorithms. That

is, the hyperparameter settings used in the papers proposing the original methods were used, rather

than tuning the parameters to fit the learning task for which we are using the methods. Recent work

[207] showed that tuning the hyperparameter settings improved the performance of these methods.

Referring back to Tables 4.10 and 4.11, analysing the correlation coefficient between percentage

of instances that belong to the positive set and F-measure, S-EM exhibits moderate to strong

correlations, whilst DF-PU exhibits a near perfect correlation. This latter result can also be explained

by the fact that DF-PU massively overpredicts the positive class, since in this case an increase in the

percentage of positive-class instances tends to lead to an increase in precision without substantially

reducing recall, therefore leading to an increased F-measure. These results indicate that the

performance of the baseline methods is more reliant on a high proportion of positive instances in the

dataset than GA-Auto-PU. Thus, indicating that GA-Auto-PU may perform more favourably in

learning scenarios where there are fewer positive instances to learn from.

4.4 The Most Frequently Selected Hyperparameter

Values of the Optimised PU Learning Algorithm

This section reports the PU learning hyperparameter values most frequently selected by GA-Auto-

PU utilising the base search space (GA-1) and the extended search space (GA-2). It reports the

selection frequency, baseline frequency, and their difference. The selection frequency of a

hyperparameter value is calculated as the ratio of the number of GA-Auto-PU runs where value was

used in the optimised PU learning algorithm returned by GA-Auto-PU over the total number of GA-

Auto-PU runs, which is 300 for each type of search space (base or extended spaces) and each type

of dataset (biomedical or synthetic), considering 20 datasets times 3 values of δ, times 5 runs of a

GA-Auto-PU version per dataset, due to the use of 5-fold cross-validation. For each type of search

space (i.e., base and extended search spaces), two separate tables are reported, firstly for the

biomedical datasets and secondly for the synthetic datasets. In these tables, the baseline frequency is

the expected selection frequency of a hyperparameter value if all values of that hyperparameter were

randomly selected for use in a PU learning algorithm. I.e., it is calculated by simply dividing 1 (one)

127

by the number of candidate values for that hyperparameter. The difference between these two

frequencies is simply the selection frequency minus the baseline frequency.

Little has been written on the topic of suitable algorithm configuration for PU learning, and no

guidelines exist in the literature. By analysing the most frequently selected hyperparameter values in

this thesis’ experiments, we can begin to understand which PU learning algorithm configurations

perform well and under what circumstances. This information could prove useful for future research

into improving the performance of PU learning algorithms.

Throughout this section, the term “classifier” is used to refer to a classification algorithm (rather

than a classification model learned by an algorithm), unless explicitly mentioned otherwise.

4.4.1 The Hyperparameter Values Most Frequently Selected

by GA-1 (with Base Search Space)

Tables 4.20 and 4.21 report the most frequently selected values of the hyperparameters of the

optimised PU learning algorithms returned by all runs of GA-1 on the biomedical datasets and on the

synthetic datasets, respectively. Considering first the Phase_1A_Classifier and Phase_2_Classifier

hyperparameters, it is noteworthy that Linear Discriminant Analysis (LDA) and Gaussian Naïve

Bayes (NB) were most frequently selected for both types of datasets, albeit as classifiers for different

phases of the optimised PU learning algorithm depending on the type of dataset. More precisely,

Gaussian NB and LDA were most frequently selected as Phase 1A and Phase 2 classifiers,

respectively, for the biomedical datasets (Table 4.20); whilst the preference for these two classifiers

was reversed in these two phases for the synthetic datasets (Table 4.21). Recall from Section 2.5 two

assumptions of the two-step PU learning framework, separability and smoothness. Separability refers

to a natural separation between the two classes, and smoothness states that instances which are close

in the feature space are more likely to belong to the same class. Both LDA and Gaussian NB are

linear classifiers, making them suitable classifiers for data that adheres to both of these assumptions.

The most frequently selected Phase 1B classifier for the biomedical datasets was Deep forest,

whilst for the synthetic datasets it was k-nearest neighbour (kNN). These classifiers were selected

with relatively low frequency (in relation to difference between the baseline frequency and selection

frequency) and thus the conclusions about their preferences in that phase are not strong. Considering

128

the Phase 1B Flag hyperparameter, its two candidate values (True and False) have almost exactly

the same selection frequency for both types of datasets, implying that whether to utilise Phase 1B

strongly depends on the specifics of the individual dataset.

Table 4.20. Selection frequency of hyperparameter values by GA-1 for the biomedical datasets.

Hyperparameter Most selected

value

Selection

Freq. (%)

Baseline

Freq. (%)

Diff.

(%)

Phase 1A Iteration Count 1 19.67 10.00 9.67

Phase 1A RN Threshold 0.3 15.00 10.00 5.00

Phase 1A Classifier Gaussian NB 14.00 5.56 8.44

Phase 1B Flag False 52.33 50.00 2.33

Phase 1 B RN Threshold 0.15 19.00 10.00 9.00

Phase 1B Classifier Deep forest 11.00 5.56 5.44

Phase 2 Classifier LDA 21.00 5.56 15.44

Table 4.21. Selection frequency of hyperparameter values by GA-1 for the synthetic datasets.

Hyperparameter Most selected

value

Selection

Freq. (%)

Baseline

Freq. (%)

Diff.

(%)

Phase 1A Iteration Count 4 19.00 10.00 9.00

Phase 1A RN Threshold 0.35 21.33 10.00 11.33

Phase 1A Classifier LDA 14.00 5.56 8.44

Phase 1B Flag True 52.00 50.00 2.00

Phase 1 B RN Threshold 0.2 15.17 10.00 5.17

Phase 1B Classifier kNN 10.33 5.56 4.77

Phase 2 Classifier Gaussian NB 22.33 5.56 16.77

The hyperparameter Phase_1A_Iteration_Count is utilised to handle the class imbalance that is often

present in PU learning datasets. It handles the class imbalance by splitting the unlabelled set into a

given number of sets in Phase 1A of the two-step procedure. Therefore, it intuitively follows that

when the percentage of positive instances is low, the iteration count should be high, and vice versa.

To check if this is really the case, a more detailed analysis of this hyperparameter’s optimisation was

conducted, as described next.

For each dataset, for each value of δ, the average value of the Phase_1A_Iteration_Count

hyperparameter over the cross-validation procedure was calculated. Then, the Pearson’s correlation

coefficient between those average iteration counts and the percentage of instances which are positive

in the original datasets (i.e., the full datasets before hiding the positive instances in the negative set

or splitting into training and test sets) was calculated, over the 20 datasets for each type of dataset

(biomedical and synthetic datasets), for each of the three. For the biomedical datasets, the correlation

coefficient values were -0.646, -0.655, and -0.689 for δ = 20%, 40%, and 60% respectively. For the

129

synthetic datasets, the coefficient values were -0.653, -0.685 and -0.696 for δ = 20%, 40%, and 60%

respectively. All of these represent a moderate negative correlation (categorised as described in

Section 3.4.3), indicating that when the percentage of positive instances is low, the average iteration

count value selected by GA-1 tends to be high, and vice versa. This supports the idea that the iteration

count parameter is handling class imbalance. If these results hold for the analyses later in this work,

this can help to provide general guidance on what the iteration count parameter should be set to for

a dataset with a given class distribution, when using the two-step framework.

The other hyperparameters listed in Table 4.20 offer no clear patterns or conclusions to be drawn,

and as such will not be discussed further.

4.4.2 The Hyperparameter Values Most Frequently Selected

by GA-2 (with Extended Search Space)

Tables 4.22 and 4.23 report the most frequently selected values of the hyperparameters of the

optimised PU learning algorithms returned by all runs of GA-2 on the biomedical datasets and the

synthetic datasets, respectively. Interestingly, these results for GA-2 differ from the results for GA-

1 in the previous section. That is, whilst GA-1 showed a clear preference for simple classifiers

(predominantly LDA and Gaussian NB) in Phase 1A and Phase 2, the story is somewhat more mixed

for GA-2. Phase 1A Classifier was most frequently Logistic regression for the synthetic datasets,

which is a relatively simple classifier; and Random forest for the biomedical datasets. As random

forest is an ensemble classifier, it cannot be said that it is simple. For Phase 1B Classifier, the most

frequently selected classifier for the biomedical datasets was SVM, and for the synthetic datasets was

random forest. Finally, for Phase 2 classifier, the most frequently selected classifier was Deep forest

for the biomedical datasets and Multilayer perceptron for the synthetic datasets. Deep forest and

Multilayer perceptron cannot be considered simple classifiers, perhaps implying that the reliable

negative sets created when utilising the spy method are somewhat more complex than those created

when utilising the base search space. However, the use of a complex classifier does not necessarily

imply complex data, given that a complex classifier may work effectively on a simple dataset, and

there were no criteria set for favouring computational simplicity when evaluating candidate solutions

during the GA-2’s search.

130

Table 4.22. Selection frequency of hyperparameter values by GA-2 for the biomedical datasets.

Hyperparameter Most selected

value

Selection

Freq. (%)

Baseline

Freq. (%)

Diff.

(%)

Phase 1A Iteration Count 1 26.67 10.00 16.67

Phase 1A RN Threshold 0.3 20.33 10.00 10.33

Phase 1A Classifier Random forest 12.67 5.56 7.11

Phase 1B Flag False 66.00 50.00 16.00

Phase 1 B RN Threshold 0.25 15.33 10.00 5.33

Phase 1B Classifier SVM 10.67 5.56 5.11

Spy rate 0.1 18.67 14.29 4.38

Spy tolerance 0.06 18.47 9.09 9.38

Spy flag FALSE 73.33 50.00 23.33

Phase 2 Classifier Deep forest 10.00 5.56 4.44

Table 4.23. Selection frequency of hyperparameter values by GA-2 for the synthetic datasets.

Hyperparameter Most selected

value

Selection

Freq. (%)

Baseline

Freq. (%)

Diff.

(%)

Phase 1A Iteration Count 4 24.33 10.00 14.33

Phase 1A RN Threshold 0.35 23.33 10.00 13.33

Phase 1A Classifier Logistic reg. 10.67 5.56 5.11

Phase 1B Flag FALSE 67.00 50.00 17.00

Phase 1 B RN Threshold 0.15 15.33 10.00 5.33

Phase 1B Classifier Random forest 11.33 5.56 5.77

Spy rate 0.3 18.00 14.29 3.71

Spy tolerance 0.05 13.94 9.09 4.85

Spy flag FALSE 79.33 50.00 29.33

Phase 2 Classifier MLP 15.67 5.56 10.11

The Phase_1B_Flag parameter has been set to False more frequently than it was for GA-1, 73.33%

for biomedical datasets and 67% for synthetic datasets. This may be due to a more accurate reliable

negative set being assembled in Phase 1A, through the use of the spy method. However, considering

the spy method, the Spy flag was set to False far more frequently than it was set to True, at 73.33%

for the biomedical and 79.33% for the synthetic datasets. This means that only 26.67% and 20.67%

of optimised candidate solutions did utilise the spy method. It is too early to draw conclusions about

the efficacy of including the spy-based methods in the search space, given that so far this thesis has

reported only the results of GA-Auto-PU. However, if this trend continues for other Auto-PU systems

(whose results will be reported in later chapters), it could indicate that the inclusion of spy-based

methods in the search space is not efficient, given that it increases the search space from 11,664,000

possible candidate solutions to 1,796,256,000 possible candidate solutions (see Section 3.2), thus

131

creating a much more complex search landscape and a higher computational cost of finding an

optimal solution.

As in the previous section, a more detailed analysis of the Phase_1A_Iteration_Count

hyperparameter’s optimisation is reported next. As with the previous section, there is a

predominantly moderate negative correlation between the iteration count and the percentage of

instances in the dataset that belong to the positive class, indicating that the hyperparameter is utilised

to handle class imbalance. GA-2 actually displays a strong correlation when δ = 60% for the

biomedical datasets, further supporting this hypothesis. For the biomedical datasets, the correlation

coefficient values are -0.631, -0.687, and -0.723 for δ = 20%, 40%, and 60% respectively. For the

synthetic datasets, the values are -0.689, -0.698, and -0.695 for δ = 20%, 40%, and 60% respectively.

The other parameters listed in Table 4.22 offer no clear patterns or conclusions to be drawn, and

as such will not be discussed further.

4.5 Summary

This Chapter has introduced GA-Auto-PU, a Genetic Algorithm-based Automated-Machine

Learning system for Positive-Unlabelled learning. We evaluated the predictive performance of two

versions of GA-Auto-PU, utilising two search spaces (distinguished by whether or not they allow for

the generation of spy-based PU learning methods). Each version of GA-Auto-PU was compared

firstly against an Auto-ML baseline (TPOT), and secondly against two baseline PU learning methods.

Whilst TPOT was built for standard classification rather than for PU learning, at the time of

proposing GA-Auto-PU, no other Auto-ML system for PU learning existed. As such, a direct

comparison could not be made. However, comparing GA-Auto-PU with TPOT has shown the

predictive performance that can be gained from utilising a PU learning system, rather than an Auto-

ML system for standard binary classification.

In general, the two versions of GA-Auto-PU (named GA-1 and GA-2) outperformed TPOT and

the two baseline PU learning methods with regard to F-measure with statistical significance. The

analysis of the algorithmic components most frequently selected by GA-Auto-PU showed a

preference for non-spy-based methods for both biomedical and synthetic datasets. This could indicate

that the spy-based method is an unnecessary or not cost-effective expansion of the search space,

132

considering that the inclusion of spy-based methods in the search space greatly increases the size of

that space. However, this conclusion may be premature, given the limited number of results reported

so far in this thesis. Therefore, this will be explored further in later chapters when more results are

available.

Overall, the performance of GA-1 and GA-2 across the datasets, and the varied selected values

for the algorithmic components discussed in Section 4.4, confirm the need for an Auto-ML system

such as GA-Auto-PU, which can configure and tune the hyper-parameters of a PU learning algorithm

in order to maximise predictive performance for a specific input dataset.

133

Chapter 5

A Bayesian Optimisation-based Auto-

ML System for Positive-Unlabelled

Learning (BO-Auto-PU)

In this chapter we introduce BO-Auto-PU, a Bayesian Optimisation (BO)-based Automated Machine

Learning (Auto-ML) system for Positive-Unlabelled (PU) learning. GA-Auto-PU, detailed in

Chapter 4, was the first Auto-ML system specific to PU learning, and showed statistically significant

improvements in predictive performance over two baseline PU learning methods and an Auto-ML

system for standard binary classification. However, the GA-Auto-PU system is computationally

expensive, with GA-1 averaging 226.3 minutes to run 5-fold cross-validation per dataset and GA-2

averaging 223.2 minutes to run 5-fold cross-validation per dataset.

BO is generally a much more computationally efficient procedure than a standard Genetic

Algorithm, given that it assesses most of the generated individuals (candidate solutions) with a fast

executed surrogate model as opposed to the slowly executed objective function (see Section 2.3 for

details of the BO procedure). As such, BO-Auto-PU has been developed in an attempt to reduce the

computational expense of GA-Auto-PU without sacrificing predictive performance. Therefore, there

are two primary research questions to explore in this chapter: firstly, whether BO-Auto-PU improves

on the performance of GA-Auto-PU in regard to computational efficiency, and secondly whether

BO-Auto-PU improves on the performance of GA-Auto-PU in regard to predictive performance.

134

These research questions will be addressed through the experiments and the discussion of their results

in this chapter, and these questions will be directly answered in Section 5.5 (Summary).

Whilst the question of improvement in predictive accuracy is generally considered to be the

primary concern of researchers when proposing a new machine learning method, the primary

contribution of BO-Auto-PU is the increase in computational efficiency. That is, a decrease in

runtime. One of the primary goals of Auto-ML is to allow the field of machine learning to be more

accessible for a wider array of researchers and practitioners (see Section 2.4). A system with a very

high computational runtime is not a generally accessible system to those with limited computational

resources. Thus, strides must be made to develop systems which can be utilised by all researchers

and practitioners, not just those with access to high powered resources. So, to restate, the primary

contribution of BO-Auto-PU is the improvement in computational efficiency. As repeated

throughout this work, PU learning is a growing field of machine learning. Whilst GA-Auto-PU

performed well with regard to predictive performance, it was computationally inefficient. In order

for the field of PU learning to continue growing, the systems that enable it must be accessible to all.

Thus, the motivation for the development of BO-Auto-PU.

The structure of this chapter is as follows: Section 5.1 gives a detailed description of the BO-

Auto-PU system, presenting the pseudocode and hyperparameters of the system. Section 5.2 outlines

the experimental setup, detailing the datasets used, the cross-validation procedure, and the statistical

significance tests. Section 5.3 presents the results comparing BO-Auto-PU against GA-Auto-PU,

before presenting the results comparing BO-Auto-PU with two baseline PU learning methods. Note

that BO-Auto-PU utilises the same two search spaces as GA-Auto-PU (both the base search space

and the extended search space with the Spy method); and the reporting and analyses of the

computational results in Section 5.3 will also be performed separately for each search space. Section

5.4 discusses the hyperparameter values of the optimised PU learning methods most frequently

selected by BO-Auto-PU, before Section 5.5 (Summary) concludes this chapter.

5.1 Description of BO-Auto-PU

As outlined in the Introduction of this chapter, BO-Auto-PU is a Bayesian Optimisation (BO)-based

Automated Machine Learning (Auto-ML) system specific to PU learning. This section describes the

135

pseudocodes detailing the procedure followed by the BO-Auto-PU system. Details of the individual

(candidate solution) encoding, as well the fitness (objective) function can be found in Chapter 3.

Recall that the reason why individual encoding and fitness function are discussed separately in

Chapter 3 (rather than in the current chapter) is because these Auto-ML system components are the

same for both GA-Auto-PU and BO-Auto-PU. A generic version of BO is discussed in detail in

Section 2.3.

5.1.1 The BO Procedure for PU learning

Procedure 5.1 outlines the procedure that the BO follows to evolve a PU learning algorithm. Initially,

#Configs PU learning algorithm configurations are randomly generated (step 1) and evaluated, with

their F-measures saved as Scores (step 2). The random generation procedure is the same as that

described for GA-Auto-PU in Chapter 4, but to reiterate briefly, the random generation of a candidate

solution involves, for each gene, randomly selecting a value from the list of candidate values of that

specific gene. E.g., for the hyperparameter Iteration_Count_1A, the options for the value of that

hyperparameter are 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10; and each of these values can be selected with equal

probability (10% in this case).

Procedure 5.1 Outline of the Bayesian optimization procedure for Positive-Unlabelled Learning

1. Configs = randomly generate #Configs PU learning configurations;

2. Scores = run objective function for all configurations in Configs; // see Procedures 3.1-3.4

3. Fit Surr_model with Configs as features, Scores as target;

4. 𝑖 = 0;

5. While 𝑖 < It_count:

a. New_configs = randomly generate #Configs configurations;

b. �̂� = calculate a surrogate score for each new config with Surr_model;

c. Best_config = config with highest surrogate score �̂�;

d. Score = run objective function for Best_config; // see Procedures 3.1-3.4

e. Add Best_config to Configs, add Score to Scores;

f. Retrain Surr_model on Configs and Scores;

g. 𝑖 += 1;

Output: Best configuration according to objective score;

A random forest regressor, Surr_model (surrogate model), is then trained, using Configs as predictive

features, and Scores as the target variable (step 3). Common choices for Surr_model are random

forest and Gaussian process regressor (see Sections 2.1 and 2.3). Preliminary experiments conducted

136

to compare utilisation of Gaussian process vs random forest showed that random forest produced the

best results for this use case, in addition to random forests being much faster than Gaussian process

in general, and as such random forest has been used to learn the surrogate models in BO-Auto-PU.

Configs are processed as follows for training Surr_model: for the base search space (without the

Spy method), the numeric components of each configuration (Threshold_1A, Iteration_Count_1A,

Threshold_1B) are treated as numeric features, the Boolean component (Flag_1B) is treated as a

binary feature, and the nominal components (Classifier_1A, Classifier_1B, Classifier_2) are one-hot

encoded, with a binary value for each potential value of the component, indicating whether or not

that value is used. The resulting instance for the regression algorithm (which will be used to learn

Surr_model) consists of 58 features. For the extended search space (with the Spy method), all the

previously mentioned components are treated as they are in the base search space. However, we also

have the additional Spy method’s components, with Spy_rate and Spy_tolerance treated as numeric

features, and the Boolean component “Spy_flag” treated as a binary feature – indicating whether or

not the Spy method is used. This results in an instance consisting of 61 features for the regression

algorithm. A truncated example of the dataset used as input for learning Surr_model is shown in

Figure 5.1.

Figure 5.1. Example input dataset for learning Surr_model in BO-Auto-PU with the base search

space.

Note that for Figure 5.1, the feature headings have been replaced with the values F1, F2, etc. to save

space. However, they are (in order) as follows:

F1 is Iteration_count_1A.

F2 is RN_threshold_1A.

F3...F20 represent the one-hot encoded values for Classifier_1A, namely: Gaussian naïve Bayes

(F3), Bernoulli naïve Bayes (F4), random forest (F5), etc, with the other 15 candidate classifiers

truncated as F6 … 20 to save space. For example, in the second row of the dataset shown in Figure

F1 F2 F3 F4 F5 F6 … 20 F21 F22 F23 F24 F25 … 39 F40 F41 F42 F43 F44 … 58 Score

6 0.3 1 0 0 … 0.15 1 0 0 … 0 0 0 0 … 0.545

2 0.45 0 0 1 … 0.25 0 1 0 … 1 0 1 0 … 0.632

2 0.5 0 0 0 … 0.5 1 0 0 … 0 0 0 0 … 0.123

2 0.2 0 0 0 … 0.35 0 0 0 … 0 1 0 0 … 0.958

2 0.15 0 1 0 … 0.1 0 0 1 … 1 0 0 0 … 0.342

137

5.1, the value F5 = 1 means that random forest was selected as the classifier for phase 1A in that

candidate configuration.

F21 is RN_threshold_1B.

F22…F39 represent the one-hot encoded values for Classifier_1B, namely: Gaussian naïve

Bayes (F22), Bernoulli naïve Bayes (F23), random forest (F24), etc.

F40 is Flag_1B with 1 representing a value of True and 0 representing a value of False.

F41…F58 represent the one-hot encoded values for Classifier_2, namely: Gaussian naïve Bayes

(F41), Bernoulli naïve Bayes (F42), random forest (F43), etc..

 The iteration index 𝑖 is set to 0 (step 4), and the while loop in step 5 is started, proceeding

It_count times. In each iteration of this loop, a new set of #Configs configurations, New_configs, are

randomly generated (step 5.a) and a surrogate score for each is calculated by Surr_model and saved

as �̂� (step 5.b). Note that this random population generation is the same procedure as the initial

random population generation in step 1 of Procedure 5.1 (which is also the same procedure used by

GA-Auto-PU to generate an initial population, as described in Chapter 4). That is, at each iteration,

a new population is created just as it was at the start of the execution of BO-Auto-PU.

The best configuration, Best_config, with the highest surrogate score �̂� is evaluated using the

objective function (steps 5.c,d), and added to Configs, with the objective Score (F-measure) added

to Scores (step 5.e). This is the key step in the Bayesian optimization procedure. The reason this

optimization procedure is so much more computationally efficient than a standard genetic algorithm

(GA) is that only a single candidate solution is evaluated by the computationally expensive objective

at each iteration; unlike a GA, which evaluates the whole population using the objective function.

Selection of the candidate solution to evaluate is performed by the acquisition function. There are

many varieties of acquisition function, with options such as Expected Improvement (EI) and

Probability of Improvement (see Section 2.3.2), as well as the simple approach of using the score

predicted by Surr_model. Preliminary experiments comparing this simple approach and EI showed

that the simple approach of selecting the candidate solution with the best score predicted by

Surr_model gave the best results. That is, the predictive performance of this simple approach was

higher than when EI was used. Hence, this approach has been taken for BO-Auto-PU.

138

Surr_model is then retrained with Best_config added to Configs (step 5.f). That is, Surr_model is

updated to include the new candidate solution that was selected from the population, thus updating

Surr_model’s knowledge of the search space. This increases the size of Configs by 1 at each iteration,

providing more information to Surr_model. The iteration index 𝑖 is incremented by 1 (step 5.g). This

process (steps 5.a-g) is repeated It_count times. Finally, the best configuration, according to the

objective score (F-measure), is returned. Note that it is the objective score, not the surrogate score,

that determines the best candidate solution to be returned. The surrogate score is an estimation that

can be computed relatively fast, whereas the objective score, which is takes much longer to be

computed, is the predictive performance measure that the system really has to optimise. Therefore,

the best candidate solution is selected from the population of candidate solutions for which the

objective score has been calculated, to return an accurate best candidate solution. Best, that is, relative

to the population.

The objective function cited in steps 2 and 5.d is defined in Section 3.2.3.

5.1.2 The BO’s Hyperparameters

Table 5.1 shows the hyperparameter settings of the BO underlying BO-Auto-PU. The It_count

parameter determines the number of iterations to perform the optimisation. #Configs determines the

number of individuals in the population. Surr_model is the surrogate model used to calculate the

surrogate score. The acquisition function is the method for selecting which candidate solution to

assess with the objective function. For this, we simply use the predicted value from Surr_model. In

preliminary experiments, we varied the acquisition function to use the Expected Improvement (EI)

algorithm (see Section 2.3) but found that just using Surr_model predicted value gave better results.

Table 5.1. Hyperparameters of the BO-Auto-PU system, with their default values.

Hyperparameter Value

It_count 50

#Configs 101

Surr_model Random Forest Regressor

Acquisition function Surr_model predicted value

The It_count and #Configs parameters were set to match the #generations and Pop_size parameters

for GA-Auto-PU (see Section 4.1.2), in order to perform a controlled comparison between BO-Auto-

PU and GA-Auto-PU in the experiments reported later in this chapter.

139

5.1.3 Computational Efficiency

In both the GA-based and the BO-based Auto-ML systems for PU learning, the running time is by

far dominated by the time to evaluate the candidate solutions along the iterations of the search, i.e.,

the time to learn a PU model on part of the training set and evaluate the learned model’s F-measure

on the remaining part of the training set, for each candidate PU learning method. GA and the BO-

based methods perform the same number of iterations (50) in our experiments. However, in each

generation (iteration) of GA-Auto-PU the GA must learn and evaluate 𝑛 PU models, where 𝑛 is the

number of individuals (candidate solutions) in the population, whilst each iteration of BO-Auto-PU

needs to learn and evaluate a single PU model. Learning a PU model can be very computationally

expensive, depending not only on the size of the dataset but also on the time complexity of the 3

classification algorithms chosen for Phases 1A, 1B and 2 of the 2-step method, and the number of

iterations the classifier is applied in Phase 1A.

GA-Auto-PU and BO-Auto-PU also must perform other steps for generating candidate solutions

to be evaluated, but these take in general much less time than the time to evaluate candidate solutions

using the objective function (F-measure) as described above. More precisely, at each iteration the

GA must perform tournament selection, crossover and mutation, but these are all simple operations,

which are much faster than computing the fitness function (learning a PU model for each individual).

Unlike the GA, at each iteration BO learns a surrogate model, but again, the time for this is much

shorter than the time taken to learn a PU model in each iteration of BO. This is because the surrogate

model is learned by a relatively fast random forest algorithm using a small dataset of PU algorithm

configurations, whilst learning a PU model involves running multiple classifiers (one of them for

several iterations in Phase 1A), each classifier can be much slower than a random forest. In addition,

each classifier is learned using the training data of the current dataset, which is typically much larger

in number of instances than the small dataset of PU method configurations. Regarding the number

of features, the training set for learning a PU model has in general more features than the training set

for learning the surrogate model in the case of the synthetic datasets; whilst the converse is true in

the case of the biomedical datasets – but even for this latter group of datasets, the overall time taken

to learn a surrogate model is still much faster than the time to learn a PU model, making BO-Auto-

PU much faster than GA-Auto-PU, as will be reported later in this thesis.

140

5.2 Experimental Setup

The experimental procedure is explained in detail in Chapter 3. However, to briefly recap, two types

of datasets are used in these experiments (biomedical and synthetic), each with 3 versions (varying

the % of positive instances hidden in the unlabelled set), thus creating 120 datasets total.

A nested cross-validation procedure is used, with a simple 5-fold cross-validation procedure as

the external layer. The internal layer splits the training set into 5 learning and validation sets, which

is used to evaluate the candidate solutions.

To compare the performance of the methods, we use the Wilcoxon signed rank test [202], with

Holm correction for testing multiple hypotheses [203].

5.2.1 Structure of the Results’ Sections

In the next sections, we present experimental results comparing the BO-Auto-PU system with both

search spaces (without and with the Spy method). Firstly, BO-Auto-PU is compared against GA-

Auto-PU. Secondly, BO-Auto-PU is compared against the two PU learning baselines. Experiments

were conducted on both the real-world biomedical datasets and the synthetic datasets, for three values

of 𝛿 (the percentage of positives hidden in the unlabelled set): 20%, 40%, and 60%. Each section

will report the F-measure results in full and will provide a summary of the precision and recall results.

The full precision and recall results can be found in the Appendix.

For the sake of brevity, the BO-Auto-PU and the GA-Auto-PU systems utilising the base search

space (without the Spy method) will be referred to as BO-1 and GA-1 respectively, whilst the systems

using the extended search space will be referred to as BO-2 and GA-2 respectively.

5.3 Results for BO-Auto-PU

5.3.1 Results comparing BO-Auto-PU with GA-Auto-PU

In this section, results for BO-Auto-PU are given and compared to GA-Auto-PU, beginning with a

comparison of BO-1 and GA-1 (using the base search space) on the biomedical datasets, as shown

in Table 5.2.

141

Table 5.2. F-measure results of BO-1 and GA-1 on real-world biomedical datasets.

Dataset

δ = 20% δ = 40% δ = 60%

GA-1 BO-1 GA-1 BO-1 GA-1 BO-1

Alzheimer’s 0.529 0.615 0.551 0.600 0.456 0.436

Autism 0.960 0.967 0.927 0.956 0.910 0.863

Breast cancer Coi. 0.705 0.694 0.687 0.701 0.510 0.586

Breast cancer Wis. 0.954 0.949 0.932 0.969 0.906 0.895

Breast cancer mut. 0.893 0.893 0.868 0.873 0.854 0.841

Cervical cancer 0.828 0.839 0.903 0.903 0.714 0.645

Cirrhosis 0.573 0.545 0.464 0.529 0.443 0.489

Dermatology 0.860 0.872 0.780 0.905 0.828 0.725

PI Diabetes 0.677 0.647 0.649 0.645 0.606 0.594

ES Diabetes 0.958 0.983 0.895 0.877 0.930 0.902

Heart Disease 0.843 0.844 0.801 0.830 0.785 0.777

Heart Failure 0.770 0.753 0.652 0.605 0.674 0.704

Hepatitis C 0.953 0.907 0.771 0.838 0.588 0.708

Kidney Disease 0.976 0.988 0.988 0.964 0.754 0.806

Liver Disease 0.834 0.820 0.803 0.817 0.804 0.795

Maternal Risk 0.476 0.837 0.812 0.780 0.735 0.689

Parkinsons 0.860 0.935 0.836 0.875 0.818 0.732

Parkinsons Biom. 0.476 0.167 0.265 0.192 0.233 0.182

Spine 0.652 0.954 0.907 0.926 0.818 0.742

Stroke 0.474 0.244 0.255 0.153 0.255 0.208

Table 5.3 summarises the statistical significance of the F-measure results from Table 5.2 (for

biomedical datasets), as well as the results for precision and recall. In Table 5.3, for each combination

of a performance measure (F-measure, precision, recall) and a δ value (δ= 20%, 40%, 60%), the table

reports the average (Avg.) rank of BO-1 vs GA-1 (BO-1 is the left rank, GA-1 is the right one) and

the corresponding p-value. The better (lower) avg. rank in each cell is shown in boldface. For

example, in the cell for F-measure, δ = 20%, the average rank for BO-1 is 1.48 and for GA-1 is 1.52.

Hence, BO-1 was the winner, but the p-value (0.952) was greater than the significance level α (0.05),

so this result was not statistically significant. The following discussion of results will focus mainly

on the F-measure, the most important measure in Table 5.3, whilst precision and recall results are

reported for completeness.

The results in Table 5.3 show BO-1 performing best in general for δ=20% and 40%, whilst GA-

1 performs best for δ=60%. Perhaps, given that PU learning when δ=60% is a harder task than δ=20%

and 40% due to the limited labelled data, a more diverse population is beneficial to find more

complex solutions. GA-1 naturally introduces diversity through its population of candidate solutions

and its evolutionary operations, and thus may be more adept for a more complex PU learning task

associated with a larger δ value. However, no results in Table 5.3 were statistically significant.

142

Table 5.3. Results of Wilcoxon signed-rank tests when comparing BO-1 against GA-1 regarding F-

measure, Precision and Recall, for the 3 δ values on the biomedical datasets.

δ (%) F-measure Precision Recall

Avg. ranks p-value Avg. ranks p-value Avg. ranks p-value

20% 1.48 vs 1.52 0.952 1.45 vs 1.55 0.983 1.6 vs 1.4 0.114

40% 1.38 vs 1.62 0.334 1.45 vs 1.55 0.601 1.42 vs 1.58 0.398

60% 1.75 vs 1.25 0.177 1.52 vs 1.48 0.513 1.75 vs 1.25 0.064

The results comparing BO-2 and GA-2 (using the extended search space) on the biomedical datasets

are given in Table 5.4.

Table 5.4. F-measure results of BO-2 and GA-2 on real-world biomedical datasets.

Dataset

δ = 20% δ = 40% δ = 60%

BO-2 GA-2 BO-2 GA-2 BO-2 GA-2

Alzheimer’s 0.580 0.548 0.603 0.576 0.492 0.529

Autism 0.963 0.982 0.937 0.940 0.914 0.927

Breast cancer Coi. 0.667 0.711 0.618 0.671 0.000 0.553

Breast cancer Wis. 0.959 0.956 0.942 0.936 0.889 0.866

Breast cancer mut. 0.890 0.896 0.853 0.739 0.845 0.872

Cervical cancer 0.867 0.867 0.867 0.839 0.839 0.350

Cirrhosis 0.497 0.446 0.515 0.397 0.472 0.204

Dermatology 0.876 0.901 0.841 0.896 0.795 0.692

PI Diabetes 0.653 0.642 0.648 0.646 0.615 0.634

ES Diabetes 0.954 0.978 0.891 0.887 0.912 0.894

Heart Disease 0.844 0.836 0.817 0.780 0.805 0.786

Heart Failure 0.757 0.751 0.652 0.670 0.600 0.671

Hepatitis C 0.964 0.944 0.761 0.863 0.612 0.610

Kidney Disease 0.976 0.925 0.976 0.951 0.789 0.806

Liver Disease 0.822 0.831 0.815 0.817 0.722 0.748

Maternal Risk 0.847 0.862 0.786 0.813 0.729 0.738

Parkinsons 0.936 0.935 0.837 0.843 0.800 0.792

Parkinsons Biom. 0.286 0.282 0.000 0.259 0.000 0.280

Spine 0.941 0.923 0.936 0.917 0.700 0.761

Stroke 0.256 0.241 0.255 0.239 0.233 0.243

Table 5.5 details the statistical significance of the F-measure results shown in Table 5.4 and

summarises the results for precision and recall. These results show BO-2 and GA-2 performing very

similarly, with not more than a difference of 0.2 in any of the rankings and no statistically significant

differences in performance observed.

Table 5.5. Results of Wilcoxon signed-rank tests when comparing BO-2 against GA-2 regarding F-

measure, Precision and Recall, for the 3 δ values on the biomedical datasets.

δ (%) F-measure Precision Recall

Avg. ranks p-value Avg. ranks p-value Avg. ranks p-value

20% 1.5 vs 1.5 0.514 1.48 vs 1.52 0.394 1.35 vs 1.65 0.760

40% 1.45 vs 1.55 0.729 1.48 vs 1.52 0.387 1.62 vs 1.38 0.519

60% 1.6 vs 1.4 0.388 1.58 vs 1.42 0.387 1.55 vs 1.45 0.784

143

Looking now to a comparison of the systems on the synthetic datasets, Table 5.6 shows the results

comparing BO-1 and GA-1.

Table 5.6. F-measure results of BO-1 and GA-1 on synthetic datasets.

Dataset

δ = 20% δ = 40% δ = 60%

GA-1 BO-1 GA-1 BO-1 GA-1 BO-1

1 0.661 0.663 0.718 0.619 0.603 0.554

2 0.136 0.128 0.044 0.046 0.065 0.061

3 0.788 0.761 0.693 0.671 0.637 0.555

4 0.831 0.811 0.818 0.785 0.674 0.627

5 0.618 0.651 0.616 0.496 0.609 0.514

6 0.759 0.763 0.769 0.676 0.684 0.600

7 0.520 0.598 0.515 0.478 0.478 0.465

8 0.525 0.512 0.477 0.473 0.381 0.391

9 0.111 0.043 0.080 0.051 0.146 0.087

10 0.903 0.918 0.872 0.868 0.742 0.756

11 0.604 0.568 0.567 0.575 0.531 0.531

12 0.674 0.671 0.666 0.683 0.609 0.574

13 0.644 0.662 0.623 0.603 0.516 0.511

14 0.975 0.978 0.962 0.969 0.925 0.900

15 0.601 0.635 0.593 0.588 0.519 0.493

16 0.477 0.432 0.388 0.333 0.301 0.282

17 0.347 0.389 0.496 0.302 0.412 0.218

18 0.559 0.502 0.389 0.436 0.326 0.245

19 0.472 0.423 0.468 0.426 0.381 0.406

20 0.705 0.696 0.692 0.670 0.625 0.622

Table 5.7 summarises the statistical significance of the results from Table 5.6 (for synthetic datasets),

as well as the results for precision and recall. Table 5.7 is structured in the same manner as Table

5.3. The results from Table 5.7 rather conclusively show GA-1 outperforming BO-1, overall. Whilst

BO-1 performs best for precision across all values of δ, GA-1 performs best for both F-measure and

recall across all values of δ, with statistical significance in 5 of the 6 cases (the significant p-values

are shown in boldface in the table).

Table 5.7. Results of Wilcoxon signed-rank tests when comparing BO-1 against GA-1 regarding F-measure,

Precision and Recall, for the 3 δ values on the synthetic datasets.

δ (%) F-measure Precision Recall

Avg. ranks p-value Avg. ranks p-value Avg. ranks p-value

20% 1.55 vs 1.45 0.475 1.45 vs 1.55 0.216 1.65 vs 1.35 0.009

40% 1.75 vs 1.25 0.006 1.2 vs 1.8 0.007 1.75 vs 1.25 0.007

60% 1.8 vs 1.2 0.001 1.3 vs 1.7 0.058 1.85 vs 1.15 0.002

Next, Table 5.8 details the performance of BO-2 and GA-2 on the synthetic datasets and Table 5.9

summarises the statistical significance test results. These results differ from the results of Table 5.5,

detailing the results of BO-2 and GA-2 applied to the biomedical datasets, with GA-2 largely

144

outperforming BO-2 for F-measure and recall on the synthetic datasets. The results for precision are

more favourable for BO-2, performing best in 2/3 cases and achieving statistical significance in 1.

Table 5.8. F-measure results of BO-2 and GA-2 on synthetic datasets.

Dataset

δ = 20% δ = 40% δ = 60%

BO-2 GA-2 BO-2 GA-2 BO-2 GA-2

1 0.649 0.640 0.586 0.709 0.578 0.545

2 0.203 0.176 0.022 0.105 0.094 0.111

3 0.770 0.759 0.676 0.702 0.537 0.612

4 0.831 0.824 0.795 0.809 0.622 0.692

5 0.603 0.612 0.614 0.571 0.499 0.559

6 0.746 0.762 0.672 0.751 0.652 0.672

7 0.495 0.528 0.456 0.496 0.416 0.448

8 0.531 0.571 0.480 0.484 0.341 0.390

9 0.019 0.098 0.039 0.000 0.105 0.143

10 0.900 0.896 0.854 0.850 0.756 0.716

11 0.573 0.574 0.554 0.579 0.474 0.525

12 0.713 0.681 0.647 0.692 0.586 0.599

13 0.667 0.648 0.578 0.612 0.533 0.576

14 0.974 0.977 0.948 0.966 0.908 0.934

15 0.589 0.595 0.545 0.575 0.415 0.565

16 0.507 0.431 0.298 0.402 0.320 0.299

17 0.289 0.384 0.304 0.470 0.070 0.382

18 0.529 0.576 0.459 0.408 0.297 0.373

19 0.444 0.462 0.405 0.483 0.361 0.385

20 0.710 0.701 0.632 0.664 0.554 0.594

Table 5.9. Results of Wilcoxon signed-rank tests when comparing BO-2 against GA-2 regarding F-measure,

Precision and Recall, for the 3 δ values on the synthetic datasets.

δ (%) F-measure Precision Recall

Avg. ranks p-value Avg. ranks p-value Avg. ranks p-value

20% 1.65 vs 1.35 0.08 1.2 vs 1.8 0.001 1.95 vs 1.05 0.00003

40% 1.85 vs 1.15 0.002 1.5 vs 1.5 0.812 1.75 vs 1.25 0.002

60% 1.85 vs 1.15 0.001 1.25 vs 1.75 0.177 1.85 vs 1.15 0.0001

Figure 5.2. Average F-measure results comparison for BO-1, BO-2, GA-1, GA-2, DF-PU and

S-EM, across the three values of δ for the biomedical datasets.

0.000 0.200 0.400 0.600 0.800 1.000

S-EM

DF-PU

BO-2

BO-1

GA-2

GA-1

δ = 20% δ = 40% δ = 60%

145

Figure 5.2 shows graphically how the average F-measure of each of the Auto-PU systems and the

baseline methods changes over the different values of δ for the biomedical datasets. In order to reduce

the number of figures across this chapter, this figure shows the results for all Auto-PU systems (BO-

1, BO-2, GA-1, GA-2) and all baseline PU learning methods (DF-PU and S-EM) investigated in this

chapter, but in this current part of the text the analysis is focussed on the results for BO-1, BO-2,

GA-1, and GA-2 only – the results for DF-PU and S-EM were discussed in Chapter 4. Note that the

charted data for GA-1, GA-2, DF-PU, and S-EM were also shown in Chapter, 4 but have been

included here for the reader’s reference.

As with the results for GA-1 and GA-2, discussed in Section 4.3, the performance of BO-1 and

BO-2 does also decline monotonically with the increase in the value of δ. The decline for δ=60% for

BO-1 and BO-2 is sharper than that of GA-1, which was reflected in the results shown in Tables 5.2

and 5.4.

Figure 5.3. Average F-measure results comparison for BO-1, BO-2, GA-1, GA-2, DF-PU and S-

EM, across the three values of δ for the synthetic datasets.

Figure 5.3 shows graphically how the average F-measure of each of the systems changes over the

different values of δ, for the synthetic datasets. It is evident that GA-1 performs better across the

values of δ, given the overall lower average value of F-measure for BO-1 and BO-2 and the sharper

decline in performance as δ increases.

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700

S-EM

DF-PU

BO-2

BO-1

GA-2

GA-1

δ = 20% δ = 40% δ = 60%

146

Table 5.10. Linear (Pearson’s) correlation coefficient value between the F-measure and the percentage of

positive examples in the original dataset (before hiding some positive examples in the unlabelled set) for each

combination of a method and a δ value, for the biomedical datasets, for all methods.

Method δ = 20% δ = 40% δ = 60%

BO-1 0.398 0.360 0.498

BO-2 0.339 0.348 0.225

GA-1 0.333 0.385 0.504

GA-2 0.340 0.357 0.580

DF-PU 0.988 0.988 0.988

S-EM 0.646 0.558 0.652

In order to further analyse the results, Table 5.10 shows the values of Pearson’s linear correlation

coefficient between the F-measure values achieved by BO-1, BO-2, GA-1, GA-2, DF-PU, and S-EM

and percentages of positive examples in the original dataset, for each δ value, for the biomedical

datasets. Again, in order to reduce the number of tables across this chapter, the results for all the

aforementioned systems or methods are reported in Table 5.10, but in this current part of the text the

analysis is focused on the results for BO-1, BO-2, GA-1 and GA-2 – the results for the baseline

methods were discussed in Chapter 4.

Table 5.10 shows the same trends of positive correlations as Figure 5.2. For δ=20% and 40%,

BO-1 and BO-2 exhibit a weak correlation between percentage of positive instances and F-measure,

whilst for δ=60% the correlation is moderate, with correlation categorisation defined as outlined in

Section 3.4.3. These correlation values are reflective of the results for GA-1 and GA-2, which follow

a similar trend.

Table 5.11. Linear (Pearson’s) correlation coefficient value between the F-measure and the percentage of

positive examples in the original dataset (before hiding some positive examples in the unlabelled set) for each

combination of a method and a δ value, for the synthetic datasets, for all methods.

Method δ = 20% δ = 40% δ = 60%

BO-1 0.682 0.710 0.700

BO-2 0.706 0.695 0.659

GA-1 0.712 0.682 0.687

GA-2 0.700 0.702 0.696

DF-PU 0.990 0.990 0.990

S-EM 0.794 0.793 0.776

Table 5.11 shows the values of Pearson’s linear correlation coefficient between the F-measure values

achieved by BO-1, BO-2, GA-1, GA-2, DF-PU, and S-EM and the percentages of positive examples

in the original dataset, for each δ value for the synthetic datasets. Comparing the BO-1 and BO-2

results in Tables 5.10 and 5.11, the correlation between percentage of positive instances and F-

measure for both is substantially higher for the synthetic datasets than it was for the biomedical

147

datasets. (A similar trend was also observed for GA-1 and GA-2 in Chapter 4.) For δ=20%, the

correlation for BO-1 was moderate in Table 5.7. However, for δ=40% and 60%, BO-1 displayed a

high correlation. This was the opposite of GA-1 and BO-2, which displayed high correlations for

δ=20% and moderate correlations for δ=40% and 60%. GA-2 displayed high correlations for δ=20%

and 40%. However, the real differences in the correlation values were very small.

Considering the overall results in this section, it is hard to draw a clear conclusion regarding the

best system. Regarding predictive performance, the results are somewhat in favour of GA-1. GA-1

was outperformed by BO-1 by most of the results shown in Table 5.3, but without statistical

significance. Whereas GA-1 performed best by the results shown in Table 5.8 with statistical

significance. Comparing BO-2 and GA-2, the results in Table 5.5 show very similar performance

between the two systems, whilst the results in Table 5.9 show GA-2 largely outperforming BO-2,

with statistical significance in many cases. However, the BO-Auto-PU systems offer a key advantage

over GA-Auto-PU in regard to computational runtime. GA-1 took 226.3 minutes on average to run

a 5-fold cross-validation procedure per dataset, averaged over the two types of dataset, whilst BO-1

took only 8.4 minutes. GA-2 took 223.2 minutes on average whilst BO-2 took 9.8 minutes. The

learning curves of the systems are reported in Section 6.5. Thus, BO-Auto-PU performed

approximately 23-27 times faster than GA-Auto-PU. It is important to note that one of the primary

aims of Auto-ML is to make machine learning more accessible to users or data analysis without

expertise on machine learning. GA-Auto-PU makes machine learning more accessible by removing

the need for trial-and-error approaches to PU learning parameter tuning. However, it falls short in

that the computational expense needed may make the system impractical for some users or data

analysts. This is the primary contribution of BO-Auto-PU; BO-Auto-PU still achieves high predictive

performance, but at a much lower computational expense than GA-Auto-PU, thus making it more

accessible.

5.3.2 Results comparing BO-Auto-PU with two baseline PU

learning methods

This section details the results achieved by BO-Auto-PU and two baseline PU learning methods (DF-

PU and S-EM, see Section 2.5) when applied to 20 real-world biomedical datasets and 20 synthetic

148

datasets. Note that the results in the BO-1 and BO-2 columns in the tables of results reported in this

section are the same as those reported in the previous section, but they are repeated in this section

for the reader’s convenience.

Table 5.12. F-measure results of BO-1 and baseline PU learning methods on real-world biomedical datasets.

Dataset

δ = 20% δ = 40% δ = 60%

BO-1 DF-PU S-EM BO-1 DF-PU S-EM BO-1 DF-PU S-EM

Alzheimer’s 0.615 0.195 0.321 0.600 0.194 0.370 0.436 0.171 0.373

Autism 0.967 0.648 0.820 0.956 0.648 0.841 0.863 0.645 0.835

Breast cancer Coi. 0.694 0.697 0.711 0.701 0.711 0.704 0.586 0.697 0.699

Breast cancer Wis. 0.949 0.543 0.898 0.969 0.543 0.903 0.895 0.539 0.904

Breast cancer mut. 0.893 0.489 0.892 0.873 0.489 0.893 0.841 0.485 0.892

Cervical cancer 0.839 0.061 0.054 0.903 0.042 0.053 0.645 0.044 0.046

Cirrhosis 0.545 0.405 0.436 0.529 0.401 0.442 0.489 0.405 0.459

Dermatology 0.872 0.228 0.718 0.905 0.229 0.718 0.725 0.219 0.719

PI Diabetes 0.647 0.516 0.534 0.645 0.516 0.525 0.594 0.515 0.544

ES Diabetes 0.983 0.762 0.792 0.877 0.756 0.859 0.902 0.759 0.793

Heart Disease 0.844 0.705 0.811 0.830 0.705 0.828 0.777 0.702 0.829

Heart Failure 0.753 0.487 0.529 0.605 0.486 0.508 0.704 0.481 0.557

Hepatitis C 0.907 0.176 0.695 0.838 0.171 0.708 0.708 0.160 0.609

Kidney Disease 0.988 0.428 1.000 0.964 0.428 1.000 0.806 0.428 0.951

Liver Disease 0.820 0.834 0.816 0.817 0.832 0.587 0.795 0.834 0.788

Maternal Risk 0.837 0.403 0.454 0.780 0.395 0.433 0.689 0.390 0.438

Parkinsons 0.935 0.856 0.815 0.875 0.860 0.748 0.732 0.860 0.762

Parkinsons Biom. 0.167 0.354 0.333 0.192 0.354 0.261 0.182 0.367 0.331

Spine 0.954 0.652 0.820 0.926 0.652 0.839 0.742 0.652 0.830

Stroke 0.244 0.086 0.102 0.153 0.094 0.102 0.208 0.094 0.102

Table 5.13. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis when

comparing BO-1 against S-EM and DF-PU regarding F-measure, Precision and Recall, for the 3 δ values for

the biomedical datasets.

δ

(%)

Methods

compared

F-measure Precision Recall

Avg.

ranks

p-value α Avg.

ranks

p-value α Avg.

ranks

p-value α

20% BO-1 vs DF-

PU

1.15 vs

1.85

0.0001 0.025 1.05 vs

1.95

0.00001 0.025 2.0 vs

1.0

0.000002 0.025

BO-1 vs S-

EM

1.15 vs

1.85

0.0009 0.05 1.12 vs

1.88

0.0005 0.05 1.7 vs

1.3

0.0266 0.05

40% BO-1 vs DF-

PU

1.15 vs

1.85

0.0002 0.025 1.0 vs 2.0 0.000002 0.025 1.98 vs

1.02

0.0001 0.025

BO-1 vs S-

EM

1.2 vs

1.8

0.0006 0.05 1.08 vs

1.92

0.0003 0.05 1.75 vs

1.25

0.021 0.05

60% BO-1 vs DF-

PU

1.2 vs

1.8

0.002 0.025 1.05 vs

1.95

0.000004 0.025 2.0 vs

1.0

0.000002 0.025

BO-1 vs S-

EM

1.4 vs

1.6

0.498 0.05 1.12 vs

1.88

0.0002 0.05 1.98 vs

1.02

0.0001 0.05

Table 5.13 summarises the statistical significance of the F-measure results from Table 5.12, as well

as the results for precision and recall. In Table 5.13, for each combination of a performance measure

(F-measure, precision, recall) and a δ value (δ= 20%, 40%, 60%), the table reports the average (Avg.)

rank of BO-1 vs a baseline method (BO-1 is the left rank, the baseline is the right one), as well as the

corresponding p-value and adjusted α value (significance level). The better (lower) avg. rank in each

149

cell is shown in boldface; and significant p-values (smaller than the adjusted α) are also shown in

boldface. The following discussion of results will focus mainly on the F-measure, the most important

measure in Table 5.13, whilst precision and recall results are reported for completeness.

Table 5.13 shows BO-1 largely outperforming DF-PU and S-EM across all values of δ for F-

measure and precision with statistical significance in 11 out of 12 cases. As was the case for GA-1,

the baseline methods substantially outperform BO-1 for recall, with statistical significance in all 6

cases. However, the reasons for this are the same as those outlined in Section 4.3, namely that the

baseline methods massively overpredict the positive class, thus resulting in high recall but low

precision.

Next, Table 5.14 reports the results of BO-2 against the baseline methods on the biomedical

datasets and Table 5.15 summarises the statistical significance test results. As has been the case with

the previously discussed methods, BO-2 largely outperforms the baselines for F-measure and

precision across all values of δ, with statistical significance in 11 out of 12 cases. As has been

previously discussed, the baseline methods overpredict the positive class, achieving significantly

higher recall than BO-2 in all 6 cases, but at a substantial loss to precision.

Table 5.14. F-measure results of BO-2 and two baseline PU learning methods on real-world biomedical

datasets.

Dataset

δ = 20% δ = 40% δ = 60%

BO-2 DF-PU S-EM BO-2 DF-PU S-EM BO-2 DF-PU S-EM

Alzheimer’s 0.580 0.195 0.321 0.603 0.194 0.370 0.492 0.171 0.373

Autism 0.963 0.648 0.820 0.937 0.648 0.841 0.914 0.645 0.835

Breast cancer Coi. 0.667 0.697 0.711 0.618 0.711 0.704 0.000 0.697 0.699

Breast cancer Wis. 0.959 0.543 0.898 0.942 0.543 0.903 0.889 0.539 0.904

Breast cancer mut. 0.890 0.489 0.892 0.853 0.489 0.893 0.845 0.485 0.892

Cervical cancer 0.867 0.061 0.054 0.867 0.042 0.053 0.839 0.044 0.046

Cirrhosis 0.497 0.405 0.436 0.515 0.401 0.442 0.472 0.405 0.459

Dermatology 0.876 0.228 0.718 0.841 0.229 0.718 0.795 0.219 0.719

PI Diabetes 0.653 0.516 0.534 0.648 0.516 0.525 0.615 0.515 0.544

ES Diabetes 0.954 0.762 0.792 0.891 0.756 0.859 0.912 0.759 0.793

Heart Disease 0.844 0.705 0.811 0.817 0.705 0.828 0.805 0.702 0.829

Heart Failure 0.757 0.487 0.529 0.652 0.486 0.508 0.600 0.481 0.557

Hepatitis C 0.964 0.176 0.695 0.761 0.171 0.708 0.612 0.160 0.609

Kidney Disease 0.976 0.428 1.000 0.976 0.428 1.000 0.789 0.428 0.951

Liver Disease 0.822 0.834 0.816 0.815 0.832 0.587 0.722 0.834 0.788

Maternal Risk 0.847 0.403 0.454 0.786 0.395 0.433 0.729 0.390 0.438

Parkinsons 0.936 0.856 0.815 0.837 0.860 0.748 0.800 0.860 0.762

Parkinsons Biom. 0.286 0.354 0.333 0.000 0.354 0.261 0.000 0.367 0.331

Spine 0.941 0.652 0.820 0.936 0.652 0.839 0.700 0.652 0.830

Stroke 0.256 0.086 0.102 0.255 0.094 0.102 0.233 0.094 0.102

150

Table 5.15. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis when

comparing BO-2 against S-EM and DF-PU regarding F-measure, Precision and Recall, for the 3 δ values for

the biomedical datasets.

δ

(%)

Methods

compared

F-measure Precision Recall

Avg.

ranks

p-

value

α Avg.

ranks

p-value α Avg.

ranks

p-value α

20% BO-2 vs

DF-PU

1.1 vs

1.9

0.000

2

0.025 1.0 vs

2.0

0.000002 0.025 2.0 vs

1.0

0.000002 0.025

BO-2 vs

S-EM

1.15 vs

1.85

0.001 0.05 1.08 vs

1.92

0.0001 0.05 1.75 vs

1.25

0.024 0.05

40% BO-2 vs

DF-PU

1.2 vs

1.8

0.001 0.025 1.05 vs

1.95

0.00004 0.025 2.0 vs

1.0

0.000002 0.025

BO-2 vs

S-EM

1.25 vs

1.75

0.006 0.05 1.12 vs

1.88

0.001 0.05 1.8 vs

1.2

0.006 0.05

60% BO-2 vs

DF-PU

1.2 vs

1.8

0.019 0.025 1.1 vs

1.9

0.0004 0.025 1.95 vs

1.05

0.000004 0.025

BO-2 vs

S-EM

1.4 vs

1.6

0.571 0.05 1.12 vs

1.88

0.0006 0.05 1.85 vs

1.15

0.0001 0.5

Moving on to the synthetic datasets, Table 5.16 details the results comparing BO-1 vs the baseline

methods and Table 5.17 summarises the statistical significance tests. Table 5.16 shows BO-1 largely

outperforming DF-PU and S-EM across all values of δ for F-measure and precision, with statistical

significance in 11 out of 12 cases. As was the case for GA-1, the baseline methods substantially

outperform BO-1 for recall, with statistical significance in all 6 cases. However, the reasons for this

are the same as those outlined in Section 4.3, namely that the baseline methods massively overpredict

the positive class, thus resulting in high recall but low precision.

Table 5.16. F-measure results of BO-1 and baseline PU learning methods on synthetic datasets.

Dataset

δ = 20% δ = 40% δ = 60%

BO-1 DF-PU S-EM BO-1 DF-PU S-EM BO-1 DF-PU S-EM

1 0.663 0.484 0.616 0.619 0.484 0.602 0.554 0.483 0.613

2 0.128 0.125 0.194 0.046 0.120 0.130 0.061 0.112 0.120

3 0.761 0.552 0.589 0.671 0.552 0.587 0.555 0.552 0.600

4 0.811 0.454 0.644 0.785 0.416 0.633 0.627 0.417 0.630

5 0.651 0.357 0.402 0.496 0.356 0.436 0.514 0.357 0.465

6 0.763 0.403 0.477 0.676 0.402 0.525 0.600 0.402 0.582

7 0.598 0.285 0.433 0.478 0.283 0.462 0.465 0.282 0.451

8 0.512 0.326 0.468 0.473 0.326 0.457 0.391 0.326 0.439

9 0.043 0.035 0.099 0.051 0.000 0.044 0.087 0.000 0.120

10 0.918 0.233 0.612 0.868 0.234 0.627 0.756 0.233 0.663

11 0.568 0.491 0.505 0.575 0.491 0.520 0.531 0.490 0.517

12 0.671 0.397 0.550 0.683 0.397 0.567 0.574 0.394 0.586

13 0.662 0.500 0.551 0.603 0.460 0.556 0.511 0.456 0.549

14 0.978 0.529 0.817 0.969 0.529 0.840 0.900 0.529 0.873

15 0.635 0.387 0.423 0.588 0.387 0.425 0.493 0.385 0.422

16 0.432 0.239 0.414 0.333 0.239 0.401 0.282 0.240 0.299

17 0.389 0.214 0.262 0.302 0.214 0.281 0.218 0.214 0.267

18 0.502 0.372 0.444 0.436 0.373 0.433 0.245 0.373 0.422

19 0.423 0.378 0.426 0.426 0.378 0.429 0.406 0.376 0.413

20 0.696 0.610 0.615 0.670 0.610 0.620 0.622 0.610 0.613

151

Table 5.17. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis

when comparing BO-1 against S-EM and DF-PU regarding F-measure, Precision and Recall, for

the 3 δ values for the synthetic datasets.

δ

(%)

Methods

compared

F-measure Precision Recall

Avg.

ranks

p-value α Avg.

ranks

p-value α Avg.

ranks

p-value α

20% BO-1 vs

DF-PU

1.0 vs

2.0

0.000002 0.025 1.0 vs

2.0

0.000002 0.025 1.95 vs

1.05

0.00001 0.025

BO-1 vs

S-EM

1.15 vs

1.85

0.0002 0.05 1.1 vs

1.9

0.00003 0.05 1.75 vs

1.25

0.002 0.05

40% BO-1 vs

DF-PU

1.05 vs

1.95

0.00002 0.025 1.0 vs

2.0

0.000002 0.025 1.95 vs

1.05

0.000004 0.05

BO-1 vs

S-EM

1.15 vs

1.85

0.002 0.05 1.1 vs

1.9

0.00001 0.05 2.0 vs

1.0

0.000002 0.025

60% BO-1 vs

DF-PU

1.1 vs

1.9

0.0007 0.025 1.0 vs

2.0

0.000002 0.025 1.95 vs

1.05

0.000004 0.05

BO-1 vs

S-EM

1.6 vs

1.4

0.410 0.05 1.15 vs

1.85

0.0001 0.05 2.0 vs

1.0

0.000002 0.025

Table 5.19 details the statistical significance of the F-measure results shown in Table 5.18 and

summarises the results for precision and recall. BO-2 again largely outperforms the baseline methods

regarding F-measure and precision for all values of δ, with the exception of S-EM for F-measure

when δ=60%. The difference in F-measure and precision values is statistically significant in all cases

when BO-2 outperforms the baseline methods (i.e., in 11 out of 12 cases). For recall, as expected

based on previous results, the baselines outperform BO-2 for all δ values with statistical significance.

Table 5.18. F-measure results of BO-2 and two baseline PU learning methods on synthetic datasets.

Dataset

δ = 20% δ = 40% δ = 60%

BO-2 DF-PU S-EM BO-2 DF-PU S-EM BO-2 DF-PU S-EM

1 0.649 0.484 0.616 0.586 0.484 0.602 0.578 0.483 0.613

2 0.203 0.125 0.194 0.022 0.120 0.130 0.094 0.112 0.120

3 0.770 0.552 0.589 0.676 0.552 0.587 0.537 0.552 0.600

4 0.831 0.454 0.644 0.795 0.416 0.633 0.622 0.417 0.630

5 0.603 0.357 0.402 0.614 0.356 0.436 0.499 0.357 0.465

6 0.746 0.403 0.477 0.672 0.402 0.525 0.652 0.402 0.582

7 0.495 0.285 0.433 0.456 0.283 0.462 0.416 0.282 0.451

8 0.531 0.326 0.468 0.480 0.326 0.457 0.341 0.326 0.439

9 0.019 0.035 0.099 0.039 0.000 0.044 0.105 0.000 0.120

10 0.900 0.233 0.612 0.854 0.234 0.627 0.756 0.233 0.663

11 0.573 0.491 0.505 0.554 0.491 0.520 0.474 0.490 0.517

12 0.713 0.397 0.550 0.647 0.397 0.567 0.586 0.394 0.586

13 0.667 0.500 0.551 0.578 0.460 0.556 0.533 0.456 0.549

14 0.974 0.529 0.817 0.948 0.529 0.840 0.908 0.529 0.873

15 0.589 0.387 0.423 0.545 0.387 0.425 0.415 0.385 0.422

16 0.507 0.239 0.414 0.298 0.239 0.401 0.320 0.240 0.299

17 0.289 0.214 0.262 0.304 0.214 0.281 0.070 0.214 0.267

18 0.529 0.372 0.444 0.459 0.373 0.433 0.297 0.373 0.422

19 0.444 0.378 0.426 0.405 0.378 0.429 0.361 0.376 0.413

20 0.710 0.610 0.615 0.632 0.610 0.620 0.554 0.610 0.613

152

Table 5.19. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis when

comparing BO-2 against S-EM and DF-PU regarding F-measure, Precision and Recall, for the 3 δ values for

the synthetic datasets.

δ

(%)

Methods

compared

F-measure Precision Recall

Avg.

ranks

p-value α Avg.

ranks

p-value α Avg.

ranks

p-value α

20% BO-2 vs

DF-PU

1.05

vs

1.95

0.00001 0.025 1.0 vs

2.0

0.000002 0.025 1.95 vs

1.05

0.00001 0.05

BO-2 vs

S-EM

1.1 vs

1.9

0.0005 0.05 1.05 vs

1.95

0.000004 0.05 2.0 vs

1.0

0.000002 0.025

40% BO-2 vs

DF-PU

1.05

vs

1.95

0.00004 0.025 1.05 vs

1.95

0.000004 0.025 1.9 vs

1.1

0.00001 0.05

BO-2 vs

S-EM

1.3 vs

1.7

0.017 0.05 1.08 vs

1.92

0.00002 0.05 2.0 vs

1.0

0.000002 0.025

60% BO-2 vs

DF-PU

1.35

vs

1.65

0.019 0.025 1.0 vs

2.0

0.000002 0.025 1.95 vs

1.05

0.000004 0.025

BO-2 vs

S-EM

1.75

vs

1.25

0.083 0.05 1.15 vs

1.85

0.0003 0.05 1.92 vs

1.08

0.00001 0.05

5.4 The PU Learning Algorithm’s Hyperparameter

Values Most Frequently Selected by BO-Auto-PU

This section reports the optimised PU learning algorithm’s hyperparameter values which were most

frequently selected by BO-Auto-PU utilising the base search space (BO-1) and the extended search

space (BO-2). It reports the selection frequency, baseline frequency, and their difference. The

selection frequency of a PU learning algorithm’s hyperparameter value is calculated as the ratio of

the number of times that value was used in the optimised PU learning algorithm returned by BO-

Auto-PU over the total number of BO-Auto-PU runs, which is 300 per type of dataset (biomedical

or synthetic), considering 20 datasets times 3 values of 𝛿 times 5 runs of a BO-Auto-PU version per

dataset, due to the use of 5-fold cross-validation. The baseline frequency is the expected selection

frequency of a hyperparameter value if all values of that hyperparameter were randomly selected for

use in a PU learning algorithm. I.e., it is calculated by simply dividing 1 (one) by the number of

candidate values for that hyperparameter. The difference between these two frequencies is simply

the selection frequency minus the baseline frequency.

As mentioned in Section 4.4, little has been written on the topic of suitable algorithm

configuration for PU learning, and no guidelines exist in the literature. Hence, the information about

153

the most frequently selected hyperparameter values in our experiments can give some insights about

how to improve the performance of PU learning algorithms.

Throughout this section, the term “classifier” is used to refer to a classification algorithm (rather

than a classification model learned by an algorithm), unless explicitly mentioned otherwise.

5.4.1 The Hyperparameter Values Most Frequently Selected

by BO-1

Tables 5.20 and 5.21 report the most frequently selected values of the hyperparameters of the

optimised PU learning algorithms returned by all runs of BO-1 on the biomedical datasets and

synthetic datasets, respectively. The most frequently selected Phase 1A Classifiers were naïve Bayes

classifiers in both Table 5.20 and Table 5.21, i.e., Bernoulli for the biomedical datasets and Gaussian

for the synthetic datasets. This reinforces the hypothesis from the previous chapter that the Auto-PU

system favours simple classifiers in the early phase.

The values most frequently selected for Phase 1B Classifiers (histogram-based boosting

classifier (HGBoost) and support vector machine (SVM)) give little in the way of obvious

conclusions to be drawn, as with the results in Chapter 4. Perhaps this is an indication that, whilst

there is a trend emerging for Phase 1A Classifiers, the choice of Phase 1B Classifier is somewhat

less determined.

Table 5.20. Selection frequency of hyperparameter values by BO-1 for the biomedical datasets.

Hyperparameter Most selected

value

Selection

Freq. (%)

Baseline

Freq. (%)

Diff.

(%)

Phase 1A Iteration count 2 19.00 10.00 9.00

Phase 1A RN Threshold 0.05 14.33 10.00 4.33

Phase 1A Classifier Bernoulli NB 8.67 5.56 3.11

Phase 1B Flag TRUE 52.67 50.00 2.67

Phase 1 B RN Threshold 0.2 14.00 10.00 4.00

Phase 1B Classifier HGBoost 8.00 5.56 2.44

Phase 2 Classifier LDA 32.67 5.56 27.11

The most frequently selected values for Phase 2 Classifier are linear discriminant analysis (LDA)

for the biomedical datasets and deep forest for the synthetic datasets, which are two classifiers which

also came up frequently when analysing the results for GA-Auto-PU. LDA is a linear classifier, and

154

thus fits with the previously discussed assumptions of separability and smoothness. Deep forest is a

powerful classifier (see Section 2.1) so it is little surprise that it performs well.

Table 5.21. Selection frequency of hyperparameter values by BO-1 for the synthetic datasets.

Hyperparameter Most selected

value

Selection

Freq. (%)

Baseline

Freq. (%)

Diff.

(%)

Phase 1A Iteration count 4 14.67 10.00 4.67

Phase 1A RN Threshold 0.45 13.00 10.00 3.00

Phase 1A Classifier Gaussian NB 16.00 5.56 10.44

Phase 1B Flag FALSE 52.00 50.00 2.00

Phase 1 B RN Threshold 0.45 14.67 10.00 4.67

Phase 1B Classifier SVM 10.33 5.56 4.77

Phase 2 Classifier Deep Forest 23.67 5.56 18.11

The Phase 1B Flag¸ as with the results of for GA-Auto-PU in Chapter 4, is almost exactly a 50/50

split for both biomedical and synthetic datasets.

Interestingly, the Phase 1A RN Threshold hyperparameter for the biomedical datasets has the

lowest value, 0.05, but the second highest value for synthetic datasets, 0.45. However, these values

were selected by such a small margin from the baseline frequency that no conclusions can be drawn

from this.

As in Chapter 4 analysing the results of GA-Auto-PU, a more detailed analysis of the Phase 1A

Iteration Count hyperparameter’s optimisation is reported next. As was the case for GA-Auto-PU,

there is a moderate correlation between iteration count and the percentage of instances in the dataset

that belong to the positive class, indicating that the hyperparameter is utilised to handle class

imbalance. For the biomedical datasets, the correlation coefficient values are -0.677, -0.700, and -

0.700 for δ = 20%, 40%, and 60% respectively. For the synthetic datasets, the values are -0.656, -

0.692, and -0.683 for δ = 20%, 40%, and 60% respectively. The correlations for the biomedical

datasets when δ = 40% and 60% are classified as strong, but only just at the 0.7 threshold from

moderate to strong.

5.4.2 The Hyperparameter Values Most Frequently Selected

by BO-2

Tables 5.22 and 5.23 report the most frequently selected values of the hyperparameters of the

optimised PU learning algorithms returned by all runs of BO-2 on the biomedical datasets and

155

synthetic datasets, respectively. The most frequently selected values for Phase 1A Classifier were

logistic regression for the biomedical datasets and Gaussian naïve Bayes (NB) for the synthetic

datasets, which are two classifiers that have also come up frequently throughout this work in the

previous hyperparameter analysis for Phase 1A Classifier. This further reinforces the hypothesis

regarding the assumptions of separability and smoothness.

Table 5.22. Selection frequency of hyperparameter values by BO-2 for the biomedical datasets.

Hyperparameter Most selected

value

Selection

Freq. (%)

Baseline

Freq. (%)

Diff.

(%)

Phase 1A Iteration count 2 21.00 10.00 11.00

Phase 1A RN Threshold 0.25 13.00 10.00 3.00

Phase 1A Classifier Logistic reg. 8.67 5.56 3.11

Phase 1B Flag TRUE 50.67 50.00 0.67

Phase 1 B RN Threshold 0.2 14.67 10.00 4.67

Phase 1B Classifier Bagging clas. 7.67 5.56 2.11

Spy rate 0.3 18.00 14.29 3.71

Spy tolerance 0.08 12.18 9.09 3.09

Spy flag FALSE 74.00 50.00 24.00

Phase 2 Classifier LDA 51.67 5.56 46.11

Table 5.23. Selection frequency of hyperparameter values by BO-2 for the synthetic datasets.

Hyperparameter Most selected

value

Selection

Freq. (%)

Baseline

Freq. (%)

Diff.

(%)

Phase 1A Iteration count 2 16.67 10.00 6.67

Phase 1A RN Threshold 0.3 17.59 10.00 7.59

Phase 1A Classifier Gaussian NB 17.00 5.56 11.44

Phase 1B Flag FALSE 55.33 50.00 5.33

Phase 1 B RN Threshold 0.45 17.33 10.00 7.33

Phase 1B Classifier Deep Forest 11.00 5.56 5.44

Spy rate 0.2 29.00 14.29 14.71

Spy tolerance 0.03 14.05 9.09 4.96

Spy flag FALSE 88.00 50.00 38.00

Phase 2 Classifier Deep Forest 20.67 5.56 15.11

For Phase 1B Classifier, the bagging classifier was most frequently selected for the biomedical

datasets. This is a classifier that has not yet come up in the hyperparameter analysis. By contrast,

deep forest was most frequently selected for the synthetic datasets. This is a classifier which, like

logistic regression and Gaussian NB, is appearing frequently in the analysis of most frequently

selected classifiers.

The Phase 2 Classifier presents some interesting results – deep forest was selected most

frequently for the synthetic datasets, which is unsurprising given the previous results, and linear

156

discriminant analysis (LDA) is selected most frequently for the biomedical datasets. The selection of

LDA is not, itself, surprising, given the frequency at which has been selected in the previous analysis.

However, it was selected for over half of all optimised candidate solutions, which is very substantial,

considering that there are 18 candidate classifiers. For the acquisition function of BO-Auto-PU, we

used simply the value predicted by the random forest regressor, as opposed to a more exploratory

approach, such as Expected Improvement (see Section 2.3.2). This means that rather than focusing

on exploring the search space, BO-Auto-PU focuses on exploiting known well-performing areas of

the search space. This approach has served relatively well, given the predictive performance results,

but could be the reason as to why the LDA classifier occurs so frequently for Phase 2 Classifier for

the biomedical datasets. That is, it could be that candidate solutions utilising LDA for Phase 2

Classifier performed well in the search space, and as such BO-Auto-PU selected those candidate

solutions more frequently for objective function assessment.

Spy-based methods were, again, not preferred in most cases, with a value of “False” selected for

the Spy flag hyperparameter in 74% of cases for the biomedical datasets, and 88% of cases for the

synthetic datasets. These results, along with those from Section 4.4, are beginning to show an

emerging lack of favour towards the spy methods.

Looking now towards a more in depth analysis of the Phase 1A Iteration Count hyperparameter,

BO-2 displayed moderate to strong correlations between the average value of Phase 1A Iteration

Count and the percentage of positive instances in the original, unaltered datasets, with observed

correlation coefficient values of -0.641, -0.706, and -0.736 for the biomedical datasets when δ = 20%,

40%, and 60%, respectively; and -0.772, -0.667, and -0.674 for the synthetic datasets when δ = 20%,

40%, and 60%, respectively.

5.5 Summary

Overall, considering a comparison between the two BO-based systems and the two baseline PU

learning methods, both BO-1 and BO-2 outperformed the baseline methods in general, with statistical

significance regarding F-measure and precision in several cases. S-EM did, however, show a large

increase in performance for the 𝛿 = 60% datasets, outperforming both BO-1 and BO-2 in terms of F-

157

measure for 𝛿 = 60% on the synthetic datasets. Whilst the F-measures of BO-1, BO-2, and DF-PU

declined by 0.121, 0.131, and 0.007 respectively from 𝛿 = 20% to 60%, the performance of S-EM

made a marginal increase of 0.005.

The results when comparing the BO-based systems against the GA-based systems, in terms of

predictive performance, were mixed. Regarding predictive performance, for the biomedical datasets

there was very little difference between the two systems, with no statistical significance observed.

However, for the synthetic datasets, GA-1 arguably outperformed BO-1.

However, the BO-based methods do have a very distinct advantage over the GA-based methods

with regard to computational runtime. The BO-based methods were developed in an attempt to

improve upon the long runtime required by the GA-based methods, ideally simultaneously increasing

(or at least not decreasing) predictive performance. Whilst predictive performance was not increased,

there was no practical loss in the real-world biomedical datasets, arguably the most important of the

two types of datasets.

The considerations regarding computational efficiency noted in Section 5.1.3 are supported by

the empirical runtimes observed in the experiments, namely: GA-1 took 226.3 minutes, GA-2 took

223.2 minutes, while BO-1 took 8.4 minutes and BO-2 took 9.8 minutes on average to run a 5-fold

cross-validation per dataset (so, BO was about 23-27 times faster than GA). All experiments were

run on a 48-core GPU with 256GB of memory.

At the beginning of this chapter, two research questions were posed. Firstly, does BO-Auto-PU

improve on the performance of GA-Auto-PU in regard to computational efficiency? The response to

this question is overwhelmingly yes, BO-Auto-PU runs much faster than GA-Auto-PU. The second

research question was: does BO-Auto-PU improve on the performance of GA-Auto-PU in regard to

predictive accuracy? The response to this question is less positive. BO-Auto-PU failed to improve

upon GA-Auto-PU in regard to predictive accuracy, performing similarly for the biomedical datasets

and somewhat poorly in regard to GA-Auto-PU for the synthetic datasets. Thus, the answer to the

second question is no, BO-Auto-PU failed to improve upon the predictive accuracy of GA-Auto-PU

and actually exhibited a small decline in performance overall.

To conclude, whilst the BO-based systems have greatly improved upon the GA-based systems

with regard to computational runtime, the former do so at a loss to predictive performance when

158

utilizing the extended search space. Thus, finding a finer balance between the BO-based and the GA-

based systems, looking to combine the speed of the BO with the population diversity of the GA, may

improve upon both types of systems. It is this that has motivated the development of the EBO-Auto-

PU system, proposed next in Chapter 6.

159

Chapter 6

A Hybrid Evolutionary/Bayesian

Optimisation-based Auto-ML System

for Positive-Unlabelled Learning (EBO-

Auto-PU)

This chapter introduces EBO-Auto-PU, a hybrid Evolutionary/Bayesian Optimisation (EBO)-based

Automated Machine Learning (Auto-ML) system for Positive-Unlabelled (PU) learning. GA-Auto-

PU, detailed in Chapter 4, was the first Auto-ML system specific to PU learning, and showed

statistically significant improvements in predictive performance over two baseline PU learning

methods and an Auto-ML system for standard binary classification. However, the GA-Auto-PU

system is computationally expensive, with GA-1 and GA-2 averaging 226.3 and 223.2 minutes,

respectively, to run a 5-fold cross-validation per dataset. In an effort to reduce the computational

expense of GA-Auto-PU, BO-Auto-PU was introduced in Chapter 5. BO-Auto-PU proved much

more computationally efficient than GA-Auto-PU, with BO-1 and BO-2 averaging 8.4 and 9.8

minutes, respectively, to run a 5-fold cross-validation per dataset.

The improvement in computational efficiency, however, was gained at a small cost to predictive

performance. Of the four systems tested (GA vs BO, both with two search spaces), GA-1 (with the

base search space) was arguably the best performing system in terms of predictive accuracy, whilst

BO-2 (with the extended search space) was undoubtably the worst performing system. It seems that

the BO-based system was unable to cope with the expanded search space. It can be hypothesised that

160

the disparity in predictive performance was due to the differing levels of population diversity

between the two systems. That is, GA-Auto-PU has large population diversity as it assesses many

PU learning configurations in each iteration according to the objective (fitness) function and creates

diversity through crossover and mutation applied to configurations selected based on their fitness

(predictive accuracy, more precisely F-measure). Whereas BO-Auto-PU assesses only a single

configuration at each iteration, selected according to the predictive accuracy value predicted by the

random forest regressor. At each iteration, a population is randomly generated to be evaluated by the

faster surrogate model, rather than evolved to be evaluated by the slower objective (fitness) function

as in the case of GA-Auto-PU. So, whilst diversity may occur in the BO search, there is no guarantee

that it will benefit the system as the diverse configurations may not be selected for assessment by the

objective function.

EBO-Auto-PU was developed in an attempt to bridge this gap between the GA- and the BO-

based systems, introducing diversity into BO by evolving a population rather than random population

generation, whilst using a surrogate model to reduce computational expense and prioritise candidate

solutions for assessment according to the objective function. To assess whether EBO-Auto-PU has

been successful in this aim, two research questions are presented. Firstly, does EBO-Auto-PU present

a good trade-off, regarding computational efficiency, between GA-Auto-PU and BO-Auto-PU? And,

secondly, does EBO-Auto-PU achieve good predictive performance compared with GA-Auto-PU?

To clarify the first question, a ‘good’ trade-off can be considered as EBO-Auto-PU performing

with a run time faster that of GA-Auto-PU. Given that EBO-Auto-PU evaluates more candidate

solutions according to the objective function at each iteration than BO-Auto-PU (as will be explained

later), it is extremely unlikely that EBO-Auto-PU will perform better than or on par with BO-Auto-

PU in regard to computational runtime. Thus, setting an aim of improving upon the runtime of BO-

Auto-PU would be an act of folly. To clarify the second question, EBO-Auto-PU should achieve

good predictive performance compared with GA-Auto-PU, rather than BO-Auto-PU, as GA-Auto-

PU outperformed BO-Auto-PU in regard to predictive performance. To this end, ‘good’ predictive

performance can be considered predictive performance that exceeds that of GA-Auto-PU. These

research questions will be address in the conclusions of this chapter.

161

The remainder of this chapter is structured as follows. Section 6.1 details EBO-Auto-PU. Section

6.2 describes the experimental setup. Section 6.3 compares EBO-Auto-PU against GA-Auto-PU and

BO-Auto-PU, and compares EBO-Auto-PU against the two baseline PU learning methods used in

Chapters 4 and 5. Section 6.4 analyses the most frequently selected hyperparameters of the EBO-

Auto-PU system, and Section 6.5 summarises this chapter.

6.1 Description of EBO-Auto-PU

As outlined previously, EBO-Auto-PU is a hybrid Evolutionary/Bayesian Optimisation (EBO)-based

Auto-ML system specific to PU learning. This section describes the pseudocodes detailing the

procedure followed by the EBO-Auto-PU system. Details of the individual encoding of a candidate

solution, as well the fitness (objective) function can be found in Chapter 3. Note that this section

refers to standard GA procedures such as crossover, mutation, and tournament selection. These

procedures are described in detail in Section 2.2.

6.1.1 The EBO Procedure for PU Learning

Procedure 6.1 outlines the procedure that the EBO component of EBO-Auto-PU follows to evolve a

PU learning algorithm. #Configs PU learning configurations are randomly generated (step 1) and

evaluated, with their F-measures saved as Scores (step 2). Note that this random population

generation is the same procedure as described in Chapters 4 and 5 for GA-Auto-PU and BO-Auto-

PU respectively. However, to briefly restate, for each candidate solution, for each component

(hyperparameter) of that candidate solution, there are a fixed set of values that may be set. Each of

these values has an equal probability of being assigned to that component. For example, the

hyperparameter Phase 1A iteration count may take the values {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. As there

are ten potential values, each of these have a 10% probability of being assigned. Regarding candidate

solution evaluation, this is evaluation according to the objective function described in Section 3.2.3.

Briefly described, this evaluation is 5-fold cross-validation on the training set, splitting the training

set into 5 learning and validation sets, for which the average F-measure achieved by the PU learning

162

algorithm is calculated and saved as the candidate solutions score. The test set is untouched in this

procedure.

Procedure 6.1 Outline of the Evolutionary Bayesian Optimization procedure for Positive-Unlabelled

Learning

1. Configs = randomly generate #Configs PU learning configurations;

2. Scores = run objective function for all configurations in Configs; // see Procedures 3.1-3.4

3. Learn Surr_model with Configs as features, Scores as target;

4. For #It_count times:

a. Temp_Configs = Configs after undergoing crossover and mutation;

b. �̂� = calculate a surrogate score for each new config in Temp_Configs with Surr_model;

c. Best_config = config with highest score according to �̂�;

d. k_pop = [],;

e. For k times:

i. k_cand_sol = select from Temp_Configs using tournament selection based on

surrogate scores;

ii. k_pop = k_pop ∪ k_cand_sol;

f. k_pop = configurations in k_pop undergo crossover and mutation;

g. Assess Best_config and each configuration from k_pop with objective function to obtain

objective scores; // see Procedures 3.1-3.4, Chapter 3

h. Configs = Configs ∪ Best_config ∪ k_pop;

i. Retrain Surr_model on Configs;

Output: Best configuration according to objective score;

A random forest Regressor, Surr_model, is then trained, using Configs as features, and Scores as the

target variable (step 3). The Configs are processed as they are for the BO-Auto-PU system, as

described in Section 5.1. The configurations in Configs are copied to a temporary store

Temp_Configs to undergo uniform crossover (with candidate solutions selected via tournament

selection) and mutation to produce an evolved population of configurations (step 4.a). This process

of tournament selection, uniform crossover and mutation is the same as that undertaken by GA-Auto-

PU and described in Section 4.1. To briefly restate, tournament selection selects a specified number

of candidate solutions (2, in this implementation) from the pool of available candidate solutions and

progresses the candidate solution with the highest score value to the next stage of evolution. The

process of uniform crossover involves swapping the component (hyperparameter) values of two

selected candidate solutions (selected via tournament selection), with a given probability. Mutation

involves slightly altering the values of the candidate solution hyperparameters.

The surrogate scores of each just-produced configuration in Configs is calculated by Surr_model

and saved as �̂� (step 4.b), with the configuration with the highest surrogate score saved as Best_config

163

(step 4.c). This selection of the best configuration is inspired by elitism, but note that it is not exactly

elitism, as the selection is based on the surrogate score, not the objective score. This surrogate score

is, essentially, an estimation of the objective score that would be produced by assessing the candidate

solution according to the objective function. Recall from the background information on Bayesian

optimisation (see Section 2.3) that this estimation is conducted in order to minimise computational

runtime. Creating a probabilistic model allows for an estimation to be calculated based on the

previously calculated objective scores of other candidate solutions, thus allowing for a somewhat

informed exploration of the search space.

Tournament selection is utilised to select k candidate solutions according to their surrogate score

(F-measure), which are then added to a population k_pop (step 4.d-e). The procedure for tournament

selection in this step is the same as the procedure previously described. k_pop then undergoes

uniform crossover and mutation to produce a newly evolved population (step 4.f). The uniform

crossover and mutation procedures are the same as those previously described, with parents selected

via tournament selection. Best_config and the configurations from k_pop are assessed according to

the objective function to calculate their objective scores, before the configurations are added to

Configs and used to update the surr_model (steps 4.g-i). The result of this is that Configs is ever-

growing, meaning that there is no selection pressure on the population. However, an ever-growing

population is beneficial in this scenario, as it provides more data for the surrogate model to learn

from. The objective function cited in step 4.g is defined in Section 3.2.3. This process (step 5 in

Procedure 6.1) is repeated It_count times. Finally, the best configuration, according to the objective

score, is returned.

Recall that (as in BO in general) the computation of the objective score is much more expensive

than the computation of the surrogate score, and hence, at each iteration, just k + 1 configurations

(Best_config and the k configurations in k_pop) in the current population have their objective score

computed.

Configs are processed as follows for training Surr_model: for the base search space, the numeric

components of each configuration (Threshold_1A, Iteration_Count_1A, Threshold_1_B) are treated

as numeric features, the Boolean component (Flag_1B) is treated as a binary feature, and the nominal

components (Classifier_1A, Classifier_1B, Classifier_2) are one-hot encoded, with a binary value

164

for each potential value of the component, indicating whether or not that value is used by the PU

learning method. The resulting instances used as input by the regression algorithm consist of 58

features. For the extended search space, all the previously mentioned components are treated as they

are in the base search space. However, we also have the additional spy components, with Spy_rate

and Spy_tolerance treated as numeric features, and the Boolean component “Spy_flag” treated as a

binary feature. This results in instances consisting of 61 features.

Figure 6.1 shows the hybridisation of EA and BO to create EBO. The figure shows the key

components of EA and BO relevant to the EBO system. The EA utilises evolutionary operators

(crossover, mutation & elitism), which are incorporated into the EBO system. At each iteration, the

EA evaluates the whole population with the expensive objective function, whilst the BO evaluates

all candidate solutions with the fast surrogate model to select a single candidate solution to evaluate

with the objective function. The EBO, like the BO, uses a surrogate model to assess all individuals

at each iteration. However, instead of selecting only a single candidate solution, at each iteration the

EBO selects multiple promising candidate solutions which undergo evolutionary operations before

being assessed by the objective function. Whilst the EA uses selection based on fitness, the EBO

utilises the BO approach of selection based on surrogate score.

Figure 6.1. EA/BO hybridisation.

165

6.1.2 The EBO Procedure’s Hyperparameters

Table 6.1 shows the hyperparameter settings of the EBO procedure underlying EBO-Auto-PU.

Table 6.1. Hyperparameters of the EBO-Auto-PU system, with their default values.

Hyperparameter Value

#Configs 101

It_count 50

Surr_model Random Forest Regressor

Crossover probability 0.9

Component crossover probability 0.5

Mutation probability 0.1

Tournament size 2

k 10

Note that the hyperparameters #Configs, It_count and Surr_model in Table 6.1 are essentially the

same as the corresponding hyperparameters in Table 5.1 for the BO procedure, and these

hyperparameters take the same settings in both tables (i.e. for both the EBO and the BO procedures),

in order to make the comparison between EBO-Auto-PU and BO-Auto-PU as fair as possible. In

addition, the hyperparameters “Crossover probability”, “Component crossover probability”,

“Mutation probability”, and “Tournament size” in Table 6.1 are also essentially the same as the

hyperparameters “Cross_prob”, “Gene_cross_prob”, “Mutation_prob”, and “Tournament_size”

from Table 4.1 in Chapter 4, respectively; and again, these hyperparameters take the same settings

in both tables for a fair comparison between EBO-Auto-PU and GA-Auto-PU. The only parameter

unique to EBO-Auto-PU is the k parameter, used to determine the number of candidate solutions to

be selected with tournament selection to assess according to their objective score.

6.1.3 Computational Efficiency

In the GA-based, BO-based, and the EBO-based Auto-ML systems for PU learning, the running time

is by far dominated by the time to evaluate the candidate solutions along the iterations of the search,

i.e., the time to learn a PU model and evaluate its F-measure on the training set, for each candidate

PU learning method. GA, BO, and the EBO-based methods perform the same number of iterations

(50) in our experiments. However, in each generation (iteration) of GA-Auto-PU the GA must learn

𝑛 PU models, where 𝑛 is the number of individuals (candidate solutions) in the population, each

iteration of BO-Auto-PU needs to learn a single PU model, whilst each iteration of EBO-Auto-PU

166

needs to learn k+1 candidate solutions, where k is the number of candidate solutions selected via

tournament selection to assess according to the objective function (see Section 3.2.3 for full details

of this procedure). Learning a PU model can be very computationally expensive, depending not only

on the size of the dataset but also on the time complexity of the 3 classification algorithms chosen

for Phases 1A, 1B and 2 of the 2-step method, and the number of iterations the classifier is applied

in Phase 1A.

All three Auto-ML systems also must perform other steps for generating candidate solutions to

be evaluated, but these take in general much less time than the time to evaluate candidate solutions

using the objective function (F-measure) as described above. More precisely, at each iteration, the

GA and the EBO must perform tournament selection, crossover and mutation, but these are all simple

operations, which are much faster than computing the fitness function (learning one PU model for

each individual).

Unlike the GA, at each iteration BO and EBO learn a surrogate model, but again, the time for

this is much shorter than the time taken to learn a PU model in each iteration of BO. This is because

the surrogate model is learned by a relatively fast random forest algorithm using a small dataset of

PU algorithm configurations, whilst learning a PU model involves running multiple classifiers (one

of them for several iterations in Phase 1A), each classifier can be much slower than a random forest.

In addition, each classifier is learned using the training data of the current dataset, which is typically

much larger in number of instances than the small dataset of PU method configurations. Regarding

the number of features, the training set for learning a PU model has in general more features than the

training set for learning the surrogate model in the case of the synthetic datasets; whilst the converse

is true in the case of the biomedical datasets – but even for this latter group of datasets, the overall

time taken to learn a surrogate model is still much faster than the time to learn a PU model, making

BO-Auto-PU much faster than GA-Auto-PU, as discussed in Chapter 5. As EBO-Auto-PU assesses

(using the expensive objective function) fewer candidate solutions than GA-Auto-PU, but more than

BO-Auto-PU, the EBO-Auto-PU system sits between the GA-Auto-PU and the BO-Auto-PU

systems in regard to computational runtime, as is discussed in Section 6.3.

167

6.2 Experimental Setup

The experimental procedure is explained in detail in Chapter 3. However, to briefly recap, two types

of datasets are used in these experiments (biomedical and synthetic), each with 3 versions (varying

the % of positive instances hidden in the unlabelled set), thus creating 120 datasets total.

A nested cross-validation procedure is used, with a simple 5-fold cross-validation procedure as

the external layer. The internal layer splits the training set into 5 learning and validation sets, which

is used to evaluate the candidate solutions.

To compare the performance of the methods, we use the Wilcoxon signed rank test [202], with

Holm correction for testing multiple hypotheses [203].

6.2.1 Structure of the Results Section

In the next section, we present experimental results comparing the EBO-Auto-PU system with both

search spaces (without and with the Spy method). Firstly, EBO-Auto-PU is compared against GA-

Auto-PU, BO-Auto-PU. Secondly, EBO-Auto-PU is compared against the two PU learning

baselines. Experiments were conducted on both the real-world biomedical datasets and the synthetic

datasets, for three values of 𝛿 (the percentage of positives hidden in the unlabelled set): 20%, 40%,

and 60%. Each section will report the F-measure results in full and will provide a summary of the

precision and recall results. The full precision and recall results (for each dataset) can be found in the

Appendix.

For the sake of brevity, the EBO-Auto-PU, BO-Auto-PU, and the GA-Auto-PU systems utilising

the base search space (without the Spy method) will be referred to as EBO-1, BO-1 and GA-1

respectively; whilst the systems utilising the extended search space (with the Spy method) will be

referred to as EBO-2, BO-2, and GA-2 respectively.

168

6.3 Results for EBO-Auto-PU

6.3.1 Results comparing EBO-Auto-PU with GA-Auto-PU and

BO-Auto-PU PU

In the next section, results comparing the EBO-Auto-PU system with GA-Auto-PU and BO-Auto-

PU are presented, beginning with a comparison of EBO-1 with GA-1 and BO-1 (Auto-PU systems

with the base search space) on the biomedical datasets in Table 6.2.

Table 6.2. F-measure results of EBO-1 against BO-1 and GA-1 on real-world biomedical datasets.

Dataset

20% δ = 40% δ = 60%

EBO-1 GA-1 BO-1 EBO-1 GA-1 BO-1 EBO-1 GA-1 BO-1

Alzheimer’s 0.629 0.529 0.615 0.587 0.551 0.600 0.540 0.456 0.436

Autism 0.986 0.960 0.967 0.926 0.927 0.956 0.927 0.910 0.863

Breast cancer Coi. 0.966 0.705 0.694 0.952 0.687 0.701 0.615 0.510 0.586

Breast cancer Wis. 0.893 0.954 0.949 0.872 0.932 0.969 0.927 0.906 0.895

Breast cancer mut. 0.672 0.893 0.893 0.667 0.868 0.873 0.862 0.854 0.841

Cervical cancer 0.839 0.828 0.839 0.904 0.903 0.903 0.667 0.714 0.645

Cirrhosis 0.532 0.573 0.545 0.453 0.464 0.529 0.507 0.443 0.489

Dermatology 0.899 0.860 0.872 0.813 0.780 0.905 0.716 0.828 0.725

PI Diabetes 0.654 0.677 0.647 0.661 0.649 0.645 0.634 0.606 0.594

ES Diabetes 0.973 0.958 0.983 0.913 0.895 0.877 0.909 0.930 0.902

Heart Disease 0.833 0.843 0.844 0.800 0.801 0.830 0.774 0.785 0.777

Heart Failure 0.732 0.770 0.753 0.666 0.652 0.605 0.640 0.674 0.704

Hepatitis C 0.925 0.953 0.907 0.835 0.771 0.838 0.667 0.588 0.708

Kidney Disease 1.000 0.976 0.988 0.938 0.988 0.964 0.646 0.754 0.806

Liver Disease 0.827 0.834 0.820 0.819 0.803 0.817 0.717 0.804 0.795

Maternal Risk 0.855 0.476 0.837 0.803 0.812 0.780 0.739 0.735 0.689

Parkinsons 0.929 0.860 0.935 0.894 0.836 0.875 0.707 0.818 0.732

Parkinsons Biom. 0.203 0.476 0.167 0.337 0.265 0.192 0.133 0.233 0.182

Spine 0.933 0.652 0.954 0.932 0.907 0.926 0.775 0.818 0.742

Stroke 0.239 0.474 0.244 0.225 0.255 0.153 0.229 0.255 0.208

Table 6.3 summarises the statistical significance of the results from Table 6.2, as well as the results

for precision and recall. In Table 6.3, for each combination of a performance measure (F-measure,

precision, recall) and a δ value (δ= 20%, 40%, 60%), the table reports the average (Avg.) rank of

EBO-1 vs GA-1 (EBO-1 is the left rank, GA-1 is the right one) and EBO-1 vs BO-1, with the

corresponding p-value. The better (lower) avg. rank in each cell is shown in boldface, and significant

p-values (smaller than α) are also shown in boldface. For example, in the cell for F-measure, δ =

20%, the average ranks for EBO-1 is 1.48 and BO-1 is 1.52. Hence, EBO-1 was the winner, but the

p-value (0.658) was greater than the significant level α (0.05), so this result was not statistically

significant.

169

Table 6.3. Results of Wilcoxon signed-rank tests when comparing EBO-1 against GA-1 and BO-1 regarding

F-measure, Precision and Recall, for the 3 δ values.

δ

(%)

Compared

systems

F-measure Precision Recall

Avg

ranks

p-value α Avg

ranks

p-value α Avg

ranks

p-value α

20% EBO-1 vs

GA-1

1.5 vs

1.5

0.784 0.025 1.48 vs

1.52

0.446 0.017 1.62 vs

1.38

0.178 0.025

EBO-1 vs

BO-1

1.48 vs

1.52

0.658 0.017 1.45 vs

1.55

0.968 0.025 1.45 vs

1.55

0.983 0.05

40% EBO-1 vs

GA-1

1.4 vs

1.6

0.245 0.017 1.55 vs

1.45

0.828 0.05 1.42 vs

1.58

0.381 0.017

EBO-1 vs

BO-1

1.45 vs

1.55

1.000 0.05 1.55 vs

1.45

0.387 0.017 1.5 vs

1.5

0.557 0.05

60% EBO-1 vs

GA-1

1.55 vs

1.45

0.312 0.025 1.5 vs

1.5

0.812 0.05 1.55 vs

1.45

0.388 0.025

EBO-1 vs

BO-1

1.4 vs

1.6

0.674 0.05 1.62 vs

1.38

0.184 0.017 1.38 vs

1.62

0.629 0.05

The results for Table 6.3 show EBO-1 performing best overall, though no results are statistically

significant. For F-measure, EBO-1 is outperformed only 1 time, against GA-1 when δ=60%. This

was also the case for BO-1, shown in Table 5.3 in Chapter 5, although BO-1 was outperformed by a

much larger margin than EBO-1 has been. For precision, EBO-1 performed best for δ=20%, but was

outperformed for 40% and 60%, albeit only slightly. For recall, EBO-1 performed best in 3 of 6 cases

and drew with BO-1 in 1 case. Thus, EBO-1 was outperformed in only 2 of 6 cases.

Table 6.4. F-measure results of EBO-2 against BO-2 and GA-2 on real-world biomedical datasets.

Dataset

δ = 20% δ = 40% δ = 60%

EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2

Alzheimer’s 0.559 0.580 0.548 0.597 0.603 0.576 0.581 0.492 0.529

Autism 0.964 0.963 0.982 0.938 0.937 0.940 0.887 0.914 0.927

Breast cancer Coi. 0.967 0.667 0.711 0.952 0.618 0.671 0.923 0.000 0.553

Breast cancer Wis. 0.882 0.959 0.956 0.863 0.942 0.936 0.839 0.889 0.866

Breast cancer mut. 0.666 0.890 0.896 0.655 0.853 0.739 0.587 0.845 0.872

Cervical cancer 0.867 0.867 0.867 0.904 0.867 0.839 0.516 0.839 0.350

Cirrhosis 0.506 0.497 0.446 0.493 0.515 0.397 0.322 0.472 0.204

Dermatology 0.857 0.876 0.901 0.891 0.841 0.896 0.750 0.795 0.692

PI Diabetes 0.668 0.653 0.642 0.665 0.648 0.646 0.607 0.615 0.634

ES Diabetes 0.957 0.954 0.978 0.905 0.891 0.887 0.915 0.912 0.894

Heart Disease 0.826 0.844 0.836 0.804 0.817 0.780 0.747 0.805 0.786

Heart Failure 0.741 0.757 0.751 0.656 0.652 0.670 0.514 0.600 0.671

Hepatitis C 0.907 0.964 0.944 0.907 0.761 0.863 0.689 0.612 0.610

Kidney Disease 0.911 0.976 0.925 0.897 0.976 0.951 0.656 0.789 0.806

Liver Disease 0.832 0.822 0.831 0.800 0.815 0.817 0.748 0.722 0.748

Maternal Risk 0.854 0.847 0.862 0.810 0.786 0.813 0.731 0.729 0.738

Parkinsons 0.914 0.936 0.935 0.850 0.837 0.843 0.720 0.800 0.792

Parkinsons Biom. 0.259 0.286 0.282 0.276 0.000 0.259 0.203 0.000 0.280

Spine 0.942 0.941 0.923 0.920 0.936 0.917 0.802 0.700 0.761

Stroke 0.232 0.256 0.241 0.225 0.255 0.239 0.201 0.233 0.243

170

Moving on next to a comparison of EBO-2 with GA-2 and BO-2, Table 6.4 presents these results for

the biomedical datasets.

Table 6.5 details the statistical significance of the F-measure results shown in Table 6.4 and

summarises the results for precision and recall. These results show EBO-2 performing similarly to

BO-2 and GA-2, with no statistically significant differences in results, with the exception of precision

when δ=60%, with GA-2 and BO-2 outperforming EBO-2 with statistical significance.

Table 6.5. Results of Wilcoxon signed-rank tests when comparing EBO-2 against BO-2 and GA-2 regarding

F-measure, Precision and Recall, for the 3 δ values on the biomedical datasets.

δ

(%)

Compared

systems

F-measure Precision Recall

Avg

ranks

p-

value

adj.

α

Avg

ranks

p-

value

adj.

α

Avg

ranks

p-

value

adj.

α

20% EBO-2 vs

GA-2

1.62 vs

1.38

0.658 0.025 1.68 vs

1.32

0.268 0.05 1.68 vs

1.32

0.286 0.025

EBO-2 vs

BO-2

1.38 vs

1.62

0.825 0.05 1.65 vs

1.35

0.061 0.025 1.5 vs

1.5

0.329 0.05

40% EBO-2 vs

GA-2

1.35 vs

1.65

0.039 0.025 1.55 vs

1.45

0.927 0.05 1.42 vs

1.58

0.260 0.05

EBO-2 vs

BO-2

1.48 vs

1.52

0.220 0.05 1.68 vs

1.32

0.268 0.025 1.35 vs

1.65

0.177 0.025

60% EBO-2 vs

GA-2

1.5 vs 1.5 0.756 0.025 1.82 vs

1.18

0.005 0.025 1.32 vs

1.68

0.07 0.025

EBO-2 vs

BO-2

1.6 vs 1.4 0.956 0.05 1.78 vs

1.22

0.049 0.05 1.32 vs

1.68

0.107 0.05

Table 6.6. F-measure results of EBO-1 against BO-1 and GA-1 on synthetic datasets.

Dataset

δ = 20% δ = 40% δ = 60%

EBO-1 GA-1 BO-1 EBO-1 GA-1 BO-1 EBO-1 GA-1 BO-1

1 0.678 0.661 0.663 0.644 0.718 0.619 0.581 0.603 0.554

2 0.194 0.136 0.128 0.043 0.044 0.046 0.040 0.065 0.061

3 0.770 0.788 0.761 0.685 0.693 0.671 0.594 0.637 0.555

4 0.809 0.831 0.811 0.795 0.818 0.785 0.675 0.674 0.627

5 0.439 0.618 0.651 0.420 0.616 0.496 0.292 0.609 0.514

6 0.714 0.759 0.763 0.677 0.769 0.676 0.605 0.684 0.600

7 0.565 0.520 0.598 0.545 0.515 0.478 0.487 0.478 0.465

8 0.508 0.525 0.512 0.400 0.477 0.473 0.332 0.381 0.391

9 0.023 0.111 0.043 0.076 0.080 0.051 0.133 0.146 0.087

10 0.973 0.903 0.918 0.959 0.872 0.868 0.907 0.742 0.756

11 0.635 0.604 0.568 0.576 0.567 0.575 0.535 0.531 0.531

12 0.752 0.674 0.671 0.673 0.666 0.683 0.607 0.609 0.574

13 0.665 0.644 0.662 0.610 0.623 0.603 0.539 0.516 0.511

14 0.909 0.975 0.978 0.878 0.962 0.969 0.790 0.925 0.900

15 0.580 0.601 0.635 0.558 0.593 0.588 0.462 0.519 0.493

16 0.546 0.477 0.432 0.451 0.388 0.333 0.372 0.301 0.282

17 0.372 0.347 0.389 0.297 0.496 0.302 0.129 0.412 0.218

18 0.532 0.559 0.502 0.469 0.389 0.436 0.413 0.326 0.245

19 0.500 0.472 0.423 0.324 0.468 0.426 0.273 0.381 0.406

20 0.661 0.705 0.696 0.633 0.692 0.670 0.532 0.625 0.622

Moving now to the synthetic datasets, Table 6.6 presents the results for the three systems, with the

statistical significance test results presented in Table 6.7.

171

Table 6.7. Results of Wilcoxon signed-rank tests when comparing EBO-1 against GA-1 and BO-1 regarding

F-measure, Precision and Recall, for the 3 δ values on the synthetic datasets.

δ

(%)

Compared

systems

F-measure Precision Recall

Avg

ranks

p-value α Avg

ranks

p-value α Avg

ranks

p-value α

20% EBO-1 vs

GA-1

1.5 vs

1.5

0.869 0.05 1.5 vs

1.5

0.898 0.05 1.5 vs

1.5

0.729 0.05

EBO-1 vs

BO-1

1.5 vs

1.5

0.784 0.025 1.55 vs

1.45

0.216 0.025 1.25 vs

1.75

0.053 0.025

40% EBO-1 vs

GA-1

1.7 vs

1.3

0.076 0.025 1.35 vs

1.65

0.076 0.025 1.8 vs

1.2

0.001 0.025

EBO-1 vs

BO-1

1.45 vs

1.55

0.985 0.05 1.55 vs

1.45

0.349 0.05 1.45 vs

1.55

0.845 0.05

60% EBO-1 vs

GA-1

1.65 vs

1.35

0.083 0.025 1.5 vs

1.5

0.898 0.05 1.85 vs

1.15

0.001 0.025

EBO-1 vs

BO-1

1.4 vs

1.6

0.927 0.05 1.85 vs

1.15

0.002 0.025 1.32 vs

1.68

0.126 0.05

Table 6.7 summarises the statistical significance of the results from Table 6.6, as well as the results

for precision and recall. The results shown in this table are mixed. For F-measure, EBO-1 performed

well, winning in 2/6 cases and drawing in 2/6, thus losing in only 2/6. However, none of these

differences were statistically significant. For precision, EBO-1 is outperformed by BO-1 with

statistical significance when δ=60%, and for recall, EBO-1 is outperformed by GA-1 when δ=40%

and 60%. Despite this, as previously mentioned, no statistically significant difference was observed

for F-measure. Thus, whilst those loses for precision and recall were statistically significant, they

were not significant enough to tip the balance for F-measure.

Considering the results of both Table 6.3 and 6.7, regarding predictive performance, EBO-1

performed well against GA-1 and BO-1, achieving a higher rank than the compared system in more

cases than it achieved an inferior rank for F-measure. Considering computational efficiency, recall

from the previous chapter that GA-1 took 226.3 minutes on average to run a 5-fold cross-validation

procedure per dataset, whilst BO-1 took only 8.4 minutes. EBO-1 took 18.1 minutes, thus performing

2.15 times slower than BO-1, but 12.5 times faster than GA-1. Considering both these factors, it can

be argued that EBO-1 is the best performing system when compared against GA-1 and BO-1,

achieving high predictive performance and representing a trade-off between GA-1 and BO-1 in

regard to computational efficiency.

172

Table 6.8. F-measure results of EBO-2 against BO-2 and GA-2 on synthetic datasets.

Dataset

δ = 20% δ = 40% δ = 60%

EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2

1 0.670 0.649 0.640 0.654 0.586 0.709 0.570 0.578 0.545

2 0.204 0.203 0.176 0.024 0.022 0.105 0.050 0.094 0.111

3 0.766 0.770 0.759 0.707 0.676 0.702 0.582 0.537 0.612

4 0.809 0.831 0.824 0.793 0.795 0.809 0.710 0.622 0.692

5 0.452 0.603 0.612 0.389 0.614 0.571 0.411 0.499 0.559

6 0.709 0.746 0.762 0.652 0.672 0.751 0.622 0.652 0.672

7 0.585 0.495 0.528 0.537 0.456 0.496 0.509 0.416 0.448

8 0.559 0.531 0.571 0.386 0.480 0.484 0.385 0.341 0.390

9 0.068 0.019 0.098 0.041 0.039 0.000 0.114 0.105 0.143

10 0.975 0.900 0.896 0.960 0.854 0.850 0.879 0.756 0.716

11 0.622 0.573 0.574 0.563 0.554 0.579 0.498 0.474 0.525

12 0.734 0.713 0.681 0.676 0.647 0.692 0.609 0.586 0.599

13 0.628 0.667 0.648 0.605 0.578 0.612 0.510 0.533 0.576

14 0.905 0.974 0.977 0.854 0.948 0.966 0.702 0.908 0.934

15 0.602 0.589 0.595 0.536 0.545 0.575 0.486 0.415 0.565

16 0.544 0.507 0.431 0.442 0.298 0.402 0.364 0.320 0.299

17 0.323 0.289 0.384 0.207 0.304 0.470 0.211 0.070 0.382

18 0.517 0.529 0.576 0.467 0.459 0.408 0.397 0.297 0.373

19 0.427 0.444 0.462 0.351 0.405 0.483 0.275 0.361 0.385

20 0.651 0.710 0.701 0.621 0.632 0.664 0.539 0.554 0.594

Table 6.9 details the statistical significance of the F-measure results shown in Table 6.8 and

summarises the results for precision and recall. These results differ from the results of Table 6.5,

with GA-2 largely outperforming EBO-2 for F-measure and recall, achieving statistical significance

in one instance for F-measure, and all instances for recall. The results for precision are more

favourable for EBO-2, with EBO-2 performing best in 2/6 cases and achieving equal performance in

2/6 cases.

Table 6.9. Results of Wilcoxon signed-rank tests when comparing EBO-2 against BO-2 and GA-2 regarding

F-measure, Precision and Recall, for the 3 δ values on the synthetic datasets.

δ

(%)

Compared

systems

F-measure Precision Recall

Avg

ranks

p-value α Avg

ranks

p-value α Avg

ranks

p-value α

20% EBO-2 vs

GA-2

1.55 vs

1.45

0.600 0.05 1.25 vs

1.75

0.006 0.025 1.85 vs

1.15

0.00005 0.025

EBO-2 vs

BO-2

1.45 vs

1.55

0.409 0.025 1.5 vs

1.5

0.729 0.05 1.45 vs

1.55

0.368 0.05

40% EBO-2 vs

GA-2

1.75 vs

1.25

0.017 0.025 1.5 vs

1.5

0.729 0.05 1.8 vs

1.2

0.0004 0.025

EBO-2 vs

BO-2

1.45 vs

1.55

0.990 0.05 1.55 vs

1.45

0.622 0.025 1.38 vs

1.62

0.968 0.05

60% EBO-2 vs

GA-2

1.65 vs

1.35

0.070 0.025 1.4 vs

1.6

0.498 0.05 1.75 vs

1.25

0.0007 0.025

EBO-2 vs

BO-2

1.4 vs

1.6

0.261 0.05 1.7 vs

1.3

0.083 0.025 1.2 vs

1.8

0.004 0.05

173

Figure 6.2 shows graphically how the average F-measure of each of the Auto-PU systems and the

baselines changes over the different values of δ for the biomedical datasets. In order to reduce the

number of figures across this chapter, this Figure shows the results for all Auto-ML systems (EBO-

1, EBO-2, BO-1, BO-2, GA-1, GA-2) and all baseline PU learning methods (DF-PU and S-EM)

investigated in this chapter, but in this current part of the text the analysis is focussed on the results

for EBO-Auto-PU, BO-Auto-PU and GA-Auto-PU only. Note that the charted data for BO-1, BO-2,

GA-1, GA-2, DF-PU, and S-EM were shown in Chapters 4 and 5 but have been included here for

the reader’s reference.

Figure 6.2. Average F-measure results comparison for EBO-1, EBO-2, BO-1, BO-2, GA-1, GA-2,

DF-PU and S-EM, across the three values of δ for the biomedical datasets.

As with the results for GA-Auto-PU, discussed in Section 4.3, and the results for BO-Auto-PU

discussed in Section 5.3, the performance of EBO-Auto-PU does also decline monotonically with

the increase in the value of δ. The decline for δ=60% is sharper than that of GA-Auto-PU and BO-

Auto-PU.

Figure 6.3 shows graphically how the average F-measure of each of the systems changes over

the different values of δ, for the synthetic datasets. GA-1 appears best performing in regard to average

F-measure as it maintains relatively high F-measure values across the values of δ. Whereas, the F-

measure values of EBO-1, EBO-2, BO-1, and BO-2 drop sharply as the value of δ increases.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S-EM

DF-PU

EBO-2

EBO-1

BO-2

BO-1

GA-2

GA-1

δ=20% δ=40% δ=60%

174

Figure 6.3. Average F-measure results comparison for EBO-1, EBO-2, BO-1, BO-2, GA-1, GA-2,

DF-PU and S-EM, across the three values of δ for the synthetic datasets.

In order to further analyse the results, Table 6.10 shows the values of Pearson’s linear correlation

coefficient between the F-measure values achieved by EBO-1, EBO-2, BO-1, BO-2, GA-1, GA-2,

DF-PU, and S-EM and percentages of positive examples in the original dataset, for each δ value, for

the biomedical datasets. Again, in order to reduce the number of tables across this chapter, the results

for all the aforementioned systems or methods are reported in Table 6.6.

Table 6.10. Linear (Pearson’s) correlation coefficient value between the F-measure and the percentage of

positive examples in the original dataset (before hiding some positive examples in the unlabelled set) for each

combination of a method and a δ value, for the biomedical datasets, for all methods.

Method δ = 20% δ = 40% δ = 60%

EBO-1 0.440 0.469 0.460

EBO-2 0.363 0.361 0.447

BO-1 0.398 0.360 0.498

BO-2 0.339 0.348 0.225

GA-1 0.333 0.385 0.504

GA-2 0.340 0.357 0.580

DF-PU 0.988 0.988 0.988

S-EM 0.646 0.558 0.652

Table 6.10 shows a relatively stable correlation for EBO-1, with a moderate correlation observed for

all three δ values, as defined by the categorisation of coefficient values outlined in Section 3.4.3. The

values for δ=20% and 40% are somewhat higher than those observed for BO-1 and GA-1, indicating

that, even at lower values of δ, of the three systems, the performance of EBO-1 is most closely linked

to the percentage of positive instances hidden in the unlabelled set for the biomedical datasets. EBO-

2 displays weak correlations for 20% and 40%, but increases to a moderate correlation for 60%,

following a similar trend to GA-2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

S-EM

DF-PU

EBO-2

EBO-1

BO-2

BO-1

GA-2

GA-1

δ=20% δ=40% δ=60%

175

Table 6.11. Linear (Pearson’s) correlation coefficient value between the F-measure and the percentage of

positive examples in the original dataset (before hiding some positive examples in the unlabelled set) for each

combination of a method and a δ value, for the synthetic datasets, for all methods.

Method δ = 20% δ = 40% δ = 60%

EBO-1 0.651 0.624 0.578

EBO-2 0.627 0.639 0.569

BO-1 0.682 0.710 0.700

BO-2 0.706 0.695 0.659

GA-1 0.712 0.682 0.687

GA-2 0.700 0.702 0.696

DF-PU 0.990 0.990 0.990

S-EM 0.794 0.793 0.776

Table 6.11 shows the values of Pearson’s linear correlation coefficient between the F-measure values

achieved by the systems and the percentages of positive examples in the original dataset, for each δ

value for the synthetic datasets. As was the case for GA-Auto-PU (Section 4.3) and BO-Auto-PU

(Section 5.3), the correlation between percentage of positive instances and F-measure is substantially

higher for EBO-Auto-PU for the synthetic datasets than it was for the biomedical datasets. However,

the correlations are all still moderate, making EBO-1 and EBO-2 the only systems of the six

discussed that do not exhibit a high correlation for any of the values of δ. This is at odds with the

results of Table 6.10, which showed that EBO-1 had the highest correlation of the three systems.

This underscores the importance of considering dataset characteristics and system performance in

tandem to gain a comprehensive understanding of the correlation between these factors.

Considering computational efficiency, recall from the previous chapter that GA-1 took 226.3

minutes on average to run a 5-fold cross-validation procedure per dataset, GA-2 took 223.2 minutes,

whilst BO-1 took only 8.4 minutes and BO-2 took only 9.8 minutes. EBO-1 took 18.1 minutes, thus

performing 2.15 times slower than BO-1, but 12.5 times faster than GA-1. EBO-2 took 20.2 minutes,

thus performing 2.06 times slower than BO-2, but 11.05 times faster than GA-2. Considering these

factors, it can be argued that EBO-1 is the best performing system when compared against GA-Auto-

PU and BO-Auto-PU, achieving high predictive performance and representing a trade-off between

GA-Auto-PU and BO-Auto-PU in regard to computational efficiency.

6.3.2 Results comparing EBO-Auto-PU with two baseline PU

learning methods

This section details the results achieved by EBO-Auto-PU and two baseline PU learning methods

(DF-PU and S-EM, see Section 2.5) when applied to 20 real-world biomedical datasets and 20

176

synthetic datasets. Note that the results in the EBO-1 and EBO-2 columns in the tables reported in

this section are the same as those reported in the previous section, but they are repeated in this section

for the reader’s convenience.

Table 6.12. F-measure results of EBO-1 and baseline PU learning methods on real-world

biomedical datasets.

Dataset

δ = 20% δ = 40% δ = 60%

EBO-1 DF-PU S-EM EBO-1 DF-PU S-EM EBO-1 DF-PU S-EM

Alzheimer’s 0.629 0.195 0.321 0.587 0.194 0.370 0.540 0.171 0.373

Autism 0.986 0.648 0.820 0.926 0.648 0.841 0.927 0.645 0.835

Breast cancer Coi. 0.966 0.697 0.711 0.952 0.711 0.704 0.615 0.697 0.699

Breast cancer Wis. 0.893 0.543 0.898 0.872 0.543 0.903 0.927 0.539 0.904

Breast cancer mut. 0.672 0.489 0.892 0.667 0.489 0.893 0.862 0.485 0.892

Cervical cancer 0.839 0.061 0.054 0.904 0.042 0.053 0.667 0.044 0.046

Cirrhosis 0.532 0.405 0.436 0.453 0.401 0.442 0.507 0.405 0.459

Dermatology 0.899 0.228 0.718 0.813 0.229 0.718 0.716 0.219 0.719

PI Diabetes 0.654 0.516 0.534 0.661 0.516 0.525 0.634 0.515 0.544

ES Diabetes 0.973 0.762 0.792 0.913 0.756 0.859 0.909 0.759 0.793

Heart Disease 0.833 0.705 0.811 0.800 0.705 0.828 0.774 0.702 0.829

Heart Failure 0.732 0.487 0.529 0.666 0.486 0.508 0.640 0.481 0.557

Hepatitis C 0.925 0.176 0.695 0.835 0.171 0.708 0.667 0.160 0.609

Kidney Disease 1.000 0.428 1.000 0.938 0.428 1.000 0.646 0.428 0.951

Liver Disease 0.827 0.834 0.816 0.819 0.832 0.587 0.717 0.834 0.788

Maternal Risk 0.855 0.403 0.454 0.803 0.395 0.433 0.739 0.390 0.438

Parkinsons 0.929 0.856 0.815 0.894 0.860 0.748 0.707 0.860 0.762

Parkinsons Biom. 0.203 0.354 0.333 0.337 0.354 0.261 0.133 0.367 0.331

Spine 0.933 0.652 0.820 0.932 0.652 0.839 0.775 0.652 0.830

Stroke 0.239 0.086 0.102 0.225 0.094 0.102 0.229 0.094 0.102

Table 6.13 summarises the statistical significance of the F-measure results from Table 6.12, as well

as the results for precision and recall.

Table 6.13. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis

when comparing EBO-1 against S-EM and DF-PU regarding F-measure, Precision and Recall, for

the 3 δ values for the biomedical datasets.

δ

(%)

Methods

compared

F-measure Precision Recall

Avg.

ranks

p-value α Avg.

ranks

p-value α Avg.

ranks

p-value α

20% EBO-1 vs

DF-PU

1.1 vs

1.9

0.00004 0.025 1.05 vs

1.95

0.00001 0.025 1.98 vs

1.02

0.0001 0.025

EBO-1 vs

S-EM

1.18 vs

1.82

0.004 0.05 1.22 vs

1.78

0.002 0.05 1.72 vs

1.28

0.030 0.05

40% EBO-1 vs

DF-PU

1.1 vs

1.9

0.00001 0.025 1.0 vs 2.0 0.000002 0.025 1.98 vs

1.02

0.0001 0.025

EBO-1 vs

S-EM

1.2 vs

1.8

0.002 0.05 1.18 vs

1.82

0.001 0.05 1.7 vs

1.3

0.048 0.05

60% EBO-1 vs

DF-PU

1.1 vs

1.9

0.00001 0.025 1.0 vs 2.0 0.000002 0.025 1.95 vs

1.05

0.0001 0.025

EBO-1 vs

S-EM

1.25 vs

1.75

0.004 0.05 1.18 vs

1.82

0.001 0.05 1.65 vs

1.35

0.076 0.05

177

Table 6.13 shows EBO-1 substantially outperforming DF-PU and S-EM across all values of δ for F-

measure and precision with statistical significance. As was the case for GA-1 (Section 4.3) and BO-

1 (Section 5.3), the baseline methods substantially outperform EBO-1 for recall, with DF-PU

outperforming EBO-1 in all cases with statistical significance. S-EM achieved statistically significant

superiority in all but 1 case for recall. However, the reasons for this are the same as those outlined in

Section 4.3, namely that the baselines massively overpredict the positive class, thus resulting in high

recall but low precision.

Table 6.14. F-measure results of EBO-2 and two baseline PU learning methods on real-world

biomedical datasets.

Dataset

δ = 20% δ = 40% δ = 60%

EBO-2 DF-PU S-EM EBO-2 DF-PU S-EM EBO-2 DF-PU S-EM

Alzheimer’s 0.559 0.195 0.321 0.597 0.194 0.370 0.581 0.171 0.373

Autism 0.964 0.648 0.820 0.938 0.648 0.841 0.887 0.645 0.835

Breast cancer Coi. 0.967 0.697 0.711 0.952 0.711 0.704 0.923 0.697 0.699

Breast cancer Wis. 0.882 0.543 0.898 0.863 0.543 0.903 0.839 0.539 0.904

Breast cancer mut. 0.666 0.489 0.892 0.655 0.489 0.893 0.587 0.485 0.892

Cervical cancer 0.867 0.061 0.054 0.904 0.042 0.053 0.516 0.044 0.046

Cirrhosis 0.506 0.405 0.436 0.493 0.401 0.442 0.322 0.405 0.459

Dermatology 0.857 0.228 0.718 0.891 0.229 0.718 0.750 0.219 0.719

PI Diabetes 0.668 0.516 0.534 0.665 0.516 0.525 0.607 0.515 0.544

ES Diabetes 0.957 0.762 0.792 0.905 0.756 0.859 0.915 0.759 0.793

Heart Disease 0.826 0.705 0.811 0.804 0.705 0.828 0.747 0.702 0.829

Heart Failure 0.741 0.487 0.529 0.656 0.486 0.508 0.514 0.481 0.557

Hepatitis C 0.907 0.176 0.695 0.907 0.171 0.708 0.689 0.160 0.609

Kidney Disease 0.911 0.428 1.000 0.897 0.428 1.000 0.656 0.428 0.951

Liver Disease 0.832 0.834 0.816 0.800 0.832 0.587 0.748 0.834 0.788

Maternal Risk 0.854 0.403 0.454 0.810 0.395 0.433 0.731 0.390 0.438

Parkinsons 0.914 0.856 0.815 0.850 0.860 0.748 0.720 0.860 0.762

Parkinsons Biom. 0.259 0.354 0.333 0.276 0.354 0.261 0.203 0.367 0.331

Spine 0.942 0.652 0.820 0.920 0.652 0.839 0.802 0.652 0.830

Stroke 0.232 0.086 0.102 0.225 0.094 0.102 0.201 0.094 0.102

Table 6.14 reports the results of EBO-2 compared with the baseline methods on the synthetic

datasets, whilst Table 6.15 summarises the statistical significance test results. As has been the case

with the previously discussed methods, EBO-2 largely outperforms the baselines for F-measure and

precision across all values of δ, with statistical significance in all but one case. As has been previously

discussed, the baselines overpredict the positive class, achieving high recall but at a substantial loss

to precision.

178

Table 6.15. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis

when comparing EBO-2 against S-EM and DF-PU regarding F-measure, Precision and Recall, for

the 3 δ values for the biomedical datasets.

δ

(%)

Methods

compared

F-measure Precision Recall

Avg.

ranks

p-value α Avg.

ranks

p-value α Avg.

ranks

p-value α

20% EBO-2 vs

DF-PU

1.15 vs

1.85

0.0001 0.025 1.0 vs

2.0

0.000002 0.025 2.0 vs

1.0

0.000002 0.025

EBO-2 vs

S-EM

1.175 vs

1.825

0.003 0.05 1.2 vs

1.8

0.0001 0.05 1.75 vs

1.25

0.009 0.05

40% EBO-2 vs

DF-PU

1.15 vs

1.85

0.00004 0.025 1.05 vs

1.95

0.0000004 0.025 1.98 vs

1.02

0.0001 0.025

EBO-2 vs

S-EM

1.15 vs

1.85

0.0001 0.05 1.25 vs

1.75

0.0002 0.05 1.75 vs

1.25

0.036 0.05

60% EBO-2 vs

DF-PU

1.25 vs

1.75

0.002 0.025 1.15 vs

1.85

0.000003 0.025 1.95 vs

1.05

0.00001 0.025

EBO-2 vs

S-EM

1.5 vs

1.5

0.546 0.05 1.32 vs

1.68

0.033 0.05 1.8 vs

1.2

0.002 0.05

Moving next to the synthetic datasets, Table 6.16 reports the results of EBO-1 compared with the

baseline methods.

Table 6.16. F-measure results of EBO-Auto-PU with base search space and baseline PU learning

methods on synthetic datasets.

Dataset

δ = 20% δ = 40% δ = 60%

EBO-1 DF-PU S-EM EBO-1 DF-PU S-EM EBO-1 DF-PU S-EM

1 0.678 0.484 0.616 0.644 0.484 0.602 0.581 0.483 0.613

2 0.194 0.125 0.194 0.043 0.120 0.130 0.040 0.112 0.120

3 0.770 0.552 0.589 0.685 0.552 0.587 0.594 0.552 0.600

4 0.809 0.454 0.644 0.795 0.416 0.633 0.675 0.417 0.630

5 0.439 0.357 0.402 0.420 0.356 0.436 0.292 0.357 0.465

6 0.714 0.403 0.477 0.677 0.402 0.525 0.605 0.402 0.582

7 0.565 0.285 0.433 0.545 0.283 0.462 0.487 0.282 0.451

8 0.508 0.326 0.468 0.400 0.326 0.457 0.332 0.326 0.439

9 0.023 0.035 0.099 0.076 0.000 0.044 0.133 0.000 0.120

10 0.973 0.233 0.612 0.959 0.234 0.627 0.907 0.233 0.663

11 0.635 0.491 0.505 0.576 0.491 0.520 0.535 0.490 0.517

12 0.752 0.397 0.550 0.673 0.397 0.567 0.607 0.394 0.586

13 0.665 0.500 0.551 0.610 0.460 0.556 0.539 0.456 0.549

14 0.909 0.529 0.817 0.878 0.529 0.840 0.790 0.529 0.873

15 0.580 0.387 0.423 0.558 0.387 0.425 0.462 0.385 0.422

16 0.546 0.239 0.414 0.451 0.239 0.401 0.372 0.240 0.299

17 0.372 0.214 0.262 0.297 0.214 0.281 0.129 0.214 0.267

18 0.532 0.372 0.444 0.469 0.373 0.433 0.413 0.373 0.422

19 0.500 0.378 0.426 0.324 0.378 0.429 0.273 0.376 0.413

20 0.661 0.610 0.615 0.633 0.610 0.620 0.532 0.610 0.613

179

Table 6.17. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis

when comparing EBO-1 against S-EM and DF-PU regarding F-measure, Precision and Recall, for

the 3 δ values for the synthetic datasets.

δ

(%)

Methods

compared

F-measure Precision Recall

Avg.

ranks

p-value α Avg.

ranks

p-value α Avg.

ranks

p-value α

20% EBO-1 vs

DF-PU

1.05 vs

1.95

0.000004 0.025 1.05 vs

1.95

0.000004 0.025 1.8 vs

1.2

0.005 0.025

EBO-1 vs

S-EM

1.1 vs

1.9

0.00005 0.05 1.1 vs

1.9

0.00002 0.05 1.52 vs

1.48

0.520 0.05

40% EBO-1 vs

DF-PU

1.1 vs

1.9

0.00005 0.025 1.05 vs

1.95

0.00001 0.025 1.9 vs

1.1

0.00001 0.025

EBO-1 vs

S-EM

1.2 vs

1.8

0.017 0.05 1.1 vs

1.9

0.00001 0.05 1.9 vs

1.1

0.00001 0.05

60% EBO-1 vs

DF-PU

1.25 vs

1.75

0.015 0.025 1.15 vs

1.85

0.000004 0.025 1.9 vs

1.1

0.00001 0.025

EBO-1 vs

S-EM

1.55 vs

1.45

0.452 0.05 1.35 vs

1.65

0.033 0.05 1.9 vs

1.1

0.0001 0.05

Table 6.17 summarises the statistical significance of the F-measure results from Table 6.16, as well

as the results for precision and recall. The results follow a largely similar trend to those reported in

Table 6.13, with EBO-1 outperforming the baseline methods for F-measure and precision across all

values of δ with statistical significance, except in the case of EBO-1 vs S-EM when δ=60%, where

S-EM outperformed EBO-1 for F-measure. Recall that this was also the case for BO-1 when

compared with S-EM on the synthetic datasets. The performance of the baseline methods in regard

to recall follow the same trend as the results of the previous sections, with the baseline methods

outperforming BO-1 with statistical significance. However, this is due to the large overprediction of

the positive class as previously discussed.

Moving on to EBO-2, Table 6.18 reports the results of EBO-2 compared with the baseline

methods on the synthetic datasets, whilst Table 6.19 summarises the results of the statistical

significance tests. EBO-2 again largely outperforms the baseline methods regarding F-measure and

precision for all values of δ, with the exception of S-EM for F-measure when δ=60%. The difference

in performance is statistically significant in all cases when EBO-2 outperforms the baselines, with

the exception of S-EM when δ=40% for F-measure. For recall, as expected based on previous results,

the baseline methods outperform EBO-2 for all values of δ with statistical significance.

180

Table 6.18. F-measure results of EBO-Auto-PU with extended search space and two baseline PU

learning methods on synthetic datasets.

Dataset

δ = 20% δ = 40% δ = 60%

EBO-2 DF-PU S-EM EBO-2 DF-PU S-EM EBO-2 DF-PU S-EM

1 0.670 0.484 0.616 0.654 0.484 0.602 0.570 0.483 0.613

2 0.204 0.125 0.194 0.024 0.120 0.130 0.050 0.112 0.120

3 0.766 0.552 0.589 0.707 0.552 0.587 0.582 0.552 0.600

4 0.809 0.454 0.644 0.793 0.416 0.633 0.710 0.417 0.630

5 0.452 0.357 0.402 0.389 0.356 0.436 0.411 0.357 0.465

6 0.709 0.403 0.477 0.652 0.402 0.525 0.622 0.402 0.582

7 0.585 0.285 0.433 0.537 0.283 0.462 0.509 0.282 0.451

8 0.559 0.326 0.468 0.386 0.326 0.457 0.385 0.326 0.439

9 0.068 0.035 0.099 0.041 0.000 0.044 0.114 0.000 0.120

10 0.975 0.233 0.612 0.960 0.234 0.627 0.879 0.233 0.663

11 0.622 0.491 0.505 0.563 0.491 0.520 0.498 0.490 0.517

12 0.734 0.397 0.550 0.676 0.397 0.567 0.609 0.394 0.586

13 0.628 0.500 0.551 0.605 0.460 0.556 0.510 0.456 0.549

14 0.905 0.529 0.817 0.854 0.529 0.840 0.702 0.529 0.873

15 0.602 0.387 0.423 0.536 0.387 0.425 0.486 0.385 0.422

16 0.544 0.239 0.414 0.442 0.239 0.401 0.364 0.240 0.299

17 0.323 0.214 0.262 0.207 0.214 0.281 0.211 0.214 0.267

18 0.517 0.372 0.444 0.467 0.373 0.433 0.397 0.373 0.422

19 0.427 0.378 0.426 0.351 0.378 0.429 0.275 0.376 0.413

20 0.651 0.610 0.615 0.621 0.610 0.620 0.539 0.610 0.613

Table 6.19. Results of Wilcoxon signed-rank tests with Holm correction for multiple hypothesis

when comparing EBO-2 against S-EM and DF-PU regarding F-measure, Precision and Recall, for

the 3 δ values for the synthetic datasets.

δ

(%)

Methods

compared

F-measure Precision Recall

Avg.

ranks

p-value α Avg.

ranks

p-value α Avg.

ranks

p-value α

20% EBO-2 vs

DF-PU

1.0 vs

2.0

0.000002 0.025 1.0 vs

2.0

0.000002 0.025 1.95 vs

1.05

0.00001 0.05

EBO-2 vs

S-EM

1.05 vs

1.95

0.00001 0.05 1.05 vs

1.95

0.000004 0.05 1.95 vs

1.05

0.000004 0.025

40% EBO-2 vs

DF-PU

1.15 vs

1.85

0.0002 0.025 1.05 vs

1.95

0.000004 0.025 1.9 vs

1.1

0.00001 0.05

EBO-2 vs

S-EM

1.3 vs

1.7

0.083 0.05 1.1 vs

1.9

0.00001 0.05 1.98 vs

1.02

0.0001 0.025

60% EBO-2 vs

DF-PU

1.2 vs

1.8

0.004 0.025 1.05 vs

1.95

0.000004 0.025 1.95 vs

1.05

0.00001 0.025

EBO-2 vs

S-EM

1.65 vs

1.35

0.522 0.05 1.2 vs

1.8

0.006 0.05 1.9 vs

1.1

0.00005 0.05

6.4 The PU Learning Algorithm’s Hyperparameter

Values Most Frequently Selected by EBO-Auto-PU

In this section we report the optimised PU learning algorithm’s hyperparameter values which were

most frequently selected by EBO-Auto-PU utilising the base search space (EBO-1) and the extended

search space (EBO-2). We report the selection frequency, baseline frequency, and their difference.

The selection frequency of a PU learning algorithm’s hyperparameter value is calculated as the ratio

181

of the number of times that value was used in the optimised PU learning algorithm returned by EBO-

Auto-PU over the total number of EBO-Auto-PU runs, which is 300 per type of dataset (biomedical

or synthetic), considering 20 datasets times 3 values of 𝛿 times 5 runs of an EBO-Auto-PU version

per dataset, due to the use of 5-fold cross-validation. The baseline frequency is the expected selection

frequency of a hyperparameter value if all values of that hyperparameter were randomly selected for

use in a PU learning algorithm. I.e., it is calculated by simply dividing 1 (one) by the number of

candidate values for that hyperparameter. The difference between these two frequencies is simply

the selection frequency minus the baseline frequency.

As mentioned in previous chapters, little has been written on the topic of suitable algorithm

configuration for PU learning, and no guidelines exist in the literature. By analysing the most

frequently selected hyperparameter values in our experiments, we can begin to understand which PU

learning algorithm configurations perform well. This information could prove useful for future

research into improving the performance of PU learning algorithms.

Throughout this section, the term “classifier” is used to refer to a classification algorithm (rather

than a classification model learned by an algorithm), unless explicitly mentioned otherwise.

6.4.1 The Hyperparameter Values Most Frequently Selected

by EBO-1

Table 6.20. Selection frequency of hyperparameter values by EBO-1 for the biomedical datasets.

Hyperparameter Most selected

value

Selection

Freq. (%)

Baseline

Freq. (%)

Diff.

(%)

Phase 1A Iteration count 2 19.67 10.00 9.67

Phase 1A RN Threshold 0.4 13.67 10.00 3.67

Phase 1A Classifier Logistic reg. 14.00 5.56 8.44

Phase 1B Flag TRUE 59.67 50.00 9.67

Phase 1 B RN Threshold 0.4 18.00 10.00 8.00

Phase 1B Classifier SVM 11.67 5.56 6.11

Phase 2 Classifier Random forest 9.33 5.5% 3.77

Table 6.20 reports the most frequently selected values of the hyperparameters of the optimised PU

learning algorithms returned by all runs of EBO-1 on the biomedical datasets. Table 6.21 reports the

most frequently selected values of the hyperparameters of the optimised PU learning algorithms

returned by all runs of EBO-1 on the synthetic datasets. Starting with the classifiers, Logistic

Regression was selected as the most frequent value for Phase 1A classifier for both the biomedical

182

and the synthetic datasets. This is unsurprising, given the results of the previous two chapters looking

at the most frequently selected hyperparameters by GA-Auto-PU and BO-Auto-PU, as logistic

regression has occurred frequently as the most selected value for the classifier parameters. As per the

discussion of the previous chapters, this supports the hypothesis that the Phase 1A Classifier most

frequently selected values are adhering to the assumptions of separability and smoothness (see

Section 2.5). Logistic regression was also selected most frequently as Phase 1B Classifier for the

synthetic datasets, whilst support vector machine (SVM) was selected most frequently for the

biomedical datasets. SVM has also occurred with relative frequency in the previous results sections,

being the most frequently selected Phase 1B Classifier for GA-2 on the biomedical datasets, and BO-

1 for the synthetic datasets. Several proposed PU learning methods have been based on the SVM

classifier [6,15,126,140,172,208,209,210], and these results support SVM as a good choice for a

component of a two-step PU learning algorithm. Regarding Phase 2 Classifier, the most frequently

selected value by EBO-1 for the biomedical datasets was random forest, and for the synthetic datasets

was deep forest. Both of these are powerful classifiers that have, like logistic regression, appeared

frequently as the most selected classifiers.

Table 6.21. Selection frequency of hyperparameter values by EBO-1 for the synthetic datasets.

Hyperparameter Most selected

value

Selection

Freq. (%)

Baseline

Freq. (%)

Diff.

(%)

Phase 1A Iteration count 2 17.00 10.00 7.00

Phase 1A RN Threshold 0.1 15.67 10.00 5.67

Phase 1A Classifier Logistic reg. 11.00 5.56 5.44

Phase 1B Flag TRUE 55.48 50.00 5.48

Phase 1 B RN Threshold 0.25 13.00 10.00 3.00

Phase 1B Classifier Logistic reg. 8.67 5.56 3.11

Phase 2 Classifier Deep forest 12.67 5.56 7.11

As with the previous chapters, a more in-depth discussion of the Phase 1A Iteration Count parameter

has been conducted which has, again, shown moderate to strong correlations between the average

most frequently selected value of the Phase 1A Iteration Count parameter and the percentage of

positive instances in the full unaltered dataset. The Pearson’s correlation coefficient values for the

biomedical datasets are -0.656, -0.688, and -0.696 when δ = 20%, 40%, and 60% respectively. The

Pearson’s correlation coefficient values for the synthetic datasets are -0.640, -0.708, and -0.684 when

δ = 20%, 40%, and 60% respectively.

183

6.4.2 The Hyperparameter Values Most Frequently Selected

by EBO-2

Table 6.22. Selection frequency of hyperparameter values by EBO-2 for the biomedical datasets.

Hyperparameter Most selected

value

Selection

Freq. (%)

Baseline

Freq. (%)

Diff.

(%)

Phase 1A Iteration count 2 22.33 10.00 12.33

Phase 1A RN Threshold 0.15 18.33 10.00 8.33

Phase 1A Classifier LDA 10.33 5.56 4.77

Phase 1B Flag TRUE 56.67 50.00 6.67

Phase 1 B RN Threshold 0.2 14.67 10.00 4.67

Phase 1B Classifier Logistic reg. 9.00 5.56 3.44

Spy rate 0.1 24.00 5.56 18.44

Spy tolerance 0.01 13.88 10.00 3.88

Spy flag False 65.67 50.00 15.67

Phase 2 Classifier Deep forest 10.67 5.56 5.11

Table 6.22 reports the most frequently selected values of the hyperparameters of the optimised PU

learning algorithms returned by all runs of EBO-2 on the synthetic datasets. Starting with the

classifiers, the Phase 1A Classifier most frequently selected values were linear discriminant analysis

(LDA) and Gaussian naïve Bayes (NB) for the biomedical and synthetic datasets respectively.

Throughout this work, a trend has emerged of favouring linear classifiers for the Phase 1A Classifier

hyperparameter, with the classifiers LDA, Gaussian NB, Bernoulli NB, and logistic regression being

selected in almost every case, with the exception that random forest was selected most frequently by

GA-2 on the biomedical datasets. From these results, it can be argued that the best choice of a

classifier for the Phase 1A Classifier parameter is a linear classifier, adhering to the assumptions of

separability and smoothness noted in Section 2.5. Such cannot be argued for the Phase 1B Classifier,

as little cohesion has emerged regarding the most suitable classifier for this hyperparameter.

However, for Phase 2 Classifier, a favourite has emerged with the deep forest classifier occurring

6/12 times. Deep forest is a powerful classifier utilised in our baseline method, DF-PU [129].

However, as it is a relatively recently proposed classifier, it has not yet been widely used in the

machine learning field. These results indicate that, at least in the area of PU learning, the deep forest

classifier is a promising candidate tool.

184

Table 6.23. Selection frequency of hyperparameter values by EBO-2 for the synthetic datasets.

Hyperparameter Most selected

value

Selection

Freq. (%)

Baseline

Freq. (%)

Diff.

(%)

Phase 1A Iteration count 2 19.00 10.00 9.00

Phase 1A RN Threshold 0.1 20.00 10.00 10.00

Phase 1A Classifier Gaussian NB 17.67 5.56 12.11

Phase 1B Flag TRUE 53.67 50.00 3.67

Phase 1 B RN Threshold 0.3 12.67 10.00 2.67

Phase 1B Classifier Logistic reg. 12.67 5.56 7.11

Spy rate 0.15 18.33 5.56 12.77

Spy tolerance 0.07 16.07 10.00 6.07

Spy flag False 52.67 50.00 2.67

Phase 2 Classifier Deep forest 20.33 5.56 14.77

Regarding spy results, Spy flag was, again, set to False in the majority of cases, albeit with a much

smaller margin than all previous results. The trend seen throughout this work is of candidate solutions

that do not utilise the spy method have been heavily favoured over those that do. The spy method is

common throughout the PU learning literature, and many extensions and modifications of the method

have been proposed [126,163,211,212,213]. However, these results indicate that it may not be as

effective as the frequency of its use would suggest. This further justifies the need for Auto-ML

systems such as those proposed throughout this work as, simply based on a literature review of the

PU learning literature, one would be forgiven for assuming that spy-based methods are the most

effective PU learning systems, given the frequency of their use. However, based on these results, it

is clear that this is not the case.

Moving on to the discussion of the Phase 1A Iteration Count hyperparameter, 2 was the most

frequently selected value for both the biomedical and synthetic datasets by EBO-2. This was also the

case for both types of datasets for EBO-1, and BO-2. Interestingly, 2, 4, and 1 are the only values to

appear as the most frequently selected throughout this work. This is interesting, given that they are

relatively low values (in the context of the other available values {1 … 10}. PU learning datasets

often exhibit large degrees of class imbalance, and the datasets used in this work are no exception.

However, it has been shown throughout this work that the average selected value of this parameter

exhibits a moderate to strong correlation to the percentage of positive instances in the full, unaltered

datasets. The Pearson’s correlation coefficient values for the biomedical datasets for EBO-2 follow

this same trend, -0.680, -0.710, and -0.687 when δ = 20%, 40%, and 60% respectively. For the

synthetic datasets, -0.721, -0.705, and -0.646 when δ = 20%, 40%, and 60% respectively. It could be

185

argued that this is shown somewhat in the most frequently selected values. Recalling the dataset

characteristics, the biomedical datasets have a much higher percentage of positive instances in the

full, unaltered dataset than the synthetic datasets, as the synthetic datasets were constrained to

keeping the distribution at 50% positive instances at most. No such constraint was applied to the

biomedical datasets as they are real-world datasets, and the dataset with the highest percentage of

positive instances has a percentage of 75.38%. GA-1 and GA-2 both selected 1 most frequently for

the biomedical datasets, whilst GA-1, GA-2, and EBO-1 selected 4 most frequently for the synthetic

datasets. Based on these results, and the correlations shown throughout this work, it can be argued

that when assembling a two-step PU learning algorithm, one should consider the class imbalance

present when deciding upon the iteration count to apply.

6.5 Comparing the Auto-PU Systems’ Learning Rates

In this section, the learning rates of the three Auto-ML systems are compared. That is, Figures 6.4 to

6.6 display the fitness value of each individual (candidate solution) whose fitness is evaluated by the

objective function, for GA-1, BO-1, and EBO-1 for three datasets. First, the ‘Kidney Disease’

dataset, as it was on this dataset that most methods achieved the highest F-measure. Second, the

‘Parkinsons Biom.’ dataset, as it was on this dataset that most methods achieved the lowest F-

measure. Finally, the ‘PI Diabetes’ dataset, as this dataset generally elicited mid-level performance

for all methods. These datasets’ main characteristics are shown in Table 3.1.

This analysis focusses only on this sample of three biomedical datasets. Given the large number

of datasets used in this work, providing graphs and analysis for all would be impractical. As the

biomedical datasets are arguably more important than the synthetic datasets due to their real-world

applications, we sampled only the biomedical datasets for this analysis. Furthermore, we have

selected only the base-search space implementations for this analysis, given that the distinction

between base vs extended search space is not critical.

The x axis on the graphs shows the number of fitness evaluations, whilst the y axis shows the

best fitness observed at that point in the optimisation procedure. The number of fitness evaluations

is being used as a proxy for the ‘cost’ of each Auto-PU system, so that a direct comparison can be

made between the systems. This is more accurate than simply using the number of iterations as an

186

iteration for the GA-based system would be much slower to complete than an iteration for the BO-

based system. The fitness evaluation procedure is by far the biggest bottleneck in the three Auto-PU

systems, so whilst each system does perform additional steps (such as the evolution procedures of

the GA, or the surrogate model training of the BO), the time taken for these steps is relatively small

in the context of the fitness evaluation. This is discussed in more detail in Section 5.1.3. GA-Auto-

PU performs by far the most fitness evaluations (101 individuals × 50 generations = 5050), whilst

BO-Auto-PU performs the least (101 candidate solutions in the first iteration, then 1 × 49 iterations

= 150). EBO-Auto-PU sits between the two (101 candidate solutions in the first iterations, then 11 ×

49 iterations = 640).

(a). δ = 20%.

(b). δ = 40%.

(c). δ = 60%.

Figure 6.4. Learning rates of the Auto-PU systems on Kidney Disease dataset, varying the δ value.

187

 (a). δ = 20%.

 (b). δ = 40%.

(c). δ = 60%.

Figure 6.5. Learning rates of the Auto-PU systems on Parkinson’s Biom. dataset, varying the δ

value.

188

(a). δ = 20%.

(b). δ = 40%.

(c). δ = 60%.

Figure 6.6. Learning rates of the Auto-PU systems on PI Diabetes dataset, varying the δ value.

While GA-1 demonstrates a conventional learning rate pattern for genetic algorithms, characterized

by initial large jumps in performance and subsequent convergence, BO-1 deviates from this trend by

exhibiting early convergence with only 1 or 2 substantial performance jumps. It could be argued that

this early convergence is likely due to BO-1 converging to a local optima. However, in 6 out of the

189

9 cases it achieves a higher fitness than GA-1 at its final fitness evaluation, which is much sooner

than the final fitness evaluation of GA-1 (which performs a much greater number of fitness

evaluations). This supports claims in Chapter 5 that BO-1 was generally a more efficient optimiser

than GA-1.

EBO-1 sits somewhere between GA-1 and BO-1 regarding their learning rate trend, with fewer

jumps in performance than GA-1 but more than BO-1.

Overall, GA-1 achieves the highest fitness at the final fitness evaluation in 1 out of the 9 analysed

cases, BO-1 in 2 out of 9 cases, and EBO-1 in 6 out of 9 cases; and in general GA-1 needs a much

larger number of fitness evaluations in order to achieve fitness values competitive with BO-1 and

EBO-1.

6.6 Summary

Overall, considering the comparison between the EBO-based systems and the PU learning baselines,

both EBO-1 and EBO-2 outperformed the baselines in general, with statistical significance regarding

F-measure and precision in several cases. S-EM did, however, show a large increase in predictive

performance for δ=60%, as has been shown and discussed in the previous chapters.

Regarding the comparison with the GA-based and BO-based systems, the experimental results

indicate that EBO-1 performs favourably in terms of predictive performance when compared to GA-

1, and BO-1. Although statistical significance is not observed in most cases, EBO-1 consistently

outperforms or performs on par with the compared systems for F-measure, precision, and recall.

EBO-2 performs similarly to BO-2 and GA-2 in terms of F-measure, precision, and recall, with some

exceptions. EBO-2 achieves the best average rank in the majority of cases, outperforming GA-2 in

precision at δ=40% with statistical significance. However, the results indicate that GA-2 generally

outperforms EBO-2 in terms of F-measure and recall, with statistical significance observed in

multiple instances. Conversely, EBO-2 exhibits better precision performance in some cases.

Regarding computational efficiency, the EBO-based systems strike a balance between the GA and

BO-based systems in terms of computational efficiency. Overall, considering both predictive

performance and computational efficiency, EBO-1 emerges as the preferred system compared to the

other methods evaluated in this research.

190

To summarise the data regarding the most frequently selected hyperparameter values, the results

indicate that linear classifiers, such as Logistic Regression, LDA, and Gaussian NB, are favoured as

Phase 1A Classifiers in PU learning algorithms, supporting the hypothesis that the selection of this

hyperparameter adheres to the assumptions of separability and smoothness that are fundamental to

the two-step PU learning framework. The Phase 1B Classifier does not exhibit a clear preferred

choice across datasets, indicating that the selection of this hyperparameter is highly dataset specific.

For Phase 2 Classifier, the deep forest classifier shows promise in both biomedical and synthetic

datasets, suggesting that this relatively recently proposed classifier is a powerful tool in the context

of PU learning. The results also show that low values of the Phase 1A Iteration Count hyperparameter

are commonly selected and exhibit a correlation with the percentage of positive instances in the

datasets. Thus, when designing a two-step PU learning algorithm, one should consider the class

distribution when setting this value. Additionally, the Spy method is, surprisingly, not frequently

utilized, despite its prevalence in PU learning literature. These findings emphasize the importance of

automated systems, like the proposed Auto-ML systems, in selecting suitable hyperparameters for

PU learning algorithms based on dataset characteristics and performance correlations.

At the start of this chapter 2 research questions were posed to evaluate EBO-Auto-PU. Firstly,

does EBO-Auto-PU present a good trade-off, in regard to computational efficiency, between GA-

Auto-PU and BO-Auto-PU? And, secondly, does EBO-Auto-PU achieve good predictive

performance compared with GA-Auto-PU? To answer the first question, EBO-Auto-PU does present

a good trade-off in regard to computational efficiency, performing 2.06 - 2.15 times slower than BO-

Auto-PU, but 11.05-12.5 times faster than GA-Auto-PU. It can be argued that this is a good trade-

off, given that 11.05-12.5 is, arguably, a substantial improvement upon GA-Auto-PU, whilst 2.06-

2.15 is not a substantial decline in performance compared with BO-Auto-PU. In response to the

second question, considering EBO-1 and EBO-2 separately, the answers are yes and no respectively.

The aim was to improve upon the performance of GA-Auto-PU, which, despite lacking statistical

significance, EBO-1 did against GA-1. EBO-1 achieved a superior rank against both GA-1 and BO-

1, thus representing an improvement in performance. Whilst these results are not statistically

significant, they are an improvement. Statistical significance is not the sole indicator of improvement,

it is a commonly used measure to determine whether observed differences are likely due to chance

191

or a genuine effect. However, it does not discount the possibility of meaningful trends or

improvements that fall short of statistical significance. In this context, the results of EBO-1, even

without statistical significance, demonstrate a consistent trend of outperforming both GA-1 and BO-

1. Considering EBO-2, it cannot be argued that this system improved upon GA-2 in regard to

predictive performance. So, to evaluate both EBO-1 and EBO-2 in regard to the research questions

posed, it can be said that both achieve the goal of the first question, whilst EBO-1 achieves the goal

set by the second. Thus, to conclude, EBO-1 has obtained overall the best predictive performance of

the Auto-PU systems evaluated in this work.

192

Chapter 7

Conclusions

Positive-Unlabelled (PU) learning is an under-explored area of machine learning that has potential

to aid challenging learning tasks, where fully labelled data is impractical or impossible to obtain.

This learning paradigm occurs frequently, as discussed in Chapters 1 and 2, and naturally occurs in

areas of great importance such as medical diagnosis, gene function prediction, and cyber security.

However, the field is challenging. Until recently, guidance regarding specifically how to evaluate

PU learning classifiers was limited. Standard evaluation metrics cannot be calculated when using

genuine PU data, and the right metric to use for evaluation depends heavily on the learning task.

Furthermore, many PU learning methods have been proposed in the literature, with little guidance

regarding algorithm construction.

In this work, these issues have been approached. Whilst there are limitations to the solutions

presented, it is hoped that the contributions aid the literature of PU learning and provide guidance to

future researchers. This chapter outlines the contributions made (Section 7.1) and future research

directions (Section 7.2).

7.1 Summary of Contributions

In the Introduction chapter of this thesis, its primary contributions were briefly outlined. In this

section, these contributions will be discussed in more detail.

193

7.1.1 A Framework for Evaluating the Predictive Performance

of PU Learning Algorithms

Evaluation of PU learning algorithms is non-trivial, as was discussed in Section 2.5, given that the

true class labels of all instances are not defined. Thus, metrics such as the true positive, false positive,

true negative, and false negative counts cannot be accuracy calculated. These values are the

foundation of most of the popular evaluation metrics in the field of standard classification, thus a

challenge is presented.

In our previous work [20], a literature review was conducted to establish the most frequently

used evaluation metrics and the most frequently used type of dataset. By type of dataset, we refer to

either genuine PU data, or PN (Positive-Negative) data that has been engineered to a PU dataset.

Guidelines for evaluation were established, determining that newly proposed PU learning algorithms

should be evaluated on engineered PU datasets with varying percentages of positive instances hidden

in the unlabelled set. F-measure, precision, and recall should all be reported, given that either

precision or recall may be important depending on the application. When evaluating on genuine PU

data, if using standard evaluation metrics, it should be noted that these metrics are simply an

estimation, rather than accurate calculations. However, before evaluating on genuine PU data, it is

important to first gain an understanding of the models’ performance by evaluating on engineered PU

data as discussed. In addition, to aid in the evaluation of PU learning algorithms, benchmarking

datasets have been made publicly available6.

7.1.2 An Auto-ML Framework for PU Learning

Chapter 3 of this thesis details the Auto-ML framework used for developing the Auto-PU systems

presented in this work. This was provided in detail so that other researchers can utilise it for

development of Auto-ML systems specific to PU learning.

The framework features a flexible search space structure, allowing researchers to incorporate

various algorithmic components of PU learning, such as different classifiers and more discrete values

for the numeric hyperparameters. Furthermore, the search spaces could be adapted to consider

6 https://github.com/jds39/Unlabelled-Datasets/

194

continuous values, rather than the discrete values currently used. However, the discrete values allow

for a more controlled analysis of the correlation between some of the most frequently selected

hyperparameter values and the predictive performance of the Auto-PU systems, such as was

conducted in this work. The framework also presents a clearly defined objective function that can be

used for the evaluation of two-step PU learning methods.

7.1.3 The Proposed Auto-PU Systems

The Auto-PU systems proposed were the primary contributions of this work. All three of these

systems utilise the Auto-ML framework outlined in Section 7.1.2. Each of the Auto-PU systems had

two versions, with a base or extended search space, and each version was evaluated in two separate

experiments involving 20 biomedical datasets and 20 synthetic datasets.

GA-Auto-PU was the first Auto-ML system specific to PU learning. It achieved statistically

significant better performance against TPOT, a state-of-the-art Auto-ML system for binary

classification, and against two strong baseline PU learning methods. However, regarding efficiency,

GA-Auto-PU is expensive to run, averaging 226.3 and 223.2 minutes to run a 5-fold cross-validation

procedure per dataset, when utilising the base search space and the extended search space

respectively. To improve upon the computational efficiency, BO-Auto-PU was proposed.

BO-Auto-PU is a Bayesian optimisation (BO)-based Auto-ML system that achieved the goal of

improving the computational efficiency of GA-Auto-PU, averaging 8.4 and 9.8 minutes to run a 5-

fold cross-validation procedure per dataset, when using the base search space and the extended search

space respectively, being 23-27 times faster than GA-Auto-PU. However, this was achieved at a

small loss to predictive performance. It was hypothesised that this loss in predictive performance

could be due to a lack of population diversity by the BO-based system in comparison to the GA. GA-

Auto-PU introduces diversity through the use of evolutionary operators, but no such diversity is

introduced by BO-Auto-PU. Therefore, it follows that an improved approach could strike a trade-off

between the two systems in regard to computational efficiency and population diversity.

EBO-Auto-PU was proposed based on a new hybrid approach between BO and evolutionary

computation. This optimisation procedure is a contribution in itself and is discussed in Section 7.1.5.

EBO-Auto-PU achieved the aim of striking a trade-off between GA-Auto-PU and BO-Auto-PU in

195

regard to computational efficiency, performing 2.06–2.15 times slower than BO-Auto-PU, but

11.05–12.50 times faster than GA-Auto-PU. This is a substantial improvement on GA-Auto-PU’s

runtime, arguably without being a substantial increase on BO-Auto-PU’s runtime.

Regarding predictive performance, EBO-Auto-PU utilising the base search space consistently

outperformed or performed on par with GA-Auto-PU and BO-Auto-PU. Whilst statistical

significance was not achieved, the system still exhibited superior performance and a good trade-off

in computational efficiency, and thus EBO-Auto-PU emerged as the preferred of the three Auto-PU

systems proposed in this work. The results for EBO-Auto-PU utilising the extended search space

were not as good, with GA-Auto-PU performing best overall when utilising the extended search

space. A possible reason as to why is due to the much larger number of possible candidate solutions

in the extended search space, compared with the base search space. GA-Auto-PU performs a global

search and evaluates many candidate solutions throughout the run. As BO-Auto-PU and EBO-Auto-

PU employ a surrogate model, they are susceptible to becoming trapped in local optima, as discussed

in Section 2.3. It is possible that the extended search space requires a more extensive search, as

conducted by GA-Auto-PU.

It is worth noting that all three proposed Auto-PU systems achieved statistically significantly

better F-measure results than two baseline PU learning methods (the S-EM (“Spy”) method and deep

forest for PU learning), and as such they are useful contributions to the PU learning area. The only

situation where the Auto-PU systems struggled against the baselines in regard to F-measure was

when the percentage of positive examples hidden in the unlabelled set (as described in Section 3.3)

was set to δ = 60%. Specifically, S-EM outperformed BO-1, BO-2, EBO-1, and EBO-2 on the

synthetic datasets when δ = 60%, although these results were not statistically significant. GA-1 and

GA-2 both outperformed S-EM in this scenario. It can, therefore, be argued that when presented with

a challenging PU learning task where the majority of positive instances are included in the unlabelled

set, the GA-based systems are most suitable.

Given the analysis of the results of the Auto-PU systems, certain conclusions can be drawn

regarding which system to use in which scenario. For challenging learning tasks, the GA-based

systems are arguably the best choice of the three systems due to the robust global search and its

ability to perform well when a high number of positive instances are hidden in the unlabelled set. If

196

fast execution time is an important criterion, the BO-based systems are the best choice given that

they are the best system in regard to computational runtime, and predictive performance is not

significantly decreased in comparison to the other two systems. The EBO-based systems are a good

trade-off between the two other systems, and it achieves the best predictive performance overall

when utilising the base search space. Thus, EBO-Auto-PU with the base search space can be

considered overall the best Auto-ML system among the six versions of Auto-PU systems in this

thesis (two versions for each of the three types of Auto-PU systems).

Regarding the base versus the extended search space, the results throughout this thesis have

frequently shown a preference for not utilising the “Spy” approach to PU learning. As discussed, this

is somewhat surprising given the prevalence of the Spy approach in the PU learning literature.

However, the results arguably lead to the conclusion that, for the Auto-PU systems, the base search

space is superior given that the only addition of the extended search space is the Spy components,

and these are not frequently selected by the Auto-PU systems.

7.1.4 Analysis of Frequently Selected PU Learning Algorithm

Components

In Chapters 4, 5, and 6 of this work, an analysis of the PU learning algorithm components most

frequently selected by the Auto-PU systems was conducted. From this analysis, guidelines can be

established regarding PU learning algorithm design for datasets with specific characteristics.

To summarise this analysis, starting with classifiers, linear classifiers were favoured as the Phase

1A Classifier, which adheres to the assumptions of separability and smoothness that underly the two-

step PU learning framework. The most popular selection for the Phase 2 Classifier was the deep

forest classifier, a relatively recently proposed classifier that serves as the classifier used in a baseline

method, DF-PU.

Extra analysis was conducted on the Phase 1A Iteration Count hyperparameter, analysing the

correlation between the values selected and the class distributions of the datasets. This analysis

revealed a reasonable degree of correlation between the iteration count hyperparameter and the class

distribution. Thus, when designing a two-step PU learning algorithm, one should consider the class

distribution when setting this value.

197

Regarding the “Spy” approach to PU learning (see Section 2.5), determined by the Spy Flag

hyperparameter, as mentioned earlier, it was, surprisingly, frequently not utilised in the optimised

PU learning algorithms. Considering that the use of this Spy approach greatly increases the size of

the search space of the proposed Auto-PU systems, the use of this approach is not recommended for

these systems.

7.1.5 Evolutionary Bayesian Optimisation (EBO)

Due to the observed results of the GA-based and the BO-based systems in regard to predictive

performance and computational efficiency, a hybrid approach between the two was developed. The

GA-based system exhibited high predictive performance but low computational efficiency, whereas

the BO-based system did not perform as well in regard to predictive performance but was much more

computationally efficient. As mentioned earlier, it was hypothesised that the decline in predictive

performance by the BO-based system was due to a lack of population diversity, and that if population

diversity could be increased, predictive performance would improve. However, the aim was for this

to be done such that computational efficiency did not substantially suffer.

This hybrid was achieved through the development of EBO, utilising evolutionary operators and

a population to introduce diversity, whilst employing a surrogate model to ensure computational

efficiency. Full details of this approach can be found in Section 6.2 and results utilising EBO in the

EBO-Auto-PU system are found in Section 6.3. The development of EBO is a contribution not just

to the PU learning literature through EBO-Auto-PU, but the field of Auto-ML optimisers as a whole.

7.2 Future Research Directions

In this section, future research directions are outlined to develop upon the contributions made in this

work.

7.2.1 Experiments with More Datasets

Although each of the Auto-PU systems proposed in this work achieved their specified goals, the

difference in performance between the systems was in general not statistically significant. To

198

improve the analysis, further experiments can be done with more datasets to increase the sample size

and conduct a more rigorous experimentation. Furthermore, this work focussed on datasets in the

biomedical domain, but other domains relevant to PU learning can be explored.

7.2.2 Further Comparisons Against Other Baseline PU

Learning Methods

In this work, the proposed Auto-PU systems were compared against two strong baseline PU learning

methods. However, for a more rigorous evaluation of the systems, comparisons against other baseline

PU learning methods could be conducted. As PU learning is a growing field, there is little doubt that

many new strong methods will be developed in the future. It is encouraged that the Auto-PU systems

should be compared against these proposed new methods to continue to establish their

competitiveness in the expanding environment of PU learning algorithms.

7.2.3 Alternative Search Spaces

Chapter 3 of this thesis proposed two search spaces to be explored with the Auto-PU systems, named

as the base search space and the extended search space. The base search space defines the PU learning

landscape as a discrete subset of algorithm components that constitute a two-step PU learning

method. The extended search space adds spy components into the base search space, allowing the

development of two-step PU learning methods that utilise the spy approach. However, other search

spaces could be defined, either as an extension to the existing search spaces, such as allowing

continuous rather than discrete values or additional discrete values to those already defined, or

entirely new search spaces, such as explorations of the biased approach to PU learning.

7.2.4 Optimising the Hyperparameters of the Auto-ML

Systems

Throughout this thesis, the Auto-PU systems have used their default hyperparameter settings, based

on settings often used in the EA or BO literature. That is, although each Auto-ML system optimised

the hyperparameter settings of a two-step PU learning method, there was no attempt to optimise the

hyperparameter settings of the Auto-ML systems themselves, which would be a new (meta)-level of

199

optimisation. Hence, a natural but challenging approach for future research would be to optimise the

hyperparameter settings of the Auto-ML systems themselves. This can be achieved e.g., through

adaption or self-adaptation of hyperparameter settings during the evolutionary search, in the case of

EAs [79], or an equivalent approach in the case of BO.

7.2.5 Developing New Multi-Objective Auto-ML Systems

The Auto-PU systems proposed in this thesis focus on predictive performance (more specifically the

F-measure) as their single optimisation objective. However, a growing area of interest within Auto-

ML is the computational efficiency of optimised classification pipelines. As such, a future research

direction could be to introduce a new version of the Auto-PU systems that optimise for both

predictive performance and computational efficiency of the produced PU learning algorithms. Such

a system could to some extent favour PU learning algorithms that utilise efficient, fast classifiers

(e.g., naïve Bayes) over complex, slow classifiers (e.g., multilayer perceptron); if this preference

would have little or no impact on the predictive performance of the produced PU learning algorithms.

200

References

[1] Witten, I.H., Frank, E., Hall, M.A. and Pal, C.J., 2005. Practical Machine Learning Tools and

Techniques. Morgan Kaufmann.

[2] Tan, P.N., Steinbach, M. and Kumar, V., 2016. Introduction to Data Mining. Pearson Education

India.

[3] Bekker, J. and Davis, J., 2020. Learning from Positive and Unlabeled Data: A Survey. Machine

Learning, 109(4), pp.719-760.

[4] Elkan, C. and Noto, K., 2008. Learning Classifiers from Only Positive and Unlabeled Data. In

Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pp.213-220.

[5] Li, X. and Liu, B., 2003. Learning to Classify Texts Using Positive and Unlabeled Data. In

Proceedings of the 18th International Joint Conference on Artificial Intelligence. 3, pp.587-592.

[6] Zheng, Y., Peng, H., Zhang, X., et al., 2019. DDI-PULearn: A Positive-Unlabeled Learning

Method for Large-Scale Prediction of Drug-Drug Interactions. BMC Bioinformatics, 20(19), pp.1-

12.

[7] Škunca, N., Roberts, R.J. and Steffen, M., 2017. Evaluating Computational Gene Ontology

Annotations. In The Gene Ontology Handbook, pp.97-109.

[8] Yao, Q., Wang, M., Chen, Y., et al., 2018. Taking Human Out of Learning Applications: A

Survey on Automated Machine Learning. arXiv preprint arXiv:1810.13306.

[9] He, X., Zhao, K. and Chu, X., 2021. AutoML: A Survey of the State-of-the-Art. Knowledge-

based Systems, 212, pp.1-27.

[11] Li, F., Zhang, Y., Purcell, A.W., et al., 2019. Positive-Unlabelled Learning of Glycosylation

Sites in the Human Proteome. BMC Bioinformatics, 20, pp.1-17.

201

[12] Chapel, L., Alaya, M.Z. and Gasso, G., 2020. Partial Optimal Transport with Applications on

Positive-Unlabeled Learning. Advances in Neural Information Processing Systems, 33, pp.2903-

2913.

[13] Jang, J., Gu, G.H., Noh, J., et al., 2020. Structure-based Synthesizability Prediction of Crystals

Using Partially Supervised Learning. Journal of the American Chemical Society, 142(44), pp.18836-

18843.

[14] Gao, Y., Shi, B., Dong, B., et al., 2021. Tax Evasion Detection with FBNE-PU Algorithm Based

on PnCGCN and PU Learning. IEEE Transactions on Knowledge and Data Engineering, 35(1),

pp.931-944.

[15] Li, Z., Hu, L., Tang, Z. and Zhao, C., 2021. Predicting HIV-1 Protease Cleavage Sites with

Positive-Unlabeled Learning. BMC Bioniformatics, 23, pp.1-18.

[16] Jin, H., Li, C., Xiao, J., et al., 2022. Detecting Arbitrage on Ethereum Through Feature Fusion

and Positive-Unlabeled Learning. IEEE Journal on Selected Areas in Communications, 40(12),

pp.3660-3671.

[17] Qachfar, F.Z., Verma, R.M. and Mukherjee, A., 2022. Leveraging Synthetic Data and PU

Learning for Phishing Email Detection. In Proceedings of the Twelfth ACM Conference on Data and

Application Security and Privacy, pp.29-40.

[18] Chen, S., Qiu, Y., Li, J., et al., 2023. Precision Marketing for Financial Industry using a PU-

Learning Recommendation Method. Journal of Business Research, 160, pp.1-13.

[19] Shunxiang, Z., Aoqiang, Z., Guangli, Z., et al., 2023. Building Fake Review Detection Model

Based on Sentiment Intensity and PU Learning. IEEE Transactions on Neural Networks and

Learning Systems, pp.1-14.

[20] Saunders, J.D. and Freitas, A., 2022. Evaluating the Predictive Performance of Positive-

Unlabelled Classifiers: A Brief Critical Review and Practical Recommendations for

Improvement. ACM SIGKDD Explorations Newsletter, 24(2), pp.5-11.

[21] Saunders, J.D. and Freitas, A.A., 2022. GA-Auto-PU: a Genetic Algorithm-based Automated

Machine Learning system for Positive-Unlabeled learning. In Proceedings of the 2022 Genetic and

Evolutionary Computation Conference Companion, pp.288-291. ACM Press.

[22] Saunders, J.D and Freitas A. A., 2022. Evaluating a New Genetic Algorithm for Automated

Machine Learning in Positive-Unlabelled learning. In Proceedings of the 15th International

Conference on Artificial Evolution (EA 2022), Lecture Notes in Computer Science, Vol. 14091, 42-

57. Springer.

202

[23] Russell, S.J., & Norvig, P. 2010. Artificial Intelligence a Modern Approach. Pearson Education,

Inc.

[24] Hossin, M. and Sulaiman, M.N., 2015. A Review on Evaluation Metrics for Data Classification

Evaluations. International Journal of Data Mining & Knowledge Management Process, 5(2), pp.1-

11.

[25] Botchkarev, A., 2018. Performance Metrics (Error Measures) in Machine Learning Regression,

Forecasting and Prognostics: Properties and Typology. arXiv preprint arXiv:1809.03006.

[26] Gu, Q., Zhu, L. and Cai, Z., 2009. Evaluation Measures of the Classification Performance of

Imbalanced Data Sets. In International Symposium on Intelligence Computation and Applications,

pp.461-471. Springer.

[27] Fawcett, T., 2006. An Introduction to ROC Analysis. Pattern Recognition Letters, 27(8),

pp.861-874.

[28] Sokolova, M. and Lapalme, G., 2009. A Systematic Analysis of Performance Measures for

Classification Tasks. Information Processing & Management, 45(4), pp.427-437.

[29] Wang, Z. and Bovik, A.C., 2009. Mean Squared Error: Love it or Leave it? A New Look at

Signal Fidelity Measures. IEEE Signal Processing Magazine, 26(1), pp.98-117.

[30] Chai, T. and Draxler, R.R., 2014. Root Mean Square Error (RMSE) or Mean Absolute Error

(MAE)?–Arguments Against Avoiding RMSE in the Literature. Geoscientific Model

Development, 7(3), pp.1247-1250.

[31] Pedregosa, F., Varoquaux, G., Gramfort, A., et al., 2011. Scikit-Learn: Machine Learning in

Python. Journal of Machine Learning Research, 12, pp.2825-2830.

[32] Murphy, K. P. 2012. Machine Learning: A Probabilistic Perspective. MIT press.

[33] Hastie, T., Tibshirani, R., and Friedman, J., 2009. The Elements of Statistical Learning. Springer

[34] Cortes, C. and Vapnik, V., 1995. Support-Vector Networks. Machine Learning, 20(3), pp.273-

297.

[35] Priyanka and Kumar, D., 2020. Decision Tree Classifier: A Detailed Survey. International

Journal of Information and Decision Sciences, 12(3), pp.246-269.

[36] Breiman, L., 2001. Random Forests. Machine Learning, 45(1), pp.5-32.

[37] Biau, G. and Scornet, E., 2016. A Random Forest Guided Tour. Test, 25(2), pp.197-227.

203

[38] Geurts, P., Ernst, D., and Wehenkel, L., 2006. Extremely Randomized Trees, Machine learning,

63, pp.3-42.

[39] Breiman, L., 1996. Bagging Predictors. Machine Learning, 24(2), pp.123-140.

[40] Guryanov, A., 2019. Histogram-based Algorithm for Building Gradient Boosting Ensembles of

Piecewise Linear Decision Trees. In International Conference on Analysis of Images, Social

Networks and Texts, pp.39-50. Springer.

[41] Zhou, Z.H. and Feng, J., 2019. Deep Forest. National Science Review, 6(1), pp.74-86.

[42] Pal, S.K. and Mitra, S., 1992. Multilayer Perceptron, Fuzzy Sets, Classification. IEEE.

[43] Minsky, M.L. and Papert, S.A., 1969. Perceptrons. MIT Press.

[44] Abiodun, O.I., Jantan, A., Omolara, A.E., et al., 2018. State-of-the-Art in Artificial Neural

Network Applications: A Survey. Heliyon, 4(11), pp.1-41.

[45] Bartz‐Beielstein, T., Branke, J., Mehnen, J. and Mersmann, O., 2014. Evolutionary

Algorithms. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(3), pp.178-

195.

[46] Antonio, L.M. and Coello, C.A.C., 2017. Coevolutionary Multiobjective Evolutionary

Algorithms: Survey of the State-of-the-Art. IEEE Transactions on Evolutionary Computation, 22(6),

pp.851-865.

[47] Al-Sahaf, H., Bi, Y., Chen, Q., et al., 2019. A Survey on Evolutionary Machine

Learning. Journal of the Royal Society of New Zealand, 49(2), pp.205-228.

[48] Maier, H.R., Razavi, S., Kapelan, Z., et al., 2019. Introductory Overview: Optimization Using

Evolutionary Algorithms and Other Metaheuristics. Environmental Modelling & Software, 114,

pp.195-213.

[49] Slowik, A. and Kwasnicka, H., 2020. Evolutionary Algorithms and Their Applications to

Engineering Problems. Neural Computing and Applications, 32, pp.12363-12379.

[50] Liang, J., Ban, X., Yu, K., et al., 2022. A survey on Evolutionary Constrained Multiobjective

Optimization. IEEE Transactions on Evolutionary Computation, 27(2), pp.201-221.

[51] Zhan, Z.H., Li, J.Y. and Zhang, J., 2022. Evolutionary Deep Learning: A

Survey. Neurocomputing, 483, pp.42-58.

[52] Cheng, S., Ma, L., Lu, H., et al., 2021. Evolutionary Computation for Solving Search-based

Data Analytics Problems. Artificial Intelligence Review, 54, pp.1321-1348.

204

[53] Tian, Y., Si, L., Zhang, X., et al., 2021. Evolutionary Large-Scale Multi-Objective Optimization:

A Survey. ACM Computing Surveys, 54(8), pp.1-34.

[54] Fister, I., Iglesias, A., Galvez, A. and Fister, D., 2020. Parallel Differential Evolution with

Variable Population Size for Global Optimization. In International Workshop on Soft Computing

Models in Industrial and Environmental Applications, pp.89-99.

[55] Zhang, J., Zhan, Z.H., Lin, Y., et al., 2011. Evolutionary Computation Meets Machine Learning:

A Survey. IEEE Computational Intelligence Magazine, 6(4), pp.68-75.

[56] Lambora, A., Gupta, K. and Chopra, K., 2019. Genetic Algorithm – A Literature Review.

In International Conference on Machine Learning, Big Data, Cloud and Parallel Computing pp.380-

384. IEEE.

[57] Telikani, A., Tahmassebi, A., Banzhaf, W. and Gandomi, A.H., 2021. Evolutionary Machine

Learning: A Survey. ACM Computing Surveys, 54(8), pp.1-35.

[58] Li, N., Ma, L., Yu, G., et al., 2022. Survey on Evolutionary Deep Learning: Principles,

Algorithms, Applications and Open Issues. ACM Computing Surveys, pp.1-34.

[59] Eiben, A.E. and Smith, J., 2015. From Evolutionary Computation to the Evolution of

Things. Nature, 521(7553), pp.476-482.

[60] Chugh, T., Sindhya, K., Hakanen, J. and Miettinen, K., 2019. A Survey on Handling

Computationally Expensive Multiobjective Optimization Problems with Evolutionary

Algorithms. Soft Computing, 23, pp.3137-3166.

[61] Vu, T.M., Probst, C., Epstein, J.M., et al., 2019. Toward Inverse Generative Social Science

Using Multi-Objective Genetic Programming. In Proceedings of the Genetic and Evolutionary

Computation Conference, pp. 1356-1363.

[62] Surry, P.D., and Radcliffe, N.J., 1996. Inoculation to Initialise Evolutionary Search. In Selected

Papers from The Society for the Study of Artificial Intelligence and Simulation of Behaviour

Workshop on Evolutionary Computing, pp.269-285.

[63] Kazimipour, B., Li, X. and Qin, A.K., 2014. A Review of Population Initialization Techniques

for Evolutionary Algorithms. In IEEE Congress on Evolutionary Computation, pp.2585-2592. IEEE.

[64] Kora, P. and Yadlapalli, P., 2017. Crossover Operators in Genetic Algorithms: A

Review. International Journal of Computer Applications, 162(10), pp.34-36.

[65] Malik, A., 2019. A Study of Genetic Algorithm and Crossover Techniques. International

Journal of Computer Science and Mobile Computing, 8(3), pp.335-344.

205

[66] Sudholt, D., 2020. The Benefits of Population Diversity in Evolutionary Algorithms: a Survey

of Rigorous Runtime Analyses. Theory of Evolutionary Computation: Recent Developments in

Discrete Optimization, pp.359-404.

[67] Jain, B.J., Pohlheim, H. and Wegener, J., 2001. On Termination Criteria of Evolutionary

Algorithms. In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary

Computation, pp.768-768.

[68] Ghoreishi, S.N., Clausen, A. and Joergensen, B.N., 2017. Termination Criteria in Evolutionary

Algorithms: A Survey. In International Joint Conference on Computational Intelligence, pp.373-

384.

[69] Poli, R., Langdon, W.B., McPhee, N.F. and Koza, J.R., 2008. A Field Guide to Genetic

Programming. Lulu.com.

[70] Sivanandam S., Deepa S., 2008. Genetic Programming. In Introduction to Genetic Algorithms.

Springer.

[71] Liang, J. and Xue, Y., 2021. Multi-Objective Memetic Algorithms with Tree-based Genetic

Programming and Local Search for Symbolic Regression. Neural Processing Letters, pp.1-23.

[72] Ahvanooey, M.T., Li, Q., Wu, M. and Wang, S., 2019. A Survey of Genetic Programming and

Its Applications. ACM Transactions on Interactive Intelligent Systems, 13(4), pp.1765-1794.

[73] Pappa, G.L. and Freitas, A.A., 2009. Evolving Rule Induction Algorithms with Multi-Objective

Grammar-based Genetic Programming. Knowledge and Information Systems, 19(3), pp.283-309.

[74] de Sá, A.G., Pinto, W.J.G., Oliveira, L.O.V. and Pappa, G.L., 2017. RECIPE: A Grammar-based

Framework for Automatically Evolving Classification Pipelines. In European Conference on

Genetic Programming, pp.246-261. Springer.

[75] Veiga, R.V., Barbosa, H.J., Bernardino, H.S., et al., 2018. Multiobjective Grammar-based

Genetic Programming Applied to the Study of Asthma and Allergy Epidemiology. BMC

Bioinformatics, 19(1), pp.1-16.

[76] Nguyen, T.H. and Tettamanzi, A.G., 2020. Using Grammar-based Genetic Programming for

Mining Disjointness Axioms Involving Complex Class Expressions. In International Conference on

Conceptual Structures, pp. 18-32.

[77] Aleti, A. and Moser, I., 2016. A Systematic Literature Review of Adaptive Parameter Control

Methods for Evolutionary Algorithms. ACM Computing Surveys, 49(3), pp.1-35.

206

[78] Pinel, F., Danoy, G. and Bouvry, P., 2012. Evolutionary Algorithm Parameter Tuning with

Sensitivity Analysis. In Security and Intelligent Information Systems: International Joint

Conferences, pp. 204-216. Springer.

[79] Eiben, A.E. and Smith, J.E., 2015. Introduction to Evolutionary Computing. Springer.

[80] Črepinšek, M., Liu, S.H. and Mernik, M., 2013. Exploration and Exploitation in Evolutionary

Algorithms: A Survey. ACM Computing Surveys, 45(3), pp.1-33.

[81] M. Pelikan, D.E. Goldberg, E. Cantú-Paz, et al. 1999. BOA: The Bayesian Optimization

Algorithm. In Proceedings of The Genetic and Evolutionary Computation Conference. pp.525-532.

[82] B. Shahiari, K. Swersky, Z. Wang, et al. 2015. Taking the Human Out of the Loop: A Review

of Bayesian Optimization. Proceedings of the IEEE, 104(1), pp.148-175.

[83] J. Snoek, H. Larochelle, and R.P. Adams. 2012. Practical Bayesian Optimization of Machine

Learning Algorithms. In Proceedings of the 25th International Conference on Neural Information

Processing Systems, 2, pp.2951-2959.

[84] P.I. Frazier. 2018. A Tutorial on Bayesian Optimization. arXiv preprint arXiv:1807.02811

[85] J. Van Hoof & J. Vanschoren. 2021. Hyperboost: Hyperparameter Optimization by Gradient

Boosting Surrogate Models. arXiv preprint arXiv:2101.02289

[86] De Ath, G., Everson, R.M., Rahat, A.A. and Fieldsend, J.E., 2021. Greed is Good: Exploration

and Exploitation Trade-Offs in Bayesian Optimisation. ACM Transactions on Evolutionary Learning

and Optimization, 1(1), pp.1-22.

[87] Močkus, J., 1975. On Bayesian Methods for Seeking the Extremum. In Optimization Techniques

IFIP Technical Conference, pp.400-404.

[88] Yang, L. and Shami, A., 2020. On Hyperparameter Optimization of Machine Learning

Algorithms: Theory and Practice. Neurocomputing, 415, pp.295-316.

[89] Brazdil, P., Carrier, C.G., Soares, C. and Vilalta, R., 2008. Metalearning: Applications to Data

mining. Springer Science & Business Media.

[90] Thornton, C., Hutter, F., Hoos, H.H. and Leyton-Brown, K., 2013. Auto-WEKA: Combined

Selection and Hyperparameter Optimization of Classification Algorithms. In Proceedings of the 19th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.847-855.

[91] Zöller, M.A. and Huber, M.F., 2021. Benchmark and Survey of Automated Machine Learning

Frameworks. Journal of Artificial Intelligence Research, pp.409-472.

207

[92] Bergstra, J. and Bengio, Y., 2012. Random Search for Hyper-Parameter Optimization. Journal

of Machine Learning Research, 13(2), pp.281-305.

[93] LaValle, S.M., Branicky, M.S. and Lindemann, S.R., 2004. On the Relationship Between

Classical Grid Search and Probabilistic Roadmaps. The International Journal of Robotics

Research, 23(7-8), pp.673-692.

[94] Syarif, I., Prugel-Bennett, A. and Wills, G., 2016. SVM Parameter Optimization Using Grid

Search and Genetic Algorithm to Improve Classification Performance. Telkomnika, 14(4), p.1502-

1509.

[95] Liashchynskyi, P. and Liashchynskyi, P., 2019. Grid Search, Random Search, Genetic

Algorithm: A Big Comparison for NAS. arXiv preprint arXiv:1912.06059.

[96] Liu, H., Simonyan, K. and Yang, Y., 2018. Darts: Differentiable Architecture Search. arXiv

preprint arXiv:1806.09055.

[97] Zoph, B. and Le, Q.V., 2016. Neural Architecture Search with Reinforcement Learning. arXiv

preprint arXiv:1611.01578.

[98] Freitas, A.A., 2002. Data Mining and Knowledge Discovery with Evolutionary Algorithms.

Springer Science & Business Media.

[99] Freitas, A.A., 2010. A Review of Evolutionary Algorithms for Data Mining. Data Mining and

Knowledge Discovery Handbook, pp.371-400.

[100] Olson, R.S., Bartley, N., Urbanowicz, R.J. and Moore, J.H., 2016. Evaluation of a Tree-based

Pipeline Optimization Tool for Automating Data Science. In Proceedings of the Genetic and

Evolutionary Computation Conference, pp.485-492.

[101] Velez, D.R., White, B.C., Motsinger, A.A., et al., 2007. A Balanced Accuracy Function for

Epistasis Modeling in Imbalanced Datasets Using Multifactor Dimensionality Reduction. Genetic

Epidemiology: The Official Publication of the International Genetic Epidemiology Society, 31(4),

pp.306-315.

[102] Gijsbers, P., Vanschoren, J. and Olson, R.S., 2018. Layered TPOT: Speeding Up Tree-based

Pipeline Optimization. arXiv preprint arXiv:1801.06007.

[103] Xavier-Júnior, J.C., Freitas, A.A., Ludermir, T.B., et al., 2020. An Evolutionary Algorithm for

Automated Machine Learning Focusing on Classifier Ensembles: An Improved Algorithm and

Extended Results. Theoretical Computer Science, 805, pp.1-18.

[104] Zhou, Z.H., 2012. Ensemble Methods: Foundations and Algorithms. CRC press.

208

[105] Real, E., Liang, C., So, D. and Le, Q., 2020. AutoML-Zero: Evolving Machine Learning

Algorithms from Scratch. In International Conference on Machine Learning, pp.8007-8019.

[106] Nair, V. and Hinton, G.E., 2010. Rectified Linear Units Improve Restricted Boltzmann

Machines. In Proceedings of the 27th International Conference on Machine Learning, pp.807-814.

[107] Bengio, Y., Léonard, N. and Courville, A., 2013. Estimating or Propagating Gradients Through

Stochastic Neurons for Conditional Computation. arXiv preprint arXiv:1308.3432.

[108] Guha, R., Ao, W., Kelly, S., et al., 2023. MOAZ: A Multi-Objective AutoML-Zero

Framework. In Proceedings of the Genetic and Evolutionary Computation Conference, pp.485-492.

[109] Eibe, F., Hall, M.A. and Witten, I.H., 2016. The WEKA Workbench. Online Appendix for Data

Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Publishers.

[110] Kotthoff, L., Thornton, C., Hoos, H.H., et al., 2017. Auto-WEKA 2.0: Automatic Model

Selection and Hyperparameter Optimization in WEKA. In Journal of Machine Learning Research,

18(25), pp.1-5.

[111] Feurer, M., Klein, A., Eggensperger, K., et al., 2019. Auto-Sklearn: Efficient and Robust

Automated Machine Learning. In Automated Machine Learning, pp.113-134.

[112] Kenny, A., Ray, T., Limmer, S., et al., 2023. Hybridizing TPOT with Bayesian Optimization.

In Proceedings of the Genetic and Evolutionary Computation Conference, pp.502-510.

[113] Fabris, F. and Freitas, A.A., 2019. Analysing the Overfit of the Auto-Sklearn Automated

Machine Learning Tool. In Machine Learning, Optimization, and Data Science: 5th International

Conference, pp.508-520.

[114] Niu, G., Plessis, M.C.D., Sakai, T., et al., 2016. Theoretical Comparisons of Positive-Unlabeled

Learning Against Positive-Negative Learning. arXiv preprint arXiv:1603.03130.

[115] Nikdelfaz, O. and Jalili, S., 2018. Disease Genes Prediction by HMM Based PU-Learning

Using Gene Expression Profiles. Journal of Biomedical Informatics, 81, pp.102-111.

[116] Vasighizaker, A. and Jalili, S. 2018. C-PUGP: A Cluster-based Positive Unlabelled Learning

Method for Disease Gene Prediction and Prioritisation. Computational Biology and Chemistry, 76,

pp.23-31.

[117] Yang, P., Li, X., Mei, K., et al. 2012. Positive-Unlabelled Learning for Disease Gene

Identification. Bioinformatics, 28(20), pp.2640-2647.

209

[118] Liu, L. and Peng, T., 2014. Clustering-based Method for Positive and Unlabelled Text

Categorization Enhanced by Improved TFIDF. Journal of Information Science and Engineering, 30,

pp.1463-1481.

[119] Ke, T., Yang, B., Zhen, L., et al. 2012. Building High-Performance Classifiers Using Positive

and Unlabelled Examples for Text. International Symposium on Neural Networks, pp.187-195.

[120] Liu, B., Yu, P., and Li, X. 2002. Partially Supervised Classification of Text Documents.

International Conference on Machine Learning, 2(485), pp.387-394.

[121] Zhang, Y., Li, L., Zhou, J., et al. 2017. Poster: A PU Learning Based System for Potential

Malicious URL Detection. Proceedings of the ACM Conference on Computer and Communications

Security, pp.2599-2601.

[122] Luo, Y., Cheng, S., Liu, C., et al. 2018. PU Learning in Payload-based Web Anomaly

Detection. Proceedings of the Third International Conference on Security of Smart Cities, Industrial

Control System and Communications, pp.1-5.

[123] Van Engelen, J.E. and Hoos, H.H., 2020. A Survey on Semi-Supervised Learning. Machine

Learning, 109(2), pp.373-440.

[124] Jaskie, K. and Spanias, A., 2019. Positive and Unlabeled Learning Algorithms and

Applications: A Survey. In 10th International Conference on Information, Intelligence, Systems and

Applications, pp.1-8.

[125] Bekker, J., Robberechts, P. and Davis, J., 2019. Beyond the Selected Completely at Random

Assumption for Learning from Positive and Unlabeled Data. In Joint European Conference on

Machine Learning and Knowledge Discovery in Databases, pp.71-85.

[126] B. Liu, Y. Dai, X. Li, et al. 2003. Building Text Classifiers Using Positive and Unlabeled

Examples. In The Third International Conference on Data Mining, pp.179-186.

[127] Wang, Y., Zhang, Y. and Liu, B., 2017. Sentiment Lexicon Expansion Based on Neural PU

Learning, Double Dictionary Lookup, and Polarity Association. In Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing, pp.553-563.

[128] Yu, H., Han, J. and Chang, K.C.C., 2002. PEBL: Positive Example Based Learning for Web

Page Classification Using SVM. In Proceedings of the Eighth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp.239-248.

[129] Zeng, X., Zhong, Y., Lin, W. and Zou, Q., 2020. Predicting Disease-Associated Circular RNAs

Using Deep Forests Combined with Positive-Unlabeled Learning Methods. Briefings in

Bioinformatics, 21(4), pp.1425-1436.

210

[130] Li, X.L., Zhang, L., Liu, B. and Ng, S.K., 2010. Distributional Similarity vs. PU Learning for

Entity Set Expansion. In Proceedings of the ACL 2010 Conference Short Papers, pp.359-364.

[131] Xia, R., Hu, X., Lu, J., et al., 2013. Instance Selection and Instance Weighting for Cross-

Domain Sentiment Classification via PU Learning. In Twenty-Third International Joint Conference

on Artificial Intelligence, pp.2176-2182.

[132] Ke, T., Jing, L., Lv, H., et al., 2018. Global and Local Learning from Positive and Unlabeled

Examples. Applied Intelligence, 48, pp.2373-2392.

[133] Zhang, J., Wang, Z., Meng, J., et al., 2018. Boosting Positive and Unlabeled Learning for

Anomaly Detection with Multi-Features. IEEE Transactions on Multimedia, 21(5), pp.1332-1344.

[134] Schrunner, S., Geiger, B.C., Zernig, A. and Kern, R., 2020. A Generative Semi-Supervised

Classifier for Datasets with Unknown Classes. In Proceedings of the 35th Annual ACM Symposium

on Applied Computing, pp.1066-1074.

[135] Liu, B., Liu, Z. and Xiao, Y., 2021. A New Dictionary-based Positive and Unlabeled Learning

Method. Applied Intelligence, pp.1-15.

[136] He, Y., Li, X., Zhang, M., et al., 2023. A Novel Observation Points‐Based Positive‐Unlabeled

Learning Algorithm. Chinese Association for Artificial Intelligence Transactions on Intelligence

Technology, pp.1-19.

[137] Sellamanickam, S., Garg, P. and Selvaraj, S.K., 2011. A Pairwise Ranking Based Approach to

Learning with Positive and Unlabeled Examples. In Proceedings of the 20th ACM International

Conference on Information and Knowledge Management, pp.663-672.

[138] Claesen, M., De Smet, F., Suykens, J. & De Moor, B., 2015. A Robust Ensemble Approach to

Learn from Positive and Unlabeled Data Using SVM Base Models. Neurocomputing, 160, pp.73-84.

[139] Lee, W.S. and Liu, B., 2003. Learning with Positive and Unlabeled Examples Using Weighted

Logistic Regression. In Proceedings of the International Conference on Machine Learning, 3,

pp.448-455.

[140] Ke, T., Lv, H., Sun, M. and Zhang, L., 2018. A Biased Least Squares Support Vector Machine

Based on Mahalanobis Distance for PU Learning. Physica A: Statistical Mechanics and its

Applications, 509, pp.422-438.

[141] Elkan, C., 2001, August. The Foundations of Cost-Sensitive Learning. In International Joint

Conference on Artificial Intelligence, 17(1), pp.973-978.

211

[142] Denis, F., Laurent, A., Gilleron, R., et al, 2003. Text Classification and Co-Training from

Positive and Unlabeled Examples. In Proceedings of the International Conference on Machine

Learning 2003 workshop: The Continuum from Labeled to Unlabeled Data, pp.80-87.

[143] Calvo, B., Larrañaga, P., and Lozano, J., 2007. Learning Bayesian Classifiers from Positive

and Unlabelled Examples. Pattern Recognition Letters, 28(16), pp.2375-2384.

[144] Japkowicz, N. and Shah, M., 2011. Evaluating Learning Algorithms: A Classification

Perspective. Cambridge University Press.

[145] Bekker, J. and Davis, J., 2018. Estimating the Class Prior in Positive and Unlabeled Data

Through Decision Tree Induction. In Proceedings of the Thirty-Second AAAI Conference on

Artificial Intelligence, 32(1), pp.2712-2719.

[146] Du Plessis, M.C. and Sugiyama, M., 2014. Class Prior Estimation from Positive and Unlabeled

Data. IEICE Transaction on Information and Systems, 97(5), pp.1358-1362.

[147] Basile, T., Di Mauro, N., Esposito, F., et al. 2018. Density Estimators for Positive-Unlabelled

Learning. In Proceedings of the International Workshop on New Frontiers in Mining Complex

Patterns, pp.49-64.

[148] Bekker, J., and Davis, J., 2017. Positive and Unlabelled Relational Classification Through

Label Frequency Estimation. In Proceedings of the International Conference on Inductive Logic

Programming, pp.16-30.

[149] Chaudhari, S., and Shevade, S., 2012. Learning from Positive and Unlabelled Examples Using

Maximum Margin Clustering. In Proceedings of the International Conference on Neural Information

Processing, pp.465-473.

[150] Chiaroni, F., Rahal, M., Hueber, N., et al. 2018. Learning with a Generative Adversarial

Network from a Positive Unlabeled Dataset for Image Classification. In Proceedings of the 25th

IEEE International Conference on Image Processing, pp.1368-1372.

[151] Denis, F., Gilleron, R., and Letouzey, F., 2005. Learning from Positive and Unlabeled

Examples. Theoretical Computer Science, pp.70-83.

[152] Fung, C., Yu, J., Lu, H., et al. 2006. Text Classification Without Negative Examples Revisit.

IEEE Transactions on Knowledge and Data Engineering, 18(1), pp.6-20.

[153] Gan, H., Zhang, Y., and Song, Q., 2017. Bayesian Belief Network for Positive Unlabeled

Learning with Uncertainty. Pattern Recognition Letters, 90, pp.28-35.

212

[154] He, F., Liu, T., Webb, G.I. and Tao, D., 2018. Instance-Dependent PU Learning by Bayesian

Optimal Relabeling. arXiv preprint arXiv:1808.02180.

[155] He, J., Zhang, Y., Li, X., & Wang, Y, 2010. Naive Bayes Classifier for Positive

Unlabeled Learning with Uncertainty. In Proceedings of the 2010 SIAM International

Conference on Data Mining, pp.361–372.

[156] Hou, M., Chaib-draa, B., Li, C., et al. 2018. Generative Adversarial Positive-Unlabeled

Learning. Proceedings of the Twenty-Seventh International Joint Conference on Artificial

Intelligence, pp.2255-2261.

[157] Ienco, D., and Pensa, R., 2016. Positive and Unlabeled Learning in Categorical Data.

Neurocomputing, 196, pp.113-124.

[158] Kato, M., Teshima, T. and Honda, J., 2019. Learning from Positive and Unlabeled Data with

a Selection Bias. Proceedings of the International Conference on Learning Representations, pp.1-

17.

[159] Lan, W., Wang, J., Li, M., et al. 2016. Predicting Drug-Target Interaction Using Positive-

Unlabeled Learning. Neurocomputing, 206, pp.50-57.

[160] Li, W., Guo, Q. and Elkan, C., 2010. A Positive and Unlabeled Learning Algorithm for One-

Class Classification of Remote-Sensing Data. IEEE Transactions on Geoscience and Remote

Sensing, 49(2), pp.717-725.

[161] Li, X.L. and Liu, B., 2005. Learning from Positive and Unlabeled Examples with Different

Data Distributions. In Proceedings of the European Conference on Machine Learning, pp.218-229.

[162] Li, X., Liu, B. and Ng, S.K., 2007. Learning to Identify Unexpected Instances in the Test Set.

In Proceedings of the International Joint Conference on Artificial Intelligence, 7, pp.2802-2807.

[163] Li, X.L., Yu, P.S., Liu, B. and Ng, S.K., 2009. Positive Unlabeled Learning for Data Stream

Classification. In Proceedings of the 2009 SIAM International Conference on Data Mining, pp.259-

270.

[164] Liang, C., Zhang, Y., Shi, P. and Hu, Z., 2012. Learning Very Fast Decision Tree from

Uncertain Data Streams with Positive and Unlabeled Samples. Information Sciences, 213, pp.50-67.

[165] Mordelet, F. and Vert, J.P., 2014. A Bagging SVM to Learn from Positive and Unlabeled

Examples. Pattern Recognition Letters, 37, pp.201-209.

213

[166] Nguyen, M.N., Li, X.L. and Ng, S.K., 2011. Positive Unlabeled Learning for Time Series

Classification. In Proceedings of the Twenty-Second International Joint Conference on Artificial

Intelligence, 2, pp.1421-1426.

[167] Peng, T., Zuo, W. and He, F., 2008. SVM Based Adaptive Learning Method for Text

Classification from Positive and Unlabeled Documents. Knowledge and Information Systems, 16(3),

pp.281-301.

[168] Qin, X., Zhang, Y., Li, C. and Li, X., 2013. Learning from Data Streams with only Positive

and Unlabeled Data. Journal of Intelligent Information Systems, 40(3), pp.405-430.

[169] Xu, Z., Qi, Z. and Zhang, J., 2014. Learning with Positive and Unlabeled Examples Using

Biased Twin Support Vector Machine. Neural Computing and Applications, 25(6), pp.1303-1311.

[170] Yang, P., Ormerod, J.T., Liu, W., et al., 2018. AdaSampling for Positive-Unlabeled and Label

Noise Learning with Bioinformatics Applications. IEEE Transactions on Cybernetics, 49(5),

pp.1932-1943.

[171] Yu, H., 2005. Single-Class Classification with Mapping Convergence. Machine Learning,

61(1), pp.49-69.

[172] Zhang, Y., Ju, X. and Tian, Y., 2014. Nonparallel Hyperplane Support Vector Machine for PU

Learning. In Proceedings of the 10th International Conference on Natural Computation, pp.703-708.

[173] Zhang, D. and Lee, W.S., 2005. A Simple Probabilistic Approach to Learning from Positive

and Unlabeled Examples. In Proceedings of the 5th Annual UK Workshop on Computational

Intelligence, pp.83-87.

[174] Zhang, B. and Zuo, W., 2009. Reliable Negative Extracting Based on kNN for Learning from

Positive and Unlabeled Examples. Journal of Computers, 4(1), pp.94-101.

[175] Zhou, K., Gui-Rong, X., Yang, Q., et al. 2010. Learning with Positive and Unlabelled

Examples Using Topic-Sensitive PLSA. IEEE Transactions on Knowledge and Data Engineering,

22(1), pp.46-58.

[176] Zhou, J.T., Pan, S.J., Mao, Q. and Tsang, I.W., 2012. Multi-View Positive and Unlabeled

Learning. In Proceedings of the Asian Conference on Machine Learning, pp.555-570.

[177] Abd Elrahman, S.M. and Abraham, A., 2013. A Review of Class Imbalance Problem. Journal

of Network and Innovative Computing, pp.332-340.

[178] Ali, H., Salleh, M.M., Saedudin, R., et al., 2019. Imbalance Class Problems in Data Mining: A

Review. Indonesian Journal of Electrical Engineering and Computer Science, 14(3), pp.1560-1571.

214

[179] Fung, G.P.C., Yu, J.X., Lu, H. and Yu, P.S., 2005. Text Classification Without Negative

Examples Revisit. IEEE Transactions on Knowledge and Data Engineering, 18(1), pp.6-20.

[180] Zhang, J., Yu, P.S. and Zhou, Z.H., 2014. Meta-Path Based Multi-Network Collective Link

Prediction. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp.1286-1295.

[181] Shirude, S.B. and Kolhe, S.R., 2016. Classifying Library Resources in Library Recommender

Agent Using PU Learning Approach. In International Conference on Data Mining and Advanced

Computing, pp.79-83.

[182] Zheng, H., Yu, H., Hao, Y., et al., 2021. Distantly Supervised Named Entity Recognition with

Spy-PU Algorithm. In IEEE 2nd International Conference on Pattern Recognition and Machine

Learning, pp.56-63.

[183] Basile, T., Di Mauro, N., Esposito, F., et al., 2017. Density Estimators for Positive-Unlabeled

Learning. In International Workshop on New Frontiers in Mining Complex Patterns, pp.49–64.

[184] Asuncion, A., & Newman, D., 2007. UCI Machine Learning Repository.

https://archive.ics.uci.edu/.

[185] Marcus, D.S., Fotenos, A.F., Csernansky, J.G., et al., 2010. Open Access Series of Imaging

Studies: Longitudinal MRI Data in Nondemented and Demented Older Adults. Journal of Cognitive

Neuroscience, 22(12), pp.2677-2684.

[186] Pereira, B., Chin, S.F., Rueda, O.M., et al., 2016. The Somatic Mutation Profiles of 2,433

Breast Cancers Refine Their Genomic and Transcriptomic Landscapes. Nature

Communications, 7(1), pp.1-16.

[187] Fleming, T.R. and Harrington, D.P., 1991. Counting Processes and Survival Analysis. John

Wiley and Sons Inc.

[188] Islam, M.F., Ferdousi, R., Rahman, S. and Bushra, H.Y., 2020. Likelihood Prediction of

Diabetes at Early Stage Using Data Mining Techniques. In Computer Vision and Machine

Intelligence in Medical Image Analysis, pp.113-125.

[189] Chicco, D. and Jurman, G., 2020. Machine Learning can Predict Survival of Patients with Heart

Failure from Serum Creatinine and Ejection Fraction Alone. BMC Medical Informatics and Decision

Making, 20(1), pp.1-16.

[190] Hlavnička, J., Čmejla, R., Tykalová, T., et al., 2017. Automated Analysis of Connected Speech

Reveals Early Biomarkers of Parkinson’s Disease in Patients with Rapid Eye Movement Sleep

Behaviour Disorder. Scientific reports, 7(1), pp.1-13.

215

[191] Emon, M.U., Keya, M.S., Meghla, T.I., et al., 2020. Performance Analysis of Machine

Learning Approaches in Stroke Prediction. In 4th International Conference on Electronics,

Communication and Aerospace Technology, pp.1464-1469.

[192] Shinkins, B., Nicholson, B.D., Primrose, J., et al., 2017. The Diagnostic Accuracy of a Single

CEA Blood Test in Detecting Colorectal Cancer Recurrence: Results from the FACS Trial. Public

Library of Science One, 12(3), pp.1-11.

[193] Beach, T.G. and Adler, C.H., 2018. Importance of Low Diagnostic Accuracy for Early

Parkinson's Disease. Movement Disorders, 33(10), pp.1551-1554.

[194] De Bruyn, G. and Graviss, E.A., 2001. A Systematic Review of the Diagnostic Accuracy of

Physical Examination for the Detection of Cirrhosis. BMC Medical Informatics and Decision

Making, 1(1), pp.1-11.

[195] Palmedo, H., Bucerius, J., Joe, A., et al., 2006. Integrated PET/CT in Differentiated thyroid

Cancer: Diagnostic Accuracy and Impact on Patient Management. Journal of Nuclear

Medicine, 47(4), pp.616-624.

[196] Nerad, E., Lahaye, M.J., Maas, M., et al., 2016. Diagnostic Accuracy of CT for Local Staging

of Colon Cancer: a Systematic Review and Meta-analysis. American Journal of

Roentgenology, 207(5), pp.984-995.

[197] Zhang, Y. and Ren, H., 2017. Meta-analysis of Diagnostic Accuracy of Magnetic Resonance

Imaging and Mammography for Breast Cancer. Journal of Cancer Research and

Therapeutics, 13(5), pp.862-868.

[198] Jaskie, K. and Spanias, A., 2022. Positive Unlabeled Learning. Synthesis Lectures on Artificial

Intelligence and Machine Learning, 16(1), pp.2-152.

[199] Arjannikov, T. and Tzanetakis, G., 2021. An Empirical Investigation of PU Learning for

Predicting Length of Stay. In IEEE 9th International Conference on Healthcare Informatics, pp.41-

47.

[200] Dey, S., Bose, A., Chakraborty, P., et al., 2021. Impact of Clinical and Genomic Factors on

SARS-COV2 Disease Severity. medRxiv.

[201] Zhao, X., Tanaka, T., Kong, W., et al., 2018. Epileptic Focus Localization Based on iEEG by

Using Positive Unlabeled (PU) Learning. In Asia-Pacific Signal and Information Processing

Association Annual Summit and Conference, pp. 493-497.

216

[202] Wilcoxon, F., Katti, S.K. and Wilcox, R.A., 1963. Critical Values and Probability Levels for

the Wilcoxon Rank Sum Test and the Wilcoxon Signed Rank Test. Selected Tables in Mathematical

Statistics, 1, pp.171-259.

[203] Demšar, J., 2006. Statistical Comparisons of Classifiers Over Multiple Data Sets. The Journal

of Machine Learning Research, 7, pp.1-30.

[204] De Veaux, R. D., Velleman, P. F., & Bock, D. E., 2021. Stats: Data and Models (5th ed.).

Pearson.

[205] Schober, P., Boer, C. and Schwarte, L.A., 2018. Correlation Coefficients: Appropriate Use and

Interpretation. Anesthesia & Analgesia, 126(5), pp.1763-1768.

[206] Halvari, T., Nurminen, J.K. and Mikkonen, T., 2020. Testing the Robustness of AutoML

Systems. arXiv preprint arXiv:2005.02649.

[207] Saunders, J.D. and Freitas, A.A., 2024. Automated Machine Learning for Positive-Unlabelled

Learning. arXiv preprint arXiv:2401.06452.

[208] Li, H., Liu, B., Mukherjee, A. and Shao, J., 2014. Spotting Fake Reviews Using Positive-

Unlabeled Learning. Computación y Sistemas, 18(3), pp.467-475.

[209] Yang, P., Li, X., Chua, H.N., et al., 2014. Ensemble Positive Unlabeled Learning for Disease

Gene Identification. Public Library of Science One, 9(5), pp.1-11.

[210] Zhang, Z., Ke, T., Deng, N. and Tan, J., 2014. Biased P-norm Support Vector Machine for PU

Learning. Neurocomputing, 136, pp.256-261.

[211] Ren, Y., Ji, D. and Zhang, H., 2014. Positive Unlabeled Learning for Deceptive Reviews

Detection. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing, pp.488-498.

[212] Li, T., Lyu, J. and Fan, W., 2019. Semi-supervised Self-training Positive and Unlabeled

Learning Based on New Spy Technology. Journal of Computer Applications, 39(10), pp.2822-2828.

[213] Chen, D., Tantai, X., Chang, X., et al., 2022. Weakly Supervised Anomaly Detection Based

on Two-Step Cyclic Iterative PU Learning Strategy. Neural Processing Letters, 54(5), pp.4409-

4426.

[214] Tamura, S.I. and Tateishi, M., 1997. Capabilities of a Four-Layered Feedforward Neural

Network: Four Layers Versus Three. IEEE Transactions on Neural Networks, 8(2), pp.251-255.

[215] Sartori, M.A. and Antsaklis, P.J., 1991. A Simple Method to Derive Bounds on the Size and

to Train Multilayer Neural Networks. IEEE Transactions on Neural Networks, 2(4), pp.467-471.

217

[216] Ke, J. and Liu, X., 2008. Empirical Analysis of Optimal Hidden Neurons in Neural Network

Modeling for Stock Prediction. In IEEE Pacific-Asia Workshop on Computational Intelligence and

Industrial Application, 2, pp.828-832.

[217] Trenn, S., 2008. Multilayer Perceptrons: Approximation Order and Necessary Number of

Hidden Units. IEEE Transactions on Neural Networks, 19(5), pp.836-844.

[218] Heaton, J., 2008. Introduction to Neural Networks with Java. Heaton Research, Inc.

[219] Shibata, K. and Ikeda, Y., 2009. Effect of Number of Hidden Neurons on Learning in Large-

scale Layered Neural Networks. In International Conference on Control, Automation, and Systems-

Society of Instrument and Control Engineers, pp.5008-5013.

218

Appendix A

Precision & Recall Results

Chapters 4 – 6 of this thesis present tables of results showing the detailed F-measure values and a

summary of the precision and recall for each method. This section gives the detailed precision and

recall values to complement these results, starting with precision (Tables A.1 through A.6), followed

by the recall results (Tables A.7 through A.12).

Table A.1. Precision results of the Auto-PU systems with base search space on real-world

biomedical datasets.

Dataset

δ = 20% δ = 40% δ = 60%

EBO-1 BO-1 GA-1 EBO-1 BO-1 GA-1 EBO-1 BO-1 GA-1

Alzheimer’s 0.688 0.600 0.600 0.595 0.656 0.613 0.680 0.706 0.684

Autism 0.986 0.978 0.971 0.954 0.985 0.941 0.941 0.948 0.946

Breast cancer Coi. 0.990 0.625 0.653 0.962 0.658 0.672 0.800 0.829 0.684

Breast cancer Wis. 0.815 0.985 0.975 0.833 0.990 0.930 0.960 0.983 0.953

Breast cancer mut. 0.608 0.819 0.813 0.714 0.824 0.813 0.851 0.826 0.830

Cervical cancer 0.929 0.929 1.000 1.000 1.000 1.000 0.688 0.714 0.909

Cirrhosis 0.451 0.479 0.490 0.409 0.447 0.402 0.522 0.516 0.423

Dermatology 0.976 0.891 0.889 0.860 0.915 0.750 0.879 0.906 0.923

PI Diabetes 0.586 0.580 0.594 0.559 0.557 0.541 0.625 0.629 0.583

ES Diabetes 0.978 0.984 0.962 0.975 0.981 0.978 0.962 0.964 0.969

Heart Disease 0.792 0.782 0.796 0.800 0.830 0.822 0.828 0.805 0.808

Heart Failure 0.770 0.778 0.740 0.701 0.629 0.670 0.724 0.759 0.763

Hepatitis C 0.980 0.942 1.000 0.915 0.898 0.925 0.714 0.850 0.862

Kidney Disease 1.000 1.000 1.000 1.000 1.000 1.000 0.955 1.000 1.000

Liver Disease 0.720 0.718 0.715 0.726 0.718 0.727 0.751 0.742 0.735

Maternal Risk 0.840 0.852 0.312 0.820 0.821 0.870 0.743 0.818 0.816

Parkinsons 0.920 0.899 0.754 0.848 0.872 0.857 0.965 0.909 0.923

Parkinsons Biom. 0.207 0.167 0.313 0.246 0.227 0.237 0.200 0.200 0.233

Spine 0.939 0.947 0.484 0.951 0.938 0.942 0.951 0.939 0.924

Stroke 0.167 0.173 0.310 0.189 0.156 0.200 0.192 0.150 0.185

219

Table A.2. Precision results of the Auto-PU systems with base search space on synthetic datasets.

Dataset

δ = 20% δ = 40% δ = 60%

EBO-1 BO-1 GA-1 EBO-1 BO-1 GA-1 EBO-1 BO-1 GA-1

1 0.648 0.633 0.641 0.729 0.711 0.631 0.63 0.714 0.433

2 0.111 0.071 0.075 0.069 0.083 0.024 0.056 0.086 0.036

3 0.731 0.793 0.739 0.709 0.698 0.614 0.618 0.680 0.612

4 0.857 0.824 0.871 0.842 0.831 0.705 0.734 0.839 0.631

5 0.373 0.595 0.581 0.476 0.583 0.519 0.332 0.433 0.586

6 0.697 0.845 0.734 0.845 0.841 0.738 0.746 0.869 0.923

7 0.426 0.653 0.381 0.516 0.448 0.375 0.464 0.449 0.650

8 0.347 0.724 0.361 0.450 0.537 0.374 0.368 0.395 0.403

9 0.013 0.024 0.067 0.060 0.100 0.045 0.109 0.118 0.080

10 0.962 0.981 0.846 0.919 0.931 0.973 0.877 0.908 0.933

11 0.511 0.497 0.479 0.549 0.548 0.553 0.512 0.586 0.448

12 0.697 0.578 0.616 0.671 0.680 0.624 0.610 0.795 0.914

13 0.561 0.572 0.548 0.652 0.643 0.614 0.582 0.532 0.359

14 0.962 0.958 1.000 0.899 0.985 0.927 0.804 0.958 0.906

15 0.749 0.552 0.767 0.535 0.564 0.440 0.441 0.514 0.368

16 0.382 0.792 0.332 0.474 0.347 0.244 0.395 0.510 0.178

17 0.240 0.369 0.224 0.240 0.244 0.980 0.104 0.295 0.270

18 0.375 0.361 0.393 0.526 0.495 0.429 0.463 0.308 0.227

19 0.375 0.324 0.353 0.255 0.333 0.330 0.219 0.357 0.243

20 0.520 0.642 0.554 0.562 0.593 0.656 0.468 0.570 0.510

Table A.3. Precision results of the Auto-PU systems with extended search space on real-world

biomedical datasets.

Dataset

δ = 20% δ = 40% δ = 60%

EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2

Alzheimer’s 0.633 0.645 0.571 0.690 0.629 0.679 0.750 0.593 0.600

Autism 0.978 0.985 0.986 0.949 0.962 0.930 0.874 0.953 0.941

Breast cancer Coi. 0.981 0.678 0.624 0.966 0.644 0.657 0.937 0.000 0.867

Breast cancer Wis. 0.840 0.923 0.990 0.824 0.961 0.938 0.799 0.957 0.955

Breast cancer mut. 0.590 0.845 0.818 0.692 0.822 0.619 0.597 0.836 0.867

Cervical cancer 1.000 1.000 1.000 1.000 1.000 0.929 0.356 0.929 0.304

Cirrhosis 0.421 0.415 0.456 0.468 0.440 0.375 0.319 0.536 0.370

Dermatology 0.907 0.951 0.953 0.932 0.925 0.896 0.825 0.943 0.900

PI Diabetes 0.597 0.586 0.614 0.629 0.546 0.585 0.564 0.586 0.641

ES Diabetes 0.968 0.965 0.990 0.917 0.978 0.985 0.924 0.937 0.967

Heart Disease 0.793 0.807 0.783 0.746 0.822 0.824 0.710 0.810 0.804

Heart Failure 0.753 0.787 0.763 0.678 0.694 0.697 0.570 0.689 0.831

Hepatitis C 0.942 0.981 0.981 0.942 0.972 0.957 0.912 0.897 0.962

Kidney Disease 0.872 1.000 1.000 0.886 1.000 1.000 1.000 1.000 1.000

Liver Disease 0.726 0.716 0.721 0.701 0.730 0.728 0.679 0.790 0.757

Maternal Risk 0.830 0.830 0.853 0.777 0.853 0.864 0.700 0.802 0.811

Parkinsons 0.890 0.927 0.899 0.831 0.874 0.848 0.706 0.920 0.935

Parkinsons Biom. 0.292 0.273 0.244 0.286 0.000 0.200 0.207 0.000 0.350

Spine 0.972 0.978 0.926 0.920 0.946 0.957 0.747 0.954 0.924

Stroke 0.161 0.178 0.166 0.156 0.191 0.166 0.139 0.171 0.185

220

Table A.4. Precision results of the Auto-PU systems with extended search space on synthetic

datasets.

Dataset

δ = 20% δ = 40% δ = 60%

EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2

1 0.710 0.685 0.604 0.700 0.738 0.620 0.621 0.704 0.446

2 0.189 0.187 0.102 0.045 0.036 0.057 0.118 0.182 0.060

3 0.777 0.780 0.730 0.719 0.695 0.840 0.592 0.701 0.457

4 0.812 0.883 0.743 0.796 0.875 0.772 0.724 0.782 0.767

5 0.468 0.625 0.471 0.401 0.612 0.708 0.423 0.524 0.777

6 0.767 0.830 0.703 0.695 0.763 0.655 0.663 0.860 0.558

7 0.556 0.467 0.397 0.514 0.471 0.548 0.480 0.396 0.300

8 0.588 0.562 0.651 0.405 0.442 0.347 0.401 0.407 0.272

9 0.051 0.011 0.052 0.029 0.045 0.347 0.079 0.107 0.085

10 0.989 0.940 0.851 0.988 0.892 0.740 0.902 0.877 0.712

11 0.601 0.561 0.432 0.545 0.579 0.470 0.470 0.505 0.360

12 0.804 0.772 0.526 0.713 0.738 0.785 0.647 0.778 0.481

13 0.615 0.650 0.719 0.589 0.591 0.468 0.492 0.577 0.475

14 0.906 0.975 0.978 0.853 0.948 1.000 0.706 0.972 0.938

15 0.700 0.672 0.554 0.621 0.531 0.921 0.568 0.453 0.431

16 0.718 0.675 0.275 0.620 0.388 0.324 0.514 0.470 0.178

17 0.352 0.317 0.268 0.233 0.228 0.311 0.243 0.143 0.300

18 0.593 0.550 0.532 0.533 0.54 0.261 0.404 0.306 0.480

19 0.383 0.402 0.324 0.316 0.31 0.426 0.253 0.410 0.792

20 0.615 0.686 0.610 0.590 0.579 0.555 0.513 0.579 0.721

Table A.5. Precision results of the baseline methods on real-world biomedical datasets.

Dataset

δ = 20% δ = 40% δ = 60%

DF-PU S-EM TPOT DF-PU S-EM TPOT DF-PU S-EM TPOT

Alzheimer’s 0.108 0.195 0.654 0.108 0.237 0.647 0.096 0.244 0.219

Autism 0.481 0.858 0.971 0.481 0.808 0.985 0.479 0.815 0.930

Breast cancer Coi. 0.544 0.552 0.611 0.552 0.548 0.539 0.544 0.569 0.615

Breast cancer Wis. 0.373 0.904 0.990 0.373 0.905 0.869 0.370 0.922 0.941

Breast cancer mut. 0.324 0.812 0.822 0.324 0.811 0.809 0.322 0.811 0.829

Cervical cancer 0.032 0.028 0.846 0.021 0.027 0.000 0.023 0.024 0.000

Cirrhosis 0.255 0.286 0.458 0.253 0.291 0.500 0.255 0.303 0.283

Dermatology 0.130 0.566 0.892 0.130 0.566 0.795 0.125 0.575 0.638

PI Diabetes 0.348 0.364 0.628 0.348 0.356 0.540 0.347 0.398 0.582

ES Diabetes 0.617 0.658 0.974 0.612 0.770 0.733 0.614 0.658 0.962

Heart Disease 0.545 0.732 0.806 0.545 0.752 0.831 0.543 0.794 0.787

Heart Failure 0.322 0.367 0.653 0.321 0.344 0.712 0.323 0.424 0.527

Hepatitis C 0.096 0.661 0.938 0.094 0.702 0.843 0.087 0.593 0.704

Kidney Disease 0.272 1.000 1.000 0.272 1.000 0.607 0.272 1.000 0.957

Liver Disease 0.715 0.729 0.726 0.715 0.695 0.574 0.715 0.708 0.735

Maternal Risk 0.257 0.293 0.895 0.252 0.277 0.808 0.248 0.280 0.804

Parkinsons 0.753 0.875 0.842 0.754 0.929 0.717 0.754 0.914 0.921

Parkinsons Biom. 0.219 0.250 0.241 0.219 0.194 0.227 0.227 0.209 0.125

Spine 0.484 0.694 0.966 0.484 0.758 0.992 0.484 0.731 0.910

Stroke 0.045 0.054 0.163 0.050 0.054 0.778 0.050 0.054 0.181

221

Table A.6. Precision results of the baseline methods on synthetic datasets.

Dataset

δ = 20% δ = 40% δ = 60%

DF-PU S-EM TPOT DF-PU S-EM TPOT DF-PU S-EM TPOT

1 0.320 0.512 0.574 0.320 0.518 0.426 0.319 0.601 0.374

2 0.068 0.121 0.700 0.065 0.095 0.318 0.060 0.162 0.080

3 0.382 0.421 0.988 0.382 0.425 0.779 0.382 0.451 0.766

4 0.294 0.511 0.670 0.263 0.503 0.485 0.264 0.538 0.381

5 0.218 0.253 0.797 0.218 0.287 0.612 0.219 0.320 0.508

6 0.255 0.317 0.847 0.263 0.367 0.742 0.263 0.473 0.669

7 0.167 0.301 0.438 0.167 0.347 0.253 0.166 0.351 0.249

8 0.198 0.337 0.855 0.246 0.338 0.731 0.246 0.375 0.580

9 0.018 0.069 0.300 0.000 0.032 0.000 0.000 0.143 0.000

10 0.133 0.450 0.953 0.134 0.466 0.730 0.134 0.509 0.727

11 0.334 0.339 0.782 0.329 0.359 0.661 0.329 0.363 0.642

12 0.248 0.418 0.738 0.248 0.444 0.674 0.246 0.488 0.657

13 0.334 0.436 0.443 0.299 0.449 0.419 0.297 0.452 0.376

14 0.363 0.700 0.931 0.360 0.747 0.848 0.360 0.811 0.711

15 0.240 0.278 1.000 0.241 0.283 0.818 0.239 0.285 0.800

16 0.193 0.318 0.993 0.144 0.351 0.664 0.145 0.439 0.274

17 0.122 0.155 0.444 0.120 0.175 0.600 0.120 0.231 0.462

18 0.230 0.314 0.243 0.280 0.324 0.179 0.280 0.327 0.159

19 0.233 0.299 0.482 0.259 0.310 0.329 0.257 0.336 0.273

20 0.439 0.453 0.456 0.439 0.460 0.391 0.439 0.464 0.356

Table A.7. Recall results of the Auto-PU systems with base search space on real-world biomedical

datasets.

Dataset

δ = 20% δ = 40% δ = 60%

EBO-1 BO-1 GA-1 EBO-1 BO-1 GA-1 EBO-1 BO-1 GA-1

Alzheimer’s 0.579 0.632 0.474 0.579 0.553 0.500 0.447 0.316 0.342

Autism 0.986 0.957 0.950 0.899 0.928 0.914 0.914 0.791 0.878

Breast cancer Coi. 0.943 0.781 0.766 0.943 0.750 0.703 0.500 0.453 0.406

Breast cancer Wis. 0.987 0.915 0.934 0.915 0.948 0.934 0.896 0.821 0.863

Breast cancer mut. 0.750 0.983 0.991 0.625 0.928 0.930 0.874 0.856 0.880

Cervical cancer 0.765 0.765 0.706 0.824 0.824 0.824 0.647 0.588 0.588

Cirrhosis 0.648 0.634 0.690 0.507 0.648 0.549 0.493 0.465 0.465

Dermatology 0.833 0.854 0.833 0.771 0.896 0.813 0.604 0.604 0.750

PI Diabetes 0.739 0.731 0.787 0.810 0.765 0.810 0.642 0.563 0.631

ES Diabetes 0.969 0.981 0.953 0.859 0.794 0.825 0.863 0.847 0.894

Heart Disease 0.879 0.915 0.897 0.800 0.830 0.782 0.727 0.752 0.764

Heart Failure 0.698 0.729 0.802 0.635 0.583 0.635 0.573 0.656 0.604

Hepatitis C 0.875 0.875 0.911 0.768 0.786 0.661 0.625 0.607 0.446

Kidney Disease 1.000 0.977 0.953 0.884 0.930 0.977 0.488 0.674 0.605

Liver Disease 0.971 0.954 1.000 0.940 0.947 0.896 0.686 0.855 0.889

Maternal Risk 0.871 0.824 1.000 0.787 0.743 0.761 0.735 0.596 0.669

Parkinsons 0.939 0.973 1.000 0.946 0.878 0.816 0.558 0.612 0.735

Parkinsons Biom. 0.200 0.167 1.000 0.533 0.167 0.300 0.100 0.167 0.233

Spine 0.927 0.960 1.000 0.913 0.913 0.873 0.653 0.613 0.733

Stroke 0.422 0.411 1.000 0.278 0.150 0.350 0.283 0.339 0.411

222

Table A.8. Recall results of the Auto-PU systems with base search space on synthetic datasets.

Dataset

δ = 20% δ = 40% δ = 60%

EBO-1 BO-1 GA-1 EBO-1 BO-1 GA-1 EBO-1 BO-1 GA-1

1 0.712 0.695 0.683 0.576 0.547 0.831 0.539 0.453 0.996

2 0.794 0.635 0.746 0.032 0.032 0.349 0.032 0.048 0.444

3 0.814 0.731 0.844 0.663 0.646 0.793 0.572 0.468 0.664

4 0.766 0.798 0.793 0.753 0.745 0.973 0.625 0.500 0.723

5 0.532 0.719 0.66 0.376 0.432 0.754 0.261 0.632 0.634

6 0.731 0.696 0.787 0.565 0.565 0.803 0.509 0.459 0.544

7 0.836 0.552 0.816 0.577 0.512 0.821 0.512 0.483 0.378

8 0.947 0.396 0.956 0.360 0.422 0.658 0.302 0.387 0.360

9 0.103 0.207 0.345 0.103 0.034 0.414 0.172 0.069 0.862

10 0.984 0.863 0.967 1.000 0.813 0.791 0.940 0.648 0.615

11 0.838 0.662 0.816 0.606 0.604 0.582 0.560 0.486 0.650

12 0.817 0.801 0.742 0.675 0.685 0.715 0.605 0.449 0.457

13 0.816 0.787 0.782 0.574 0.569 0.632 0.502 0.493 0.924

14 0.862 0.998 0.951 0.857 0.953 1.000 0.776 0.848 0.946

15 0.474 0.746 0.495 0.584 0.613 0.907 0.486 0.474 0.884

16 0.953 0.297 0.844 0.430 0.320 0.938 0.352 0.195 0.992

17 0.828 0.411 0.768 0.391 0.397 0.331 0.172 0.172 0.868

18 0.915 0.822 0.966 0.424 0.390 0.356 0.373 0.203 0.576

19 0.752 0.611 0.711 0.443 0.591 0.805 0.362 0.470 0.872

20 0.909 0.759 0.972 0.726 0.769 0.731 0.617 0.685 0.805

Table A.9. Recall results of the Auto-PU systems with extended search space on real-world

biomedical datasets.

Dataset

δ = 20% δ = 40% δ = 60%

EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2

Alzheimer’s 0.500 0.526 0.526 0.526 0.579 0.500 0.474 0.421 0.474

Autism 0.950 0.942 0.978 0.928 0.914 0.950 0.899 0.878 0.914

Breast cancer Coi. 0.953 0.656 0.828 0.939 0.594 0.688 0.910 0.000 0.406

Breast cancer Wis. 0.928 0.998 0.925 0.906 0.925 0.934 0.882 0.830 0.792

Breast cancer mut. 0.766 0.938 0.989 0.563 0.887 0.917 0.578 0.854 0.878

Cervical cancer 0.765 0.765 0.765 0.824 0.765 0.765 0.941 0.765 0.412

Cirrhosis 0.634 0.620 0.437 0.521 0.620 0.423 0.324 0.423 0.141

Dermatology 0.813 0.813 0.854 0.854 0.771 0.896 0.688 0.688 0.563

PI Diabetes 0.757 0.739 0.672 0.709 0.799 0.720 0.657 0.646 0.627

ES Diabetes 0.947 0.944 0.966 0.894 0.819 0.806 0.906 0.888 0.831

Heart Disease 0.861 0.885 0.897 0.873 0.812 0.739 0.788 0.800 0.770

Heart Failure 0.729 0.729 0.740 0.635 0.615 0.646 0.469 0.531 0.563

Hepatitis C 0.875 0.946 0.911 0.875 0.625 0.786 0.554 0.464 0.446

Kidney Disease 0.953 0.953 0.860 0.907 0.953 0.907 0.488 0.651 0.674

Liver Disease 0.973 0.964 0.981 0.932 0.923 0.930 0.833 0.664 0.739

Maternal Risk 0.879 0.864 0.871 0.846 0.728 0.768 0.765 0.669 0.676

Parkinsons 0.939 0.946 0.973 0.871 0.803 0.837 0.735 0.707 0.687

Parkinsons Biom. 0.233 0.300 0.333 0.267 0.000 0.367 0.200 0.000 0.233

Spine 0.913 0.907 0.920 0.920 0.927 0.880 0.867 0.553 0.647

Stroke 0.417 0.456 0.439 0.406 0.383 0.439 0.361 0.367 0.372

223

Table A.10. Recall results of the Auto-PU systems with extended search space on synthetic

datasets.

Dataset

δ = 20% δ = 40% δ = 60%

EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2 EBO-2 BO-2 GA-2

1 0.634 0.601 0.679 0.613 0.486 0.827 0.527 0.490 0.700

2 0.222 0.222 0.619 0.016 0.016 0.603 0.032 0.063 0.825

3 0.755 0.759 0.789 0.696 0.657 0.602 0.572 0.435 0.928

4 0.806 0.785 0.923 0.790 0.729 0.848 0.697 0.516 0.630

5 0.437 0.583 0.875 0.379 0.616 0.478 0.399 0.476 0.437

6 0.659 0.677 0.832 0.613 0.600 0.880 0.587 0.525 0.843

7 0.617 0.527 0.791 0.562 0.443 0.453 0.542 0.438 0.891

8 0.533 0.502 0.507 0.369 0.524 0.800 0.369 0.293 0.684

9 0.103 0.069 0.759 0.069 0.034 0.800 0.207 0.103 0.448

10 0.962 0.863 0.945 0.934 0.819 1.000 0.857 0.665 0.720

11 0.645 0.585 0.857 0.582 0.531 0.751 0.529 0.447 0.971

12 0.675 0.664 0.968 0.626 0.575 0.618 0.575 0.470 0.796

13 0.642 0.686 0.591 0.623 0.566 0.882 0.529 0.495 0.730

14 0.904 0.973 0.975 0.855 0.948 0.934 0.698 0.853 0.929

15 0.529 0.524 0.643 0.471 0.560 0.419 0.425 0.383 0.822

16 0.438 0.406 1.000 0.344 0.242 0.531 0.281 0.242 0.914

17 0.298 0.265 0.675 0.185 0.457 0.954 0.185 0.046 0.523

18 0.458 0.508 0.627 0.415 0.398 0.941 0.390 0.288 0.305

19 0.483 0.497 0.812 0.396 0.584 0.557 0.302 0.322 0.255

20 0.690 0.736 0.822 0.655 0.695 0.825 0.569 0.530 0.505

Table A.11. Recall results of the baseline methods on real-world biomedical datasets.

Dataset

δ = 20% δ = 40% δ = 60%

DF-PU S-EM TPOT DF-PU S-EM TPOT DF-PU S-EM TPOT

Alzheimer’s 1.000 0.895 0.447 0.974 0.842 0.289 0.763 0.789 0.553

Autism 0.993 0.784 0.957 0.993 0.878 0.928 0.986 0.856 0.863

Breast cancer Coi. 0.969 1.000 0.516 1.000 0.984 0.641 0.969 0.906 0.375

Breast cancer Wis. 1.000 0.892 0.906 1.000 0.901 0.967 0.991 0.887 0.524

Breast cancer mut. 0.998 0.989 0.974 0.998 0.993 0.989 0.987 0.991 0.837

Cervical cancer 0.882 0.882 0.647 0.824 0.941 0.000 0.706 0.588 0.000

Cirrhosis 0.986 0.915 0.535 0.972 0.915 0.437 0.986 0.944 0.479

Dermatology 0.958 0.979 0.688 0.938 0.979 0.729 0.896 0.958 0.771

PI Diabetes 0.996 1.000 0.698 0.996 1.000 0.556 0.993 0.862 0.567

ES Diabetes 0.994 0.994 0.928 0.988 0.972 0.438 0.994 0.997 0.716

Heart Disease 1.000 0.909 0.830 1.000 0.921 0.776 0.994 0.867 0.782

Heart Failure 1.000 0.948 0.667 1.000 0.969 0.542 0.948 0.813 0.604

Hepatitis C 0.982 0.732 0.804 0.982 0.714 0.768 0.911 0.625 0.339

Kidney Disease 1.000 1.000 0.977 1.000 1.000 0.791 1.000 0.907 0.512

Liver Disease 1.000 0.928 0.725 0.995 0.507 0.365 1.000 0.889 0.548

Maternal Risk 0.941 1.000 0.787 0.915 1.000 0.728 0.901 1.000 0.544

Parkinsons 0.993 0.762 0.980 1.000 0.626 0.619 1.000 0.653 0.476

Parkinsons Biom. 0.933 0.500 0.233 0.933 0.400 0.167 0.967 0.800 0.100

Spine 1.000 1.000 0.960 1.000 0.940 0.787 1.000 0.960 0.607

Stroke 0.811 1.000 0.328 0.811 1.000 0.117 0.756 1.000 0.150

224

Table A.12. Recall results of the baseline methods on synthetic datasets.

Dataset

δ = 20% δ = 40% δ = 60%

DF-PU S-EM TPOT DF-PU S-EM TPOT DF-PU S-EM TPOT

1 0.996 0.774 0.483 0.996 0.720 0.393 0.996 0.626 0.363

2 0.667 0.492 0.034 0.794 0.206 0.017 0.794 0.095 0.010

3 0.994 0.978 0.617 0.996 0.953 0.469 0.996 0.895 0.461

4 0.987 0.872 0.936 0.989 0.854 0.696 0.992 0.761 0.547

5 0.992 0.969 0.436 0.964 0.913 0.351 0.967 0.854 0.284

6 0.955 0.960 0.765 0.859 0.925 0.629 0.859 0.755 0.576

7 0.990 0.766 0.692 0.940 0.692 0.418 0.940 0.632 0.407

8 0.938 0.764 0.292 0.484 0.707 0.391 0.484 0.529 0.210

9 0.586 0.172 0.020 0.000 0.069 0.000 0.000 0.103 0.000

10 0.967 0.956 0.755 0.918 0.956 0.574 0.918 0.951 0.566

11 0.928 0.983 0.395 0.966 0.942 0.342 0.966 0.899 0.331

12 0.987 0.804 0.666 0.997 0.782 0.613 0.992 0.734 0.598

13 1.000 0.748 0.911 1.000 0.730 0.868 0.990 0.699 0.782

14 0.975 0.980 0.931 0.998 0.958 0.966 0.998 0.946 0.931

15 0.996 0.877 0.259 0.977 0.858 0.206 0.977 0.812 0.203

16 0.313 0.594 0.339 0.703 0.469 0.243 0.711 0.227 0.098

17 0.841 0.828 0.190 0.993 0.709 0.143 0.993 0.318 0.190

18 0.975 0.763 0.242 0.559 0.653 0.195 0.559 0.593 0.168

19 0.993 0.738 0.360 0.698 0.698 0.242 0.698 0.537 0.198

20 1.000 0.957 0.932 1.000 0.949 0.932 1.000 0.904 0.856

As discussed in the main text of the thesis, regarding precision and recall, the DF-PU method

generally achieved the best recall overall, however this was due to a large overpredicition of the

positive class and came at a great detriment to precision, thus achieving a low F-measure overall. S-

EM also achieved good recall, often outperforming the Auto-PU systems, but this, again, came at a

high cost to precision in several cases. The results for TPOT were not comparable to GA-1, being

largely outperformed by GA-Auto-PU with statistical significance in most cases for both precision

and recall.

The Auto-PU systems generally performed best in regard to precision, often outperforming the

baseline methods with statistical significance. Statistical significance was rarely observed between

the different versions of the Auto-PU systems themselves.

A detailed analysis of the precision and recall results, including details of statistical significance

testing and the best method for each comparison, can be found in the main text of this thesis in

Chapters 4-6.

225

Appendix B

Auto-PU-NAS (Neural Architecture

Search)

An additional approach to those presented in this thesis that was investigated was an Auto-PU system

that performed a neural architecture search for two-step PU learning algorithms. That is, the classifier

parameters of the Auto-PU system were replaced with multilayer perceptrons (MLPs), with the

hyperparameters of the MLP included in the search space.

More precisely, recall that in the proposed Auto-PU systems, a candidate solution includes

(among other PU learning algorithm hyperparameters) three “classifier” hyperparameters, namely

Classifier_1A, Classifier_1B and Classifier_2; and each of these three hyperparameters takes as a

value the name of one out of a list of 18 predefined candidate classification algorithms. In the Auto-

PU-NAS system described in this Appendix, each of those 3 classifier hyperparameters was replaced

by a list of 12 hyperparameters of a multilayer perceptron (MLP) algorithm, where each of those 12

hyperparameters takes a value among a predefined list of candidate values (shown next). All the

other hyperparameters (i.e., other than the “classifier” hyperparameters) in the solution encoding

used by GA-Auto-PU, BO-Auto-PU and EBO-Auto-PU were kept without modification in Auto-

PU-NAS. Hence, the total number of PU learning algorithm hyperparameters being optimised by the

Auto-PU-NAS, for the base search space, is: 4 + (12 × 3) = 40, i.e., the four “non-classifier”

hyperparameters of GA-Auto-PU, BO-Auto-PU and EBO-Auto-PU plus 3 times the 12

hyperparameters of the MLP algorithm.

226

The parameters of the MLP that were tuned were as follows:

• Hidden layer count: { 1, 2, 3, 4, 5 }

• Hidden layer formula: { 5 candidate formulas (see below) }

• Activation function: { identity, logistic, tanh, ReLU }

• L2 regularisation: { True, False }

• Alpha: { 0.00001, 0.0001, 0.001, 0.01, 0.1 }

• Learning rate init: { 0.00001, 0.0001, 0.001, 0.01, 0.1 }

• Early stopping: { True, False }

• Number of iterations no change (early stopping tolerance): { 10, 15, 20, 25, 30 }

• Batch size: { 32, 64, 128, 256 }

• Epochs : { 50, 250, 500, 750, 1000 }

• Tolerance: { 0.0001, 0.0005, 0.001 }

• Validation fraction: { 0.1, 0.15, 0.2 }

These hyperparmeters (with the exception of hidden layer formula) correlate to those of the same

name given in the Sklearn documentation [31] for the MLP classifier7. The hidden layer formula is

used to determine the number of neurons in each hidden layer. As this is highly dependent on the

number of input features, using a formula seems a better approach than simply setting a fixed value.

The candidate formulas are described next.

Terms

#𝑁ℎ: The number of hidden neurons for a given layer ℎ.

𝑚: The number of attributes of the data

𝑛: The number of inputs for the layer.

𝑙𝑖: The value of 𝑖 for the 𝑖th hidden layer. E.g., 2 for the second hidden layer.

𝑜: The number of outputs (1 for binary classification).

7 https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#

sklearn.neural_network.MLPClassifier

227

Formula 1 for number of neurons in a hidden layer (Equation B.1)

#𝑁ℎ = (
𝑚

2
) + 3 (B. 1)

This formula was developed by Tamura & Tateishi [214] for 4-layer networks to reduce number of

parameters to learn in comparison to a formula previously given by Sartori & Antsaklis [215] when

𝑛 is large.

Formula 2 for number of neurons in a hidden layer (Equation B.2)

#𝑁ℎ =
𝑚 + √𝑛

𝑙𝑖
 (B. 2)

This formula was determined by manually tuning networks on several use cases and generalising for

the best performing networks [216].

Formula 3 for number of neurons in a hidden layer (Equation B.3)

#𝑁ℎ =
𝑛 + 𝑜 − 1

2
 (B. 3)

For this work, this simplifies just to
𝑛

2
. So, each layer has half the neurons of the previous layer.

Formula 4 for number of neurons in a hidden layer (Equation B.4)

#𝑁ℎ = 𝑛 × (
2

3
) + 𝑜 (B. 4)

Formula 5 for number of neurons in a hidden layer (Equation B.5)

#𝑁ℎ = √𝑛 × 𝑜 (B. 5)

For the applications in this work, this simplifies just to √𝑚𝑖.

The size of the search space for just the MLP hyperparameters is thus:

5 × 5 × 4 × 2 × 5 × 5 × 2 × 5 × 4 × 5 × 3 × 3 = 9,000,000

228

Evolutionary Bayesian optimisation was used as the optimiser for the Auto-PU-NAS system, as it

was arguably the best performing of the three approaches used throughout this thesis. Due to the

computational expense of the MLP classifier, experiments were conducted utilising the base search

space only. With the extra hyperparameters included, the size of the search space is thus:

10 × 10 × 9,000,000 × 10 × 9,000,000 × 2 × 9,000,000

= 1,458,000,000,000,000,000,000,000 (1.458E24)

which is 1.25E17 times larger than the original search space, where the value of 9,000,000 is the

size of the search space of just the MLP hyperparameters.

The results are given in Tables B.1 to B.6 for both the biomedical and synthetic datasets. The full

comparison with all three Auto-PU systems makes the table too large to display here, so only the

results for EBO-1 have been included for reference.

Table B.1. F-measure results of Auto-PU-NAS compared with EBO-1 on real-world biomedical

datasets.

Dataset

δ = 20% δ = 40% δ = 60%

NAS EBO-1 NAS EBO-1 NAS EBO-1

Alzheimer’s 0.120 0.629 0.093 0.587 0.080 0.540

Autism 0.343 0.986 0.311 0.926 0.281 0.927

Breast cancer Coi. 0.436 0.966 0.404 0.952 0.338 0.615

Breast cancer Wis. 0.722 0.893 0.698 0.872 0.668 0.927

Breast cancer mut. 0.385 0.672 0.269 0.667 0.238 0.862

Cervical cancer 0.000 0.839 0.000 0.904 0.000 0.667

Cirrhosis 0.282 0.532 0.190 0.453 0.121 0.507

Dermatology 0.179 0.899 0.073 0.813 0.000 0.716

PI Diabetes 0.129 0.654 0.110 0.661 0.091 0.634

ES Diabetes 0.751 0.973 0.663 0.913 0.611 0.909

Heart Disease 0.355 0.833 0.297 0.800 0.188 0.774

Heart Failure 0.306 0.732 0.246 0.666 0.211 0.640

Hepatitis C 0.487 0.925 0.462 0.835 0.456 0.667

Kidney Disease 0.400 1.000 0.364 0.938 0.295 0.646

Liver Disease 0.394 0.827 0.344 0.819 0.268 0.717

Maternal Risk 0.453 0.855 0.405 0.803 0.380 0.739

Parkinsons 0.532 0.929 0.406 0.894 0.392 0.707

Parkinsons Biom. 0.123 0.203 0.091 0.337 0.000 0.133

Spine 0.611 0.933 0.480 0.932 0.437 0.775

Stroke 0.020 0.239 0.010 0.225 0.010 0.229

229

Table B.2. F-measure results of Auto-PU-NAS compared with EBO-1 on synthetic datasets.

Dataset

δ = 20% δ = 40% δ = 60%

NAS EBO-1 NAS EBO-1 NAS EBO-1

1 0.434 0.678 0.402 0.644 0.370 0.581

2 0.084 0.194 0.063 0.043 0.034 0.040

3 0.565 0.770 0.549 0.685 0.532 0.594

4 0.565 0.809 0.536 0.795 0.527 0.675

5 0.234 0.439 0.216 0.420 0.191 0.292

6 0.369 0.714 0.339 0.677 0.312 0.605

7 0.338 0.565 0.297 0.545 0.242 0.487

8 0.541 0.508 0.535 0.400 0.483 0.332

9 0.031 0.023 0.000 0.076 0.000 0.133

10 0.649 0.973 0.620 0.959 0.587 0.907

11 0.453 0.635 0.437 0.576 0.412 0.535

12 0.577 0.752 0.558 0.673 0.507 0.607

13 0.447 0.665 0.416 0.610 0.392 0.539

14 0.624 0.909 0.576 0.878 0.555 0.790

15 0.367 0.580 0.359 0.558 0.340 0.462

16 0.271 0.546 0.222 0.451 0.187 0.372

17 0.290 0.372 0.278 0.297 0.258 0.129

18 0.459 0.532 0.371 0.469 0.330 0.413

19 0.399 0.500 0.355 0.324 0.324 0.273

20 0.521 0.661 0.466 0.633 0.425 0.532

Table B.3. Precision results of Auto-PU-NAS compared with EBO-1 on real-world biomedical

datasets.

Dataset

δ = 20% δ = 40% δ = 60%

NAS EBO-1 NAS EBO-1 NAS EBO-1

Alzheimer’s 0.080 0.688 0.063 0.595 0.054 0.680

Autism 0.410 0.986 0.362 0.954 0.330 0.941

Breast cancer Coi. 0.333 0.990 0.308 0.962 0.262 0.800

Breast cancer Wis. 0.775 0.815 0.764 0.833 0.755 0.960

Breast cancer mut. 0.467 0.608 0.350 0.714 0.324 0.851

Cervical cancer 0.000 0.929 0.000 1.000 0.000 0.688

Cirrhosis 0.282 0.451 0.184 0.409 0.115 0.522

Dermatology 0.625 0.976 0.286 0.860 0.000 0.879

PI Diabetes 0.488 0.586 0.415 0.559 0.350 0.625

ES Diabetes 0.856 0.978 0.834 0.975 0.802 0.962

Heart Disease 0.621 0.792 0.579 0.800 0.417 0.828

Heart Failure 0.679 0.770 0.577 0.701 0.481 0.724

Hepatitis C 0.864 0.980 0.818 0.915 0.783 0.714

Kidney Disease 0.519 1.000 0.522 1.000 0.500 0.955

Liver Disease 0.676 0.720 0.628 0.726 0.517 0.751

Maternal Risk 0.580 0.840 0.551 0.820 0.503 0.743

Parkinsons 0.817 0.920 0.745 0.848 0.750 0.965

Parkinsons Biom. 0.114 0.207 0.083 0.246 0.000 0.200

Spine 0.615 0.939 0.528 0.951 0.492 0.951

Stroke 0.118 0.167 0.056 0.189 0.050 0.192

230

Table B.4. Precision results of Auto-PU-NAS compared with EBO-1 on synthetic datasets.

Dataset

δ = 20% δ = 40% δ = 60%

NAS EBO-1 NAS EBO-1 NAS EBO-1

1 0.551 0.648 0.516 0.729 0.493 0.630

2 0.089 0.111 0.063 0.069 0.038 0.056

3 0.677 0.731 0.661 0.709 0.642 0.618

4 0.645 0.857 0.632 0.842 0.621 0.734

5 0.269 0.373 0.248 0.476 0.225 0.332

6 0.550 0.697 0.551 0.845 0.515 0.746

7 0.399 0.426 0.359 0.516 0.288 0.464

8 0.600 0.347 0.603 0.450 0.523 0.368

9 0.020 0.013 0.000 0.060 0.000 0.109

10 0.590 0.962 0.551 0.919 0.529 0.877

11 0.496 0.511 0.495 0.549 0.461 0.512

12 0.692 0.697 0.663 0.671 0.636 0.610

13 0.463 0.561 0.438 0.652 0.407 0.582

14 0.842 0.962 0.819 0.899 0.781 0.804

15 0.443 0.749 0.425 0.535 0.403 0.441

16 0.380 0.382 0.344 0.474 0.315 0.395

17 0.311 0.240 0.278 0.240 0.258 0.104

18 0.540 0.375 0.424 0.526 0.372 0.463

19 0.367 0.375 0.326 0.255 0.302 0.219

20 0.532 0.520 0.500 0.562 0.467 0.468

Table B.5. Recall results of Auto-PU-NAS compared with EBO-1 on real-world biomedical

datasets.

Dataset

δ = 20% δ = 40% δ = 60%

NAS EBO-1 NAS EBO-1 NAS EBO-1

Alzheimer’s 0.237 0.579 0.184 0.579 0.158 0.447

Autism 0.295 0.986 0.273 0.899 0.245 0.914

Breast cancer Coi. 0.632 0.943 0.585 0.943 0.476 0.5

Breast cancer Wis. 0.675 0.987 0.643 0.915 0.599 0.896

Breast cancer mut. 0.328 0.750 0.219 0.625 0.188 0.874

Cervical cancer 0.000 0.765 0.000 0.824 0.000 0.647

Cirrhosis 0.282 0.648 0.197 0.507 0.127 0.493

Dermatology 0.104 0.833 0.042 0.771 0.000 0.604

PI Diabetes 0.075 0.739 0.063 0.810 0.052 0.642

ES Diabetes 0.669 0.969 0.550 0.859 0.494 0.863

Heart Disease 0.248 0.879 0.200 0.800 0.121 0.727

Heart Failure 0.198 0.698 0.156 0.635 0.135 0.573

Hepatitis C 0.339 0.875 0.321 0.768 0.321 0.625

Kidney Disease 0.326 1.000 0.279 0.884 0.209 0.488

Liver Disease 0.278 0.971 0.237 0.940 0.181 0.686

Maternal Risk 0.371 0.871 0.320 0.787 0.305 0.735

Parkinsons 0.395 0.939 0.279 0.946 0.265 0.558

Parkinsons Biom. 0.133 0.200 0.100 0.533 0.000 0.1

Spine 0.607 0.927 0.440 0.913 0.393 0.653

Stroke 0.011 0.422 0.006 0.278 0.006 0.283

231

Table B.6. Recall results of Auto-PU-NAS compared with EBO-1 on synthetic datasets.

Dataset

δ = 20% δ = 40% δ = 60%

NAS EBO-1 NAS EBO-1 NAS EBO-1

1 0.358 0.712 0.329 0.576 0.296 0.539

2 0.079 0.794 0.063 0.032 0.032 0.032

3 0.485 0.814 0.470 0.663 0.455 0.572

4 0.503 0.766 0.465 0.753 0.457 0.625

5 0.207 0.532 0.192 0.376 0.166 0.261

6 0.277 0.731 0.245 0.565 0.224 0.509

7 0.294 0.836 0.254 0.577 0.209 0.512

8 0.493 0.947 0.480 0.360 0.449 0.302

9 0.069 0.103 0.000 0.103 0.000 0.172

10 0.720 0.984 0.709 1.000 0.659 0.94

11 0.418 0.838 0.391 0.606 0.372 0.56

12 0.495 0.817 0.481 0.675 0.422 0.605

13 0.431 0.816 0.397 0.574 0.377 0.502

14 0.496 0.862 0.445 0.857 0.430 0.776

15 0.313 0.474 0.311 0.584 0.294 0.486

16 0.211 0.953 0.164 0.430 0.133 0.352

17 0.272 0.828 0.278 0.391 0.258 0.172

18 0.398 0.915 0.331 0.424 0.297 0.373

19 0.436 0.752 0.389 0.443 0.349 0.362

20 0.510 0.909 0.437 0.726 0.391 0.617

 As is evident from these results, the Auto-PU-NAS system performed very poorly, and thus the

decision was made not to utilise the system for further experimentation. The primary hypothesis for

the reasons as to why the NAS system performed so poorly is the size of the search space. The search

space grew extraordinarily large with the addition of the NAS hyperparameters, it is likely that the

optimiser was simply not able to cope with the vast number of candidate solutions and thus was

unable to find solutions close to those found by the other Auto-PU systems.

