
ACHIEV ING SELF - SUSTA INAB IL I TY IN INTERACT IVE
GRAPHICAL PROGRAMMING SYSTEMS

joel jakubovic

A Dissertation Submitted in Fulfillment of the Requirements for the Degree of
Doctor of Philosophy (PhD)

in Computer Science
to the School of Computing

Division of Computing, Engineering and Mathematical Sciences
University of Kent

Submitted June 2023

Joel Jakubovic: Achieving Self-Sustainability in Interactive Graphical Pro-
gramming Systems, © September 2019–March 2024

supervisors:
Tomas Petricek
Stefan Marr

location:
Canterbury, Kent

time frame:
September 2019–March 2024

I dedicate this work to my parents Rachel and David and my sister
Ruth, for supporting my quest for knowledge wherever it may lead.

ABSTRACT

Programming is fraughtwith accidental complexity. Software, including
tools used for programming, is inflexible and hard to adapt to one’s
specific problem context. Programming tools do not support Notational
Freedom, so programmers must waste cognitive effort expressing ideas
in suboptimal notations. They must also work around problems caused
by a reliance on plain text representations instead of Explicit Structure.

The idea of a Self-Sustainable programming system, open to adapta-
tion by its users, promises a way out of these accidental complexities.
However, the principles underlying such a property are poorly docu-
mented, as are methods for practically achieving it in harmony with
Notational Freedom and Explicit Structure. We trace the causes of this
difficulty and use them to inform our construction of a prototype self-
sustainable system. By carefully reflecting on the steps involved in our
specific case, we provide insight into how self-sustainability can be
achieved in general, and thus how a motivated programmer can escape
the aforementioned sources of accidental complexity.

v

PUBL ICAT IONS

Some ideas presented in this dissertation have appeared previously in
the following publications:

Jakubovic, Joel (Dec. 2020a). “Programming “systems” deserve a the-
ory too!” In: Psychology of Programming Interest Group.

– (2020b). “What It Takes to Create with Domain-Appropriate Tools.
Reflections on implementing the “Id” system.” In: Companion Pro-
ceedings of the 4th International Conference on Art, Science, and Engineer-
ing of Programming. Programming ’20. Porto, Portugal: Association
for Computing Machinery, pp. 197–207. isbn: 9781450375078. doi:
10.1145/3397537.3397549.

Jakubovic, Joel, Jonathan Edwards, and Tomas Petricek (Feb. 2023).
“Technical Dimensions of Programming Systems.” In: The Art, Science,
and Engineering of Programming 7.3. doi: 10.22152/programming-
journal.org/2023/7/13.

Jakubovic, Joel and Tomas Petricek (2022). “Ascending the Ladder
to Self-Sustainability: Achieving Open Evolution in an Interactive
Graphical System.” In: Proceedings of the 2022 ACM SIGPLAN Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software. Onward! 2022. Auckland, New Zealand: Asso-
ciation for Computing Machinery, pp. 240–258. isbn: 9781450399098.
doi: 10.1145/3563835.3568736.

Petricek, Tomas and Joel Jakubovic (2021). “Complementary science
of interactive programming systems.” In: History and Philosophy of
Computing.

vii

https://doi.org/10.1145/3397537.3397549
https://doi.org/10.22152/programming-journal.org/2023/7/13
https://doi.org/10.22152/programming-journal.org/2023/7/13
https://doi.org/10.1145/3563835.3568736

ACKNOWLEDGMENTS

I first wish to thank Tomas Petricek for enthusiastically supporting
this work and my research interests and for giving detailed critical
feedback on publications. I’m particularly grateful for his continued
and undiminished supervision after his departure from Kent. I also
thank Stefan Marr for his supervision and for his feedback on papers,
talks, and this dissertation. I appreciate the funding I received from the
Engineering and Physical Sciences Research Council (EPSRC) over the
first three years of this work.

Jonathan Edwards’ collaboration on the formidable Technical Dimen-
sions paper was indispensable and his presence in regular video calls
has been welcome during many difficult periods of writing. I must
thank Richard Gabriel for shepherding its 2021 submission to Pattern
Languages of Programming1 and thank the participants of the Writers’
Workshop for their feedback, as well as others who proofread or oth-
erwise gave input on the ideas at different stages. These include Luke
Church, Filipe Correia, Thomas Green, Brian Hempel, Clemens Klok-
mose, Geoffery Litt, Mariana Mărășoiu, Michael Weiss, and Rebecca
and Allen Wirfs-Brock. I also thank the attendees of our Programming
2021 Conversation Starters2 and the 2022 Methodology Of Programming
Systems3 workshop.

I must express my gratitude to the Future of Coding4 Slack channel
for making me aware of Tomas’ PhD opportunity in late 2018, and to
Anil Madhavapeddy and Antranig Basman for writing my reference
letters. I also thank Antranig for feedback on papers and countless
stimulating discussions on subjects related and unrelated to this work.
I’ve similarly enjoyed correspondence with Stephen Kell and Hamish
Todd on all sorts of interesting subjects that intersect with this one.

Thanks to all those who worked at VPRI;5 as an undergraduate,
the STEPS project reassured me that the unclear frustrations about
programming I was having were actually legitimate after all. Particular
thanks go to Ian Piumarta for the COLA work that inspired me so much;
I hope this dissertation is a worthy step towards its vision. I would be
remiss not to mention Dan Cook, whose shared interest in these themes
through 2018 was a strong motivator for my embarking on this journey.
Whenever I began to doubt my goals, I’d re-read his lucid explanations6
and remember that they did make sense after all.

1 https://www.hillside.net/plop/2021/index.php?nav=PLoP21

2 https://2021.programming-conference.org/track/programming-2021-conversation-starters

3 https://2022.programming-conference.org/home/mops-2022

4 https://futureofcoding.org/

5 https://vpri.org/

6 https://www.cemetech.net/forum/viewtopic.php?p=270092#270092

ix

https://www.hillside.net/plop/2021/index.php?nav=PLoP21
https://2021.programming-conference.org/track/programming-2021-conversation-starters
https://2022.programming-conference.org/home/mops-2022
https://futureofcoding.org/
https://vpri.org/
https://www.cemetech.net/forum/viewtopic.php?p=270092#270092

At this point, my mind is inexorably drawn to a crossed-out name
in one of the dissertations in the School’s collection. I shall restore
balance to the cosmos by expressing my appreciation for Daria’s love
and support duringmy research, and for our continued friendship since
going our separate ways. Let me also thank my family, office colleagues
and anyone who has slipped my mind for their company along this
most challenging of my accomplishments.

x

CONTENTS

1 Introduction 1
1.1 A More Compelling Example 2
1.2 How Should Things Work? 3
1.3 A Fragmented Vision 4

1.3.1 Web pages, web apps, and browsers 5
1.3.2 HyperCard 6
1.3.3 Smalltalk and COLA 6

1.4 Accidental Complexity Beyond Languages 9
1.5 The Three Properties 10

1.5.1 Importance of the Three Properties 11
1.5.2 The Three Properties in Combination 12

1.6 Thesis Statement and Contributions 12
1.7 Supporting Publications 13

2 Background 15
2.1 Programming Systems vs Languages 15
2.2 Examples of Programming Systems 16

2.2.1 Systems Based Around Languages 17
2.2.2 OS-Like Programming Systems 18
2.2.3 Application-Focused Systems 24

2.3 Precursors of the Three Properties 25
2.3.1 Precursors of Self-Sustainability 26
2.3.2 Precursors of Notational Freedom 28
2.3.3 Precursors of Explicit Structure 30

2.4 Review and Next Steps 33

3 Analysis 35
3.1 Two Fundamentals: State and Change 35

3.1.1 The Low-Level Binary World 36
3.1.2 The Minimally Human-Friendly World 36
3.1.3 Let Us Avoid The Low-Level BinaryWorld 37

3.2 Paradigms of Programs and Programming 38
3.2.1 The Batch-Mode Paradigm 39
3.2.2 The Unix Paradigm 42
3.2.3 The Interactive Paradigm 44
3.2.4 Batch-Mode Anachronisms 45
3.2.5 Conclusion 48

3.3 The Three Properties in More Detail 48
3.3.1 Self-Sustainability 48
3.3.2 Notational Freedom 54
3.3.3 Explicit Structure 59

3.4 Conclusions 62

xi

xii contents

4 BootstrapLab: The Three Properties in theWeb Browser 65
4.1 Methodology 66
4.2 Concepts and Terminology 67
4.3 Journey Itinerary 67
4.4 Choose a Starting Platform 69
4.5 Design a Substrate 71

4.5.1 Substrates in Squeak and Altair 73
4.5.2 COLA’s Low-Level Byte Arrays 73
4.5.3 The Major Design Conflict 74
4.5.4 BootstrapLab’s Simple, Structured StateModel 76
4.5.5 Designing the Instruction Set 78
4.5.6 Graphics and Interaction 82
4.5.7 BootstrapLab Substrate Summary 83

4.6 Implement Temporary Infrastructure 84
4.6.1 Early Computing, Squeak, and COLA 84
4.6.2 Temporary Infrastructure in BootstrapLab 86

4.7 Implement a High-Level Language 87
4.7.1 Shortcuts for Low-Level Substrates 88
4.7.2 High-Level Language for BootstrapLab 89
4.7.3 Choosing anAppropriate Implementation 91
4.7.4 Implementing Masp for BootstrapLab 93

4.8 Pay Off Outstanding Substrate Debt 94
4.8.1 Substrate Debt in Squeak 96
4.8.2 Substrate Debt in BootstrapLab 97
4.8.3 Supplanting the Temporary State Viewer 98

4.9 Provide for Domain-Specific Notations 100
4.9.1 A Taster 101
4.9.2 A More Ambitious Novel Interface 102
4.9.3 Real Example: Colour Preview 103
4.9.4 The Key Takeaway 106

4.10 Situation, Task, User, Importance 106

5 Technical Dimensions of Programming Systems 109
5.1 Barriers to Programming Systems Research 109
5.2 Our Proposal 110
5.3 Dimensions, Qualitative and Quantitative 111

5.3.1 HowWeDefine andApply theDimensions 111
5.3.2 Aggregation and Simplification 112

5.4 The Three Properties as Dimensions 113
5.4.1 DimensionsConstituting Self-Sustainability 113
5.4.2 DimensionsConstitutingNotational Freedom 116
5.4.3 DimensionsConstituting Explicit Structure 117

5.5 Evaluating BootstrapLab 119
5.5.1 Measures of Self-Sustainability 119
5.5.2 Measures of Notational Freedom 120
5.5.3 Measures of Explicit Structure 121

contents xiii

5.6 Conclusions 121

6 Related Work 123
6.1 STEPS and the Legacy of VPRI 123
6.2 Self-Sustainability and its Theory 124
6.3 Video Games 125
6.4 Novel Notations versus Notational Freedom 125
6.5 Structure Editing and its Variations 127
6.6 Programming Systems and their Analysis 127

6.6.1 Programming Systems Research 128
6.6.2 Already-Known Characteristics 129

7 Future Work and Conclusions 131
7.1 Improving the Technical Dimensions 131

7.1.1 Scoping The Dimensions 131
7.1.2 Aggregation Functions and Weights 132
7.1.3 Defining Quantitative Measures or Resolution

Criteria 133
7.1.4 Obtaining Consensus on Scores 133
7.1.5 The Circumscription Problem of Systems 134

7.2 Improving BootstrapLab 134
7.2.1 Pay Off Substrate Debt 135
7.2.2 Make BootstrapLab Assembler (BL-ASM) More

Usable 135
7.2.3 Alternative Implementation Strategies 135
7.2.4 Make the System Less Fragile 136
7.2.5 Import From Related Work 136
7.2.6 Bootstrap onOther Platforms and Substrates 136

7.3 Review 137
7.4 Conclusions 138

a BootstrapLab Journey Summary 141

b BootstrapLab Substrate Reference 143
b.1 State in BootstrapLab 143

b.1.1 Registers 143
b.1.2 Graphics State: The scene Tree 144
b.1.3 Manually Updating State 146
b.1.4 Persisting State 146

b.2 Change in BootstrapLab 147
b.2.1 Instruction Encoding in State, Text, andDiagrams 147
b.2.2 ChangeMapEntry and Supporting Instructions 148
b.2.3 Create New Map 150
b.2.4 Inheritance of JS-level Change 151
b.2.5 The Fetch-Execute Cycle 152
b.2.6 Input Handling 153

xiv contents

c BootstrapLab Trivia 155
c.1 The Minimal Random-Access Instruction Set (And Its

Perils) 155
c.1.1 Deconstruction of a Path-to-Path Copy 155
c.1.2 Copying and Jumping 156
c.1.3 A Meta-Circular Inelegance 157

c.2 The Cutting Room Floor 160
c.3 Graphs vs. Trees 161

d Masp Reference 163
d.1 State in Masp 163
d.2 Change in Masp 163

d.2.1 Maps as Functions 165
d.2.2 Masp Tree-Based Evaluation 166
d.2.3 List of Primitives 168

d.3 Important Related Work 169

e Technical Dimensions Catalogue 171
e.1 Interaction 173

e.1.1 Dimension: feedback loops 173
e.1.2 Example: immediate feedback 175
e.1.3 Example: direct manipulation 175
e.1.4 Dimension: modes of interaction 176
e.1.5 Dimension: abstraction construction 177
e.1.6 Concept: implicit vs. explicit structure 177
e.1.7 Dimension: format errors 178
e.1.8 Dimension: string wrangling effort 179
e.1.9 Relations 180

e.2 Notation 180
e.2.1 Dimension: notational structure 180
e.2.2 Example: overlapping notations 181
e.2.3 Example: complementing notations 181
e.2.4 Dimension: primary and secondary notations 182
e.2.5 Dimension: expression geography 183
e.2.6 Dimension: uniformity of notations 184
e.2.7 Concept: notational freedom 184
e.2.8 Dimension: custom syntax effort 185
e.2.9 Dimension: custom language effort 186
e.2.10 Dimension: custom notation effort 186
e.2.11 References 186
e.2.12 Relations 187

e.3 Conceptual Structure 187
e.3.1 Dimension: conceptual integrity vs. openness 187
e.3.2 Example: conceptual integrity 188
e.3.3 Example: conceptual openness 189
e.3.4 Dimension: composability 190
e.3.5 Dimension: convenience 191

contents xv

e.3.6 Dimension: commonality 191
e.3.7 Examples: flattening and factoring of commonal-

ity 192
e.3.8 Remark: the end of history? 193
e.3.9 References 193

e.4 Customizability 193
e.4.1 Dimension: staging of customisation 194
e.4.2 Dimension: addressing and externalisability 194
e.4.3 Concept: self-sustainability 195
e.4.4 Dimension: substrate size 197
e.4.5 Dimension: persistence effort 198
e.4.6 Dimensions: code viewing and editing 199
e.4.7 Dimension: data execution 199
e.4.8 References 200
e.4.9 Relations 200

e.5 Complexity 200
e.5.1 Remark: notations 201
e.5.2 Dimension: factoring of complexity 201
e.5.3 Dimension: level of automation 201
e.5.4 Example: domain-specific languages 202
e.5.5 Example: programming by example 202
e.5.6 Example: next-level automation 202
e.5.7 Relations 203

e.6 Errors 203
e.6.1 Dimensions: error detection 203
e.6.2 Example: static typing 204
e.6.3 Examples: TDD, REPL and live coding 204
e.6.4 Remark: eliminating latent errors 205
e.6.5 Dimension: error response 205
e.6.6 Relations 206
e.6.7 References 206

e.7 Adoptability 207
e.7.1 Dimension: learnability 207
e.7.2 Dimension: sociability 208

e.8 Evaluating the Dark Programming System 210
e.8.1 Dimensional analysis of Dark 213
e.8.2 Technical Innovations of Dark 214

Bibliography 215

L I ST OF F IGURES

Figure 1.1 Web Developer Tools. 5
Figure 1.2 HyperCard screenshot. 7
Figure 1.3 Smalltalk-80 screenshot. 8
Figure 1.4 Pharo class browser. 9
Figure 1.5 Spreadsheet interface. 10
Figure 2.1 ThingLab screenshot. 20
Figure 2.2 TCPpacketMood-Specific Language (MSL). 22
Figure 2.3 ASCII Packet diagram parser 23
Figure 2.4 Bootstrapping Tombstone Diagrams. 27
Figure 2.5 Format errors, syntax errors, and type errors. 32
Figure 3.1 Change By Re-Creation. 40
Figure 3.2 Revoking a static commitment via re-creation. 41
Figure 3.3 Relativity of user vs. implementation levels. 51
Figure 3.4 Smalltalk analysed as platform/substrate/prod-

uct. 53
Figure 3.5 Innovation feedback at the inter-process vs. intra-

process scope. 54
Figure 3.6 Notational Freedom in theGlamorous Toolkit. 58
Figure 4.1 BootstrapLabplatform, substrate, product. 67
Figure 4.2 The Altair 8800 microcomputer. 70
Figure 4.3 BootstrapLab scene tree. 83
Figure 4.4 BootstrapLab “device driver” forDOM events. 84
Figure 4.5 BootstrapLab interface. 86
Figure 4.6 Lisp example. 89
Figure 4.7 Masp as ideally rendered. 90
Figure 4.8 Masp, fully de-sugared. 90
Figure 4.9 Masp tombstone diagrams. 92
Figure 4.10 Masp Factorial evaluation step 1. 94
Figure 4.11 Masp Factorial evaluation step 2. 95
Figure 4.12 Masp Factorial evaluation step 3. 95
Figure 4.13 Masp Factorial evaluation step 4. 96
Figure 4.14 BootstrapLab substrate debt. 98
Figure 4.15 In-system tree editor vs.HTML state viewer. 99
Figure 4.16 Masp code for local colour preview. 104
Figure 4.17 Local colour preview in BootstrapLab. 104
Figure 4.18 Innovation Feedback in BootstrapLab. 105
Figure B.1 Rectangle properties. 144
Figure B.2 Text label properties. 145
Figure B.3 Camera properties. 145
Figure B.4 Instruction semantics notation. 148
Figure B.5 Sharing vs. copying of load literals. 151

xvi

Figure C.1 Separate base and virtual registers. 158
Figure C.2 Sibling base and virtual registers. 158
Figure D.1 The Masp tree. 166
Figure E.1 Feedback Loops in a statically-checked language. 174
Figure E.2 A simple Web service in Dark. 210

L I ST OF TABLES

Table 4.1 The conceptual divisions of the substrate. 72
Table E.1 Dark dimensions summary. 211
Table E.2 Dark dimensions summary. 212

xvii

ACRONYMS

DOM Document Object Model
COLA Combined Object Lambda Architecture
JS JavaScript
DSL Domain-Specific Language
MSL Mood-Specific Language
GUI Graphical User Interface
IDE Integrated Development Environment
OS Operating System
REPL Read-Eval-Print Loop
RISC Reduced Instruction Set Computing
CISC Complex Instruction Set Computing
BL-ASM BootstrapLab Assembler

xviii

1
INTRODUCT ION

When we have an idea for some computer software, and try to make
this idea a reality, we are forced to confront two types of complexity:
the essential and the accidental. We know there is “no such thing as a free
lunch”, so we are able to accept the burden of whatever complexity is
actually intrinsic to our idea. If we have a simple idea, we are prepared
to do a little work; if it is more ambitious, we will accept having to do
more work. Unfortunately, this essential complexity is often swamped
by unwelcome incursions of tedious busy-work. Concepts that appear
simple must be spelled out in great detail for a computer. This is the
accidental complexity that is widespread in programming (Brooks 1978).

This is particularly egregious when the “idea” is merely to change
or fix some small issue. Suppose we are using an app where the text
is hard to read owing to a similar background colour. The designers
have not included a feature for changing the colour of UI elements. A
programmer would know that there must be some API being called
to render the background. This API will receive the colour from a few
numbers in the app’s memory. If only we could find these numbers and
change them, we would be able to read the text.

What, therefore, does it take to find and change a colour? The app
itself provides no way to proceed through its surface interface to its
internal mechanisms. Thus, the accidental complexity we must face
includes working with some external tool that can open it up. We could
attach an assembly-level debugger to the app process and stare at hex
dumps for a long time, eventually figuring out which address holds
the colour. Such an expert task would take an extremely long time even
for someone with the relevant experience. It would only let us make
a change to the running app; we would have to repeat the procedure
every time we ran the app.

Alternatively, we could hope that the app is open-source, download
the code, setup the build system, locate the relevant code, re-build the
app, and re-install it. Each of these steps is also an expert task which
would be incredibly lengthy on a novel codebase, even for experienced
programmers. Furthermore, this approach entails destroying the run-
ning instance of the app and re-initialising it, possibly losing unsaved
work.

In the worst case, both of these approaches could be blocked; run-
time tampering could be prevented by the security policies of mobile
devices, while re-building from source cannot work without access to
that source. Suffice to say, none of this is suitable for an average user.
Even a seasoned programmer would consider it not worth the trouble.

1

2 introduction

Our task of changing a colour, while technically possible, has a severely
disproportionate accidental complexity cost.

In specific situations, software authors do have good reasons to re-
strict access to internals. In a game, it is important to enforce the rules;
access to internals would enable arbitrary cheating. However, this is a
special case not representative of most types of software. Despite this,
we are unable to simply choose to build software that is “open”. Even
if we wrote the app and desire to support adaptation beyond what we
anticipated, we face the fact that our tools can only create software
that is “closed”. The task of “supporting unanticipated modification”
is itself a feature that we must somehow figure out and implement on
top, and it is unclear how to achieve such a feature. Nevertheless, it is
worth striving for a world where this accidental complexity is as re-
duced as possible. Wemight expect this to involve a mix of “demolition”
work—that of removing barriers that have been placed in the way—and
“construction” work of building tools that help us work more effectively.

1.1 a more compelling example

The reason we have considered changing a colour is that this is an
extremely small change that nevertheless has a plausible user story
behind it (as opposed to, say, flipping a single bit in the app’s memory
just to see what happens). What we have established is that even a
tiny change involves egregious accidental complexity, which does not
provide much hope for more practical changes we might actually want
to make. What is an example of a more realistic adaptation of one’s
software? There are many ways an end-user might want to adapt some
software they are using, but a clearer example is a frequent activity of
programmers: debugging.

The chief way in which programmers “adapt” existing software is
by fixing bugs. This involves two stages: discovering the cause of the
bug, and applying the fix. In order to discover the cause, it is helpful to
change values in the program while it is running. In the default state
of a program, however, this is not possible. Instead, the programmer
must return to the source code and make modifications there (either to
change values directly, or by writing code do so in response to specific
run-time conditions) and add logging commands so they may see
diagnostics at run time.

Alternatively, the programmer may run the program in tandem with
a separate tool, a dedicated debugger, which fills in for this “missing”
functionality of viewing (and possibly changing) run-time values as
well as slowly stepping through the code as it executes. However, not
even this will help with the second half of the job, that of changing
the program to fix the bug. Realistically, the debugger only permits
changing run-time data values, but let us grant for the sake of argument
that it can also edit code. Even in this case, the changes will be limited to

1.2 how should things work? 3

the running instance of the program, andwill be gonewhen it terminates.
In order to fix the bug in a lasting way, the programmermust once again
leave the program (the thing ostensibly being fixed) and go outside to
the separate source code, and make the change there. In sum, this is
a large amount of accidental complexity required for diagnosing and
fixing a bug.

If only there were some way to have the program supply its own
debugger, and provide access to its internal data and code through its
running “surface”, and finally persist any changes made that way, then
the actual complexity of the enterprise could be brought closer to the
essential complexity of the bug itself.

1.2 how should things work?

Imagine a world where the average computer user can patch or im-
prove their software the same way they might change a lightbulb or
perform DIY in their home. This clearly relies on the ability to make
small piecemeal changes to their home, without having to demolish the
place and re-build it anew. We will call this naïve pokeability:1

Definition 1 (Naïve pokeability). A change has naïve pokeability if it
is possible to make the change while the software is running without
having to consider the implications of restarting it.

Furthermore, the common-sense expectation is that the changes per-
sist into the future:

Definition 2 (Persistent). The result of a change is persistent if it remains
until a future change overrides its effect.

Definition 3 (Transient). A change is transient if, in the absence of
special measures, it will be undone within a short timeframe and its
effects will not last.

Additionally, the tools for making changes are of an appropriate scale
and residewithin the system. Changes are self-supplied and, if this covers
all possible changes, we have a self-sustainable environment.

Definition 4 (Self-supplied). A change is self-supplied by a piece of
software if you can achieve the change by only using the software.

Definition 5 (Self-sustainable). A software system is self-sustainable if
arbitrary changes to it are self-supplied.

The ideal system functions like a workshop where new tools can be
fashioned using existing tools as needed. They can be big or small, and
this ensures that we can use the “right tool for the job”, no matter the
scale.

1 By analogy to the “Naïve Realism” principle found in Boxer (diSessa 1985).

4 introduction

Definition 6 (Right Tool For The Job). This is a principle in program-
ming which acknowledges that tools have differing strengths and weak-
nesses for different tasks. To “Use The Right Tool For The Job” is an
ideal that relies on either an existing range from which to select the best
tool, or the capacity to design and build it on-demand.

Definition 7 (One-Size-Fits-All). The opposite of “Use The Right Tool
For The Job”. This refers to using a single tool to do a wide range of
tasks even though it may not be suited for some of them.

Definition 8 (Domain-Specific Adaptation). This is a small or large
part of a software system which provides its own custom interface for
change.

In standard practice, a program is generated from source code and
put into a running state. To change the program, one must change the
source code, destroy the program and re-create it anew. These steps are
accomplished with separate tools, meaning that changes tend not to be
self-supplied (Definition 4).

There is a limited notion of “Use The Right Tool For The Job” in
that there are different programming languages. However, languages
tend to enforce their syntax and semantics without permitting smaller-
scale adaptation, and variation in these respects is normally restricted
to textual notations. Furthermore, some situations may call for more
general notations or graphical interfaces that do not work like a language,
but the fact that programming is optimised for languages makes using
such notations more difficult.

Instead of the above, computer software should act as “Personal
Dynamic Media” (Kay and Goldberg 1977). In this vision, a software
system is designed to be adapted and modified by its users. By per-
forming an explicit action (e. g. switching to “edit mode”) the user can
inspect the visible surface of the application to find the causes of its
appearance in the form of code and data. They can also inspect a map
of the non-visible implementation of the software’s functionality and
navigate to the relevant parts. There may be a common programming
notation as a default, but where possible, parts of the implementation
are presented in local notations or interfaces that are more easily under-
stood. These interfaces can also be traced to their implementations and
modified if desired. The user can then change any aspect of the software
while it is running, without having to edit an external specification and
destroy the running instance.

1.3 a fragmented vision

Several pieces of this vision do exist, but not in an integrated whole.
We can see some of the different characteristics we desire in software
by examining the Web browser, HyperCard, and Smalltalk.

1.3 a fragmented vision 5

Figure 1.1: The Developer Tools available for anyWeb page or app in a modern
browser.

1.3.1 Web pages, web apps, and browsers

The web browser has a powerful set of developer tools (Figure 1.1). This
includes the “inspector”which can be used to edit the page’s underlying
elements in the Document Object Model (DOM). For example, an ad
can be removed by locating and deleting its element. Some of this
underlying “state” may have no visual effects (e. g. an element’s ID
attribute) and is thus hidden from an ordinary user. However, such
state is visible from the inspector in the developer tools. This means
that all of the “structural” state of a page is potentially visible, not to
mention editable, in the web browser.

The above is worth contrasting with the case of the “behavioural”
side of a web page oriented around the JavaScript (JS) programming
language. Alongside the “structural” state of the web page, there is also
the hidden state of JS objects. The JS console accepts commands which
may read or change this state, but there is nothing like the element
inspector for it.2 What is visible in the dev tools is the source code of the
scripts loaded by the page.

Many changes to the “behavioural” state can be accomplished in
the console; for example, updating part of the state to a new object.
However, this cannot be relied upon in the same way as DOM editing
because JS language features prohibit many changes. For example, a
variable declared in the source as const will not be changeable in the
console. Moreover, fine-grained changes to code cannot be performed
there either. The main unit of code organisation, the function, is an
opaque object in the run-time environment; one cannot simply replace
a particular line or expression within it. Instead, a complete new defini-
tion must be entered into the console to replace it wholesale. Yet even
this will fail if the source declares the function const. In such cases, we

2 This may be because the DOM is a tree structure while the JS state is a general graph,
and it’s harder to build an editor for the latter.

6 introduction

lack naïve pokeability (Definition 1) and we have no choice but to edit the
source files somehow. If the browser does not provide for local edits to
be made to these files, a separate text editor must be used. The changes
made in this way will only take effect once the scripts are reloaded by
refreshing the page and losing its JS state.

Let us return to the “structural” state of the web page and note that
we are free to make arbitrarily fine-grained changes using the element
inspector. These changes take effect immediately without having to
reset anything. There are, in fact, HTML text files backing the page
structure, but they cannot restrict the inspector tool in the way JS files
restrict the console. In short, the state of aweb page has naïve pokeability
while its dynamic behaviour does not reliably have this property.

There is one caveat: the HTML and JS files are the “ground truth”,
so any changes made via the inspector or the console will disappear
when the page is closed or refreshed. Changes made in the browser
are transient (Definition 3); only changes to the underlying files are
persistent (Definition 2), and websites typically do not allow unknown
individuals to change the files on their servers. All this is sad news for
our user deleting their ad, as they will have to repeat it each time they
access the page (or more realistically, use sophisticated programmatic
middleware like an ad-blocking extension to make this automatic).

1.3.2 HyperCard

Before the Web, “hypertext” was regularly created and distributed by
people in the form of HyperCard stacks. Alan Kay criticised the web for
having a browser that neglects to include an authoring tool, immediately
limiting the creation of web pages to people who could code in a text
editor. By contrast, in HyperCard, the viewer and editor exist integrated
together (Figure 1.2). Furthermore, there is an “edit” mode whereby a
user can remix content from someone else, even re-programming the
dynamic behaviour.

These aspects of HyperCard’s design encouraged a community of
producer-consumers for hypertext content. The web’s higher cost of
authoring led to a lower producer-to-consumer ratio, restricting the
kind ofmedium that it would become. Note that the naïve pokeability of
the element inspector does not amount to authoring a web page; such an
interface is designed for fine-grained change rather than coarse-grained
creation. It is also oriented towards programmers, being part of the
“developer tools”, compared to HyperCard’s presentation of authoring
as a primary use of the software.

1.3.3 Smalltalk and COLA

Smalltalk provides for behaviour editing at a finer granularity than the
Web developer tools. Behaviour is separated first by class and then by

1.3 a fragmented vision 7

Figure 1.2: HyperCard, a pre-Web Hypertext system, included a direct author-
ing tool to complement the browser.

method; only then is a text editor presented for the code (Figures 1.3
and 1.4). More importantly, changes to this code take effect once com-
mitted, with no “restarting” of the system taking place. The state of the
system is persisted by default to an “image” file. In short, Smalltalk pro-
vides persistent naïve pokeability for both code and data, and pioneers
a large degree of Self-Sustainability (Definition 5).

That being said, Smalltalk systems tend to run on VMs that are im-
plemented in a separate lower-level language like C++. Fundamental
infrastructure such as object layout and memory management is avail-
able only as opaque primitives from the point of view of Smalltalk. Thus,
to change these aspects onemust still switch to a different programming
system and re-compile.

The Combined Object Lambda Architecture or COLA (Piumarta 2006)
seeks to take self-sustainability to the extreme, past the degree found
in Smalltalk. COLA’s minimal design makes said basic infrastructure
self-supplied (Definition 4) so as to approximate a truly self-sustainable
system. It is also designed to encourage domain-specific adaptations
(Definition 8) down to a small scale of “Mood-Specific Languages”
(MSLs) beyond the coarse-grained variation found with ordinary pro-
gramming languages. However, the architecture as described does not
have much to say about the user interface or graphics, taking place
instead in the world of batch-mode transformations of streams.

8 introduction

Figure 1.3: The interface of Smalltalk-80, which introduced the class browser
visible at the top.

1.4 accidental complexity beyond languages 9

Figure 1.4: The class browser in the modern Pharo distribution of Smalltalk.

1.4 accidental complexity beyond languages

In our experience, the three most important sources of accidental com-
plexity in programming are as follows:

1. In order to make even a small change to a program, we must go to
the source code which may require an entirely different language
and way of thinking. We lack Self-Sustainability.

2. We must describe graphical constructs with language in order to
fit them into program code. This represents a lack of what we will
soon define as Notational Freedom.

3. We have to avoid syntax errors, escape certain characters, and
write code for parsing and serialising. This represents a lack of
what we will soon define as Explicit Structure.

These are not quite observations about programming languages. In-
stead, they concern the wider environment of tools in which program-
ming is performed, such as the editor interface and facilities for running
the programs.

It is important not to conflate “coding” in a programming language
with programming itself. In this dissertation, we see programming as
the general act of making a computer do things by itself. By this defini-
tion, coding, visual programming, programming by example, and deep
learning are some specific means by which to program. If we ignore this
subtlety, we risk unwittingly limiting the scope of innovative ideas in
the following ways:

10 introduction

Figure 1.5: A spreadsheet contains text, but is not a syntax or a language; the
grid lines are intrinsically graphical.

• Instead of seeking the right notation, interface or representation
for the job, we might seek the right textual syntax for the job. If
we cannot find one, the real reason may simply be that text is not
well-suited to the job (Figure 1.5). Yet if text is all we know, we
will be under the false impression that it is an intrinsically hard
job.

• Instead of being able to make changes to a running program, we
are stuck changing its source code and re-creating the program.
It is easy to make “closed” programs this way and hard to make
programs open to “re-programming” while running.

• Instead of seeking a software system open to unanticipated changes
as it runs, we might seek intricate language features that give flexi-
bility only for compiling a program.

A key problem is that there is no established term for this scope
of programming research, and hence no body of work in which we
may situate it. This is the crux of the matter: we need a more general
programming systems approach instead. We will discuss this further in
Chapter 3 and use it in Chapter 5 to propose a systematic framework by
which to analyse programming systems. This framework will include
three properties that are central to the dissertation and develop them
in detail. We will now familiarise the reader with the basic outline of
these three properties.

1.5 the three properties

The goal at the end of Section 1.2 is much too ambitious a scope to
achieve in this dissertation. However, from Definitions 1–8 and the
above discussion, we distill three properties that help address the issues
we identified. They are:

1. Self-sustainability: being able to evolve and re-program a system,
using itself, while it is running. (This is a more intuitive definition
that agrees with what we said earlier in Definition 5.)

1.5 the three properties 11

2. Notational Freedom: being free to use any notation as desired to
create any part of a program, at no additional cost beyond that
required to implement the notation itself.

3. Explicit Structure: being able to work with data structures directly,
unencumbered by the complexities of parsing and serialising
strings.

1.5.1 Importance of the Three Properties

We are interested in exploring, developing, and achieving the Three
Properties in programming systems. We will refine and expand these
definitions in later chapters, but they are reasonable to start with. Each
one brings its own advantages to a programming system:

1. Self-Sustainability reduces the accidental complexity of having to
make changes using a separate, unfamiliar programming system.
It also permits innovation feedback: anything helpful created using
the system can benefit not only other programs sitting atop the
system, but also the system’s own development.

2. Notational Freedommakes it easier to use the “Right Tool For The
Job” (Definition 6). Once a programmer has decided what the
right tool is in their specific context, Notational Freedom means
they can use such a tool more easily as a Domain-Specifc Adapta-
tion (Definition 8). For example, if diagrams are desired, Nota-
tional Freedom removes the traditional limitation to use ASCII art.
More generally, Notational Freedom removes the need to describe
graphical constructs using language.

3. Explicit Structure avoids various pitfalls of strings, both in terms
of correctness and convenience. Consumers of a structure benefit
from an editor that can only save valid structures, and producers
benefit by discovering errors early instead of later during con-
sumption. Writing programs to use such structures is improved if
one does not have to maintain code for parsing and serialising or
think about escaping special characters.

These properties are exhibited occasionally in different systems, as
we will mention in Chapters 2 and 3. However, it is rare to see two
or all three present in the same system. This rarity suggests they are
probably under-explored and under-developed, so we could stand to
learn a lot by studying them. We do not doubt that these properties
have drawbacks in addition to the above advantages, but we stand to
gain from these advantages taking us closer to the ideal at the end of
Section 1.2.

12 introduction

1.5.2 The Three Properties in Combination

It is worth exploring the Three Properties in combination because they
complement each other in the following ways.

Suppose a system already hasNotational Freedom. Self-Sustainability
makes it easier to add new notations to it. In the converse case of a
system lacking Notational Freedom, Self-Sustainability makes it easier
to add Notational Freedom itself and lets the benefits flow into all
aspects of the system’s development; this is what we called innovation
feedback.

Notational Freedom is impossible to achieve without Explicit Struc-
ture. In a world of parsed strings and text editors, we are limited to
what we will term syntactic freedom in Section 3.3.2. Thus, Notational
Freedom needs Explicit Structure as a necessary foundation.

Self-Sustainability also sufferswithout Explicit Structure. Self-Sustain-
ability is vaguely understood by analogy to self-hosting compilers, as
wewill see in Section 2.3.1. The COLAwork (Piumarta 2006) follows this
approach, remaining unclear on how such a property can be achieved
in interactive, graphical systems. Explicit Structure lets us study the
other two Properties more purely, without getting confused by the acci-
dental complexities of parsing and escaping (we will expand on this in
Section 3.3.3.3).

We can prioritise the Three Properties based on the above inter-
dependencies. Our primary goal is to explore Notational Freedom in
interactive, graphical programming systems. To support this, we should
achieve Self-Sustainability. To do both of these with minimal distraction,
we should make sure to build on a foundation of Explicit Structure.
We will not follow this order strictly, but it shows a logic as to how
each property fits into the bigger picture. We see that the only way to
discover how to achieve these goals is by doing, so we work to build a
prototype programming system called BootstrapLab that makes progress
on the Three Properties simultaneously.

1.6 thesis statement and contributions

The statement of our thesis is as follows:

It is possible to add Notational Freedom to a given exist-
ing programming system, by embedding a Self-Sustainable
system built on Explicit Structure.

We prove this by construction in the form of a prototype program-
ming system called BootstrapLab, which is the topic of Chapter 4. Our
main contribution is not BootstrapLab itself, but rather the necessary
steps and principles that its construction led us to discover. We believe
that it should be possible to build these Three Properties atop a wide
variety of programming systems; the goal of Chapter 4 is to document

1.7 supporting publications 13

enough of a generalisable technique to make this feasible for the aver-
age programmer. It is as if we have developed the study of sorting by
coming up with a prototype sorting algorithm—the new clarity is the
important part, while the concrete program was just the vehicle that
got us there.

Additionally, in order to assess how well BootstrapLab achieves the
Three Properties, we propose a technical dimensions framework in Chap-
ter 5 for analysing programming systems, which is our secondary contri-
bution. BootstrapLab, being a programming system, is then evaluated in
terms of dimensions constituting the Three Properties. We then review
related work in Chapter 6. In Chapter 7 we acknowledge the limita-
tions revealed by our evaluation, suggest future work for both of our
contributions, and conclude with what we have learned and achieved.

1.7 supporting publications

The following essay was adapted into Chapter 4:
Joel Jakubovic and Tomas Petricek (2022). “Ascending the Ladder to

Self-Sustainability: Achieving Open Evolution in an Interactive Graph-
ical System.” In: Proceedings of the 2022 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Program-
ming and Software. Onward! 2022. Auckland, New Zealand: Associa-
tion for Computing Machinery, pp. 240–258. isbn: 9781450399098. doi:
10.1145/3563835.3568736

The following paper was adapted into Chapter 5 and part of Chap-
ter 2:

Joel Jakubovic et al. (Feb. 2023). “Technical Dimensions of Program-
ming Systems.” In: The Art, Science, and Engineering of Programming 7.3.
doi: 10.22152/programming-journal.org/2023/7/13

https://doi.org/10.1145/3563835.3568736
https://doi.org/10.22152/programming-journal.org/2023/7/13

2
BACKGROUND

The relevant background we will need to acquaint ourselves with falls
into two halves: explaining the concept of a “programming system”, and
explaining how the Three Properties tie together existing concepts in
programming. In Section 2.1, we define programming systems in contrast
to programming languages and discuss why this is necessary. Then in
Section 2.2, we illustrate this with landmark examples of programming
systems from the past. Finally, in Section 2.3, we survey the existing
patterns in programming that take us part of the way to the Three
Properties.

2.1 programming systems vs languages

Many forms of software have been developed to enable programming.
The classic form consists of a programming language, a text editor to
enter source code, and a compiler to turn it into an executable pro-
gram. Instances of this form are differentiated by the syntax and seman-
tics of the language, along with the implementation techniques in the
compiler or runtime environment. Since the advent of Graphical User
Interfaces (GUIs), programming languages can be found embedded
within graphical environments that increasingly define how program-
mers work with the language—for instance, by directly supporting
debugging or refactoring. Beyond this, the rise of GUIs also permits
diverse visual forms of programming, including visual languages and
GUI-based end-user programming tools (we will survey these in Sec-
tion 6.4).

The classic essay byGabriel (2012) distinguishes the languages and sys-
tems paradigms in programming research. Languages are formal mathe-
matical models of syntax and semantics; researchers might ask what
an expression means and include code samples in papers. Systems, in
contrast, are running pieces of software whose current state changes
according to the effects of program code. Researchers studying systems
are likely to bemore concernedwith what code does to a running system
in a specific state instead of the more abstract language properties.

The topic of this dissertation, and many of the examples we will
use to illustrate concepts, rely on understanding this distinction and
only make sense within the systems paradigm. Therefore we shift our
attention from programming languages to the more general notion of
“software that enables programming”—in other words, programming
systems.

15

16 background

Definition 9 (Programming System). A programming system is an in-
tegrated and complete set of tools sufficient for creating, modifying,
and executing programs. These will include notations for structuring
programs and data, facilities for running and debugging programs,
and interfaces for performing all of these tasks. Facilities for testing,
analysis, packaging, or version control may also be present. Notations
include programming languages and interfaces include text editors,
but are not limited to these.

A word about terminology: if we view languages in the sense of
Gabriel’s “languages paradigm”, then it is a “type error” to include
languages in the above definition. Abstract mathematical models of
syntax and semantics are not the same as software. However, language
implementations are software. We will use the term “language” to abbre-
viate “language implementation” since we do not use the other meaning
in this dissertation.

With that said, our above notion of programming system covers
classic programming languages together with their editors, debuggers,
compilers, and other tools. Yet it is intentionally broad enough to also
accommodate image-based programming environments like Smalltalk,
operating systems like Unix, and hypermedia authoring systems like
Hypercard, in addition to various other examples we will list presently.

2.2 examples of programming systems

We illustrate the notion of a programming system through a number of
example systems. We are not trying to exhaustively cover all possible
systems, but simply give an impression based on major examples. We
draw them from three broad reference classes:

• Software ecosystems built around a text-based programming lan-
guage. They consist of a set of tools such as compilers, debuggers,
and profilers. These toolsmay exist as separate command-line pro-
grams, or within an Integrated Development Environment (IDE).

• Those that resemble an Operating System (OS) in that they struc-
ture the execution environment and encompass the resources
of an entire machine (physical or virtual). They provide a com-
mon interface for communication, both between the user and the
computer, and between programs themselves.

• Programmable applications, typically optimised for a specific do-
main, offering a limited degree of programmability which may
be increased with newer versions.

2.2 examples of programming systems 17

2.2.1 Systems Based Around Languages

Text-based programming languages sit within programming systems
whose boundaries are not explicitly defined. To speak of a programming
system we must include a language with, at minimum, an editor and a
compiler or interpreter.

There is wiggle room in how we choose to circumscribe these ele-
ments. Do we mean a specific compiler version? Do we include com-
mon plugins or extensions? Still, we would expect these choices to have
enough of a common overlap that we can proceed in analysis without
worrying too much about the variations. We will revisit this point in
Section 7.1.5.

java with the eclipse ecosystem. The Java language (Gosling et al.
2000) alone does not form a programming system, but it does if we
consider it as embedded in an ecosystem of tools. A minimalistic delin-
eation would consist of a text editor to write Java code and a command
line compiler. A more realistic one is Java as embedded in the Eclipse
IDE (desRivieres and Wiegand 2004). The programming systems view
permits us to see whatever there may be beyond the textual code. In
the case of Eclipse, this includes the debugger, refactoring tools, testing
and modelling tools, GUI designers, and so on.

haskell tools ecosystem. Haskell is another language-focused
programming system. It is used through the command-line GHC com-
piler (Marlow and Peyton-Jones 2012) and GHCi Read-Eval-Print Loop
(REPL), alongside a text editor that provides features like syntax high-
lighting and auto-completion. Any editor that supports the Language
Server Protocol (Microsoft 2022) will suffice to complete the program-
ming system.

Haskell is mathematically rooted and relies on mathematical intu-
ition for understanding many of its concepts. This background is also
reflected in the notations it uses. In addition to the concrete language
syntax for writing code, the ecosystem also uses an informal mathe-
matical notation for writing about Haskell (e. g. in academic papers or
on the whiteboard). This provides an additional tool for manipulating
Haskell programs. Experiments on paper can provide a kind of rapid
feedback that other systems may provide through live programming.

from repls to computational notebooks. A different kind of
developer ecosystem that evolved around a programming language is
the Jupyter notebook platform (Kluyver et al. 2016). In Jupyter, data
scientists write scripts divided into notebook cells, execute them in-
teractively and see the resulting data and visualisations directly in
the notebook itself. This brings together the REPL, which dates back
to conversational implementations of Lisp in the 1960s, with literate

18 background

programming (Knuth 1984b) used in the late 1980s in Mathematica
1.0 (Wolfram 1991).

As a programming system representative of Computational Note-
books (Lau et al. 2020), Jupyter has several interesting characteristics.
The primary outcome of programming is the notebook itself, rather
than a separate application to be compiled and run. The code lives in
a document format, interleaved with other notations. Code is written
in small parts that are executed quickly, offering the user more rapid
feedback than in conventional programming. A notebook can be seen
as a trace of how the result has been obtained, yet one often problematic
feature of notebooks is that some allow the user to run code blocks out-
of-order. The code manipulates mutable state that exists in a “kernel”
running in the background. Thus, retracing one’s steps in a notebook
is more subtle than in, say, Common Lisp (Steele and Fahlman 1990),
where the dribble function would directly record the user’s session to
a file.

2.2.2 OS-Like Programming Systems

“OS-likes” date from the 1960s when it became possible to interact one-
on-one with a computer. At first, time-sharing systems enabled interac-
tive shared use of a computer via a teletype; smaller computers such as
the PDP-1 and PDP-8 provided similar direct interaction, while 1970s
workstations such as the Alto and Lisp Machines added graphical dis-
plays and mouse input. These OS-like systems stand out as having the
totalising scope of operating systems, whether or not they are ordinarily
seen as taking this role.

maclisp and interlisp. LISP 1.5 (McCarthy 1962) arrived before the
rise of interactive computers, but the existence of an interpreter and the
absence of declarationsmade it natural to use Lisp interactively, with the
first such implementations appearing in the early 1960s. Two branches
of the Lisp family (Steele and Gabriel 1993), MacLisp and the later
Interlisp, embraced the interactive “conversational” way of working,
first through a teletype and later using the screen and keyboard.

BothMacLisp and Interlisp adopted the idea of persistent address space.
Both program code and program state were preserved when powering
off the system, and could be accessed and modified interactively as well
as programmatically using the same means. Lisp Machines embraced
the idea that the machine runs continually and saves the state to disk
when needed. Today, this persistence (Definition 2) is widely seen in
cloud-based services like Google Docs and online IDEs. Another idea
pioneered in MacLisp and Interlisp was the use of structure editors.
These let programmers work with Lisp data structures not as sequences
of characters, but as nested lists. In Interlisp, the programmer would
use commands such as *P to print the current expression, or *(2 (X

2.2 examples of programming systems 19

Y)) to replace its second element with the argument (X Y). The PILOT
system (Teitelman 1966) offered evenmore sophisticated conversational
features. For typographical errors and other slips, it would offer an
automatic fix for the user to interactively accept, modifying the program
in memory and resuming execution. This is something that is only
possible with Lisp’s naïve pokeability (Definition 1).

smalltalk. Smalltalk appeared in the 1970s with a distinct ambition
of providing “dynamic media which can be used by human beings
of all ages” (Kay and Goldberg 1977). The authors saw computers as
meta-media that could become a range of other media for education, dis-
course, creative arts, simulation and other applications not yet invented.
Smalltalk was designed for single-user workstations with a graphical
display, and pioneered this display not just for applications but also for
programming itself. In Smalltalk 72, one wrote code in the bottom half
of the screen using a structure editor controlled by a mouse, and menus
to edit definitions. In Smalltalk-76 and later, this had switched to text
editing embedded in a class browser for navigating through classes and
their methods.

Similarly to Lisp, Smalltalk adopts the persistent address spacemodel
of programming where data remains in memory, but based on objects
and message passing instead of lists. Any changes made to the system
state by programming or execution are preserved when the computer
is turned off (this is persistence again, Definition 2). Lastly, the fact that
much of the Smalltalk environment is implemented in itself makes
it possible to extensively modify the system from within: Smalltalk
exhibits Self-Sustainability.

An important descendant of Smalltalk is ThingLab (Borning 1981, Fig-
ure 2.1)—later succeeded by ThingLab II (Moloney et al. 1989)—which
augments the class browserwith a picture pane.ThingLabwas a constraint-
based programming system in the vein of Sketchpad (Sutherland 1963).
ThingLab provided not only a library of pre-existing constraints and
objects for use in electrical and geometric simulations, but was designed
as a “kit-building kit” with the ability to create new types of objects and
constraints via the Smalltalk language. The extent to which ThingLab
and Sketchpad can define new graphical constructs, and give them
semantics (as opposed to merely drawing a picture) qualifies for Nota-
tional Freedom as well as Self-Sustainability.

We include Lisp and Smalltalk in the OS-likes because they function
as operating systems in many ways. On specialised machines, like the
Xerox Alto and Lisp machines, the user started their machine directly in
the Lisp or Smalltalk environment and was able to do everything they
needed from within the system. Nowadays, however, this experience is
associated with Unix and its descendants on a vast range of commodity
machines.

20 background

Figure 2.1: ThingLab could be used to explore constraint-based simulations
such as electrical circuits, but could also leverage Smalltalk to create
new objects and constraints that could be graphically specified and
instantiated.

2.2 examples of programming systems 21

unix. Unix fits our Definition 9 for programming systems and illus-
trates the ways that a system is shaped for its intended target audience.
Built for computer hackers (Levy 1984), its abstractions and interface
are close to the machine. Although historically linked to the C language,
Unix developed a language-agnostic set of abstractions that make it
possible to use multiple programming languages in a single system.
While everything is an object in Smalltalk, the ontology of Unix consists
of files, memory, executable programs, and running processes. Note the
explicit “stage” distinction here: Unix distinguishes between volatile
memory structures, which are lost when the system is shut down, and
non-volatile disk structures that are preserved. This distinction between
types of memory is considered, by Lisp and Smalltalk, to be an im-
plementation detail to be abstracted over by their persistent address
space. Still, this did not prevent the Unix ontology from supporting
a pluralistic ecosystem of different languages and tools. Thus Unix is
distinguished as a meta-programming system, supporting the creation
and interaction of different programming systems within it. We will go
into more detail on these points in Section 3.2.2.

early and modern web. The Web evolved (Ankerson 2018) from a
system for sharing and organising information to a programming system.
Today, it consists of a wide range of server-side programming tools, JS
and languages that compile to it, notations like HTML and CSS, and the
sophisticated developer tools included in browsers. As a programming
system, the “modern 2020s web” is reasonably distinct from the “early
1990sweb”. In the earlyweb, JS codewas distributed in a form thatmade
it easy to copy and re-use existing scripts, which led to enthusiastic
adoption by non-experts—recalling the birth of microcomputers like
Commodore 64 with BASIC a decade earlier.

In the “modern web”, multiple programming languages treat JS as a
compilation target. JS is also used as a language on the server side. This
web is no longer simple enough to encourage copy-and-paste remixing
of code from different sites. However, as we observed in Section 1.3.1
it does come with advanced developer tools providing functionality
resembling that of Lisp and Smalltalk. The DOM almost resembles the
tree/graph model of Smalltalk and Lisp images, lacking the key per-
sistence property. Such a limitation is being addressed by efforts like
Webstrates (Klokmose et al. 2015), which synchronise the DOM between
the server and clients. Thus if a client changes an element, this can be
mirrored on the server side and saved as the ground truth of the web
page.

colas. The one system that directly influenced our work is the Com-
bined Object Lambda Architecture, or COLA (Piumarta 2006): a small,
expressive starting system designed for open evolution by its user. It
is described as a mutually self-implementing pair of abstractions: a

22 background

+-------------+-------------+-------------------------+----------+--+

| 00 01 02 03 | 04 05 06 07 | 08 09 10 11 12 13 14 15 | 16 17 18 | 19 20 21 22 23 24 25 26 27 28 29 30 31 |

+-------------+-------------+-------------------------+----------+--+

| version | headerSize | typeOfService | length |

+-------------+-------------+-------------------------+----------+--+

| identification | flags | offset |

+---------------------------+-------------------------+----------+--+

| timeToLive | protocol | checksum |

+---------------------------+-------------------------+---+

| sourceAddress |

+---+

| destinationAddress |

+---+

Figure 2.2: ASCII art diagram for an IP packet, in principle both human-
readable and machine-parseable (Kay et al. 2007, p. 44).

structural object model (the “Object” in the name) and a behavioural
Lisp-like language (the “Lambda”). COLA aims for maximal openness
to modification, down to the basic semantics of object messaging and
Lisp expressions.

The two remarkable features we see in the COLA idea are self-sustain-
ability and a hint at notational freedom, which we will exhibit presently.
COLA inherits self-sustainability from the Smalltalk tradition and at-
tempts to amplify it. This provides for what the authors refer to as
internal evolution as a means for implementing MSLs:

Applying [internal evolution] locally provides scoped, domain-
specific languages in which to express arbitrarily small parts
of an application (these might be better called mood-specific
languages). Implementing new syntax and semantics should
be (and is) as simple as defining a new function or macro
in a traditional language.

An example of a MSL is the one reported in Kay et al. (2008, p. 4) for
concisely specifying how TCP packets should be processed. The report
also notes:

The header formats are parsed from the diagrams in the
original specification documents, converting “ascii art” into
code to manipulate the packet headers.

A representative diagram and the grammar for parsing it (itself writ-
ten in a grammar-definition DSL) can be found in Kay et al. (2007, p.
44, Figures 2.2 and 2.3). They note:

We can now define accessors for the fields of an IP packet
header simply by drawing its structure. The following looks
like documentation, but it’s a valid program.

We see this as the extreme end of what a MSL is capable of. The ability
for a programmer to express arbitrarily small parts of an application
in a form they deem suitable is, in its fully general form, what we call

2.2 examples of programming systems 23

structure :=

error = ->[self error: ['"structure syntax error near: " , [self contents]]]

eol = '\r''\n'* | '\n''\r'*

space = [\t]

comment = [-+] (!eol .)* eol

ws = (space | comment | eol)*

_ = space*

letter = [a-zA-Z]

digit = [0-9]

identifier = id:$(letter (letter | digit)*) _ -> [id asSymbol]

number = num:$digit+ _ -> [Integer fromString: num base: '10]

columns = '|' -> (structure-begin self)

(_ num:number -> [bitmap at: column

put: (set bitpos num)]

(num:number)* '|' -> (let ()

(set bitpos num)

(set column [

[self readPosition] - anchor

]))

)+ eol ws -> [bitmap at: column

put: (set width [bitpos + '1])]

row = (n:number -> (set row n)

) ? '|' -> (let ()

(set anchor [self readPosition])

(set column '0))

_ (id:identifier '|' -> (structure-field self id)

_)+ eol ws -> (set row [row + width])

name = id:identifier (!eol .)* eol -> (structure-end id)

diagram = ws columns row+ name | error

Figure 2.3: Grammar for parsing the ASCII art into a data structure definition
(Kay et al. 2007, p. 44). Message sends in square brackets [] and
Lisp-like expressions in parentheses () are visible; these respec-
tively relate to the ”Object” and ”Lambda” halves of the underlying
COLA.

24 background

Notational Freedom. With such a capability, code could be synthesised
from real tabular diagrams1 of packet headers, not just those rendered
with ASCII characters.

We mentioned how these MSLs were supported by COLA’s internal
evolution, which we interpret as another term for Self-Sustainability (or,
more precisely, its practice). This is provided for by the COLA architec-
ture, composed of an object model for structure (Piumarta and Warth
2008) and a Lisp-like language for behaviour (Piumarta 2011).

The object model is a late-bound, Smalltalk-style objects and messag-
ing environment called “Id”, and we will describe it briefly here. An
Id object is a block of state which can change as a result of messages
received by it. Messaging (analogous to method invocation in Java-style
OOP) works as follows:

• A message is sent by first bind-ing its name to its method imple-
mentation, which is specific code that gets run in the context of
the receiver 𝑅. This binding is a dynamic operation that can use
run-time conditions to make its decision—even create a method
implementation on the fly. This late binding contrasts with early
binding where the name is bound to the implementation statically
and thus holds for the entire running lifetime of the system.

• This “bind” step is accomplished by sending a further message;
this time, to the receiver’s vtable 𝑉(𝑅). A vtable is another object
thatmaps “message name” to “implementation code”—analogous
to a “class” in Java-style OOP.

• Because this initial “bind” message is itself a message send, it trig-
gers a similar “bind” to its vtable 𝑉(𝑉(𝑅)), and so on: recursing
up the vtable chain, and terminating at a base case.

• The higher levels of the vtable chain mean that different kinds
of vtables can be supported (as well as different kinds of “kinds
of vtables”, and so on). Each kind of vtable may implement the
“bind” operation in its own way. For example, one kind of vtable
could employ a simple dictionary mapping names to implemen-
tations. A different kind might build the code for the implementa-
tion just-in-time, without looking anything up in a data structure.

2.2.3 Application-Focused Systems

The previously discussed programming systems were either universal,
not focusing on any particular kind of application, or targeted at broad
fields, such as Artificial Intelligence and symbolic data manipulation in

1 We are thinking of vector graphics formats here, but computer vision techiques would
allow someone to use raster screenshots if they so desired.

2.3 precursors of the three properties 25

Lisp’s case. In contrast, the following examples focus on narrower appli-
cation domains. Many support programming based on rich interactions
with specialised visual and textual notations.

spreadsheets. The first spreadsheets became available in 1979 in
VisiCalc (Grad 2007; Zynda 2013) and helped analysts perform budget
calculations. As programming systems, spreadsheets are notable for
their two-dimensional grid substrate and their model of automatic re-
evaluation. The programmability of spreadsheets developed over time,
acquiring features that made them into powerful programming systems
in a way VisiCalc was not. A major step was the 1993 inclusion ofmacros
in Excel, later further extended with Visual Basic for Applications and
more recently with lambda functions (Murray 2022).

hypercard. While spreadsheets were designed to solve problems
in a specific application area, HyperCard (Michel 1989) was designed
around a particular application format. Programs are “stacks of cards”
containingmultimedia components and controls such as buttons. These
controls can be programmedwith pre-defined operations like “navigate
to another card”, or via the HyperTalk scripting language for anything
more sophisticated.

As a programming system, HyperCard is interesting for a couple of
reasons. It effectively combines visual and textual notation. Programs
appear the same way during editing as they do during execution. Most
notably, HyperCard supports gradual progression from the “user” role
to “developer”: a user may first use stacks, then go on to edit the vi-
sual aspects or choose pre-defined logic until, eventually, they learn to
program in HyperTalk.

graphical languages. Efforts to support programming without
relying on textual code are “languages” in a more metaphorical sense.
In the “boxes-and-wires” style of LabView (Kodosky 2020) programs
are made out of graphical structures. There are also the Programming-
By-Example/Demonstration subgenres (Cypher 1993; Lieberman 2001)
in which a general program is automatically generated by the user
supplying sample behaviours and hints.2

2.3 precursors of the three properties

In the next chapter, we will go on to develop the Three Properties
in detail. However, they do not leap out of a vacuum, but are rather
developments of concepts that already exist in programming. For each
of the Three Properties, we will give a “glossary” of these existing
concepts and finish with a “Conclusion” entry. In short:

2 Although there is nothing inherently graphical about programming by example or
demonstration, the two definitive books cited show a strong graphical orientation.

26 background

• Self-Sustainability is foreshadowed by self-hosting compilers and
reflection.

• Notational FreedomgeneralisesDomain-Specific Languages (DSLs)
and polyglot programming.

• Explicit Structure already exists widely in the form of data struc-
tures and various editors; programming is the exception.

2.3.1 Precursors of Self-Sustainability

2.3.1.1 Self-Hosting

This describes a compiler that can compile its own source code into
a functionally identical compiler program. We can then change the
language understood by the compiler by changing the source code,
compiling it with the current version, and discarding this version in
favour of the new one. We can then rewrite the compiler’s source code
to make use of the new language feature. In this way, a programming
language can be evolved using itself. We can call the language “self-
hosting” as a proxy for its compiler.

2.3.1.2 Bootstrapping

This is the process of getting a language into a self-hosting state (Evans
2001). Suppose we design a novel language NovLang and we are happy
to use C++ to build its compiler. Bootstrapping it consists of the follow-
ing steps; see Figure 2.4 for a tombstone diagram (Wickerson and Brunet
2012):

1. We write a NovLang compiler in NovLang, but we cannot run it
yet.

2. We translate this by hand to C++ and build a temporary NovLang
compiler.

3. We run this to compile the NovLang source code from step 1.

4. We obtain a runnable compiler for NovLang, which was written
in NovLang and is now self-hosting.

5. We can now discard the C++ code.

2.3.1.3 Meta-Circular

This describes an interpreter that is written in its own language (C2
Contributors 2012). This was first introduced in Lisp, in which one
can write Lisp code to walk nodes in a data structure and treat them

2.3 precursors of the three properties 27

Figure 2.4: In a tombstone diagram, each ”tombstone” represents a program
translating the language on its left to the one on its right, where
this program is written in the language at the base of the tombstone.
In this example, C++ is used to implement a temporary compiler
for NovLang, which then compiles a self-hosted compiler to a
runnable binary. This binary, plus its original NovLang source
code, can then be mutually used to evolve NovLang in the manner
shown.

28 background

as Lisp expressions. If such code is compiled, it results in an ordinary
Lisp interpreter. Alternatively, if we feed such code into an existing
Lisp interpreter, this new inner interpreter is now meta-circular. We
could change the code to add a new language feature, in which case the
inner interpreter would understand this slightly improved language.
However, this approach does not scale, as each improvement would
nest a further interpreter within the previous ones, multiplying the
overhead to impractical levels.

2.3.1.4 Reflection

This is the capacity for a system to display, explain or affect its own
computational behaviour during run time (Maes 1987). It is sometimes
explained with the word “aboutness”: an ordinary program is “about”
its domain (say, calculations), while a reflective program is also “about”
its own computation. One test of this is the ability to make the tacit
explicit (Smith 1982): entities that are normally implicit and unaddress-
able (such as the stack frame or variable binding environment) can be
made so by an explicit command to reflect. An ordinary meta-circular
interpreter cannot name its outer interpreter’s data structures, but a
reflective one can (and may be able to change how its outer interpreter
works, and thus how it itself works). This is developed exhaustively
for Lisp-like languages in Smith (1982). While reflection originates as a
property of languages, the Self environment (Ungar and Smith 2007)
provides an example in an interactive context. Any object on screen can
call up an “outliner” object with a description of its prototype, private
state and methods. This outliner is an object and can have the same
operation applied to it (Bystroushaak 2019).

2.3.1.5 Conclusion

These concepts (self-hosting, bootstrapping, meta-circularity, and reflec-
tion) seem related but it is not obvious how. We interpret all of these as
different manifestations of self-sustainability in special contexts, such as
compilers or interpreters. In Chapter 3 we will make this more precise
by delving into the differences between compilers, interpreters, and
interactive programming systems.

2.3.2 Precursors of Notational Freedom

2.3.2.1 Use The Right Tool For The Job

This is a widespread maxim in programming (C2 Contributors 2014c)
that we encountered in Definition 6. The ideal conditions capturing the
spirit of this idea are as follows.

2.3 precursors of the three properties 29

• Subjective Preference: What is “right” is subjectively determined by
the programmer, even on a whim. Ordinarily, when proposing a
change to a language (e. g. Python), every user of the language is
forced to confront the change, which invites debate about what
is “right” for everyone. This could be sidestepped if each pro-
grammer could use what is right, for their own context, without
this being forced on others. This is meant even in a collaborative
context: ideally, each collaborator may use their chosen tool while
a common infrastructure or format allows their efforts to cohere.

• Metaphorical Tool: The “tool” might be an entire programming
system or language, a design approach, or simply a notation in
which to express a component.

• Range of Scopes: The “job” can be large (an entire project), small
(a single expression) or anything in-between.

Even though these are ideal conditions that we do not inhabit, being
aware of them lets us get a sense of how applicable this principle is
and opens us to any low-hanging fruit in this area. We will now review
the limited extent to which we can apply the principle in our actual
environment of programming.

2.3.2.2 Polyglot Programming

This is the practice of using multiple languages in a single project (Ford
2006). Modules implemented in different languages need to share
data and invoke each other’s functions, for which there are several
approaches:

• If the modules are separate programs, standard inter-process
communication mechanisms like interchange file formats (JSON,
XML), socket protocols, and Remote Procedure Calls are available.

• Polyglot programming within a shared process address space is
trickier; the classic approach is to have different languages (e. g.
C, Pascal) compile to a common object file format understood by
the linker. This method is restricted to compile time; for run-time
sharing, languages use Foreign Function Interfaces (FFIs). This
practice has been critiqued by Kell (2009) who advocates the use
of “integration domains” instead.

• Polyglot programming within a single file is rare and restricted
to fixed combinations. Perl and JS support regexes written with a
local syntax. PHP embeds HTML, which in turn includes JS and
CSS. C# supports Language INtegrated Queries (LINQ) which
are a C# syntax adaptation of SQL queries. Unlike the freedom to
choose any combination of existing languages for an entire project,
these instances only permit use of a pre-approved set decided by
the language designers.

30 background

2.3.2.3 Domain-Specific Languages

These go beyond Polyglot Programming by encouraging custom lan-
guages designed by the programmer for their problem domain. Where
Polyglot Programming is about making the best use of existing lan-
guages designed by someone else, DSLs come closer to a freedom to use
what one subjectively determines to be the best tool for one’s job. Jet-
Brains’ MPS (Voelter and Pech 2012) is an interactive programming sys-
tem that encouragesDSLs. “ReaderMacros” in Lisp allow a programmer
to use custom syntax for parts of the code. The COLA design (Piumarta
2006) supports “Mood-Specific Languages” intended to span a range of
scopes down to individual expressions, and the related OMeta (Warth
2009) project is a platform for custom DSLs. The Eco editor (Diekmann
and Tratt 2014) also supports MSLs, as does JetBrains’ MPS (Voelter and
Pech 2012).

2.3.2.4 Conclusion

“Use The Right Tool For The Job” is the basic intuition behindNotational
Freedom. In practice, we see a restricted version: use the right pre-
existing tool for the job, as long as the job is no smaller than a single file.
Occasionally, a pre-approved set of different languages are available
within a single file. In the rare cases that support the use of custom
“tools” within a file, we risk being restricted to languages rather than
general notations. We will list the rare examples that provide for the
latter when we give a full definition of Notational Freedom in the next
chapter (Section 3.3.2).

2.3.3 Precursors of Explicit Structure

2.3.3.1 Structure

This is the relation of parts to wholes. An entire data structure is made
up of smaller parts which reference each other. From one perspective,
a data structure is a graph of memory blocks connected by numerical
pointers. At a more human-friendly level, it is a graph of dictionaries
with named entries, some of which point at other dictionaries. Both of
these models can be visualised as boxes with arrows.

2.3.3.2 Binary files

This is a very general term referring to any file that cannot be treated as
plain text. We see binary files as compacted data structures. Unlike data
structures inmemory, which can be sparsely spread across large regions
and intermingled with each other, a binary file will often contain the
parts densely packed together without any unrelated data. If not, the

2.3 precursors of the three properties 31

binary file serves as an uncompacted “image” of a region or regions of
memory.

2.3.3.3 Syntax

In programming, this refers to the “look and feel” of a language’s textual
source code. Formally, syntax is the set of rules defining legal and illegal
symbol sequences. This idea can be metaphorically extended to non-
sequential structures. For example, we can think of C struct definitions
as setting out the valid “shape” of the parts of a data structure. The
same applies to binary file formats.

2.3.3.4 Quantitative Syntax

This is a term introduced byHall (2017, p. 13) for the pattern of prefixing
a block with its length and using numerical pointers to link structures.
A simple example is the Pascal String which begins with a length byte
and continues for that many characters. Binary files rely primarily on
quantitative syntax.

2.3.3.5 Qualitative Syntax

This, in contrast to Quantitative Syntax, relies on special delimiters. For
example, the C String begins right away with its characters, relying on
a null byte to show up at some point and signal the end.

2.3.3.6 Text files, i. e. Strings

These are lists of plain text characters. In programming, they are often
containers for machine-readable structures as an alternative to binary
files. Like the latter, they compact the structure, but in a way subject
to the constraints of plain text and qualitative syntax. In practice, the
structure in question is a tree, in which case the string is built as an in-
order traversal.3 This means that special qualitative syntax (usually the
matched bracket characters ([{<, occasionally begin/end or whitespace
as indentation) is employed around substrings to encode the structure.

2.3.3.7 Parsing and serialising

These convert between strings and structures. Parsing recovers structure
implicit in a string, while serialising spins out the structure into a string.

3 The alternative pre-order and post-order traversals result in machine-friendly prefix
and postfix serialisations, which can build the structure back up via a stack. However,
these are not easily readable or writeable for humans.

32 background

Syntax errors

“Semantic” errors
(some undecideable*)

“Format” errors
(all decideable)

Type errors
Use of undeclared

variable

Division by zero*

Infinite loop*

Figure 2.5: Format errors include syntax errors, type errors and some “seman-
tic” errors as long as they are decideable.

2.3.3.8 Format error

This is a part of a data structure that violates a decidable expectation of
its consumer. For example, a syntactically valid file containing program
source code might violate static typing rules or use a name that was
not declared. Undecidable “semantic” rules like prohibiting division
by zero are excluded from this term (see Figure 2.5).

2.3.3.9 Syntax error

This is a specific type of format error where part of a text string violates
a grammatical expectation of its consumer.

2.3.3.10 Editors

These are programs for creating various data structures in the form of
files. Editors for 3D models, vector graphics, raster images, audio, and
video understand the file formats and strive to save only valid files. It is
usually not possible to even express a structure in the editor that contains
a format error. Such cases are exceptional: for example, a 3D scenemight
open without errors in another 3D editor, but cause errors in a game
engine according to the latter’s additional requirements—perhaps it
expects specific objects in the scene named Player, Exit, and so on.
Nevertheless, for most editors and most use cases, the consumer-side
validity rules are in harmony with the producer-side rules.

2.3.3.11 Text Editors

These are a type of editor for plain text files. However, they are widely
used to write code in programming languages, which have extra syntax
rules beyond the plain text format. Unlike most editors, text editors can
save files that are invalid from the perspective of their consumers under
realistic use cases. These syntax errors are then discovered at the point
of consumption.

2.4 review and next steps 33

2.3.3.12 Conclusion

The basic intuition behind Explicit Structure is the directness experienced
in creation andprogramming.Almost every data structure in computing
has an editor with which one can manipulate the structure directly, and
when programming we can act as if data structures have named parts
that we can simply reference. This directness is interrupted by the
standalone exception of text editors (on the creation side) and strings
with machine-readable4 implicit content (on the programming side).

2.4 review and next steps

We have established the frame of programming systems through Defini-
tion 9 and numerous examples. This prepared us to survey the various
precursors of our Three Properties, which are more common than the
Properties themselves, as aspects of different systems without limit-
ing ourselves to languages. Now that we have this context, we will go
deeper into our model of programming systems and finally give full
definitions of the Three Properties, which will lay the groundwork for
our contribution in Chapter 4.

4 We are unconcerned with strings that contain natural language simply to be echoed out
to the user (e. g. error messages). However, our ideas about Explicit Structure could be
applicable to cases where software must parse and interpret natural language too.

3
ANALYS I S

This dissertation is about building programming systems. In Section 2.1
we defined this concept and explained how it is related to that of a pro-
gramming language. Here, we will distinguish the general concepts of
state and change in programming systems (Section 3.1).Wewill illustrate
this by distinguishing the low-level binary and minimally human-friendly
levels of abstraction. We will then offer our interpretation of three ma-
jor sets of conventions in which programming systems have existed,
which we call paradigms (Section 3.2). With these in mind we will go
on to define our Three Properties in more detail (Section 3.3). We will
conclude by reviewing the limitations of existing work in achieving the
Three Properties in the way we desire.

3.1 two fundamentals: state and change

For the present work, our most general model of a programming system
is like a physical system in the sense of analytical mechanics (Sussman
andWisdom2001). There is always a current state of the system, and this
will necessarily change over time. We stress that this is the case regardless
ofwhether the underlying programmingmetaphor is imperative, purely
functional, logic-based, or otherwise eschews a notion of “state” in its
conceptual model.

To see how this is inevitable, consider the following. In working with
a declarative or functional programming system, the expression you
are currently editing or the output you are seeing at a given moment is,
by definition, a single state. This state changes whether you interact or
simply wait for progress. In other words, anything to which this view
is not applicable will not be interactive or interesting.

In such a model, we include both the visible interface and the “hid-
den” internal state of the system (e. g. heap data structures) as part
of “state”. Such an all-encompassing “state”, of course, is not compre-
hensible atomically but is always broken down into substructures: on
the interface side, this is usually various types of rectangles, while in-
ternally we see byte lists, object graphs, trees and so on. Likewise, the
actual change from one state to another usually does not involve all of
the state but only a small part of it. In the limit, there is usually some
smallest unit of state (a byte, dictionary entry, tree node) and this gives
rise naturally to primitive instructions describing a change to such a
small unit. Different choices for how to represent the instructions have
implications for where it is possible to take the evolution of a system.

35

36 analysis

We will see in Chapter 4 that some choices are more appropriate than
others for ensuring a system can be made self-sustainable.

3.1.1 The Low-Level Binary World

While human beings think in terms of names, computer hardwareworks
on numerical bit patterns. This shows through to the lowest level of the
software stack, which we call the low-level, machine-level or binary world.
Here, state consists of one long line of bytes while change is achieved
via machine instructions interpreted by the hardware. There are three
noteworthy features of state here for a programmer’s mental model:

• Flatness: if there is not enough space to insert something, we have
to physically move things to make room. For example, if a list
of integers is represented by a contiguous array, inserting at the
beginning requires moving every later entry one place forward.
If there is not enough spare capacity in the array, it needs copying
somewhere else with more space.

• Absoluteness: while various instruction sets support relative ad-
dresses, data structures are typically established through absolute
pointers. Thus when a data structure is moved, any internal point-
ers need relocating based on the new start address.

• Numerical meaninglessness: addresses are numerical, but no num-
ber has an inherent meaning. This interchangeability means it is
unlikely that two parties will happen to coordinate on the same
number for the same purpose. Instead, they must communicate
beforehand and agree on which numerical addresses hold which
things or correspond to which names.

3.1.2 The Minimally Human-Friendly World

Key technologies were developed to allow humans to create software
using names instead of numbers: symbolic assemblers, high-level lan-
guages, and so on. These free us from the cognitive difficulties associ-
ated with numerical labels in the binary world. For example, programs
in the C programming language use names for variables, functions,
and the parts of data structures. However, C’s nature as “portable as-
sembly” (Kernighan and Ritchie 1989) means that the flatness and
absoluteness of memory must remain in our awareness when using
the language. Even though data structures can be designed to grow by
containing slots for pointers to newly allocated blocks, competence at C
still requires an understanding of the real nature of low-level memory.

A language like JS, in contrast, does away with this: state in JS is a
graph of dictionaries with named entries. One does not allocate somany
bytes of memory and receive an absolute pointer, but instead creates an

3.1 two fundamentals: state and change 37

empty dictionary and receives the dictionary itself.1 We assert that this
is at least the minimally human-friendly model of state that is possible,
even though improvements could easily be suggested. To be explicit,
the aforementioned three low-level aspects get negated as follows:

• Dynamic and nestable instead of flat: one can simply addnewentries,
insert items in collections and create new objects.

• References instead of absolute pointers: there is no distinction be-
tween pointers and values. References are implicit and automatic.
One only needs to be aware how side effects work for mutable ob-
jects versus immutable values like strings. The underlying system
can lay out these data structures in memory however it wishes
and even move them without the programmer needing to update
the references.

• Names instead of numbers: objects can be identified by a root-level
name or by a multi-name path. This provides for logical nesting
relationships and makes it easier for parties to coordinate (agree-
ing on an already-used name is easier than finding an available
number and agreeing on it).

3.1.3 Let Us Avoid The Low-Level Binary World

In the comparison of programming abstractions, there are what we
could call industrial virtues: precise control, efficiency, performance, and
so on. There are also leisurely virtues: simplicity, convenience, and lack
of responsibilities. The industrial and leisurely virtues are somewhat in
opposition and correlate with a model’s perception as “low-level” or
“high-level”. Lower-level abstractions are said to embody more of the
“industrial” virtues at the expense of the “leisurely”, and vice versa for
high-level abstractions.

We say all this to note that we agree with the general pattern, but
with one important exception: we do not think it is worth working
directly in the low-level binary world outside of narrow special cases. It
was historically necessary to begin there, and it still underlies all of the
software in which we do our work, but we do not see any benefits to
working within that model for building programming systems.

To be clear, we are only explicitly stating a preference that is implicit
but widely agreed upon: namely, that there is not usually a good reason
to program in machine code when assembler or higher is available, or
to use numeric literals when named constants are available. Anything
involving relocating pointers, resizing structures or mapping names to
numbers should be handled automatically and not occupy any of our

1 Of course, this is a description of the human experience; all the layers of represen-
tation including bytes and physical hardware are present, but do not demand the
programmer’s attention.

38 analysis

cognitive resources as programmers. There may be exceptions, but our
point is precisely that they are not the common case.

We will see in Chapter 4 that building a self-sustainable system fol-
lows a path similar to the historical development of programming: we
begin at a low level and build up more advanced features and con-
veniences. However, we do not think it is necessary to begin at quite
the same low level as the historical case: in all our work, we will take
the minimally human-friendly level as our pre-existing starting point
without concern as to how it is implemented.

3.2 paradigms of programs and programming

The concept of a scientific “paradigm”was popularised by Kuhn (1970).
It refers to the set of norms and conventions inwhich scientific questions
are pursued and results are interpreted. In computing, a “programming
paradigm” is a set of norms around the concepts and style in which
programs are built.

In this section, we wish to broaden the scope and consider the foun-
dational assumptions of programming itself, and the effects this has on
how it is performed. A paradigm here is a set of norms and conventions
centred around an idea of what a “program” is, what programs are for,
and what is technologically feasible in the current environment.

We observe that certain periods of computing history and influential
programming systems embody distinct paradigms in this way. We pro-
pose three: Batch Mode, Unix, and Interactive. Each one accommodates
our Three Properties differently.

It is important to understand the Interactive Paradigm, whose as-
sumptions pose the least resistance to achieving the Three Properties.
Equally important is to be clear on the Unix Paradigm we currently
inhabit, because we can only realistically achieve our goals from within
it. However, the Unix Paradigm is best understood as inheriting from
its predecessor, Batch-Mode, which we will introduce first.

Our goal in this section is to contrast the basic paradigmatic assump-
tions, and their consequences, between our current paradigm (Unix)
and the one we would prefer for the work of this dissertation (Interac-
tive). Because we see the Unix Paradigm as inheriting its key assump-
tions and consequences from its Batch-Mode predecessor, we will find
it easier to introduce them in the latter’s context. Thus we will explicitly
describe the assumptions and consequences of Batch-Mode, continue
with a discussion of how Unix augments Batch-Mode while retaining
the same assumptions and consequences, and finally describe the as-
sumptions and consequences of the Interactive Paradigmby comparison
to those of Batch-Mode.

3.2 paradigms of programs and programming 39

3.2.1 The Batch-Mode Paradigm

Computer programs originated as “batch-mode” processes. This is the
manner in which a calculation proceeds and delivers a result at the
end, or a compiler passes over source code and outputs a machine-level
program.

In this paradigm, a program starts, runs, and then stops. The effect or
“behaviour” of a program is its output; to change its behaviour, we need
to change the executable program. But we cannot change the program
binary directly;most nontrivial changeswould invalidate various binary
offsets, which would then have to be discovered and adjusted. Instead,
we change its source code, and then re-generate the program as another
batch-mode operation.

This poses no problem because any important effects of the program
are outside it, whether on a paper printout or saved to magnetic tape.
Any data structures the program creates occur within its “working
memory”, a temporary scratchpad internal to the program and dis-
carded when it’s done its job. This reflects the technological fact that
storage comes in two varieties: one is fast but volatile (it loses its con-
tents without a steady power supply), while the other is non-volatile
but slow. Both are expensive, as is processing power.

3.2.1.1 Assumptions and Consequences in Batch-Mode

The above points can be distilled into the following assumptions:

1. Program Outputs Result. The point of a program is to output a
result, such as a numerical calculation or data retrieved from
records.

2. Resource Scarcity. Processing speed and storage (fast and slow)
are scarce resources that we can only afford for essential tasks.

3. Delete By Default. There are only one or two data items we care
about long-term (e. g. the result). Any intermediate steps taken
to create the result are unimportant or uninteresting, so their
working data structures should be discarded to free resources.

The three key consequences of these assumptions are:

1. Run Time Is Volatile. We implicitly design programs to run in
the fast/volatile storage. This ensures performance and that the
uninteresting intermediate state is not wastefully persisted.

2. Few Things To Save. For the one or two exceptional data items that
we do care about (such as the output), we have to remember to
write code to move these out of volatile memory and into non-
volatile storage. This is not tricky, because there are only a few
items we care about!

40 analysis

𝑃

𝑆

𝑃′

𝑆′

𝑃″

𝑆″

compile

edit edit

run

𝑅 𝑅′ 𝑅″

inputs

Figure 3.1: Change By Re-Creation: source code 𝑆 is compiled into a program
𝑃 which is run on some inputs to produce a result 𝑅 signifying the
observable “behaviour” of a program in the Batch-Mode paradigm.
To change this behaviour under the same inputs, we must trace up
the arrows to the source code and edit it into 𝑆′. From this, a new
program 𝑃′ is compiled, which is run to produce a new result 𝑅′,
and so on.

3. Run Time As Obstacle. The time during which the program is
running is an obstacle to us getting the result; a better program is
one that terminates sooner.

3.2.1.2 Compilers and Change By Re-Creation

In Batch Mode, the programmer writes code in a high-level language
and passes this through a compiler which outputs an executable pro-
gram. The programmer can then make changes to the source code and
compile a new executable. Strictly speaking, the old program executable
is replaced with the newly generated one. Still, the continuity between
the versions means “the program” as envisioned by the programmer is
changing. In other words, Batch Mode facilitates change by re-creation:
in order to change something, we trace its history to the process that
generated it, change the source input, and then re-generate everything
from that point onwards (Figure 3.1). This applies even if the change is
small; consider how a single-character typo in one’s LATEX-typeset thesis
is fixed by re-running LATEX and re-typesetting the entire document.
Splitting a project into multiple files, compiled separately, can help
mitigate this, but only to a point; having one function per file or similar
would clash with established programming and editing workflows.

3.2.1.3 Static Commitment in Batch-Mode

The stages of compile time and run time are of comparable importance
in this paradigm. Properties that are static, or early-bound, are invariant
over the entire run time of a program and are “baked in” at compile
time. Those that are dynamic or late-bound may vary over the run time.
Since a program has a specific answer to work out (Program Outputs
Result), then the only properties that need to be dynamic are those that

3.2 paradigms of programs and programming 41

Figure 3.2: Source code is compiled and optimised under the promise that the
speakmethod always has the same behaviour (i. e. static dispatch).
If requirements change and invalidate this promise, the program
remains permanently committed to the promised condition. How-
ever, this is not a problem in the Batch-Mode Paradigm; the running
instance is left or forced to terminate and the program is changed
by re-creation (Section 3.2.1.2). A new program is compiled, this
time without commitment to such a promise; the behaviour of
speak now depends on which specific subclass of Animal the object
happens to have at run time.

directly pertain to such a process. All other properties are candidates
for static commitment: the compiler (suitably informed, e. g. by type
annotations) can assume they will never change, and hence can avoid
generating code to deal with the consequences of such changes.

Beyond optimising the program’s performance, this also gives pro-
grammers an opportunity to make mathematical guarantees about
certain properties. This all follows from “Run Time As Obstacle”: a
program’s destiny is to terminate with an answer, and a better program
terminates sooner. Requirements may change so that some formerly
static property now needs to be dynamic; for example, a behaviour that
was previously the same for all objects might now need to be dispatched
on the type of the object (Figure 3.2). In such a situation, the program
is re-written and re-compiled, ready to run under the new conditions.
In the event that the old version of the program happens to be running,
it can be deleted once it terminates.

3.2.1.4 Key Legacies of Batch-Mode

The batch-mode paradigm can be considered an appropriate adapta-
tion to the early conditions of computing: specialised, industrial or
research institution-scale use cases, and extreme scarcity in storage and
processing speed. Its legacy survives today in the following forms:

1. The volatility split: at all times, a programmer must remain aware
of, and specify, whether their data is to be stored in volatile or

42 analysis

non-volatile storage. An example is the question “Does this belong
in a class, or in the database?”.2 Variables and classes are easy to
express in code, but are presumed to be transient; file and database
access grants persistence, but is more complex to express.

2. The change by re-creation model: in order to change something,
trace its history to the process that generated it, change the source
input, and then re-generate everything from that point onwards.

3. Encouragement of static commitment: many innovations in pro-
gramming take the formof improvedways to enforce static proper-
ties over a program’s run time, such as type system features (Pierce
2002).

3.2.2 The Unix Paradigm

Unix is a family of Operating Systems dating from the 1970s. For this
dissertation, we are not interested in the differences between Unix ver-
sions or descendants. Instead, we refer to the common set of concepts
and conventions that form ordinary programming practice today, most
importantly files and processes.

Here we have a continuously running master-program (the kernel)
which allocates computation and storage to batch-mode programs un-
der its supervision. Unix calls these processes; each one a sort of virtual
processor plus working memory, which it calls “core”. As in Batch-
Mode, core is just a means for the process to do its job quickly, and is
discarded upon termination. The other world, of “things that matter”,
is a hierarchical tree of files shared between processes and persisted as
they come and go. Files and “pipes” serve as important inter-process
communication mechanisms, and this composability of processes is an
important part of the Unix philosophy.

Unix was created before the rise of GUIs and naturally preserved the
batch-mode norm from its surroundings. Still, it contains early signs of
what we will call the “interactive” paradigm in Section 3.2.3. Users can
access the current state of processes and files via the command line ter-
minal or shell. This runs as a process but is, like the kernel, continuously
running, passing input and output between the user and the kernel.

There is one further small innovation worth noting. As an Operating
System, Unix goes some of the way towards hiding the Volatility Split
by paging core to disk (Babaog̃lu et al. 1979), prioritising fast storage
for processes that need it (the others are paused waiting for some
event). However, Unix still sees processes as temporary scaffolding to be
discarded when complete (Delete By Default). What this means is that

2 There do exist technologies like Object-Relational Mappers (ORM) which bridge the
split, but this is optional infrastructure with its own costs. Its existence serves to
highlight the significance of the Volatility Split.

3.2 paradigms of programs and programming 43

even though Unix is clearly capable of persisting a process’ data while
it is still active, it will still be discarded when the process completes.

We see that the Volatility Split, Change By Re-creation, and Static
Commitment were preserved from the Batch-Mode era in the processes
and files within Unix. Let us summarise all this as the Unix Paradigm: a
compromise between the batch-mode and interactive paradigms (de-
scribed soon in Section 3.2.3) where limited interaction is used to or-
ganise batch-mode computation. For this reason, we consider the as-
sumptions, consequences, and legacies of Batch-Mode (Sections 3.2.1.1
and 3.2.1.4) to be inherited by Unix as its assumptions, consequences
and legacies.

3.2.2.1 Unix as a Programming System

We already gave a cursory analysis of Unix as a programming system
in Section 2.2.2, on which we will now go into further detail. We note
that Unix is an overarching system managing many smaller processes.
To the extent that other programming systems are implemented as Unix
processes, Unix functions as a meta-system supporting subordinate
programming systems. Thus there are always two levels to program-
ming in the Unix Paradigm: the “large” inter-process scope comprising
processes and their communication, and the “small” intra-process scope
within each process. In both of these, state consists of both core and files
thanks to the Volatility Split. However, the two levels emphasise these
to different degrees.

At the inter-process scope, it seems appropriate to describe the filesys-
tem as the primary “state” (Section 3.1) of the Unix system. There is, of
course, nontrivial state in core such as the currently running processes
and bookkeeping information for them, which will be lost if the system
is restarted. Nevertheless, from its own perspective, the “important
data” for users all lives in the filesystem; what happens to be running at
any given time in core is merely a means to an end.3 The agent of change
at the inter-process scope is the kernel, and the primitive “instructions”
are the system calls used to write to files and change the file tree.

Meanwhile, at the small scope of a process embodying a programming
system nested within Unix, the manifestation of state and change will
depend on the particular system itself. Yet becausewe know it is running
as aUnix process, we can at least be certain that the lowest level of “state”
will be split between core and files, and “change” will occur through
the execution of machine instructions.

3 “Few Things To Save” reminds us: if a data structure was important, the programmer
would have written code to save it to a file!

44 analysis

3.2.3 The Interactive Paradigm

We define the interactive paradigm as the programming model that
emerges from conditions of speed and storage abundance. Such abun-
dance frees us from having to start with the question “what purposes
can computers currently cope with?” and instead ask “what are com-
puters for?” with the answer being roughly equivalent to “anything”.
This generality means that we should be careful to avoid embedding
limiting assumptions in the infrastructure that supports programs and
programming.

3.2.3.1 Assumptions and Consequences of the Interactive Paradigm

The Interactive paradigm relaxes or rejects the basic axioms of batch-
mode programming:

1. “Program Outputs Result” is rejected. The point of a program
is to simulate a piece of the world somehow useful to a human,
but in a manner that is free of the constraints of physical media
substances like paper. Producing an output is only one of many
such effects useful to humans.

2. “Resource Scarcity” is rejected. Processing and storage are (or will
be4) sufficiently abundant that we can use them generously in
service of higher goals.

3. “Few Items To Save” is rejected. We do not know a priori and in
full generality which data items we care about long-term, because
the space of human purposes is large. For some tasks, the journey
is more important than the destination.5

And the consequences:

1. Instead of “Delete By Default”, we have “Persist Intermediate
Data”. We cannot commit on principle to saving some data and
discarding or hiding other data. We persist everything by default
and provide means to free up resources explicitly. We reluctantly
abstain from this only where necessary for performance, treating
this as a temporary optimisation to relax in future. But we cannot
decide for the user what they will be interested in.

2. The Volatility Split is replaced with Volatility Obliviousness: code
can simply create and manipulate data structures without the
programmer needing to keep in mind what type of storage they
live in.

4 This was the attitude at Xerox PARC summed up in the principle “design for the
hardware of tomorrow”.

5 An example of this is the Event Sourcing pattern (Fowler 2005; Orchard and Matthews
2008), where the history of state changes is recorded and accessible as a sequence.

3.2 paradigms of programs and programming 45

3. Instead of Change By Re-creation, we have “Change by Chang-
ing”. It ought to be possible to change the state or behaviour of the
system directly, as opposed to changing some upstream specifica-
tion and re-creating the system from that. This is important both
for performance and for avoiding premature deletion of data.

4. Instead of “Run Time As Obstacle”, we have “Run Time Is Valu-
able”. It is no longer the case that a good program terminates
quickly. There may not even be any reason for it to terminate at
all. Where previously the run time was an inconvenient delay to
getting the result, now the run time may be the raison d’être of
the software, such as is the case with any interactive graphical
application.

This paradigm is embodied in Lisp and Smalltalk, both for different
reasons. Lisp originated before Unix as a language formathematical and
logical symbol manipulation in AI research; it makes sense that such a
tool had little need to import batch-mode, industrial-scale computation
as its primary concept. Smalltalk, on the other hand, deliberately re-
jected this convention to serve its goal of shifting computing out of the
industrial mode and into the personal. In neither do we find a manda-
tory separation between volatile and non-volatile storage, nor between
“large objects” (files and processes) and “small objects” (variables and
code). Instead we find a graph of data structures, called “expressions”
in Lisp and “objects” in Smalltalk.

3.2.4 Batch-Mode Anachronisms

The relaxed assumptionsmake sense in today’s computing environment
with plentiful processing and storage. However, the Unix Paradigm
preserves the assumptions and consequences of Batch Mode. From this
perspective, the three Batch Mode legacies feel obsolete.

3.2.4.1 Volatility Split

The Volatility Split treats what ought to be an implementation detail as a
major design concern. The question ofwhether the variable x should live
in the physical form of RAM cells, magnetic domains, or flash storage
cells may not even be knowable by the programmer. It resembles the
question of at which precise address a new string buffer should live in
memory; a function like malloc() removes the need for the programmer
to “manually” decide such an implementation detail, and this is a good
thing.6 Similarly, the storage medium of a variable should surely be

6 Even though this is known as “manual” memory management, the “manual” refers
to the management of allocation lifetime, in contrast to garbage collection which auto-
matically decides when to free memory. The actual allocation of memory via a call to
malloc() is automatic by the very fact that it is a subroutine being run on a computer.

46 analysis

deferred to some automatic mechanism; compare the common adage
that warns against prematurely optimising one’s code: “the compiler is
smarter than you are (in this regard)!” The critical fact at work here is
that a human programmer is limited to the following two options:

1. Proclaim a blanket policy for the entirety of run time (the data
named x shall reside in volatile memory, full stop)

2. Instruct the program to make the decision based on run-time
conditions (an algorithm to cache x in fastmemory but also persist
it to disk)

Many languages in the Unix Paradigm have semantics such that
declaring a variable, with convenient syntax, serves as the programmer
taking the first option. In the cases of compiler optimisations and the
choice of allocated memory location, it is recognised that the second
option should be expected to deliver better results. The same logic
argues for the type of storage to be treated the same way, making the
Volatility Split something the programmer never has to think about.

3.2.4.2 Change By Re-creation

Re-creation seems like an unnecessarily convoluted path to achieve
a simple change. Suppose we want the field foo of object greeter to
change to "Hello". The system knows the object referred to by the
name greeter and knows how the field foo is stored. It seems odd
to have to dig through code and re-generate the object along with
everything it touched, a practice Bret Victor dubbed “destroy-the-world
programming” (Victor 2012); surely we ought be able to just type
greeter.foo = "Hello" and have the property update accordingly in
the running system.

Change By Re-creation may be justifiably retained as an implementa-
tion strategy hidden from the user’s concern, so long as the data loss
from terminating the current process is mitigated. An example of this is
the method proposed by Basman et al. (2016) under the name “Queen
of Sheba Adaptation”, in which data is persisted and the overhead of
restarting is hidden from observers.

3.2.4.3 Static Commitment

Static commitment mechanisms, such as type systems, now play a
much less helpful role—even an obstructive one—compared to the
Batch-Mode world. If a program’s value derives from its behaviour as
an interactive system, it may well be running for a long time or even (ide-
ally) forever. This intensifies any disadvantages of static commitment
mechanisms like type systems.

The immediate problem is that if requirements change and a commit-
ment must be relaxed to vary at run time, we are forced to terminate

3.2 paradigms of programs and programming 47

the running system and re-generate it. Unlike the Batch-Mode case
(Section 3.2.1.3), we cannot simply wait for the program to run its
course and terminate, and if we do force it to terminate we risk losing
important transient state.

The more fundamental problem is that a mandatory commitment
might be clearly premature from the perspective of the user. A type
commitment like “Type X shall always be a subtype of Y” may be too
restrictive, too soon. Consider a game in which the class Goblin is a sub-
class of Enemy. In a language like C++, class relationships are statically
enforced. This prevents the player from befriending Goblins later in the
game, as we cannot write code to change a Goblin instance to inherit
from Friend at an appropriate point during run time. This means that
the natural means of expressing relationships in the language must be
abandoned in favour of an ad-hoc replacement with dynamic capabili-
ties and no syntactic sugar. We will discuss this further in Section 6.3.

It must be stressed that there is still a role for commitments and
optimisations, but it is piecemeal at smaller scales during run time. As
the duration of the program’s run time increases, the set of properties
one might wish to statically commit to shrinks correspondingly, for the
simple reason that the likelihood of a change in requirements increases.
In the extreme, consider a system which is meant to run forever (or “in-
definitely”); we would want to be very careful about any commitments
we allow the compiler to embed into the fabric of the program, since if
they were unintentional or turned out to be mistaken, we could only
correct the problem by terminating the system.

For an analogy, consider a single program with a specific purpose
in a Unix environment. If its requirements change, the program is re-
compiled, while the rest of the system does not need to be affected. This is
because any “static” commitments with which it was compiled apply to
the run time of the individual Unix process. Now suppose that instead,
the entire Unix environment was assembled incorporating static com-
mitments about this program, where these commitments were scoped
to the lifetime of the entire environment. Then, when requirements for
the program change, the whole Unix environment must be re-compiled
and re-installed; it will not do to merely replace the program, because
the rest of the environment was compiled and optimised with the now-
invalidated commitments in mind.

This is an extreme hypothetical, but it is analogous to what can hap-
pen when ordinary process-level static commitment is employed for a
long-running, interactive or open-ended process such as a game. Any
property whose change during run time cannot be ruled out would be
unwise to enforce as a process-level static commitment. Technologies
like hot-swapping or Dynamic Code Evolution (Würthinger et al. 2013)
bring the benefits of commitment and optimisation to such systems at
a scale that is more appropriate for them.

48 analysis

3.2.5 Conclusion

As examined by Gabriel (1991) and Kell (2013), Unix “won” in a way
that Lisp and Smalltalk did not, firmly establishing the Unix Paradigm
as ubiquitous. Where Lisp and Smalltalk exist, they are processes sitting
within Unix and saving to “image” files. For implementors of novel pro-
gramming systems, the tenaciousVolatility Split, Change ByRe-creation
model and Static Commitments clash with the Interactive Paradigm
natural to the enterprise. The takeaway for this dissertation is that if we
wish to build our system in the Unix paradigm, we must be mindful of
its shortcomings relative to the ideal Interactive paradigm and expect
part of our work to involve mitigating them.

3.3 the three properties in more detail

In Section 1.5 we gave introductory definitions for Self-Sustainability,
Notational Freedom, and Explicit Structure. Now it is time to go into
more detail and examine them in light of the paradigms we identified.

3.3.1 Self-Sustainability

Self-sustainability involves being able to evolve and re-program a sys-
tem, using itself, while it is running. At the upper limit of this would re-
side “stem cell”-like systems: those which can be progressively evolved
to arbitrary behaviour without having to step outside of the system to
a lower implementation level. Any difference between these systems
would be merely a difference in current state, since any could be turned
into any other.

The lower limit, of minimal self-sustainability, looks something like
the following: beyond the transient run-time state changes that make up
the user level of any piece of software, the user cannot change anything
without dropping down to the implementation level. This would resem-
ble a traditional end-user “application” focused on a narrow domain
with no means to do anything else.

At a sufficiently large scope, self-sustainability is inevitable. By anal-
ogy, while any nation’s economy might be dependent on other na-
tions, the world economy is a closed system that provides its own in-
puts.7 Similarly, the ecosystem of software as a whole is necessarily self-
sustainable. Even an individual Unix system is largely self-sustainable at
its inter-process scope, but it is notable that we lose self-sustainability
on the way down to the intra-process scope. We will discuss these two
scopes as they relate to self-sustainability, after which we will distin-
guish the user level and implementation level of programming systems.

7 Disregarding energy from the Sun, chemical elements contributed from past asteroid
impacts, etc.

3.3 the three properties in more detail 49

Then we will conclude with a definition of innovation feedback, the key
advantage a self-sustainable system has over others. For further infor-
mation and motivation on Self-Sustainability beyond our own analysis
here, we recommend the introductory sections in Piumarta (2006) and
Piumarta and Warth (2008) and the vision presented by Cook (2018).

3.3.1.1 Self-Sustainability at the Inter-Process Scope

At the inter-process scope of Unix, we have individual processes—text
editors, compilers, interpreters, debuggers—which change the large-
scale system state (files), such as by creating new programs. Some of
these processes run shell scripts to coordinate this activity, this being
the de-facto programming language8 at the inter-process scope. In
this way, a Unix system is evolved and re-programmed using itself,
while it is running. Hence, Unix (i. e. programming-in-the-large) is self-
sustainable, which is congruent with the origins of Unix as a system
for programmers.

The matter is complicated by the fact that a small minority of special
changes require restarting the system to take effect. However, the spirit
of the “while it is running” condition is that the system does not need
to be destroyed and rebuilt from scratch. Because the “state” of the inter-
process scope is mainly files, the destructive operation here is not so
much “restart” as perhaps “reset” or “reinstall”.

In contrast, for a programming system that exists as a process within
Unix, its data structures in volatile memory will be permanently lost if
it is restarted, and these data structures may well be an important part
of its state as a continuously running interactive programming system.
Indeed, when we turn our attention to the intra-process scope of the
Unix Paradigm, we mostly do not see self-sustainability.

3.3.1.2 Self-Sustainability at the Intra-Process Scope

Compiled programming languages likeC++or Java are used via several
different Unix processes. These include interactive ones like text editors,
and batch-mode ones like the compiler. Self-sustainability ought to be
the analogue of the properties in 2.3.1 for interactive programming
systems. To recap, these were self-hosting compilers, the bootstrapping
thereof, meta-circular interpreters, and reflection.

The self-hosting compiler is how self-sustainability manifests in the
batch-modeworld, where thememory used by the process is disposable
and unimportant, hence Change by Re-creation does not cause too
many problems. For interactive programming systems, this is often
inappropriate or at least highly inconvenient, so it is hard to base full
self-sustainability on self-hosting.

8 Technically, the various shell dialects (bash, csh, etc.) form multiple de-facto languages,
but this is not important for the point.

50 analysis

In this respect, interactive systems more closely resemble interpreters
than compilers. The job of a compiler is to generate a new program,
which could (in principle) be a replacement for the old compiler. More-
over, both the new program and its source code live in the filesystem,
i. e. non-volatile storage. The job of an interpreter is simply to execute a
program, and by default any changes we make to its state as a result of
the code we feed it will not survive process termination. Unlike inter-
preters, interactive processes like REPLs or programming systems are
meant to run as long as the user wishes and contain a lot of important
state in memory.

Traditionally, the Volatility Split was just forwarded into the user’s
mental model, making no guarantees about whether work would be
saved in the event of a crash and recommending the user to save reg-
ularly. End-user applications did eventually implement “auto-save”,
but this is a feature programmed in to preserve specific user data. For
programmers, “auto-save” of run-time state involves infrastructure that
takes considerable work to implement, owing to “Delete By Default”.
Therefore, re-creating the system risks important data loss. Even if such
infrastructure is present, restarting the system to make a change may
interrupt the user experience with an inconvenient delay.

Perhaps instead of the above compiler-related precursors, we can
adapt the interpreter-related precursors, meta-circularity and reflection.
Meta-circularity will only aid us if the inner interpreter is causally con-
nected to the outer one via reflection. Therefore, out of the precursors
we have identified, reflection is the most suitable one to develop into
self-sustainability; particularly as it manifests in Self (Bracha and Un-
gar 2004; Ungar and Smith 2007) rather than, say, Java. This could be
achieved if reflection is scaled up to encompass as much of the system
as possible and if reflected data can be changed rather than simply
observed. It would also be necessary to protect any changes achieved
through reflection from being lost upon process termination. In short,
self-sustainability takes much from reflection in interpreters but com-
bines this with the persistent evolution of the self-hosting compiler.

3.3.1.3 User vs. Implementation Levels

For any piece of software, there are two levels:

• The user level is where software is used for its intended purpose by
its target audience. For example, the user level of Firefox involves
browsing websites.

• The implementation level is where the software is created and
changed in ways unavailable at the user level. As a trivial ex-
ample, by taking all of the source code of Firefox and replacing it
with the code for Hello World, a programmer can change Firefox
into a Hello World program.

3.3 the three properties in more detail 51

C

Python

“Hello World” app

...

User level

Impl. level

End-user
Application
Developer

Python
Developer

User level

Impl. level
User level

Impl. level

Figure 3.3: Relativity of user versus implementation level depending on one’s
role.

If the software is a programming system, then this can get confusing:
both levels involve programming! Consider this example situation:
someone is using Python to write a Hello World program, and the
programming system (Python interpreter plus editor) is written in
C. We can view this situation in three ways depending on the “user”
(Figure 3.3):

1. We can focus on the user of the Hello World program. The user
level is Hello World, while the implementation level involves
Python.

2. We can focus on the programmer as the user of Python. The user
level involves Python and the Hello World program (for testing,
debugging, and so on) while the implementation level involves
C.

3. We can focus on a different programmerwhoworks on the Python
implementation. The user level involves C and Python (for testing,
debugging, and so on). Even though there are further implemen-
tation levels below, we short-cut the analysis here and leave them
unspecified.

In this dissertation, we are interested in building programming sys-
tems with the Three Properties: Self-Sustainability, Notational Freedom
and Explicit Structure. This means we occupy the third viewpoint,
where we are detached from any particular end-user program that
might get created. We see our situation as follows:

• We are using some already-existing programming system (in our
example above, this was C). We did not create it and we do not
expect to be able to change it. We call this the platform.

• The programming system we create using the platform is called
the product system or simply “the system” (Python, in our exam-
ple).

52 analysis

3.3.1.4 Platforms and Substrates

Because we seek to build a product system that is Self-Sustainable, the
picture becomes more complicated. The point of Self-Sustainability is
to blur the distinction between the implementation and user levels. Not
only can the system be used to create ordinary programs, but it can also
be used to change itself. We use the term in-system to refer to changes
made within the product system, by using it as a programming system
at its user level.

In the Platonic ideal self-sustainable system, there is no distinction
between the two levels at all. In practice, the best we can do is attempt
to minimise the implementation level to a tiny core:9 everything else can
be changed in-system. In this case, we call this tiny core the substrate.
Our task as implementors is to use an established platform to write
a minimal substrate that can then support a self-sustainable system.
Almost all aspects of the system can then be changed in-system, and
the rest must be changed in the substrate using the platform.

To summarise the picture in the self-sustainable case (Figure 3.4):

• The platform is the already-existing programming system that
we accept as-is and do not expect to have much control over: for
example, the C programming language.

• The substrate consists of the code we write in the platform. We
exercise control over it, but we do not expect it to be accessible in-
system, which is why we seek to minimise it. An example would
be a C Virtual Machine for Smalltalk.

• The product system is the programming system supported by the
substrate, such as Smalltalk. Ideally, a tiny part of it is imple-
mented in the substrate while most of it is implemented in itself.
In other words, most changes to the system can be made using
the running system (they are self-supplied, Definition 4) while
only a few may require modifying the substrate and restarting or
re-compiling the running system.

For ordinary software, there is no reason to distinguish the platform
and the substrate; the two of them together constitute the implemen-
tation level. For a self-sustainable system this distinction is necessary,
because the “implementation level” extends into the product system
itself (ideally being concentrated there).

9 In the limit, we will leave the world of software only to hit the non-malleable world
of physical hardware. Still, search “FPGA” in (Piumarta 2006) for its speculations
on pushing this as far as it can go (see the captions for Figure 3 and Figure 14 and
page 23.)

3.3 the three properties in more detail 53

Platform: C itself

Substrate: VM in C

Product: Smalltalk
User
level

Impl.
level

Figure 3.4: Example platform (C) supporting a substrate (Smalltalk VM) for a
self-sustainable product system (Smalltalk). Because the product is
self-sustainable, the user and implementation levels are no longer
disjoint, so the platform/substrate/product distinction is a more
helpful alternative.

3.3.1.5 The Key Benefit: Innovation Feedback

A system that is self-sustainable has an advantage over those that are
not: we call this innovation feedback. Innovations programmed using
the system—useful functions, notations, or tools—can benefit their
own development as well as the rest of the system. In contrast, for a
system whose internals cannot be affected by any program within it,
innovations can only be exploited for the system’s development by
duplicating the work at the system’s implementation level.

For example, at the inter-process scope of Unix, a text editor may
be used to improve its own source code, which can then be compiled
into an even better text editor. This improved editor can then edit its
own source code and begin a new cycle of self-improvement. The shell
interface, graphical interfaces and all tools are just programs which
can be replaced with newly compiled improvements, all using other
Unix programs. Therefore, a Unix system is not limited to improving
detached separate distributions of programs destined for a different user,
but naturally improves itself as well.

When put this way, it sounds obvious; of course computer software is
used to improve computer software. Yet how different it is at the intra-
process scope: the very same text editor on its own cannot compile its
improved replacement. A Python interpreter written in Cmay empower
us to create useful Python functions, but to improve the interpreter itself
we need to inhabit the world of C, in which our Python functions are
unavailable. Figure 3.5 contrasts this situation with innovation feedback
in Unix.

From our presentation, it may appear that self-sustainability is a
peculiar special case that is naturally hard to achieve. Yet the world
of software as a whole is self-sustainable, as is an individual Unix
system. We conjecture that self-sustainability is a natural default that

54 analysis

𝑆𝑇𝐸

𝑇𝐸

𝑆𝑇𝐸′

𝐶

𝑆

𝑇𝐸′

Unix

Hardware

Python

C

optimise_code()

AST_utils

Figure 3.5: Software innovations within a Unix system (left) cannot feed back
into its hardware platform. However, the software innovations can
feed into each other: a text editor 𝑇𝐸 edits its source code 𝑆𝑇𝐸.
This new source 𝑆𝑇𝐸′ is put through the compiler 𝐶 to create an
improved text editor 𝑇𝐸′, which can edit not only the source code
𝑆 of other programs but also its own. In a Python system (right),
Python innovations can assist in the Python world but cannot feed
back to assist with the C implementation of Python.

was prevented by the historical contingency of Unix enforcing Batch-
Mode assumptions on intra-process programming. Nevertheless, we
accept the Unix Paradigm as a given, and accomplish the tasks of this
dissertation on that basis.

3.3.2 Notational Freedom

In Section 2.3.2 we mentioned the maxim “Use The Right Tool For The
Job”. This is a noble aspiration, but one that is not currently fulfilled.
At the “large scope” of the Unix paradigm, there is a vast array of
programming languages specialised for different jobs. Yet we saw some
barriers to Polyglot Programming, such as the need for inter-process
communication. As we scale down to within a single process and forego
inter-process communication, data sharing between languages gets
thornier (Section 2.3.2.2).

The ideal is where a component at any scale can be expressed in a
notation that is particularly suited to it. Here, we will define the lesser
stages of syntactic and linguistic freedombefore arriving at full notational
freedom.

3.3.2.1 Caveat on Subjective Value Judgements

Before proceeding, it is important to stress the fact that Notational Free-
dom is about supporting subjectively appropriate notations. To explain
the concept, we will give some examples of notations and judge them
as better, worse, convenient, unwieldy, and so on. When we make these
judgements, we are not claiming them as objective facts; nor are we even
claiming them subjectively across all possible use cases. We are simply

3.3 the three properties in more detail 55

giving concrete examples of possible preferences and using these to illus-
trate our points. That being said, we have not chosen these examples at
random: they are in line with our preferences and plausibly shared by
others. If the reader does not share the preferences in these examples, a
hypothetical reading may be useful (“supposing that a programmer had
such a preference…”). With this in mind, we will turn to the first step
of syntactic freedom.

3.3.2.2 Syntactic Freedom

We noted in Section 2.3.2 that, within a single file, combinations of
different languages are occasionally possible. Yet these are fixed sets,
pre-approved by language designers and set in stone for all contexts and
users. We could call this property syntactic10 plurality, where a language
named A additionally permits syntaxes B, C, and D in certain situations.
This goes a small way towards “Use The Right Tool For The Job”, but
what is conspicuously missing is the ability for the programmer to decide
which syntaxes to use, and where, based on their local context.

This would be syntactic freedom beyond pre-approved plurality. It is
not unreasonable to expect that a single function, or perhaps even a
single line of code, might be best expressed in a different language to the
rest of the code, in a way that the language designer cannot anticipate.

We will use a running example as we build up through the stages to
full Notational Freedom. A common occurrence in scientific or graph-
ics programming is a few lines of mathematical operations. It would
be convenient to bring these closer to familiar mathematical notation
instead of an unwieldy ASCII approximation. Suppose we start with
the following notation for a formula:

vec_a.mul(cos(ang_b/2))

.add(vec_b.mul(cos(ang_a/2)))

.add(vec_a.cross(vec_b))

Syntactic freedom would mean being able to see this situation and
specify a local syntax that lets us rewrite it as:

cos(ang_b/2) vec_a + cos(ang_a/2) vec_b + vec_a × vec_b

Languages provide specific, limited freedoms in this regard; consider
C++’s operator overloading or Haskell’s arbitrary infix operators. How-
ever, these specific facilities do not amount to full syntactic freedom.

We are aware of true syntactic freedom in three places: COLA’s Mood-
Specific Languages (MSLs), with the related OMeta framework ofWarth
(2009); Lisp’s Reader Macros; and Haskell’s quasiquotes (Mainland

10 Programming languages differ by semantics as well, but for Notational Freedom we
are only interested in the surface notational aspects. Infrastructure for supporting
this would already be close to supporting freedom of semantics, as shown by COLA’s
mood-specific languages.

56 analysis

2007). These are to be commended for a significant step in the right
direction, but the syntax of strings as defined by formal grammars has
limitations. It can only see two directions (left and right) and has no
notion of display variations like typefaces, weights, sizes, colours and so
on. This encourages us to edit expressions as lists of characters without
support for nested boxes or other interfaces that can be useful. In other
words, it keeps us in the text editor interface with its Implicit Structure
and associated problems (see Section 3.3.3 below). If we go on to lift
these restrictions, we arrive at linguistic freedom.

3.3.2.3 Linguistic Freedom

By this, we mean freedom to represent expressions as arbitrary written
language rather than restricted syntax. In the physical world, written
language takes many forms which are hard to digitise in their full
detail—we don’t expect our personal handwriting to be adopted as
an internationally-recognised font. Yet even in computing, written lan-
guage takes a variety of forms and supports a variety of display char-
acteristics. In programming, these are stripped away and we generally
only have formatless syntax to work with.11

In our running mathematical example, there is a very good illus-
tration of the step up to linguistic freedom in the form of publishing-
standard mathematical notation (and conveniently for this document,
a core capability of LATEX):

cos(
𝑏
2) a + cos(

𝑎
2)b + a × b

This exhibits the following improvements (from the perspective of
established norms in mathematical notation) that do not fit into the
“syntax” technologies:

• Vertical layout of fractions

• Replacing the vec_a and ang_a with a and 𝑎, distinguished by
weight

• No restriction to fixed-width characters or spaces

Beyond these display characteristics, it also leaves open the possi-
bility of an editing interface not restricted to character-by-character
string operations. For LATEX mathematics, we must often write verbose
textual source in the manner of Section 3.3.2.2‘s example and render it

11 Technically, syntax highlighters make keywords bold and add various colours, but
these are fixed rules applying to display only. The point is that it is not possible to
create a “bold variable” or a “red function”.

3.3 the three properties in more detail 57

into the better notation. Yet there do exist interfaces for editing mathe-
matics more directly, such as those in MS Word, Mathcha12, Desmos13,
and Wolfram Alpha14. Linguistic freedom permits such “structured”
or “projectional” editing as an option. This brings to mind JetBrains’
MPS (Voelter and Pech 2012) and Eco (Diekmann and Tratt 2014) as
the only systems of which we are aware that are designed to specifically
offer Linguistic Freedom.

For our running example, we have plausibly reached the Right Tool
For The Job at this point. In general, however, we still regard “language”
as too narrow of a constraint. By this, we simply mean notations that
consist of repeated glyph shapes laid out in a (mostly) linear manner.
This is different to other uses of the term: “visual language” may not
include text at all, but uses the “language” term for the arbitrary ar-
rangement of elements. Under this latter meaning, the “mood-specific
language” idea has all the generality it deserves. Nevertheless, in pro-
gramming, we think the term “language” runs the risk of mentally
excluding graphical or interactive possibilities. To ensure they remain,
our use of the word “language” will stick to denoting mostly-linear ren-
derings of glyphs and we shall use words like “notation” or “interface”
for the fully general extension.

3.3.2.4 Full Notational Freedom

Here, we wish to have unrestricted support for graphics and interaction.
In our mathematical example, full notational freedom would support
an interactive 3D visualisation of the vectors involved if that was what
the programmer desired. Language isn’t everything—diagrams and
pictures are sometimes the form in which a problem or solution is deliv-
ered, and programmers ought not to be forced to describe pictures using
words. We should emphasise that we are using the terms “notation”
and “interface” interchangeably; we are not just talking about static
pictures but dynamic entities on a screen. The “text editor” interface is
one such example. One could use a text editor to work on the hex code
0xff00ff representing the colour magenta. Alternatively, one could use
a colour picker interface.

Programming systems that embody full Notational Freedom are
rare, and tend to leverage Self-Sustainability in its service. Contrast
the cases of the Eco multi-language editor (Diekmann and Tratt 2014)
and the Glamorous Toolkit (Chiş et al. 2015). In the former case, the
ability to insert graphics into the editor does exist, but as an experi-
mental capability that is not a typical use case, and the system is not
self-sustainable. In contrast, the Glamorous Toolkit was deliberately
designed for “Moldable Development”, part of which involves support-

12 https://www.mathcha.io/

13 https://www.desmos.com/

14 https://www.wolframalpha.com/

https://www.mathcha.io/
https://www.desmos.com/
https://www.wolframalpha.com/

58 analysis

Figure 3.6: The Pharo Smalltalk-based Glamorous Toolkit supports Notational
Freedom in a deliberate manner, as evidenced by this picture from
its documentation.15

ing Notational Freedom (Figure 3.6); no doubt, its descent from Pharo
Smalltalkwas instrumental for this. Similarly, ThingLab I (Borning 1981)
and II (Moloney et al. 1989) clearly support arbitrary diagrammatic no-
tations, though without an emphasis on integration with the Smalltalk
code editor. Babylonian Programming (Rauch et al. 2019) shows a plu-
rality of notations integrated into the code editor for the purpose of live
examples, and is built on the self-sustainable Lively4 system (Lincke
et al. 2017). These non-Eco examples lend credence to the pragmatic
necessity of Self-Sustainability if one wants arbitrary Notational Free-
dom. Even in the limited context of syntactic freedom, this connection
is evident in Helvetia, a polyglot framework for Smalltalk (Renggli and
Gır̂ba 2009), in addition to the previously-cited OMeta (Warth 2009)
and COLA (Piumarta 2006).

The most important point to keep in mind is that this property is
called Notational Freedom, rather than something like “Optimal No-
tation”. We recognise that different notations suit different purposes
and respect the art of developing them as a separate area of expertise,
which we do not claim for ourselves. The idea is to support the subjec-
tive productivity of the programmer, who we assume is best equipped
to judge the appropriateness of notations for herself. This property is
about supporting the usage of different notations for different contexts.

15 https://book.gtoolkit.com/graphical-stack-ejn67l1cykgfjrl9aklgriubv

Retrieved 02/2024.

https://book.gtoolkit.com/graphical-stack-ejn67l1cykgfjrl9aklgriubv

3.3 the three properties in more detail 59

3.3.2.5 What It Means to “Support” Local Notations

It is true that there is no such thing as a free lunch; we do not go so far
as to suggest that the system should turn a natural language description
into a working interface (recent advances in AI notwithstanding). So
long as the programmer is willing to do the necessary work to program
a new notation—such as writing a grammar, specifying the layout of
symbols, or implementing the rendering and input handling for an
interface—this should suffice to use it in harmony with all the other
available notations.

However, the Unix Paradigm and text editors impose an additional
“tax” in terms of effort beyond this reasonable standard. In the best case,
there may be some plugin architecture, while at worst it may require
forking the editor’s source code. The actual work involved in creating
the notation might be very small, but it will be dwarfed by the task of
getting the editor to accept it. Notational Freedom does not come by
default, and most editors and programming systems are not designed
with it in mind.

A system with Notational Freedom is designed without the assump-
tion that there will only be one notation and lacks these taxes to the
extent possible. In short, by “support” we mainly mean the removal
of artificial barriers that stand in the way of mood-specific notations
in ordinary programming systems. Thus, it is natural that Notational
Freedom and Self-Sustainability go hand-in-hand.

3.3.3 Explicit Structure

As we remarked in Section 2.3.3, Explicit Structure refers to the sense
of working with data directly rather than through some other medium.
To go into more detail, it will be useful to split the life-cycle of a data
structure into two halves:

• On the producer side, the data structure is created or edited using
some interface.

• On the consumer side, a programmer is writing code that uses the
data structure.

Explicit Structure is hard to define positively because it is the default
state of affairs across much of computing, with programming being the
notable exception. On the producer side, explicit structure is exhibited
by a vector graphics editor like Inkscape: one simply draws a diagram
with shapes and saves it as a file. On the consumer side, Explicit Struc-
ture looks like a programmer navigating through named parts of the
diagram structure:

svg.root_nodes[1].children[2].fill_color = '#ff00ff';

60 analysis

Explicit Structure is perhaps easier to define negatively, as a lack
of Implicit Structure. Implicit Structure is present when we use plain
text (or Qualitative Syntax more generally, as in null-terminated C
strings) as a communication or storage medium: the structure can only
be navigated after parsing the string. The problem with plain text is
that it fuses together two independent concepts: what we could call
presentation (how one reads and modifies the data) and representation
(how the data is stored in memory or on disk). For example, the AST
of a program could be stored in its tree form and presented as indented
text. But what we do instead is serialise the text, store that, and parse it
back before we are able to work with it.

In our work, we approach the default Implicit Structure of program-
mingwith skepticism.We direct the reader to the fuller arguments from
the authors of Subtext (Edwards 2005) and Infra (Hall 2017), but we
will summarise the most important points here and offer some of our
own.

3.3.3.1 Language Can Be Stored Differently to a Character List

Language always contains structure: English paragraphs contain sen-
tences, containing clauses, containing words. Natural language, like
English, is typically entered into a digital medium only to be poured
out again at some other end, like photo uploads; normally, the com-
puter does not need to dive into the structure at all. On the other hand,
for programming languages, the Abstract Syntax Tree structure is the
entire point.

Despite this, programming language source code is universally stored
as a sequence of characters, rather than as the tree or graph that it
represents. This has the downside that every program that consumes or
transforms the codemust recover (parse) this structure out, discovering
any mistakes only at this point of consumption (since these were just
recordedwith the other characters). This is comparable to storing vector
graphics diagrams as arrays of pixels and using Computer Vision to
haphazardly recognise shapes and lines: unnecessary work to recover
information that was thrown away at creation time.

More unfortunate work results from having to “escape” characters
that have been reserved to denote structure instead of their literal selves.
In the worst case, the storage of language as character lists is largely
responsible for the class of attacks known as SQL injection. This would
not be possible with SQL commands represented as trees containing
holes to be filled with user-submitted strings.

Consider the common practice of embedding SQL commands in the
source code of various languages. In C#, these are forced into the syntax
of the host language as “embedded queries”, yet a programmer may
prefer to use SQL syntax directly as part of the source. The traditional
path-of-least-resistance to achieving the latter was to have SQL code in-

3.3 the three properties in more detail 61

side program strings, which created significant security risks. This is by
no means intrinsic to having SQL source be what the programmer types
or sees; it is entirely possible to combine a text editing user experience
with an explicitly structured in-memory or disk representation.

3.3.3.2 Digital “plain text” is not inherently human-readable

This argument is made best in Hall 2017, p. 14 which deserves quoting
here:

The critical observation is that software infrastructure is
heavily involved in supporting the human-readability of
text. It is not the case that the bit sequences of UTF8 or any
other text encodings are somehow intrinsically understand-
able to a human. An application interprets the bytes as char-
acter codes as per a known standard, which are mapped to
glyphs in a font, and rendered to a grid of pixels. This chain
of interpretation and transformation starts with clusters of
electrons and ends with clusters of photons before the hu-
man nervous system takes over. The point being that there is
still a necessary software layer performing a transformation
in the middle.

electrons → bits → charactercodes → glyphs → pixels →
photons

“Human readability” just colloquially implies that it is a
standard encoding understood by most text editors. The
sense of inherent readability merely comes from the ready
availability of tools that render ASCII and Unicode. One
can assume that a text editor or some text rendering infras-
tructure exists in the target system. Therefore, any encoding
could technically achieve the same ‘human readable’ status
as ASCII if it and its editors were general-purpose enough
to warrant an equally ubiquitous install base. Thus, there
is an opportunity to expand or upgrade the realm of what
can be considered human readable.

It can be tempting to defend text files as human-readable in contrast
to binary files which are not. However, as Hall’s argument shows, this
is mere status quo bias: all of the “human-readability” of a text file is
due to the wide availability of text editors. Few can read text through
a binary or hexadecimal rendering of character codes, which is the
basis on which a fair comparison with “binary files” must be made. By
the same criteria, binary PDF files are human-readable owing to the
ubiquity of PDF readers. In other words, the difference between plain
text and “binary” data is not so much an essential difference of two
kinds but simply a difference in tool availability.

62 analysis

3.3.3.3 We Study the Spherical Cow

Text usually functions as a medium or rendering of something that is
not inherently text. In the first place, text was invented to record speech
made by human beings. In programming, text is used as a proxy for a
nested tree-like structure, but is not the structure itself.

To study a programming idea like self-sustainability, it is unfortunate
to have the accidental complexities of text representation “getting in
the way” of studying the idea itself. Even though a real-world program-
ming system may use text, we wish to avoid this obscuring layer for
much the same reason as a physicist studies a frictionless sphere in a
vacuum instead of a cow in a field. We want to not be distracted with
air resistance and complex shapes, so as to focus on the property we are
interested in; future work can then add the practical complexities back
in again for a more realistic model. In short, we study Self-Sustainability
and Notational Freedom directly as properties of interactive graphical
systems, and Explicit Structure is necessary for this.

3.4 conclusions

There are systems that exhibit one or two of our Three Properties, but
each has shortcomings. Infra (Hall 2017) and Subtext (Edwards 2005)
thoroughly exploit Explicit Structure; the former develops the other two
properties to a small extent, while the latter leaves them out of scope.
Eco (Diekmann and Tratt 2014) supports Notational Freedom, but as
an editor, does not form a complete programming system and lacks self-
sustainability. Meanwhile, Smalltalk-based systems like the Glamorous
Toolkit and ThingLab show strong potential for Notational Freedom
as a result of their self-sustianability. JetBrains’ MPS (Voelter and Pech
2012) possibly goes the furthest in promising Linguistic Freedom atop
a base of Explicit Structure, and is even partly developed using itself as
evidenced by its GitHub language metrics.16

However, MPS has the considerable resources of a software company
behind it and is designed to be industrially viable. Similarly, Smalltalk
descendants are fully-functional complex systems designed for utility
in research and industry. Our goal is not to compete with these existing
systems; rather, we think our Three Properties are, in essence, small
enough to be realisable by an individual for personal use. This is whywe
pursue a general technique for adding these properties to a programming
system that lacks them (Chapter 4). Such a contribution could suit a
wider range of contexts than a requirement to use a specific existing
system like MPS or Smalltalk.

COLA, by far the most important influence on the work in this disser-
tation, promises Self-Sustainability and restricted Notational Freedom

16 The “languages” section at https://github.com/JetBrains/MPS shows MPS covering
78.5% of the code as of March 2024.

https://github.com/JetBrains/MPS

3.4 conclusions 63

in the form of MSLs. However, MSL support is presented in the paper
(Piumarta 2006) as a pipeline of traditional batch-mode transformations
such as parsing, analysis, and code generation. Similarly, it presents
its bootstrapping process in terms of batch-mode transformations of
various source code files. This entrenches it in the Implicit Structure of
the Unix Paradigm (Section 3.2.2) which obscures the essential ideas
relevant to our purposes (recall Section 3.3.3.3).

We would rather have the ability to gradually sculpt a system into a
self-sustainable state, interactively, through a combination of manual
actions and automatic code. This requires that the system should be
conceived primarily through a graphical interface, yet the COLA design
does not provide guidance in this respect. It is possible to see how
a COLA’s various languages and components work together as a sort
of self-sustainable command-line REPL, but less easy to see how its
text-centric approach may apply to arbitrary graphical interfaces.

COLA sketches a way to escape the intra-process scope of the Unix
Paradigm in a vehicle comprehensible to a single individual. Yet it only
does so in the framing of batch-mode stream transformations, which
limits its potential. We will refer to COLA repeatedly for inspiration
and comparison and we will offer some analysis in terms of our own
concepts. However, we must adapt its approach to a basis of Explicit
Structure while retaining the essential ideas. This is the topic of the next
chapter.

4
BOOTSTRAPLAB : THE THREE PROPERT IES IN THE
WEB BROWSER

We now arrive at the main contribution of this work: the construction
of a programming system with our Three Properties, which we call
BootstrapLab.1 On its own, the existence of such a system acts as a con-
structive proof of our Thesis Statement (Section 1.6). However, we are
less interested in the fact that such a thing is possible than we are in
how it was done and what we can learn from the process. We have dis-
cussed our Three Properties in previous chapters to the extent feasible
while remaining in the theoretical realm, but since they are meant to be
properties of programming systems, it is essential that we give practical
experience an opportunity to teach us something about them that we
could not learn otherwise. We would expect not only to learn how to
achieve such properties, but also to gain clarity on their nature.

Thus, in this chapter2 we take the self-sustainable COLA as our inspi-
ration and seek to build up to its Lisp-like “behavioural” half by means
of code with Explicit Structure. We critically analyse its development
process and identify ideas that may apply more generally. This will lay
the foundations for creating new self-sustainable programming sys-
tems. We will have to wait until Chapter 5 to evaluate BootstrapLab
in terms of our Three Properties, but we will summarise it in terms of
Olsen’s criteria for user interface systems (Olsen 2007) at the end of
this chapter.

What is presented here is not necessarily a chronologically accurate ac-
count, but a rational reconstruction of the steps involved. For each step, we
describe the general task at hand, illustrate this with concrete decisions
made in the implementation of BootstrapLab and, where appropriate,
sketch possible alternative decisions and their likely consequences. In
other words, it is a depth-first exploration of the process with some
alternative branches suggested along the way. It can be understood on
two levels:

1. It tells the development story of a concrete system. BootstrapLab
is a novel programming system, based on explicit structure and
built on top of the web platform, which exhibits a minimal demon-
stration of Self-Sustainability and Notational Freedom.

2. It presents a rational reconstruction of the logical steps needed
to bootstrap a general self-sustainable programming system (by

1 https://github.com/jdjakub/BootstrapLab/tree/phd-thesis/orom/computation

2 This chapter was adapted from our 2022Onward! Essay entitled “Ascending the Ladder
to Self-Sustainability” (Jakubovic and Petricek 2022)

65

https://github.com/jdjakub/BootstrapLab/tree/phd-thesis/orom/computation

66 bootstraplab: the three properties in the web browser

taking BootstrapLab to be representative of the important parts of
such a task). It highlights design forces and heuristics for resolving
them which can be used by designers of future self-sustainable
systems.

4.1 methodology

We follow in the spirit of COLA, but we aim to bootstrap a graphical
and interactive self-sustainable system instead of a textual one based
on batch-mode transformations. The system should not have barriers
in the way of using custom notations. We also want to work with an
interactive system, meaning that the user should be able to modify
the state of the running system through manual gestures and not just
programmatically.

This approach can better exploit the graphical and interactive ca-
pabilities of modern computing, but it also sidesteps the tedious acci-
dental complexities of parsing and serialising text. Similarly, making
the system interactive will allow the user to better understand the con-
sequences of individual small changes and will, in turn, support a
virtuous cycle of self-improvement.

Our desire is to make an interactive, structured “port” of the COLA
approach. This is unexplored territory. It must be emphasised that
finding the right “final design” upfront should not be necessary and
would defeat the spirit of the enterprise. The point is to build an initial
kernel which is then sufficient for evolving and improving itself.

Unlike COLA, we do not write an initial object system in a language
like C++. In order to support interactivity, structure, and graphics, we
begin with a platform that already conveniently supports those features.
This forms a suitable “blank slate” from which to gradually develop
the system into a self-sustainable state. At each stage, we take stock
of which changes can feasibly be achieved at the user level within the
system, versus those that can only be achieved at the implementation
level (recall Section 3.3.1.3). We then ask ourselves: how can we imbue
the user level with control over some of these aspects?

The following sections propose key steps for evolving self-sustain-
ability in this way, informed by our actual experience applying them
in BootstrapLab. We will point out the forces that shape the design and
the heuristics by which we resolve competing forces. As we proceed
through the development journey, we will reflect on the heuristics in
light of actual practice and compare our choices for BootstrapLab with
the corresponding stages of three other systems:

• COLA, since it is our main inspiration whose approach we are
adapting;

• TheAltair 8800 of the 1970s, to stand in for low-level or “hardware”
platforms;

4.2 concepts and terminology 67

Platform: Web, JS

Substrate: JS code

Product: BootstrapLab

Producer

In-system

Figure 4.1: The producer comprises the JS platform in the context of the web
browser, along with the substrate written in JS. Working in-system
means using the product (BootstrapLab) to work on itself.

• Squeak Smalltalk, as a well-established and practical program-
ming system developed in a similar way (Ingalls et al. 1997).

4.2 concepts and terminology

Following the terminology in Section 3.3.1.4, we use the term product
system (or simply “the system”) to refer to the programming system
that we evolve towards self-sustainability. We use the producer system
(or simply “producer”) to bootstrap the product system. The producer
is divided into two layers: the platform consists of all the pre-existing
capabilities of the producer, while the substrate is the basis for the prod-
uct system that we have to build. We use the term in-system to refer to
changes made within the product system, by using it as a programming
system at its user level. These terms are summarised in Figure 4.1. We
also model the product system as having a state that changes over time as
we introduced in Section 3.1.

Recall the definition of bootstrapping we gave in Section 2.3.1. Our
task is to explore the question: how do we bootstrap interactive graphical
self-sustainable systems? Note that by definition, what we do with a
self-sustainable system is open-ended. This chapter is solely concerned
with getting there from the ordinary world, which is why we will spend
so much discussion on the design of the substrate. This determines how
the product system can evolve, how soon can it become self-sustainable
and to what extent.

4.3 journey itinerary

The rest of the chapter documents the steps involved in designing a
self-sustainable system. Be advised that the sequence is a rational recon-
struction. The implementation of BootstrapLab followed a more mean-
dering path, but the following steps gesture at the Platonically optimal
pathway for bootstrapping a self-sustainable programming system:

68 bootstraplab: the three properties in the web browser

1. Choose a starting platform. The platform is a pre-existing program-
ming system that we use to create and run the product system.
The platform cannot be re-programmed, let alone to become self-
sustainable, but it allows us to build a self-sustainable product
system. To choose a platform, we consider its distance from de-
sired substrate features and personal preference.

2. Design a substrate. The substrate defines the basic infrastructure
supporting the product system: how the state is represented and
changed. The design of a substrate re-uses parts of the platform
where possible and extends it where necessary. We must decide
which platform capabilities to use to represent the state and how
to expose graphics and interaction. We design a minimal instruc-
tion set, BL-ASM, which describes changes to the state, and can be
represented using the state. We then use the platform to imple-
ment an engine that executes these instructions.

3. Implement temporary infrastructure. Use the platform to implement
tools for working within the substrate, most importantly a state
viewer or editor. These tools constitute a “ladder” that we will pull
up behind us once we have ascended to in-system implementa-
tions of these tools.

4. Implement a high-level language. The substrate’s instruction set
(BL-ASM) is cumbersome, so ensure programs can be expressed
in-system via high-level constructs. Decide how to represent ex-
pressions as structured state and whether to interpret or compile
them into BL-ASM. Ideally, develop such an engine in BL-ASM grad-
ually and interactively. Alternatively, implement it at the platform
level and later port it to BL-ASM or the high-level language itself.

5. Pay off outstanding substrate debt. Port all remaining temporary in-
frastructure into the system, taking advantage of the infrastructure
itself and the high-level language. The result is a self-sustainable
programming system.

6. Provide for domain-specific notations. Use the self-sustaining state
editor to construct a more convenient interface for editing high-
level expressions. Add novel notations and interfaces as needed. Use
these not just for programming new end-user applications, but
also to improve the product system itself.

What we have here looks like aWaterfall development plan, each step
strictly following from the completion of the previous. This presentation
is convenient as a summary, but in practice, the sequencing here need
not be so rigid. Adjacent stepsmay overlap, orwemay need to prototype
and revise a previous step in light of the result.

The general outline also resembles the discredited “recapitulation
theory” in biology, where in order for an embryo to develop into a full

4.4 choose a starting platform 69

organism, it passes through the evolutionary history of its ancestors. In
other words, for a particular cell to develop into an animal, it needs to
fast-track its ancestors’ evolution from a cell in the distant past. While
this has since been rejected in biology, it is a good summary of what is
going on in our project here.

For us, the bootstrapping of a particular self-sustainable system fast-
tracks the historical development of computing’s abstractions. It begins
at the low level and ascends through to higher-level languages, each
time building the next stage in the current one. This journey could
be seen as an attempt to reconstruct programming on top of a more
structured, graphical substrate than the byte arrays we all had to use
the first time around. With that in mind, let us now proceed to the first
stage.

4.4 choose a starting platform

The platform is a pre-existing programming system that we
use to create and run the product system. The platform can-
not be re-programmed, let alone to become self-sustainable,
but it allows us to bootstrap a self-sustainable product sys-
tem. To choose a platform, we consider its distance from
desired substrate features and personal preference.

The first step is to choose the platform that we will use as the basis
for the product system. This could be any existing high-level or low-
level programming system. An important factor is simply personal
familiarity or preference for a particular platform. This plays a role
during bootstrapping, but is destined to become irrelevant once self-
sustainability is achieved.

The other major consideration is the primitives provided by the plat-
form. They influence how we can design the substrate on top of it in the
next step. If we begin with a high-level platform with many convenient
features (e. g. graphics and audio capabilities), then we will have to
regard them as black boxes. We may expose them as primitives in the
product system, but we will not be able to re-program them in-system
since we cannot re-program the platform.

Alternatively, such imported convenient high-level features could
later be re-implemented in the product using more basic primitives. How-
ever, this would delay the point from which we can work fully in-
system. This foreshadows a coming design tension in the substrate
(Section 4.5.3).

In the Altair 8800, the platform comprised linear memory (state) and
native CPU instructions (state change). The platform did not provide
other tooling aside from switches to manually set memory values (Fig-
ure 4.2).

70 bootstraplab: the three properties in the web browser

Figure 4.2: The Altair 8800 microcomputer and its front panel of switches.
Image credit: (Colegrove 2020).

In COLA, the platform is C (Piumarta and Warth 2008) or C++ (Piu-
marta 2006) and the Unix command-line environment; in other words,
it is the Unix programming system (Section 3.2.2).

According to Ingalls et al. (1997), the platform for Squeak was clearly
Smalltalk, even though it was later compiled to C. We could make the
distinction that Smalltalk was the development platform while C was the
deployment platform. However, we will continue to use the term platform
to mean the development platform, because our concern is how to build
such systems in the first place. Also, despite our general characterisation
of Smalltalk as self-sustainable, the versions available to the Squeak
developers were not so, or not enough (Ingalls et al. 1997):

While Smalltalk met the technical desiderata, none of the
available implementations gave us the kind of control we
wanted over graphics, sound, and the Smalltalk engine itself
(…) It became clear that the best way to get what we all
wanted was to build a new Smalltalk with these goals and
to share it with this wider community.

Even had they been equipped with a sufficiently self-sustainable
platform, other issues such as licensing and portability would have still
prevented them from being content with it as a vehicle for their goals.
This reminds us that one may have all sorts of reasons to create a new
self-sustainable programming system, even if one is already available.

However, our work here proceeds from what we consider to be a
more common premise: that the platforms that are available for us to
use (incorporating factors like skills, familiarity, and preference) are
not self-sustainable, and need to be made so by our own augmentation.
Accordingly, for BootstrapLab, we chose JS and the Web platform. This
programming system is the one we are most familiar and comfortable
with, and it also provides us with built-in Web technologies, libraries
(including graphics), and the browser developer tools. In other words,

4.5 design a substrate 71

such a platform provides a range of convenient tools to assist bootstrap-
ping. However, because of their large scope, we will only be able to
expose a carefully selected subset of such features as primitives to the
product system.

What can be changed at the user level? At this point, there is no product
system to speak of yet. This means that nothing can be changed in-
system. The platform can, in principle, be modified, but by assumption
this is so unfamiliar, uneconomical, or inappropriate that the developer
has opted to make a (new) self-sustainable system instead.

4.5 design a substrate

The substrate defines the basic infrastructure supporting
the product system: how the state is represented and changed.
The design of a substrate re-uses parts of the platformwhere
possible and extends it where necessary. We must decide
which platform capabilities to use to represent the state
and how to expose graphics and interaction. We design a
minimal instruction set, BL-ASM, which describes changes to
the state, and can be represented using the state. We then
use the platform to implement an engine that executes these
instructions.

With the platform defined as the already-existing programming sys-
tem that we start from, we define the substrate as the basic infrastructure,
implemented via the platform, necessary for the product system. This
substrate is the part of the system which we have control over (being
programmed by us, unlike the platform itself) yet which we do not
expect to expose from within the system. In other words, the substrate
is the small non-self-sustainable core that supports the self-sustainable
product on top of it.

In short, our division is as follows:

Created by us? Self-sustainable?

Platform No No
Substrate Yes, atop Platform No
Product Yes, atop Substrate Yes

The design of the substrate can be considered along two axes (Ta-
ble 4.1). The first dimension follows the distinction between data and
code, or state and state change (Section 3.1). We must first decide how
the state of the system will be represented. Often, this is a matter of
choosing an appropriate subset of what the platform already provides.
Then, we decide how primitive changes to that state can be described
and define the instruction set.

72 bootstraplab: the three properties in the web browser

Table 4.1: The conceptual divisions of the substrate.

Domain \ Agent Human (Manual) Computer (Automatic)

State User Interface Data structures
Change UI Controls Instructions

The second dimension follows the division between the computer and
human actors. The full state of the system will be an internal data struc-
ture, but a part of the state—comprising the state of the user interface—
can be directly seen by the user. Similarly, change can be performed
automatically or manually. There must be a way to run instructions
automatically at a high speed, but the user interface must also provide
controls for a human to make changes at their own pace.

While the foregoing model applies to programming systems gener-
ally, a special condition is required for those that are self-sustainable.
We must represent instructions as pieces of state, as opposed to having
“two types of things”—ordinary data, and code—whichmust be viewed
and edited using completely different tools. This property of Code As
Data3 means instructions can be generated and manipulated just like
ordinary state, whether programmatically or manually. Only if this is
possible can higher-level abstractions be built up, in-system, from the
low level.

Requirement 1 (Code As Data). Instructions must be readable and
writeable as ordinary state.

The fact that we call this a requirement is more out of a desire to save
trouble than as something that is strictly necessary from the beginning. If
code is not ordinary data, Code As Data can be trivially, if inefficiently,
bolted on after the fact. We would simply write an interpreter (for
the same language, or a new one) in the existing code, which reads
instructions from somewhere in the “data” memory and executes them.
Wewould then forget all about the original interpreter andwork entirely
within the new language. In fact, as wewill detail in Section 4.5.5 shortly,
this is exactly what we should expect to have to do as a key part of
designing a substrate. The point is that we should not repeat any such
“mistake” of the platform and have to fix it a second time due to our own
mis-design; we might as well avoid the overhead of an inner interpreter
by simply having Code As Data from the beginning in our substrate.

3 In Lisp, this idea is called homoiconicity; elsewhere it is known as the von Neumann
architecture. We are unsure of any essential differences between these three terms but
use the more direct “code as data” to avoid quibbles.

4.5 design a substrate 73

4.5.1 Substrates in Squeak and Altair

The path laid out for Squeak in Ingalls et al. (1997) is very clear: the
Virtual Machine (VM) is developed in Smalltalk (the development
platform) and compiled to C (the deployment platform). In C, the VM
conforms to our conception of a substrate: it is not modifiable from
within Squeak. On the other hand, during development, it is unclear
whether this is still the case, owing to the high self-sustainability of
Smalltalk. However, we presume that it remains off-limits from within
the system, on the basis that any VM-altering capabilities present in the
Smalltalk implementation would break if straightforwardly compiled to
C. Since Squeak is itself a version of Smalltalk, the substrate’s conception
of state is a graph of objects and its change takes the form of VM bytecode
instructions; extensive details can be found in Ingalls et al. (1997).

As for the Altair 8800, we are using it as an example of a hardware
platform; unlike our other example systems, the “programming system”
it would support has been left open-ended. However, for most things
one would want to achieve with such a machine, one would need basic
software facilities like memory and time slice management, device
interfacing, and so on. These are precisely the facilities of an Operating
System (OS) and we would regard such a basic software layer as a
substrate for such a system. Similarly, we would regard the Unix OS (or
at least the kernel) as the substrate in Unix systems—even the Altair,
supposing it had the requisite hardware resources and capabilities. As
we pointed out in Section 3.2.2.1, the Unix substrate is cleaved into two
layers: inter-process, in which state comprises the filesystem which is
changed by system calls, and intra-process, in which state comprises raw
memory changed by machine instructions (Section 3.1.1). In the latter
case, state and change are more or less inherited from the hardware
platform, while the former is built as infrastructure on top of this.

4.5.2 COLA’s Low-Level Byte Arrays

As an example of the intra-process notions of state and change, we can
look at COLA, a programming system conceived as a process within
Unix. As such, its substrate is quiteminimal and themajority is inherited
“for free” from the low-level runtime environment that makes up a
process.

At the lowest level, state in COLA consists of an array of bytes, ad-
dressed numerically. Some structure is imposed on this via C’s standard
memory allocation routines, refining the model of state to a graph of
fixed-size memory blocks and the stack. Changes to this state are repre-
sented as machine instructions encoded as bytes. This is the basic state
model of a C program; the sample code for COLA’s object model (Piu-
marta and Warth 2008, Appendix B) embellishes this with little more

74 bootstraplab: the three properties in the web browser

than a way to associate objects to their vtables4 and a cache for method
lookups.

This bare-bones, low-level substrate does not require much devel-
opment on top of the platform and so it is quicker to complete. The
ontology of state is copied from the platform, and in this case the ma-
chine instructions can be inherited too.5 Completing the substrate more
quickly means we can start working in-system sooner, but there is a
downside: it may be cumbersome to work with such minimal function-
ality. The unfortunate effect would be that we speed through a primitive
substrate, only to suffer slow progress at the beginning of in-system
development.

Building back up from machine-code level may be an impressive
hacker achievement or useful for pedagogy (Agaram 2020). But it is
clearly not optimal, speed-wise, when we already have a higher-level
platform to program with.

In the other direction, there is no limit to how fancy we could make
the substrate in terms of high-level abstractions and convenient features.
However, these would take much longer to implement and delay in-
system development. Moreover, this risks doing a lot of work that can
never benefit from in-system innovation feedback (recall Section 3.3.1.5);
the substrate’s implementation will not be modifiable from within the
system it supports.

4.5.3 The Major Design Conflict

We clearly have two opposing tendencies here, which we will formalise
as follows:

Force 1 (Avoid Boilerplate). Push complex features into the substrate
to avoid wasting in-system development time on them.

Force 2 (Escape The Platform). Push complex features in-system to
avoid delaying in-system development and to have them benefit from
innovation feedback.

We will refer to these throughout the journey. They conflict over
where the implementation of convenient functionality should reside. In
any specific design, they will resolve in some compromise. It is helpful
to consider the extreme points of this.

Force 2 wants to get the substrate over with as quickly as possible,
eager to escape the (real) limitations of the platform and get working

4 A vtable specifies object behaviour by supplying runnable code for a requested method
name. It is separate from the object “instance” so that multiple objects can share the
same behaviour. In the sample code, an object is an arbitrary memory block preceded
by a vtable pointer.

5 In general, the internal representation of code in the platform will be unavailable to
us when programming with it, so we expect not to be able to inherit it. This low-level
platform is a special case, where we do have access to code if we are willing to write
instructions using their numerical codes.

4.5 design a substrate 75

in a system that can be arbitrarily changed. Force 2, left unchecked, will
guide us to adopt a substrate resembling a Turing machine:6 have a tape
for the state; instructions for manually shifting left and right, reacting
to the current symbol, and writing a new one; have a user interface
in which to do these things manually. Such a substrate is so simple it
could be coded in an hour or two. Yet our first duties in-system will
be to implement extremely basic features, like data addressing and
arithmetic, in an extremely tedious way. The endpoint of Force 2 is the
Turing Tarpit (Perlis 1982).

On the other hand, if we follow Force 1 unchecked, we spend much
time and effort working with the platform to produce, in effect, a com-
plete novel programming system. Any feature we would find useful
in-system, we would have already implemented outside it. Yet this
means that all the important functionality could not be changed except
by going back to the source code in the platform; we’d have created a
boring old non-self-sustainable programming system. The endpoint of
Force 1 is programming-as-usual.

A symptom of the latter failure mode would be that we never felt
comfortable leaving the platform behind and continuing development
from within the system. Self-sustaining systems are meant to be grown
from a small enough starting point; we shouldn’t need to come up with
a flawless design ahead of time. This will only be possible if we artfully
balance Forces 1 and 2 so that the in-system programming experience
becomes tolerable in a reasonable timeframe.

reflections on the machine-level approach. We experienced
something like the “Escape The Platform” (Force 2) absurdity for
COLA when following the sample C implementation of its object sys-
tem (Jakubovic 2020b). The code was easy enough to comprehend and
compile, but what we were left with was a system living entirely in
memory lacking even a command-line interface. In order to develop
the system, it seemed necessary to run it in a machine-level debugger.

Even if we had stayed with it, we would still be stuck in the low-
level binary world which is unfriendly for humans to work with, as
we explained in Section 3.1.1. Instead of names, we only have numbers
for addressing things. The state is flat and we cannot insert or grow
somethingwithout physically moving other content to make space. Any
structure, such as trees or graphs, has to be faked as memory blocks
pointing to each other.

Slightly better is the model found in VM designs. For example, in the
Java VM (Lindholm et al. 2023), bytecodes address “local no. #3”, and
“constant no. #4” instead of “memory location 952A” and “memory
location 3B84”. However, this is still far from human-friendly. Low-level
substrates are better than the Turing machine, and were a historical

6 Or, equivalently, a lambda calculus evaluator, or Gödel’s recursive functions, or Con-
way’s Game of Life, etc.

76 bootstraplab: the three properties in the web browser

necessity in the early days of computing. Nowadays, however, we have
an opportunity to leave them behind, and instead build new systems
on top of a “low level” that is nevertheless minimally7 human-friendly
(Section 3.1.2).

Heuristic 1 (Minimally human-friendly low-level). Ensure the sub-
strate natively supports string names and substructures. This is a minimal
concession to ”Avoid Boilerplate” (Force 1) that still keeps the substrate
simple enough and thus does not strongly conflict with ”Escape The
Platform” (Force 2).

We can unpack the rationale behind this heuristic as a consequence of
an assumption, or even a bet: because string names and substructures are
so primitive, simple, or “unremarkable”, we are betting that we will be
content with the way they work long into the system’s lifetime, and not
feel the need to change them. This would be an unwise assumption for
complex functionality, such as a high-level language; it is highly likely
that, at some point, we will want to experiment with it or change how
it works for some reason; therefore, the implementation of a high-level
language must reside in-system (we will cover this in Section 4.7). This
seems far less inevitable in the case of extremely basic infrastructure, so
implementing it in the substrate is at least a reasonably safe decision.

Clearly, our conception of a substrate has much in common with
that of a VM. However, we wish to avoid the established connotations
of such a term and allow for degrees of freedom that might not be
associated with a “virtual machine”. For example, a substrate might
base the design on names and dictionary structures (an approach that
we adopt and will discuss presently); conversely, a VM design would
probably pre-optimise these to more resemble the Low-Level Binary
model (Section 3.1.1). Another example is that one could choose to
embed a high-level language in a substrate, whereas a virtual “machine”
would specify low-level bytecodes in which a high-level language could
be implemented. We will actually take the VM approach in this respect,
but the point is to show how a “substrate” need not necessarily resemble
a “machine” and thus why we use the former term to generalise the
latter.

4.5.4 BootstrapLab’s Simple, Structured State Model

For the design of BootstrapLab, we chose the Web platform and JS, out
of a combination of personal preference and conveniences like graphics.
This imposed a number of design decisions on the substrate, due to

7 We recognise that there is something inherently human-unfriendly about programming
in “low-level” code; we are simply observing that there is accidental complexity above
and beyond what seems to be necessary, which could be fixed. In other words, we have
our own reasons to program in terms of small instructions, but we see no redeeming
value in working with flat, numerical state.

4.5 design a substrate 77

a tendency for earlier choices to determine which later ones will feel
“natural” or “fitting”.

In our high-level platform language JS, state is a graph of plain JS
objects acting as property dictionaries. Supposewe still chose a low-level
binary substrate like that of COLA. This would no doubt be possible:
declare one giant JS array called state, design numerical instruction
encodings which overwrite numbers at certain indexes, etc. Yet this
would feel like a perverse waste of something the platform was giving
us for free.

JS already provides the basic human affordances of naming and sub-
structure, so why would we throw them away and force ourselves to
implement them in-system? The low-level COLA substrate does plau-
sibly follow from its base C platform; our choice of JS as the platform
encourages us to preserve its own statemodel in the substrate we design.

Similarly, itwouldmake no sense to represent instructions as numbers
or strings. While in the binary world, machine instructions are byte
sequences with bitfields for opcodes and operands, in a dictionary
substrate inherited from JS, it makes sense to have explicit fields for this
data:

{

operation: 'copy',

from: [alice, 'age'],

to: [bob, 'age']

}

As this example shows, addresses in a dictionary-based state model
consist of an object reference and a key name.

This “preservation” incentive pervades the journey from platform to
product system. The substrate should leverage representations made
possible by the platform, while the instruction representation should
leverage the structuring of state provided by the substrate. This will
also apply to further subdomains expressed in the state model, such as
graphics and high-level programming expressions. We formalise this
as the following:

Force 3 (Alignment). Everything should fit: instructions, high-level
expressions, and graphics expressions should all fit the substrate, and
the substrate should fit the platform.

It should be noted that while Alignment constrains the set of accept-
able designs, it is not so powerful as to determine a single one. All it does
is set a minimum “floor” of important functionality in the substrate,
excluding designs that fall below it. We continue to face further choices
in terms of how far to augment this bare minimum.

In the end, our substrate for BootstrapLab largely inherits its state
model, only making simplifications. For example, JS objects have proto-
typal inheritance, meaning that a simple “read” operation of a property

78 bootstraplab: the three properties in the web browser

requires potentially traversing a chain of objects. Our substrate here
omits this, so reads are quite simple. Additionally, JS includes a special
Array object type. We omitted this, opting to represent lists as maps8
with numerical keys. This unification means that the state model only
has one type of composite entity, the map; a fact we will exploit later for
the high-level language.

We also noticed that we would not get very far if all our progress in-
system could be wiped clean by losing our browser tab. Our platform,
sitting within the Unix paradigm (Section 3.2.2), does not provide
persistence out of the box, so we had to implement a mechanism in the
substrate. We walk the state graph from the root node and discover a
spanning tree, specially marking cyclic or double-parent references. We
then serialise this into a JSON file which we can load by undoing the
process. This is reminiscent of the image-based persistence in Smalltalk,
though it is frustratingly manual. Nevertheless, it was critical to patch
this unfortunate aspect of the platform and this was enough to do so.

JS is a “high-level” language, but this is relative to the conventional
“ground” reference point of the hardware as the lowest level. However,
the “lowest level” of interest to us is our platform, which in this case
is not hardware but JS. Therefore, measuring from JS as the reference
point, we consider this substrate low-level relative to it. In other words,
the gap between our substrate and JS is very small. It could have been
otherwise; “Avoid Boilerplate” (Force 1) gave us several ideas for con-
venient features of a smarter state model, but “Escape The Platform”
(Force 2) urged us to press ahead without them and see if we needed
them later. Appendix C contains these details.

4.5.5 Designing the Instruction Set

While the “data” half of the substrate may be easy to inherit from the
platform, the “code” half is typically not. Simply including an inter-
preter for source code in JS is not an option; this would embed a reliance
on a strings and parsing in the core of the system, against our desire
for Explicit Structure.

Slightly better would be an interpreter for the JS abstract syntax tree.
However, “Escape The Platform” (Force 2) still pushes against this.
A high-level language interpreter is nontrivial even without parsing
and would delay our ability to work in-system. Also, an interpreter is a
computer program; this program, or parts of it, might be best expressed
or debugged via particular notations; by having it in the substrate, we’d
restrict ourselves to the interface of JS in our text editor.

Instead, consider what it takes to implement the interpreter for As-
sembler, a.k.a. the Fetch-Decode-Execute cycle. We fetch the next small
change to make to the state (an instruction). We do a simple case-split
on the opcode field; we carry out some small change to the state; rinse

8 We refer to our substrate’s basic dictionary structure as the map for brevity.

4.5 design a substrate 79

and repeat. With this, we can surely mirror the real-world development
of higher-level languages from lower ones.

Heuristic 2 (Use Imperative Assembler). Begin from imperative as-
sembler, as this allows us to make arbitrary changes to the state using a
minimal interpreter that is quick to implement. ”Escape The Platform”
(Force 2) outweighs ”Avoid Boilerplate” (Force 1) here.

It is important to stress that this “assembler” is relative to the form
of the substrate. If the substrate is binary memory, “assembler” will
refer to machine instructions. But in our case of a minimally human-
friendly low level (Heuristic 1), there is nothing binary about them. The
instructions express operations on structured objects with names and
are, themselves, represented as structured objects with names. Similarly,
“imperative” just refers to the fact that the instructions are arranged in a
sequence from the point of view of the interpreter, because it is easier to
implement a fetch-execute cycle than, say, a resolver for a dependency
graph. The above considerations lead us to Heuristic 3.

Heuristic 3 (Simple Assembler). Prefer fewer instruction types (RISC)
over more (CISC). This reduces the size of the interpreter and will be
quickest to implement. It will make programs longer, but this can bemit-
igated by a high-level programming language. ”Escape The Platform”
(Force 2) outweighs ”Avoid Boilerplate” (Force 1) here too.

Right away, we know there will have to be a special piece of state for
the instruction pointer. This could indicate the current instruction or the
next; we chose the latter for BootstrapLab and called it next_instruction.

The value of this “register” is determined by how exactly we fetch
the next instruction. Perhaps each one has a next field which we can
simply follow. In this case, the next_instruction will simply be the
instruction itself. This also gives us convenient conditionals (e. g. fields
called if_true and if_false) but means that instruction sequences will
have a nesting structure. This latter consequence may be inconvenient
for presentation in a tree view. For BootstrapLab, we chose the alterna-
tive of numerically indexed lists of instructions which easily display in
a column. This choice determined next_instruction to instead hold
an address, called ref, made of container map and key name:

next_instruction: {

ref: {

map: // the instruction list
key: 1 // i.e. first instruction in the list

},

value: // the fetched instruction itself
}

Here, the “fetch” step involves dereferencing the address, increment-
ing the key name, and updating the value key to the instruction itself.

80 bootstraplab: the three properties in the web browser

Next, we turn to what types of instructions we need. Alignment
(Force 3) means that, given a state model, obtaining an instruction set
should be more of a “derivation” than a hard design problem. This is
because some choices are obviously inappropriate and others clearly
fitting to the state model. For example, in a tree-structured state model,
it would be foolish to have instructions that can only see the root level:

{ op: 'copy', from: 'source_key', to: 'dest_key' }

Without the ability to read or write keys within an arbitrary tree node,
as far as programmatic change is concerned, the state becomes a de
facto flat list instead of a tree. Therefore, it is critical that anywhere in
the state can be accessed or modified by an appropriate instruction
sequence.

We suspect that the following basic functions suffice to make an
instruction set Turing-complete:

1. Copy from one location to another (an “immediate” or “literal”
is just copied from the instruction itself)

2. Treat a value as an address and follow the reference

3. Unconditional jump (copy a value to the instruction pointer)

4. Conditional jump (take a path based on a run-time condition)

“Avoid Boilerplate [in-system]” (Force 1) may push us to include
basic boilerplate in the substrate, like arithmetic or an operand stack.
Furthermore, it is advisable to have an “escape hatch” into the platform
if possible. In BootstrapLab, our platform language JS provides the
eval() function to execute a string of JS code. We exposed this as a
js instruction. This allows us to use and store JS code in the running
system instead of having to edit the source file, contributing a little to
self-sustainability.

The resulting instruction set for BootstrapLab was derived from these
considerations, as well as extreme application of “Simple Assembler”
(Heuristic 3). It uses the top-level map as a set of “registers” whose
contents are immediately accessible. The main registers are:

• focus: an “accumulator” register used bymost instructions. Holds
the key for map operations.

• map: holds the map to be updated or navigated by map instruc-
tions.

• source: holds the new value when updating a map entry.

• next_instruction: program counter; holds the address of the
next instruction and the instruction itself.

4.5 design a substrate 81

State that is “further away” than the top level is accessed by following
key paths from there, or from existing map references. Beside the few
special registers used by instructions, other names in the top level are
available as local variables in user code. The instructions are as follows
(see Section B.2 for full details):

• load fills the focus register with a literal value.

• deref treats the value in focus as naming a register and copies
the register’s value into focus.

• index expects a map in the map register and a key name in focus.
It looks up this key in map and replaces map with the value.

• store copies the value in focus to a named register. Alternatively,
if no register is present, it copies the value in the source register
to the destination identified by map and focus, as with the index
instruction.

An instruction is represented as a map with an op field for its name
and other fields for parameters. For example:

{ op: 'store', register: 'source' }

It is remarkable that these few operations really are sufficient even for
conditional andunconditional jumps.A jump is achieved by overwriting
next_instruction, and this can be conditionalised by indexing a map
of code paths based on a selector. We made the decision that index, if
accessing a key not present in the map, will try and retrieve the special
key _ instead. This supports a generic “else” or “otherwise” clause for
conditionals. We provide a worked example in Section C.1.2 and also
show how an arbitrary path-to-path copy reduces to these primitive
operations. This lends support to the Turing-completeness suspicion:
since we can effect the basic operations9 found in real-world, practical,
non-minimal instruction sets, our set is at least as Turing-complete as
they are.

The minimal, microcode-like instruction set here was an experiment
in extreme parsimony; see Section C.1 for the gory details. Although it
was interesting, certain basic operations (such as jumps) are extremely
verbose, taking many instructions. Although it was quick to implement
these instructions in JS, it was too tedious to work with them in-system.
In retrospect, it looks like we went too far with “Escape The Platform”
(Force 2) here and fell into its associated Turing Tarpit trap. We thus
consider an extreme interpretation of “Simple Assembler” (Heuristic 3)
refuted for the purposes of working in-system sooner. We recommend
achieving a better balance by including direct path arguments in in-
structions (e. g. “copy a.b.c to x.y.z” as a single instruction), as well
as separate (un)conditional jump instructions.

9 See the discussion in Section B.2.4 for why we do not consider arithmetic as among
these basic operations.

82 bootstraplab: the three properties in the web browser

Nevertheless, at this point we have a workable instruction set for
BootstrapLab; we will subsequently refer to it as BL-ASM.

4.5.6 Graphics and Interaction

Now that we have covered the computer-oriented part of the substrate,
we turn to the human-oriented user interface state and change as-
pects. One way we wish to distinguish BootstrapLab from COLA is
that graphical interfaces are present from the beginning and not just an
afterthought. There are two factors here: how graphics are represented
in the substrate, and how they are actually displayed.

It may be useful to see this as a microcosm of the entire journey. First
we must select a graphics library available for our platform (i. e. the
graphics platform). Then we must decide how graphics are represented
in our substrate (a graphics sub-substrate) and how these graphics
actually end up on our screen.

In BootstrapLab, we chose to build off the THREE.js 3D graphics
library as our platform. As for the substrate, we face an immediate
choice between so-called “immediate mode” and “retained mode” con-
ventions. In immediate mode, we draw and change graphics by issuing
commands; a “code-like” approach. In retained mode, the state of the
scene is represented as some structured arrangement of state. When we
want to change something, we simply change the relevant part of the
state and the display should automatically update.

Immediate-mode in this case could be realised by, say, exposing all
the relevant THREE.js functions as special instruction types. In actuality,
however, this sounded far too tedious to work with; “Avoid Boilerplate”
(Force 1) won out and we opted for retained mode instead. The rest of
the design then fell out via Alignment (Force 3).

Consider the low-level binary substrate in which microcomputer
games were programmed. In this world there is a special region of
memory, the framebuffer, which is treated as the ground truth of pixels
displaying on the screen. To draw, programs rasterise shapes into pixels
and write to the framebuffer.10 The framebuffer has a flat structure—
two-dimensional, yet not by any means nested—aligning with the sub-
strate it sits within. This suggests that a natural choice for retained-mode
graphics representation can be found by inspecting the substrate. In
BootstrapLab’s case, the natural choice is not a flat “framebuffer” but a
tree structure of data describing shapes and text—vector graphics.11

Heuristic 4 (In-state graphics). Make graphical interfaces expressible
as ordinary state in a special location. Having graphics built into the
substrate responds to ”Avoid Boilerplate” (Force 1) while Force 3 directs
us to use a representation that fits the state model.

10 In Commodore 64 BASIC, this would be accomplished with commands like POKE

1024,1.
11 Further rationale for this approach can be seen in (Hague 2010).

4.5 design a substrate 83

Figure 4.3: Example of how nested tree fields are represented (right) vs. the
rendered output (left). The right-hand half is the temporary state
view discussed in Section 4.6, where curly braces and commas have
been dropped from the notation. The +/- signs are UI controls for
expanding and collapsing tree nodes, respectively.

In BootstrapLab, this is a subtree of the state under the top-level name
scene (Figure 4.3). There are several special keys (e. g. text, position,
color, children) which have graphical consequences. Other keys may
be used as ordinary state.

For interaction, we need to expose the platform’s ability to listen for
user input. In BootstrapLab, we would execute a named code sequence
in the substrate from JS event handlers, which now function as “device
drivers” (Figure 4.4).

This is a basic sketch with some issues elided that a complete account
would cover. For example, what happens when an input event occurs
during the handling of a previous event? Possibilities include ignoring
the extra event or providing some sort of stack analogue12 for nested
handlers. Such a data structure may also be necessary for saving and
restoring the instruction pointer along with other context. These con-
cerns have analogues in interrupt handling for operating system design,
which we would consult for future work. However, at this early stage,
we found our existing approach to be adequate and progressed to the
next step.

4.5.7 BootstrapLab Substrate Summary

Computer state is a graph of maps; lists are just maps with numerical
keys. Instructions are load, deref, store, index, js. Special top-level

12 Of course, in a structured substrate, there is room for improvement on the linear form
of the low-level machine stack; see Section 4.7.4 for how we did this for the high-level
language.

84 bootstraplab: the three properties in the web browser

window.onkeydown = e => {

state.set('input', 'type', 'keydown');

state.set('input', 'key', e.key);

let input_handler_code = state.get('input', 'handler');

save_context();

state.set('next_instruction', new state.Map({

map: input_handler_code, key: 1

}));

asm.execute_till_completion();

restore_context();

};

Figure 4.4: Sketch of a “Device driver” triggering a generic event handler se-
quence in-system. We have experimented with running in-system
code in response to input, but as of the time of writing, Boot-
strapLab’s event handlers are less sophisticated than this sketch
(see Section B.2.6).

keys are focus, map, source and next_instruction. User Interface state
is controlled via the special scene subtree of state. Each node may use
special keys like text, width, height, color, position, and children,
as well as arbitrary other keys for user data. For a full reference, see
Appendix B.

What can be changed at the user level? System state can be modified and
instructions can be executed, but only using the cumbersome capabili-
ties of the platform. In BootstrapLab, this means using the JS debugging
console to edit state (Section B.1.3) and to call a function to execute a
certain number of instructions (Section B.2.5).

4.6 implement temporary infrastructure

Use the platform to implement tools for working within the
substrate, most importantly a state viewer or editor. These
tools constitute a “ladder” that we will pull up behind us
once we have ascended to in-system implementations of
these tools.

In most cases, the base platform will provide some way of viewing
and modifying state, but this is typically inconvenient to use. The next
step in bootstrapping a self-sustainable system involves implementing
temporary infrastructure that lets us work with state more conveniently.

4.6.1 Early Computing, Squeak, and COLA

Temporary infrastructure to support in-system development can be
found in the evolution of many self-sustainable systems. A historical ex-

4.6 implement temporary infrastructure 85

ample is the Teletype loader for the Altair 8800. Here, the base platform
was the Altair hardware with its memory and native CPU instructions.
The only way to modify state in the platform was through the use of
hardware switches at the front of the computer (Figure 4.2), which
could be used to read and set values in a given range of memory.

Here, programming in-system looked like the tedious setting of switches
to poke numerical instructions to memory. To make entering programs
easier, the recommended first step when using the Altair 8800 was to
manually input instructions for a boot loader that communicated over
the serial port. When finished, this could be run to load instructions
from a paper tape. From here, programmers could write instructions
more conveniently using a Teletype terminal and have them loaded
into the Altair memory.

The history of Squeak (Ingalls et al. 1997) mentions temporary in-
frastructure via Smalltalk, such as a throwaway memory allocator:

By following this plan, facilities became available just as
they were needed. For example, the interpreter and object
memory were debugged using a temporary memory allo-
cator that had no way to reclaim garbage. However, since
the system only executed a few byte codes, it never got far
enough to run out of memory, Likewise, while the translator
was being prepared, most of the bugs in the interpreter and
object memory were found and fixed by running them in
Smalltalk.

Furthermore, Smalltalk is a programming system, famous for its in-
terface including the class/method browser. Thus it is likely that the
Squeak developers did not need to invest as much work in viewing/de-
bugging infrastructure as we would expect for most alternative plat-
forms.

In the COLA architecture, there is a four-step process, the first three of
which appear to be throwaway (Piumarta 2006, Section 6.1 ”Bootstrap-
ping”). This includes a compiler for their state model in C++. This is
aptly “jettisoned without remorse” once it has been re-implemented in
itself, though it is unclear how a state model can perform computation
(only after this do they implement the “behavioural layer”). Regard-
less, this clearly echoes the bootstrapping process for programming
languages (Section 4.2).

The problem with these steps is that they are hard to port to a context
involving structured, graphical notation and interactive system evolu-
tion. Our task is to get the system into a state where the platform, in a
sense, can be “jettisoned” in terms of our attention, even though the
platform-implemented substrate will be running in the background.

86 bootstraplab: the three properties in the web browser

Figure 4.5: The full BootstrapLab interface. From the left: graphics window,
temporary HTML state viewer, and browser developer tools. The
+/- signs in the state viewer are UI controls for expanding and
collapsing tree nodes, respectively.

4.6.2 Temporary Infrastructure in BootstrapLab

On its own, our chosen platform for BootstrapLab only has one way to
view parts of the state: issuing JS commands via the developer console
to poll a current value. This is almost as tedious as toggling switches
on the Altair. Being able to see a live view of all of the state would be a
highly useful facility early on; recall Section 1.3.1 inwhichwe praised the
browser’s Element Inspector. In this case, “Avoid Boilerplate” (Force 1)
won relative to “Escape The Platform” (Force 2); we capture this as
Heuristic 5. We implemented a tree view in the substrate based on an
existing JS library. State editing can continue to be done via the console
(see Figure 4.5).

Heuristic 5 (Platform editor). As soon as possible, use the platform
to implement a temporary state viewer and/or editor. This temporary
infrastructure will later be discarded, but given a capable enough plat-
form, it is very easy to implement. For this reason, it is valuable for
simplifying further in-system development. Again, ”Avoid Boilerplate”
(Force 1) outweighs ”Escape The Platform” (Force 2).

The JS tree view is a complex set of functionality set to work and
display in one specific way, and all control over this resides at the
substrate level. The infrastructure cannot be modified from within the
system. Therefore, we regard this situation as temporary. It is a ladder
that we climb to end up in a state where we can implement a (better)
state editor in-system. Once a suitable in-system editor exists, we can
pull up the ladder (or if you like, “jettison it without remorse”).

At this point of the bootstrapping process, BootstrapLab’s interface
consists of three sections (Figure 4.5). On the right, we have the browser

4.7 implement a high-level language 87

console, inherited through from the platform’s interface. In the middle,
we have the output of the platform’s main graphics technology, the
DOM, displaying the temporary state viewer.13 Because we have not
chosen to expose DOM control from within the system, the system only
affects this area indirectly through ordinary state changes. Finally, on
the left, we have the THREE.js-backed graphics window14, where we
will later build a state editor whose behaviour (including appearance)
will be controlled from within the system.

Ideally, we would have actually supported interactive state editing in
the temporary infrastructure, not just viewing. In our case, however, we
tolerated state editing through console commands until implementing a
state editor in terms of the left-hand graphics window (see Section 4.8).

Another example of temporary infrastructure is zoom-and-pan in
the graphics window. Working within a small box is very restrictive
if we want to use it for viewing and editing the entirety of the system
state. The finite region can be opened up into an infinite workspace by
adding the ability to pan and zoom the camera with the mouse. This
was important to have early on for BootstrapLab, so once again “Avoid
Boilerplate” (Force 1) overrode “Escape The Platform” (Force 2) and
we implemented this in JS.

What can be changed at the user level? The basic activities of viewing
or editing state should be made easier by the temporary infrastructure.
For the Altair 8800, instruction entry was improved. In Squeak, debug-
ging was made possible by a throwaway allocator. For COLA, the basic
state model was made available in the first place. For BootstrapLab, we
targeted state visibility.

4.7 implement a high-level language

The substrate’s instruction set (BL-ASM) is cumbersome, so
ensure programs can be expressed in-system via high-level
constructs. Decide how to represent expressions as struc-
tured state and whether to interpret or compile them into
BL-ASM. Ideally, develop such an engine in BL-ASM grad-
ually and interactively. Alternatively, implement it at the
platform level and later port it to BL-ASM or the high-level
language itself.

The temporary infrastructure created in the preceding step may be
enough to allow limited development in-system. However, it does not
yet provide the barely tolerable programming experience we would
need in order to feel comfortable ditching the platform. For this, an
additional step is needed.

13 Adapted from JSON Tree (https://github.com/lmenezes/json-tree).
14 Utilising THREE Mesh UI (https://github.com/felixmariotto/three-mesh-ui) for

text, on top of THREE.js itself (https://threejs.org/).

https://github.com/lmenezes/json-tree
https://github.com/felixmariotto/three-mesh-ui
https://threejs.org/

88 bootstraplab: the three properties in the web browser

To make programming in-system pleasant enough, we need a high-
level programming language that executes on top of the system sub-
strate. This means that programs and all their necessary run-time state
will be stored in the system state, while the executionwill be done either
by a compiler to the substrate’s instruction set or an interpreter.

4.7.1 Shortcuts for Low-Level Substrates

For a programming system built atop a primitive platform, such as
hardware, the temporary infrastructure may be the best tool that is
available for programming. In that case, we would write the compiler
or interpreter directly using the instruction set. However, as long as
the platform has higher capabilities or one has access to alternative
platforms, this may not be optimal. When Paul Allen and Bill Gates
wrote the famous BASIC programming language for the Altair 8800,
they did not do this on the Altair, but instead used an Intel 8080 CPU
emulator written and running on Harvard’s PDP-10. The high-level
language was thus developed outside the system.

For Squeak, there was no need to write the Smalltalk interpreter
in low-level VM bytecode when the language was already available
(Ingalls et al. 1997):

The interpreter is structured as a single class that gets trans-
lated to C along with the Object Memory and BitBlt classes.
In addition, a subclass (Interpreter Simulator) runs all the
same code fromwithin a Smalltalk environment by support-
ing basic mouse, file, and display operations. This subclass
was the basis for debugging the Squeak system into exis-
tence. (…) Having an interpreter that runs within Smalltalk
is invaluable for studying the virtual machine. Any opera-
tion can be stopped and inspected, or it can be instrumented
to gather timing profiles, exact method counts, and other
statistics.

Having an existing platform that already does everything one wants
is certainly the optimal situation to be in:

We attribute the speed with which this initial work was
accomplished to the Squeak philosophy: do everything in
Smalltalk so that each improvementmakes everything smaller,
faster, and better. It has been a pleasant revelation to work
on such low-level system facilities as real-time garbage col-
lection and FMmusic synthesis fromwithin the comfort and
convenience of the Smalltalk- language and environment.

However, wemust bear in mind that the platform fromwhich Squeak
begins is our end-goal. In our project we deliberately target the much

4.7 implement a high-level language 89

(define fac

(lambda (n)

(if (= n 0)

1

(* n (fac (decr n)))))

(fac 3)

Figure 4.6: The factorial function in Lisp, built around lists.

more difficult task of achieving our dream programming system from
a lesser starting point, and in the process uncover the general story one
can expect to re-trace in any similar project.

In COLA, it is unclear how the Lisp-like programming language is
built beyond the broad outlines. What is clear is that the bootstrapping
process is carried out by means of source code files written in some text
editor. In other words, it wisely takes advantage of the affordances of
its Unix platform (at its inter-process layer), avoiding the Turing Tarpit
failure mode described in Section 4.5.3.

4.7.2 High-Level Language for BootstrapLab

If we take JS, and strip away the concrete syntax, we get a resulting tree
structure of function definitions, object literals, and imperative state-
ments. A similar structure with similar semantics would be obtained
from other dynamic languages. In fact, this would largely resemble
Lisp S-expressions under Lisp semantics; hardly surprising consider-
ing Lisp’s famously minimal syntax of expression trees. Furthermore,
the evaluation procedure for Lisp is simple and well-established. For
these reasons, in addition to COLA’s influence, we designed a Lisp-like
tree language in the substrate. This way, we provide high-level con-
structs (if/else, loops, functions, recursion, and so on) for in-system
programming.

We call it Lisp-like because Alignment (Force 3) encouraged us to
revisit Lisp’s design to better fit with our substrate. Ordinary Lisp is
based on lists whose elements have implicit meanings based on their
positions; this aligns with its substrate made of S-expressions. How-
ever, our map-based substrate comes with named labels and suggests a
language based around maps whose entries are explicitly named, so we
called it Masp.15.

Figure 4.6 shows a Lisp definition of the factorial function followed by
a call, while Figures 4.7 and 4.8 show versions of the Masp equivalent
at different levels of notational sugar. In terms of internal representation,
the final, most verbose version in Figure 4.8 (no. 5) would be the one

15 This is not too hard to come up with, but we would like to credit the origin of the name
to (C2 Contributors 2014b) and related discussion.

90 bootstraplab: the three properties in the web browser

Figure 4.7: The factorial function in Masp, built around maps. Notational
Freedomwould allowus to presentMasp in something like the first,
heavily sugared form; the way in which the underlying expressions
are built out of maps would only become apparent after user-
configurable de-sugaring.

Figure 4.8: The final steps of de-sugaring theMasp factorial function. A techni-
cal apples-to-apples comparison with Lisp might involve the final
stage, but this would omit the ways its verbosity could bemitigated
by Notational Freedom.

4.7 implement a high-level language 91

to compare to Lisp. It contains strictly more information than the Lisp
code (explicit named arguments), but given our key goal of Notational
Freedom, this should not imply a burdensome interface. We would
prefer to interact with such programs in the first notation (Figure 4.7,
no. 1), which uses infix operators, different typefaces, and a pattern-
match construct that does not exist under that name internally.16 Yet
the underlying data structures need be no less machine-friendly than
those of Lisp, preserving the powerful metaprogramming potential
that makes it so valuable. Thanks to Notational Freedom and Explicit
Structure, there is no need to compromise one of these for the sake of
the other; there is hope to get the best of both worlds here.

A fuller description of Masp is given in Appendix D. The diagrams
here are an “artist’s impression” of a plausible notation design, but
BootstrapLab is in far too primitive a state to support this at present.
The actual rendering of Masp in the system (see Figure 4.15) is even
more verbose than no. 5, because different map entries live on sepa-
rate lines and are not inlined to save space. However, it is still worth
understanding what all this work we are doing will ultimately enable.

4.7.3 Choosing an Appropriate Implementation

What would it mean to “implement” a high-level language like Masp?
First, we have the binary choice of whether to implement an interpreter
or a compiler.Additionally, we are faced with a choice of implementation
platform. In BootstrapLab, this could be JS (i. e. the platform for Boot-
strapLab itself) or BL-ASM. Once one of these is working, we could even
choose to use Masp itself (as a self-hosting compiler or meta-circular
interpreter). Some of the possibilities could be automatically generated
from others; the six combinations fit together in a neat dependency
structure, which we can visualise using tombstone diagrams (Figure 4.9).

The key advantage of a compiler is that it can create programs and
thus save us translation work. However, at this early and crude stage
in the system, we will undoubtedly need to carefully step through the
execution of Masp code. Since the experience of debugging a Masp
program compiled to BL-ASM would be very tedious and unpleasant,
we cannot content ourselves with having a compiler alone. Moreover,
we find it strictly easier to make an interpreter, which simply executes
the effects of the code, than a compiler, where we must additionally
think about how to achieve those effects in the output language. So we
need some sort of interpreter at minimum; the question is, implemented
in which platform?

• BL-ASM would have the advantage that the interpreter exists in-
system. However, it would be difficult to write by hand, and could

16 Similarly to how we handled conditionals in BL-ASM (Section 4.5.5), if/else is a pattern
match in Masp, which is implemented as applying a map (here seen as a function
“literal”) to the value. See Section D.2.1 for more details.

92 bootstraplab: the three properties in the web browser

Figure 4.9: The six variations on ”implementing Masp” linked as tombstone
diagrams. For example, a platform compiler, running in JS, takes
Masp code as input and outputs the corresponding BL-ASM. If the
Masp code in question does the same thing as this JS, then the
platform compiler will generate an in-system compiler that runs
in BL-ASM. Interpreters can only be leaf nodes; their outputs are
immediate “effects” in the state instead of code that will achieve
the same thing.

be generated automatically at a later stage (Figure 4.9). Even if
we succeeded, it would be hard to maintain owing to the lack of
a high-level description.

• Masp itself could work, as long as we were prepared to hand-
translate it into BL-ASM or JS to bootstrap it off the ground (recall
Section 2.3.1.2). Writing in Masp would only be worthwhile if
the language were beyond the prototype stage and had decent
editing infrastructure. However, owing to its verbose structure in
the tools available to us at this early stage (i. e. our platform text
editor), this would be a mistaken choice.

• JS, unlike BL-ASM, is a high-level language. Unlike Masp, it is very
well-optimised for our existing programming tools (e. g. the text
editor). Therefore, it is the most sensible choice.

Realistically, according to the dependency structure in Figure 4.9, we
would have to begin with JS even in the unlikely case where it was hand-
compiled from Masp. Because we could better code in JS than Masp at
this early stage, we began with JS with a view towards hand-translating
to Masp at a later stage. Additionally, because we wanted to experiment
with Masp and refine it as soon as possible, we began with an interpreter
and deferred compilation to a later stage. In other words, our projected
future for BootstrapLab traces the following path through Figure 4.9:

4.7 implement a high-level language 93

1. Create a platform interpreter and experiment with Masp.

2. Depending on how long it takes for Masp to be more appealing
than JS, write either a platform compiler or a self-hosted compiler
first; then hand-translate it into the “other” language (this is the
bi-directional arrow at the bottom of Figure 4.9).

3. Run the platform compiler on the self-hosted compiler to obtain
an in-system compiler. At this point, the platform compiler could
be “jettisoned”, i. e. deleted from the substrate code.

4. Hand-translate the platform interpreter into a meta-circular inter-
preter.

5. Run the in-system compiler on the meta-circular interpreter to ob-
tain an in-system interpreter. At this point, the platform interpreter
could also be jettisoned.

This is the “bootstrapping” process for languages (Section 2.3.1.2)
applied in the explicitly-structured world of BootstrapLab. While this
does not yet resemble “scuplting” the Masp language bit-by-bit, it does
lay a foundation to get there; perhaps the size of the cycle could be
shrunk from “entire Masp program” down to individual expressions.

One such way to make the process more incremental is by treating
State andChange separately.When implementing a processor (bywhich
we abbreviate “interpreter or compiler”) in-system, all its internal state
will also be stored in-system. However, state can still live in-system even
if the processor’s code lives on the platform. This takes advantage of the
platform’s high-level language for code while leveraging the product
system for debugging and visualisation of state. In this way, a later port
to in-system implementation is simplified, because half of it (the state)
is done already.

The transition fromplatform to in-system implementation can be even
more gradual; once the internal state is stored in-system, it becomes
possible to port parts of the interpreter code piecemeal to in-system
instructions, invoking them from the remaining parts running outside.
We codify this as Heuristic 6:

Heuristic 6 (In-state operation). Store high-level-language processing
state in-system, even if the language processor code remains running on
the platform. This will ease porting the processor to in-system imple-
mentation and support a gradual transition (”Escape The Platform”,
Force 2).

4.7.4 Implementing Masp for BootstrapLab

To summarise the above logic, “Escape The Platform” (Force 2) encour-
aged us to start executingMasp expressions early to get experience with

94 bootstraplab: the three properties in the web browser

Figure 4.10: The expr part of the Masp context contains the current expression
being evaluated. This represents the initial state for applying the
factorial function with parameter n bound to 1.

the language. We chose to implement a platform interpreter for Masp
using JS as this was the easiest way to achieve that.

A naïve approach would simply implement the standard Lisp inter-
preter routines (eval and apply) as recursive JS functions. However,
this would miss an opportunity for visualisation and debugging that is
already present in our substrate. Instead, we followed Heuristic 6 and
had intermediate interpreter state reside in-system. This made a later
in-system port easier by doing half of the work now.

Lisp evaluation is done by walking over the expression tree. At any
point, we are looking at a subtree and will evaluate it until reaching
a primitive value. Ordinarily, the “current subexpression” is an argu-
ment to eval at the top of the stack, where the stack records our path
from the original top-level expression. Since we already had a tree vi-
sualisation, we used that instead of a stack. We did, however, need to
maintain references to parent tree nodes (see Section C.3) in order to
backtrack towards the next unevaluated subexpression once the current
one has been evaluated. Furthermore, instead of destructively replac-
ing tree nodes with their “more-evaluated” versions, we “annotate”
the tree instead. This design choice follows Subtext (Edwards 2005),
making it possible to trace provenance and enable novel programming
experiences. Figures 4.10–4.13 show some examples. For further details,
see Section D.2.

What can be changed at the user level?Depending on the particular path
taken through Figure 4.9, the semantics of the language may or may not
(yet) be modifiable from the user level. The user is almost able to use
the high-level language in-system for convenient programming … but
may be unable to enter the expressions conveniently in the first place.
This matter will be addressed shortly.

4.8 pay off outstanding substrate debt

Port all remaining temporary infrastructure into the system,
taking advantage of the infrastructure itself and the high-
level language. The result is a self-sustainable programming
system.

If we had developed both the state editor and the high-level pro-
gramming language in-system, we would already have an elementary

4.8 pay off outstanding substrate debt 95

Figure 4.11: After some evaluation steps, both the original expression (the
name fac) and its value (its function closure) are visible. Similarly,
the literal expression 1 has evaluated to itself. Part of Figure 4.7 has
been included to help deceipher the verbose notation displayed
by the state view.

Figure 4.12: The next step of evaluation, read as: “To the value 1 (which came
from the expression n), apply this function literal in an environ-
ment where n is bound to 1”.

96 bootstraplab: the three properties in the web browser

Figure 4.13: Some steps later,we have an application of a built-inmultiplication
function whose JS code is visible (see Section D.2.2.2 for how JS
primitives work). The second operand is an as-yet unevaluated
recursive application of fac.

self-sustainable system at this point. This would have been our only
option if we had been somehow stuck with only a primitive platform,
as was the case at the dawn of computing in the 1940s. With a richer
platform available, one can choose to implement a state viewer, edi-
tor and high-level programming language on it following Heuristic 5.
Since these will now run outside of the product system, they will be
functionally part of the substrate—yet they do not belong there. This
substrate debt, incurred due to “Escape The Platform” (Force 2), now
needs to be paid off.

4.8.1 Substrate Debt in Squeak

The closest analogue of this concept that we can see in Squeak is in
the difference between its development and deployment platforms.
Unlike our BootstrapLab, Squeak was not developed in its deployment
platform; all the “hard” work was done taking advantage of Smalltalk.
Thus, the main “debt” to pay off was to port it all to C, which was
accommplished by automatic translation (Ingalls et al. 1997):

Compile the interpreter to make it practical:
• Design a translator from a subset of Smalltalk-80 to C.
• Implement this translator.
• Translate the virtual machine to C and compile it.
• Write a small C interface to the Mac OS.
• Run the compiled interpreter with the new image.

In our case, unlike Squeak, there is no need for any such compila-
tion to JS; our development and deployment platforms are the same.

4.8 pay off outstanding substrate debt 97

However, JS was not nearly as full-featured as Smalltalk, which meant
we accumulated a different type of substrate debt via the temporary
infrastructure we had to build.

Squeak exemplifies the ideal development journey, quickly and straight-
forwardly ending up with a self-sustainable system:

It was easy to stay motivated, because the virtual machine,
running inside Apple Smalltalk, was actually simulating
the byte codes of the transformed image just five weeks
into the project. A week later, we could type “3 + 4” on
the screen, compile it, and print the result, and the week
after that the entire user interface was working, albeit in
slow motion. We were writing the C translator in parallel
on a commercial Smalltalk, and by the eighth week, the first
translated interpreter displayed a window on the screen.
Ten weeks into the project, we “crossed the bridge” and
were able to use Squeak to evolve itself, no longer needing
to port images forward from Apple Smalltalk. About six
weeks later, Squeak’s performance had improved to the
point that it could simulate its own interpreter and run the
C translator, and Squeak became entirely self-supporting.

4.8.2 Substrate Debt in BootstrapLab

In such an ideal development journey, we would have a high-level
programming language and a basic state editor in-system by now. This
did not happen for BootstrapLab.

The Masp interpreter we developed used in-system state, but con-
trolled it from JS. Our state viewer was also fully implemented in JS.
Editing took place through the browser development console. The al-
ternative, creating a Masp interpreter and state editor in-system using
the low-level BL-ASM instructions, had been technically possible but
prohibitively tedious. The in-system tooling was far from supplanting
the existing platform interface of JS in the text editor. Continuing to use
the latter was, therefore, the only sensible choice to make progress.

Nevertheless, to make the high-level language and editor part of
a self-sustainable programming system, they ultimately need to be
implemented in-system. Thus we incurred a substrate debt which we
owe to “Escape The Platform” (Force 2) and now need to pay off. The
advantage of delaying this work and ending up with Masp is that we
can at least port JS to Masp, which is more convenient than porting to
BL-ASM (recall Figure 4.9). Generally, such substrate debt should be
paid off as soon as the indebted implementation is complete. In total,
we had three parts of it to pay off:

1. Replace the temporary JS state viewer with an in-system JS state
editor

98 bootstraplab: the three properties in the web browser

Platform: Web, JS

Substrate: JS code

Product: BootstrapLab

In-system

Masp Interpreter, State Editor

Platform: Web, JS

Substrate: JS code

Product: BootstrapLab

In-system

Masp Interpreter, State Editor

BootstrapLab At Present: Ideal BootstrapLab:

Figure 4.14: The Masp interpreter and state editor currently live in the sub-
strate, but they belong in the product system. This is substrate debt.

2. Port this JS state editor to Masp

3. Port the Masp interpreter from JS to BL-ASM

In BootstrapLab, we split the task of supplanting the temporary state
viewer into two halves. We first replaced the temporary viewer, which
exists fully outside of the system, with an editor that uses in-system
state and graphics, but is controlled from JS (recall Heuristic 6).We then
started to port the editor code from the platform to in-system Masp,
which is where we are at the time of writing. Figure 4.14 shows the
situation in terms of platform/substrate/product.

4.8.3 Supplanting the Temporary State Viewer

Once we could run Masp programs in the substrate, we needed a better
way of entering and editing them. We desired a state editor in the
graphics window to make the existing state view obsolete. Considering
the proof-of-concept nature of this work, we created a rudimentary
tree editor that nevertheless surpassed the existing practice of issuing
commands in the JS console.

To edit state in JS, we needed to either address its parent with a full
path from the top level, or to use a reference previously obtained this
way. To set a primitive value, wewould type a JS command including the
key name and the value. For example, the following console command
could be issued to make a shape red:

upd(ctx, 'scene', 'shapes', 'children',

'yellow_shape', 'color', '0xff0000')

This was not a high bar to clear. Evidently, we could greatly improve
the experience by simply clicking on the relevant key name and typing.

We implemented a basic tree view in the graphics window (Fig-
ure 4.15). Nodes can be expanded and collapsed, and entries can be
changed by clicking and typing. The display is “on-demand” and
breadth-first: map entries are read upon expanding a node. This means

4.8 pay off outstanding substrate debt 99

Figure 4.15: Left: tree editor in graphicswindow. Right: temporary state viewer
in the DOM. The +/- controls for expanding and collapsing nodes
are not present in the editor, but these operations can still be
performed by double-clicking.

that cycles in our graph substrate do not pose a fatal problem, as they
did in the temporary state view (see Section C.3). The basic CRUD
operations are accounted for as follows:

• Update (primitive): The Tab key commits the value and selects
the next entry.

• Create: If the above runs past the end of the map, special “new
entry” fields for entering a new key and value are created. These
disappear if abandoned without committing.

• Update (composite): Enter commits a new, emptymap and selects
the “new entry” field within it.

• Delete: Backspace on an empty value will delete the entry. If it
was the only entry, it will be replaced with the “new entry” field.

• Read: The display of the entry in the graphics window provides
this.

It is worth noting that Alignment (Force 3) applies here too: the
structure of the substrate clearly has implications for the structure of
the editing interface. If our substrate consisted of low-level bytes, the
traditional hex editor interface would be an immediate requirement.

100 bootstraplab: the three properties in the web browser

Such an interface could plausibly be simpler to implement than the
complex nested tree editing we needed for BootstrapLab. This suggests
a potential feedback into the choice of substrate: a more complex substrate
will require a more complex editor.

Wemight even be tempted to conclude that it only makes sense to use
a low-level substrate, since we can complete a basic editor sooner and
subsequently work in-system. This neglects the fact, however, that the
higher-level structures of our substrate would inevitably be required
at some point. Thus we would have to do the same work anyway, but
only once we had suffered through the human-unfriendly low-level
substrate.

It is also remarkable that, in this restricted interaction domain, we
finally did manage to surpass our default JS text editor. There is a cost to
typing out concrete syntax like : and {} for JS map structures, as well as
ensuring indentation is correct.17 For entering state structures, we found
the structured editing style to be quicker. As a result, where previously
we might have added new persistent state in our JS startup code, we
now directly entered it into the system and persisted it manually.

There is a caveat to all this. The whole exercise was in the service
of paying our substrate debt from earlier—pulling up the state viewer
“ladder” that had got us to this point. Ideally, we would have built
up its replacement in-system. Yet as pointed out, JS was still the most
appealing way to program at this stage, so we used it for this editor as
well. In other words, we took on a new debt in order to pay off the first
one! To resolve it, we would port the JS to Masp—a process which is
underway at the time of writing for both the Masp interpreter and the
state editor.

In general, at the end of this stage the substrate should not contain
anything that we wanted to be modifiable in-system. Thus:
What can be changed at the user level? The structural “syntax” and

semantics of the high-level language can be changed. The graphical
interface of the system can also be changed, including the concrete
notation for programs and data, which we turn to next.

4.9 provide for domain-specific notations

Use the self-sustaining state editor to construct a more con-
venient interface for editing high-level expressions. Add
novel notations and interfaces as needed. Use these not just
for programming new end-user applications, but also to
improve the product system itself.

Because BootstrapLab is currently in the middle of the previous stage,
this section describes our plans for when this is complete. At such a

17 Although JS will run fine with or without indentations, source code is meant for human
eyes—and ours regarded proper indentation as a requirement for legibility.

4.9 provide for domain-specific notations 101

point in the journey, the editor implementation would now be part of
the product system, so we could modify it from within to our heart’s
content.

We admitted earlier how, in BootstrapLab, we had not managed to
bring the system interface up to a level where it became more effec-
tive than JS. With the implementation of a state editor, we came closer.
Indeed, for entering general state structures, it is not obvious how to
improve on it. Yet when it comes specifically to Masp expression struc-
tures, we must enter their verbose details even though they are highly
regular and could be captured through fewer interactions. If we stream-
line this subdomain of the BootstrapLab interface, it would make Masp
programming just as convenient as typing JS, if not more so—and we
could finally escape the text editor entirely.

4.9.1 A Taster

First, we propose a restricted proof-of-concept of notational variation
from within the system. We choose to target a small part of the prob-
lem: the Masp apply node, a frequent enough occurence that a small
improvement will be helpful.

In the general state editor, one must type each of these key-value
pairs for a function application:

apply: setColor

red: 11

green: 22

blue: 33

Instead, we desire something like autocomplete for parameters. In-
stead of typing apply, we press a and enter setColor. Subsequent tab-
bing should fill in the parameter names automatically and let us type
the arguments. Furthermore, as a small notational difference we will
omit the word apply:

setColor

red: _

green: _

blue: _

The underscores represent unfilled fields right after this structure
gets created.

To reprogram the editor to work like this, we would do the following
from within the editor. Navigate to the Masp code structures for the
editor that synthesise the graphics structures to display a given state
node. Enter Masp code that checks for the key apply in the given node
and, if present, only renders the value of the key instead of the key

102 bootstraplab: the three properties in the web browser

itself.18 Then, navigate to the code that handles key input. Add code
that, when a is pressed, will insert a new map containing the apply key,
render this to the graphics, and send text input to its value text box.
Finally, navigate to the code that commits an entry on a Tab keypress.
Change this to detect if it is for an apply key and, if so, to look up
the symbol in the value node and treat it as a Masp function closure.
For each entry in the arg_names field, add an entry to the map with
a dummy value, render this to graphics, and then proceed with the
default behaviour (highlight the next entry in the map). Depending
on the precise implementation, it may be the case that only subsequent
edits will be rendered this way. Otherwise, care may be necessary to
refresh and re-render the entire editor state.

4.9.2 A More Ambitious Novel Interface

The above “taster” is a simple example of an interface that could be
plausibly implemented early in BootstrapLab’s self-sustaining lifetime.
Beyond this, it points to a more general class of extensions which would
support projectional editing. Projectional editors (Steimann et al. 2017)
are a class of programming interfaces that provide domain-specific
interfaces for certain program subexpressions, such as LATEX-style math-
ematical expressions to replace ASCII renderings (recall Section 3.3.2.3).
We would do well to import such ideas into BootstrapLab. We proceed
to sketch how such an interface would be added to the system, and
how its ramifications are different from ordinary non-self-sustainable
projectional editors.

As an example, suppose we want to program some fancy graphics.
Fancy graphics require sophisticated vector mathematical formulae. In
textual programming languages, these are expressed as ASCII with
limited infix notation. The Gezira/Nile project (Amelang 2012a,b) at-
tempted to improve on this with Unicode mathematical syntax. An
extreme endpoint would be LATEX. All we have at the moment is some-
thing worse than all of these: verbose, explicit tree views spanning
multiple lines.

We think ahead with a view towards making the fancy graphics
programming more pleasant. Suppose we decide that we would ideally
like to implement them with the aid of concise mathematical notation,
as opposed to our current state of verbose trees. How could we achieve
this?

The broad approach would be similar to our previous taster example.
Wewould have to start, again, at the code that renders state into graphics.
Add a condition that checks for a math key, which we would use as a tag
to hint at this display preference. Enter code to translate operator names

18 Admittedly, this will display all structures with an apply key this way, but further
discretion is just as achievable with further programming. The point is that this can be
changed at the user level.

4.9 provide for domain-specific notations 103

to Unicode symbols, place them at infix positions, place parentheses
appropriately, and render thewhole thing to a single line in the tree view
(ideally keeping the tree structure of the expressions in the graphics
state). Then, modify the input handling and tree navigation code to
appropriately work on this inline tree structure. And so on.

The above points are, of course, a high-level sketch, but it is program-
ming all the same and is plausible to achieve with a high-level language.
Techniques from the literature would be helpful, such as Hazel’s calcu-
lus for editing structures with holes (Omar et al. 2019), or bi-directional
synchronisation between the rendered graphics and the state’s ground
truth (Hempel et al. 2019).

4.9.3 Real Example: Colour Preview

While the above speculation has value, it is only fair that we show a real
example. As a very modest proof-of-concept: instead of a hex string for
colours, let us see a rectangle with that colour instead.

Some Masp code (Figure 4.16) lives under the global register called
render_map_entry. It is invoked from the JS function for rendering map
entries in the tree editor. It checks if a map entry is named “color”,
and if so, returns an appropriately coloured box with a grey border.
Figure 4.17 shows the difference.

These results so far could have been achieved without going to the
trouble of implementing the hook in Masp. JS would have sufficed.
However, having this code in Masp lets us do something not possible
with the equivalent JS. The system has access to the explicitly structured
Masp code and can choose how to display it.

As this Masp code is evaluated on its own source tree, it encounters
the hex constant 0xaaaaaa representing the grey border and displays
this with the very notation it implements. See Figure 4.18 for the differ-
ence. This is a minimal demonstration of Innovation Feedback (Sec-
tion 3.3.1.5): there is no artificial barrier to innovations (in this case,
displaying colour previews) applying to their own implementation
code.

The major caveat is that, unlike the hex strings, this new notation
is read-only. If we try to use the tree editor on this entry, it will most
likely break; we would have to revert back to the old notation in order to
change the colour. The obvious next step would be to go from notation
to more of an interface; to turn the colour preview into a colour picker and
ensure the tree editor is not fragile with respect to it. However, this was
not necessary to demonstrate our main point that Innovation Feedback
is now feasible.

104 bootstraplab: the three properties in the web browser

Figure 4.16: This Masp code checks if a map entry is named “color”. If so, it
returns an appropriately coloured box with a grey border. Oth-
erwise, it returns the string unhandled. The left is how we would
prefer to read it; the right is slightly tidier than what is actually
visible in the state viewer.

Figure 4.17: Before (left) and after (right) activating theMasp rendering hook.

4.9 provide for domain-specific notations 105

Figure 4.18: The grey colour constant displays as the hex string 0xaaaaaa in
the right-hand HTML tree view. However, in the left-hand tree
editor, this code runs on its own source representation, turning
the colour constant into a grey box instead. This is a minimal
example of Innovation Feedback.

106 bootstraplab: the three properties in the web browser

4.9.4 The Key Takeaway

In the non-self-sustainable world, a projectional editor is implemented
in some traditional programming language and interface; say, Java.
The domain-specific notations can benefit a wide variety of programs
created using the editor. Yet, this range of beneficiaries nevertheless
forms a “light cone” emanating out from the editor, never including
the editor itself. For example, any vector formulae used to render the
interface of the editor will remain as verbose Java expressions, along
with any code for new additions to the editor. The tragedy of non-
self-sustainable programming is that it can never benefit from its own
innovations.

Conversely, in BootstrapLab, the benefits of the new notation spread
across the whole system; the “light cone” includes the editor implemen-
tation itself. If we previously had to squint and parse verbose maths
trees in the implementation of the maths rendering, we could now open
up the code again and see it rendered in the more readable way that it
itself implements!

In COLA, notational variation appears to be limited to variation in
concrete syntax. Our uncompromising insistence on explicit, non-parsed
structure at the core of BootstrapLab, while costly in terms of interface
implementation, was precisely in order to be free of such a restriction
in the end. While one could implement a multiline text field with syntax
highlighting in BootstrapLab, it is at least crystal-clear that a vast array
of other interfaces are possible, unimpeded by any privileging of text
strings.

4.10 situation, task, user, importance

At this point, it would be nice to be able to evaluate BootstrapLab as a
programming system, particularly with regard to our official desiderata
of embodying the Three Properties. However, they were novel concepts
that we introduced earlier in the dissertation, and the task of evaluating
programming systems in general is a novel and uncertain area (Edwards
et al. 2019a). In the worst-case scenario, we might be tempted to write
a long verbal argument along the lines of “on the one hand, we have
Notational Freedom in this sense, but not in that sense…” but this would
be rather anticlimactic. Fortunately, we developed a more systematic
means to evaluate BootstrapLab and systems more generally, but its
size means it must constitute the next chapter.

Still, as a stop-gap, we turn to an existing methodology that can let
us summarise what we have done while indicating the specific points
on which it could be judged. We close this chapter with a description
of BootstrapLab expressed in the STUI (Situation, Task, User, Impor-
tance) framework of Olsen (2007), summarised by Hempel (2018). The
premise is that a system is aimed at some audience of Users performing

4.10 situation, task, user, importance 107

some set of Tasks in certain Situations. The system claims to address
some problem of Importance related to these areas of attention. Different
types of claims are codified with names in the framework, for example
“Problem Not Previously Solved” (targeting a novel STU context) or
“Empowering New Participants” (expanding the set of Users).

It is worth separately applying this approach to (a) BootstrapLab
itself, (b) the technique we have presented as a sequence of steps, and
(c) the “ideal BootstrapLab” that we would develop with more time
and resources.

Firstly, BootstrapLab itself is made to help the author (User) discover
how to interactively achieve self-sustainability and explore its effects
(Task) for research (Situation). The claim to Importance is that such a
system did not previously exist (Problem Not Previously Solved).

The techniquewas developed to help individual programmers (User)
escape the limitations of their go-to programming environments for
general programming tasks (Task) where they are able and willing to
put in this investment (Situation). Such an investment of time and work
may not be possible or appropriate in some situations. However, we see
it as existing on the same continuum of existing programming invest-
ments, such aswriting a utility function or library to ultimately pay itself
off in productivity gains. This contribution falls under “Generality”,
applying to all sorts of programming systems taken as the platform. It
also qualifies for “Empowering New Participants” in the sense that the
benefits of the Three Properties (especially Self-Sustainability) need
no longer be confined to specific programming systems like Smalltalk;
one ought to be able to have them “bolted on” to one’s own preferred
platform.

Finally, the “ideal BootstrapLab” would be an example of this process
applied to our preferred platform, the Web browser (User, Situation). It
would function as a Smalltalk-like “personal dynamicmedium” for both
exploring problem spaces and implementing solutions (Task), but one
that neatly slots into our familiar programming practices (e. g. does not
require installing and learning Smalltalk). While it is necessarily lifted
up by programmers, the availability of mood-specific notations could
make it of use to non-programmers (Empowering New Participants).

While the STUI structure is helpful for summarising what we have
done, it is quite broad and does not include the Three Properties that
we intended BootstrapLab to embody. As promised, our remaining task
in this dissertation is to examine this issue of evaluating BootstrapLab
and programming systems more generally.

5
TECHNICAL D IMENS IONS OF PROGRAMMING
SYSTEMS

We introduced the concept of a programming system in Section 2.1. Not
only is such a concept necessary for framing ourwork inChapter 4, there
is also a growing interest in programming systems in both research
and industry. Yet while programming languages are a well-established
concept, analysed and compared with a common vocabulary, no similar
foundation exists for the wider range of programming systems. In this
chapter,1 we will examine this problem and propose a framework of
“Technical Dimensions” to kickstart systematic research on program-
ming systems. We will then make our Three Properties (Section 1.5)
more precise as sets of dimensions under this framework. We will then
use these dimensions to assess how BootstrapLab fulfils the Three Prop-
erties and evaluate it on that basis.2

5.1 barriers to programming systems research

Researchers are studying topics such as programming experience and live
programming that require considering not just the language, but further
aspects of a given system (as evidenced by workshops dedicated to
these topics: LIVE (2023) and PX (2023)). At the same time, compa-
nies are building new programming environments like Replit (repl.it
2022) or “low-code” tools like Dark (Dark Language Team 2022) and
Glide (Glide 2022).

However, the academic research on programming suffers from a lack
of common vocabulary. While we may thoroughly assess programming
languages, as soon as we add interaction or graphics into the picture,
evaluation beyond subjective “coolness” becomes fraught with diffi-
culty.3 Comparisons make the most sense when comparing “like for

1 Adapted from our paper for Programming 2023 (Jakubovic et al. 2023), which grew
out of an earlier proposal (Jakubovic 2020a).

2 It might seem appropriate to also perform an evaluation via the Cognitive Dimensions
of Notation (Green and Petre 1996). However, this would not actually tell us anything
interesting; the novel contribution of this system is not its notation. The interface is
minimal and unpolished for reasons of expediency. The point is not that we have
come up with a new notation or UI that will improve programming; the notation is
something that each user should fit to themselves according to subjective preference.
The important goal is that the system supports the usage of different notations for
different contexts. Notations in BootstrapLab should be a free parameter, so it does
not make sense to apply Cognitive Dimensions to BootstrapLab itself, and it does not
provide any value to analyse the placeholder interface in this way.

3 The same difficulty in the context of user interface systems has been analysed by Olsen
(2007). Interesting future work would be a detailed analysis of publications on pro-

109

110 technical dimensions of programming systems

like”, yet graphical programming systems may be so varied that it is un-
clear what the stable points of comparison should be. Moreover, when
designing new systems, inspiration is often drawn from the same few
standalone sources of ideas. These might be influential past systems
like Smalltalk, programmable end-user applications like spreadsheets,
or motivational illustrations like those of Victor (2012).

Instead of forming a solid body of work, the ideas that emerge are
difficult to relate to each other. The research methods used to study
programming systems, as we defined them in Definition 9 lack the
rigorous structure of programming language research methods. They
tend to rely on singleton examples, which demonstrate their author’s
ideas, but are inadequate methods for comparing new ideas with the
work of others. This makes it hard to build on top and thereby advance
the state of the art.

Studying programming systems is not merely about taking a program-
ming language and looking at the tools that surround it. It presents
a paradigm shift (Kuhn 1970) to a perspective that is incommensurable
with that of languages. When studying programming languages, what
matters is in the program code; when studying programming systems,
what matters is in the behaviour of the system. As documented by
Gabriel (2012), looking at a system from a language perspective makes it
impossible to think about concepts that arise from interaction with a
system which are not reflected in the language.

5.2 our proposal

We propose a common language as an initial step towardsmore progres-
sive research on programming systems. Our set of technical dimensions
seeks to break down the holistic view of systems along various spe-
cific “axes”. The dimensions identify a range of possible design choices,
characterised by two extreme points in the design space. They are not
fully quantitative, but they do allow comparison by locating systems
on a common axis. We do not intend for the extreme points to repre-
sent “good” or “bad” designs; we expect any position to be a result of
design trade-offs. At this early stage in the life of such a framework, we
encourage agreement on descriptions of systems first in order to settle
any normative judgements later.

The set of dimensions can be understood as a map of the design
space of programming systems. Past and present systems will serve as
landmarks, and with enough of them, we may reveal unexplored or
overlooked possibilities. In the absence of such a map, the field has not

gramming systems to understand this issue in depth. One notable characteristic is
that publications tend to present (parts of) new systems. This is the case for 5/6 and
6/7 papers in the LIVE 2020 and 2021 workshops respectively (Hempel and Lau
2021; Hempel and Perera 2020). In contrast, publications in the field of programming
languages often address specific issues of interest to a greater number of languages.

5.3 dimensions, qualitative and quantitative 111

been able to establish a virtuous cycle of feedback; it is hard for practi-
tioners to situate their work in the context of others’ so that subsequent
work can improve on it. Our aim is to provide foundations for the study
of programming systems that would allow such development.

In short, while there is a theory for programming languages, pro-
gramming systems deserve a theory too (Jakubovic 2020a). It should
apply from the vast scale of operating systems to the comparatively
small scale of language implementations. It should be possible to anal-
yse the common and unique features of different systems, to reveal
new possibilities, and to build on past work in an effective manner.
In Kuhnian terms (Kuhn 1970), it should enable a body of “normal
science”: filling in the map of the space of possible systems , thereby
forming a knowledge repository for future designers.

We will develop self-sustainability, notational freedom, and explicit struc-
ture as Technical Dimensions, following on from the discussion in Sec-
tion 3.3. For each one, we will give examples that illustrate the range
of values it spans. Then we will apply them to BootstrapLab. The rest
of our extensive catalogue of dimensions can be found in Appendix E,
organised into related clusters: interaction, notation, conceptual structure,
customisability, complexity, errors, and adoptability.

5.3 dimensions, qualitative and quantitative

There is a problem where the most easily measurable properties are not
necessarily very interesting, while the interesting properties are not
straightforwardly measurable. We have discussed our Three Properties
intuitively and qualitatively in Chapters 2 and 3. However, as they
stand there is too much ambiguity for anything resembling an objective,
plausible consensus on how much they are present in a given system.
Therefore, in the next section we will break them down into narrower
dimensions that we can apply for evaluating BootstrapLab. A few of
these will be boolean (asking whether something is possible or present
in a system) but most will be quantitative penalty dimensions. This
means that maximising the value of one of our Three Properties (e. g.
Self-Sustainability)will correspond tominimising its constituent penalty
dimensions.

5.3.1 How We Define and Apply the Dimensions

We say a penalty dimension is “quantitative” in that its definition intu-
itively describes an amount of which there can be more or less, even
if we leave the question of how to actually measure it numerically as
future work. We do not have the scope to compare the various ways
these quantities could be defined for measurement, and it would be
misguided to pick one simply for the sake of having numbers. Where a
relevant quantity does already exist (e. g. lines of code) wemay propose

112 technical dimensions of programming systems

it as a measure for the dimension. Otherwise, we will use a variation on
the Likert scale used in psychology (Likert 1932). Instead of “strongly
agree” to “strongly disagree”, we will assign the scores “minimal”,
“low”, “moderate”, “high” and “infinite”.

With such a scale, it would be possible to rigorouslymeasure a system
against the dimensions by means of a questionnaire and analysing the
distribution of responses (expecting consensus around a single score,
and perhaps re-working the dimensions for which this is not the case).
However, such an approach is beyond the scope of this work. Instead,
whenwe apply these dimensions to evaluate BootstrapLab in Section 5.5,
we will give our own personal assessment of each score along with its
justification. We think that the narrow focus of the dimensions makes it
likely that such judgements would be aligned with those of the reader.
Even in the case of serious disagreement, this narrow focus wouldmake
it easier to productively reach agreement in a way that would be much
harder for the complex, qualitative definitions of the Three Properties
from which they derive (Section 3.3). Therefore, while we agree that
giving our personal assessment in terms of the Three Properties directly
would be hard to judge objectively, we believe that doing so on the finer
scale of the dimensions is appropriate. Further discussion of these issues
and suggestions for future work will be found in Section 7.1.

5.3.2 Aggregation and Simplification

It is worth noting that even once we have broken down a high-level
concept into several low-level dimensions, the high-level concept can
still be considered a dimension if we define some suitable aggregation of
the scores of its constituent dimensions (this could be a simple sum, a
weighted average, or something more sophisticated). We will not prac-
tice this, but it is worth keeping in mind as we encounter complications
and decide how to respond to them.

For example, it might be objected that a dimension cannot simply
apply to a system as a whole, but actually takes different scores for
different parts of a system. We can answer this objection with an in-
terpretation of the dimension as precisely such an aggregate of its
application across different parts of the system. Ultimately, program-
ming systems are complex and any property we speak of may apply
at multiple levels. For practical purposes including those of our eval-
uation of BootstrapLab, we must make simplifications and apply our
dimensions to an entire system as best we can. Later in Section 7.1, we
will return to the complexities we have elided here.

5.4 the three properties as dimensions 113

5.4 the three properties as dimensions

We will now proceed to break down each of our Three Properties into
dimensions (or, in the boolean case, “criteria”, but we will stick to the
general term).

5.4.1 Dimensions Constituting Self-Sustainability

In light of the points in Section 3.3.1, we can discover some key dimen-
sions of self-sustainability with the help of an existing programming
system that is not self-sustainable. Using the terminology from Sec-
tion 3.3.1.3, let us cast the Web browser as the product system (i. e. that
which we wish to make self-sustainable) and C++ as the platform (i. e.
the system we use to implement the product). What would it take to
make the browser self-sustainable?

5.4.1.1 Minimise The Substrate Size

Recall from Section 3.3.1.4 that the substrate is the portion of the prod-
uct system not accessible from its user level. In the case of the web
browser, it is the C++ code constituting its implementation. To get a
self-sustainable system, the substrate must be minimised by shifting
implementation out of it and into the programming capabilities of the
product system. In this case, most of the named entities in the C++
code are stuck at the implementation level, inaccessible at the user level
of JS, so we must move the former into the latter.

To sketch how this process could be carried out systematically, we
can begin with the graphical surface of the product system. For each
graphical element, we inquire into the causes of its display; this will in-
clude graphical rendering code, but also the data that is being rendered
and the code that generated it. By tracing backwards in this way we
discover the web of causes that produced the shape on the screen. This
will often go through the user level (JS), but if we keep tracing back, we
will hit the implementation level. Each time this happens, we port the
code from the implementation level to the user level.

We continue this until it is no longer feasible; for example, there
will ultimately have to be some native machine-code interpreter for JS
in the running system. In practice, there would need to be the usual
investments in JIT compilation and optimisation technology as seen in
VMs for Smalltalk and other languages.

These ideas suggest a dimension of substrate size as a penalty for self-
sustainability. In other words, a self-sustainable system minimises this
dimension. We already compared the strategies of doing this minimisa-
tion earlier or later in Section 4.5.3. A reasonable measure of substrate

114 technical dimensions of programming systems

size does exist as the number of lines of code4 that implement it, so we
will use this measure in our evaluations later.

5.4.1.2 Minimise Persistence Effort to Fix “Delete By Default”

As we discussed from Section 3.2.1.1 onward, the activities of a running
process under Unix are considered disposable. In order for a system
to be self-sustainable, it has to be able to preserve developments of its
state through process termination. The standard VM solution is to have
most of the system state saved in an “image” file and concentrate the
substrate in a runnable binary that need not be changed. However this is
accomplished, persistence of run-time changes is necessary to encourage
indefinite evolution of the system. This applies to the whole browser,
but could also be a concern for individual tabs or web pages that can
be closed or refreshed.

This suggests another penalty dimension of persistence effort. To illus-
trate the range of values, we offer the following examples:

• Any system which automatically persists to an “image” (Lisp,
Smalltalk) or otherwise (Webstrates; Klokmose et al. 2015) causes
minimal persistence effort on the part of the user.5

• A systemwith amanual “save” button that persists all state would
have almost-minimal persistence effort. This comprises both the
need to remember to save and the act of pressing the button.

• A system where one must repeat a manual procedure over dif-
ferent parts of the state to persist all of it would have moderate
persistence effort.

• A typical programming language in a “vanilla” state (e. g. ex-
cluding third-party libraries) has high persistence effort for its
runtime data structures, owing to the “Delete By Default” policy
of the Unix Paradigm (Section 3.2.2). With the use of a specific
third-party library or framework (such as an Object-Relational
Mapper) this persistence effort may be reduced. In the absence
of such a framework, the programmer would have a lot of work
to do in order to persist all state (wrap every variable and stack
frame in code for loading and saving its value).

• We could ascribe infinite6 persistence effort where it is impossible
to persist state. This is easier to imagine in the case of an end-user

4 Under realistic conditions, it matters less whether these are “significant” lines of code
or contain whitespace and comments, than that this convention is consistent between
two systems being so compared.

5 Arguably, this effort is zero, since the user does not have to think about it. However, we
will stick to the term “minimal” for consistency with our stated scoring terminology.

6 An infinite score can be interpreted as saying: it would take less effort to duplicate
the source code of the system and add persistence at its implementation level, than it
would to persist state using user-level functionality.

5.4 the three properties as dimensions 115

application with no scripting capability; if the developers failed to
persist something (e. g. the position or sizing of a window) then
the user cannot do anything about it. In the case of a programming
system, hard barriers to persistence include inaccessible state (e. g.
in JS, one cannot refer to stack frames or read their state) or a lack
of enumerability (e. g. there is no way to traverse all objects in the
system and thereby persist them).

It may be objected that this measure should be considered on a piece-
meal basis per piece of state instead of on the system as a whole. For
example, a system could have infinite persistence effort with respect to
some state (e. g. stack frames; Basman et al. 2016) but low persistence
effort with respect to everything else (this being the effort invested to set
up an Object-Relational Mapper for the rest of the state). As mentioned
in Section 5.3.2, given such a fine-grained application of this measure
and a method of weighting each contribution, we could derive a con-
venient aggregate measure of persistence effort for the whole system.
However, this is too complicated for the scope of our work here, so we
will give an overall impression of the property without systematically
going into finer detail.

5.4.1.3 Support Code Viewing and Editing

The browser’s JS console makes it possible to make some changes ex-
pressible as JS commands, modulo the caveats in Section 1.3.1; these
would need mitigating. The source code can be viewed but not edited;
we would need to make a small change so that the source code viewer
could also be used tomake persistent edits to code. These points suggest
boolean dimensions of code viewing and code editing. An example of a
system that has both is Smalltalk with its class browser.

5.4.1.4 Support the Manipulation of Code as Data

Once we can type text inside the system, we will be able to write code.
However, this code will be inert unless the system can interpret data
structures as programs and actually execute them. This is the case
whether these data structures were created manually or by a program.
If this is not possible, re-programming the system will not be possible
(beyond selecting from a predefined list of behaviours). The browser
does already satisfy this criterion since JS has an eval() function that
can execute a string of JS code. This suggests a boolean dimension of
data execution.

Any system with an eval function has this property, such as Lisp.
In the low-level binary world (Section 3.1.1) the fact that the instruc-
tion pointer can be pointed at bytes in memory and interpret them as
instructions also qualifies. A negative example exists in a language like

116 technical dimensions of programming systems

C, where there is no eval function.7 In such a case, one may employ
the workaround of defining a mini-language (whether textual, or a
binary bytecode) and an interpreter C function. It is important to be
clear on which level the property would be thus established: what we
called the product system (the program being implemented by the C
code) would have data execution but the platform (the C language itself)
would remain without it.

5.4.2 Dimensions Constituting Notational Freedom

In Section 3.3.2 we mentioned the salient stages prior to notational
freedom, namely syntactic and linguistic freedom. Recall that syntactic
freedom involves specifying grammars for textual languages, while
linguistic freedom adds custom layout, rendering and editing of tex-
tual symbols. In Section 3.3.2.5 we framed the issue as one of removing
artificial barriers to using local notations, while respecting the essen-
tial complexity of implementing a notation itself. This suggests three
penalty dimensions for the effort involved in using custom syntax, lin-
guistic forms, and general graphical notations.

One complication is that we defined these stages as successive gen-
eralisations, i. e. notational freedom includes and implies linguistic
freedomwhich includes syntactic freedom. It would not be very helpful
to observe that a system has high syntactic freedom and then claim this
gives it high linguistic freedom by virtue of the former being contained
within the latter. That is not quite what we intend by the term “linguis-
tic freedom”. Instead, we would be concerned with linguistic freedom
above the syntactic and notational freedom above the linguistic.

Therefore, our dimensions (all penalties) are as follows. They are
minimised if a custom syntax, language, or notation can be “slotted in”
once it exists, with no resistance from the system:

custom syntax effort. The work required to use a custom syntax,
not counting that required to specify the syntax itself (e. g. as a gram-
mar). COLA (Piumarta 2006) and OMeta (Warth 2009) score low on
this, since they are specifically designed for this purpose. Most pro-
gramming languages have infinite custom syntax effort, because their
parsers are separate programs that adhere to a fixed grammar that can-
not be changed by statements in the language. This includes JS despite
its inclusion of a regex sub-syntax, HTML despite its inclusion of JS and
CSS, and C# despite its LINQ sub-language for queries; these examples
may exhibit syntactic plurality, but there is no way to include arbitrary8

user-supplied syntax for use in the source code.

7 Modulo “smashing the stack” (Aleph One 1996), which is platform-dependent and
abnormal C programming style.

8 There is always the option of including string literals in the code containing custom
syntax, but the available syntax will always be restricted by the escaping rules of the

5.4 the three properties as dimensions 117

custom language effort. Thework required to use custom language-
like notation beyond syntax, not counting that required to implement
the rendering and interaction. Most programming languages, COLA,
and OMeta get an infinite score here, while MPS (Voelter and Pech
2012) and Eco score low.

custom notation effort. The work required to use custom graph-
ical notation beyond what we called language in Section 3.3.2.3, not
counting that required to implement the rendering and interaction. To
relate the examples from Section 3.3.2.4, non-infinite scores are rare,
only exhibited in a few systems. Eco, owing to a screenshot showing
inclusion of a picture, scores non-infinite on this dimension. From their
discussion in Section 9.2 of the paper (Diekmann and Tratt 2014), it
is likely to score High or Moderate rather than Low because arbitrary
graphical notations are a novel unexplored use case for the system for
which it has not been optimised. On the other hand, the Glamorous
Toolkit (Chiş et al. 2015) appears built to support arbitrary graphics in
its text editor interfaces, suggesting a lower value on this dimension.
ThingLab I (Borning 1981) and II (Moloney et al. 1989) would similarly
score low, at least insofar as diagrammatic notations are concerned
(as opposed to integration with the editing of Smalltalk code). Baby-
lonian Programming (Rauch et al. 2019), built on the self-sustainable
Lively4 (Lincke et al. 2017), is also likely to have a lower score on this
penalty dimension.

5.4.3 Dimensions Constituting Explicit Structure

The best way we have found to detect Explicit Structure is as a lack of
Implicit Structure, which we break down into producer and consumer
concerns. On the producer side, we have an editor with an interface
creating and changing a data structure. This is saved and passed onto
consumers, which can be collaborators using editors or a programmer
writing code to use the data structure.

It is tempting to define Implicit Structure in terms of the producer’s
editing interface: a text editor has lots of it, while a structured or pro-
jectional editor lacks it. But this is incompatible with our desire for
Notational Freedom; if someone wishes to use a text editor interface to
type their data structures into existence, they should be free to do so.

Equally tempting is to locate Implicit Structure in the interchange file
format, such as whether it is a text file. Yet as long as the system handles
the loading and saving for this file format, it makes no difference from
a consumer’s point of view and they do not experience the downsides
associated with Implicit Structure.

host language. Moreover, such an approach would be seen as an “abuse” of the host
language, compared to a language that was designed for syntactic freedom.

118 technical dimensions of programming systems

So if Implicit Structure is not about the interface, or how the data is
really stored, what is it? The definition we are interested in is about how
much users or programmers must be aware of it and devote cognitive
resources to working with it. On the producer side, this manifests as
which types of syntax errors or more general format errors they are able
to save and pass on to consumers (Section 2.3.3). On the consumer side,
Implicit Structure is revealed by the amount of code we have to write
to deal with parsing, serialising, escaping, loading and saving, and so
on. Therefore we declare two penalty dimensions:

format errors. How many different types of format errors can be
introduced, saved as invalid structures, and passed to consumers, such
that they will halt with an error? For example, text editors allow all
possible syntax errors to be saved, along with several format errors
(e. g. type mismatches and use of undeclared names). However, a text
editor interface that refused to save invalid files could form part of a
system with Explicit Structure. Block or structure editors may prevent
all format errors from being saved, which would constitute the minimal
value of this dimension.

The approach of Hazel (Omar et al. 2019) is unique in having lan-
guage semantics that tolerates fully typed “holes” representing missing
expressions, which obviates concerns about persisting or transferring
such programs. This highlights the fact that Explicit Structure is about
mismatches between the producer and consumer of data, rather than
producer leniency or consumer intolerance per se.

string wrangling effort. Howmuch code has to bewritten to con-
vert between Implicit and Explicit Structure? Explicit Structure implies
a minimal value for this and would look something like the following:
data = load('filename')

Here, there are zero lines of string wrangling. Only one line, trans-
lating between the filesystem and the internal system namespaces, is
required to prepare the data structure for use.

If such a load function is already present, then users experience no
string wrangling effort for the use cases of this function, i. e. the file
formats it supports. If the function does not exist, and a user must write
string wrangling code on an ad-hoc basis, this dimension is correspond-
ingly high relative to that format. Suppose the user factors this ad-hoc
string wrangling into their own implementation of the load function;
this implementation effort would count towards the dimension, but
would pay for itself in the reduced string wrangling effort thereafter;
this situation would lie somewhere between the previous two.

These considerations all establish scores for this dimension relative
to a particular file format or string syntax. These could be aggregated
to form a score for a particular program which uses several such for-
mats. However, if we are trying to assess the programming system along

5.5 evaluating bootstraplab 119

this dimension, we would have to somehow aggregate across all possi-
ble programs one could create with the system, including the various
different formats they are likely to include.9

Recognising that different programming systems are targeted at dif-
ferent goals and have differing strengths andweaknesses, the possibility
space could be refined into all likely programs or use cases of the pro-
gramming system, weighted by the probability of a user of the system
wanting to create such a program. This opens up further decisions
about this user and whether we should additionally aggregate across
possible (or likely) users of the system. We could go further, but we
think the complexity is clear; as mentioned in Section 5.3, wewill simply
give our judgement about how BootstrapLab as a whole scores on this
dimension and leave more sophisticated approaches to future work
(Section 7.1).

5.5 evaluating bootstraplab

Having finally distilled the Three Properties into Technical Dimensions,
wewill now apply them to BootstrapLab to gauge how far we succeeded
at our goals.

5.5.1 Measures of Self-Sustainability

Substrate Size: 1550 LoC.
BootstrapLab’s homogeneity of state contributes to a smaller substrate

than a designwhere system registers and user data lived in two separate
partitions of state. There is deliberately only one system namespace: the
state graph rooted at the top-level registers. Some of these names have
special functions in the low-level BL-ASM, but otherwise this namespace
is free for user additions. These can be added manually in the in-system
editor or in code by the primitive store instruction.

The present graphical state of the system lives entirely in a special
part of the system state: the scene tree. Therefore, at any given moment,
it is possible to changewhat the graphics windowwill display. However,
there are two limitations:

1. The range of these changes is constrained to the range of graphical
primitives currently understood by the substrate which it passes
on to THREE.js. Currently these are limited to axis-aligned flat-
coloured rectangles and basic text of a uniform size, style, colour,
etc (see Section B.1.2).

9 There is a large variety of existing data storage formats (e. g. JSON and XML) and an
infinite variety of potential custom formats that could be created on an ad-hoc basis
(e. g. chat messages containing special escape sequences).

120 technical dimensions of programming systems

2. The behaviour that affects the graphics currently lives in JS. This
means that the logic according to which the tree editor renders
map entries is inaccessible to in-system code.

Indeed, there are about 1550 lines of JS off-limits to the actions of the
system. At least 33% of this, however, constitutes our substrate debt: the
Masp interpreter and tree editor (Section 4.8.2). In a further-developed
version, these could be moved out. Even so, in such a further-developed
version, the substrate may be larger anyway by exposing more types
of graphical primitives. This suggests that capabilities of the platform
provide a lower bound on the substrate size: if the platform provides a
way to draw a circle, but the substrate does not expose this to the system,
then we have reason to interpret this as an incomplete programming
system. On the other hand, the substrate may expose a more general
set of graphics operations that allow the system to draw circles itself,
say to a pixel surface.

Persistence Effort: Moderate. Part or all of the state graph can be manu-
ally persisted via the export_state() function in the browser console.
This means that in-system progress can be saved, even though it would
be better for the user experience to have this done automatically. It is
clear that indefinite evolution is permitted but perhaps not quite encour-
aged.
Code Editing: present. Code editing is crude but feasible via the in-

system tree editor for most use cases. In rare cases, the JS console must
be used.
Data Execution: Present. Because of Alignment (Force 3), low-level

instructions that change state are represented as ordinarymapswith cer-
tain format constraints. The instruction set is sufficient for constructing
arbitrary graph structures in the state, including programs composed
of instructions. The next_instruction register can be pointed at such
a list and execution can be started using run_and_render() in the JS
console. The analogous properties hold for high-level Masp code which
is also represented as maps.

verdict. BootstrapLab’s practical capacity to change its implementa-
tion is limited by its substrate debt, while its manual persistence adds
friction to working within the system. Still, there are no hard barriers
to self-sustainability.

5.5.2 Measures of Notational Freedom

Custom syntax effort: moderate. Because of substrate debt, it may not be
possible to make changes at the user level such that a string can be
“executed” according to custom syntax and semantics via a click or
key combination. However, it is possible to use the js “escape hatch”
instruction to embed arbitrary JS code to do the appropriate process-

5.6 conclusions 121

ing. In the absence of substrate debt, it would be possible to edit the
relevant parts of the system to support custom syntaxes—both textual,
as strings, but also “structural” with different map structures to those
that Masp expects. This direct editing of the system could still be costly,
and adopting the techniques in the Lisp half of COLA (Piumarta 2011)
or OMeta (Warth 2009) could bring custom syntaxes closer to being
“slotted in” without difficulty.

Custom language effort: moderate. This follows similar considerations,
except the substrate debt related to graphical capabilities and the lack
of exposure of certain platform graphical primitives are also relevant
here. However, implementing language-like notations may be aided by
the existing layout capabilities of the tree editor.

Custom notation effort: moderate. Again the reasoning is similar, but in
this case the tree editor layout capabilities may not be directly helpful.
Here, the lack of exposure of platform graphics primitives limits what
can be achieved. Still, as shown in Section 4.9.3, use of custom notations
is feasible as long as the appropriate “hook point” is available, which
we added to the substrate specifically for the proof-of-concept.

verdict. BootstrapLab in its current state permits notational freedom
but at a moderate cost. This is still an improvement on the norm of infi-
nite cost in programming systems (recall the examples in Section 5.4.2).

5.5.3 Measures of Explicit Structure

Format errors: low. The structure editing interface of the tree editor elimi-
nates the existence of syntax errors for data,Masp code, and instructions.
Within these structures, certain format errors are possible (e. g. failing
to supply required arguments to an instruction).
String wrangling effort: low. Because all data, including instructions

and Masp code, is embedded in map data structures edited structurally,
there is little need for the user to write parsing or serialising code. The
sole exceptions are with hexadecimal colour codes, where the initial
character may need stripping, and rendered map entries, where the
colon : needs attaching and stripping. Strings are of course present, but
as primitive values without substructure (i. e. names).

verdict. BootstrapLab succeeds at our goal of being based on explicit
structure. All “code” or “language” structures are represented directly
instead of as text strings.

5.6 conclusions

BootstrapLab embodies our Three Properties to a satisfactory extent; it
is strongest on Explicit Structure and weaker on Notational Freedom
and Self-Sustainability. In a systemdevelopedwithout attention to these

122 technical dimensions of programming systems

properties, the default practices of programming would end up raising
barriers to their realisation (Section 1.4). We deliberately designed
BootstrapLab to support these properties and avoid hard barriers to
them, so there is significant potential for improvement from further
development efforts. We will outline this future work in Section 7.2.

Beyond this dissertation, there is interest in developing new pro-
gramming systems. Such systems go beyond the simple model of code
written in a programming language using a more or less sophisticated
text editor. They combine textual and visual notations, create programs
through rich graphical interactions, and challenge accepted assump-
tions about program editing, execution and debugging. Despite the
growing number of novel programming systems, it remains difficult
to evaluate the design of programming systems and to see how they
improve over work done in the past. To address the issue, we proposed
a framework of “technical dimensions” that captures essential charac-
teristics of programming systems in a systematic fashion.

This framework puts the vast variety of programming systems, past
and present, on a common footing of commensurability. As more and
more systems are assessed in the framework, a picture of the space of
possibilities will gradually emerge. Some regions will be conspicuously
empty, indicating unrealised possibilities that could be worth trying;
this is how we regard BootstrapLab. In this way, a domain of “normal
science” is created for the design space. Designers of the next generation
of programming systems can then build upon the successes and lessons
of those that came before.

6
RELATED WORK

In the preceding chapters, we referenced programming systems and
research literature that were directly relevant to the topics we were dis-
cussing. At this point, having presented BootstrapLab and evaluated it
according to the Technical Dimensions, we can situate our contributions
in the setting of more general related work. We will cover the research
group from which many of our influences originate, work relating to
each of the Three Properties, and the study of programming systems.
Note that some references may be repeated from earlier for the sake of
completeness.

6.1 steps and the legacy of vpri

The COLA system design (Piumarta 2006), from which we have drawn
the most in this work, emerged from the now-retired Viewpoints Re-
search Institute (VPRI). VPRI aimed at creating “fundamentally new
computing technologies”, which is particularly visible throughout the
6-year project known as “STEPS towards a new computing” (Amelang
et al. 2011, 2012; Kay et al. 2006, 2007, 2008, 2009; VPRI 2010). The aim
was to fully replicate a familiar graphical end-user operating system,
with applications, in under 20,000 total lines of code. Such an ambitious
goal provided the constraint needed to force innovation in distinguish-
ing essential and accidental complexity and ways to reduce the latter.
Innovations included the widespread use of domain-specific languages
supported by OMeta (Warth 2009) and investment in highly flexible
core abstractions as evidenced by COLA’s object and composition mod-
els (Piumarta 2011; Piumarta and Warth 2008).

Two of our Three Properties, Self-Sustainability and Notational Free-
dom, recur as themes in the STEPSwork.1 Self-Sustainability is exhibited
by COLA. Mood-Specific Languages in COLA and those supported by
OMeta demonstrate what we called syntactic freedom in Section 3.3.2.2.
The Gezira (Amelang 2012a) and Nile (Amelang 2012b) projects utilise
a custom mathematical syntax, taking advantage of Unicode characters
for expressing graphics code that is cumbersome in ordinary languages.
While this does not amount to Syntactic Freedom, it is a good example
of the sort of thing that Syntactic Freedom enables; we can expect more
innovations like this only if it is not too difficult to deploy a custom
syntax once one has been designed.

1 Explicit Structure is absent, but this is to be expected owing to its niche status; see
Section 6.5.

123

124 related work

6.2 self-sustainability and its theory

The only name we are aware of for the concept we called Self-Sustain-
ability is “self-sustaining”, seen in the two workshops on such systems
(Rose and Hirschfeld 2008; Rose et al. 2010) in which parts of the COLA
design were published. We derived our term “Self-Sustainability” to be
able to refer to a property that can be present or absent in programming
systems. We have referred to Self-Sustainable systems rather than Self-
Sustaining systems for consistency with this.

Self-Sustainability appears in related work as Smalltalk variants.
Much of the STEPS work took place via the Squeak variant (Ingalls et al.
1997), of which Pharo (Bergel et al. 2013) is a descendant. Glamorous
Toolkit (Chiş et al. 2015) is a “moldable development environment”
built in Pharo. The LivelyKernel (Ingalls 2008) is aWeb implementation
of a Smalltalk-like environment; Fizzygum2 is similar.

The problemwith all of these, as regards our goals in this dissertation,
is that they are all complicated software systems, with their own histo-
ries, made to be practically useful to researchers or industry. As such,
knowledge of the principles and tricks for implementing these systems
is sequestered away in the practical experience of their developers and
not written down in a discoverable location. Furthermore, it would be
difficult to separate knowledge about the property we are interested in
(Self-Sustainability) from the various other aspects of the implementa-
tion of these systems (such as useful libraries or optimisations).

These facts made it clear to us that we would be best equipped to
understand Self-Sustainability by trying to achieve it ourselves in a
minimal context with minimal distractions. The related systems are self-
sustainable in order to be useful for certain communities; BootstrapLab
aims for Self-Sustainability to better understand it (along with the other
two Properties).

We are only aware of a few sources that aim at a similar goal of
understanding. The “Meta-Helix” approach of Polito et al. (2015) is
intended to reduce confusion when implementing meta-circular Meta-
Object-Protocols. As we mentioned in Section 2.3.1, meta-circularity is
a specific manifestation of Self-Sustainability. The exhaustive develop-
ment of Procedural Reflection for Lisp-like languages by Smith (1982)
is helpful for its philosophical rigour, e. g. the use-mention distinction
and careful precision of terminology. The process described by Evans
(2001) is a parallel of what we did with BootstrapLab in the restricted
context of batch-mode interpreters of text strings. The introductory
sections of Piumarta (2006) and Piumarta and Warth (2008) constitute
a good explanation of Self-Sustainability and why it is desirable, as
does Cook (2018).

2 http://fizzygum.org/

http://fizzygum.org/

6.3 video games 125

6.3 video games

Video games and game engines are led in the direction of Self-Sustainabil-
ity by their nature as highly dynamic, long-lived virtual environments.
They are an example of the issues we covered in Section 3.2.4.3. The cre-
ative world-building nature of games means that requirements change
more often than other types of software; development is partly a pro-
cess of discovery of what the final product should be. Accordingly, it is
important to rapidly prototype and iterate ideas, especially by artists or
other specialists who may not be expert programmers. This incentivises
ways to try out new ideas without the costly operation of restarting a
large, resource intensive process or the even more costly operation of re-
compiling the underlying program. It also incentivises editing tools (for
game levels, internal scripting languages, or configuration) to be part of
the game software itself. After development, these internal “developer
tools” may either be stripped from the version shipped to customers,
or hidden (in which case, determined hackers will eventually uncover
them sooner or later).

Since games also have strong requirements for real-time performance
(responsiveness to input, rendering of complex scenes, simulating
physics, synchronising a shared world across the internet, and manag-
ing worlds too large to fit into memory all at once) languages like C++
are a standard choice for implementation. However, the default data
structuring mechanisms of these languages (such as C++ classes) must
regrettably be avoided for directly modelling highly dynamic relation-
ships between objects in the simulated world. A C++ class promises
a static commitment to always contain its listed member variables of
the specified types, member functions of the specified signatures, and
to always remain in any inheritance relationships with other classes.
This rules out a majority of the dynamic change that is inherent to the
behaviour of a game and its development process. For this reason, stan-
dard game programming patterns (Nystrom 2014) build infrastructure
to work around this and support the modelling of objects whose rela-
tionships and contained properties may change during run time. “Entity
Component Systems” (Ehrlich 2013) are a widely used architecture for
this purpose. The general pattern of working around static commitment
is known as “Greenspun’s Tenth Rule” (C2 Contributors 2014a):

Any sufficiently complicated C or Fortran program contains
an ad-hoc, informally-specified, bug ridden, slow imple-
mentation of half of CommonLisp.

6.4 novel notations versus notational freedom

“Visual Programming” contains many examples of custom notations
for program code and data. Sketchpad (Sutherland 1963) is an early,

126 related work

influential example of diagrammatic notation augmented with the dy-
namic capabilities of computation. DesignScript (Aish 2012) is a visual
language for computer-aided design and computation. The Appara-
tus editor3 is a Web-based editor for dynamic graphics influenced by
Sketchpad. Bret Victor’s presentations (Victor 2013) demonstrate pro-
grammatic graphics based on direct manipulation instead of textual
code. Data is represented in Boxer (diSessa and Abelson 1986) and
Forms/3 (Judith Hays 1995) as named, nested boxes; in Boxer, pro-
grams reside in textual code boxes. Programming By Example and Pro-
gramming By Demonstration (Cypher 1993; Lieberman 2001) involve
custom notations designed for either representing program structures
or for supplying example input-output pairs from which to infer gen-
eral behaviour. Sketch-n-Sketch (Hempel et al. 2019) uses a textual and
graphical notation that are synchronised with each other.

There are many more examples of custom programming notations
and interfaces (Edwards 2017; Nickerson 1994; Reese 2022). Despite the
abundance of earnest attempts at general-purpose or special-purpose
notations, programming is still mostly performed via plain text. This
is understandable given that much of the cited research is experimen-
tal and that programming infrastructure (editors, compilers, version
control etc.) only supports plain text. There is also a seductive failure
mode of imposing a single notation for all purposes, in denial of the fact
that different people have preferences about the tools they work with,
and that notations necessarily have different suitabilities for different
purposes.

Thus, while we respect the effort invested in Visual Programming and
customnotations andwish these efforts success,we avoid the conclusion
that there is an optimal notation or set of notations (across users and
situations) waiting to be found. Instead, we see as-yet unrealised gains
in supporting and encouraging the ad-hoc use of custom notations on an
opportunistic basis, wherever the user judges them to be most helpful.
We observe much effort expended over the years on developing custom
notations but comparatively little on enabling them to be used together
à la carte, which is why we focus on Notational Freedom.

We see an effort towards Notational Freedom in Hempel and Chugh
(2020),where tiny structure editors are derived from the code of toString
functions. This highlights the fact that by “notation” we mean a dy-
namic, two-way interface and not just a rendered picture. Other efforts
include the Mood-Specific Languages of COLA (Piumarta 2006) and
OMeta (Warth 2009), the Eco editor (Diekmann and Tratt 2014), Jet-
Brain’s MPS (Voelter and Pech 2012), and the Glamorous Toolkit (Chiş
et al. 2015). Our issue with the latter two is similar to what we said
about Smalltalk-like systems in Section 6.2: they are impressive and
useful as industry tools in which to get things done, but their size and
complexity make it hard to learn the essential aspects of supporting

3 http://aprt.us/

http://aprt.us/

6.5 structure editing and its variations 127

Notational Freedom. Eco has the advantage of being a research project
whose paper does cover its design and implementation, so its approach
deserves a place in future work on BootstrapLab (see Section 7.2.5). The
same goes for any insights or documentation for other systems which
emerge during, or after, the writing of this dissertation.

6.5 structure editing and its variations

Explicit Structure has precedent in structure editors, projectional editors
and block-based languages (Chuchem 2023; Omar et al. 2019), but
these approaches have met many difficulties in terms of widespread
adoption. Text editing and plain text formats are still entrenched as the
de facto standard in programming.Outside of programming, we observe
the opposite situation, which allows us to point there for intuition about
why Explicit Structure is a sensible concept and could be beneficial.

For example, photo editing and vector graphics programs exist and
are optimised for the types of interactions involved in those domains.
Photo and vector graphics files are not required to be readable in a
text editor (i. e. we are free to distribute graphics in forms other than
ASCII art) and so these domains do not suffer from the accidental
complexities of text formats. If we observe that the textual syntax of
programs is really a proxy for tree and graph structures, then this invites
the investigation of the costs and benefits of treating programming
structures the same way we do other types of files.

We are aware of two projects especially concerned with Explicit Struc-
ture: the Subtext programming system (Edwards 2005) and the Infra
data interchange format (Hall 2017). Subtext explores novel program-
ming ideas that are only feasible from a basis of Explicit Structure,
while Infra is proposed as a common format unifying text and binary
data. We find these sources particularly valuable for explaining Explicit
Structure and arguing its benefits.

6.6 programming systems and their analysis

Our “programming systems” approach lies between a narrow focus on
programming languages and a broad focus on programming as a socio-
political and cultural subject. The concept of a programming system is
technical in scope, although we acknowledge the technical side often
has important social implications as in the case of the “Adoptability”
dimensions (Section E.7). This contrasts with the more socio-political
focus found in Tchernavskij (2019) or in software studies (Fuller et al.
2008). It overlaps with Kell’s conceptualisation of Unix, Smalltalk, and
Operating Systems generally (Kell 2013).

The distinction between more narrow programming languages and
broader programming systems is more subtle. Richard Gabriel noted an
invisible paradigm shift from the study of “systems” to the study of

128 related work

“languages” in computer science during the 1990s (Gabriel 2012), and
this observation informs our distinction here. One consequence of the
change is that a language is often formally specified apart from any spe-
cific implementations, while systems resist formal specification and are
often defined by an implementation. We recognise typical programming
language implementations (e. g. including an ordinary compiler and
text editor) as a small region of the space of possible systems, at least
as far as interaction and notations might go. Our attention is drawn to
interactive programming system aspects of languages, such as text editing
and command-line workflows.

6.6.1 Programming Systems Research

There is renewed interest in programming systems in the form of recent
non-traditional programming tools:

• Computational notebooks such as Jupyter (Kluyver et al. 2016)
facilitate data analysis by combining code snippets with text
and visual output, in a manner reminiscent of Literate Program-
ming (Knuth 1984a). They are backed by stateful “kernels” and
used interactively.

• “Low code” end-user programming systems allow application
development (mostly) through aGUI. One example is Coda (Coda
2022), which combines tables, formulas, and scripts to enable non-
technical people to build “applications as documents”.

• Domain-specific programming systems such as Dark (Dark Lan-
guage Team 2022), which claims a “holistic” programming ex-
perience for cloud API services. This includes a language, a di-
rect manipulation editor, and near-instantaneous building and
deployment. We analyse Dark via the Technical Dimensions in
Section E.8.

• Even for general purpose programming with conventional tools,
systems like Replit (repl.it 2022) have demonstrated the benefits
of integrating all needed languages, tools, and user interfaces into
a seamless experience, available from the browser, that requires
no setup.

Research that follows the programming systems perspective can be
found in a number of research venues. Those includeHuman-Computer
Interaction conferences such as UIST4 and VL/HCC5. However, work in
those often emphasises the user experience over technical description.
Programming systems are often presented in workshops such as LIVE

4 ACM Symposium on User Interface Software and Technology
5 IEEE Symposium on Visual Languages and Human-Centric Computing

https://uist.acm.org/
https://conferences.computer.org/VLHCC/
https://liveprog.org/

6.6 programming systems and their analysis 129

and PX6. However, work in those venues is often limited to the authors’
individual perspectives and suffers from the aforementioned difficulty
of comparing to other systems.

Concrete examples of systems were given in Section 2.2. Recent sys-
tems which motivated some of our dimensions include Subtext (Ed-
wards 2005), which combines code with its live execution in a single
editable representation; Sketch-n-sketch (Hempel et al. 2019), which
can synthesise code by direct manipulation of its outputs; Hazel (Omar
et al. 2019), a live functional programming environment with typed
holes to enable execution of incomplete or ill-typed programs; andWeb-
strates (Klokmose et al. 2015), which extends Web pages with real-time
sharing of state.

6.6.2 Already-Known Characteristics

There are several existing projects identifying characteristics of pro-
gramming systems. Some revolve around a single one, such as levels of
liveness (Tanimoto 2013), or plurality and communicativity (Kell 2017).
Others propose an entire collection. Memory Models of Programming
Languages (Sitaker 2016) identifies the “everything is an X” metaphors
underlying many programming systems; for example, the “everything
is a file” of Unix and the “everything is an object” of Smalltalk. The
Design Principles of Smalltalk (Ingalls 1981) documents the philosophical
goals and dicta used in the design of Smalltalk; the “Gang of Four”
Design Patterns (Gamma et al. 1995) catalogues specific implementation
tactics; and the Cognitive Dimensions of Notations (Green and Petre 1996)
introduces a common vocabulary for software’s notational surface and
for identifying their trade-offs.

The latter two directly influence our Technical Dimensions frame-
work. Firstly, the CognitiveDimensions are a set of qualitative properties
which can be used to analyse notations. We have extended this approach
to the “rest” of a system, beyond its notation, with the Technical Dimen-
sions. Secondly, our individual dimensions naturally fall under larger
clusters that we present in a regular format, similar to the presentation
of the classic Design Patterns. As for characteristics identified by others,
part of our contribution is to integrate them under a common umbrella:
the existing concepts of liveness, pluralism, and uniformity metaphors
(“everything is an X”) are included in our framework (Sections E.1.2
and E.3.1).

6.6.2.1 Methodology

We follow the attitude of Evaluating Programming Systems (Edwards et al.
2019b) in distinguishing our work from HCI methods and empirical
evaluation. We are generally concerned with characteristics that are

6 Programming eXperience

https://2021.programming-conference.org/home/px-2021

130 related work

not obviously amenable to statistical analysis (e. g. mining software
repositories) or experimental methods like controlled user studies, so
numerical quantities are generally not featured.

Similar development seems to be taking place in HCI research fo-
cused on user interfaces. The UIST guidelines (Kumar and Nebeling
2021) instruct authors to evaluate system contributions holistically, and
the community has developed heuristics for such evaluation, such as
Evaluating User Interface Systems Research (Olsen 2007). Our set of di-
mensions offers similar heuristics for identifying interesting aspects of
programming systems, though they focusmore on underlying technical
properties than the surface interface.

Finally, we believe that the aforementioned paradigm shift from pro-
gramming systems to programming languages has hidden many ideas
about programming that are worth recovering and developing fur-
ther (Petricek and Jakubovic 2021). Thus our approach is related to
the idea of complementary science developed by Chang (2004) in the
context of history and philosophy of science. Chang argues that even in
disciplines like physics, superseded or falsified theories may still con-
tain interesting ideas worth documenting. In the field of programming,
where the goal is not necessarily finding out what is true but exploring
what is possible, past systems are discarded or forgotten for all sorts of
contingent and unprincipled reasons. Therefore, Chang’s complementary
science approach seems particularly suitable for such a field.

7
FUTURE WORK AND CONCLUS IONS

Having followed the development of BootstrapLab in Chapter 4 and
its evaluation along the Technical Dimensions from Chapter 5, we now
turn to the limitations of these two contributions and sketch the future
work that they suggest. Some of the forthcoming points have already
been introduced by necessity as part of earlier chapters, but here we
have an opportunity to expand on them in more detail. We first address
our Technical Dimensions framework, acknowledging the pragmatic
simplifications we had to make and exploring the challenges of making
it more rigorous. Subsequently, we acknowledge BootstrapLab’s state
as a work-in-progress, suggesting how to continue its development and
apply its approach to other domains. Finally, we bring this work to a
close by reviewing what we have presented and how it relates to the
broader vision from Section 1.2.

7.1 improving the technical dimensions

In Chapter 5, we proposed a systematic approach to analysing program-
ming systems that go beyond languages. We took our complex and
qualitative Three Properties and derived quantitative dimensions to act
as a proxy for them. These dimensions were narrow enough to apply
to BootstrapLab. However, we were limited by scope to argue for the
scores we gave, which is far from the everyday process of self-evident
“measurement” that we ideally desire to have.

In this discussion, we will take the approach of prioritising conceptual
clarity. We will put practical issues to one side and inquire about what a
rigorously perfected Technical Dimensions would look like, even if the
answer would be practically infeasible to work with. Then we will add
the practical concerns back in. In the end, future work consists both of
improving the theoretical concepts and developing practical methods
of using them. We note that some of the following issues were acknowl-
edged in the Appendix of our Technical Dimensions paper (Jakubovic
et al. 2023). However, the discussion here should be taken to be a more
updated version which supersedes that of the paper wherever they
overlap.

7.1.1 Scoping The Dimensions

Even if some property fails to hold for an entire programming system,
it may well still hold for some part of the system. For example, take our
persistence effort dimension from Section 5.4.1 and imagine a Smalltalk-

131

132 future work and conclusions

like system where everything is automatically persisted except for a
single, special global called x. It would be unhelpful to characterise
this system as having infinite persistence effort simply because it is
technically impossible to persist the entire state. Informally, we see that
it has mostly minimal persistence effort with the sole exception of x, for
which it is infinite. This example was deliberately extreme, but a more
realistic one is the Web platform whose JS stack cannot be referenced or
traversed by JS code.

The true scope of a dimension like “persistence effort” is more of
a field in the physical sense, defined at every atomic piece of state in
the system (the field points). Similarly, “custom syntax effort” from
Section 5.4.2 is defined for individual syntaxes that a user may wish
to use in the system, whether they already exist or merely potentially
could exist. This highlights the additional difficulty that we may wish
to characterise a system not only by how it happens to be right now, but
by how it would perform across many potential use cases. Wementioned
the complexity of considering “actual” vs. “potential” field points when
defining string wrangling effort in Section 5.4.3; this dimension prop-
erly applies per “situation” consisting of a specific user, programming
against a specific string format, in a specific program. These terms (user,
string format, program createdwith the programming system) all invite
further definition.

Making all this more precise, and establishing the minimal scope of
the other dimensions we have proposed, is an open problem. As the
next best option, we gave scores for BootstrapLab as a whole in Section
5.5 while elaborating on any relevant complications in prose.

7.1.2 Aggregation Functions and Weights

Having realised that the dimensions apply asmore of a “field”, we could
recover the simpler coarser-level score that we want as some sort of
aggregation of the finer-level scores.Wementioned this in Section 5.3.2 to
pre-empt any concerns about our simplified approach to the dimensions:
in the absence of a rigorous treatment of the “scoping problem” just
discussed, we were forced to do the aggregation intuitively based on
our understanding of BootstrapLab.

Future work would consider what the aggregation function should
be: a simple addition (even an integral) over scores, an average, or some-
thing else. Where potential field points (users, programs, notations, etc.)
are concerned, the infinite possibilities mean some sort of weighted
aggregation would be necessary. We might compress the infinite range
into a finite number of categories, one of which is a catch-all “other”
category, and assign a weight for the probability or relevance of each
category. This introduces a further question of how these weights are
established or justified; intuitively, we know that programming systems
have strengths and weaknesses and are built to cater to different prob-

7.1 improving the technical dimensions 133

lem domains or types of user (Orchard 2011), but how could this be
made more rigorous? We must leave this, and the full development of
the other ideas we have sketched here, as open questions.

7.1.3 Defining Quantitative Measures or Resolution Criteria

So far, our concerns have been conceptual; we have been talking about
hypothetical “scores” and “weights”. In our evaluation of BootstrapLab,
we remained at this “almost-quantitative” level: we scored using the
terms “minimal”, “moderate”, and so on (or “present” / “absent” for
boolean criteria). We justified these scores by means of argument and
intuition. This is suboptimal from a research perspective; a fully de-
veloped dimensions framework should enable researchers to agree or
at least productively disagree (perhaps leading to new dimensions or
definitions on which they do agree).

One improvement would be to further define resolution criteria for
our score terms to the point that two parties, following the same defini-
tions, would independently converge on the same scores. Alternatively,
we might pursue real quantitative scores with concrete numbers. The
challenge here would be avoiding the trap of properties that are easily
quantifiable yet irrelevant or uninteresting. A good quantification (or
set of quantified dimensions) should feel like a strict improvement on
the qualitative description, rather than something that has lost an im-
portant feature of the qualitative description. In its absence, we would
err on the side of staying with the qualitative and holding out for a
future quantitative definition, instead of committing to the suboptimal
quantitive definition for the sake of having numbers at all.

7.1.4 Obtaining Consensus on Scores

Even with narrow, precise definitions of how a dimension should be
scored, it is a further task to establish consensus on what the score is
for a given system. A perfectly crisp definition would be followed the
same way by all parties and lead to the same conclusion, but we would
not expect this in practice. Variations could arise from researchers inter-
preting terms in the definitions differently, aggregating differently over
field points, or circumscribing systems differently (see the following
Section 7.1.5).

The point of the Technical Dimensions framework is to edge towards
an objective analysis of programming systems, on which different re-
searchers can readily agree. A situation where there is an implicit “sub-
ject” parameter (system S scores X along dimension D according to person
P) may be a necessary evil in the short term, but researchers should
strive to debug their disagreements and improve the dimensions to the
point where the “person” can be dropped.

134 future work and conclusions

7.1.5 The Circumscription Problem of Systems

One issue that has been present throughout this dissertation, and
touched on in Section 2.2.1, concerns what exactly we refer to with
the names “Smalltalk”, “Lisp”, “Java”, and so on. Definition 9 certainly
helps, but there is still a lot of freedom in how we draw the boundary
around named programming systems.

For example, there are different distributions and implementations
of Smalltalk, different versions of each one, and different concrete run-
ning instances used by people including different libraries and personal
tweaks. We have implicitly taken “Smalltalk” to be some suitable aggre-
gation over these, evokingwhat is common to all of them and smoothing
over rare variations that would complicate our analyses. If one Smalltalk
user modified their system to no longer be self-sustainable, this does
not change the fact that the “typical” Smalltalk is self-sustainable. On
the other hand, suppose we discovered a widely-used Smalltalk distri-
bution that was deliberately diminished in this property; perhaps this
should force us to drop the term “Smalltalk” and split our analysis into
two systems instead. Making these points explicit and rigorous would
involve similar work to the aforementioned issues with dimensions and
their scoring.

We see this issue as no worse than the parallel in programming lan-
guages, where people routinely talk about “C++” or “Python” even
though these have different implementations, versions and individual
installations. However, it is slightly easier to point to the “essence” of a
programming language due to its definition in terms of formal syntax
and semantics, or at least an official specification by a standards body.
In contrast, programming systems have more of a de facto existence
as running software (Gabriel 2012) which invites appeals to popular-
ity, community size, or influence as a substitute for formal or official
definitions.

7.2 improving bootstraplab

In Chapter 4 we closely and carefully followed the construction of our
prototype programming system, BootstrapLab. We then evaluated it
against our Three Properties (as sets of dimensions) in Section 5.5.
While it shows promise in demonstrating the technical feasibility of
custom notations and innovation feedback, its capabilities are not as
impressive as we would like, owing to its early stage of development.
However, this was for a worthy cause. If we had sped ahead with its
development, wewould have fallen into the trapwe noted in Section 6.2,
adding another impressive programming system to the list without
any transferrable knowledge. Instead, by taking our slower approach—
reflecting on how we made design and implementation decisions and
making them explicit—we have contributed a method that is easier to

7.2 improving bootstraplab 135

understand than BootstrapLab’s source code or commit history. From
a position of being satisfied with this tradeoff, we can set out the next
steps for BootstrapLab.

7.2.1 Pay Off Substrate Debt

BootstrapLab currently sits between the final two steps of the journey,
described in Sections 4.8–4.9. We provided isolated examples of Nota-
tional Freedom (Section 4.9.3) and of Self-Sustainability (evidenced
by the Innovation Feedback in Figure 4.18). This does succeed at estab-
lishing BootstrapLab as a proof-of-concept, but to go further we would
need to finish paying the “substrate debts” we incurred. These consist
of porting the Masp interpreter to BL-ASM and the Tree Editor to Masp.
Additionally, the system will inevitably need access to more and more
of the functionality available in the platform such as audio, networking,
and threading. These could be exposed through the substrate, as we
did for graphics via the scene tree.

7.2.2 Make BL-ASM More Usable

With the benefit of hindsight, we would recommend going for an in-
struction set that is convenient enough to use such that immediately
building programs in-system is a worthwhile endeavour. As we admit-
ted at the end of Section 4.5.5, our own wild adventure in minimality
was a mistake in this regard, causing us to stay in JS, implement the
high-level language there and port it later. It would be interesting to
see the process of gradually building each component of a high-level
language engine interactively in-system. Out of the possibilities in Sec-
tion 4.7.3, we began with the platform interpreter, so exploring the others
would be illuminating—particularly the platform compiler, which could
self-host relatively quickly.

7.2.3 Alternative Implementation Strategies

It would be interesting to forego any temporary infrastructure (Sec-
tion 4.6) at all, or build up entirely in-system without using platform
tools. This would require more careful substrate design to get this pro-
cess going effectively. While it could give some insight or appreciation
for the hardships of early computing, its practical value in the modern
environment is unclear and may be best considered a challenge for
hacker wizardry.

136 future work and conclusions

7.2.4 Make the System Less Fragile

Because self-sustainability by definition exposes core infrastructure to
potential user modification, the risks from mistakes or bugs are magni-
fied. Smalltalk is famously capable of executing the code true become:

false which results in it breaking. We encountered an instance of this
class of issue in BootstrapLab. In the process of replacing a keyboard
handler in-system, we typed a small change which immediately took
effect. This edit was supposed to be only a part of a larger change, which
in hindsight should have been committed to the system atomically. Be-
cause it was applied immediately, the new keyboard handler effectively
became an incomplete function and typing was no longer possible.

This highlights the need, in any practical realisation of self-sustainabil-
ity, for “guardrails” securing accidental changes to core infrastructure
or “versioning” that allows changes to be directed at “the next version
of the system” and applied atomically. This complements the COLA
authors’ recommendation (Piumarta 2006, p. 23) for stable “points of
reference” in a system in which everything is flexible and homogenous,
which would likely be disorienting for a newcomer accustomed to
traditional programming.

7.2.5 Import From Related Work

To reduce the custom syntax, language and notation effort from its
present score of “moderate”, we would seek to learn from the ap-
proaches of OMeta (Warth 2009), Eco (Diekmann and Tratt 2014),
MPS (Voelter and Pech 2012), and the Glamorous Toolkit (Chiş et al.
2015), particularly as regards implementation (since we already agree
that their end results are desirable). Similarly for self-sustainability, we
would like to build COLA’s object model (Piumarta and Warth 2008) in
the graphical substrate of BootstrapLab1 and see if we can obtain a full
COLA that way.

7.2.6 Bootstrap on Other Platforms and Substrates

At every step of the development journey, there were choice points
where we naturally could only move forward with one of the options.
Future work could explore the other branches. We cannot provide an
exhaustive listing here, but will give some examples.

At the first step (Choose A Platform), all sorts of other platforms
could be chosen. While COLA built on top of one “slice” of Unix—files,
build tools and process memory—we see another possibility in focusing
on the hierarchical file system as a state model to inherit through to a

1 We already built the object model in a different system (Jakubovic 2020b), but its
shortcomings motivated the approach we took in BootstrapLab instead.

7.3 review 137

substrate. This is one obvious structured substrate lurking within Unix
and some of our work here is no doubt applicable to it: directories act
as maps, filenames as keys and file contents as values. Symlinks could
add graph structure to this tree where needed. Similar ideas can found
in the Hull design (Sústrik 2019).

We acknowledge that it might feel perverse to have files contain
“primitive” values, such as a single number, or to represent instruc-
tions as directory trees, since files are normally used as “large” objects.
However, it must be noted that there is precedent for using them more
generally for data large and small, such as in Plan 9 (Pike et al. 1993)
and procfs (Killian 1984). If this was still too much to stomach, the
default option for “code” (shell scripts) could simply be inherited on
the understanding that this would impose a dependency on implicitly-
structured text at the core of the system. What is most unclear is how
graphics would be displayed and interacted with—possibly requiring
a special binary as part of the substrate, for opening and synchronising
a main window.

Supposing we keep our chosen web-based platform, we could still
consider alternative substrates. One possibility is inheriting the DOM as
the state model. This is the choice made by Webstrates (Klokmose et al.
2015), which stores textual JS code for programmatic change. Following
our approach, we might want a lower-level and structured instruction
set instead. This would, at the very least, need to be capable of changing
parent/child/sibling relationships, node attributes, and inner textual
content. One warning is that the rest of the DOM API that would need
to be exposed, in order to be able to produce a functional modern web
page or web app, is somewhat daunting in scope. It would also be
necessary to have some way of listening for changes to DOM nodes so
that any constraints could be maintained and dependencies could be
updated. Webstrates does provide synchronisation between networked
clients on the same page, so perhaps its methods could be adapted.

7.3 review

We began in Chapter 1 with a vision of open software that can be
adapted by its users without expending disproportionate work on ac-
cidental complexity. We introduced the key concept of a programming
system along with Three Properties that would contribute to this vision:
Self-Sustainability, Notational Freedom, and Explicit Structure. Our
thesis was that it is possible to build a programming system with these
properties on top of one’s chosen starting platform (in our case, theWeb
browser), with an emphasis on the prize of Notational Freedom being
facilitated by the other two Properties.

We then went on to establish the terms and concepts in which we
would frame our work fulfilling this claim. In Chapter 2 we defined pro-
gramming systems as a generalisation of languages, giving examples

138 future work and conclusions

of the diverse types of systems we are interested in. We then showed
how the Three Properties have precedent in existing patterns and con-
cepts. These “precursor” properties are well-adapted to a certain set of
assumptions about how programming works, but do not tell us much
about how to achieve the Properties in interactive, graphical systems
with Explicit Structure. We categorised different sets of assumptions
about how programming works as “paradigms” in Chapter 3 and ex-
plained why the Batch-Mode assumptions, as inherited through Unix,
make our goals more difficult. We also introduced ideas that would
help us understand our task, such as the differences between low-level
and minimally human-friendly state models and the basic structure of
a self-sustainable system as platform, substrate and product.

With these important concepts understood, we presented our proof
of the thesis statement in Chapter 4: an account of the design forces
and decisions involved in creating BootstrapLab, whose development
steps are sufficiently general to act as a template for alternative paths
through the design space (we provide a summary in Appendix A). We
then proposed technical dimensions in Chapter 5 as a means to verify
the extent of our Three Properties, plus more generally other proper-
ties of programming systems, and evaluated BootstrapLab using this
framework.

7.4 conclusions

Our efforts taught us that the process of developing a self-sustainable
system roughly mirrors the historical development of programming
that shaped much of how we do things today. Technologies like the
assembler and the compiler were born from a truly impoverished plat-
form of flat memory, numerical instructions, printed output, and rows
of switches. Self-sustainable systems like Unix were gradually raised up
from this primordial world, yet it still has a tendency to show through
and force human minds to wrestle with it.

This work can be interpreted as a sketch of how we might build simi-
lar infrastructure on the back of modern computing environments with
explicitly structured representation of data and graphical interfaces.
In other words, we have opened an investigation into what program-
ming could look like if it were re-bootstrapped today, not on top of flat
memory, but on a richer base platform—such as, in our case, the web
browser.

Of course, we have focused somuch on Self-Sustainability becausewe
see it as essential infrastructure for supporting our terminal goal of No-
tational Freedom, and it was the most demanding of the Three Properties
to achieve. In retrospect, Explicit Structure was fairly easy to maintain
by committing to it from the very beginning; the only discipline needed
was to resist the occasional temptation to use text for core infrastructure.
We would have further developed Notational Freedom if our roadmap

7.4 conclusions 139

to Self-Sustainability had already existed; instead, we were satisfied
once we established a minimal proof-of-concept that it was now pos-
sible (Section 4.9.3). Because Self-Sustainability was such an unclear
concept in our domain of interactive graphical systems, it deserved to
be made legible via the slow, reflective process we documented.

In his 1997 OOPSLA keynote “The Computer Revolution Hasn’t Hap-
pened Yet” (Kay 2000), Alan Kay hoped that future users of Squeak
would use it to start a virtuous cycle of innovation: “Think of how you
can obsolete the damn thing by using its own mechanisms for getting
the next version of itself.” Twenty-six years later, the self-sustainability
pioneered by Smalltalk remains as elusive as ever outside of its com-
munities. Our hope is that through our contribution here, we have
increased the range of its potential beneficiaries. We wish to empower
programmers to add self-sustainability to their own preferred systems
by following the steps we developed. In addition to the other benefits
of such a property, this unlocks the full promise of “Use The Right Tool
For The Job” in the form of Notational Freedom, advancing us that
much further in the struggle against accidental complexity.

A
BOOTSTRAPLAB JOURNEY SUMMARY

Here, we provide a succinct reference for the major journey steps in
Chapter 4, along with the requirements, forces and heuristics that we
encountered in our experience.

choose a starting platform. Select an existing programming
system on which to build.

design a substrate. Architect the basic form of state and change in
the system, as implemented in the platform.

• Requirement 1: Code As Data. The smallest units of change (in-
structions) must be readable and writeable as ordinary data.

• Force 1: Avoid Boilerplate. Prevent the Turing Tarpit failure mode
by making the substrate more advanced.

• Force 2: Escape The Platform. Work in-system as soon as possible
by tolerating a less advanced substrate.

• Heuristic 1: Minimally Human-Friendly Low Level. Ensure that the
substrate supports string names and substructures (Force 1> Force 2).

• Force 3: Alignment. Everything should fit: instructions, high-level
expressions, and graphics expressions should all fit the substrate,
and the substrate should fit the platform.

• Heuristic 2: Use Imperative Assembler. The fetch-execute cycle is
the easiest “language processor” to implement, so begin with that
(Force 2 > Force 1).

• Heuristic 3: Simple Assembler. Design a RISC rather than CISC in-
struction set (Force 2 > Force 1). Warning: our extreme interpre-
tation was counterproductive (Section C.1).

• Heuristic 4: In-State Graphics. Make graphical interfaces express-
ible as ordinary state in a special location (Forces 1 and 3).

implement temporary infrastructure. Use the platform to im-
plement tools for working within the substrate, most importantly a state
viewer or editor; these will be discarded once in-system versions are
available.

Heuristic 5: Platform Editor. As soon as possible, use the platform to
implement a temporary state viewer and/or editor (Force 1 > Force 2).

141

142 bootstraplab journey summary

implement a high-level language. The substrate’s instruction
set is cumbersome, so ensure programs can be expressed in-system via
high-level constructs.

Heuristic 6: In-State Operation. Store high-level-language processing
state in-system, even if the language processor code remains running on
the platform (Force 2).

pay off outstanding substrate debt. Port all remaining tempo-
rary infrastructure into the system to arrive at a self-sustainable system.

provide for domain-specific notations. Use the self-sustaining
state editor to construct a more convenient interface for editing high-
level expressions. Add novel notations and interfaces as needed.

B
BOOTSTRAPLAB SUBSTRATE REFERENCE

This chapter serves as a more complete description of the BootstrapLab
substrate than the one given in Section 4.5. Following Section 3.1, we
divide it into a discussion of State and Change.

b.1 state in bootstraplab

State is a graph of maps (key-value dictionaries) pointing to each other,
along with JS primitives: numbers, booleans, strings, null, undefined,
and ordinary JS objects.

Maps contain entries or fields consisting of a key and a value. We also
refer to maps and primitives together as values. Starting from a given
map m, we write a path m.foo.bar.baz to denote the value arrived at by
following the keys foo, bar, and baz. For this to be defined, m.foo and
m.foo.bar must be maps. A list is just a map with numerical keys, but
as in JS, it may have additional non-numerical keys if convenient.1

The substrate inherits the reference semantics of JS; if one wants
to insulate a map from side effects originating from other references,
one must perform a copy to some level of depth and operate on the
copy. Other JS semantics, such as prototype chains, were considered but
postponed for the sake of practicality; see Section C.2 for an outline of
what was left out of the substrate.

There is a root for the state, from which everything is discoverable;
all absolute paths begin here, and every value that “exists” necessarily
has some path from root, although it may have more than one owing
to the graph structure. The root is not addressable from user code, but
in JS it is a global called ctx. An “address” consists of a map and a key;
analogously to paths, a piece of state may have more than one “address”
if it is referenced from multiple maps.

b.1.1 Registers

Because values at the root level are accessible from only a single key,
they are the “first port of call” for instructions and are known as registers.
Some specific substrate registers are reserved for use by instructions.
The main substrate registers are:

1 In other words, the “list” concept is contained within the “map” concept, but where
the system expects a list (e. g. when fetching instructions) it will ignore any extra
user-defined keys.

143

144 bootstraplab substrate reference

• focus: an “accumulator” register used by most instructions.

• map: holds the map to be updated or navigated by map instruc-
tions.

• source: holds the new value when updating a map entry.

• next_instruction: program counter; holds the address of the
next instruction and the instruction itself.

• scene: container for the scene tree affecting the graphics window
(discussed shortly).

• addend, factor, basis: operands for mathematical instructions.

All other keys at the root level are general-purpose user registers
available for programs to use.

b.1.2 Graphics State: The scene Tree

Figure B.1: A rectangle inferred from the presence of color, width, height,
and center. As can be seen, color expects a hex string.

While state in general can be graph-structured, it is tree-structured2

under the scene register. The scene itself is a list of graphics maps. The
substrate recognises a map as a graphics map if it contains at least
one graphics property: any of the keys width, height, color3, opacity,
position, center, top_left, zoom, text, or children. The presence of
these keys causes the substrate to connect their values to shapes in the
graphics window and maintain synchronisation. Any graphics map
can have a list of children in the scene hierarchy.

At present, only crude graphics are possible via two shapes. A rect-
angle has a center, color, width, and height (Figure B.1), while a text
label has a top_left, text, and opacity (Figure B.2).

More interesting is the protocol of vector properties like center and
top_left. Firstly, the naming of these properties themselves follows a
design principle which could be called “Naïve Honesty”.4

2 See Section C.3 for how this was accomplished.
3 We comply with the fact that, for better or worse, American spelling conventions are

the de facto standard for internal identifiers and code more generally.
4 By analogy to Boxer’s “Naïve Realism” (diSessa and Abelson 1986).

B.1 state in bootstraplab 145

Figure B.2: A text label inferred from the presence of text and top_left. The
opacity property, not shown, takes a number between 0 and 1.

Figure B.3: The camera ‘zoom‘ and ‘position‘ are bidirectionally synchronised
between the state and the graphics window.

Heuristic 7 (Naïve Honesty). If a more abstract term has only one
intended meaning in a particular API, use the honest concrete concept
instead.

For example, the term “position”, widely used in graphics APIs, is not
very self-documenting when it comes to shapes. In practice, it always
means “the centre of the shape” or “the top left-hand corner” or some
such meaningful function of the shape itself. Therefore, why not just be
explicit about this, and save the user the effort of figuring out what it
actually means? The co-ordinates are specified according to the same
principle: instead of the ever-ambiguous x, y, and z, we have right, up,
and forward (that is, into the screen from your position). In an ideal
substrate, one could specify co-ordinates via left, down, backward, or
any combination, and the system would automatically flip the signs as
necessary for its platform graphics API calls. However, this functionality
does not yet exist in BootstrapLab.

Third, a vector property may have a basis key naming a registered
co-ordinate frame; built-in examples are world (the root THREE.js ba-
sis) and screen (pixel co-ordinates from the top left). This key can
be seen in the special camera graphics map (Figure B.3), linked to the
zoomable/pannable view in the graphics window. If left unspecified,
the basis is assumed to be that of the parent node in the tree. However,
the user can set an explicit basis to express co-ordinates as most conve-
nient to them, while the substrate will convert between frames under
the hood.

This is another application of Naïve Honesty in regard to our frustra-
tions about graphics programming: the co-ordinate basis of a vector is
often left as implicit information for the programmer to carry around in
his head, who must also have a notebook handy to write the relevant

146 bootstraplab substrate reference

matrix equations to transform things properly. We believe this tedium
is exactly what should be handled automatically by the substrate (on
this theme, see Geisler et al. (2020)). As it stands, basis frames are reg-
istered by the key name of the graphics map into a flat list, and are thus
vulnerable to name collisions and synchronisation issues. However,
what we have is a promising start.

Naïve Honesty can be seen as a response to a design requirement
called “No Guessing”:

Requirement 2 (No Guessing). The user of an API should never have
to uncover the meaning of a concept through trial-and-error experimen-
tation. In graphics programming, the user should never have to create
a throwaway object and transform it to resolve ambiguity about sign
conventions, axis conventions, unit conventions, basis conventions, etc.

A reasonable reply to No Guessing might be to just write better
documentation. However, this is still not a solution to implicit basis
frames in user code, and Naïve Honesty attacks the root of the problem
in the poor conventions themselves.

b.1.3 Manually Updating State

In order to update a piece of state and ensure that all relevant UI also
updates to reflect this, the upd() function is used in JS code and the
console. For example, to change the colour of the shape in Figure B.1 to
red, one would issue the following command in the console:

upd(ctx, 'scene', 'shapes', 'children',

'yellow_shape', 'color', '0xff0000')

In order to obtain a JS reference to a value, one gives a path to
map_get():

v = map_get(m, 'children', '1', 'color')

upd(ctx, 'my_value', v)

b.1.4 Persisting State

Calling the function export_state(map, filename) in the console will
walk the state graph from the given map and download it as a JSON
file with the filename; if unspecified, it will default to bl-state.json.
Calling import_state(filename) in the console or the code will yield a
JS Promise that will resolve to the same map, which can then be slotted
in via upd(). For example, the following is how we load the Masp code
in Section 4.9.3 during initialisation:

import_state('misc/render.json').then(x => {

upd(ctx, 'render_map_entry', x);

});

B.2 change in bootstraplab 147

b.2 change in bootstraplab

In keepingwith Alignment (Force 3), the smallest units of change ought
to just “fall out” of the structure of the State:

• Change a map entry to a new value (our store instruction)

• Create a new map (our load instruction)

• Actions necessary to support the above (index and deref)

• Inheritance of platform changes, i. e. mutate JS state and call any
API (the js escape hatch)

The result is our instruction set, which we call BL-ASM. We will elab-
orate on these shortly, but first we will specify how instructions are
represented as state, and how we will notate them in shorthand and
diagrams. We will mostly stick to reference material here; for more
in-depth design rationale, see Section C.1.

b.2.1 Instruction Encoding in State, Text, and Diagrams

An instruction is a map with an op field serving as the opcode, along
with any parameters as further entries. Some examples:

{ op: load, value: my_reg },

{ op: deref },

{ op: store, register: my_dest }

Because this notation is so verbose, and no instruction has more than
one parameter (see Section C.1), we use an inline textual notation with
unnamed parameters. We would write the above like so:

load my_reg ; deref ; store my_dest

In circumstances where there are many instructions and we need to
be even more concise, we only use the first letters of the names. The
above example would reduce to:

l my_reg ; d ; s my_dest

In the next section, we will specify the semantics of the instructions.
In line with the spirit of Notational Freedom (Section 3.3.2), we will use
box-and-arrow diagrams, since we judge this more suitable for our
substrate than traditional formal semantics notations. However, we will
take some cues from the latter; for example, we show the state before
and after the instruction. We also use symbols to stand for abstract
values. Specifically, 𝐾 denotes any string (or “key”), 𝑀 denotes a map,
and 𝑉 denotes an arbitrary value. We additionally employ a grey spot
to highlight the part of the state that was mutated. Figure B.4 shows
the general form.

148 bootstraplab substrate reference

Figure B.4: On the left, we have registers with their values, one of which ref-
erences a map 𝑀1 with some entries. On the right, we have the
state after execution of the instruction; the register reg3 has been
changed (highlighted by the grey spot) to reference a newmap 𝑀2.
Because instructions were designed to be ”minimal” changes, the
grey spot represents the only change and all other state remains
untouched.

b.2.2 Change Map Entry and Supporting Instructions

We will now proceed to explain the semantics of store, index, deref,
and load.

b.2.2.1 Parameterless Store: Change Map Entry

The store instruction, with no parameters, expects a map 𝑀 in the map
register, a key string 𝐾 in the focus register, and a value 𝑉 in the source
register. After execution, the entry 𝐾 of 𝑀 will have the value 𝑉.

B.2 change in bootstraplab 149

b.2.2.2 Index: Follow Key in Map

The index instruction, like the store to which it is dual5, takes a map
𝑀 in map and a key string 𝐾 in focus. After execution, map contains the
value 𝑀.𝐾, unless this is undefined. In that case, it will try the special
key _ as a failsafe and mapwill contain 𝑀._ instead, which could still be
undefined.

b.2.2.3 Store To Register: Change Root Entry

There are alternate semantics6 when store is executedwith a parameter
register of string value 𝐾. In this case, given a value 𝑉 in focus, the
root-level entry 𝐾 will have value 𝑉.

b.2.2.4 Deref: Follow Key in Root

With a string 𝐾 in focus and register 𝐾 holding the value 𝑉, an execution
of deref will place 𝑉 in focus.

5 We mean this in an informal sense, but it points to some interesting analysis which we
have not undertaken. Compare also deref and the register version of store, leaving
load curiously on its own.

6 This “overloading” of an instruction is straightforward in a map substrate, as compared
to a flat binary one (Section 3.1.3), although an argument could be made for it to be a
separate instruction called store-reg.

150 bootstraplab substrate reference

b.2.2.5 Load: Instantiate a Literal

Finally, load takes a parameter value with a value 𝑉. After execution,
the focus register contains 𝑉.

Actually, there is a subtlety if 𝑉 is a map: the focus register then
contains a copy of 𝑉. This is to preserve the intended use of the value
parameter as a “literal”7, especially when the map is empty (see Sec-
tion B.2.3 shortly).

At the time of writing, the copy performed is a deep copy, but this is
almost certainly wrong, as would be always using a shallow copy. The
purpose of having a load instruction with a map literal in the code is
to instantiate a new map with that structure, so the literal in the code
must remain unaffected. The basic intuition (Figure B.5) is that we want
things that present as part of the literal in the code to be fully (deep)
copied; in other words, an inner map that is fully “nested” (and not
referred to elsewhere) should be duplicated. Meanwhile, any references
to data structures that already exist elsewhere (which thus should
not present as “fully nested” in the map literal) should be preserved.
However, the substrate does not yet distinguish between these two
cases.8

b.2.3 Create New Map

Because of the fact that load makes a copy of its value, creating a
new map is simple: load 𝑀, where 𝑀 is an empty map. After execution,
focus contains a new emptymap that can bewritten to,without affecting
the empty map in the instruction itself, which will stay empty (unless,
of course, the instruction is deliberately modified “as data” by separate

7 We use “literal” by analogy to “string literal”, “number literal”, etc. In other words, an
entity presented in its entirety in the source code, rather than loaded from an external
source at run time or built up from separate pieces.

8 It could be argued that the generator of the code (whether user or compiler) knows
best, hence load should just take an optional flag for whichever case is not the default.

B.2 change in bootstraplab 151

Figure B.5: On the left, we have a load instruction for a ”literal” map, meant
to be used as-is. Its effect is to fill the focus register with some sort
of copy of the value. We would present “child” data (i. e. with no
other parents/referrers) as graphically nested within its parent,
and thesemaps should get duplicated. However, data that is clearly
meant to be shared, as evidenced by other existing references,
ought to remain that way.

code). If load did not perform a copy, it would be necessary to use a
different load instruction each time one wanted to create a new map.9
However, arguments could be made to the effect that load should just
have special semantics for the empty map, or that there should be a
load-new instruction, and so on.

b.2.4 Inheritance of JS-level Change

The js instruction takes a func parameter and calls it as a JS function.
This functions as an all-purpose “escape hatch” into the JS platform,
analogous to asm blocks in C code.

{ op: js, func: () => {

alert("Hello, World!");

}}

Some features of the platform were common enough to be worth
implementing as their own instructions, as an optimisation:

• add adds the addend register to focus.

• mul multiplies focus by the factor register.

9 This situation is the same Python’s notorious “mutable default arguments” for func-
tions (Python Guide 2016). Default arguments are evaluated the one time a function
gets defined, instead of per call, so subsequent calls to the functionwill see any successive
changes to the same default argument object.

152 bootstraplab substrate reference

• sign replaces focus with its mathematical sign (+1, 0, or −1).

• typeof replaces focuswith its result under the JS typeof operator.

• basis rewrites the vector in focus to be the same vector, but in
the basis named by the basis register.

However, these remain experimental rather than practical and we
did not get around to implementing an operand stack.

We could argue in favour of such instructions in terms of Alignment
(Force 3). Supposing our basic state-prodding instructions were Turing-
complete, we could certainly implement arithmetic, etc. using Church
numerals encoded as maps, but this would be a waste of the vastly
more efficient capabilities provided by the platform. Similarly, in a
real-world instruction set (e. g. x86), any special-purpose silicon in the
hardware platform ought to be accessible from some instruction; we view
arithmetic and logic instructions as access points to the heavily optimised
ALU, as opposed to “intrinsic” requirements of the instruction set.

Tentatively, we conjecture that instructions are either intrinsic, i. e. nec-
essary for Turing-completeness, or gateways to platform optimisations.
Any instructions for accessing e. g. video memory could be considered
intrinsic if we subsume video memory as just a special part of the over-
all state. Furthermore, any special instructions that affect the outside
world (e. g. refresh the screen, or send network packets) could be re-
interpreted as writing to special parts of state that have side effects;
see also Self’s behaviour-as-state (Ungar and Smith 2007) or Plan 9’s
“control files” (Pike et al. 1993).

b.2.5 The Fetch-Execute Cycle

The next_instruction register holds a map with keys ref and value.
The value entry holds the next instruction itself, while ref contains
entries map and key as the address of the instruction, where key is
an integer. During the fetch-execute cycle, key is incremented. In this
way, a list of instructions can serve as a “basic block”. Furthermore,
if incrementing the key “runs off the end” of a list, the substrate will
follow any continue_to entry in the list and continue execution at key
1 of the associated map.

The fetch-execute cycle is activated via the JS console function called
run_and_render(n), taking a number n of instructions to execute (warn-
ing: this takes place on the main JS thread, so if there are many instruc-
tions, the UI will stall). If n is omitted, it defaults to 1, effectively acting
as a single-step command. Finally, any instruction can have a break

parameter; if set to a value JS considers “truthy”, the fetch-execute cycle
will halt after executing the instruction.

B.2 change in bootstraplab 153

b.2.6 Input Handling

Currently, input handling is entirely a substrate capability, as opposed
to an in-system one. While we have successfully experimented with
running in-system code as “device drivers” in response to input (Sec-
tion 4.5.6), this is not how things work at present. As a leftover from
these experiments, there is a register called pointer containing a boolean
is_dragging and vector-valued pressed_at and released_at. The JS
mousedown/mouseup event handlers ensure is_dragging reflectswhether
the left mouse button is currently down over the graphics window,
and log co-ordinates in pressed_at and released_at as appropriate.
However, there is not currently any functionality in-system to “listen”
for changes on these entries. Furthermore, because run_and_render()
blocks the JS thread until completion, not even a polling-based approach
would work (since the events would queue up until after the thread
unblocks).

These handlers, along with mousemove and onwheel, update the cam-
era position and zoom properties to allow the user to zoom and pan
around the graphics scene. The click handlers and keydown handler are
full of code for selecting and editing entries in the Tree Editor (Sec-
tion 4.8.3). When eventually ported to in-system code (whether Masp
or BL-ASM), these event handlers will more resemble the “device driver”
pattern that we mentioned.

C
BOOTSTRAPLAB TR IV IA

Appendix B was meant as a reference, but many aspects of the substrate
deserve further elaboration in terms of design rationale or unrealised
potential. We will discuss these matters here.

c.1 the minimal random-access instruction set (and its per-
ils)

In this section, we will explain the design rationale that led us to the
peculiarities of the instruction set. Recall Heuristic 3 which instructed
us to pursue an easy-to-implement instruction set. We pursued this goal
to the extreme out of curiosity for what was possible. Of course, it
turned out that the corresponding explosion in the number of instruc-
tions necessary to do a simple thing outweighed any implementation
advantage…

We did this by breaking down higher-level instructions to their com-
ponent operations until we felt we could go no further. This led to a sort
of “microcode” level where each instruction’s implementation corre-
sponded to some single-line JS operation. In other words, the platform
itself blocked any further decomposition.

c.1.1 Deconstruction of a Path-to-Path Copy

Our method for achieving this can be illustrated if we start with a hy-
pothetical complex instruction, e.g. copy a.b.c to x.y.z. The actual
work involved in executing this in JS would involve three steps:

1. Traverse the path a, b, c and save the value in a local variable

2. Traverse the path x, y and save the (map) value too

3. Set the key z in the map to the saved value.

If we score strictly by JS implementation size (a mistake, in hindsight),
we could improve by simply splitting up these steps into instructions
of their own. Any other “complex” instructions that used some of the
same steps (e.g. path traversal) will also be covered by these, and the
total JS would be reduced.

For the first path traversal, we start at the root map (ormore generally,
any given starting map) and follow each of the keys in turn. We have
only one step here (follow key) repeated three times. That’s another
micro-instruction!

155

156 bootstraplab trivia

At this stage, we have this very simple instruction: follow-key k. It
clearly relies on some implicit state register for the current map, and
takes a single parameter.We pushed the limits of sanity by going further,
factoring the parameter out into another state register, so the resulting
instruction is just follow-key (we called it index). In other words, we
applied the following heuristic:

Heuristic 8 (Registers for parameters). Factor out instruction “parame-
ters” into special state registers where possible.

The motivation for this is a vague intuition about sharing parameter
values. Under a parameter scheme, copying the same thing to multiple
destinations will duplicate the “source” parameter many times, even
though the only thing that’s changing is the destination. The converse is
true for operations with the same destination—maybe not overwriting
copies, but arithmetic or other accumulating operations. By breaking
these parameters into state, we set a source or destination once only. This
has a subjective aesthetic appeal from the point of view of minimality,
and an even more dubious efficiency value. We emphasise that it was
an experiment and advise against it for the purposes of implementing
a system quickly.

c.1.2 Copying and Jumping

Combinations of the instructions express the expected copying and
jumping operations. For example, load source-reg; deref; store

dest-reg copies the value in root-level source-reg to dest-reg. The
first instruction loads the literal string source-reg into the focus; the
second replaces focus with the contents of its named register; the third
copies the focus to the named destination.1

The copy a.b.c to x.y.z from earlier would decompose as follows
(recall the ultra-concise notation from Section B.2.1):

1. l a; d; s map; l b; i; l c; i; l map; d; s source

2. l x; d; s map; l y; i

3. l z; s

(Recall that index replaces map with the result of following its key
named by focus, and storewithout any arguments copies from source

to the focus key entry within map.)
A jump is accomplished by overwriting the address in the ref field of

next_instruction. The map or the key of this address can be overwritten

1 It turns out that, if you extract the destination parameter from store, you meet an
infinite regress and will be unable to store to any top-level register. For example, if we
extract the parameter to dest-reg, we have to somehow give it the value it previously
took in the instruction—but this is precisely a store operation and we’re already in
the middle of one. However, see Section C.1.3 for a way around this.

C.1 the minimal random-access instruction set (and its perils) 157

in a single instruction, but if an entirely new address is required, this
needs to be built up separately and overwritten atomically. In other
words,we cannot overwrite the map and then overwrite the key. The ugly
reality is, after overwriting the map, it will have jumped to a different
instruction somewhere else!

A conditional jump is sneaked in by indexing into a map to obtain the
new list of instructions (which is the map that will overwrite the map
under next_instruction.ref). For example, in the following register
snapshot:

...

weather: stormy

map: {

sunny: { ... sunny code sequence ... }

rainy: { ... rainy code sequence ... }

_: { ... other code sequence ... }

}

One of the three code paths will be selected according to what-
ever happens to be in the weather register via the following instruc-
tions: load weather; deref; store focus; index. The map register
will hold the result, in this case the “other” code sequence (recall that
the special key _ is used as an “else” clause for lookups). What remains
is then to copy this within next_instruction.ref.

This example proved that we can do strict equality matching, but
what about comparisons? We may observe how conditional jumps are
traditionally based on a relation to zero, e. g. “jump if less than zero”.
A condition like 3 < 7 is rearranged into 3 − 7 < 0 and the “jump if less
than zero” instruction is called with the value −4. In BootstrapLab, we
go one step further: if we apply the mathematical sign instruction to
the value −4, we get −1. We can then simply use the trick we already
described and index into a map containing keys -1, 0 and 1. All of the
relevant conditions can be expressed this way: for example, “greater
than or equal to zero” can be achieved by pointing the keys 0 and 1 to
the same code sequence.

c.1.3 A Meta-Circular Inelegance

From the perspective of self-sustainable systems, it is worth checking
that there are no hard barriers to implementing a BL-ASM interpreter in
itself. We noticed such a problem with the register store instruction.

Firstly, let us call our existing BL-ASM the “base” level, where the hypo-
thetical interpreter code lives. Next, we call the code being interpreted
the “virtual” level. Suppose that the virtual register file is a map under
the base-level user register virtual and the current virtual instruction
lives in instr (Figure C.1). In this case, upon seeing op: store the
following base-level code will do the trick:

158 bootstraplab trivia

Figure C.1: Separate base and virtual registers.

l virtual; d; s map; l focus; i; l map; d; s source

// now, source = virtual.focus
l instr; d; s map; l register; i; l map; d; s tmp

// now, tmp = instr.register (”foo”)
l virtual; d; s map; l tmp; d; s

// now, virtual[instr.register] = virtual.focus

Figure C.2: Sibling base and virtual registers.

So far, so good; however, the same is not possible if we choose the
virtual registers to live alongside the base registers (whether or not this is
a good idea); call this the “virtual sibling registers” model. We are now
considering the picture in Figure C.2 instead (assume for the sake of
simplicity that virtual code plays nice and only names virtual registers).
This time, we get stuck:

l instr; d; s map; l register; i; l map; d; s tmp

// now, tmp = instr.register (”v_foo”)
// goal: copy value of v_focus to register named by tmp
???

C.1 the minimal random-access instruction set (and its perils) 159

The obvious way this ought to work, via the store instruction, has the
wrong “addressing mode”: it takes a literal string from the instruction,
instead of indirecting through something to get a dynamically deter-
mined destination, which is what we need. The only waywe can achieve
this is through self-modifying code, by copying instr.register to the
register field of a new store instruction and performing the relevant
jumps before and after. This is very inelegant.

The essential JS logic that implements these semantics is as follows:

inst = ... // The current base−level instruction
root[inst.register] = root.focus;

It is natural to ask what instruction, if any, could perform this op-
eration in-system. Under Registers For Parameters (Heuristic 8), the
inst.register value, which is being used “indirect”, should be fac-
tored out into a new register. We refuse to call it the register register,
but destination could work. Since we will be left with a parameter-
less store, we should rename it to store-reg to avoid conflict with the
map-related store.

So far, where previously we had store reg1, we now have load reg1

followed by some way of storing focus to destination. We add a dest
instruction that does exactly this.

Now, we can translate the old load myValue; store reg1 to load

reg1; dest; load myValue; store-reg. The inelegance that caused
our re-design can be codified as a new heuristic:

Heuristic 9 (Interpreter Alignment). Ensure the platform interpreter
can be translated into the substrate language.

Under the new instruction set, we can implement virtual dest and
store-reg (sr) under the “virtual sibling registers” model. For dest,
we wish to fill v_destination with the value in v_focus:

l v_destination; dest; l v_focus; d; sr

For store-reg, we wish to copy the value in v_focus to the register
named by v_destination:

160 bootstraplab trivia

l v_destination; d; dest; l v_focus; d; sr

Notice that this is identical to the implementation of dest except for
the insertion of a deref after the first load.

We can summarise the modified architecture, at the register level,
as having a “read head” focus and a “write head” destination. The
only way a value in the state gets to the register file is in through focus

and out through destination, coupled by the dest instruction. Beyond
the register level, we could analyse map as a combined read-write head.
However, we will leave further analysis for subsequent work. Interested
readers may consult Jakubovic (2021) for some further intuitions and
design philosophy.

c.2 the cutting room floor

Escape The Platform (Force 2) directed us to dowithout several advanced
substrate features we were tempted to include. For example, it would be
useful to attach state change listeners to keep parts of the state in sync
with others. We could go even further and include constraint-based
programming features.

On another note, our substrate is based on “maps” without a prede-
fined ordering of the entries. However, there is always some order in
which they will be displayed:

{ red: 100, green: 255, blue: 0 }

Thus it might be nice to be able to set this on a per-map basis. A
convenient way to expose this in-system would be via another map, or
“order map” which would be a list map of key names:

{ 1: red, 2: green, 3: blue }

A practical use of this is for enabling iteration through a map’s keys
or entries. If we wish to be rigorous, the order map itself would have an
order map, which would (by default) be the same for all order maps:

{ 1: 1, 2: 2, 3: 3 }

Of course, with such a conceptually infinite sequence of order maps,
care must be taken to implement it in a finite, on-demand way. Perhaps
some clever circular reference would work, as COLA does for its vtable
relation (Piumarta and Warth 2008). This raises the question of how
to obtain an order map in-system. If we make it an ordinary key on all
maps, we must be careful to render it only on-demand and to exclude it
from ordinary iteration through keys. Plus, would we want the visual
clutter of always displaying it? It might be better to make it accessible
through a special instruction order-map.

C.3 graphs vs. trees 161

We then face a further synchronisation problem, where we must alter
the display order whenever the order map is changed, and insert or
remove entries from the order map to match its source.

Other thoughts along these lines included parent maps for delegating
lookups (similar to JS’s prototype system), inversemaps, andmetamaps
for possibly collecting all of these (drawing inspiration from Lua’s
metatables). Of these, we will only discuss inverse maps in more detail.

Inversemaps come from the viewof amap as amathematical function
from key names to values. Often in advanced data structures (such as
those for graphical diagrams) it is essential to know “who points to
me” via some key. For example, the question “Is this node the source of
anyone else?” is a natural one, but normally it is impossible to answer
based on ordinary dictionary keys. In ordinary programming languages,
this information needs to be kept track of separately; say, in a manually
synchronised list called sources that lives on the node. It is frustrating
that the “forward” question is trivially answered by just following a
map entry, yet the “backward” question has to be hacked around like
this.2

An inverse map would somehow collect all references to a map from
other ones. A user-level “map” would be implemented by two dictio-
nary structures, the forward and backward halves, which are automat-
ically kept in sync by the substrate implementation. The previously
mentioned issues of access, mutation and others also rear their ugly
heads here, so we can be forgiven for discarding the idea for the sake of
making progress. Still, a properly worked out implementation would
provide a valuable service for a high-level substrate.

c.3 graphs vs. trees

A classic debate in the world of explicit structure is whether to use
restricted tree structures or to allow arbitrary graphs. A tree has the ad-
vantage that every node has a single parent, which is a useful canonical
answer to the question “what context am I in?”. On the other hand,
many practical problems do not fit inside a tree structure; either because
they are DAGs, and a node can have multiple parents, or because they
involve cyclic relations. Because we did not know what sort of things
we would require in BootstrapLab, we erred on the side of freedom and
supported full graph relations. This bit back at us in two ways, both
involving the graphics domain.

Firstly, cyclic structures need to be rendered with care; a naïve depth-
first search will never terminate. For a long time, we did not have any
cyclic structures and got away with a depth-first approach to DOM
generation in the temporary state view (Section 4.6.2).

2 Norvig’s “Relation” pattern (Norvig 1996) for dynamic languages is relevant to this
sort of concern.

162 bootstraplab trivia

Secondly, while this was the case, the graphics sub-region of state
needed to be a tree. Spatial containment and other visual nesting (e.g. for
the tree editor) is a tree structure, as is the underlying parent-child rela-
tionship of THREE.js objects. Many aspects of rendering the tree editor
required the ability to ask “what context am I in?” but this is unan-
swered by default in a graph substrate. Providing a “parent” key for
each node would not do—this would be a cyclic reference. Instead, we
kludged it: the first map to reference another map becomes its “parent”,
and this lasts until the reference is deleted. This parent property is avail-
able from JS; as we port the tree editor to Masp, we will have to decide
how to expose it in-system (probably through a special instruction).

Of course, we eventually did require cyclic structures—for the tree
editor! Each graphics node in the editor has a source key providing a
way for edits to propagate back to the source state node. All edit nodes
live in the graphics tree, including the one corresponding to the root
node of the state. In this case, the source points all the way upwards
to this root node. This cycle broke our state view and there was much
gnashing of teeth to hack around this. Eventually, we bit the bullet
and improved the state view JS to cope with cycles—having previously
hoped we were done with this temporary infrastructure.

Let this be a warning that Alignment (Force 3) will come for you in
the end. If your substrate allows cycles, your state view must tolerate
them!

D
MASP REFERENCE

The objective of Masp is to get all the benefits of a Lisp-like expression
language in a way that is Aligned (Force 3) with our map-based sub-
strate (see Appendix B). We want to preserve the dynamic, functional,
and metaprogramming facilities of Lisp, while leaving behind the re-
liance on positional parameters andmaking full use of map affordances.

Lisp is built around the “linked list” data structure as implemented by
“cons” cells. Expressions to be evaluated take the form of lists. However,
lists can also represent “data” lists that are not meant to be evaluated.
Similarly, Masp includes both “data” maps and maps representing an
expression to evaluate. Accordingly, we will divide our description of
Masp into State and Change.

d.1 state in masp

State is inherited from the substrate (see Section B.1); in particular, lists
continue to exist as maps with numerical keys. However, there is one
important Masp structure that needs encoding within this substrate: the
variable binding environments (or envs for short). An env is basically
a tree of dictionaries, where children delegate failed lookups to their
parents. In Lisp this is traditionally encoded as a tree of linked list cells,
where lookups are accomplished by linear search. In Masp, the map
substrate already provides the dictionary structure for free, with lookup
as a primitive operation (no linear scans!) and all that must be done is
to add extra structure for delegation.

Delegation could be as simple as adding a parent key to a map, but
this “in-band” encoding would essentially reserve the word parent

and preclude it from “user”-level Masp code. We could call it __parent
or something equally strange and perhaps get away with it, but for
elegance’s sake we took the alternative route. An env is a map with two
entries, called parent and entries. The latter holds the local entries
(which can have whatever keys we want), while parent points to the
parent env if it has one.

d.2 change in masp

The fundamental distinction a Lisp/Masp interpreter needs to make is
between expressions that need evaluating, and those that do not. If Lisp
is asked to evaluate a list, it will assume the first element is a “function

163

164 masp reference

expression” and evaluate it to obtain a function.1 It will then apply this
function to the rest of the list as arguments, evaluating them or leaving
them alone as the function specifies.

In Masp, a function application is explicitly marked by the presence
of an apply key. When Masp evaluates a map, it looks for this key and
treats its value as a function expression. The rest of the keys in the map
are its arguments. True, this in-band encoding means that no function
may have a parameter called apply, but we made this decision for
simplicity and readability of Masp code, given the primitive notations
available to us at the time. Consider the following illustrative function
application:

apply: drawLine, from: { x: 10, y: 20 }, to: { x: 50, y: 60 },

color: { apply: quote, to: 0xff0000 }

The evaluator looks at the apply key, sees it is a JS string, and looks
up “drawLine” in the current env to get a closure. Suppose the closure
lacks a dont_eval_args key; the evaluator goes through each remaining
entry2 and evaluates it. The from and to values are both data maps
lacking an apply key, so they remain as they are. The color argument is
a further application3, which evaluates to the string 0xff0000 (simply
putting the string itself would cause a variable lookup).

This illustrates that, as far as JS primitives are concerned, nearly all are
treated as “terminal” values that need no evaluation. The sole exception
is a string, which denotes a variable to be looked up in the current env.

By convention, single-argument functions like quote name the argu-
ment to in order to provide the reading “apply function to argument”.
Some functions, such as add, mul, sub, etc. number their arguments
instead of using their official names:4 apply: add, 1: 10, 2: 20.

As in Lisp, an individual function parameter can be “extensional”
(evaluated before use) or “intensional” (used in its un-evaluated form).
For example, the if function used as (if cond then else) has cond in
extensional position; the behaviour of if depends entirely on whether
cond evaluates to true or false and not on the make-up of the cond

expression itself (Smith 1982, p. 360). Meanwhile, the then and else

code are used intensionally because one of them should not be evaluated
(otherwise, the “wrong” branch would still get to cause its side effects).

1 By Lisp, we abbreviate “the version(s) of Lisp that have the desirable features we wish
to see in Masp”; any versions of Lisp that do not do what we mention are not germane
to the discussion.

2 In a nondeterministic order—which is worth fixing in subsequent work. Perhaps Order
Maps (Section C.2) have their place here.

3 The special meaning of the apply key means that a “data” map in argument position
to such a function cannot have such a key; it would be seen as an application and
evaluated. This would not be a problem, however, for a function with dont_eval_args

set, provided the function specifically left the given argument unevaluated.
4 Despite our tolerance of verbosity with the promise of future Notational Freedom, we

could not stomach having addend, multiplicand, subtrahend, etc. in Masp arithmetic.

D.2 change in masp 165

For simplicity, functions inMasp are assumed all-extensional by default;
this can be disabled by setting the dont_eval_args entry on the function
closure, in which case it is up to the function itself to perform any
evaluation.

A Masp closure is a map with entries for the function body, local
env, a list of arg_names, and optionally a dont_eval_args flag. If the
body is a JS function, the closure represents a primitive function run in
the platform. Otherwise, the body is treated as a Masp expression to
evaluate in the context of the local arguments.

Interestingly, arg_names is never actually used by anything, not even
the evaluator. It is necessary in Lisp, as it links the positional arguments
passed to the internal names used in the body; in Masp, arguments are
already passed with names, so no such linking is necessary.5

d.2.1 Maps as Functions

We find it useful to view maps abstractly as “extensional6 functions”:
mathematical functions taking inputs to outputs, whose mappings
are explicitly listed instead of via some computation. Therefore it is
important that maps must be usable as functions in Masp; we must
be able to “apply” a map to a value. This gives us a special case of
pattern matching for free (i. e. strict equality matching). It may be
worth considering how augmenting the definition of maps-as-functions
could support more advanced patternmatching (e. g. inequalities, more
complex conditions) but this is beyond the scope of Masp as-is. We
retain the failsafe match named _ from the substrate’s index instruction
(Section B.2.2.2).

For example, the patternmatch in the Factorial definition (Figures 4.7
and 4.8) could be extended like so (using $...$ to denote syntactic
sugar):

to: n, apply:

0: 1

1: 1

2: 2

3: 6

_: $ n * fac(n-1) $

This situation can be read imperatively as “to n, apply the map”, or
indicatively as “pushing n through the map”.

5 We kept arg_names to serve as an order map (see Section C.2) to enable positional
parameters as a concise notation in the future. One addition suggested by the Lisp
usage is an arg_renames to connect the preposition-like names used in calls (to, is, as,
etc.) to more descriptive internal names, allowing function bodies to refer to theValue

instead of as while retaining the natural-language-esque rhythm on the calling side.
6 Extensional in the sense of ”listing out the entries”; a different meaning to the ”exten-

sional” of ”evaluates all arguments”! Both of these philosophical concepts are relevant
to Masp and it is unfortunate that they share the same word.

166 masp reference

Figure D.1: The masp register contains an initial_env with basic primitives,
a program, and the current evaluation context ctx. When fully
evaluated, the program has its tree structure expanded into a
tree of local contexts, each with an expr and a value (envs have
been omitted for brevity). Solid rectangles enclose ordinary maps;
dashed rectangles draw attention to local contexts.

d.2.2 Masp Tree-Based Evaluation

As shown in Section 4.7.4, Masp evaluates expressions incrementally
and additively in a subtree of the state. This subtree lives under the masp
top-level register. Inside it lie initial_env, the global variable-binding
env of last resort; program, the program being evaluated; and ctx, the
current evaluation context somewhere within program.

The JS interpreter function masp_step() performs a small evaluation
step, e. g. resolving a variable binding (this is the “incremental” aspect
of evaluation). As a JS function, it is “re-entrant” in the sense that all of
the information it needs lives in the Masp tree, not the JS stack. Thus,
every step, it must re-learn where it is in terms of evaluating the current
expression and leave appropriate markers in the tree to direct its next
run.

A local evaluation context, or context for short, contains a local env, an
expr, and eventually a value (this is the “additive” aspect of evaluation;
one can still see the expression that the value came from). If masp_step
sees that there is no value, its goal is to make one. Otherwise, its goal is
to point the ctx back up to the context for the parent expression, or pass
the value up there. At all times, the original program tree is unaffected;
after full evaluation, every expression will have been duplicated and
wrapped in a context, forming a tree of contexts collectively containing
a copy of the program (Figure D.1).

D.2 change in masp 167

d.2.2.1 Beginning the Walkthrough

We will walk through the process from the perspective of masp_step.
If the expr is a string, we add a value obtained from looking up the
expr in the local env. If expr is a map with no apply entry, i. e. a “literal”
map, we set the value to a special closure in which literal is set to
the expr and the current env is included. Otherwise, if the apply node
has not yet been evaluated, we wrap it in a new context and enter (i. e.
we make it the new ctx). Once there is a value for the function closure,
evaluation proceeds to the arguments unless dont_eval_args is set on
the closure. A tracking variable in the context, arg_i, helps us discover
the next unevaluated argument, as determined by the order of map
keys from JS’ Object.keys().

d.2.2.2 Protocol Between JS Primitives and Masp

After processing the arguments, we inspect the body of the function
closure. If it is a JS function, we call this “primitive” with the context
and argument values (for the full list of primitives, see Section D.2.3).
The protocol for Masp primitives is that returning true (on the JS stack)
means that it has returned a value (in Masp); otherwise, it is evaluating
a subexpression and needs to be run again afterwards. For example,
here is the JS code for the decr (decrement) primitive:

'decr': { body: (c, args) =>

{ upd(c, 'value', args.to-1); return true; }}

It sets the value in the context and returns true, signalling that it
has also returned in Masp. A more complicated intensional primitive is
define (its usage reads “define name: … as: …”):

'define': { body: (c, args) => {

if (typeof args.as === 'object') {

const val = map_get(args.as, 'value');

if (val !== undefined) {

upd(masp, 'initial_env', 'entries', args.name, val);

upd(c, 'value', null); return true;

}

}

masp_enter('as');

}, dont_eval_args: true }

Because dont_eval_args is set, definewill receive the name argument
as an unevaluated string. It needs to evaluate the as argument, and if it
has already done so, it binds it to the name in the global initial_env,
sets the Masp return value as null (i. e. no return value, entirely side-
effects) and returns true to return in Masp. Otherwise, it creates and
enters a new context for as, and implicitly returns undefined in JS, which
is falsy, telling the evaluator that define has not finished evaluating.

168 masp reference

d.2.2.3 Evaluating a Non-Primitive Body

Back to inspecting the body. If a body is absent but we have a literal

map instead, we push the single argument (named to) through the
map and treat the result as the body (going via the _ key if this fails).
This facilitates pattern-matching for the purpose of obtaining further
code to execute beyond obtaining just a value straight away.

At this point, we have a body made of Masp code to evaluate in an
appropriate context. We create a new context, duplicate the body code
so we can destructively replace expressions with contexts down the
line, and set that as the value of the apply context. We fill the local env
with the processed arguments, and enter this new context (i. e. set it as
the ctx).

Finally, if we have been through all the preceding conditions in
masp_step but did not “do” anything, and the current context already
has a value, we must have finished evaluating this subexpression and
re-enter the parent context to continue there.

d.2.3 List of Primitives

Here,wewill describe the primitives contained in theMasp initial_env.
Be aware that this list is not yet “complete” owing to the in-progress
state of Masp. For space, the apply before each function name is abbre-
viated to ap. The primitives are:

• ap: quote, to:𝑉 evaluates to 𝑉. It is most commonly used to
represent a literal string value, since in many contexts a string
will be treated as a variable reference and evaluated as such. It
could also be used to represent a data map that contains an apply

key, “protecting” it from evaluation.

• ap: mul, 1:𝑥, 2:𝑦 multiplies the numbers 𝑥 and 𝑦. It is present
to support the factorial example.

• ap: decr, to:𝑥 decrements 𝑥, i. e. evaluates to 𝑥 − 1. We in-
cluded it instead of a subtraction function to ease the number of
evaluation steps when debugging the factorial example.

• ap: fun, arg_names:𝐿, body:𝐵 creates a function closure with
the list 𝐿 of argument names, the body code 𝐵, and the lexical env
at the point of definition. Re-naming of Lisp lambda.

• ap: define, name:𝑆, as:𝐸 sets the key 𝑆 in the initial_env

to the result of evaluating 𝐸, imperatively setting a global variable.

• ap: local, name:𝑆, is:𝐸 sets the key 𝑆 in the local env to the
result of evaluating 𝐸, imperatively setting a local variable.

• ap: block, 1:𝐸1, 2:𝐸2, ... imperatively executes the expres-
sions 𝐸𝑛 and evaluates to the value of the last one.

D.3 important related work 169

• ap: get, map:𝑀, key:𝑆 evaluates to the value of key 𝑆 in map
𝑀 (or null if undefined).

• ap: set, map:𝑀, key:𝑆, to:𝐸 updates key 𝑆 of map 𝑀 to the
value of 𝐸 (updating any graphics, because it uses upd internally).

• null is a variable bound to the JS value null. Workaround for the
fact that the tree editor can only input strings and numbers, not
arbitrary JS values.

• undefined, true, and false are variables bound for the same
reason as null.

d.3 important related work

Procedural Reflection in Programming Languages (Smith 1982) was of great
inspiration while we designed Masp, and remains of serious interest.
The work builds up to the design of a fully, elegantly reflective version
of Lisp called 3-LISP. In order to do this, it explains the unique features
and subtleties of ordinary “1-LISP” while critiquing inelegant aspects
of its design, and applies philosophical rigour to address these issues.
The intermediate 2-LISP is possessed of strong “Category Alignment”
regarding the different types of data structures available (e. g. split-
ting 1-LISP’s overloaded “list” into the applicative “pair” and the data
“rail”), and methodically refines 1-LISP’s eval/apply into a philosoph-
ically rigorous normalise/reduce. For reasons of time and resource
availability, we designed Masp mostly as an analogue of 1-LISP, inher-
iting its flaws. However, we would welcome efforts to “port” Smith’s
methodology regarding 2-LISP and 3-LISP to map-based substrates.

Another approach worth developing is found in (Piumarta 2011).
Open, Extensible Composition Models inserts a level of indirection into the
Lisp evaluator, such that user-defined evaluators and applicators can be
supplied to support “novel composition mechanisms”. These are also
interesting ideas which, regrettably, we did not have the opportunity to
try out. We welcome further work to port the ideas to maps and see if
they are compatible with the 2-LISP or 3-LISP architectures.

E
TECHNICAL D IMENS IONS CATALOGUE

Here, we present our proposed technical dimensions in detail. While
they do contain some novel ideas of our own, they also integrate a wide
range of existing concepts under a common umbrella. Note that the
material here represents an update of our publication (Jakubovic et al.
2023), mainly in regards to our Three Properties. Their dimensions in
Section 5.4 represent an evolution of some of the concepts in the paper,
specifically:

• Our definition of Explicit Structure (Section 3.3.3) supersedes
what was previously “Surface / internal notations”.

• Notational Freedom (Section 3.3.2) came from some aspects of
the Notation dimensions (Section E.2), particularly uniformity of
notations.

• Our description of Self-Sustainability (Section 3.3.1) is a fully
developed version of the old dimension of the same name.

Therefore, in order to make this reference catalogue self-contained,
we have rewritten the relevant sections here with adaptations of the
material in Chapters 3 and 5.

The intention of this catalogue is to provide a reference to be looked
up and used as needed, not something that should be read from start to
finish. We recommend skimming through the catalogue for anything
particularly interesting before proceeding to Section E.8. There, we will
reference several dimensions in the context of a specific example, at
which point it may be helpful to come back for more detail. For a quick
overview, we include a concise reference sheet on the next page, though
it may make more sense after reading the relevant sections.

We present the dimensions grouped under clusters. These may be
regarded as “topics of interest” or “areas of inquiry” when studying a
given system, grouping together related dimensions against which to
measure it.

Each cluster is named and opens with an indented summary, followed
by a longer discussion, and closes with a list of any relations to other clus-
ters along with any references if applicable. Within the main discussion,
individual dimensions are listed, although our Three Properties are first
introduced as concepts. Sometimes, a particular value along a dimension
(or a combination of values along several dimensions) can be recog-
nised as a familiar pattern—perhaps with a name already established
in the literature. These are marked as examples. Finally, interspersed
discussion is introduced as a remark.

171

Dimension (CLUSTER) Summary Range of key examples

INTERACTION How do users manifest their ideas, evaluate the result, and generate new ideas in re-
sponse?

Feedback Loops How wide are the various gulfs of execution
and evaluation and how are they related?

Immediate Feedback (short) vs. batch
mode (long) gulf of evaluation

Modes of Interaction Which sets of feedback loops only occur to-
gether?

Setup vs. editing vs. debugging

Abstraction Construction How do we go from abstractions to concrete
examples and vice versa?

Programming by Example vs. first
principles

Implicit vs. Explicit Structure How much time must users spend account-
ing for syntax or format errors?

Zero (explicit structure) vs. lots (implicit
structure)

NOTATION How are the different textual / visual programming notations related?

Notational Structure What notations are used to program the
system and how are they related?

Notations overlap and need sync vs.
complement each other

Primary / Secondary
Notations

Is one notation more important than oth-
ers?

Secondary build scripts vs. visual editor
and code on equal footing in Flash

Expression Geography Do similar expressions encode similar pro-
grams?

Concise yet error-prone vs. explicit yet
verbose

Uniformity of Notations Does the notation use a small or a large
number of basic concepts?

Lisp S-expressions vs. English-like textual
notations

Notational Freedom How easily can the system integrate novel
notations that the user has implemented?

Encourages custom notations vs. enforces
a single one

CONCEPTUAL
STRUCTURE

How is meaning constructed? How are internal and external incentives balanced?

Conceptual Integrity vs.
Openness

Does the system present as elegantly de-
signed or pragmatically improvised?

Integrity (Everything is a X) vs. openness
(compatible mixtures)

Composability What are the primitives? How can they be
combined to achieve novel behaviors?

Sequence, selection, repetition, function
abstraction, recursion, logical connectives

Convenience Which wheels do users not need to reinvent? Small vs. expansive standard libraries

Commonality How much is common structure explicitly
marked as such?

Common structure is redundantly
flattened vs. factored out

CUSTOMIZABILITY Once a program exists in the system, how can it be extended and modified?

Staging of Customization Must we customize running programs dif-
ferently to inert ones? Do these changes
last beyond termination?

Source code vs. config files, Developer
Tools tab, auto image-based persistence,
scripting language

Externalizability Which portions of the system’s state can be
referenced and transferred to/from it?

None (state is private) vs. all state exposed
as human-legible, CSS-like addressing

Additive Authoring How far can the system’s behavior be
changed by adding expressions?

None (requires power to change original)
vs. full (anything can be overridden
repeatedly)

Self-Sustainability How far can the system’s behavior be
changed from within?

None (rely on external tools) vs.
self-sufficient (contains everything needed)

COMPLEXITY How does the system structure complexity and what level of detail is required?

Factoring of Complexity What programming details are hidden in
reusable components and how?

Domain-specific (more hiding) vs.
general-purpose (less hiding)

Level of Automation What part of program logic does not need
to be explicitly specified?

Garbage collection (low-tech) vs. Prolog
engine (hi-tech)

ERRORS What does the system consider to be an error? How are they prevented and handled?

Error Detection What errors can be detected in which feed-
back loops, and how?

Human inspection in live coding vs. partial
automation in static typing

Error Response How does the system respond when an error
is detected?

Does it stop, recover automatically, ignore
the error or ask the user how to continue?

ADOPTABILITY How does the system facilitate or obstruct adoption by both individuals and communi-
ties?

Learnability What is the attitude towards the learning
curve and what is the target audience?

HyperCard for the general public vs.
FORTRAN for scientists

Sociability What are the social and economic factors
that make the system the way it is?

Cathedral vs. Bazaar model

E.1 interaction 173

e.1 interaction

How do users manifest their ideas, evaluate the result, and
generate new ideas in response?

An essential aspect of programming systems is how the user interacts
with themwhen creating programs. Take the standard form of statically
typed, compiled languages with straightforward library linking: here,
programmers write their code in a text editor, invoke the compiler, and
read through error messages they get. After fixing the code to pass
compilation, a similar process might happen with runtime errors.

Other forms are yet possible. On the one hand, some typical interac-
tions like compilation or execution of a program may not be perceptible
at all. On the other hand, the system may provide various interfaces to
support the plethora of other interactions that are often important in
programming, such as looking up documentation, managing depen-
dencies, refactoring or pair programming.

We focus on the situations where a programmer interacts with the
system to construct a program with a desired behaviour. To analyse
them, we use the concepts of gulf of execution and gulf of evaluation from
The Design of Everyday Things (Norman 2002).

e.1.1 Dimension: feedback loops

In using a system, one first has some idea and attempts tomake it exist in
the software; the gap between the user’s goal and the means to execute
the goal is known as the gulf of execution. Then, one compares the result
actually achieved to the original goal in mind; this crosses the gulf of
evaluation. These two activities comprise the feedback loop through which
a user gradually realises their desires in the imagination, or refines
those desires to find out “what they actually want”.

A system must contain at least one such feedback loop, but may
contain several at different levels or specialised to certain domains. For
each of them, we can separate the gulf of execution and evaluation as
independent legs of the journey, with possibly different manners and
speeds of crossing them.

For example, we can analyse statically checked programming languages
(e.g. Java, Haskell) into several feedback loops (Figure E.1):

1. Programmers often think about design details and calculations
on a whiteboard or notebook, even before writing code. This
supplementary medium has its own feedback loop, even though this
is often not automatic.

2. The code is written and is then put through the static checker. An
error sends the user back to writing code. In the case of success,
they are “allowed” to run the program, leading into cycle 3.

174 technical dimensions catalogue

Figure E.1: The nested feedback loops of a statically-checked programming
language.

• The execution gulf comprises multiple cycles of the sup-
plementary medium, plus whatever overhead is needed to
invoke the compiler (such as build systems).

• The evaluation gulf is essentially the waiting period before
static errors or a successful termination are observed. Hence
this is bounded by some function of the length of the code
(the same cannot be said for the following cycle 3).

3. With a runnable program, the user now evaluates the runtime
behaviour. Runtime errors can send the user back to writing code
to be checked, or to tweak dynamically loaded data files in a
similar cycle.

• The execution gulf here may include multiple iterations of
cycle 2, each with its own nested cycle 1.

• The evaluation gulf here is theoretically unbounded; one may
have to wait a very long time, or create very specific condi-
tions, to rule out certain bugs (like race conditions) or simply
to consider the program as fit for purpose.

• By imposing static checks, some bugs can be pushed earlier
to the evaluation stage of cycle 2, reducing the likely size of
the cycle 3 evaluation gulf.

• On the other hand, this can make it harder to write statically
valid code, which may increase the number of level-2 cycles,
thus increasing the total execution gulf at level 3.

E.1 interaction 175

• Depending on how these balance out, the total top-level
feedback loop may grow longer or shorter.

e.1.2 Example: immediate feedback

The specific case where the evaluation gulf is minimised to be imper-
ceptible is known as immediate feedback. Once the user has caused some
change to the system, its effects (including errors) are immediately
visible. This is a key ingredient of liveness, though it is not sufficient on
its own. (See Relations.)

The ease of achieving immediate feedback is obviously constrained
by the computational load of the user’s effects on the system, and the
system’s performance on such tasks. However, such “loading time” is
not the only way feedback can be delayed: a common situation is where
the user has to manually ask for (or “poll”) the relevant state of the
system after their actions, even if the system finished the task quickly.
Here, the feedback could be described as immediate upon demand yet not
automatically demanded. For convenience, we choose to include the latter
criterion—automatic demand of result—in our definition of immediate
feedback.

In a REPL or shell, there is a main cycle of typing commands and
seeing their output, and a secondary cycle of typing and checking the
command line itself. The output of commands can be immediate, but
usually reflects only part of the total effects or even none at all. The
user must manually issue further commands afterwards, to check the
relevant state bit by bit. The secondary cycle, like all typing, provides
immediate feedback in the form of character “echo”, but things like
syntax errors generally only get reported after the entire line is submit-
ted. This evaluation gulf has been reduced in the JavaScript console of
web browsers, where the line is “run” in a limited manner on every
keystroke. Simple commands without side-effects,1 such as calls to pure
functions, can give instantly previewed results—though partially typed
expressions and syntax errors will not trigger previews.

e.1.3 Example: direct manipulation

Direct manipulation (Shneiderman 1983) is a special case of an immedi-
ate feedback loop. The user sees and interacts with an artefact in a way
that is as similar as possible to real life; this typically includes dragging
with a cursor or finger in order to physically move a visual item, and is
limited by the particular haptic technology in use.

1 Of course, these are detected via some conservative over-approximationwhich excludes
expressions that might side-effect.

176 technical dimensions catalogue

Naturally, because moving real things with one’s hands does not
involve any waiting for the object to “catch up”,2 direct manipulation
is necessarily an immediate-feedback cycle. If, on the other hand, one
were tomove a figure on screen by typing new co-ordinates in a text box,
then this could still give immediate feedback (if the update appears instant
and automatic) but would not be an example of direct manipulation.

Spreadsheets contain a feedback loop for direct manipulation of values
and formatting, as in any other WYSIWYG application. Here, there is
feedback for every character typed and every change of style. This is not
the case in the other loop for formula editing and formula invocation.
There, we see a larger execution gulf for designing and typing formulas,
where feedback is only given upon committing the formula by pressing
enter. This makes it an “immediate feedback” loop only on-demand, as
defined above.

e.1.4 Dimension: modes of interaction

The possible interactions in a programming system are typically struc-
tured so that interactions, and the associated feedback loops, are only
available in certainmodes. For example, when creating a new project, the
user may be able to configure the project through a conversational inter-
face like npm init in modern JavaScript. Such interactions are no longer
available once the project is created. This idea of interaction modes goes
beyond just programming systems, appearing in software engineer-
ing methodologies. In particular, having a separate implementation and
maintenance phase would be an example of two modes.

Editing vs debugging. A good example is the distinction between edit-
ing and debugging mode. When debugging a program, the user can
modify the program state and get (more) immediate feedback on what
individual operations do. In some systems, one can even modify the
program itself during debugging. Such feedback loops are not available
outside of debugging mode.
Lisp systems sometimes distinguish between interpreted and compiled

mode. The two modes do not differ just in the efficiency of code execu-
tion, but also in the interactions they enable. In the interpreted mode,
code can be tested interactively and errors may be corrected during
code execution (see Error response). In compiled mode, the program can
only be tested as a whole. The same two modes also exist, for example,
in some Haskell systems where the REPL uses an interpreter (GHCi)
distinct from the compiler (GHC).

2 In some situations, such as steering a boat with a rudder, there is a delay between input
and effect. But on closer inspection, this delay is between the rudder and the boat; we
do not see the hand pass through the wheel like a hologram, followed by the wheel
turning a second later. In real life, objects touched directly give immediate feedback;
objects controlled further down the line might not!

E.1 interaction 177

Jupyter notebooks. A programming system may also unify modes that
are typically distinct. The Jupyter notebook environment does not have
a distinct debugging mode; the user runs blocks of code and receives
the result. The single mode can be used to quickly try things out, and to
generate the final result, partly playing the role of both debugging and
editing modes. However, even Jupyter notebooks distinguish between
editing a document and running code.

e.1.5 Dimension: abstraction construction

Anecessary activity in programming is going between abstract schemas
and concrete instances. Abstractions can be constructed from concrete
examples, first principles or through other methods. A part of the pro-
cess may happen in the programmer’s mind: they think of concrete
cases and come up with an abstract concept, which they then directly
encode in the system. Alternatively, a system can support these different
methods directly.

One option is to construct abstractions from first principles. Here, the
programmer starts by defining an abstract entity such as an interface in
object-oriented programming languages. To do this, they have to think
what the required abstraction will be (in the mind) and then encode it
(in the system).

Another option is to construct abstractions from concrete cases. Here,
the programmer uses the system to solve one ormore concrete problems
and, when they are satisfied, the system guides them in creating an
abstraction based on their concrete case(s). In a programming language
IDE this manifests as the “extract function” refactor, whereas in other
systems we see approaches like macro recording.
Pygmalion. In Pygmalion (Smith 1975), all programming is done by

manipulating concrete icons that represent concrete things. To create
an abstraction, one can use “Remember mode”, which records the
operations done on icons and makes it possible to bind this recording
to a new icon.
Jupyter notebook. In Jupyter notebooks, one is inclined to work with

concrete things, because one sees previews after individual cells. This
discourages creating abstractions, because then one would not be able
to look inside at such a fine grained level.

Spreadsheets. Up until the recent introduction of lambda expressions
into Excel (Murray 2022), spreadsheets have been relentlessly concrete,
without any way to abstract and reuse patterns of computation other
than copy-and-paste.

e.1.6 Concept: implicit vs. explicit structure

Explicit Structure refers to the sense of working with data directly rather
than through some other medium. It is a property of the interaction

178 technical dimensions catalogue

between users, interfaces, and underlying data structures. We split the
life-cycle of a data structure into two halves:

• On the producer side, the data structure is created or edited using
some interface.

• On the consumer side, a programmer is writing code that uses the
data structure.

Explicit Structure is hard to define positively because it is the default
state of affairs across much of computing, with programming being the
notable exception. On the producer side, explicit structure is exhibited
by a vector graphics editor like Inkscape: one simply draws a diagram
with shapes and saves it as a file. On the consumer side, Explicit Struc-
ture looks like a programmer navigating through named parts of the
diagram structure:

svg.root_nodes[1].children[2].fill_color = '#ff00ff';

The best way we have found to model Explicit Structure is as a lack
of Implicit Structure, where we follow the split between producer and
consumer concerns. On the producer side, we have an editor with an
interface creating and changing a data structure. This is saved and
passed onto consumers, which can be collaborators using editors or
a programmer writing code to use the data structure. The definition
of Implicit Structure we are interested in is about how much users or
programmers must be aware of it and devote cognitive resources to
working with it. On the producer side, this manifests as which types of
syntax errors ormore general format errors they are able to save and pass
on to consumers. On the consumer side, Implicit Structure is revealed
by the amount of code we have to write to deal with parsing, serialising,
escaping, loading and saving, and so on. Therefore, we suggest the
following two dimensions which add up to Implicit Structure.

e.1.7 Dimension: format errors

How many different types of format errors can be introduced, saved as
invalid structures, and passed to consumers, such that they will halt
with an error? For example, text editors allow all possible syntax errors
to be saved and several format errors (e. g. type mismatches and use
of undeclared names). However, a text editor interface that refused to
save invalid files could form part of a system with Explicit Structure.

Block or structure editors may prevent all format errors from being
saved, which would constitute the minimal value of this dimension.
The approach of Hazel (Omar et al. 2019) is unique in having language
semantics that tolerates fully typed “holes” representing missing ex-
pressions, which obviates concerns about persisting or transferring
such programs. This highlights the fact that Implicit Structure is about

E.1 interaction 179

mismatches between the producer and consumer of data, rather than
producer leniency or consumer intolerance per se.

Arguably, the maximal value of Implicit Structure would be found in
a hex editor: any data at all may be saved and passed on. This can violate
even the basic rules of text files through non-printable characters, while
any and all internal rules of a binary file can also be easily broken.

e.1.8 Dimension: string wrangling effort

How much code has to be written to convert between Implicit and
Explicit Structure? Explicit Structure implies a minimal value for this
and would look something like the following:

data = load('filename')

data.foo.bar = 'baz';

Here, there are zero lines of string wrangling. Only one line, trans-
lating between the filesystem and the internal system namespaces, is
required to prepare the data structure for use.

If such a load function is already present, then users experience no
string wrangling effort for the use cases of this function, i. e. the file
formats it supports. If the function does not exist, and a user must write
string wrangling code on an ad-hoc basis, this dimension is correspond-
ingly high relative to that format. Suppose the user factors this ad-hoc
string wrangling into their own implementation of the load function;
this implementation effort would count towards the dimension, but
would pay for itself in the reduced string wrangling effort thereafter;
this situation would lie somewhere between the previous two.

These considerations all establish scores for this dimension relative
to a particular file format or string syntax. These could be aggregated
to form a score for a particular program which uses several such for-
mats. However, if we are trying to assess the programming system along
this dimension, we would have to somehow aggregate across all possi-
ble programs one could create with the system, including the various
different formats they are likely to include.3

Recognising that different programming systems are targeted at dif-
ferent goals and have differing strengths andweaknesses, the possibility
space could be refined into all likely programs or use cases of the pro-
gramming system, weighted by the probability of a user of the system
wanting to create such a program. This opens up further decisions
about this user and whether we should additionally aggregate across
possible (or likely) users of the system. We defer such complications to
future work.

3 There is a large variety of existing data storage formats (e. g. JSON and XML) and an
infinite variety of potential custom formats that could be created on an ad-hoc basis
(e. g. chat messages containing special escape sequences).

180 technical dimensions catalogue

e.1.9 Relations

• Errors (Section E.6) A longer evaluation gulf delays the detection
of errors. A longer execution gulf can increase the likelihood of
errors (e.g. writing a lot of code or taking a long time to write
it). By turning runtime bugs into statically detected bugs, the
combined evaluation gulfs can be reduced.

• Adoptability (Section E.7): The execution gulf is concerned with
software using and programming in general. The time taken to
realise an idea in software is affected by the user’s familiarity and
the system’s learnability.

• Notation (Section E.2): Feedback loops are related to notational
structures. In a system with multiple notations, each notation may
have different associated feedback loops. The motto “The thing
on the screen is supposed to be the actual thing” (Pawson 2004),
adopted in the context of live programming, relates liveness to a
direct connection between surface notation and internal data. The
idea is that interactable objects should be equipped with faithful
behaviour, instead of being intangible shadows cast by the hidden
real object.

e.2 notation

How are the different textual / visual programming nota-
tions related?

Programming is always done through some form of notation. We
consider notations in the most general sense and include any structured
gesture using textual or visual notation. Textual notations primarily
include programming languages, but also things like configuration
files. Visual notations include graphical programming languages. Other
kinds of structured gestures include user interfaces for constructing
visual elements used in the system.

e.2.1 Dimension: notational structure

In practice, most programming systems use multiple notations. Differ-
ent notations can play different roles in the system. On the one hand,
multiple overlapping notations can be provided as different ways of pro-
gramming the same aspects of the system. In this case, each notation
may be more suitable to certain kinds of users, but may have limitations
(for example, a visual notation may have a limited expressive power).
On the other hand, multiple complementing notations may be used as the
means for programming different aspects of the system. In this case,
programming the system requires using multiple notations, but the

E.2 notation 181

notations may be specialised for the task at hand; think of how HTML
describes document structure while JavaScript specifies its behaviour.

e.2.2 Example: overlapping notations

A programming system may provide multiple notations for program-
ming the same aspect of the system. This is typically motivated by an
attempt to offer easy ways of completing different tasks: say, a textual
notation for defining abstractions and a visual notation for specifying
concrete structures. The crucial issue in this kind of arrangement is syn-
chronising the different notations; if they have different characteristics,
this may not be a straightforward mapping. For example, source code
may allow more elaborate abstraction mechanisms like loops, which
might appear as visible repetition in the visual notation. What should
such a system do when the user edits a single object that resulted from
such repetition? Similarly, textual notation may allow incomplete ex-
pressions that do not have an equivalent in the visual notation. For
programming systems that use overlapping notations, we need to de-
scribe how the notations are synchronised.
Sketch-n-Sketch (Hempel et al. 2019) employs overlapping notations

for creating and editing SVG and HTML documents. The user edits doc-
uments in an interface with a split-screen structure that shows source
code on the left and displayed visual output on the right. They can
edit both of these and changes are propagated to the other view. The
code can use abstraction mechanisms (such as functions) which are
not completely visible in the visual editor (an issue we return to in
expression geography below). Sketch-n-Sketch can be seen as an example
of a projectional editor.4
UML Round-tripping. Another example of a programming system

that utilises the overlapping notations structure are UML design tools
that display the program both as source code and as a UML diagram.
Edits in one result in automatic update of the other. An example is the
Together/J5 system. To solve the issue of notation synchronisation, such
systems often need to store additional information in the textual nota-
tion, typically using a special kind of code comment. In this example,
after the user re-arranges classes in UML diagrams, the new locations
need to be updated in the code.

e.2.3 Example: complementing notations

A programming system may also provide multiple complementing
notations for programming different aspects of its world. Again, this
is typically motivated by the aim to make specifying certain aspects

4 Technically, traditional projectional editors usually workmore directly with the abstract
syntax tree of a programming language.

5 https://www.mindprod.com/jgloss/togetherj.html

https://www.mindprod.com/jgloss/togetherj.html

182 technical dimensions catalogue

of programming easier, but it is more suitable when the different as-
pects can be more clearly separated. The key issue for systems with
complementing notations is how the different notations are connected.
The user may need to use both notations at the same time, or they may
need to progress from one to the next level when solving increasingly
complex problems. In the latter case, the learnability of progressing
from one level to the next is a major concern.
Spreadsheets and HyperCard. In Excel, there are three different com-

plementing notations that allow users to specify aspects of increasing
complexity: (i) the visual grid, (ii) formula language and (iii) a macro
language such as Visual Basic for Applications. The notations are largely
independent and have different degrees of expressive power. Entering
values in a grid cannot be used for specifying new computations, but it
can be used to adapt or run a computation, for example when entering
different alternatives in What-If Scenario Analysis. More complex tasks
can be achieved using formulas and macros. A user gradually learns
more advanced notations, but experience with a previous notation does
not help with mastering the next one. The approach optimises for easy
learnability at one level, but introduces a hurdle for users to surmount
in order to get to the second level. The notational structure of Hyper-
Card is similar and consists of (i) visual design of cards, (ii) visual
programming (via the GUI) with a limited number of operations, and
(iii) HyperTalk for arbitrary scripting.

Boxer and Jupyter. Boxer (diSessa and Abelson 1986) uses complement-
ing notations in that it combines a visual notation (the layout of the
document and the boxes of which it consists) with textual notation (the
code in the boxes). Here, the textual notation is always nested within
the visual. The case of Jupyter notebooks is similar. The document struc-
ture is graphical; code and visual outputs are nested as editable cells
in the document. This arrangement is common in many other systems
such as Flash or Visual Basic, which both combine visual notation with
textual code, although one is not nested in the other.

e.2.4 Dimension: primary and secondary notations

In practice, most programming systems use multiple notations. Even
in systems based on traditional programming languages, the primary
notation of the language is often supported by secondary notations such
as annotations encoded in comments and build tool configuration files.
However, it is possible for multiple notations to be primary, especially
if they are overlapping as defined earlier.
Programming languages. Programming systems built around tradi-

tional programming languages typically have further notations or struc-
tured gestures associated with them. The primary notation in Unix is
the C programming language. Yet this is enclosed in a programming
system providing a multi-step mechanism for running C code via the

E.2 notation 183

terminal, assisted by secondary notations such as shell scripts. Some
programming systems attempt to integrate tools that normally rely on
secondary notations into the system itself, reducing the number of sec-
ondary notations that the programmer needs to master. For example, in
the Smalltalk descendant Pharo, versioning and package management
is done from within Pharo, removing the need for secondary notation
such as git commands and dependency configuration files.6
Haskell. In Haskell, the primary notation is the programming lan-

guage, but there are also a number of secondary notations. Those in-
clude package managers (e.g. the cabal.project file) or configuration
files for Haskell build tools. More interestingly, there is also an infor-
mal mathematical notation associated with Haskell that is used when
programmers discuss programs on a whiteboard or in academic publi-
cations (Bird and Moor 1997). The idea of having such a mathematical
notation dates back to the Report on Algol 58 (Perlis and Samelson 1958),
which explicitly defined a “publication language” for “stating and com-
municating problems” using Greek letters and subscripts.

e.2.5 Dimension: expression geography

A crucial feature of a notation is the relationship between the structure
of the notation and the structure of the behaviour it encodes. Most
importantly, do similar expressions in a particular notation represent
similar behaviour?7 Visual notations may provide a mapping that is
more or less direct. On the one hand, similar-looking code in a block
languagemaymean very different things. On the other hand, the similar
looking design of two HyperCard cards will result in similar looking
cards—the mapping between the notation and the logic is much more
direct.

C/C++ expression language. In textual notations, this may easily not
be the case. Consider the two C conditionals:

• if (x==1) { ... } evaluates the Boolean expression x==1 to de-
termine whether x equals 1, running the code block if the condi-
tion holds.

• if (x=1) { ... } assigns 1 to the variable x. In C, assignment
is an expression returning the assigned value, so the result 1 is
interpreted as true and the block of code is always executed.

A notation can be designed to map better to the logic behind it, for
example, by requiring the user to write 1==x. This solves the above
problem as 1 is a literal rather than a variable, so it cannot be assigned
to (1=x is a compile error).

6 The tool for versioning and packagemanagement in Pharo can still be seen as an internal
domain-specific language and thus as a secondary notation, but its basic structure is
shared with other notations in the Pharo system.

7 See the similar discussion of “density” in (Basman 2016).

184 technical dimensions catalogue

e.2.6 Dimension: uniformity of notations

One common concern with notations is the extent to which they are uni-
form. A uniform notation can express a wide range of things using just
a small number of concepts. The primary example here is S-expressions
from Lisp.
Lisp systems. In Lisp, source code is represented in memory as S-

expressions, which can be manipulated by Lisp primitives. Lisp defines
an S-expression as either an atom, or a pair of S-expressions written
(s1 . s2). By convention, an S-expression (s1 . (s2 . (s3 . nil)))

represents a list, written as (s1 s2 s3). Notational uniformity in Lisp
is closely linked to uniformity of representation.8 In the idealisedmodel
of LISP 1.5, the data structures represented by an S-expression are what
exists in memory. In real-world Lisp systems, the representation in
memory is more complex. A programming system can also take a very
different approach and fully separate the notation from the in-memory
representation.

The S-expression basis of Lisp gives such systems robust macro pro-
cessing as part of their semantics: expanding a macro revises the list
structure of the code that uses the macro. Combining these makes it
possible to define extensions to the system in Lisp, with syntax indis-
tinguishable from Lisp. Moreover, it is possible to write a program
that constructs another Lisp program and not only run it interpretively
(using the eval function) but compile it at runtime (using the compile
function) and execute it. Many domain-specific languages, as well as
prototypes of new programming languages (such as Scheme), were im-
plemented thisway. Lisp the language is, in this sense, a “programmable
programming language” (Felleisen et al. 2018; Foderaro 1991).

e.2.7 Concept: notational freedom

Notational Freedom is the full realisation of the maxim “Use The Right
Tool For The Job”. The ideal is where a component at any scale can be
expressed in a notation that is particularly suited to it. There are several
related concepts of which Notational Freedom is the full generalisa-
tion: syntactic freedom, linguistic freedom, and syntactic/linguistic/no-
tational plurality.

Syntactic Freedom is where custom syntaxes, or languages restricted to
the conventions of code (linear display, plain text without formatting),
may be defined and used as desired by the programmer. An established
instance of this isDomain-Specific Languages. Syntactic Freedomallows
a programmer, if dissatisfied with the following:

vec_a.mul(cos(ang_b/2))

8 Notations generally are closely linked to representation in that the notation may mirror
the structures used for program representation. Basman et al. (2016) refer to this as a
distinction between “dead” notation and “live” representation forms).

E.2 notation 185

.add(vec_b.mul(cos(ang_a/2)))

.add(vec_a.cross(vec_b))

to define a local syntax that allows him to rewrite it as the following
(note the Unicode infix operators and juxtaposition-as-multiplication):

cos(ang_b/2) vec_a + cos(ang_a/2) vec_b + vec_a × vec_b

Linguistic Freedom is a relaxation on the constraints of syntactic free-
dom to support language-like notations with non-linear display and
different text styles. Standard mathematical notation is an example
of such a notation; Linguistic Freedom would permit the following
development of the previous example:

cos(
𝑏
2) a + cos(

𝑎
2)b + a × b

Syntactic/linguistic/notational plurality is where different notations
of the respective class are available to the programmer, but only as a
pre-determined set of options; the programmer does not have freedom
to define his own and use them wherever he wants. Examples are the
inclusion of regex syntax in Perl and JavaScript; the three-way collab-
oration of HTML, JavaScript and CSS in web development; LINQ in
C#.

Full Notational Freedom includes syntactic and linguistic freedom
(which themselves include plurality) but goes beyond, allowing arbi-
trary graphical notations. An example of what one could do with this
freedom is to replace a hex string with a colour picker interface.

The way we measure Notational Freedom is as the minimisation
of several penalty dimensions which we turn to presently. The work
involved in creating the syntax, language or notation is excluded; the
dimensions only measure the amount of extra work it takes to get the
programming system to accept them in the contexts they are intended
for. They are minimised if the custom syntax, language, or notation can
be “slotted in” once it exists, with no resistance from the system.

e.2.8 Dimension: custom syntax effort

The work required to use a custom syntax, not counting that required
to specify the syntax itself (e. g. as a grammar). COLA (Piumarta 2006)
and OMeta (Warth 2009) score low on this, since they are specifically
designed for this purpose. Most programming languages have infinite
custom syntax effort, because their parsers are separate programs that
adhere to a fixed grammar that cannot be changed by statements in the
language. This includes JS despite its inclusion of a regex sub-syntax,
HTML despite its inclusion of JS and CSS, and C# despite its LINQ sub-
language for queries; these examples may exhibit syntactic plurality, but

186 technical dimensions catalogue

there is no way to include a user-supplied syntax for use in the source
code.

e.2.9 Dimension: custom language effort

The work required to use custom language-like notation beyond syntax,
not counting that required to implement the rendering and interaction.
Most programming languages, COLA, and OMeta get an infinite score
here, while MPS (Voelter and Pech 2012) and Eco (Diekmann and Tratt
2014) score low.

e.2.10 Dimension: custom notation effort

The work required to use custom graphical notation beyond what we
called “language-like” notations, not counting that required to imple-
ment the rendering and interaction. Non-infinite scores here are rare,
only exhibited in a few systems. Eco, owing to a screenshot showing
inclusion of a picture, scores non-infinite on this dimension. From their
discussion in Section 9.2 of the paper (Diekmann and Tratt 2014), it
is likely to score High or Moderate rather than Low because arbitrary
graphical notations are a novel unexplored use case for the system for
which it has not been optimised. On the other hand, the Glamorous
Toolkit (Chiş et al. 2015) appears built to support arbitrary graphics in
its text editor interfaces, suggesting a lower value on this dimension.
ThingLab I (Borning 1981) and II (Moloney et al. 1989) would similarly
score low, at least insofar as diagrammatic notations are concerned
(as opposed to integration with the editing of Smalltalk code). Baby-
lonian Programming (Rauch et al. 2019), built on the self-sustainable
Lively4 (Lincke et al. 2017), is also likely to have a lower score on this
penalty dimension.

e.2.11 References

Cognitive Dimensions of Notations (Green and Petre 1996) provide a com-
prehensive framework for analysing individual notations, while our
focus here is on how multiple notations are related and how they are
structured. It is worth noting that the Cognitive Dimensions also define
secondary notation, but in a different sense to ours. For them, secondary
notation refers to whether a notation allows including redundant infor-
mation such as colour or comments for readability purposes.

The importance of notations in the practice of science, more gen-
erally, has been studied by (Klein 2003) as “paper tools”. These are
formula-like entities which can be manipulated by humans in lieu of
experimentation, such as the aforementioned mathematical notation in
Haskell: a “paper tool” for experimentation on a whiteboard. Program-

E.3 conceptual structure 187

ming notations are similar, but they are a way of communicating with
a machine; the experimentation does not happen on paper alone.

e.2.12 Relations

• Interaction (Section E.1): The feedback loops that exist in a pro-
gramming system are typically associated with individual nota-
tions. Different notations may also have different feedback loops.

• Adoptability (Section E.7): Notational structure can affect learnabil-
ity. In particular, complementing notations may require (possibly
different) users to master multiple notations. Overlapping nota-
tions may improve learnability by allowing the user to edit the
program in one way (perhaps visually) and see the effect in the
other notation (such as code).

• Errors (Section E.6). A process that merely records user actions
in a sequence (such as text editing) will, in particular, record
any errors the user makes and defer their handling to later use
of the data, keeping the errors latent. A process which instead
treats user actions as edits to a structure, with constraints and
correctness rules, will be able to catch errors at the moment they
are introduced and ensure the data coming out is error-free.

e.3 conceptual structure

How ismeaning constructed?How are internal and external
incentives balanced?

e.3.1 Dimension: conceptual integrity vs. openness

The evolution of programming systems has led away from conceptual
integrity towards an intricate ecosystem of specialised technologies
and industry standards. Any attempt to unify parts of this ecosystem
into a coherent whole will create incompatibility with the remaining
parts, which becomes a major barrier to adoption. Designers seeking
adoption are pushed to focus on localised incremental improvements
that stay within the boundaries established by existing practice. This
creates a tension between howhighly they can afford to value conceptual
elegance, and how open they are to the pressures imposed by society.
We will turn to both of these opposite ends—integrity and openness—in
more detail.

188 technical dimensions catalogue

e.3.2 Example: conceptual integrity

I will contend that Conceptual Integrity is the most impor-
tant consideration in system design. It is better to have a
system omit certain anomalous features and improvements,
but to reflect one set of design ideas, than to have one that
contains many good but independent and uncoordinated
ideas. (Fred Brooks, Aristocracy, Democracy and System De-
sign; Brooks (1995)

Conceptual integrity arises not (simply) from one mind or
from a small number of agreeing resonant minds, but from
sometimes hidden co-authors and the thing designed itself.
(Richard Gabriel, Designed As Designer; Gabriel (2008)

Conceptual integrity strives to reduce complexity at the source; it
employs unified concepts that may compose orthogonally to generate di-
versity. Perhaps the apotheosis of this approach can be found in early
Smalltalk and Lisp environments, which were complete programming
systems built around a single language. They incorporated capabilities
commonly provided outside the programming language by operating
systems and databases. Everything was done in one language, and
so everything was represented with the datatypes of that language.
Likewise, the libraries and idioms of the language were applicable in
all contexts. Having a lingua franca avoided much of the friction and
impedance mismatches inherent to multi-language systems. A similar
drive exists in the Python programming language, which follows the
principle that “There should be one—and preferably only one—obvious
way to do it” in order to promote community consensus on a single
coherent style.

In addition to Smalltalk and Lisp, many programming languages
focus on one kind of data structure (Sitaker 2016):

• In COBOL, data consists of nested records as in a business form.

• In Fortran, data consists of parallel arrays.

• In SQL, data is a set of relations with key constraints.

• In scripting languages like Python, Ruby, Lua, and JavaScript,
much data takes the form of string-indexed hash tables.

Finally, many languages are imperative, staying close to the hardware
model of addressable memory, lightly abstracted into primitive values
and references into mutable arrays and structures. On the other hand,
functional languages hide references and treat everything as immutable
structured values. This conceptual simplification benefits certain kinds
of programming, but can be counterproductive when an imperative
approach is more natural, such as in external input/output.

E.3 conceptual structure 189

e.3.3 Example: conceptual openness

Perl, contra Python. In contrast to Python’s outlook, Perl proclaims “There
is more than one way to do it” and considers itself “the first postmodern
programming language” (Wall 1999). “Perl doesn’t have any agenda
at all, other than to be maximally useful to the maximal number of
people. To be the duct tape of the Internet, and of everything else.” The
Perl way is to accept the status quo of evolved chaos and build upon it
using duct tape and ingenuity. Taken to the extreme, a programming
system becomes no longer a system, properly speaking, but rather a
toolkit for improvising assemblages of found software. Perl can be seen as
championing the values of pluralism, compatibility, or conceptual openness
over conceptual integrity. This philosophy has been called Postmodern
Programming (Noble and Biddle 2004).

C++, contra Smalltalk. Another case is that of C++, which added to C
the Object-Oriented concepts developed by Smalltalk while remaining
100% compatible with C, down to the level of ABI and performance.
This strategy was enormously successful for adoption, but came with
the tradeoff of enormous complexity compared to languages designed
from scratch for OO, like Smalltalk, Ruby, and Java.
Worse, contra Better. Richard Gabriel first described this dilemma in

his influential 1991 essay Worse is Better (Gabriel 1991) analysing the
defeat of Lisp by Unix and C. Because Unix and C were so easy to port
to new hardware, they were “the ultimate computer viruses” despite
providing only “about 50%–80% of what you want from an operating
system and programming language”. Their conceptual openness meant
that they adapted easily to the evolving conditions of the external world.
The tradeoff was decreased conceptual integrity, such as the undefined
behaviours of C, the junkyard of working directories, and the prolifera-
tion of special purpose programming languages to provide a complete
development environment.

Unix and Files. Many programming languages and systems impose
structure at a “fine granularity”: that of individual variables and other
data and code structures. Conversely, systems like Unix and the Web
impose fewer restrictions on how programmers represent things. Unix
insists only on a basic infrastructure of “large objects” (Kell 2013),
delegating all fine-grained structure to client programs. This scores
many points for conceptual openness. Files provide a universal API
for reading and writing byte streams, a low-level construct containing
so many degrees of freedom that it can support a wide variety of for-
mats and ecosystems. Processes similarly provide a thin abstraction over
machine-level memory and processors.

Concepual integrity is necessarily sacrificed for such openness; while
“everything is a file” gestures at integrity, in the vein of Smalltalk’s
“everything is an object”, exceptions proliferate. Directories are special
kinds of files with special operations, hardware device files require

190 technical dimensions catalogue

special ioctl operations9, and many commands expect files containing
newline separators. Additionally, because client programs must supply
their own structure for fine-grained data and code, they are given little
in the way of mutual compatibility. As a result, they tend to evolve into
competing silos of duplicated infrastructure (Kell 2009, 2013).
The Web. Web HTTP endpoints, meanwhile, have proven to be an

even more adaptable and viral abstraction than Unix files. They operate
at a similar level of abstraction as files, but support richer content and
encompass internet-wide interactions between autonomous systems.
In a sense, HTTP GET and PUT have become the “subroutine calls”
of an internet-scale programming system. Perhaps the most salient
thing about the Web is that its usefulness came as such a surprise to
everyone involved in designing or competing with it. It is likely that, by
staying close to the existing practice of transferring files, theWeb gained
a competitive edge over more ambitious and less familiar hypertext
projects like Xanadu (Nelson 1965).

The choice between compatibility and integrity correlates with the
personality traits of pragmatism and idealism. It is pragmatic to accept the
status quo of technology and make the best of it. Conversely, idealists
are willing to fight convention and risk rejection in order to attain
higher goals. We can wonder which came first: the design decision
or the personality trait? Do Lisp and Haskell teach people to think
more abstractly and coherently, or do they filter for those with a pre-
existing condition? Likewise, we can provocatively speculate whether
introverted developers prefer the cloisters of Smalltalk or Lisp to the
adventurous “Wild West” of the Web.

e.3.4 Dimension: composability

In short, you can get anywhere by putting together a number of smaller steps.
There exist building blocks which span a range of useful combinations.
Composability is, in a sense, key to the notion of “programmability”
and every programmable system will have some level of composability
(e.g. in the scripting language.)

Unix shell commands are a standard example of composability. The
base set of primitive commands can be augmented by programming
command executables in other languages. Given some primitives, one
can “pipe” one’s output to another’s input (|), sequence (; or &&),
select via conditions, and repeat with loop constructs, enabling full
imperative programming. Furthermore, command compositions can
be packaged into a named “script” which follows the same interface as
primitive commands, and named subprograms within a script can also
be defined.

9 The ioctl interface is a way for userspace programs to communicate device-specific
request codes to device drivers; for example, to eject a CD.

E.3 conceptual structure 191

In HyperCard, the Authoring Environment is non-composable for pro-
gramming buttons: there is simply a set of predefined behaviours to
choose from. Full scriptability is available only in the Programming En-
vironment.

The Haskell type system, as well as that of other functional program-
ming languages, exhibits high composability. New types can be defined
in terms of existing ones in several ways. These include records, discrim-
inated unions, function types and recursive constructs (e.g. to define a
List as either a Nil or a combination of element plus other list). The C
programming language also has some means of composing types that
are analogous in some ways, such as structs, unions, enums and indeed
even function pointers. For every type, there is also a corresponding
“pointer” type. It lacks, however, the recursive constructs permitted in
Haskell types.

e.3.5 Dimension: convenience

In short, you can get to X, Y or Z via one single step. There are ready-
made solutions to specific problems, not necessarily generalisable or
composable. Convenience often manifests as “canonical” solutions and
utilities in the form of an expansive standard library.

Composability without convenience is a set of atoms or gears; theoret-
ically, anything one wants could be built out of them, but one must do
that work. This situation has been criticised as the Lisp Curse (Winestock
2011).

Composability with convenience is a set of convenient specific tools
along with enough components to construct new ones. The specific tools
themselves could be transparently composed of these building blocks,
but this is not essential. They save users the time and effort it would
take to “roll their own” solutions to common tasks.

For example, let us turn to a convenience factor of Unix shell com-
mands, having already discussed their composability above. Observe
that it would be possible, in principle, to pass all information to a pro-
gram via standard input. Yet in actual practice, for convenience, there
is a standard interface of command-line arguments instead, separate from
anything the program takes through standard input. Most program-
ming systems similarly exhibit both composability and convenience,
providing templates, standard libraries, or otherwise pre-packaged so-
lutions, which can nevertheless be used programmatically as part of
larger operations.

e.3.6 Dimension: commonality

Humans can see Arrays, Strings, Dicts and Sets all have a “size”, but
the software needs to be told that they are the “same”. Commonality
like this can be factored out into an explicit structure (a “Collection”

192 technical dimensions catalogue

class), analogous to database normalisation. This way, an entity’s size
can be queried without reference to its particular details: if c is declared
to be a Collection, then one can straightforwardly access c.size.

Alternatively, it can be left implicit. This is less upfront work, but
permits instances to diverge, analogous to redundancy in databases. For
example, Arrays and Strings might end up with “length”, while Dict
and Set call it “size”. This means that, to query the size of an entity, it is
necessary to perform a case split according to its concrete type, solely
to funnel the diverging paths back to the commonality they represent:

if (entity is Array or String) size := entity.length

else if (entity is Dict or Set) size := entity.size

e.3.7 Examples: flattening and factoring of commonality

Data structures usually have several “moving parts” that can vary in-
dependently. For example, a simple pair of “vehicle type” and “colour”
might have all combinations of (Car, Van, Train) and (Red, Blue). In
this factored representation, we can programmatically change the colour
directly: pair.second = Red or vehicle.colour = Red.

In some contexts, such as class names, a system might only permit
such multi-dimensional structure as an exhaustive enumeration: RedCar,
BlueCar, RedVan, BlueVan, RedTrain, BlueTrain, etc. The system sees a
flat list of atoms, even though a human can see the sub-structure en-
coded in the string. In this world, we cannot simply “change the colour
to Red” programmatically; we would need to case-split as follows:

if (type is BlueCar) type := RedCar

else if (type is BlueVan) type := RedVan

else if (type is BlueTrain) type := RedTrain

...

The commonality between RedCar, RedVan, BlueCar, and so on has
been flattened. There is implicit structure here that remains un-factored,
similar to how numbers can be expressed as singular expressions (16)
or as factor products (2,2,2,2). Factoring this commonality gives us the
original design, where there is a pair of values from different sets.

In relational databases, there is an opposition between normalisation and
redundancy. In order to fit multi-table data into a flat table structure, data
needs to be duplicated into redundant copies. When data is factored into
small tables as much as possible, such that there is only one place each
piece of data “lives”, the database is in normal form or normalised. Re-
dundancy is useful for read-only processes, because there is no need to
join different tables together based on common keys. Writing, however,
becomes risky; in order to modify one thing, it must be synchronised to
the multiple places it is stored. This makes highly normalised databases
optimised for writes over reads.

E.4 customizability 193

e.3.8 Remark: the end of history?

Today we live in a highly developed world of software technology. It
is estimated that 41,000 person years have been invested into Linux.
We describe software development technologies in terms of stacks of
specialised tools, each of which might capitalise over 100 person-years
of development. Programming systems have become programming
ecosystems: not designed, but evolved. How can we noticeably improve
programming in the face of the overwhelming edifice of existing tech-
nology? There are strong incentives to focus on localised incremental
improvements that don’t cross the established boundaries.

The history of computing is one of cycles of evolution and revolution.
Successive cycles were dominated in turn by mainframes, minicomput-
ers, workstations, personal computers, and the Web. Each transition
built a whole new technology ecosystem replacing or on top of the
previous. The last revolution, the Web, was 25 years ago, with the re-
sult that many people have never experienced a disruptive platform
transition. Has history stopped, or are we just stuck in a long cycle,
with increasingly pent-up pressures for change? If it is the latter, then
incompatible ideas now spurned may yet flourish.

e.3.9 References

• How to Design a Good API and Why it Matters (Bloch 2007)

e.4 customizability

Once a program exists in the system, how can it be extended
and modified?

Programming is a gradual process. We start either from nothing, or
from an existing program, and gradually extend and refine it until it
serves a given purpose. Programs created using different programming
systems can be refined to different extents, in different ways, at different
stages of their existence.

Consider three examples. First, a program in a conventional program-
ming language like Java can be refined only by modifying its source
code. However, you may be able to do so by just adding new code, such
as a new interface implementation. Second, a spreadsheet can be modi-
fied at any time by modifying the formulas or data it contains. There
is no separate programming phase. However, you have to modify the
formulas directly in the cell—there is no way of modifying it by specify-
ing a change in a way that is external to the cell. Third, a self-sustaining
programming system, such as Smalltalk, does not make an explicit
distinction between “programming” and “using” phases, and it can
be modified and extended via itself. It gives developers the power to

194 technical dimensions catalogue

experiment with the system and, in principle, replace it with a better
system from within.

e.4.1 Dimension: staging of customisation

For systems that distinguish between different stages, such as writing
source code versus running a program, customisation methods may be
different for each stage. In traditional programming languages, customi-
sation is done by modifying or adding source code at the programming
stage, but there is no (automatically provided) way of customising the
created programs once they are running.

There are a number of interesting questions related to staging of
customisation. First, what is the notation used for customisation? This
may be the notation in which a program was initially created, but a
system may also use a secondary notation for customisation (consider
Emacs using Emacs Lisp). For systems with a stage distinction, an
important question is whether such changes are persistent.

Smalltalk, Interlisp and similar. In image-based programming systems,
there is generally no strict distinction between stages and so a program
can be customised during execution in the same way as during devel-
opment. The program image includes the programming environment.
Users of a program can open this, navigate to a suitable object or a
class (which serve as the addressable extension points) and modify that.
Lisp-based systems such as Interlisp follow a similar model. Changes
made directly to the image are persistent. The PILOT system for Lisp
(Teitelman 1966) offers an interactive way of correcting errors when a
program fails during execution. Such corrections are then applied to
the image and are thus persistent.

Document Object Model (DOM) and Webstrates: In the context of Web
programming, there is traditionally a stage distinction between pro-
gramming (writing the code and markup) and running (displaying
a page). However, the DOM can also be modified by browser Devel-
oper Tools—either manually, by running scripts in a console, or by
using a userscript manager such as Greasemonkey. Such changes are
not persistent in the default browser state, but are made so by Web-
strates (Klokmose et al. 2015) which synchronise the DOM between
the server and the client. This makes the DOM collaborative, but not
(automatically) live because of the complexities this implies for event
handling.

e.4.2 Dimension: addressing and externalisability

Programs in all programming systems have a representation that may
be exposed through notation such as source code. When customising a
program, an interesting question is whether a customisation needs to

E.4 customizability 195

be done by modifying the original representation, or whether it can be
done by adding something alongside the original structure.

In order to support customisation through addition, a programming
system needs a number of characteristics introduced by Basman et al.
(2016, 2018). First, the system needs to support addressing: the ability
to refer to a part of the program representation from the outside. Next,
externalisability means that a piece of addressed state can be exhaus-
tively transferred between the system and the outside world. Finally,
additive authoring requires that system behaviours can be changed by
simply adding a new expression containing addresses—in other words,
anything can be overridden without having to touch its specification. Of
particular importance is how addresses are specified and what exten-
sion points in the program they can refer to. The system may offer an
automatic mechanism that makes certain parts of a program address-
able, or this task may be delegated to the programmer.
Cascading Style Sheets (CSS): CSS is a prime example of additive

authoring within the Web programming system. It provides rich ad-
dressability mechanisms that are partly automatic (when referring to
tag names) and partly manual (when using element IDs and class
names). Given a web page, it is possible to modify almost any aspect
of its appearance by simply adding additional rules to a CSS file. The
Infusion project (Basman 2021) offers similar customisability mecha-
nisms, but for behaviour rather than just styling. There is also the recent
programming system Varv (Borowski et al. 2022), which embodies
additive authoring as a core principle.

Object Oriented Programming (OOP) and Aspect Oriented Programming
(AOP): in conventional programming languages, customisation is done
by modifying the code itself. OOP and AOPmake it possible to do so by
adding code independently of existing program code. In OOP, this re-
quires manual definition of extension points, i.e. interfaces and abstract
methods. Functionality can then be added to a system by defining a
new class (although injecting the new class into existing code without
modification requires some form of configuration such as a dependency
injection container). AOP systems such as AspectJ (Kiczales et al. 2001)
provides a richer addressing mechanism. In particular, it makes it pos-
sible to add functionality to the invocation of a specific method (among
other options) by using the method call pointcut: a specification for run-
ning code before, after, or around all calls to a given method, no matter
how scattered around the code. This functionality is similar to advising
in Pilot (Teitelman 1966).

e.4.3 Concept: self-sustainability

For most programming languages, programming systems, and ordi-
nary software applications, if one wants to customise beyond a certain
point, one must go beyond the facilities provided in the system itself.

196 technical dimensions catalogue

Most programming systems maintain a clear distinction between the
user level, where the system is used, and implementation level, where the
source code of the system itself resides. If the user level does not expose
control over some property or feature, then one is forced to go to the
implementation level. In the common case this will be a completely
different language or system, with an associated learning cost. It is
also likely to be lower-level—lacking expressive functions, features or
abstractions of the user level—which makes for a more tedious pro-
gramming experience.

It is possible, however, to carefully design systems to expose deeper
aspects of their implementation at the user level, relaxing the formerly
strict division between these levels. For example, in the research system
3-LISP (Smith 1982), ordinarily built-in functions like the conditional
if and error handling catch are implemented in 3-LISP code at the
user level.

The degree to which a system’s inner workings are accessible to the
user level, we call self-sustainability. At themaximal degree of this dimen-
sion would reside “stem cell”-like systems in a state of zero commitment:
they could be progressively evolved to arbitrary behaviour without
having to “step outside” of the system to a lower implementation level.
In a sense, any difference between these systems would be merely a
difference in initial state, since any could be turned into any other. Fur-
thermore, such a system could be turned into any existing programming
system by making commitments and thus subtracting flexibility.

The other end, of minimal self-sustainability, corresponds to minimal
customisability: beyond the transient run-time state changes that make
up the user level of any piece of software, the user cannot change
anything without dropping down to the means of implementation
of the system. This would resemble a traditional end-user “application”
focused on a narrow domain with no means to do anything else.

The examples that we see of high self-sustainability all tend to be
Operating System-like. Unix is widely established as an operating system,
while Smalltalk and Lisp have been branded differently. Nevertheless,
all three have shipped as the operating systems of customhardware, and
have similar responsibilities. Specifically: they support the execution of
“programs”; they define an interface for accessing and modifying state;
they provide standard libraries of common functionality; they define
how programs can communicate with each other; they provide a user
interface.
Unix: Self-sustainability of Unix is owed to the combination of two

factors. First, the system is implemented in binary files (via ELF10) and
text files (for configuration). Second, these files are part of the user-
facing filesystem, so users can replace and modify parts of the system
using Unix file interfaces.

10 Executable and Linkable Format.

E.4 customizability 197

Smalltalk and COLAs: Self-sustainability in Smalltalk is similar to Unix,
but at a finer granularity and with less emphasis on whether things
reside in volatile (process) or non-volatile (file) storage. The analogous
points are that (1) the system is implemented as objects with methods
containing Smalltalk code, and (2) these are modifiable using the class
browser and code editor. Combined Object Lambda Architectures, or
COLAs (Piumarta 2006), are a theoretical system design to improve on
the self-sustainability of Smalltalk. This is achieved by generalising the
object model to support relationships beyond classes.

We will illustrate the key dimensions of self-sustainability with the
help of an existing programming system that is not self-sustainable. We
cast the Web browser as the product system (i. e. that which we hypotheti-
cally wish to make self-sustainable) and C++ as the platform (i. e. the
system used to implement it). What would it take to make the browser
self-sustainable?

e.4.4 Dimension: substrate size

The substrate is the portion of a system not accessible from its user
level. In the case of the web browser, it is the C++ code constituting its
implementation. To get a self-sustainable system, the substrate must
be minimised by shifting implementation out of it and into the pro-
gramming capabilities of the product system. In this case, most of the
named entities in the C++ code are stuck at the implementation level,
inaccessible at the user level of JS, so we must move the former into the
latter.

To sketch how this process could be carried out systematically, we
can begin with the graphical surface of the product system. For each
graphical element, we inquire into the causes of its display; this will in-
clude graphical rendering code, but also the data that is being rendered
and the code that generated it. By tracing backwards in this way we
discover the web of causes that produced the shape on the screen. This
will often go through the user level (JS), but if we keep tracing back, we
will hit the implementation level. Each time this happens, we port the
code from the implementation level to the user level.

We continue this until it is no longer feasible; for example, there
will ultimately have to be some native machine-code interpreter for JS
in the running system. In practice, there would need to be the usual
investments in JIT compilation and optimisation technology as seen in
VMs for Smalltalk and other languages.

These ideas suggest a dimension of substrate size as a penalty for
self-sustainability. In other words, a self-sustainable system minimises
this dimension. A reasonable measure of substrate size could be the
number of lines of code that implement it.

198 technical dimensions catalogue

e.4.5 Dimension: persistence effort

In order for a system to be self-sustainable, it has to be able to preserve
developments of its state through process termination. The standard
VM solution is to have most of the system state saved in an “image”
file and concentrate the substrate in a runnable binary that need not be
changed. However this is accomplished, persistence of run-time changes
is necessary to encourage indefinite evolution of the system. In the case
of the Web browser, this applies to the whole browser, but could also
be a concern for individual tabs or web pages that can be closed or
refreshed.

This suggests another penalty dimension of persistence effort. To illus-
trate the range of values, we offer the following examples:

• Any system which automatically persists to an “image” (Lisp,
Smalltalk) or otherwise (Webstrates; Klokmose et al. 2015) causes
minimal persistence effort on the part of the user.11

• A systemwith amanual “save” button that persists all state would
have almost-minimal persistence effort. This comprises both the
need to remember to save and the act of pressing the button.

• A system where one must repeat a manual procedure over dif-
ferent parts of the state to persist all of it would have moderate
persistence effort.

• A typical programming language in a “vanilla” state (e. g. exclud-
ing third-party libraries) has high persistence effort for its runtime
data structures. With the use of a specific third-party library or
framework (such as anObject-RelationalMapper) this persistence
effort may be reduced. In the absence of such a framework, the
programmer would have a lot of work to do in order to persist
all state (wrap every variable and stack frame in code for loading
and saving its value).

• We could ascribe infinite12 persistence effort where it is impossible
to persist state. This is easier to imagine in the case of an end-user
application with no scripting capability; if the developers failed to
persist something (e. g. the position or sizing of a window) then
the user cannot do anything about it. In the case of a programming
system, hard barriers to persistence include inaccessible state (e. g.
in JS, one cannot refer to stack frames or read their state) or a lack
of enumerability (e. g. there is no way to traverse all objects in the
system and thereby persist them).

11 Arguably, this effort is zero, since the user does not have to think about it.
12 An infinite score can be interpreted as saying: it would take less effort to duplicate

the source code of the system and add persistence at its implementation level, than it
would to persist state using user-level functionality.

E.4 customizability 199

It may be objected that this measure should be considered on a piece-
meal basis per piece of state instead of on the system as a whole. For
example, a system could have infinite persistence effort with respect to
some state (e. g. stack frames; Basman et al. 2016) but low persistence
effort with respect to everything else (this being the effort invested to
set up an Object-Relational Mapper for the rest of the state). Given such
a fine-grained application of this measure and a method of weighting
each contribution, one could derive a convenient aggregate measure of
persistence effort for the whole system. However, this is too complicated
for the scope of our work here, so we defer it to further development of
the framework.

e.4.6 Dimensions: code viewing and editing

The browser’s JS console makes it possible to make some changes ex-
pressible as JS commands, but some caveats would need mitigating.
For example, the source code can be viewed but not edited; we would
need to make a small change so that the source code viewer could also
be used to make persistent edits to code. These points suggest boolean
dimensions of code viewing and code editing. An example of a system
that has both is Smalltalk with its class browser.

e.4.7 Dimension: data execution

Once we can type text inside the system, we will be able to write code.
However, this code will be inert unless the system can interpret data
structures as programs and actually execute them. This is the case
whether these data structures were created manually or by a program.
If this is not possible, re-programming the system will not be possible
(beyond selecting from a predefined list of behaviours). The browser
does already satisfy this criterion since JS has an eval() function that
can execute a string of JS code. This suggests a boolean dimension of
data execution (or Code As Data).

Any system with an eval function has this property, such as Lisp.
In the low-level binary layer of programming, the fact that the instruc-
tion pointer can be pointed at bytes in memory and interpret them as
instructions also qualifies. A negative example exists in a language like
C, where there is no eval function. In such a case, one may employ
the workaround of defining a mini-language (whether textual, or a
binary bytecode) and an interpreter C function. It is important to be
clear on which level the property would be thus established: what we
called the product system (the program being implemented by the C
code) would have data execution but the platform (the C language itself)
would remain without it.

200 technical dimensions catalogue

e.4.8 References

In addition to the examples discussed above, the proceedings of self-
sustaining systems workshops (Rose and Hirschfeld 2008; Rose et
al. 2010) provide numerous examples of systems and languages that
are able to bootstrap, implement, modify, and maintain themselves;
Gabriel’s analysis of programming language revolutions (Gabriel 2012)
uses advising in PILOT, related Lisp mechanisms, and “mixins” in OOP
to illustrate the difference between the “languages” and “systems”
paradigms.

e.4.9 Relations

• Flattening and factoring (Section E.3.7): related in that “customiz-
ability” is a form of creating new programs from existing ones;
factoring repetitive aspects into a reusable standard component
library facilitates the same thing.

• Interaction (Section E.1): this determines whether there are sep-
arate stages for running and writing programs and may thus
influence what kind of customisation is possible.

e.5 complexity

How does the system structure complexity and what level
of detail is required?

There is a massive gap between the level of detail required by a
computer, which executes a sequence of low-level instructions, and the
human description of a program in higher-level terms. To bridge this
gap, a programming system needs to deal with the complexity inherent
in going from a high-level description to low-level instructions.

Ever since the 1940s, programmers have envisioned that “automatic
programming” would allow higher-level programming. This did not
necessarily mean full automation. In fact, the first “automatic program-
ming” systems referred to higher-level programming languages with
a compiler (or an interpreter) that expanded the high-level code into
detailed instructions.

Most programming systems use factoring of complexity and encapsu-
late some of the details that need to be specified into components that
can be reused by the programmer. The details may be encapsulated
in a library, or filled in by a compiler or interpreter. Such factoring
may also be reflected in the conceptual structure of the system (Section
E.3.7). However, a system may also fully automate some aspects of pro-
gramming. In those cases, a general-purpose algorithm solves a whole
class of problems, which then do not need to be coded explicitly. Think

E.5 complexity 201

of planning the execution of SQL queries, or of the inference engine
supporting a logic programming language like Prolog.

e.5.1 Remark: notations

Even when working at a high level, programming involves manipu-
lating some program notation. In high-level functional or imperative
programming languages, the programmer writes code that typically
has clear operational meaning, even when some of the complexity is
relegated to a library implementation or a runtime. When using declar-
ative programming systems like SQL, Prolog or Datalog, the meaning
of a program is still unambiguous, but it is not defined operationally—
there is a (more or less deterministic) inference engine that solves the
problem based on the provided description. Finally, systems based on
programming by example step even further away from having clear oper-
ational meaning—the program may be simply a collection of sample
inputs and outputs, from which a (possibly non-deterministic) engine
infers the concrete steps of execution.

e.5.2 Dimension: factoring of complexity

The basic mechanism for dealing with complexity is factoring it. Given
a program, the more domain-specific aspects of the logic are specified
explicitly, whereas the more mundane and technical aspects of the logic
are left to a reusable component. Often, this reusable component is just
a library. Yet in the case of higher-level programming languages, the
reusable component may include a part of a language runtime such
as a memory allocator or a garbage collector. In the case of declarative
languages or programming by example, the reusable component is a
general purpose inference engine.

e.5.3 Dimension: level of automation

Factoring of complexity shields the programmer from some details,
but those details still need to be explicitly programmed. Depending on
the customizability of the system, this programming may or may not
be accessible, but it is always there. For example, a function used in a
spreadsheet formula is implemented in the spreadsheet system.

A programming system with higher level of automation requires more
than simply factoring code into reusable components. It uses a mech-
anism where some details of the operational meaning of a program
are never explicitly specified, but are inferred automatically by the
system. This is the approach of programming by example and machine
learning, where behaviour is specified through examples. In some cases,
deciding whether a feature is automation or merely factoring of complexity

202 technical dimensions catalogue

is less clear: garbage collection can be seen as either a simple case of
automation, or a sophisticated case of factoring complexity.

There is also an interesting (and perhaps inevitable) trade-off. The
higher the level of automation, the less explicit the operational meaning
of a program. This has awide range of implications. Smaragdakis (2019)
notes, for example, that this means the implementation can significantly
change the performance of a program.

e.5.4 Example: domain-specific languages

Domain-specific languages (Fowler 2010) provide an example of fac-
toring of complexity that does not involve automation. In this case,
programming is done at two levels. At the lower level, an (often more
experienced) programmer develops a domain-specific language, which
lets a (typically less experienced) programmer easily solve problems in
a particular domain: say, modelling of financial contracts, or specifying
interactive user interfaces.

The domain-specific language provides primitives that can be com-
posed, but each primitive and each form of composition has explicitly
programmed and unambiguous operational meaning. The user of the
domain-specific language can think in the higher-level concepts it pro-
vides, and this conceptual structure can be analysed using the dimen-
sions in Section E.3. As long as these concepts are clear, the user does
not need to be concerned with the details of how exactly the resulting
programs run.

e.5.5 Example: programming by example

An interesting case of automation is programming by example (Lieberman
2001). In this case, the user does not provide even a declarative specifi-
cation of the program behaviour, but instead specifies sample inputs
and outputs. A more or less sophisticated algorithm then attempts to
infer the relationship between the inputs and the outputs. This may,
for example, be done through program synthesis where an algorithm
composes a transformation using a (small) number of pre-defined oper-
ations. Programming by example is often very accessible and has been
used in spreadsheet applications (Gulwani et al. 2012).

e.5.6 Example: next-level automation

Throughout history, programmers have always hoped for the next level
of “automatic programming”. As observed by Parnas (1985), “auto-
matic programming has always been a euphemism for programming
in a higher-level language than was then available to the programmer”.

E.6 errors 203

We may speculate whether Deep Learning will enable the next step
of automation. However, this would not be different in principle from
existing developments. We can see any level of automation as using
artificial intelligence methods. This is the case for declarative languages
or constraint-based languages—where the inference engine implements
a traditional AI method (GOFAI, i.e., Good Old Fashioned AI).

e.5.7 Relations

• Conceptual structure (Section E.3): In many cases, the factoring of
complexity follows the conceptual structure of the programming
system.

• Flattening and factoring (Section E.3.7): One typically automates
the thing at the lowest level in one’s factoring (by making the
lowest level a thing that exists outside of the program—in a system
or a library)

e.6 errors

What does the system consider to be an error? How are they
prevented and handled?

A computer system is not aware of human intentions. There will
always be human mistakes that the system cannot recognise as errors.
Despite this, there are many that it can recognise, and its design will
determinewhich humanmistakes can becomedetectable program errors.
This revolves around several questions:What can cause an error?Which
ones can be prevented from happening? How should the system react
to errors?

Following the standard literature on errors (Reason 1990), we distin-
guish four kinds of errors: slips, lapses, mistakes and failures. A slip is
an error caused by transient human attention failure, such as a typo in
the source code. A lapse is similar but caused by memory failure, such
as an incorrectly remembered method name. A mistake is a logical error
such as bad design of an algorithm. Finally, a failure is a system error
caused by the system itself that the programmer has no control over,
e.g. a hardware or a virtual machine failure.

e.6.1 Dimensions: error detection

Errors can be identified in any of the feedback loops that the system
implements. This can be done either by a human or the system itself,
depending on the nature of the feedback loop.

Consider three examples. First, in live programming systems, the
programmer immediately sees the result of their code changes. Error

204 technical dimensions catalogue

detection is done by a human and the system can assist this by visualis-
ing as many consequences of a code change as possible. Second, in a
system with a static checking feedback loop (such as syntax checks or
static type systems), potential errors are reported as the result of the
analysis. Third, errors can be detected when the developed software is
run, either when it is tested by the programmer (manually or through
automated testing) or when it is run by a user.

Error detection in different feedback loops is suitable for detecting
different kinds of errors. Many slips and lapses can be detected by
the static checking feedback loop, although this is not always the case.
For example, consider a “compact” expression geography where small
changes in codemay result in large changes of behaviour.13 Thismakes it
easier for slips and lapses to produce hard to detect errors; for example,
a typo might coincidentally overlap with an existing name in scope,
whichwould not trigger an expected “undeclared name” error.Mistakes
are easier to detect through a live feedback loop, but they can also be
partly detected by more advanced static checking.

e.6.2 Example: static typing

In statically typed programming languages like Haskell and Java, types
are used to capture some information about the intent of the program-
mer. The type checker ensures code matches the lightweight specifi-
cation given using types. In such systems, types and implementation
serve as two descriptions of programmer’s intent that need to align;
what varies is the extent to which types can capture intent and the way
in which the two are constructed; that is, which of the two comes first.

e.6.3 Examples: TDD, REPL and live coding

Whereas static typing aims to detect errors without executing code,
approaches based on immediate feedback typically aim to execute (a
portion of) the code and let the programmer see the error immediately.
This can be done in a variety of ways.

In case of test-driven development, tests play the role of a specification
(much like types) against which the implementation is checked. Such
systems may provide more or less immediate feedback, depending on
when tests are executed (automatically in the background, ormanually).
Systems equipped with a read-eval-print loop (REPL) let programmers
run code on-the-fly and inspect results. For successful error detection,
the results need to be easily observable: a printed output is more helpful
than a hidden change of system state. Finally, in live coding systems,
code is executed immediately and the programmer’s ability to recognise

13 For example, the one-character difference between the Unix command rm -rf ./*,
which recursively deletes all items in the current directory, and rm -rf /*, which does
the same thing from the root of the filesystem.

E.6 errors 205

errors depends on the extent to which the system state is observable.
For example, in live-coded music (Aaron and Blackwell 2013), you
hear that your code is not what you wanted, providing an easy-to-use
immediate error detection mechanism.

e.6.4 Remark: eliminating latent errors

A common aim of error detection is to prevent latent errors, i.e. errors
that occurred at some earlier point during execution, but only manifest
themselves through an unexpected behaviour later on. For example, we
might dereference the wrong memory address and store a junk value
to a database; we will only find out upon accessing the database. Latent
errors can be prevented differently in different feedback loops. In a
live feedback loop, this can be done by visualising effects that would
normally remain hidden. When running software, latent errors can be
prevented through a mechanism that detects errors as early as possible
(e.g. initialising pointers to null and stopping if they are dereferenced.)

Elm and time-travel debugging. One notable mechanism for identifying
latent errors is the concept of time-travel debugging popularised by the
Elmprogramming language. In time-travel debugging, the programmer
is able to step back through time and see what execution steps were
taken prior to a certain point. This makes it possible to break execution
when a latent error manifests, but then retrace the execution back to
the actual source of the error.

e.6.5 Dimension: error response

When an error is detected, there are a number of typical ways in which
the system can respond. The following applies to systems that provide
some kind of error detection during execution.

• It may attempt to automatically recover from the error as best
as possible. This may be feasible for simpler errors (slips and
lapses), but also for certain mistakes (a mistake in an algorithm’s
concurrency logic may often be resolved by restarting the code).

• It may proceed as if the error did not happen. This can eliminate
expensive checks, but may lead to latent errors later.

• It may ask a human how to resolve the issue. This can be done
interactively, by entering into a mode where the code can be cor-
rected, or non-interactively by stopping the system.

Orthogonally to the above options, a system may also have a way
to recover from latent errors by tracing back through the execution in
order to find the root cause. It may also have a mechanism for undoing
all actions that occurred in the meantime, e.g. through transactional
processing.

206 technical dimensions catalogue

Interlisp and Do What I Mean (DWIM). Interlisp’s DWIM facility at-
tempts to automatically correct slips and lapses, especially misspellings
and unbalanced parentheses. When Interlisp encounters an error, such
as a reference to an undefined symbol, it invokes DWIM. In this case,
DWIM then searches for similarly named symbols frequently used by
the current user. If it finds one, it invokes the symbol automatically, cor-
rects the source code and notifies the user. In more complex cases where
DWIM cannot correct the error automatically, it starts an interaction
with the user and lets them correct it manually.

LATEX. When a run of LATEX encounters an error, it prompts the user
with several options. One of them is to ignore the error and proceed, in
the hopes that it is inconsequential. Another is to edit the input stream
at the location of the error and resume. If all else fails, the run can
be halted. These options echo the “Abort, Retry, Ignore” dialog from
MS-DOS.

e.6.6 Relations

• Feedback loops: Error detection always happens as part of an in-
dividual feedback loop. The feedback loops thus determine the
structure in which error detection can happen.

• Automation: A semi-automatic error recovery system (such as
DWIM) implements a form of automation. The concept of antifrag-
ile software (Monperrus 2017) is a more sophisticated example
of error recovery through automation.

• Expression geography: In an expression geography where small
changes in notation lead to valid but differently behaved pro-
grams, a slip or lapse is more likely to lead to an error that is
difficult to detect through standard mechanisms.

e.6.7 References

The most common error handling mechanism in conventional program-
ming languages is exception handling. The modern form of exception
handling has been described by Goodenough (1975), while Ryder et al.
(2005) documents the history and influences of Software Engineering
on exception handling. The concept of antifragile software (Monperrus
2017) goes further by suggesting that software could improve in re-
sponse to errors. Work on Chaos Engineering (Chang et al. 2015) is a
step in this direction.

Reason (1990) analyses errors in the context of human errors and
develops a classification of errors that we adopt. In the context of com-
puting, errors andmiscomputation have been analysed from a philosoph-
ical perspective (Floridi et al. 2015; Fresco and Primiero 2013). Notably,

E.7 adoptability 207

attitudes and approaches to errors also differ for different programming
subcultures (Petricek 2017).

e.7 adoptability

How does the system facilitate or obstruct adoption by both
individuals and communities?

We consider adoption by individuals as the dimension of Learnability,
and adoption by communities as the dimension of Sociability.

e.7.1 Dimension: learnability

Mainstream software development technologies require substantial
effort to learn. Systems can be made easier to learn in several ways:

• Specialising to a specific application domain.

• Specialising to simple small-scale needs.

• Leveraging the background knowledge, skills, and terminologies
of specific communities.

• Supporting learning with staged levels of complexity and assis-
tive development tools (Fry 1997). Better Feedback Loops can help
(Section E.1).

• Collapsing heterogeneous technology stacks into simpler unified
systems. This relates to the dimensions under Conceptual Structure
(Section E.3).

FORTRAN was a breakthrough in programming because it spe-
cialised to scientific computing and leveraged the background knowl-
edge of scientists about mathematical formulas. COBOL instead spe-
cialised to business data processing and embraced the business com-
munity by eschewing mathematics in favor of plain English.

LOGO was the first language explicitly designed for teaching chil-
dren. Later BASIC and Pascal were designed for teaching then-standard
programming concepts at the University level. BASIC and Pascal had
second careers on micropocessors in the 90’s. These microprocessor
programming systems were notable for being complete solutions inte-
grating everything necessary, and so became home schools for a gener-
ation of programmers. More recently languages like Racket (Felleisen
et al. 2015), Pyret (Pyret Crew 2016), and Grace (Black et al. 2012) have
supported learning by revealing progressive levels of complexity in
stages. Scratch returned to Logo’s vision of teaching children with a
graphical programming environment emphasising playfulness rather
than generality.

208 technical dimensions catalogue

Some programming languages have consciously prioritised the pro-
grammer’s experience of learning and using them. Ruby calls itself a pro-
grammer’s best friend by focusing on simplicity and elegance. Elm (Czaplicki
and Chong 2013) targets the more specialised but still fairly broad do-
main of web applications while focusing on simplicity and programmer-
friendliness. It forgoes capabilities that would lead to run-time crashes.
It also tries hard to make error messages clear and actionable.

Ifwe look beyondprogramming languages per se, we findprogrammable
systems with better learnability. The best example is spreadsheets,
which offer a specialised computing environment that is simpler and
more intuitive. The visual metaphor of a grid leverages human per-
ceptual skills. Moving all programming into declarative formulas and
attributes greatly simplifies both creation and understanding. Research
on Live Programming (Hancock and Resnick 2003; Victor 2012) has
sought to incorporate these benefits into general purpose programming,
but with limited success to date.

HyperCard and Flash were both programming systems that found
widespread adoption by non-experts. Like spreadsheets they had an
organising visual metaphor (cards and timelines respectively). They
both made it easy for beginners to get started. Hypercard had layers of
complexity intended to facilitate gradual mastery.

Smalltalk and Lisp machines were complex but unified. After over-
coming the initial learning curve, their environments provided a com-
plete solution for building entire application systems of arbitrary com-
plexity without having to learn other technologies. Boxer (diSessa 1985)
is notable for providing a general-purpose programming environment—
albeit for small-scale applications—along with an organising visual
metaphor like that of spreadsheets.

e.7.2 Dimension: sociability

Over time, especially in the internet era, social issues have come to dom-
inate programming. Much programming technology is now developed
by open-source communities, and all programming technologies are
now embedded in social media communities of their users. Therefore,
technical decisions that impact socialibilty can be decisive (Meyerovich
and Rabkin 2012). These include:

• Compatibility: easy integration into standard technology stacks,
allowing incremental adoption, and also easy exit if needed. This
dynamic was discussed in the classic essayWorse is Better (Gabriel
1991) about how Unix beat Lisp.

• Developing with an open source methodology reaps volunteer
labor and fosters a user community of enthusiasts. The technical
advantages of open source development were first popularised in
the essay The Cathedral and the Bazaar (Raymond and Young 2001),

E.7 adoptability 209

which observed that “given enough eyeballs, all bugs are shallow”.
Open source has become the standard for software development
tools, even those developed within large corporations.

• Easy sharing of code via package repositories or open exchanges.
Prior to the open-source era, commercial marketplaces were im-
portant, like VBX components for VisualBasic. Sharing is impeded
when languages lack standard libraries, leading to competing di-
alects like Scheme (Winestock 2011).

• Dedicated social media communities can be fostered by using
them to provide technical support. Volunteer technical support,
like volunteer code contributions, can multiply the impact of core
developers. In some cases, social media like Stack Exchange has
even come to replace documentation.

One could argue that sociabilty is not purely a technical dimension,
as it includes aspects of product management. Rather, we believe that
sociability is a pervasive cross-cutting concern that cannot be separated
from the technical.

The tenor of the online community around a programming system
can be its most public attribute. Even before social media, Flash de-
veloped a vibrant community of amateurs sharing code and tips. The
Elm language invested much effort in creating a welcoming community
from the outset (Czaplicki 2018). Attempts to reform older communities
have introduced Codes of Conduct, but not without controversy.

On the other hand, a cloistered community that turns its back on
the wider world can give its members strong feelings of belonging and
purpose. Examples are Smalltalk, Racket, Clojure, and Haskell. These
cohesive communities believe in the philosophy of their leaders and
strive to follow it in the code they write.

The economic sustainability of a programming system can be even
more important than strictly social and technical issues. Adopting a
technology is a costly investment in terms of time, money, and foregone
opportunities. Everyone feels safer investing in a technology backed
by large corporations that are not going away, or in technologies that
have such widespread adoption that they are guaranteed to persist. A
vibrant and mature open-source community backing a technology also
makes it safer.

Unfortunately, sociability is often in conflict with learnability. Com-
patibility leads to ever increasing historical baggage for new learners
to master. Large internet corporations have invested mainly in tech-
nologies relevant to their expert staff and high-end needs. Open-source
communities have mainly flourished around technologies for expert
programmers “scratching their own itch”. While there has been a flow
of venture funding into “no-code” and “low-code” programming sys-
tems, it is not clear how they can become economically and socially

210 technical dimensions catalogue

Figure E.2: A simple web service in Dark consisting of two HTTP endpoints
(1, 2), a database (3), and a worker (4).

sustainable. By and large, the internet era has seen the ascendancy of
expert programmers and the eclipsing of programming systems for
“the rest of us”.

e.8 evaluating the dark programming system

This section demonstrates using the framework to analyse the recent
programming system Dark (Dark Language Team 2022), explaining
how it relates to past work and how it contributes to the state of the art.

Dark is a programming system for building “serverless backends”,
i.e. services that are used by web and mobile applications. It aims to
make building such services easier by “removing accidental complex-
ity”14 resulting from the large number of systems typically involved
in their deployment and operation. This includes infrastructure for or-
chestration, scaling, logging, monitoring and versioning. Dark provides
integrated tooling (Figure E.2) for development and is described as
deployless, meaning that deploying code to production is instantaneous.

Dark illustrates the need for the broader perspective of program-
ming systems. Of course, it contains a programming language, which
is inspired by OCaml and F#. But Dark’s distinguishing feature is that
it eliminates the many secondary systems needed for deployment of
modern cloud-based services. Those exist outside of a typical program-
ming language, yet form a major part of the complexity of the overall
development process.

With technical dimensions, we can go beyond the “sales pitch”, look
behind the scenes, and better understand the interesting technical as-
pects of Dark as a programming system. Tables E.1 and E.2 summarise
the more detailed analysis that follows.

14 https://roadmap.darklang.com/goals-of-dark-v2.html

https://roadmap.darklang.com/goals-of-dark-v2.html

E.8 evaluating the dark programming system 211

Table E.1: Summary of where Dark lies on some of the dimensions.

Dimension
(CLUSTER)

Summary

INTERACTION

Modes of Interaction Single integratedmode comprises
development, debugging and op-
eration (”deployless”)

Feedback Loops Code editing is triggered either by
user or by unsupported HTTP re-
quest and changes are deployed
automatically, allowing for imme-
diate feedback

ERRORS

Error Response When an unsupported HTTP re-
quest is received, programmer
can write handler code using data
from the request in the process

CONCEPTUAL
STRUCTURE

Conceptual Integrity
vs. Openness

Abstractions at the domain spe-
cific high-level and the functional
low-level are both carefully de-
signed for conceptual integrity.

Composability User applications are composed
from high-level primitives; the
low-level uses composable
functional abstractions (records,
pipelines).

Convenience Powerful high-level domain-
specific abstractions are provided
(HTTP, database, workers); core
functional libraries exist for the
low-level.

ADOPTABILITY

Learnability High-level concepts will be imme-
diately familiar to the target audi-
ence; low-level language has the
usual learning curve of basic func-
tional programming

212 technical dimensions catalogue

Table E.2: Summary of where Dark lies on some of the dimensions.

Dimension
(CLUSTER)

Summary

NOTATION

Notational Structure Graphical notation for high-level
concepts is complemented by
structure editor for low-level code

Uniformity Common notational structures
are used for database and code,
enabling the same editing con-
struct for sequential structures
(records, pipelines, tables)

COMPLEXITY

Factoring of
Complexity

Cloud infrastructure (deploy-
ment, orchestration, etc.) is
provided by the Dark platform
that is invisible to the program-
mer, but also cannot be modified

Level of Automation Current implementation provides
basic infrastructure, but a higher
degree of automation in the plat-
form can be provided in the fu-
ture, e.g. for scalability

CUSTOMISABILITY

Staging of
Customisation

System can bemodifiedwhile run-
ning and changes are persisted,
but they have to be made in the
Dark editor, which is distinct from
the running service

Self-Sustainability Clear separation between user
and implementation levels; sys-
tem is for making web services,
not open-ended exploration of
programming.

E.8 evaluating the dark programming system 213

e.8.1 Dimensional analysis of Dark

modes of interaction and feedback loops. Conventionalmodes
of interaction (E.1.4) include running, editing and debugging. For mod-
ern web services, running refers to operation in a cloud-based environ-
ment that typically comes with further kinds of feedback (logging and
monitoring). The key design decision of Dark is to integrate all these
different modes of interaction into a single one. This tight integration
allows Dark to provide a more immediate feedback loop (E.1.1) where
code changes become immediately available not just to the developer,
but also to external users. The integrated mode of interaction is remi-
niscent of the image-based environment in Smalltalk; Dark advances
the state of art by using this model in a multi-user, cloud-based context.

feedback loops and error response. The integration of devel-
opment and operation also makes it possible to use errors occurring
during operation to drive development. Specifically, when a Dark ser-
vice receives a request that is not supported, the user can build a han-
dler (Chisa 2020) to provide a response—taking advantage of the live
data that was sent as part of the request. In terms of our dimensions,
this is a kind of error response (Section E.6.5) that was pioneered by
the PILOT system for Lisp (Teitelman 1966). Dark does this not just to
respond to errors, but also as the primary development mechanism,
which we might call Error-Driven Development. This way, Dark users can
construct programs with respect to sample input values.

conceptual structure and learnability. Dark programs are
expressed using high-level concepts that are specific to the domain
of server-side web programming: HTTP request handlers, databases,
workers and scheduled jobs. These are designed to reduce accidental
complexity and aim for high conceptual integrity (Section E.3.1). At the
level of code, Dark uses a general-purpose functional language that
emphasises certain concepts, especially records and pipelines. The high-
level concepts contribute to learnability (Section E.7.1) of the system,
because they are highly domain-specific and will already be familiar to
its intended users.

notational structure and uniformity. Dark uses a combina-
tion of graphical editor and code. The two aspects of the notation follow
the complementing notations (Section E.2.1) pattern. The windowed in-
terface is used to work with the high-level concepts and code is used for
working with low-level concepts. At the high level, code is structured
in freely positionable boxes on a 2D surface. Unlike Boxer (diSessa and
Abelson 1986), these boxes do not nest and the space cannot be used
for other content (say, for comments, architectural illustrations or other
media). Code at the low level is manipulated using a syntax-aware

214 technical dimensions catalogue

structure editor (high explicit structure, Section E.1.6) showing inferred
types and computed live values for pure functions. It also provides
special editing support for records and pipelines, allowing users to add
fields and steps respectively.

factoring of complexity and automation. One of the adver-
tised goals of Dark is to remove accidental complexity. This is achieved
by collapsing the heterogeneous stack of technologies that are typically
required for development, cloud deployment, orchestration and op-
eration. Dark hides this via factoring of complexity (Section E.5.2). The
advanced infrastructure is provided by the Dark platform and is hid-
den from the user. The infrastructure is programmed explicitly and
there is no need for sophisticated automation (Section E.5.3). This fac-
toring of functionality that was previously coded manually follows a
similar pattern to the development of garbage collection in high-level
programming languages.

customisability. The Dark platform makes a clear distinction be-
tween the platform itself and the user application, so self-sustainability
(Section E.4.3) is not an objective. The strict division between the plat-
form and user (related to its aforementioned factoring of complexity)
means that changes to Dark require modifying the platform source
code itself, which is available under a license that solely allows using it
for the purpose of contributing. Similarly, applications themselves are
developed by modifying and adding code, requiring destructive access
to it—so additive authoring (Section E.4.2) is not exhibited at either level.
Thanks to the integration of execution and development, persistent
changes may be made during execution (c.f. staging of customisation,
Section E.4.1) but this is done through the Dark editor, which is separate
from the running service.

e.8.2 Technical Innovations of Dark

This analysis reveals a number of interesting aspects of the Dark pro-
gramming system. The first is the tight integration of different modes
of interaction which collapses a heterogeneous stack of technologies,
makes Dark learnable, and allows quick feedback from deployed ser-
vices. The second is the use of error response to guide the development of
HTTP handlers. Thanks to the technical dimensions framework, each of
these can be more precisely described. It is also possible to see how they
may be supported in other programming systems. The framework also
points to possible alternatives (and perhaps improvements) such as
building a more self-sustainable system that has similar characteristics
to Dark, but allows greater flexibility in modifying the platform from
within itself.

B IBL IOGRAPHY

Aaron, Samuel andAlan F. Blackwell (2013). “From sonic Pi to overtone:
creative musical experiences with domain-specific and functional
languages.” In: Proceedings of the First ACM SIGPLAN Workshop on
Functional Art, Music, Modeling & Design. FARM ’13. Boston, Mas-
sachusetts, USA: Association for Computing Machinery, pp. 35–46.
isbn: 9781450323864. doi: 10.1145/2505341.2505346. url: https:
//doi.org/10.1145/2505341.2505346.

Agaram, Kartik (2020). “Bicycles for theMindHave to Be See-Through.”
In: Conference Companion of the 4th International Conference on Art,
Science, and Engineering of Programming. <Programming> ’20. Porto,
Portugal: Association for Computing Machinery, pp. 173–186. isbn:
9781450375078. doi: 10.1145/3397537.3397547. url: https://doi.
org/10.1145/3397537.3397547.

Aish, Robert (2012). “DesignScript: Origins, Explanation, Illustration.”
In: Computational Design Modelling. Ed. by Christoph Gengnagel,
Axel Kilian, Norbert Palz, and Fabian Scheurer. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 1–8. isbn: 978-3-642-23435-4.

Aleph One (1996). “Smashing The Stack for Fun and Profit.” In: Phrack
magazine 7.49, pp. 14–16.

Amelang, Dan (2012a). Gezira. url: https://github.com/damelang/
gezira.

– (2012b). The Nile Programming Language. Declarative Stream Processing
for Media Applications. url: https://github.com/damelang/nile.

Amelang, Dan et al. (2011). STEPS Toward Expressive Programming
Systems, 2011 Progress Report. url: http : / / www . vpri . org / pdf /
tr2011004_steps11.pdf.

– (2012). STEPS Toward the Reinvention of Programming, 2012 Final Report.
url: http://www.vpri.org/pdf/tr2012001_steps.pdf.

Ankerson, Megan Sapnar (2018). Dot-Com Design: The Rise of a Usable,
Social, Commercial Web. NYU Press. isbn: 1479892904.

Babaog̃lu, Özalp, William Joy, and Juan Porcar (1979). “Design and
Implementation of the Berkeley Virtual Memory Extensions to the
UNIX Operating System.” In: Department of Electrical Engineering and
Computer Science, University of California, Berkeley.

Basman, Antranig (2016). “Building Software is Not (Yet) a Craft.” In:
Proceedings of the 27th AnnualWorkshop of the Psychology of Programming
Interest Group, PPIG 2016, Cambridge, UK, September 7-10, 2016. Ed. by
Luke Church. Psychology of Programming Interest Group, p. 32. url:
http://ppig.org/library/paper/building-software-not-yet-

craft.

215

https://doi.org/10.1145/2505341.2505346
https://doi.org/10.1145/2505341.2505346
https://doi.org/10.1145/2505341.2505346
https://doi.org/10.1145/3397537.3397547
https://doi.org/10.1145/3397537.3397547
https://doi.org/10.1145/3397537.3397547
https://github.com/damelang/gezira
https://github.com/damelang/gezira
https://github.com/damelang/nile
http://www.vpri.org/pdf/tr2011004_steps11.pdf
http://www.vpri.org/pdf/tr2011004_steps11.pdf
http://www.vpri.org/pdf/tr2012001_steps.pdf
http://ppig.org/library/paper/building-software-not-yet-craft
http://ppig.org/library/paper/building-software-not-yet-craft

216 bibliography

Basman,Antranig (2021). Infusion Framework andComponents. url: https:
//fluidproject.org/infusion.html.

Basman, Antranig, L. Church, C. Klokmose, and Colin B. D. Clark
(2016). “Software and How it Lives On: Embedding Live Programs
in the World Around Them.” In: PPIG. url: http://www.klokmose.
net/clemens/wp-content/uploads/2016/10/ppig-2016.pdf.

Basman, Antranig, Clayton Lewis, and Colin Clark (2018). “The Open
Authorial Principle: Supporting Networks of Authors in Creating
Externalisable Designs.” In: Proceedings of the 2018 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, pp. 29–43.

Bergel, Alexandre, Damien Cassou, StéphaneDucasse, and Jannik Laval
(2013). Deep into Pharo. en. Morrisville, NC: Lulu.com.

Bird, Richard and Oege de Moor (1997). Algebra of programming. USA:
Prentice-Hall, Inc. isbn: 013507245X.

Black, Andrew P., Kim B. Bruce, Michael Homer, and James Noble
(2012). “Grace: the absence of (inessential) difficulty.” In: Proceed-
ings of the ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software. Onward! 2012. Tucson,
Arizona, USA: Association for Computing Machinery, pp. 85–98.
isbn: 9781450315623. doi: 10.1145/2384592.2384601. url: https:
//doi.org/10.1145/2384592.2384601.

Bloch, Joshua (2007). How to Design a Good API and Why it Matters. url:
http://www.cs.bc.edu/~muller/teaching/cs102/s06/lib/pdf/

api-design.
Borning, Alan (Oct. 1981). “The Programming Language Aspects of

ThingLab, a Constraint-Oriented Simulation Laboratory.” In: ACM
Trans. Program. Lang. Syst. 3.4, pp. 353–387. issn: 0164-0925. doi: 10.
1145/357146.357147. url: https://doi.org/10.1145/357146.
357147.

Borowski, Marcel, Luke Murray, Rolf Bagge, Janus Bager Kristensen,
Arvind Satyanarayan, and Clemens Nylandsted Klokmose (2022).
“Varv: Reprogrammable Interactive Software as a Declarative Data
Structure.” In: Proceedings of the 2022 CHI Conference on Human Factors
in Computing Systems. CHI ’22. NewOrleans, LA, USA:Association for
Computing Machinery. isbn: 9781450391573. doi: 10.1145/3491102.
3502064. url: https://doi.org/10.1145/3491102.3502064.

Bracha, Gilad and David Ungar (Oct. 2004). “Mirrors: design prin-
ciples for meta-level facilities of object-oriented programming lan-
guages.” In: SIGPLAN Not. 39.10, pp. 331–344. issn: 0362-1340. doi:
10 . 1145 / 1035292 . 1029004. url: https : / / doi . org / 10 . 1145 /
1035292.1029004.

Brooks, FP (1995). “Aristocracy, Democracy and SystemDesign.” In:The
Mythical Man Month: Essays on Software Engineering. Addison-Wesley.

Brooks, Frederick P. (1978). TheMythicalMan-Month: Essays on Softw. 1st.
USA:Addison-Wesley LongmanPublishingCo., Inc. isbn: 0201006502.

https://fluidproject.org/infusion.html
https://fluidproject.org/infusion.html
http://www.klokmose.net/clemens/wp-content/uploads/2016/10/ppig-2016.pdf
http://www.klokmose.net/clemens/wp-content/uploads/2016/10/ppig-2016.pdf
https://doi.org/10.1145/2384592.2384601
https://doi.org/10.1145/2384592.2384601
https://doi.org/10.1145/2384592.2384601
http://www.cs.bc.edu/~muller/teaching/cs102/s06/lib/pdf/api-design
http://www.cs.bc.edu/~muller/teaching/cs102/s06/lib/pdf/api-design
https://doi.org/10.1145/357146.357147
https://doi.org/10.1145/357146.357147
https://doi.org/10.1145/357146.357147
https://doi.org/10.1145/357146.357147
https://doi.org/10.1145/3491102.3502064
https://doi.org/10.1145/3491102.3502064
https://doi.org/10.1145/3491102.3502064
https://doi.org/10.1145/1035292.1029004
https://doi.org/10.1145/1035292.1029004
https://doi.org/10.1145/1035292.1029004

bibliography 217

Bystroushaak, Anon (2019). Environment and the Programming Lan-
guage Self (part one; environment). url: https://blog.rfox.eu/
en / Programming / Series _ about _ Self / Environment _ and _ the _

programming_language_Self_part_one_environment.html.
C2 Contributors (2012). Meta-circular Evaluator. url: https://wiki.c2.
com/?MetaCircularEvaluator.

– (2014a).Greenspun’s Tenth Rule. url: http://wiki.c2.com/?GreenspunsTenthRuleOfProgramming.
– (2014b).Masp Brainstorming. url: https://wiki.c2.com/?MaspBrainstorming.
– (2014c). Pick The Right Tool For The Job. url: https://wiki.c2.com/
?PickTheRightToolForTheJob.

Chang, Hasok (2004). Inventing temperature: Measurement and scientific
progress. Oxford: Oxford University Press.

Chang, Michael Alan, Bredan Tschaen, Theophilus Benson, and Lau-
rent Vanbever (2015). “Chaos Monkey: Increasing SDN Reliability
through Systematic Network Destruction.” In: Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication. SIG-
COMM ’15. London, United Kingdom: Association for Computing
Machinery, pp. 371–372. isbn: 9781450335423. doi: 10.1145/2785956.
2790038. url: https://doi.org/10.1145/2785956.2790038.

Chiş, Andrei, Oscar Nierstrasz, and Tudor Gır̂ba (2015). “Towards
moldable development tools.” In: Proceedings of the 6th Workshop on
Evaluation and Usability of Programming Languages and Tools. PLATEAU
2015. Pittsburgh, PA, USA: Association for Computing Machinery,
pp. 25–26. isbn: 9781450339070. doi: 10.1145/2846680.2846684. url:
https://doi.org/10.1145/2846680.2846684.

Chisa, Ellen (2020). Introduction: Error Rail and Match with DB::get. url:
https://youtu.be/NRMmy9ZzA-o.

Chuchem, Yair (2023). Structural Code Editor Projects. url: https://
github.com/yairchu/awesome-structure-editors/.

Coda (May 23, 2022). Coda: The doc that brings it all together. url: https:
//coda.io.

Colegrove, Tim (2020).Own work, CC BY-SA 4.0. url: https://commons.
wikimedia.org/w/index.php?curid=89430810.

Cook,Dan (2018). Self-DefinedObject System. url: https://www.cemetech.
net/forum/viewtopic.php?p=270092#270092.

Cypher, Allen, ed. (1993). Watch What I Do. Programming by Demonstra-
tion. The MIT Press. url: http://acypher.com/wwid/.

Czaplicki, Evan (2018). url: https://www.youtube.com/watch?v=
uGlzRt-FYto.

Czaplicki, Evan and Stephen Chong (2013). “Asynchronous functional
reactive programming for GUIs.” In: Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Implementation.
PLDI ’13. Seattle, Washington, USA: Association for Computing Ma-
chinery, pp. 411–422. isbn: 9781450320146. doi: 10.1145/2491956.
2462161. url: https://doi.org/10.1145/2491956.2462161.

https://blog.rfox.eu/en/Programming/Series_about_Self/Environment_and_the_programming_language_Self_part_one_environment.html
https://blog.rfox.eu/en/Programming/Series_about_Self/Environment_and_the_programming_language_Self_part_one_environment.html
https://blog.rfox.eu/en/Programming/Series_about_Self/Environment_and_the_programming_language_Self_part_one_environment.html
https://wiki.c2.com/?MetaCircularEvaluator
https://wiki.c2.com/?MetaCircularEvaluator
http://wiki.c2.com/?GreenspunsTenthRuleOfProgramming
https://wiki.c2.com/?MaspBrainstorming
https://wiki.c2.com/?PickTheRightToolForTheJob
https://wiki.c2.com/?PickTheRightToolForTheJob
https://doi.org/10.1145/2785956.2790038
https://doi.org/10.1145/2785956.2790038
https://doi.org/10.1145/2785956.2790038
https://doi.org/10.1145/2846680.2846684
https://doi.org/10.1145/2846680.2846684
https://youtu.be/NRMmy9ZzA-o
https://github.com/yairchu/awesome-structure-editors/
https://github.com/yairchu/awesome-structure-editors/
https://coda.io
https://coda.io
https://commons.wikimedia.org/w/index.php?curid=89430810
https://commons.wikimedia.org/w/index.php?curid=89430810
https://www.cemetech.net/forum/viewtopic.php?p=270092#270092
https://www.cemetech.net/forum/viewtopic.php?p=270092#270092
http://acypher.com/wwid/
https://www.youtube.com/watch?v=uGlzRt-FYto
https://www.youtube.com/watch?v=uGlzRt-FYto
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/2491956.2462161

218 bibliography

DarkLanguage Team(May 23, 2022).Dark Lang. url: https://darklang.
com.

desRivieres, J. and J. Wiegand (2004). “Eclipse: A platform for integrat-
ing development tools.” In: IBM Systems Journal 43.2, pp. 371–383.
doi: 10.1147/sj.432.0371.

Diekmann, Lukas and Laurence Tratt (Sept. 2014). “Eco: A language
composition editor.” In: Software Language Engineering (SLE). Springer,
pp. 82–101. doi: 10.1007/978-3-319-11245-9_5. url: https://
soft-dev.org/pubs/html/diekmann_tratt__eco_a_language_

composition_editor/.
diSessa, Andrea A. (1985). “A Principled Design for an Integrated

Computational Environment.” In: Human–Computer Interaction 1.1,
pp. 1–47. doi: 10.1207/s15327051hci0101_1. url: https://doi.
org/10.1207/s15327051hci0101_1.

diSessa, Andrea A. and H. Abelson (Sept. 1986). “Boxer: A Recon-
structible Computational Medium.” In: Commun. ACM 29.9, pp. 859–
868. issn: 0001-0782. doi: 10.1145/6592.6595. url: https://doi.
org/10.1145/6592.6595.

Edwards, Jonathan (2005). “Subtext: Uncovering the Simplicity of Pro-
gramming.” In: Proceedings of the 20th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applica-
tions. OOPSLA ’05. San Diego, CA, USA: Association for Computing
Machinery, pp. 505–518. isbn: 1595930310. doi: 10.1145/1094811.
1094851. url: https://doi.org/10.1145/1094811.1094851.

– (2017).Gallery of ProgrammingUIs. url: https://alarmingdevelopment.
org/?p=1068.

Edwards, Jonathan, Stephen Kell, Tomas Petricek, and Luke Church
(2019a). “Evaluating programming systems design.” In: Proceedings
of 30th Annual Workshop of Psychology of Programming Interest Group.
PPIG 2019. Newcastle, UK.

– (2019b). “Evaluating programming systems design.” In: Proceedings
of 30th Annual Workshop of Psychology of Programming Interest Group.
PPIG 2019. Newcastle, UK.

Ehrlich, Justin (2013). “The Component Entity System for Virtual En-
vironments.” In: Proceedings of the International Conference on Com-
puter Graphics and Virtual Reality CGVR’13. Ed. by Hamid R. Arab-
nia, Leonidas Deligiannidis, and Ashu M. G. Solo. url: http://
worldcomp-proceedings.com/proc/p2013/CGV3033.pdf.

Evans, Edmund Grimley (2001). Bootstrapping A Simple Compiler From
Nothing. url: https://web.archive.org/web/20061108010907/
http://www.rano.org/bcompiler.html.

Felleisen, Matthias, Robert Bruce Findler, Matthew Flatt, Shriram Kr-
ishnamurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt
(2015). “The Racket Manifesto.” In: 1st Summit on Advances in Pro-
gramming Languages (SNAPL 2015). Ed. by Thomas Ball, Rastislav
Bodík, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Mor-

https://darklang.com
https://darklang.com
https://doi.org/10.1147/sj.432.0371
https://doi.org/10.1007/978-3-319-11245-9_5
https://soft-dev.org/pubs/html/diekmann_tratt__eco_a_language_composition_editor/
https://soft-dev.org/pubs/html/diekmann_tratt__eco_a_language_composition_editor/
https://soft-dev.org/pubs/html/diekmann_tratt__eco_a_language_composition_editor/
https://doi.org/10.1207/s15327051hci0101_1
https://doi.org/10.1207/s15327051hci0101_1
https://doi.org/10.1207/s15327051hci0101_1
https://doi.org/10.1145/6592.6595
https://doi.org/10.1145/6592.6595
https://doi.org/10.1145/6592.6595
https://doi.org/10.1145/1094811.1094851
https://doi.org/10.1145/1094811.1094851
https://doi.org/10.1145/1094811.1094851
https://alarmingdevelopment.org/?p=1068
https://alarmingdevelopment.org/?p=1068
http://worldcomp-proceedings.com/proc/p2013/CGV3033.pdf
http://worldcomp-proceedings.com/proc/p2013/CGV3033.pdf
https://web.archive.org/web/20061108010907/http://www.rano.org/bcompiler.html
https://web.archive.org/web/20061108010907/http://www.rano.org/bcompiler.html

bibliography 219

riset. Vol. 32. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, pp. 113–128. isbn: 978-3-939897-80-4. doi: 10.4230/LIPIcs.
SNAPL.2015.113. url: https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.SNAPL.2015.113.

– (Feb. 2018). “A Programmable Programming Language.” In: Com-
mun. ACM 61.3, pp. 62–71. issn: 0001-0782. doi: 10.1145/3127323.
url: https://doi.org/10.1145/3127323.

Floridi, Luciano, Nir Fresco, and Giuseppe Primiero (2015). “On mal-
functioning software.” In: Synthese 192.4, pp. 1199–1220.

Foderaro, John (Sept. 1991). “LISP: Introduction.” In: Commun. ACM
34.9, p. 27. issn: 0001-0782. doi: 10.1145/114669.114670. url: https:
//doi.org/10.1145/114669.114670.

Ford, Neal (2006). Polyglot Programming. url: http : / / memeagora .
blogspot.com/2006/12/polyglot-programming.html.

Fowler, Martin (2005). Event Sourcing. url: https://martinfowler.
com/eaaDev/EventSourcing.html.

– (2010). Domain-specific languages. Pearson Education.
Fresco, Nir and Giuseppe Primiero (2013). “Miscomputation.” In: Phi-

losophy & Technology 26.3, pp. 253–272.
Fry, Christopher (Apr. 1997). “Programming on an Already Full Brain.”

In: Commun. ACM 40.4, pp. 55–64. issn: 0001-0782. doi: 10.1145/
248448.248459. url: https://doi.org/10.1145/248448.248459.

Fuller, Matthew et al. (2008). Software studies: A lexicon. Mit Press.
Gabriel, RichardP. (1991).Worse Is Better. url: https://www.dreamsongs.
com/WorseIsBetter.html.

– (2008). “Designed as Designer.” In: Proceedings of the 23rd ACM SIG-
PLAN Conference on Object-Oriented Programming Systems Languages
and Applications. OOPSLA ’08. Nashville, TN, USA: Association for
Computing Machinery, pp. 617–632. isbn: 9781605582153. doi: 10.
1145/1449764.1449813. url: https://doi.org/10.1145/1449764.
1449813.

– (2012). “The Structure of a Programming Language Revolution.”
In: Proceedings of the ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software. Onward! 2012.
Tucson,Arizona,USA:Association forComputingMachinery, pp. 195–
214. isbn: 9781450315623. doi: 10.1145/2384592.2384611. url: https:
//doi.org/10.1145/2384592.2384611.

Gamma, Erich, Richard Helm, Ralph E. Johnson, and John Vlissides
(1995). Design Patterns: Elements of Reusable Object-Oriented Software.
Reading, Mass: Addison-Wesley.

Geisler, Dietrich, Irene Yoon, Aditi Kabra, Horace He, Yinnon Sanders,
and Adrian Sampson (Nov. 2020). “Geometry types for graphics
programming.” In: Proc. ACM Program. Lang. 4.OOPSLA. doi: 10.
1145/3428241. url: https://doi.org/10.1145/3428241.

https://doi.org/10.4230/LIPIcs.SNAPL.2015.113
https://doi.org/10.4230/LIPIcs.SNAPL.2015.113
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2015.113
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2015.113
https://doi.org/10.1145/3127323
https://doi.org/10.1145/3127323
https://doi.org/10.1145/114669.114670
https://doi.org/10.1145/114669.114670
https://doi.org/10.1145/114669.114670
http://memeagora.blogspot.com/2006/12/polyglot-programming.html
http://memeagora.blogspot.com/2006/12/polyglot-programming.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://doi.org/10.1145/248448.248459
https://doi.org/10.1145/248448.248459
https://doi.org/10.1145/248448.248459
https://www.dreamsongs.com/WorseIsBetter.html
https://www.dreamsongs.com/WorseIsBetter.html
https://doi.org/10.1145/1449764.1449813
https://doi.org/10.1145/1449764.1449813
https://doi.org/10.1145/1449764.1449813
https://doi.org/10.1145/1449764.1449813
https://doi.org/10.1145/2384592.2384611
https://doi.org/10.1145/2384592.2384611
https://doi.org/10.1145/2384592.2384611
https://doi.org/10.1145/3428241
https://doi.org/10.1145/3428241
https://doi.org/10.1145/3428241

220 bibliography

Glide (May 23, 2022). Glide: Create apps and websites without code. url:
https://www.glideapps.com.

Goodenough, John B. (1975). “Exception Handling: Issues and a Pro-
posed Notation.” In: Commun. ACM 18.12, pp. 683–696. doi: 10.1145/
361227.361230. url: https://doi.org/10.1145/361227.361230.

Gosling, James, Bill Joy, Guy Steele, and Gilad Bracha (2000). The Java
language specification. Addison-Wesley Professional.

Grad, Burton (2007). “The Creation and the Demise of VisiCalc.” In:
IEEE Annals of the History of Computing 29.3, pp. 20–31. doi: 10.1109/
MAHC.2007.4338439.

Green, T. R. G. and M. Petre (1996). “Usability Analysis of Visual Pro-
gramming Environments: a ‘cognitive dimensions’ framework.” In:
JOURNAL OF VISUAL LANGUAGES AND COMPUTING 7, pp. 131–
174.

Gulwani, Sumit, William R Harris, and Rishabh Singh (2012). “Spread-
sheet data manipulation using examples.” In: Communications of the
ACM 55.8, pp. 97–105.

Hague, James (2010). Living Inside Your Own Black Box. url: https:
//prog21.dadgum.com/66.html.

Hall, Christopher K. (2017). “ANewHuman-Readability Infrastructure
for Computing.” PhD thesis. Santa Barbara, CA: University of Califor-
nia. url: http://www.christopherkhall.com/Dissertation.pdf.

Hancock, C. and M. Resnick (2003). “Real-time programming and
the big ideas of computational literacy.” PhD thesis. Massachusetts
Institute of Technology. url: https://dspace.mit.edu/handle/1721.
1/61549.

Hempel, Brian (2018). Evaluating User Interface Systems Research (Sum-
mary / Cheat Sheet). url: https : / / people . cs . uchicago . edu /
~brianhempel/Evaluating%20User%20Interface%20Systems%20Research%

20-%20Graphical%20Summary.pdf.
Hempel, Brian and Ravi Chugh (2020). “Tiny Structure Editors for Low,

Low Prices! (Generating GUIs from toString Functions).” In: 2020
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pp. 1–5. doi: 10.1109/VL/HCC50065.2020.9127256.

Hempel, Brian and Sam Lau (2021). LIVE Workshop 2021. url: https:
//liveprog.org/live-2021/.

Hempel, Brian, Justin Lubin, and Ravi Chugh (2019). “Sketch-n-Sketch:
Output-Directed Programming for SVG.” In: Proceedings of the 32nd
Annual ACMSymposium onUser Interface Software and Technology. UIST
’19. New Orleans, LA, USA: Association for Computing Machinery,
pp. 281–292. isbn: 9781450368162. doi: 10.1145/3332165.3347925.
url: https://doi.org/10.1145/3332165.3347925.

Hempel, Brian and Roly Perera (2020). LIVEWorkshop 2020. url: https:
//liveprog.org/live-2020/.

Ingalls, Dan (2008). “The Lively Kernel: just for fun, let’s take JavaScript
seriously.” In: Proceedings of the 2008 Symposium on Dynamic Languages.

https://www.glideapps.com
https://doi.org/10.1145/361227.361230
https://doi.org/10.1145/361227.361230
https://doi.org/10.1145/361227.361230
https://doi.org/10.1109/MAHC.2007.4338439
https://doi.org/10.1109/MAHC.2007.4338439
https://prog21.dadgum.com/66.html
https://prog21.dadgum.com/66.html
http://www.christopherkhall.com/Dissertation.pdf
https://dspace.mit.edu/handle/1721.1/61549
https://dspace.mit.edu/handle/1721.1/61549
https://people.cs.uchicago.edu/~brianhempel/Evaluating%20User%20Interface%20Systems%20Research%20-%20Graphical%20Summary.pdf
https://people.cs.uchicago.edu/~brianhempel/Evaluating%20User%20Interface%20Systems%20Research%20-%20Graphical%20Summary.pdf
https://people.cs.uchicago.edu/~brianhempel/Evaluating%20User%20Interface%20Systems%20Research%20-%20Graphical%20Summary.pdf
https://doi.org/10.1109/VL/HCC50065.2020.9127256
https://liveprog.org/live-2021/
https://liveprog.org/live-2021/
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3332165.3347925
https://liveprog.org/live-2020/
https://liveprog.org/live-2020/

bibliography 221

DLS ’08. Paphos, Cyprus: Association for Computing Machinery.
isbn: 9781605582702. doi: 10.1145/1408681.1408690. url: https:
//doi.org/10.1145/1408681.1408690.

Ingalls, Dan, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay
(1997). “Back to the future: the story of Squeak, a practical Smalltalk
written in itself.” In: Proceedings of the 12th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications.
OOPSLA ’97. Atlanta, Georgia, USA: Association for Computing
Machinery, pp. 318–326. isbn: 0897919084. doi: 10.1145/263698.
263754. url: https://doi.org/10.1145/263698.263754.

Ingalls, Daniel (1981). Design Principles Behind Smalltalk. url: https:
//archive.org/details/byte-magazine-1981-08/page/n299/

mode/2up.
Jakubovic, Joel (Dec. 2020a). “Programming “systems” deserve a the-

ory too!” In: Psychology of Programming Interest Group.
– (2020b). “What It Takes to Create with Domain-Appropriate Tools.

Reflections on implementing the “Id” system.” In: Companion Pro-
ceedings of the 4th International Conference on Art, Science, and Engineer-
ing of Programming. Programming ’20. Porto, Portugal: Association
for Computing Machinery, pp. 197–207. isbn: 9781450375078. doi:
10.1145/3397537.3397549.

– (2021).Primitive Instructions forNested Trees. url: https://programmingmadecomplicated.
wordpress.com/2021/11/03/primitive-instructions-for-nested-

trees/.
Jakubovic, Joel, Jonathan Edwards, and Tomas Petricek (Feb. 2023).
“Technical Dimensions of Programming Systems.” In: The Art, Science,
and Engineering of Programming 7.3. doi: 10.22152/programming-
journal.org/2023/7/13.

Jakubovic, Joel and Tomas Petricek (2022). “Ascending the Ladder
to Self-Sustainability: Achieving Open Evolution in an Interactive
Graphical System.” In: Proceedings of the 2022 ACM SIGPLAN Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software. Onward! 2022. Auckland, New Zealand: Asso-
ciation for Computing Machinery, pp. 240–258. isbn: 9781450399098.
doi: 10.1145/3563835.3568736.

Judith Hays, Margaret Burnett (1995). A Guided Tour of Forms/3. url:
http://web.engr.oregonstate.edu/~burnett/Forms3/Tour/tour.

html.
Kay, Alan (2000). “The Computer Revolution Hasn’t Happened yet

(Keynote Session).” In: Proceedings of the Eighth ACM International Con-
ference on Multimedia. MULTIMEDIA ’00. Marina del Rey, California,
USA: Association for Computing Machinery, p. 1. isbn: 1581131984.
doi: 10.1145/354384.354390. url: https://doi.org/10.1145/
354384.354390.

Kay, Alan and Adele Goldberg (1977). “Personal Dynamic Media.” In:
Computer 10.3, pp. 31–41. doi: 10.1109/C-M.1977.217672.

https://doi.org/10.1145/1408681.1408690
https://doi.org/10.1145/1408681.1408690
https://doi.org/10.1145/1408681.1408690
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/263698.263754
https://archive.org/details/byte-magazine-1981-08/page/n299/mode/2up
https://archive.org/details/byte-magazine-1981-08/page/n299/mode/2up
https://archive.org/details/byte-magazine-1981-08/page/n299/mode/2up
https://doi.org/10.1145/3397537.3397549
https://programmingmadecomplicated.wordpress.com/2021/11/03/primitive-instructions-for-nested-trees/
https://programmingmadecomplicated.wordpress.com/2021/11/03/primitive-instructions-for-nested-trees/
https://programmingmadecomplicated.wordpress.com/2021/11/03/primitive-instructions-for-nested-trees/
https://doi.org/10.22152/programming-journal.org/2023/7/13
https://doi.org/10.22152/programming-journal.org/2023/7/13
https://doi.org/10.1145/3563835.3568736
http://web.engr.oregonstate.edu/~burnett/Forms3/Tour/tour.html
http://web.engr.oregonstate.edu/~burnett/Forms3/Tour/tour.html
https://doi.org/10.1145/354384.354390
https://doi.org/10.1145/354384.354390
https://doi.org/10.1145/354384.354390
https://doi.org/10.1109/C-M.1977.217672

222 bibliography

Kay, Alan, Dan Ingalls, Yoshiki Oshima, Ian Piumarta, and Andreas
Raab (2006). Proposal to NSF. url: http://www.vpri.org/pdf/
rn2006002_nsfprop.pdf.

Kay, Alan, Ian Piumarta, Kim Rose, Dan Ingalls, Dan Amelang, Ted
Kaehler, Yoshiki Ohshima, Scott Wallace, Alessandro Warth, and
Takashi Yamamiya (2007). STEPS Toward The Reinvention of Program-
ming, First Year Progress Report. url: ttp://www.vpri.org/pdf/
tr2007008_steps.pdf.

Kay, Alan et al. (2008). STEPS Toward The Reinvention of Programming,
2008 Progress Report. url: http://www.vpri.org/pdf/tr2008004_
steps08.pdf.

Kay, Alan et al. (2009). STEPS Toward The Reinvention of Programming,
2009 Progress Report. url: http://www.vpri.org/pdf/tr2009016_
steps09.pdf.

Kell, Stephen (2009). “The mythical matched modules: overcoming the
tyranny of inflexible software construction. Overcoming the tyranny
of inflexible software construction.” In: OOPSLA Companion.

– (2013). “The Operating System: Should There Be One?” In: Proceed-
ings of the Seventh Workshop on Programming Languages and Operat-
ing Systems. PLOS ’13. Farmington, Pennsylvania: Association for
Computing Machinery. isbn: 9781450324601. doi: 10.1145/2525528.
2525534. url: https://doi.org/10.1145/2525528.2525534.

– (2017). “SomeWereMeant for C: The Endurance of anUnmanageable
Language.” In: Proceedings of the 2017 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Program-
ming and Software. Onward! 2017. Vancouver, BC, Canada: Associa-
tion for Computing Machinery, pp. 229–245. isbn: 9781450355308.
doi: 10.1145/3133850.3133867. url: https://doi.org/10.1145/
3133850.3133867.

Kernighan, Brian W. and Dennis M. Ritchie (1989). The C Programming
Language. USA: Prentice Hall Press. isbn: 0131103628.

Kiczales, Gregor, Erik Hilsdale, JimHugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold (2001). “An Overview of AspectJ.” In:
ECOOP 2001 - Object-Oriented Programming, 15th European Confer-
ence, Budapest, Hungary, June 18-22, 2001, Proceedings. Ed. by Jørgen
Lindskov Knudsen. Vol. 2072. Lecture Notes in Computer Science.
Springer, pp. 327–353. doi: 10 . 1007 / 3 - 540 - 45337 - 7 \ _18. url:
https://doi.org/10.1007/3-540-45337-7%5C_18.

Killian, Tom (1984). “Processes as Files, USENIX Summer Conf.” In:
Proc., Salt Lake City.

Klein, Ursula (2003). Experiments, Models, Paper Tools: Cultures of Organic
Chemistry in the Nineteenth Century. Stanford, CA: Stanford University
Press. isbn: 9780804743594. url: http://www.sup.org/books/title/
?id=1917.

Klokmose, Clemens N., James R. Eagan, Siemen Baader,WendyMackay,
and Michel Beaudouin-Lafon (2015). “Webstrates: Shareable Dy-

http://www.vpri.org/pdf/rn2006002_nsfprop.pdf
http://www.vpri.org/pdf/rn2006002_nsfprop.pdf
ttp://www.vpri.org/pdf/tr2007008_steps.pdf
ttp://www.vpri.org/pdf/tr2007008_steps.pdf
http://www.vpri.org/pdf/tr2008004_steps08.pdf
http://www.vpri.org/pdf/tr2008004_steps08.pdf
http://www.vpri.org/pdf/tr2009016_steps09.pdf
http://www.vpri.org/pdf/tr2009016_steps09.pdf
https://doi.org/10.1145/2525528.2525534
https://doi.org/10.1145/2525528.2525534
https://doi.org/10.1145/2525528.2525534
https://doi.org/10.1145/3133850.3133867
https://doi.org/10.1145/3133850.3133867
https://doi.org/10.1145/3133850.3133867
https://doi.org/10.1007/3-540-45337-7_18
https://doi.org/10.1007/3-540-45337-7%5C_18
http://www.sup.org/books/title/?id=1917
http://www.sup.org/books/title/?id=1917

bibliography 223

namic Media.” In: Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology. UIST ’15. Charlotte, NC, USA: As-
sociation forComputingMachinery, pp. 280–290. isbn: 9781450337793.
doi: 10.1145/2807442.2807446. url: https://doi.org/10.1145/
2807442.2807446.

Kluyver, Thomas, BenjaminRagan-Kelley, FernandoPérez, BrianGranger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick,
Jason Grout, Sylvain Corlay, et al. (2016). “Jupyter Notebooks—a
publishing format for reproducible computational workflows.” In: Po-
sitioning and Power in Academic Publishing: Players, Agents and Agendas,
p. 87.

Knuth, D. E. (Jan. 1984a). “Literate Programming.” In: The Computer
Journal 27.2, pp. 97–111. issn: 0010-4620. doi: 10.1093/comjnl/27.2.
97. eprint: https://academic.oup.com/comjnl/article-pdf/27/2/
97/981657/270097.pdf. url: https://doi.org/10.1093/comjnl/
27.2.97.

Knuth, Donald Ervin (1984b). “Literate programming.” In: The computer
journal 27.2, pp. 97–111.

Kodosky, Jeffrey (June 2020). “LabVIEW.” In: Proc. ACM Program. Lang.
4.HOPL. doi: 10.1145/3386328. url: https://doi.org/10.1145/
3386328.

Kuhn, Thomas S. (1970). University of Chicago Press.
Kumar, Ranjitha andMichael Nebeling (2021).UIST 2021 - Author Guide.

url: https://uist.acm.org/uist2021/author-guide.html.
Lau, Sam, Ian Drosos, Julia M. Markel, and Philip J. Guo (2020). “The

Design Space of Computational Notebooks: An Analysis of 60 Sys-
tems in Academia and Industry.” In: 2020 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pp. 1–11. doi:
10.1109/VL/HCC50065.2020.9127201.

Levy, Steven (1984). Hackers: Heroes of the Computer Revolution. USA:
Doubleday. isbn: 0385191952.

Lieberman, Henry, ed. (2001). Your Wish Is My Command. Programming
By Example. Morgan Kaufmann. url: https://www.sciencedirect.
com/book/9781558606883/your-wish-is-my-command.

Likert, Rensis (1932). “A technique for the measurement of attitudes.”
In: Archives of Psychology 22.140, p. 55.

Lincke, Jens, Patrick Rein, Stefan Ramson, Robert Hirschfeld, Marcel
Taeumel, and Tim Felgentreff (2017). “Designing a live development
experience for web-components.” In: Proceedings of the 3rd ACM SIG-
PLAN International Workshop on Programming Experience. PX/17.2. Van-
couver, BC, Canada: Association for Computing Machinery, pp. 28–
35. isbn: 9781450355223. doi: 10.1145/3167109. url: https://doi.
org/10.1145/3167109.

Lindholm, Tim, Frank Yellin, Gilad Bracha, Alex Buckley, and Daniel
Smith (2023). “The Java® Virtual Machine Specification. Java SE 21

https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1145/2807442.2807446
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://academic.oup.com/comjnl/article-pdf/27/2/97/981657/270097.pdf
https://academic.oup.com/comjnl/article-pdf/27/2/97/981657/270097.pdf
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1145/3386328
https://doi.org/10.1145/3386328
https://doi.org/10.1145/3386328
https://uist.acm.org/uist2021/author-guide.html
https://doi.org/10.1109/VL/HCC50065.2020.9127201
https://www.sciencedirect.com/book/9781558606883/your-wish-is-my-command
https://www.sciencedirect.com/book/9781558606883/your-wish-is-my-command
https://doi.org/10.1145/3167109
https://doi.org/10.1145/3167109
https://doi.org/10.1145/3167109

224 bibliography

Edition.” In: url: https://docs.oracle.com/javase/specs/jvms/
se21/html/index.html.

LIVE (2023). LIVE Workshops. url: https://liveprog.org/.
Maes, Pattie (Dec. 1987). “Concepts and Experiments in Computational

Reflection.” In: SIGPLAN Not. 22.12, pp. 147–155. issn: 0362-1340.
doi: 10.1145/38807.38821. url: https://doi.org/10.1145/38807.
38821.

Mainland, Geoffrey (2007). “Why It’s Nice to be Quoted: Quasiquoting
for Haskell.” In: Proceedings of the ACM SIGPLANWorkshop on Haskell
Workshop. Haskell ’07. Freiburg, Germany: Association for Computing
Machinery, pp. 73–82. isbn: 9781595936745. doi: 10.1145/1291201.
1291211. url: https://doi.org/10.1145/1291201.1291211.

Marlow, Simon and Simon Peyton-Jones (2012). The Glasgow Haskell
Compiler. Ed. by A. Brown and G. Wilson. The Architecture of Open
SourceApplications. CreativeCommons. Chap. 5. isbn: 9781105571817.
url: http://www.aosabook.org.

McCarthy, John (1962). LISP 1.5 Programmer’s Manual. The MIT Press.
isbn: 0262130114.

Meyerovich, Leo A. and Ariel S. Rabkin (2012). “Socio-PLT: Principles
for Programming Language Adoption.” In: Proceedings of the ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software. Onward! 2012. Tucson, Arizona, USA: As-
sociation for Computing Machinery, pp. 39–54. isbn: 9781450315623.
doi: 10.1145/2384592.2384597. url: https://doi.org/10.1145/
2384592.2384597.

Michel, Stephen L. (1989). Hypercard: The Complete Reference. Berkeley:
Osborne McGraw-Hill.

Microsoft (May 23, 2022). Language Server Protocol. url: https : / /
microsoft.github.io/language-server-protocol/.

Moloney, J., Alan Borning, and B. Freeman-Benson (1989). “Constraint
technology for user-interface construction in ThingLab II.” In: Confer-
ence Proceedings on Object-Oriented Programming Systems, Languages
and Applications. OOPSLA ’89. New Orleans, Louisiana, USA: As-
sociation for Computing Machinery, pp. 381–388. isbn: 0897913337.
doi: 10.1145/74877.74917. url: https://doi.org/10.1145/74877.
74917.

Monperrus, Martin (2017). “Principles of Antifragile Software.” In:
Companion to the First International Conference on the Art, Science and
Engineering of Programming. Programming ’17. Brussels, Belgium:
Association for Computing Machinery. isbn: 9781450348362. doi: 10.
1145/3079368.3079412. url: https://doi.org/10.1145/3079368.
3079412.

Murray, Alan (2022). “LET, LAMBDA, and the Helper Functions.”
In: Advanced Excel Formulas: Unleashing Brilliance with Excel Formulas.
Berkeley, CA: Apress, pp. 751–803. isbn: 978-1-4842-7125-4. doi: 10.

https://docs.oracle.com/javase/specs/jvms/se21/html/index.html
https://docs.oracle.com/javase/specs/jvms/se21/html/index.html
https://liveprog.org/
https://doi.org/10.1145/38807.38821
https://doi.org/10.1145/38807.38821
https://doi.org/10.1145/38807.38821
https://doi.org/10.1145/1291201.1291211
https://doi.org/10.1145/1291201.1291211
https://doi.org/10.1145/1291201.1291211
http://www.aosabook.org
https://doi.org/10.1145/2384592.2384597
https://doi.org/10.1145/2384592.2384597
https://doi.org/10.1145/2384592.2384597
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://doi.org/10.1145/74877.74917
https://doi.org/10.1145/74877.74917
https://doi.org/10.1145/74877.74917
https://doi.org/10.1145/3079368.3079412
https://doi.org/10.1145/3079368.3079412
https://doi.org/10.1145/3079368.3079412
https://doi.org/10.1145/3079368.3079412
https://doi.org/10.1007/978-1-4842-7125-4_15
https://doi.org/10.1007/978-1-4842-7125-4_15
https://doi.org/10.1007/978-1-4842-7125-4_15

bibliography 225

1007/978-1-4842-7125-4_15. url: https://doi.org/10.1007/978-
1-4842-7125-4_15.

Nelson, T. H. (1965). “Complex Information Processing: A File Struc-
ture for the Complex, the Changing and the Indeterminate.” In:
Proceedings of the 1965 20th National Conference. ACM ’65. Cleveland,
Ohio, USA: Association for Computing Machinery, pp. 84–100. isbn:
9781450374958. doi: 10.1145/800197.806036. url: https://doi.
org/10.1145/800197.806036.

Nickerson, Jeffrey Vernon (1994). Visual programming. New York Uni-
versity. url: https://web.stevens.edu/jnickerson/ch2.pdf.

Noble, James and Robert Biddle (Dec. 2004). “Notes on Notes on Post-
modern Programming.” In: SIGPLAN Not. 39.12, pp. 40–56. issn:
0362-1340. doi: 10.1145/1052883.1052890. url: https://doi.org/
10.1145/1052883.1052890.

Norman, Donald A. (2002). The Design of Everyday Things. USA: Basic
Books, Inc. isbn: 9780465067107.

Norvig, Peter (1996). “Design patterns in dynamic programming.”
Object World, Boston, MA. url: https : / / norvig . com / design -
patterns/.

Nystrom, Bob (2014).GameProgramming Patterns. url: https://gameprogrammingpatterns.
com/.

Olsen, Dan R. (2007). “Evaluating User Interface Systems Research.”
In: Proceedings of the 20th Annual ACM Symposium on User Interface
Software and Technology. UIST ’07. Newport, Rhode Island, USA: Asso-
ciation for Computing Machinery, pp. 251–258. isbn: 9781595936790.
doi: 10.1145/1294211.1294256. url: https://doi.org/10.1145/
1294211.1294256.

Omar, Cyrus, Ian Voysey, Ravi Chugh, and Matthew A. Hammer (Jan.
2019). “Live Functional Programming with Typed Holes.” In: Proc.
ACM Program. Lang. 3.POPL. doi: 10.1145/3290327. url: https:
//doi.org/10.1145/3290327.

Orchard, Dominic (2011). “The four Rs of programming language de-
sign.” In: Proceedings of the 10th SIGPLAN Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software. Onward!
2011. Portland, Oregon, USA: Association for Computing Machinery,
pp. 157–162. isbn: 9781450309417. doi: 10.1145/2089131.2089138.
url: https://doi.org/10.1145/2089131.2089138.

Orchard, Dominic A and Steve Matthews (2008). “Integrating Lucid’s
Declarative Dataflow Paradigm into Object-Orientation.” In: Mathe-
matics in Computer Science 2, pp. 103–122.

Parnas, David Lorge (1985). “Software Aspects of Strategic Defense Sys-
tems.” In: url: http://web.stanford.edu/class/cs99r/readings/
parnas1.pdf.

Pawson, Richard (2004). “Naked Objects.” PhD thesis. Trinity College,
University of Dublin.

https://doi.org/10.1007/978-1-4842-7125-4_15
https://doi.org/10.1007/978-1-4842-7125-4_15
https://doi.org/10.1007/978-1-4842-7125-4_15
https://doi.org/10.1007/978-1-4842-7125-4_15
https://doi.org/10.1007/978-1-4842-7125-4_15
https://doi.org/10.1007/978-1-4842-7125-4_15
https://doi.org/10.1145/800197.806036
https://doi.org/10.1145/800197.806036
https://doi.org/10.1145/800197.806036
https://web.stevens.edu/jnickerson/ch2.pdf
https://doi.org/10.1145/1052883.1052890
https://doi.org/10.1145/1052883.1052890
https://doi.org/10.1145/1052883.1052890
https://norvig.com/design-patterns/
https://norvig.com/design-patterns/
https://gameprogrammingpatterns.com/
https://gameprogrammingpatterns.com/
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/3290327
https://doi.org/10.1145/3290327
https://doi.org/10.1145/3290327
https://doi.org/10.1145/2089131.2089138
https://doi.org/10.1145/2089131.2089138
http://web.stanford.edu/class/cs99r/readings/parnas1.pdf
http://web.stanford.edu/class/cs99r/readings/parnas1.pdf

226 bibliography

Perlis, Alan J. (Sept. 1982). “Special Feature: Epigrams on program-
ming.” In: SIGPLANNot. 17.9, pp. 7–13. issn: 0362-1340. doi: 10.1145/
947955.1083808. url: https://doi.org/10.1145/947955.1083808.

Perlis, Alan J. and K. Samelson (Dec. 1958). “Preliminary Report: Inter-
national Algebraic Language.” In: Commun. ACM 1.12, pp. 8–22. issn:
0001-0782. doi: 10.1145/377924.594925. url: https://doi.org/10.
1145/377924.594925.

Petricek, Tomas (2017). “Miscomputation in software: Learning to live
with errors.” In: Art Sci. Eng. Program. 1.2, p. 14. doi: 10.22152/
programming-journal.org/2017/1/14. url: https://doi.org/10.
22152/programming-journal.org/2017/1/14.

Petricek, Tomas and Joel Jakubovic (2021). “Complementary science
of interactive programming systems.” In: History and Philosophy of
Computing.

Pierce, Benjamin C. (2002). Types and Programming Languages. 1st. The
MIT Press. isbn: 0262162091.

Pike, Rob, Dave Presotto, Ken Thompson, Howard Trickey, and Phil
Winterbottom (Apr. 1993). “The Use of Name Spaces in Plan 9.” In:
SIGOPS Oper. Syst. Rev. 27.2, pp. 72–76. issn: 0163-5980. doi: 10.1145/
155848.155861. url: https://doi.org/10.1145/155848.155861.

Piumarta, Ian (2006).Accessible Language-Based Environments of Recursive
Theories. url: http://www.vpri.org/pdf/rn2006001a_colaswp.pdf.

– (2011). “Open, Extensible Composition Models.” In: Proceedings of
the 1st International Workshop on Free Composition. FREECO ’11. Lan-
caster, United Kingdom: Association for Computing Machinery. isbn:
9781450308922. doi: 10.1145/2068776.2068778. url: http://www.
vpri.org/pdf/tr2011002_oecm.pdf.

Piumarta, Ian and Alessandro Warth (2008). “Open, Extensible Object
Models.” In: Self-Sustaining Systems: First Workshop, S3 2008 Potsdam,
Germany, May 15-16, 2008 Revised Selected Papers. Berlin, Heidelberg:
Springer-Verlag, pp. 1–30. isbn: 9783540892748. doi: 10.1007/978-
3-540-89275-5_1. url: http://www.vpri.org/pdf/tr2006003a_
objmod.pdf.

Polito, Guillermo, Stéphane Ducasse, Noury Bouraqadi, and Luc Fab-
resse (2015). “A Bootstrapping Infrastructure to Build and Extend
Pharo-like Languages.” In: 2015 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Soft-
ware (Onward!) Onward! 2015. Pittsburgh, PA, USA: Association for
Computing Machinery, pp. 183–196. isbn: 9781450336888. doi: 10.
1145/2814228.2814236. url: https://doi.org/10.1145/2814228.
2814236.

PX (2023).Programming Experience (PX)Workshops. url: http://programming-
experience.org/.

Pyret Crew (2016). They Pyret Code; or A Rationale for the Pyret Program-
ming Language. url: https://pyret.org/pyret-code/index.html.

https://doi.org/10.1145/947955.1083808
https://doi.org/10.1145/947955.1083808
https://doi.org/10.1145/947955.1083808
https://doi.org/10.1145/377924.594925
https://doi.org/10.1145/377924.594925
https://doi.org/10.1145/377924.594925
https://doi.org/10.22152/programming-journal.org/2017/1/14
https://doi.org/10.22152/programming-journal.org/2017/1/14
https://doi.org/10.22152/programming-journal.org/2017/1/14
https://doi.org/10.22152/programming-journal.org/2017/1/14
https://doi.org/10.1145/155848.155861
https://doi.org/10.1145/155848.155861
https://doi.org/10.1145/155848.155861
http://www.vpri.org/pdf/rn2006001a_colaswp.pdf
https://doi.org/10.1145/2068776.2068778
http://www.vpri.org/pdf/tr2011002_oecm.pdf
http://www.vpri.org/pdf/tr2011002_oecm.pdf
https://doi.org/10.1007/978-3-540-89275-5_1
https://doi.org/10.1007/978-3-540-89275-5_1
http://www.vpri.org/pdf/tr2006003a_objmod.pdf
http://www.vpri.org/pdf/tr2006003a_objmod.pdf
https://doi.org/10.1145/2814228.2814236
https://doi.org/10.1145/2814228.2814236
https://doi.org/10.1145/2814228.2814236
https://doi.org/10.1145/2814228.2814236
http://programming-experience.org/
http://programming-experience.org/
https://pyret.org/pyret-code/index.html

bibliography 227

Python Guide (2016). The Hitchiker’s Guide To Python. url: https://
docs.python-guide.org/writing/gotchas/#mutable-default-

arguments.
Rauch, David, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert

Hirschfeld (2019). “Babylonian-style Programming: Design and Im-
plementation of an Integration of Live Examples intoGeneral-purpose
Source Code.” In: CoRR abs/1902.00549. arXiv: 1902.00549. url:
http://arxiv.org/abs/1902.00549.

Raymond, Eric S. andBobYoung (2001).The Cathedral &The Bazaar:Mus-
ings on Linux and Open Source by an Accidental Revolutionary. O’Reilly.

Reason, James (1990). Human error. Cambridge university press.
Reese, Ivan (2022). Visual Programming Codex. url: https://github.
com/ivanreese/visual-programming-codex.

Renggli, Lukas and Tudor Gır̂ba (2009). “Why Smalltalk wins the
host languages shootout.” In: Proceedings of the International Work-
shop on Smalltalk Technologies. IWST ’09. Brest, France: Association
for Computing Machinery, pp. 107–113. isbn: 9781605588995. doi:
10 . 1145 / 1735935 . 1735954. url: https : / / doi . org / 10 . 1145 /
1735935.1735954.

repl.it (May 23, 2022). Replit: The collaborative browser-based IDE. url:
https://replit.com.

Rose, Kim and Robert Hirschfeld, eds. (2008). Self-Sustaining Systems,
First Workshop. Vol. 5146. Lecture Notes in Computer Science. Pots-
dam, Germany: Springer. isbn: 978-3-540-89274-8. doi: 10.1007/978-
3-540-89275-5. url: https://doi.org/10.1007/978-3-540-89275-
5.

Rose, Kim, Robert Hirschfeld, and Hidehiko Masuhara, eds. (2010).
Workshop on Self-Sustaining Systems. Tokyo, Japan: ACM. isbn: 978-
1-4503-0491-7. doi: 10.1145/1942793. url: https://doi.org/10.
1145/1942793.

Ryder, Barbara G., Mary Lou Soffa, and Margaret Burnett (Oct. 2005).
“The Impact of Software Engineering Research on Modern Program-
ming Languages.” In: ACM Trans. Softw. Eng. Methodol. 14.4, pp. 431–
477. issn: 1049-331X. doi: 10.1145/1101815.1101818. url: https:
//doi.org/10.1145/1101815.1101818.

Shneiderman (1983). “Direct Manipulation: A Step Beyond Program-
ming Languages.” In: Computer 16.8, pp. 57–69. doi: 10.1109/MC.
1983.1654471.

Sitaker, Kragen Javier (2016). The Memory Models That Underlie Pro-
gramming Languages. url: http://canonical.org/~kragen/memory-
models/.

Smaragdakis, Yannis (2019). “Next-ParadigmProgrammingLanguages:
What Will They Look like and What Changes Will They Bring?” In:
Proceedings of the 2019 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software. On-
ward! 2019. Athens, Greece: Association for Computing Machinery,

https://docs.python-guide.org/writing/gotchas/#mutable-default-arguments
https://docs.python-guide.org/writing/gotchas/#mutable-default-arguments
https://docs.python-guide.org/writing/gotchas/#mutable-default-arguments
https://arxiv.org/abs/1902.00549
http://arxiv.org/abs/1902.00549
https://github.com/ivanreese/visual-programming-codex
https://github.com/ivanreese/visual-programming-codex
https://doi.org/10.1145/1735935.1735954
https://doi.org/10.1145/1735935.1735954
https://doi.org/10.1145/1735935.1735954
https://replit.com
https://doi.org/10.1007/978-3-540-89275-5
https://doi.org/10.1007/978-3-540-89275-5
https://doi.org/10.1007/978-3-540-89275-5
https://doi.org/10.1007/978-3-540-89275-5
https://doi.org/10.1145/1942793
https://doi.org/10.1145/1942793
https://doi.org/10.1145/1942793
https://doi.org/10.1145/1101815.1101818
https://doi.org/10.1145/1101815.1101818
https://doi.org/10.1145/1101815.1101818
https://doi.org/10.1109/MC.1983.1654471
https://doi.org/10.1109/MC.1983.1654471
http://canonical.org/~kragen/memory-models/
http://canonical.org/~kragen/memory-models/

228 bibliography

pp. 187–197. isbn: 9781450369954. doi: 10.1145/3359591.3359739.
url: https://doi.org/10.1145/3359591.3359739.

Smith, Brian Cantwell (1982). “Procedural Reflection in Programming
Languages.” PhD thesis. Massachusetts Institute of Technology. url:
https://dspace.mit.edu/handle/1721.1/15961.

Smith, D. C. (1975). “Pygmalion: a creative programming environ-
ment.” In.

Steele, G. and S.E. Fahlman (1990). Common LISP: The Language. HP
Technologies. Elsevier Science. isbn: 9781555580414. url: https://
books.google.cz/books?id=FYoOIWuoXUIC.

Steele, Guy L. and Richard P. Gabriel (1993). “The Evolution of Lisp.”
In: The Second ACM SIGPLAN Conference on History of Programming
Languages. HOPL-II. Cambridge,Massachusetts, USA: Association for
Computing Machinery, pp. 231–270. isbn: 0897915704. doi: 10.1145/
154766.155373. url: https://doi.org/10.1145/154766.155373.

Steimann, Friedrich, Marcus Frenkel, and Markus Voelter (2017). “Ro-
bust projectional editing.” In: Proceedings of the 10th ACMSIGPLAN In-
ternational Conference on Software Language Engineering. SLE 2017. Van-
couver, BC, Canada: Association for Computing Machinery, pp. 79–
90. isbn: 9781450355254. doi: 10.1145/3136014.3136034. url: https:
//doi.org/10.1145/3136014.3136034.

Sussman, Gerald Jay and Jack Wisdom (2001). Structure and Interpre-
tation of Classical Mechanics. Cambridge, MA, USA: MIT Press. isbn:
0262194554.

Sústrik, Martin (2019). Hull: An alternative to shell that I’ll never have time
to implement. url: https://250bpm.com/blog:153/.

Sutherland, Ivan Edward (1963). “Sketchpad: A man-machine graphi-
cal communication system.” PhD thesis. Massachusetts Institute of
Technology. doi: https://doi.org/10.1145/1461551.1461591. url:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf.

Tanimoto, Steven L. (2013). “A Perspective on the Evolution of Live
Programming.” In: Proceedings of the 1st International Workshop on Live
Programming. LIVE ’13. San Francisco, California: IEEE Press, pp. 31–
34. isbn: 9781467362658.

Tchernavskij, Philip (2019). “Designing and Programming Malleable
Software.” PhD thesis. Université Paris-Saclay, École doctorale nº580
Sciences et Technologies de l’Information et de la Communication
(STIC).

Teitelman, Warren (1966). “PILOT: A Step TowardMan-Computer Sym-
biosis.” PhD thesis.

Ungar, David and Randall B. Smith (2007). “Self.” In: Proceedings of the
Third ACM SIGPLAN Conference on History of Programming Languages.
HOPL III. San Diego, California: Association for Computing Ma-
chinery, pp. 9–1–9–50. isbn: 9781595937667. doi: 10.1145/1238844.
1238853. url: https://doi.org/10.1145/1238844.1238853.

https://doi.org/10.1145/3359591.3359739
https://doi.org/10.1145/3359591.3359739
https://dspace.mit.edu/handle/1721.1/15961
https://books.google.cz/books?id=FYoOIWuoXUIC
https://books.google.cz/books?id=FYoOIWuoXUIC
https://doi.org/10.1145/154766.155373
https://doi.org/10.1145/154766.155373
https://doi.org/10.1145/154766.155373
https://doi.org/10.1145/3136014.3136034
https://doi.org/10.1145/3136014.3136034
https://doi.org/10.1145/3136014.3136034
https://250bpm.com/blog:153/
https://doi.org/https://doi.org/10.1145/1461551.1461591
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf
https://doi.org/10.1145/1238844.1238853
https://doi.org/10.1145/1238844.1238853
https://doi.org/10.1145/1238844.1238853

bibliography 229

Victor, Bret (2012). Learnable Programming. url: http://worrydream.
com/#!/LearnableProgramming.

– (2013). Drawing Dynamic Visualisations. url: http://worrydream.
com/#!/DrawingDynamicVisualizationsTalk.

ViewPoints Research Institute (2010). STEPS Toward Expressive Program-
ming Systems, 2010 Progress Report. url: http://www.vpri.org/pdf/
tr2010004_steps10.pdf.

Voelter, Markus and Vaclav Pech (2012). “Language Modularity with
theMPS LanguageWorkbench.” In: Proceedings of the 34th International
Conference on Software Engineering. ICSE ’12. Zurich, Switzerland: IEEE
Press, pp. 1449–1450. isbn: 9781467310673.

Wall, Larry (1999). Perl, the first postmodern computer language. url: http:
//www.wall.org//~larry/pm.html.

Warth, Alessandro (2009). “Experimenting with Programming Lan-
guages.” PhD thesis. Los Angeles, CA: University of California. url:
http://www.vpri.org/pdf/tr2008003_experimenting.pdf.

Wickerson, John and Paul Brunet (2012). “Pearl: Diagrams for Com-
posing Compilers.” In: url: https://johnwickerson.github.io/
papers/jdiagrams.pdf.

Winestock, Rudolf (2011).The Lisp Curse. url: http://www.winestockwebdesign.
com/Essays/Lisp_Curse.html.

Wolfram, Stephen (1991). Mathematica: A System for Doing Mathematics
by Computer (2nd Ed.) USA: Addison Wesley Longman Publishing
Co., Inc. isbn: 0201515075.

Würthinger, Thomas, Christian Wimmer, and Lukas Stadler (2013).
“Unrestricted and safe dynamic code evolution for Java.” In: Science
of Computer Programming 78.5. Special section: Principles and Practice
of Programming in Java 2009/2010 & Special section: Self-Organizing
Coordination, pp. 481–498. issn: 0167-6423. doi: https://doi.org/
10.1016/j.scico.2011.06.005. url: https://www.sciencedirect.
com/science/article/pii/S0167642311001456.

Zynda,Melissa Rodriguez (Sept. 2013). “The First Killer App: AHistory
of Spreadsheets.” In: Interactions 20.5, pp. 68–72. issn: 1072-5520. doi:
10.1145/2509224. url: https://doi.org/10.1145/2509224.

http://worrydream.com/#!/LearnableProgramming
http://worrydream.com/#!/LearnableProgramming
http://worrydream.com/#!/DrawingDynamicVisualizationsTalk
http://worrydream.com/#!/DrawingDynamicVisualizationsTalk
http://www.vpri.org/pdf/tr2010004_steps10.pdf
http://www.vpri.org/pdf/tr2010004_steps10.pdf
http://www.wall.org//~larry/pm.html
http://www.wall.org//~larry/pm.html
http://www.vpri.org/pdf/tr2008003_experimenting.pdf
https://johnwickerson.github.io/papers/jdiagrams.pdf
https://johnwickerson.github.io/papers/jdiagrams.pdf
http://www.winestockwebdesign.com/Essays/Lisp_Curse.html
http://www.winestockwebdesign.com/Essays/Lisp_Curse.html
https://doi.org/https://doi.org/10.1016/j.scico.2011.06.005
https://doi.org/https://doi.org/10.1016/j.scico.2011.06.005
https://www.sciencedirect.com/science/article/pii/S0167642311001456
https://www.sciencedirect.com/science/article/pii/S0167642311001456
https://doi.org/10.1145/2509224
https://doi.org/10.1145/2509224

colophon

This documentwas typeset using the typographical look-and-feel classicthesis
developed by André Miede and Ivo Pletikosić. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the au-
thor, a collection of postcards received so far is featured here:

http://postcards.miede.de/

Thank you very much for your feedback and contribution.

Final Version as of April 3, 2024 (classicthesis v4.6).

https://bitbucket.org/amiede/classicthesis/
http://postcards.miede.de/

	Dedication
	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 A More Compelling Example
	1.2 How Should Things Work?
	1.3 A Fragmented Vision
	1.3.1 Web pages, web apps, and browsers
	1.3.2 HyperCard
	1.3.3 Smalltalk and COLA

	1.4 Accidental Complexity Beyond Languages
	1.5 The Three Properties
	1.5.1 Importance of the Three Properties
	1.5.2 The Three Properties in Combination

	1.6 Thesis Statement and Contributions
	1.7 Supporting Publications

	2 Background
	2.1 Programming Systems vs Languages
	2.2 Examples of Programming Systems
	2.2.1 Systems Based Around Languages
	2.2.2 OS-Like Programming Systems
	2.2.3 Application-Focused Systems

	2.3 Precursors of the Three Properties
	2.3.1 Precursors of Self-Sustainability
	2.3.2 Precursors of Notational Freedom
	2.3.3 Precursors of Explicit Structure

	2.4 Review and Next Steps

	3 Analysis
	3.1 Two Fundamentals: State and Change
	3.1.1 The Low-Level Binary World
	3.1.2 The Minimally Human-Friendly World
	3.1.3 Let Us Avoid The Low-Level Binary World

	3.2 Paradigms of Programs and Programming
	3.2.1 The Batch-Mode Paradigm
	3.2.2 The Unix Paradigm
	3.2.3 The Interactive Paradigm
	3.2.4 Batch-Mode Anachronisms
	3.2.5 Conclusion

	3.3 The Three Properties in More Detail
	3.3.1 Self-Sustainability
	3.3.2 Notational Freedom
	3.3.3 Explicit Structure

	3.4 Conclusions

	4 BootstrapLab: The Three Properties in the Web Browser
	4.1 Methodology
	4.2 Concepts and Terminology
	4.3 Journey Itinerary
	4.4 Choose a Starting Platform
	4.5 Design a Substrate
	4.5.1 Substrates in Squeak and Altair
	4.5.2 COLA's Low-Level Byte Arrays
	4.5.3 The Major Design Conflict
	4.5.4 BootstrapLab's Simple, Structured State Model
	4.5.5 Designing the Instruction Set
	4.5.6 Graphics and Interaction
	4.5.7 BootstrapLab Substrate Summary

	4.6 Implement Temporary Infrastructure
	4.6.1 Early Computing, Squeak, and COLA
	4.6.2 Temporary Infrastructure in BootstrapLab

	4.7 Implement a High-Level Language
	4.7.1 Shortcuts for Low-Level Substrates
	4.7.2 High-Level Language for BootstrapLab
	4.7.3 Choosing an Appropriate Implementation
	4.7.4 Implementing Masp for BootstrapLab

	4.8 Pay Off Outstanding Substrate Debt
	4.8.1 Substrate Debt in Squeak
	4.8.2 Substrate Debt in BootstrapLab
	4.8.3 Supplanting the Temporary State Viewer

	4.9 Provide for Domain-Specific Notations
	4.9.1 A Taster
	4.9.2 A More Ambitious Novel Interface
	4.9.3 Real Example: Colour Preview
	4.9.4 The Key Takeaway

	4.10 Situation, Task, User, Importance

	5 Technical Dimensions of Programming Systems
	5.1 Barriers to Programming Systems Research
	5.2 Our Proposal
	5.3 Dimensions, Qualitative and Quantitative
	5.3.1 How We Define and Apply the Dimensions
	5.3.2 Aggregation and Simplification

	5.4 The Three Properties as Dimensions
	5.4.1 Dimensions Constituting Self-Sustainability
	5.4.2 Dimensions Constituting Notational Freedom
	5.4.3 Dimensions Constituting Explicit Structure

	5.5 Evaluating BootstrapLab
	5.5.1 Measures of Self-Sustainability
	5.5.2 Measures of Notational Freedom
	5.5.3 Measures of Explicit Structure

	5.6 Conclusions

	6 Related Work
	6.1 STEPS and the Legacy of VPRI
	6.2 Self-Sustainability and its Theory
	6.3 Video Games
	6.4 Novel Notations versus Notational Freedom
	6.5 Structure Editing and its Variations
	6.6 Programming Systems and their Analysis
	6.6.1 Programming Systems Research
	6.6.2 Already-Known Characteristics

	7 Future Work and Conclusions
	7.1 Improving the Technical Dimensions
	7.1.1 Scoping The Dimensions
	7.1.2 Aggregation Functions and Weights
	7.1.3 Defining Quantitative Measures or Resolution Criteria
	7.1.4 Obtaining Consensus on Scores
	7.1.5 The Circumscription Problem of Systems

	7.2 Improving BootstrapLab
	7.2.1 Pay Off Substrate Debt
	7.2.2 Make More Usable
	7.2.3 Alternative Implementation Strategies
	7.2.4 Make the System Less Fragile
	7.2.5 Import From Related Work
	7.2.6 Bootstrap on Other Platforms and Substrates

	7.3 Review
	7.4 Conclusions

	A BootstrapLab Journey Summary
	B BootstrapLab Substrate Reference
	B.1 State in BootstrapLab
	B.1.1 Registers
	B.1.2 Graphics State: The scene Tree
	B.1.3 Manually Updating State
	B.1.4 Persisting State

	B.2 Change in BootstrapLab
	B.2.1 Instruction Encoding in State, Text, and Diagrams
	B.2.2 Change Map Entry and Supporting Instructions
	B.2.3 Create New Map
	B.2.4 Inheritance of JS-level Change
	B.2.5 The Fetch-Execute Cycle
	B.2.6 Input Handling

	C BootstrapLab Trivia
	C.1 The Minimal Random-Access Instruction Set (And Its Perils)
	C.1.1 Deconstruction of a Path-to-Path Copy
	C.1.2 Copying and Jumping
	C.1.3 A Meta-Circular Inelegance

	C.2 The Cutting Room Floor
	C.3 Graphs vs. Trees

	D Masp Reference
	D.1 State in Masp
	D.2 Change in Masp
	D.2.1 Maps as Functions
	D.2.2 Masp Tree-Based Evaluation
	D.2.3 List of Primitives

	D.3 Important Related Work

	E Technical Dimensions Catalogue
	E.1 Interaction
	E.1.1 Dimension: feedback loops
	E.1.2 Example: immediate feedback
	E.1.3 Example: direct manipulation
	E.1.4 Dimension: modes of interaction
	E.1.5 Dimension: abstraction construction
	E.1.6 Concept: implicit vs. explicit structure
	E.1.7 Dimension: format errors
	E.1.8 Dimension: string wrangling effort
	E.1.9 Relations

	E.2 Notation
	E.2.1 Dimension: notational structure
	E.2.2 Example: overlapping notations
	E.2.3 Example: complementing notations
	E.2.4 Dimension: primary and secondary notations
	E.2.5 Dimension: expression geography
	E.2.6 Dimension: uniformity of notations
	E.2.7 Concept: notational freedom
	E.2.8 Dimension: custom syntax effort
	E.2.9 Dimension: custom language effort
	E.2.10 Dimension: custom notation effort
	E.2.11 References
	E.2.12 Relations

	E.3 Conceptual Structure
	E.3.1 Dimension: conceptual integrity vs. openness
	E.3.2 Example: conceptual integrity
	E.3.3 Example: conceptual openness
	E.3.4 Dimension: composability
	E.3.5 Dimension: convenience
	E.3.6 Dimension: commonality
	E.3.7 Examples: flattening and factoring of commonality
	E.3.8 Remark: the end of history?
	E.3.9 References

	E.4 Customizability
	E.4.1 Dimension: staging of customisation
	E.4.2 Dimension: addressing and externalisability
	E.4.3 Concept: self-sustainability
	E.4.4 Dimension: substrate size
	E.4.5 Dimension: persistence effort
	E.4.6 Dimensions: code viewing and editing
	E.4.7 Dimension: data execution
	E.4.8 References
	E.4.9 Relations

	E.5 Complexity
	E.5.1 Remark: notations
	E.5.2 Dimension: factoring of complexity
	E.5.3 Dimension: level of automation
	E.5.4 Example: domain-specific languages
	E.5.5 Example: programming by example
	E.5.6 Example: next-level automation
	E.5.7 Relations

	E.6 Errors
	E.6.1 Dimensions: error detection
	E.6.2 Example: static typing
	E.6.3 Examples: TDD, REPL and live coding
	E.6.4 Remark: eliminating latent errors
	E.6.5 Dimension: error response
	E.6.6 Relations
	E.6.7 References

	E.7 Adoptability
	E.7.1 Dimension: learnability
	E.7.2 Dimension: sociability

	E.8 Evaluating the Dark Programming System
	E.8.1 Dimensional analysis of Dark
	E.8.2 Technical Innovations of Dark

	 Bibliography
	Colophon

