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But mathematics is the sister, as well as the servant, of the arts and

is touched by the same madness and genius.

Marston Morse quoted in S. Gudder’s A Mathematical Journey

The real voyage of discovery consists not in seeking out new landscapes

but in having new eyes.

Marcel Proust in La Prisionnière

Folk in those stories had lots of chances of turning back only they didn’t.

Because they were holding on to something.

Samwise Gamgee in the film The Lord of The Rings: The Two Towers





Abstract

We study the operad of derived A∞-algebras from a new point of view

in order to find a derived version of the Deligne conjecture. We start

by defining the brace structure on an operad of graded R-modules using

operadic suspension, which we describe in depth for the first time as a

functor, and use it to define A∞-algebra structures on certain operads,

with the endomorphism operad as our main example. This construction

provides us with an operadic context from which A∞-algebras arise in a

natural way and allows us to generalize the Lie algebra structure on the

Hochschild complex of an A∞-algebra. Next, we generalize these con-

structions to operads of bigraded R-modules, introducing a totalization

functor. This allows us to generalize a Lie algebra structure on the to-

tal complex of a derived A∞-algebra. This construction and the use of

some enriched categories allow us to obtain new versions of the Deligne

conjecture.
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Chapter 1

Introduction

There are a number of mathematical fields in which A∞-structures arise,

ranging from topology to mathematical physics. To study these struc-

tures, different interpretations of A∞-algebras have been given. From

the original definition in 1963 [Sta63], to alternative definitions in terms

of tensor coalgebras [Kel01], [Pen01], many approaches use the machin-

ery of operads [LRW13], [LV12] or certain Lie brackets [RW11] to obtain

these objects.

Another technique to describe A∞-structures comes from brace alge-

bras [GV95],[LM05], which often involves unwieldy sign calculations that

are difficult to describe in a conceptual way.

Here we used an operadic approach to obtain these signs in a more

conceptual and consistent way. As a consequence, we will generalize the

Lie bracket used in [RW11] and will give a very simple interpretation

of A∞-algebras. The difference between our operadic approach and oth-

ers mentioned before is that ours uses much more elementary tools and
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can be used to talk about A∞-structures on any operad. We hope that

this provides a useful way of thinking about A∞-structures. A first ap-

plication of this simple formulation is the generalization of the Deligne

conjecture. The classical Deligne conjecture states that the Hochschild

complex of an associative algebra has the structure of a homotopy G-

algebra [GV95]. This result has its roots in the theory of topological

operads [Kon99]. Since A∞-algebras generalize associative algebras, it is

natural to ask what sort of algebraic structure arises on their Hochschild

complex. Thanks to the tools we develop, we are able to answer this

question.

Later in 2009, derived A∞-algebras were introduced by Sagave [Sag10]

as a bigraded generalization of A∞-algebras in order to bypass the projec-

tivity requirements that are often imposed when working with classical

A∞-algebras. We generalize the operadic description of classical A∞-

algebras to the derived case by means of an operadic totalization inspired

by the totalization functor described in [CESLW18]. This way we obtain

an operation similar to the star operation in [LRW13] and generalize the

construction that has been done for A∞-algebras to more general derived

A∞-algebras. This allows us to generalize the Deligne conjecture even

further to obtain a derived Deligne conjecture.

The text is organized as follows. In Chapter 2 we recall some ba-

sic definitions and results, and establish some conventions for both the

classical and the derived cases. In Chapter 3 we define a device called

operadic suspension that will help us obtain the signs that we want and

link this device to the classical operadic approach to A∞-algebras. We
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also take this construction to the level of the underlying collections of the

operads to also obtain a nice description of∞-morphisms of A∞-algebras.

We then explore the functorial properties of operadic suspension, being

monoidality (Proposition 3.1.15) the most remarkable of them. In Sec-

tion 3.2 we study the brace algebra induced by operadic suspension and

obtain a relevant result, Proposition 3.2.3, which establishes a relation

between the canonical brace structure on an operad and the one induced

by its operadic suspension. We show that as a particular case of this

result we obtain the Lie bracket from [RW11].

Following the terminology of [GV95], if O is an operad with an A∞-

multiplication m ∈ O, it is natural to ask whether there are linear maps

Mj : O⊗j → O satisfying the A∞-algebra axioms. In Section 3.3 we

use the aforementioned brace structure to define such linear maps on a

shifted version of the operadic suspension. We then iterate this process

in Section 3.3.1 to define an A∞-structure on the Hochschild complex of

an operad with A∞-multiplication. This iteration process was inspired

by the work of Getzler in [Get93].

Next, we prove our first main result, Theorem 3.3.9, which relates

the A∞-structure on an operad with the one induced on its Hochschild

complex. More precisely, we have the following.

Theorem A. There is a morphism of A∞-algebras Φ : SsO → SsEndSsO

lifting the canonical brace map sO → EndsO.

This result was hinted at by Gerstenhaber and Voronov in [GV95],

but here we introduce a suitable context and prove it as Theorem 3.3.9.
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We also draw a connection between our framework and the one from

Gerstenhaber and Voronov. As a consequence of this theorem, if A is

an A∞-algebra and O = EndA its endomorphism operad, we obtain the

following A∞-version of the Deligne conjecture in Corollary 3.3.14.

Theorem B. The Hochschild complex SsEndSsO of an operad with an

A∞-multiplication has a structure of J-algebra.

In the above theorem, J-algebras play the role of homotopy G-

algebras in the classical case [GV95]. These algebras seem to be related to

B∞-algebras where the B∞-products µp,q vanish for p > 1, see [CLW21,

§5.2] for an unpacked definition of B∞-algebras. After this, we move to

the bigraded case. The goal here is showing that an operad O with a

derived A∞-multiplication m ∈ O can be endowed with the structure of a

derived A∞-algebra, just like in the classical case. We start Chapter 4 re-

calling some definitions of derived A∞-algebras and filtered A∞-algebras.

In Section 4.3, we define the totalization functor for operads and then

the bigraded version of operadic suspension. We combine these two con-

structions to define an operation that allows us to understand a derived

A∞-multiplication as a Maurer-Cartan element. As a consequence we

obtain the star operation that was introduced in [LRW13], which also

defines a Lie Bracket. From this, we obtain in Section 4.4 a brace struc-

ture from which we can obtain a classical A∞-algebra on the graded

operad S Tot(sO). Finally, in Section 4.5, we prove our main results

about derived A∞-algebras. The first one is Theorem 4.5.3, which shows

that, under mild boundedness assumptions, the A∞-structure on total-
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ization is equivalent to a derived A∞-algebra on SsO. The statement

can be summarised as follows.

Theorem C. For any sufficiently bounded operad O with a derived A∞-

multiplication there are linear maps Mij : (SsO)⊗j → SsO satisfying the

derived A∞-algebra axioms.

The next result is Theorem 4.5.8, which generalizes Theorem 3.3.9 to

the derived setting. More precisely,

Theorem D. There is a morphism Φ : SsO → SsEndSsO of derived

A∞-algebras lifting the canonical brace map sO → EndsO.

As a consequence of this theorem we obtain a new version of the

Deligne conjecture, Corollary 4.5.10, this time in the setting of derived

A∞-algebras. For this we also introduce a derived version of J-algebras.

Theorem E. The Hochschild complex SsEndSsO of an operad with a

derived A∞-multiplication has a structure of derived J-algebra.

We finish the thesis in Chapter 5 by outlining some open question that

arise from our research. The first question is related to the boundedness

assumptions that we need to make in order to obtain the derived Deligne

conjecture. The other one would be the natural continuation of our

research. In the classical case, the homotopy G-algebra structure on

the Hochschild complex induced a Gerstenhaber algebra structure on

cohomology [GV95]. We would like to know what structure there is on

the Hochschild cohomology of a derived A∞-algebra.
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Chapter 2

Background and conventions

In this initial chapter we establish the necessary background and conven-

tions for the rest of the thesis. We start Section 2.1 with some category

theory background and results, including notions of enriched categories

that will play an essential role connecting derived A∞-algebras with clas-

sical A∞-algebras. We recall the motivation for the study of A∞-algebras

as well as some definitions and well-known results in Section 2.2. In Sec-

tion 2.3 we recall the main definitions regarding operads, since that is

the framework in which we will work with derived A∞-algebras. At last,

in Section 2.4 we list several categories that we will use in our study and

introduce the totalization functor, which is essential to encode derived

A∞-algebras.
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2.1 Symmetric monoidal categories and

enrichments

We assume that the reader is familiar with the basic terminology of cat-

egory theory. For an introduction to this topic we refer the reader to

[Mac71]. Here we briefly recall the notion of symmetric monoidal cate-

gories and several versions of monoidal functors. The detailed definitions

with all the precise diagrams can also be found in [Mac71] and in [Bor94].

Definition 2.1.1. A symmetric monoidal category is a category C

equipped with a functor

⊗ : C × C → C

called tensor product, an object 1 ∈ C called unit object, natural isomor-

phisms called associators

aA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C)

for all objects A,B,C ∈ C, a natural isomorphism called left unitor

λA : 1⊗ A → A

for every A ∈ C, a natural isomorphism called right unitor

ρA : A⊗ 1 → A

for every A ∈ C, and a natural isomorphism called braiding or symmetry
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isomorphism

τA,B : A⊗B → B ⊗ A

for all A,B ∈ C. These morphisms satisfy natural unitality and associa-

tivity axioms.

Remark 2.1.2. If we drop the symmetry isomorphism we get what is

simply called a monoidal category.

Definition 2.1.3. Let (C,⊗C, 1C) and (D,⊗D, 1D) be symmetric

monoidal categories. A lax monoidal functor is a functor F : C → D

with a morphism ε : 1D → F (1C) and a natural transformation

µA,B : F (A)⊗D F (B) → F (A⊗C B)

for all A,B ∈ C satisfying natural unitality, associativity and symmetry

axioms. A lax monoidal functor is called strong monoidal if ε and µA,B

are isomorphisms for all A,B ∈ C.

Definition 2.1.4. Suppose (F, µ, ε) and (F, ν, ϵ) are monoidal functors

between the symmetric monoidal categories C and D. Then a natural

transformation α : F → G is monoidal if the following diagrams com-

mute.

F (A)⊗D F (B) G(A)⊗D G(B) 1D

F (A⊗C B) G(A⊗C B) F (1) G(1)

αA⊗DαB

µA,B νA,B ε
ϵ

αA⊗CB α1
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Definition 2.1.5. If C and D are symmetric monoidal categories, a lax

monoidal functor F : C → D is a monoidal equivalence if there is a

lax monoidal functor G : D → C such that there exist monoidal natural

isomorphisms α : FG ⇒ idC, β : GF ⇒ idD.

Definition 2.1.6. A symmetric monoidal category C is closed if for every

object A ∈ C the tensor product functor A⊗− : C → C has a right adjoint

functor [A,−] : C → C. In other words, for all A,B and C ∈ C we have

a natural bijection between the morphism sets

HomC(A⊗B,C) ∼= HomC(A, [B,C])

natural in all arguments. The object [A,B] is called the internal hom.

2.1.1 Monoidal categories over a base

We collect some results about enriched categories from [Rie14] and

[CESLW18, §4.2] that we will need as a categorical setting for our re-

sults on derived A∞-algebras. Here we combine the idea of enriched

category with that of symmetric monoidal category.

Definition 2.1.7. Let V a monoidal category. A V -category C, also

called V - enriched category or category enriched over V , consists of

� a set Ob(C) of objects in C,

� for each pair (A,B) of objects in C an object C(A,B) ∈ V called

the hom-object or object of morphisms from A to B,
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� for every triple (A,B,C) of objects in C a morphism

◦A,B,C : C(B,C)⊗ C(A,B) → C(A,C)

in V called composition morphism,

� and for each object A in C a morphism uA : 1 → C(A,A) in V

called the identity element.

All this data is subject to associativity and unitality constrains that can

be seen in detail in [Bor94].

Definition 2.1.8. Let (V ,⊗, 1) be a symmetric monoidal category and

(C,⊗, 1) a monoidal category. The category C is a monoidal category

over V if there is an external (tensor) product ∗ : V × C → C satisfying

the following natural isomorphisms.

� 1 ∗X ∼= X for all X ∈ C,

� (C ⊗D) ∗X ∼= C ∗ (D ∗X) for all C,D ∈ V and X ∈ C,

� C ∗ (X ⊗ Y ) ∼= (C ∗ X) ⊗ Y ∼= X ⊗ (C ∗ Y ) for all C ∈ V and

X, Y ∈ C.

Remark 2.1.9. Throughout the thesis we will also assume that there is a

bifunctor C (−,−) : Cop × C → V such that there are natural bijections

HomC(C ∗X, Y ) ∼= HomV (C,C (X, Y )).

Under the given assumption, we obtain a V -enriched category C with

the same objects as C, and the hom-objects are given by C (−,−). The
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unit morphism uX : 1 → C (X,X) corresponds to the identity map in C

under the adjunction. The composition morphism is determined by the

adjoint of the composite

(C (Z, Y )⊗ C (X,Z)) ∗X C (Z, Y ) ∗ (C (X,Z) ∗X)

C (Z, Y ) ∗ Z Y

==:

id∗evXZ

evZY

where evXZ is the adjoint of the identity C (X,Z) → C (X,Z). Fur-

thermore, C is a monoidal V -enriched category, namely we have an en-

riched functor

⊗ : C × C → C

where C × C is the enriched category whose objects are Ob(C)×Ob(C)

and whose hom-objects are defined as

(C × C )((X, Y ), (W,Z)) := C (X,W )⊗ C (Y, Z).

As a consequence, we get maps in V

C (X,W )⊗ C (Y, Z) → C (X ⊗ Y,W ⊗ Z),

by considering the adjoint of the composite

(C (X,W )⊗ C (Y, Z)) ∗ (X ⊗ Y ) (C (X,W ) ∗X)⊗ (C (Y, Z) ∗ Y )

W ⊗ Z

==:

evXW⊗evY Z
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Definition 2.1.10. Let C and D be monoidal categories over V . A lax

functor over V consists of a functor F : C → D along with a natural

transformation

νF : − ∗D F (−) ⇒ F (− ∗C −)

that respects the associativity and unital structures of the monoidal cate-

gories over V of C and D. The coherence axioms for νF are detailed in

[Rie14, Proposition 10.1.5]. If νF is a natural isomorphism, then F is

said to be a functor over V .

Definition 2.1.11. Let F,G : C → D be lax functors over V . A natural

transformation over V is a natural transformation µ : F ⇒ G such that

for any C ∈ V and for any X ∈ C the following equality holds

νG ◦ (1 ∗D µX) = µC∗CX ◦ νF .

Definition 2.1.12. A lax monoidal functor over V is a triple (F, ϵ, µ),

where F : C → D is a lax functor over V , ϵ : 1D → F (1C) is a morphism

in D and

µ : F (−)⊗ F (−) ⇒ F (−⊗−)

is a natural transformation over V that satisfies the standard unit and

associativity conditions. If νF and µ are both natural isomorphisms then

F is said to be monoidal over V .

Another notion of natural transformation in the enriched setting is

given below, see [Rie14, Definition 3.5.8] for the detailed diagrams.
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Definition 2.1.13. A V -enriched natural transformation µ : F ⇒ G be-

tween a pair of V -enriched functors F,G : C → D consists of a morphism

µ
X
: 1 → D(FX,GX) in V for each X ∈ C satisfying certain naturality

conditions with respect to the external product and enriched composition.

The following is [CESLW18, Proposition 4.11].

Proposition 2.1.14. If F,G : C → D are lax functors over V , then F

and G extend to V -enriched functors

F ,G : C → D

where C and D denote the V -enriched categories corresponding to C and

D as described in Remark 2.1.9. Furthermore, any natural transforma-

tion µ : F ⇒ G over V also extends to a V -enriched natural transfor-

mation

µ : F ⇒ G.

In particular, if F is lax monoidal over V , then F is lax monoidal with

respecto to the monoidal structure on C × C described in Remark 2.1.9.

Lemma 2.1.15. Let F,G : C → D lax functors over V and let µ : F ⇒ G

a natural transformation over V . For every X ∈ C and Y ∈ D there is

a map

D(GX, Y ) → D(FX, Y )

that is an isomorphism if µ is an isomorphism.

We would like to thank Sarah Whitehouse for her contribution to the
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proof of this result.

Proof. By Proposition 2.1.14 µ extends to a V -enriched natural trans-

formation

µ : F ⇒ G

that at each object X evaluates to

µ
X
: 1 → D(FX,GX)

defined to be the adjoint of µX : FX → GX. We define the map

D(GX, Y ) → D(FX, Y ) as the composite

D(GX, Y ) ∼= D(GX, Y )⊗ 1 D(GX, Y )⊗ D(FX,GX)

D(FX, Y )

1⊗µ
X

c (2.1)

where c is the composition map in the enriched setting.

When µ is an isomorphism we may analogously define the following

map

D(FX, Y ) ∼= D(FX, Y )⊗ 1 D(FX, Y )⊗ D(GX,FX)

D(GX, Y )

1⊗µ−1
X

c (2.2)

We show that the above map is the inverse of the map (2.1). Consider

the following diagram where the external arrows are the composition of

(2.1) and (2.2).
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D(GX, Y ) D(GX, Y )⊗ 1 D(GX, Y )⊗ D(FX,GX) D(FX, Y )

D(GX, Y )⊗ D(GX,GX) D(GX, Y )⊗ D(FX,GX)⊗ 1

D(GX, Y )⊗ D(FX,GX)⊗ D(GX,FX)

D(FX, Y )⊗ D(GX,FX) D(FX, Y )⊗ 1

∼=

(5)

1⊗µ
X

1⊗αX (4)

c

∼=

∼=

c

1⊗1⊗µ−1
X

c⊗1

(1)

1⊗c

c⊗1

c

(3)

1⊗µ−1
X

(2)

(2.3)

In the above diagram (2.3), αX is adjoint to 1GX : GX → GX.

Diagrams (1) and (2) clearly commute. Diagram (3) commutes by asso-

ciativity of c. Diagram (4) commutes because µ−1
X

and µ
X
are adjoint to

mutual inverses, so their composition results in the adjoint of the iden-

tity. Finally, diagram (5) commutes because we are composing with an

isomorphism. In particular, diagram (5) is a decomposition of the iden-

tity map on D(GX, Y ). By commutativity, this means that the overall

diagram composes to the identity, showing that the maps (2.1) and (2.2)

are mutually inverse.

Remark 2.1.16. In the above proof, the fact that µ is induced by µ is only

essential when finding the inverse of the map D(GX, Y ) → D(FX, Y ),

but similar constructions can be made for more general V -enriched nat-

ural transformation.

2.2 A∞-algebras

In the early sixties, J. Stasheff introduced A∞-spaces and A∞-algebras

[Sta61], [Sta63] as a tool in the study of “group-like” spaces. We are

going to motivate them by explaining their topological origin and later
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we will give precise definitions. We will also recall minimal models to

further motivate the study of A∞-algebras and their limitations. A more

detailed survey can be found in [Kel01] and in [LV12].

2.2.1 Topological origin

Let us consider the basic example. Let (X, ∗) be a topological space with

a base point ∗ and let ΩX denote the space of based loops in X: a point

of ΩX is thus a continuous map f : S1 → X taking the base point of the

circle to the base point ∗.

We have the composition map

m2 : ΩX × ΩX → ΩX

sending a pair of loops (f1, f2) to the loop f1 ∗ f2 = m2(f1, f2) obtained

by running through f1 on the first half of the circle at twice the speed

and through f2 on the second half.

f1

f2

f1 ∗ f2

This composition is not associative: for three loops f1, f2, f3, the

composition (f1 ∗f2)∗f3 runs through f1 on the first quarter of the circle

whereas the composition f1 ∗ (f2 ∗ f3) runs through f1 on the first half of
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the circle. We symbolize the two possibilities by two binary trees with

three leaves.

(f1 ∗ f2) ∗ f3

f1 ∗ (f2 ∗ f3)

f3
f1

f1f2

f2 f3

f1 f2 f3

f1 f2 f3

There is a homotopy

m3 : [0, 1]× ΩX × ΩX → ΩX

joining the two possibilities of composing three loops by a reparametriza-

tion. When we want to compose four loops, there are five possibili-

ties corresponding to the five binary trees with four leaves. Using m3,

we obtain two concatenations of homotopies linking the compositions

(f1, f2, f3, f4) 7→ ((f1∗f2)∗f3)∗f4 and (f1, f2, f3, f4) 7→ f1∗(f2∗(f3∗f4)).

The homotopy relation between the previous concatenations can be de-

picted with the following picture.
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These two concatenations are homotopic via reparametrization. De-

note a homotopy by

m4 : K4 × (ΩX)4 → X

where K4 denotes the pentagon bounded by the two paths depicted

above. When we want to compose five loops, there are fourteen possibili-

ties corresponding to the fourteen binary trees with five leaves. Using m4

and m3, we obtain homotopies linking the compositions and faces linking

the homotopies. The geometrical representation of these homotopies is

the boundary of the polytope K5 depicted below.

The pentagonal faces are copies of K4. More generally, Stasheff

[Sta61] defined polytopes Kn of dimension n− 2 for all n ≥ 2, including

K2 = ∗ and K3 = [0, 1]. He defined an A∞-space to be a topological

space Y endowed with maps mn : Kn × Y n → Y , for n ≥ 2, satisfying

suitable compatibility conditions and admitting a “strict unit”. The loop

space ΩX is the prime example of such a space Y . Conversely [Ada78],

a topological space that admits the structure of an A∞-space and whose
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connected components form a group is homotopy equivalent to a loop

space. If Y is an A∞-space, the singular chain complex of Y is the

paradigmatic example of an A∞-algebra [Sta63], which will be formally

introduced in the next section using cohomological grading.

2.2.2 Definitions

In this section we first establish notation and assumptions about graded

modules and sign conventions. We then briefly recall some of the basic

definitions regarding A∞-algebras.

Our base category is the category of Z-graded R-modules and linear

maps, where R is a commutative ring with unit of characteristic distinct

from 2, so that the sign calculations are not trivial. All tensor products

are taken over R. We denote the i-th degree component of A as Ai. If

x ∈ Ai we write deg(x) = i and we use cohomological grading. The

symmetry isomorphism is given by the following Koszul sign convention.

τA,B : A⊗B → B ⊗ A

x⊗ y 7→ (−1)deg(x) deg(y)y ⊗ x

A map f : A → B of degree i satisfies f(An) ⊆ Bn+i for all n. The

R-modules HomR(A,B) are naturally graded by

HomR(A,B)i =
∏
k

HomR(A
k, Bk+i).

As a consequence of the above sign convention, we also adopt the

following Koszul sign convention: for x ∈ A, y ∈ B, f ∈ HomR(A,C)
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and g ∈ HomR(B,D),

(f ⊗ g)(x⊗ y) = (−1)deg(x) deg(g)f(x)⊗ g(y).

Recall that if (A, ∂A) and (B, ∂B) are (co)chain complexes, the mod-

ule HomR(A,B) also becomes a (co)chain complex with differential

∂(f) = ∂B ◦ f + (−1)deg(f)f ◦ ∂A.

With all the notations and conventions established we can now intro-

duce A∞-algebras.

Definition 2.2.1. An A∞-algebra is a graded R-module A together with

a family of maps mn : A⊗n → A of degree 2− n satisfying the equation∑
r+s+t=n

(−1)rs+tmr+t+1(1
⊗r ⊗ms ⊗ 1⊗t) = 0 (2.4)

for all n ≥ 1.

The above equation will sometimes be referred to as the A∞-equation.

The signs are related to the orientation given to the Stasheff polytopes,

see Section 2.2.1. This seemingly obscure definition captures the idea of

an algebra that is associative up to homotopy. To see this, let us have a

look at the first few cases.

� We have m1m1 = 0, so (A,m1) is a cochain complex.

� We have the Leibniz rule

m1m2 = m2(m1 ⊗ 1 + 1⊗m1)
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as maps A⊗2 → A. Here 1 denotes the identity map on A. So m1

is a graded derivation with respect to the multiplication m2.

� We have

m2(1⊗m2−m2⊗1) = m1m3+m3(m1⊗1⊗1+1⊗m1⊗1+1⊗1⊗m1)

as maps A⊗3 → A. Note that the left hand side is the associator

for m2 and that the right hand side may be viewed as the boundary

of m3 in the morphism complex HomR(A
⊗3, A). This implies that

m2 is associative up to homotopy.

For more details about this the reader is referred to [Kel01] and to

[LV12, §9.2], where they use a different sign convention but the concepts

are the same.

Definition 2.2.2. An ∞-morphism of A∞-algebras A → B is a family

of maps

fn : A⊗n → B

of degree 1− n satisfying for all n ≥ 1 the equation

∑
r+s+t=n

(−1)rs+tfr+1+t(1
⊗r⊗mA

s ⊗1⊗t) =
∑

i1+···+ik=n

(−1)smB
k (fi1⊗· · ·⊗fik),

where

s =
∑
α<β

iα(1− iβ).

The composition of ∞-morphisms f : A → B and g : B → C is given by
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(gf)n =
∑
r

∑
i1+···+ir=n

(−1)sgr(fi1 ⊗ · · · ⊗ fir).

Similarly to the A∞-equation (2.4), the above definition captures the

idea of a map that is a morphism of algebras up to homotopy. This can

be observed in the first few cases.

� We have f1m1 = m1f1, i.e. f1 is a morphism of complexes.

� We have

f1m2 = m2(f1 ⊗ f1) +m1f2 + f2(m1 ⊗ 1 + 1⊗m1),

which means that f1 commutes with the multiplication m2 up to a

homotopy given by f2.

Again, the reader can find more details in [Kel01] and [LV12, §9.2].

We also need another, perhaps more intuitive, notion of morphism of

A∞-algebras.

Definition 2.2.3. A morphism of A∞-algebras is a map of R-modules

f : A → B such that

f(mA
j ) = mB

j ◦ f⊗j.

Equivalently, it is an ∞-morphism where fn = 0 for n > 1.

Notice that working with Z-graded modules forces every morphism

of A∞-algebras to be of degree 0.

We will discuss the topics of this section in the language of operads,

which will be introduced in a later section. Before that, let us motivate

the importance of A∞-algebras through the theory of minimal models.
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2.2.3 Minimal models

We now recall a definition and a theorem about minimal models of

A∞-algebras. The theorem relates differential graded algebras to A∞-

structures on their homology. This theorem is the main reason why

A∞-algebras became a relevant subject of study.

Definition 2.2.4. An A∞-algebra is called minimal if m1 = 0.

Over a field, one can replace any A∞-algebra by a quasi-isomorphic

minimal one, where by quasi-isomorphic we mean that there is a map

that induces an isomorphism on cohomology with respect to m1. This

gives a very convenient way to describe a quasi-isomorphism class of an

A∞-algebra. More precisely we have the following.

Theorem 2.2.5 (Kadeishvili). Let A be a differential graded algebra over

a field k of any characteristic, and let H∗(A) be its cohomology module.

Then H∗(A) has an A∞-structure such that

� m1 = 0 and the multiplication m2 is induced by the multiplication

on A,

� there is an ∞-morphism of A∞-algebras f : H∗(A) → A such that

f1 is a quasi-isomorphism lifting the identity.

This A∞-algebra H∗(A) is called the minimal model of A.

Using this result it is also possible to show that under some conditions

any other dga A′ with H∗(A′) ∼= H∗(A) is quasi-isomorphic to A. For

more details see [Kad80].
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2.3 Operads

In this section we recall the notion of operad, an object that is partic-

ularly useful to study algebraic structures given by multilinear maps.

Operads will allow us to formulate definitions and results concerning de-

rived A∞-algebras in a very convenient way. The main references for this

section are [LV12] and [KWZ15].

We will be working in the category of graded R-modules, but all

the definitions and results in this section generalize with no substantial

changes to any symmetric monoidal category like the ones we see in

Section 2.4.

2.3.1 Definitions

We first give the main definitions that we will be using throughout the

thesis. We start defining the underlying object of an operad.

Definition 2.3.1. A collection is a family O = {O(n)}n≥0 of graded

R-modules. We call the integer n the arity. When there is an action

of the symmetric group Σn on each O(n) we say that the collection is

an S−module. A map of collections f : O → P is a family of maps

fn : O(n) → P(n). A map of collection is a map of S−modules when it

preserves the symmetric group action.

We will mostly focus on the non-symmetric case, but our general

results about operads generalize to the symmetric case as well. On a

collection we can define an operad by adding some extra structure as in

the following definition.
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Definition 2.3.2. A (non-symmetric) operad is a collection O = {O(n)}

where there is a distinguished identity element 1 ∈ O(1) and with inser-

tion maps

◦i : O(n)⊗O(m) → O(m+ n− 1)

for each 1 ≤ i ≤ n satisfying natural unitality and associativity axioms,

see [KWZ15, §1.1.2].

Insertion maps can be iterated to define composition maps

γ(x;x1, . . . , xj) = (· · · (x ◦1 x1) ◦1+m1 x2 · · · ) ◦1+m1+···mj−1
xj,

where xi ∈ O(mi). If O is an S−module and the insertion maps satisfy

some additional invariance axioms regarding the symmetric group action,

we say that O is a symmetric operad, see [LV12] for more details.

A map of operads (resp. symmetric operads) is a map of collections

(resp. S−modules) that is compatible with insertions.

Collections also come with the following algebraic operation that will

provide an alternative way of describing operads.

Definition 2.3.3. The plethysm or composite O ◦ P of two collections

O and P given by

(O ◦ P)(n) =
⊕
N≥0

O(N)⊗

( ⊕
a1+···+ak=n

P(a1)⊗ · · · ⊗ P(ak)

)
.

There is a definition of plethysm for S-modules that requires some

tools from the representation theory of symmetric groups such as the
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induced representation that we are not going to introduce here. The

reader is referred to [LV12, §5.1] for the details.

Definition 2.3.4. The plethysm or composite f ◦g of maps f : O → O′

and g : P → P ′ is given by

(f ◦ g)(x0 ⊗ x1 ⊗ · · · ⊗ xk) = (−1)εf(x0)⊗ g(x1)⊗ · · · ⊗ g(xk),

where ε = deg(g)
∑k

i=0 deg(xi)(k − i) is the Koszul sign obtained from

swapping each g by the corresponding elements.

It is known that the category of collections with plethysm is a

monoidal category, where the unit is the collection I(1) = R and I(n) = 0

for n ̸= 1. The following lemma is a well-known fact that describes oper-

ads in terms of this monoidal structure, see [LV12, §5.2] for more details.

Lemma 2.3.5. An operad O is equivalent to a monoid in the monoidal

category of collections with plethysm, where the multiplication map is

given precisely by the composition γ : O ◦ O → O.

Definition 2.3.6. An operad O is called reduced if O(0) = 0.

Definition 2.3.7. The Hadamard product O⊗P of two operads O and

P is given on each arity component by (O⊗P)(n) = O(n)⊗P(n). The

structure maps are given by diagonal composition and diagonal symmetric

group action in the case of symmetric operads.

The next definition is the most important and common example of

an operad. It is very useful to keep it in mind when intuitively thinking

about operads.
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Definition 2.3.8. The endomorphism operad EndA of a graded R-

module A is given by the modules

EndA(n) = HomR(A
⊗n, A).

Insertion maps are given by

f ◦i g = f(1⊗i−1 ⊗ g ⊗ 1⊗n−i)

for f ∈ EndA(n) and g ∈ EndA(m). The identity element is given by the

identity map and there is a symmetric group action given by permuting

the inputs.

The endomorphism operad also allows us to define algebras over any

operad.

Definition 2.3.9. An algebra over an operad O, or O-algebra, is a

map of operads O → EndA for some R-module A. By the tensor-hom

adjunction, this corresponds to a collection of maps O(n)⊗A⊗n → A for

each n ≥ 0.

Definition 2.3.10. A morphism of O-algebras A and B is a map of

operads EndA → EndB so that the diagram

O EndA

EndB

commutes. By adjunction, this is equivalent to a map f : A → B of
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R-modules such that the diagram

O(n)⊗ A⊗n A

O(n)⊗B⊗n B

id⊗f⊗n f

commutes for all n.

Definition 2.3.11. The A∞-operad is the non-symmetric operad whose

algebras are A∞-algebras, see Definition 2.2.1. Therefore, it is gener-

ated by elements µi ∈ A∞(i) satisfying the operadic version of the A∞-

equation (2.4). ∑
r+s+t=n

(−1)rs+tµr+t+1 ◦r+1 µs = 0. (2.5)

More details about this operad can be found in [LV12, Chapter 9].

Notice that for the A∞-operad, a morphism of A∞-algebras, Defi-

nition 2.3.10, is the same thing as a morphism of A∞-algebras, Defini-

tion 2.2.3. We will also provide a new operadic interpretation of ∞-

morphisms, Definition 2.2.2, and relate it to an existing interpretation in

Section 3.2.2.

Remark 2.3.12. If one considers m1 as an internal differential of the al-

gebra A, Equation (2.4) reads for each j as

m1(mj)− (−1)s
∑

r+t+1=j

mj(1
⊗r ⊗m1 ⊗ 1⊗t)

= −
∑

r+s+t=j
s>1,r+t>0

(−1)rs+tmr+t+1(1
⊗r ⊗ms ⊗ 1⊗t).
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This leads to a definition of the operad A∞ in the category of cochain

complexes as the operad generated by µi ∈ A∞(i) for i > 1 and with

differential given by

∂∞(µj) = −
∑

r+s+t=j

(−1)rs+tµr+t+1 ◦r+1 µs.

Notice that this operad can now be described with no other relations

than the differential. This is an example of what is called a quasi-free

operad in the literature, see [LV12, §6.3.3]

2.3.2 Operads and monoidality

The monoidal definition of operad from Lemma 2.3.5 allows to define the

dual notion of a cooperad.

Definition 2.3.13. Let O be a collection. A cooperad is a structure

of comonoid on O in the monoidal category (Col, ◦, I), where ◦ is the

plethysm defined in Definition 2.3.4 and I is the collection such that

I(0) = R and is trivial elsewhere. See [LV12, §5.7.1] for more details

and the symmetric version.

Note that this is not the exact dual notion of an operad. To define

the exact dual of the notion of operad, one should instead consider the

monoidal product

(P◦̂Q)(n) =
∏
r≥0

(P(r)⊗
∏

n=i1+···+ir

(Q(i1)⊗ · · · ⊗ Q(ir)))

in the category of collections, where the sums are replaced by products.
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In that case, a cooperad is defined as a comonoid ∆ : O → O◦̂O. When

O(0) = 0 (the operad is reduced), the right-hand side product is equal

to a sum. In this case, we are back to the previous definition.

The following result is stated and proved in [Fre17, Proposition

3.1.1(a)], but the proof omits many details, so we are writing down the

full proof here.

Proposition 2.3.14. Any symmetric lax monoidal functor F : C → D

induces a functor F : OpC → OpD between the categories of operads in C

and D, respectively. The result is also true for cooperads.

Proof. We prove the result for operads, since for cooperads is analogous.

Let O be an operad in C and let F : C → D be a symmetric lax monoidal

functor. On objects, we define F (O)(n) = F (O(n)) and on morphisms

we define F (f)n = F (fn) for f : O → P .

Let ε : 1D → F (1C) and µ := µA,B : F (A) ⊗ F (B) → F (A ⊗ B) be

the structure maps of the lax monoidal functor F .

Let us first define the structure maps for the operad F (O) in terms

of insertions. Let e : 1C → O(1) be the unit of O. We define the unit

eF : 1D → F (O(1)) as the composite

1D
ε−→ F (1)

F (e)−−→ F (O(1)).

Let ◦i : O(n)⊗O(m) → O(n +m− 1) be the insertion map on O. We

define the insertion map ◦Fi : F (O(n)) ⊗ F (O(m)) → F (O(n +m − 1))
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as the composite

F (O(n))⊗ F (O(m))
µ−→ F (O(n)⊗O(m))

F (◦i)−−−→ F (O(n+m− 1)).

We show now that F (O) satisfies the unit axioms with the above

structure maps. We only show the unit axiom with respect to the right

unitor, the axiom with respect to the left unitor being analogous.

Let λC and λD be the right unitors of C and D respectively. Since

O is an operad, by the unit axiom we have that the following diagram

commutes.

O(n)⊗ 1C O(n)

O(n)⊗O(1)

λC

id⊗e
◦i

Applying F and introducing µ we get the following commutative di-

agram.

F (O(n))⊗ F (1C) F (O(n)⊗ 1C) F (O(n))

F (O(n))⊗ F (O(1)) F (O(n)⊗O(1))

µ

id⊗F (e)

F (λC)

F (id⊗e)

µ F (◦i)

(2.6)

We need to show that the following diagram commutes.

F (O(n))⊗ 1D F (O(n))

F (O(n))⊗ F (O(1))

λD

id⊗eF
◦Fi

By monoidality of F we know that λD satisfies the following commu-

tative diagram.
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F (O(n))⊗ 1D F (O(n))⊗ F (1)

F (O(n)) F (O(n)⊗ 1C)

λD

id⊗ε

µ

F (λ)

Or, in other words, λD = F (λ)◦µ(id⊗ε). On the other hand, by diagram

(2.6) we have that F (λ) ◦ µ = (F (◦i) ◦ µ)(id⊗ F (e)), meaning that

λD = F (◦i) ◦ µ ◦ (id⊗ F (e)) ◦ (id⊗ ε) = ◦Fi (id⊗ eF )

as we wanted to show.

Next we need to show that the associativity axioms of operads hold

for F (O), we refer the reader to [KWZ15, §1.1.2] to recall them. Let us

first prove the one that does not involve the symmetry isomorphism.

Let aC and aD the associators for C and D, respectively. We have

the following commutative diagram from the associativity axioms of the

operad O for i ≤ j ≤ i+m− 1.

(O(n)⊗O(m))⊗O(l) O(n)⊗ (O(m)⊗O(l))

O(n+m− 1)⊗O(l) O(n)⊗O(m+ l − 1)

O(n+m+ l − 2)

aC

◦i⊗ id⊗◦j−i+1

◦j
◦i

Applying F we obtain the following commutative diagram.
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F ((O(n)⊗O(m))⊗O(l)) F (O(n)⊗ (O(m)⊗O(l)))

F (O(n+m− 1)⊗O(l)) F (O(n)⊗O(m+ l − 1))

F (O(n+m+ l − 2))

F (aC)

F (◦i⊗id) F (id⊗◦j−i+1)

F (◦j)

F (◦i)

(2.7)

According to the definition of ◦Fi , we need to show that the following

diagram commutes.

(F (O(n))⊗ F (O(m)))⊗ F (O(l)) F (O(n))⊗ (F (O(m))⊗ F (O(l)))

F (O(n)⊗O(m))⊗ F (O(l)) F (O(n))⊗ F (O(m)⊗O(l))

F (O(n+m− 1))⊗ F (O(l)) F (O(n))⊗ F (O(m+ l − 1))

F (O(n+m− 1)⊗O(l)) F (O(n)⊗O(m+ l − 1))

F (O(n+m+ l − 2))

aD

µ⊗id id⊗µ

F (◦i)⊗id id⊗F (◦j+i−1)

µ µ

F (◦j)

F (◦i)

(2.8)

By naturality of µ we have

µ ◦ (F (◦i)⊗ id) = F (◦i ⊗ id) ◦ µ (2.9)

and

µ ◦ (id⊗ F (◦j−i+1)) = F (id⊗ ◦j−i+1) ◦ µ.

Therefore we can replace the above compositions in diagram (2.8) ac-

cordingly. We can also subdivide the above diagram into two by using

F (aC) as follows.
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(F (O(n))⊗ F (O(m)))⊗ F (O(l)) F (O(n))⊗ (F (O(m))⊗ F (O(l)))

F (O(n)⊗O(m))⊗ F (O(l)) F (O(n))⊗ F (O(m)⊗O(l))

F ((O(n)⊗O(m))⊗O(l)) F (O(n))⊗ F (O(n)⊗ (O(m)⊗O(l)))

F (O(n+m− 1)⊗O(l)) F (O(n)⊗O(m+ l − 1))

F (O(n+m+ l − 2))

aD

µ⊗id id⊗µ

µ µ

F (◦i⊗id)

F (aC)

F (id⊗◦j−1+1)

F (◦j)

F (◦i)

Now, the top diagram commutes because it is the associativity axiom of

lax monoidal functors. The bottom diagram is precisely diagram (2.7),

so it commutes and we get the desired associativity axiom.

Finally, we need to show that the associativity axioms involving the

symmetry isomorphism hold for F (O). Since they are analogous to each

other, we only prove the first one.

Let BC := BX,Y
C : X ⊗ Y → Y ⊗X the symmetry isomorphism on C

and similarly denote by BD the symmetry isomorphism on D.

We have the following associativity commutative diagram for j < i.

(O(n)⊗O(m))⊗O(l) O(n)⊗ (O(m)⊗O(l))

O(n+m− 1)⊗O(l) O(n)⊗ (O(l)⊗O(m))

O(n+m+ l − 2) (O(n)⊗O(l))⊗O(m)

O(n+ l − 1)⊗O(m)

aC

◦i⊗id id⊗BC

◦j a−1
C

◦j⊗id

◦i
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Applying F we get the following commutative diagram.

F ((O(n)⊗O(m))⊗O(l)) F (O(n)⊗ (O(m)⊗O(l)))

F (O(n+m− 1)⊗O(l)) O(n)⊗ (O(l)⊗O(m))

F (O(n+m+ l − 2)) F ((O(n)⊗O(l))⊗O(m))

F (O(n+ l − 1)⊗O(m))

F (aC)

F (◦i⊗id) F (id⊗BC)

F (◦j) F (aC)
−1

F (◦j⊗id)

F (◦i)

(2.10)

We need to show that the following diagram commutes.

(F (O(n))⊗ F (O(m)))⊗ F (O(l)) F (O(n))⊗ (F (O(m))⊗ F (O(l)))

F (O(n)⊗O(n))⊗ F (O(l)) F (O(n))⊗ (F (O(l))⊗ F (O(m)))

F (O(n+m− 1)⊗ F (O(l)) (F (O(n))⊗ F (O(l)))⊗ F (O(m))

F (O(m+ n− 1)⊗O(l)) F (O(n)⊗O(l))⊗ F (O(m))

F ((O(n+m+ l − 2)) F (O(n+ l − 1))⊗ F (O(m))

F (O(n+ l − 1)⊗O(m))

µ⊗id

aD

id⊗BD

F (◦i)⊗id a−1
D

µ⊗id µ⊗id

F (◦j) F (◦j)⊗id

µ

F (◦i)

We use naturality of µ, i.e Equation (2.9), as we have done before to

rewrite some of the arrows. We also subdivide the diagram into two by

factoring by F (aC)
−1 ◦ F (id⊗BC) ◦ F (aC).
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(F (O(n))⊗ F (O(m)))⊗ F (O(l)) F (O(n))⊗ (F (O(m))⊗ F (O(l)))

F (O(n)⊗O(n))⊗ F (O(l)) F (O(n))⊗ (F (O(l))⊗ F (O(m)))

F ((O(n)⊗O(m))⊗O(l)) (F (O(n))⊗ F (O(l)))⊗ F (O(m))

F (O(m+ n− 1)⊗O(l)) F (O(n)⊗O(l))⊗ F (O(m))

F ((O(n+m+ l − 2)) F ((O(n)⊗O(m))⊗O(m))

F (O(n+ l − 1)⊗O(m))

µ⊗id

aD

id⊗BD

µ a−1
D

F (◦i⊗id) F (aC )−1◦F (id⊗BC )◦F (aC )

µ⊗id

F (◦j) µ

F (◦j⊗id)

F (◦i)

The bottom diagram commutes as it is precisely diagram (2.10). We

decompose the top diagram as follows.

F (O(n))⊗ (F (O(m))⊗ F (O(l))) F (O(n))⊗ (F (O(l))⊗ F (O(m)))

(F (O(n))⊗ F (O(m)))⊗ F (O(l)) (F (O(n))⊗ F (O(l)))⊗ F (O(m))

F (O(n)⊗O(n))⊗ F (O(l)) F (O(n)⊗O(l))⊗ F (O(m))

F ((O(n)⊗O(m))⊗O(l)) F ((O(n)⊗O(l))⊗O(m))

F (O(n)⊗ (O(m)⊗O(l))) F (O(n)⊗ (O(l)⊗O(m)))

id⊗BD

µ◦
(id⊗

µ
)

a−1
D

µ◦
(id⊗

µ
)

µ⊗id

aD

µ⊗id

µ µ

F (a)

F (id⊗BC)

F (aC)
−1

The left and right subdiagrams commute because of the associativity

axiom of lax monoidal functors. We decompose the central subdiagram

further as
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F (O(n))⊗ (F (O(m))⊗ F (O(l)) F (O(n))⊗ (F (O(l))⊗ F (O(m)))

F (O(n))⊗ F (O(m)⊗O(l)) F (O(n))⊗ F (O(l)⊗O(m))

F (O(n)⊗ (O(m)⊗O(l))) F (O(n)⊗ (O(l)⊗O(m)))

id⊗BD

id⊗µ id⊗µ

id⊗F (BC)

µ µ

F (id⊗BC)

The top part commutes because F is symmetric lax monoidal and the

bottom part commutes by naturality of µ. This proves that F (O) is an

operad in D.

Lastly, we are only left with the proof that F (f) is a map of operads.

Since f is a map of operads, we have for all n the following commutative

diagram.

O(n)⊗O(m) P(n)⊗ P(m)

O(n+m− 1) P(n+m− 1)

fn⊗fm

◦Oi ◦Pi
fn+m−1

After applying F we get the following commutative diagram.

F (O(n)⊗O(m)) F (P(n)⊗ P(m))

F (O(n+m− 1)) F (P(n+m− 1))

F (fn⊗fm)

F (◦Oi ) F (◦Pi )

F (fn+m−1)

(2.11)

We need to show that the following diagram commutes.

F (O(n))⊗ F (O(m)) F (P(n))⊗ F (P(m))

F (O(n)⊗O(m)) F (P(n)⊗ P(m))

F (O(n+m− 1)) F (P(n+m− 1))

F (fn)⊗F (fm)

µ µ

F (fn⊗fm)

F (◦Oi ) F (◦Pi )

F (fn+m−1)
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The top subdiagram commutes because µ is natural and the bottom part

is precisely diagram (2.11), which commutes. This finishes the proof.

2.4 Base categories and totalization

Now introduce some categories and conventions that we need in order

to study derived A∞-algebras. Many results of A∞-algebras need R to

be a field because of projectivity, see Section 2.2.3. Thus, it is necessary

to build in projective resolutions. In particular we need an extra degree

compatible with derived A∞-setting. In order to do that, we need a way

to connect a single graded category with a bigraded category. This is

usually done through totalization. But in order to properly translate

A∞-algebras into totalized derived A∞-algebras we need to go through

several suitably enriched categories that are defined in this section. Most

of the definitions come from [CESLW18, §2] but we adapt them here to

our conventions.

2.4.1 Filtered modules and complexes

First, we collect some definitions about filtered modules and filtered com-

plexes. Filtrations will allow to add an extra degree to single-graded

objects that will be necessary in order to connect them with bigraded

objects.

Definition 2.4.1. A filtered R-module (A,F ) is an R-module A that

can be decomposed as a union A =
⋃

p∈Z FpA of submodules indexed
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by the integers satisying FpA ⊆ Fp−1A for all p ∈ Z. The assignment

F : p 7→ FpA is called a filtration.

A morphism of filtered modules is a morphism f : A → B of R-

modules which is compatible with filtrations, namely

f(FpA) ⊂ FpB for all p ∈ Z.

Note that some other sources may reverse inclusions in the above

definition and consider FpA ⊆ Fp+1A instead. We denote by CR the

category of cochain complexes of R-modules.

Definition 2.4.2. A filtered complex (K, d, F ) is given by a cochain

complex (K, d) ∈ CR coupled with a filtration F applied to each R-module

Kn satisfying the condition d(FpK
n) ⊂ FpK

n+1 for all integers p and n.

A morphism of filtered complex is morphism of complexes f : K → L

that preserves filtrations, i.e.,

f(FpK) ⊂ FpL for all p ∈ Z.

We denote by fModR and fCR the categories of filtered modules and

filtered complexes of R-modules, respectively.

Definition 2.4.3. The tensor product of two filtered R-modules (A,F )

and (B,F ) is defined as the filtered R-module A⊗B with the filtration

Fp(A⊗B) :=
∑
i+j=p

Im(FiA⊗ FjB → A⊗B).
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This turns the category of filtered R-modules into a symmetric monoidal

category, where the unit is given by R with the trivial filtration

0 = F1R ⊂ F0R = R.

Definition 2.4.4. Let K and L be filtered complexes. We define

Hom(K,L) to be the filtered complex whose underlying cochain complex

is HomCR
(K,L) and the filtration F given by

FpHom(K,L) = {f : K → L | f(FqK) ⊂ Fq+pL for all q ∈ Z}.

In particular, HomfModR(K,L) = F0Hom(K,L).

2.4.2 Bigraded modules, vertical bicomplexes,

twisted complexes and sign conventions

We collect some basic definitions of bigraded categories that we need to

use, and we establish some conventions.

Definition 2.4.5. We work with (Z,Z)-bigraded R-modules A = {Aj
i},

where (i, j) is called the bidegree of the elements of Aj
i . We may refer to

i as the horizontal degree and j as the vertical degree. The total degree

of an element x ∈ Aj
i is i+ j and is sometimes denoted by |x|.

Definition 2.4.6. A morphism of bidegree (p, q) is a morphism of mod-

ules that takes Aj
i to Aj+q

i+p . The tensor product of two bigraded R-modules

A and B is the bigraded R-module A ⊗ B defined in terms of bidegree
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components as

(A⊗B)ji :=
⊕
p,q

Aq
p ⊗Bj−q

i−p .

We use the notation bgModR to represent the category with objects

being bigraded R-modules and morphisms being morphisms of bigraded

R-modules of bidegree (0, 0). This category is equipped with a symmetric

monoidal structure defined by the tensor product described above.

We introduce a scalar product for bidegrees, where for elements x and

y with bidegrees (x1, x2) and (y1, y2), respectively, the notation ⟨x, y⟩ =

x1y1 + x2y2 is employed.

The symmetry isomorphism

τA⊗B : A⊗B → B ⊗ A

is defined as

x⊗ y 7→ (−1)⟨x,y⟩y ⊗ x.

Adhering to the Koszul sign rule, if f : A → B and g : C → D are

bigraded morphisms, then the morphism f ⊗ g : A ⊗ C → B ⊗ D is

evaluates as

(f ⊗ g)(x⊗ z) := (−1)⟨g,x⟩f(x)⊗ g(z).

Definition 2.4.7. A vertical bicomplex (A, d) is a bigraded R-module

A together with a vertical differential dA : A → A of bidegree (0, 1). A

morphism of vertical bicomplexes is a morphism of bigraded modules of

bidegree (0, 0) that commutes with the vertical differential.
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We write vbCR to denote the category of vertical bicomplexes. The

tensor product of two vertical bicomplexes A and B is obtained by pro-

viding the tensor product of their underlying bigraded modules with a

vertical differential

dA⊗B := dA ⊗ 1 + 1⊗ dB : (A⊗B)vu → (A⊗B)v+1
u .

This structure transforms vbCR into a symmetric monoidal category.

The symmetric monoidal categories (CR,⊗, R), (bgModR,⊗, R), and

(vbCR,⊗, R) are interconnected through embeddings CR → vbCR and

bgModR → vbCR, both being monoidal and full.

Definition 2.4.8. Consider bigraded modules A and B. The notation

[A,B]∗∗ designates the bigraded module of morphisms from A to B. Ad-

ditionally, for vertical bicomplexes A and B, and for f ∈ [A,B]vu, the

operator δ(f) is defined as

δ(f) := dBf − (−1)vfdA.

Lemma 2.4.9. If A, B are vertical bicomplexes, then ([A,B]∗∗, δ) is a

vertical bicomplex.

Proof. Direct computation shows δ2 = 0.

Definition 2.4.10. A twisted complex (A, dm) is a bigraded R-module

A = {Aj
i} equipped with a family of morphisms {dm : A → A}m≥0 of
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bidegree (m, 1−m) satisfying for all m ≥ 0 the equation

∑
i+j=m

(−1)ididj = 0.

Definition 2.4.11. Let (A, dAm) and (B, dBm) be twisted complexes. A

morphism of twisted complexes f : (A, dAm) → (B, dBm) is given by a family

of morphisms of R-modules {fm : A → B}m≥0 of bidegree (m,−m). This

family must satisfy, for all m ≥ 0, the compatibility condition

∑
i+j=m

dBi fj =
∑

i+j=m

(−1)ifid
A
j .

The composition of such morphisms is given by (g ◦ f)m :=
∑

i+j=m gifj.

A morphism f = {fm}m≥0 is called strict if fi = 0 for all i > 0.

The identity morphism 1A : A → A is the strict morphism defined by

(1A)0(x) = x.

It is not hard to see that a morphism f = {fi} is an isomorphism

of twisted complexes if and only if f0 is an isomorphism of bigraded

R-modules. Note that if f is an isomorphism, then an inverse of f is

obtained from an inverse of f0 by solving a triangular system of linear

equations.

Denote by tCR the category of twisted complexes. The follow-

ing construction endows tCR with a symmetric monoidal structure, see

[CESLW18, Lemma 3.3] for a proof.
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Lemma 2.4.12. The category (tCR,⊗, R) is endowed with a symmetric

monoidal structure, where the bifunctor

⊗ : tCR × tCR → tCR

operates on objects according to

((A, dAm), (B, dBm)) → (A⊗B, dAm ⊗ 1 + 1⊗ dBm)

and on morphisms as (f, g) → f ⊗ g, with

(f ⊗ g)m :=
∑

i+j=m

fi ⊗ gj.

In particular, the Koszul sign rule implies

(fi ⊗ gj)(x⊗ z) = (−1)⟨gj ,x⟩fi(x)⊗ gj(z).

The symmetry isomorphism is given by the strict morphism of twisted

complexes

τA⊗B : A⊗B → B ⊗ A

x⊗ y 7→ (−1)⟨x,y⟩y ⊗ x.

The internal hom on bigraded modules can be extended to twisted

complexes via the following lemma whose proof is in [CESLW18, Lemma

3.4].
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Lemma 2.4.13. Consider twisted complexes A and B. For f ∈ [A,B]vu,

defining

(dif) := (−1)i(u+v)dBi f − (−1)vfdAi

for i ≥ 0 endows [A,B]∗∗ with the structure of a twisted complex.

2.4.3 Totalization

Here we recall the definition of the totalization functor from [CESLW18]

and some of the structure that it comes with. This functor and its

enriched versions are key to establish a correspondence between A∞-

algebras and derived A∞-algebras.

Definition 2.4.14. The totalization of a bigraded R-module A = {Aj
i}

is the graded R-module Tot(A) determined by

Tot(A)n :=
⊕
i<0

An−i
i ⊕

∏
i≥0

An−i
i .

The column filtration of Tot(A) is the filtration defined as

Fp Tot(A)
n :=

∏
i≥p

An−i
i .

For a twisted complex (A, dm), we can define a map d : Tot(A) →

Tot(A) of degree 1 by setting

d(x)j :=
∑
m≥0

(−1)mndm(xj−m)
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for x = (xi)i∈Z ∈ Tot(A)n. Here, xi ∈ An−i
i represents the i-th component

of x, and d(x)j denotes the j-th component of d(x). It is important to

note that, for any given j ∈ Z, there exists a sufficiently large m ≥ 0

such that xj−m′ = 0 for all m′ ≥ m. Consequently, d(x)j is expressed

as a finite sum. Moreover, for sufficiently negative j, one observes that

xj−m = 0 for all m ≥ 0, leading to d(x)j = 0.

For a morphism f : (A, dm) → (B, dm) of twisted complexes, define

the totalization of f be the map Tot(f) : Tot(A) → Tot(B) of degree 0

given by

(Tot(f)(x))j :=
∑
m≥0

(−1)mnfm(xj−m)

for x = (xi)i∈Z ∈ Tot(A)n.

The following is [CESLW18, Theorem 3.8].

Theorem 2.4.15. The assignments (A, dm) 7→ (Tot(A), d, F ), where F

denotes the column filtration of Tot(A), and f 7→ Tot(f) establish a

functor Tot : tCR → fCR. This functor restricts to an isomorphism onto

its image.

For a filtered complex of the form (Tot(A), d, F ) where A = {Aj
i} is

a bigraded R-module, we can recover the twisted complex structure on

A as follows. For all m ≥ 0, let dm : A → A be the morphism of bidegree

(m, 1−m) defined by

dm(x) = (−1)nmd(x)i+m,

where x ∈ An−i
i and d(x)k denotes the k-th component of d(x). Note
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that d(x)k lies in An+1−k
k . We can also recover the bidegree of an el-

ement because in totalization they are sorted by horizontal degree and

the non-negative horizontal degree components belong to the direct prod-

uct factor, so we can locate the zero horizontal degree component if we

represent the elements accordingly.

We will consider the following bounded categories since the totaliza-

tion functor has better monoidal properties when restricted to them.

Definition 2.4.16. We let tCb
R, vbC

b
R and bgModb

R be the full subcat-

egories of horizontally bounded on the right graded twisted complexes,

vertical bicomplexes and bigraded modules respectively. This means that

if A = {Aj
i} is an object of any of these categories, then there exists i such

that Aj
i′ = 0 for i′ > i. We let fModb

R and fCb
R be the full subcategories

of bounded filtered modules, respectively complexes, i.e. the full subcate-

gories of objects (K,F ) such that there exists some p with the property

that Fp′K
n = 0 for all p′ > p. We refer to all of these as the bounded

subcategories of tCR, vbCR, bgModR, fModR and fCR respectively.

The following is [CESLW18, Proposition 3.11].

Proposition 2.4.17. The totalization functors Tot : bgModR → fModR

and Tot : tCR → fCR are lax symmetric monoidal with structure maps

ϵ : R → Tot(R) and µ = µA,B : Tot(A)⊗ Tot(B) → Tot(A⊗B)
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given by ϵ = 1R. For x = (xi)i ∈ Tot(A)n1 and y = (yj)j ∈ Tot(B)n2,

µ(x⊗ y)k :=
∑

k1+k2=k

(−1)k1n2xk1 ⊗ yk2 . (2.12)

When restricted to the bounded case, Tot : bgModb
R → fModb

R and

Tot : tCb
R → fCb

R are strong symmetric monoidal functors.

Using totalization it is possible to show the following, which is

[CESLW18, Lemma 4.15].

Lemma 2.4.18. The category fCR is monoidal over vbCR. By restric-

tion, fModR is monoidal over bgModR.

Remark 2.4.19. There is a certain heuristic to obtain the sign appearing

in the definition of µ in Proposition 2.4.17. In the bounded case, we can

write

Tot(A) =
⊕
i

An−i
i .

As direct sums commute with tensor products, we have

Tot(A)⊗ Tot(B) = (
⊕

An−i
i )⊗ Tot(B) ∼=

⊕
i

(An−i
i ⊗ Tot(B)).

In the isomorphism above we can interpret that each An−i
i passes by

Tot(B). Since Tot(B) uses total grading, we can think of this degree

as being the horizontal degree, while having 0 vertical degree. Thus,

using the Koszul sign rule we would get precisely the sign from Propo-

sition 2.4.17. This explanation is just an intuition, and opens the door

for other possible sign choices: what if we decide to distribute Tot(A)
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over
⊕

i B
n−i
i instead, or if we consider the total degree as the vertical

degree? These alternatives lead to other valid definitions of µ, and we

will explore the consequences of some of them in Remark 4.3.7.

Lemma 2.4.20. In the conditions of Proposition 2.4.17 for the bounded

case, the inverse

µ−1 : Tot(A(1) ⊗ · · · ⊗ A(m)) → Tot(A(1))⊗ · · · ⊗ Tot(A(m))

is given on pure tensors (for notational convenience) as

µ−1(x(1) ⊗ · · · ⊗ x(m)) = (−1)
∑m

j=2 nj
∑j−1

i=1 kix(1) ⊗ · · · ⊗ x(m), (2.13)

where x(l) ∈ (A(m))
nl−kl
kl

.

Proof. For the case m = 2,

µ−1 : Tot(A⊗B) → Tot(A)⊗ Tot(B)

is computed explicitly as follows. Let c ∈ Tot(A ⊗ B)n. By definition,

we have

Tot(A⊗B)n =
⊕
k

(A⊗B)n−k
k =

⊕
k

⊕
k1+k2=k
n1+n2=n

An1−k1
k1

⊗Bn2−k2
k2

.

And thus, c = (ck)k may be written as a finite sum c =
∑

k ck, where

ck =
∑

k1+k2=k
n1+n2=n

xn1−k1
k1

⊗ yn2−k2
k2

.
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Here, we introduced superscripts to indicate the vertical degree, which,

unlike in the definition of µ (Equation (2.12)), is not solely determined

by the horizontal degree since the total degree also varies. However

we are going to omit them in what follows for simplicity of notation.

Distributivity allows us to rewrite c as

c =
∑
k

∑
k1+k2=k
n1+n2=n

xk1 ⊗ yk2

=
∑

n1+n2=n

∑
k1

∑
k2

(xk1 ⊗ yk2)

=
∑

n1+n2=n

(∑
k1

xk1

)
⊗

(∑
k2

yk2

)
.

Therefore, µ−1 can be defined as

µ−1(c) =
∑

n1+n2=n

(∑
k1

(−1)k1n2xk1

)
⊗

(∑
k2

yk2

)
.

The general case follows inductively.
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2.5 Enriched categories and totalization

We define here some useful enriched categories and collect results from

[CESLW18, §4.3 and §4.4]. Each of these categories will be a piece in

Theorem 4.5.1, which establishes a connection between A∞-algebras and

derived A∞-algebras. Some of them have been modified according to our

conventions.

The following definition, extracted from [CESLW18, Definition 3.32],

provides an alternative enrichment to the category of bigraded modules.

From this, similar enrichments can be provided to other categories built

on top of this one.

Definition 2.5.1. Let A,B and C be bigraded modules. We denote by

bgMod
R
(A,B) the bigraded module given by

bgMod
R
(A,B)vu :=

∏
j≥0

[A,B]v−j
u+j

where [A,B] is the internal hom-object of bigraded modules. More pre-

cisely, g ∈ bgMod
R
(A,B)vu is given by g := (g0, g1, g2, . . . ), where

gj : A → B is a map of bigraded modules of bidegree (u+ j, v − j).

Furthermore, we can define a composition morphism

c : bgMod
R
(B,C)⊗ bgMod

R
(A,B) → bgMod

R
(A,C)

by

c(f, g)m :=
∑

i+j=m

(−1)i|g|figj.
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Definition 2.5.2. Let (A, dAi ) and (B, dBi ) be twisted complexes and con-

sider f ∈ bgMod
R
(A,B)vu. Consider also dA := (dAi )i ∈ bgMod

R
(A,A)10

and dB := (dBi )i ∈ bgMod
R
(B,B)10. We define

δ(f) := c(dB, f)− (−1)⟨f,d
A⟩c(f, dA) ∈ bgMod

R
(A,B)v+1

u .

More explicitly,

(δ(f))m :=
∑

i+j=m

(−1)i|f |dBi fj − (−1)v+ifid
A
j .

A justification for the above definition can be found in [CESLW18,

Lemma 4.18].

Definition 2.5.3. Let A and B be twisted complexes. We define

tCR(A,B) to be the vertical bicomplex tCR(A,B) := (bgMod
R
(A,B), δ).

Definition 2.5.4. We denote by bgMod
R
the bgModR-enriched category

of bigraded modules given by the following data.

(1) The objects of bgMod
R
are bigraded modules.

(2) For any bigraded modules A and B the hom-object is the bigraded

module bgMod
R
(A,B).

(3) The composition map

c : bgMod
R
(B,C)⊗ bgMod

R
(A,B) → bgMod

R
(A,C)

is defined in Definition 2.5.1.
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(4) The unit morphism R → bgMod
R
(A,A) is the morphism of bigraded

modules that sends 1 ∈ R to 1A : A → A, the strict morphism given

by the identity of A.

Definition 2.5.5. We denote by tCR the vbCR-enriched category of

twisted complexes given by the following data.

(1) The objects of tCR are twisted complexes.

(2) For any twisted complexes A and B the hom-object is the vertical

bicomplex tCR(A,B).

(3) The composition map c : tCR(B,C) ⊗ tCR(A,B) → tCR(A,C) is

defined in Definition 2.5.1.

(4) The unit morphism R → tCR(A,A) is given by the morphism of ver-

tical bicomplexes sending 1 ∈ R to 1A : A → A, the strict morphism

of twisted complexes given by the identity of A.

The next tensor corresponds to ⊗ in the categorical setting of Re-

mark 2.1.9, see [CESLW18, Lemma 4.27].

Lemma 2.5.6. The monoidal on tCR is given by the following map of

vertical bicomplexes.

⊗ : tCR(A,B)⊗ tCR(A′, B′) → tCR(A⊗ A′, B ⊗B′)

(f, g) → (f⊗g)m :=
∑

i+j=m

(−1)ijfi ⊗ gj

The monoidal structure of bgMod
R
is given by the restriction of this map.
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Definition 2.5.7. We denote by fMod
R
the bgModR-enriched category

of filtered modules given by the following data.

(1) The objects of fMod
R
are filtered modules.

(2) For any filtered modules (K,F ) and (L, F ), the bigraded module

fMod
R
(K,L) is given by

fMod
R
(K,L)vu := {f : K → L|f(FqK

m) ⊂ Fq+uL
m+u+v, ∀m, q ∈ Z}.

(3) The composition map is given by c(f, g) = (−1)u|g|fg, where u is the

horizontal degree of f .

(4) The unit morphism is given by the map R → fMod
R
(K,K) sending

1 → 1K.

Definition 2.5.8. Let (K, dK , F ) and (L, dL, F ) be filtered complexes.

We define fC
R
(K,L) to be the vertical bicomplex whose underlying bi-

graded module is fMod
R
(K,L) and the vertical differential is

δ(f) := c(dL, f)− (−1)⟨f,d
K⟩c(f, dK) = dLf − (−1)|f |fdK

for f ∈ fMod
R
(K,L)vu, where c is the composition map from Defini-

tion 2.5.7.

Definition 2.5.9. The vbCR-enriched category of filtered complexes fC
R

is the enriched category given by the following data.

(1) The objects of fC
R
are filtered complexes.
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(2) For K,L filtered complexes the hom-object is the vertical bicomplex

fC
R
(K,L).

(3) The composition map is given as in fMod
R
in Definition 2.5.7.

(4) The unit morphism is given by the map R → fC
R
(K,K) sending

1 → 1K.

We write sfC
R
to denote the full subcategory of fC

R
whose objects are in

the image of the totalization functor.

The enriched monoidal structure is given as follows and can be found

in [CESLW18, Lemma 4.36].

Definition 2.5.10. The monoidal structure of fC
R
is given by the fol-

lowing map of vertical bicomplexes.

⊗ : fC
R
(K,L)⊗ fC

R
(K ′, L′) → fC

R
(K ⊗K ′, L⊗ L′),

(f, g) 7→ f⊗g := (−1)u|g|f ⊗ g

Here u is the horizontal degree of f .

The proof of the following lemma is included in the proof of

[CESLW18, Lemma 4.35].

Lemma 2.5.11. Let A be a vertical bicomplex that is horizontally

bounded on the right and let K and L be filtered complexes. There is

a natural bijection

HomfCR
(Tot(A)⊗K,L) ∼= HomvbCR

(A, fC
R
(K,L))
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given by f 7→ f̃ : a 7→ (k 7→ f(a⊗ k)).

We now define an enriched version of the totalization functor.

Definition 2.5.12. Let A and B be bigraded modules. We define

Tot(f) ∈ fMod
R
(Tot(A),Tot(B))vu

for f ∈ bgMod
R
(A,B)vu to be given on any x ∈ Tot(A)n by

(Tot(f)(x)))j+u :=
∑
m≥0

(−1)(m+u)nfm(xj−m) ∈ Bn−j+v
j+u ⊂ Tot(B)n+u+v.

We also define an inverse as follows. Let K = Tot(A), L = Tot(B) and

g ∈ fMod
R
(K,L)vu. We define

f := Tot−1(g) ∈ bgMod
R
(A,B)vu

to be given by f := (f0, f1, . . . ) where fi is defined on each Am+j
j by the

composite

fi : A
m−j
j ↪→

∏
k≥j

Am−k
k = Fj(Tot(A)

m)
g−→ Fj+u(Tot(B)m+u+v)

=
∏

l≥j+u

Bm+u+v−l
l

×(−1)(i+u)m

−−−−−−−→ Bm−j+v−i
j+u+i ,

the last map being a projection followed by a multiplication by the indi-

cated sign factor.

The following is [CESLW18, Theorem 4.39].
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Theorem 2.5.13. Let A and B be twisted complexes. The assignments

Tot(A) := Tot(A) and

TotA,B : tCR(A,B) → fC
R
(Tot(A),Tot(B))

f 7→ Tot(f)

define a vbCR-enriched functor Tot : tCR → fC
R

which restricts to an

isomorphism onto its image. Moreover, this functor, when restricted fur-

ther, becomes a bgModR-enriched functor

Tot : bgMod
R
→ fMod

R
,

also restricting to an isomorphism onto its image.

We now present an enriched endomorphism operad. The precise op-

erad structure is shown in [CESLW18, Lemma 4.41].

Definition 2.5.14. Let C be a monoidal V -enriched category and A an

object of C . We define the enriched endomorphism operad End A to be

the collection in V given by

End A(n) := C (A⊗n, A) for n ≥ 1.

The following contains Proposition 4.40, Lemma 4.43 and Proposition

4.46 from [CESLW18].

Proposition 2.5.15.

70



� The enriched functors

Tot : bgMod
R
→ fMod

R
, Tot : tCR → fC

R

are lax symmetric monoidal in the enriched sense and when re-

stricted to the bounded case they become strong symmetric monoidal

in the enriched sense.

� For A ∈ C , the collection End A defines an operad in V .

� Let C and D be monoidal categories over V . Let F : C → D be

a lax monoidal functor over V . Then for any X ∈ C there is a

morphism of operads

End X → End F (X).

Lemma 2.5.16. Let A be a twisted complex. Consider the operads

End A(n) = tCR(A⊗n, A) and End Tot(A)(n) = fC
R
(Tot(A)⊗n,Tot(A)).

There is a morphism of operads

End A → End Tot(A),

which is an isomorphism of operads if A is bounded. If A is just a bigraded

module, the same holds for the operads End A(n) = bgMod
R
(A⊗n, A) and

End Tot(A)(n) = fMod
R
(Tot(A)⊗n,Tot(A)).

Proof. The proof of in the case of a A being a twisted complex can be

found in [CESLW18, Lemma 4.54]. For the bigraded module case, we
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are going to do it analogously. First, by Theorem 2.5.13 we know that

the functor Tot : bgMod
R

→ fMod
R

is bgModR-enriched. In fact, by

Proposition 2.5.15 it is lax monoidal in the enriched sense. In addition,

both bgModR and fModR are monoidal over bgModR. In the case of

bgModR it is in the obvious way and for fModR is given by Lemma 2.4.18.

With all of this we may apply Proposition 2.5.15 to the totalization

functor Tot : bgMod
R
→ fMod

R
to obtain the desired map

End A → End Tot(A).

The fact that it is an isomorphism in the bounded case is analogous to

the twisted complex case.

We are going to construct the inverse in the bounded case explicitly

from Equation (2.1). The construction for the direct map is analogue

but here we just need the inverse. We do it for a twisted complex A, but

it is done similarly for a bigraded module.

Lemma 2.5.17. In the conditions of Lemma 2.5.16 for the bounded case,

the inverse is given by the map

End Tot(A) → End A

f 7→ Tot−1(f ◦ µ−1).

Proof. The inverse is given by the following composite.
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End Tot(A)(n) = fC
R
(Tot(A)⊗n,Tot(A))

fC
R
(Tot(A⊗n),Tot(A)) tCR(A⊗n, A) = End A(n)

The second map is given by Tot−1, see Definition 2.5.12. To describe

the first map, let R be concentrated in bidegree (0, 0) with trivial vertical

differential. Then the first map is given by the following composite

fC
R
(Tot(A)⊗n,Tot(A)) ∼= R⊗ fC

R
(Tot(A)⊗n,Tot(A))

µ−1⊗1
−−−−→ fC

R
(Tot(A⊗n),Tot(A)⊗n)⊗ fC

R
(Tot(A)⊗n,Tot(A))

c−→ fC
R
(Tot(A⊗n),Tot(A)),

where c is the composition in fC
R
, see Definition 2.5.7. The map µ−1 is

the adjoint of µ−1 under the bijection from Lemma 2.5.11. Explicitly,

µ−1 : R → fC
R
(Tot(A⊗n),Tot(A)⊗n)

1 7→ (a 7→ µ−1(a)).

Putting all this together, we get the map

End Tot(A) → End A

f 7→ Tot−1(c(f, µ−1)).

Since the total degree of µ−1 is 0, the composition map reduces to

c(f, µ−1) = f ◦ µ−1 and we get the desired map.
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Chapter 3

A∞-algebras on operads

In this chapter we aim to encode A∞-algebras in a simple operadic way.

To do that we use operadic suspension, following an approach similar

to the one introduced by Ward [KWZ15]. We explore some properties

of this construction and the connection to other ways of encoding A∞-

algebras that are found in the literature. We then describe a brace algebra

structure on operadic suspension and construct A∞-algebras on a certain

family of operads. We use these structures to prove Theorem 3.3.9, which

was originally claimed by Gerstenhaber and Voronov [GV95]. This finally

leads us to our first new version of the Deligne conjecture, that we prove

in Corollary 3.3.14.

3.1 Operadic suspension

In this section we define an operadic suspension, which is a slight mod-

ification of the one found in [KWZ15]. This construction will help us
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define A∞-multiplications in a simple way. The motivation to introduce

operadic suspension is that signs in A∞-algebras and related Lie struc-

tures are known to arise from a sequence of shifts. In order to discuss

derived structures later, we need to pin this down more generally and

rigorously. We are going to work only with non-symmetric operads, al-

though most of what we do is also valid in the symmetric case.

3.1.1 Operadic suspension and A∞-algebras

First recall the notion of shift or suspension of modules, which is the

building block our next construction.

Definition 3.1.1. For a graded R-module A, the shift or suspension SA

is given by SAi = Ai−1. The n-fold application of this operation to A is

denoted SnA.

Let Λ(n) = Sn−1R, so that Λ(n) is the ring R concentrated in degree

n − 1. We view this module as the free R-module of rank one spanned

by the exterior power en = e1 ∧ · · · ∧ en of degree n − 1, where ei is

the i-th element of the canonical basis of Rn. By convention, Λ(0) is

one-dimensional concentrated in degree −1 and generated by e0.

Let us define an operad structure on Λ = {Λ(n)}n≥0 via the following

insertion maps

Λ(n)⊗ Λ(m) Λ(n+m− 1)

(e1 ∧ · · · ∧ en)⊗ (e1 ∧ · · · ∧ em) (−1)(n−i)(m−1)e1 ∧ · · · ∧ en+m−1.

◦i

76



We are inserting the second factor onto the first one by replacing ei

in the first factor by a renumbered copy of the second factor. This way

the sign can be explained by moving the power em of degree m−1 to the

i-th position of en passing by en through ei+1. More compactly,

en ◦i em = (−1)(n−i)(m−1)en+m−1.

The unit of this operad is e1 ∈ Λ(1). It can be checked by direct compu-

tation that Λ satisfies the axioms of an operad of graded modules.

In a similar way we can define Λ−(n) = S1−nR, with the same inser-

tion maps.

Definition 3.1.2. Let O be an operad of graded modules. The operadic

suspension sO of O is given arity-wise by the Hadamard product of the

operads O and Λ, in other words, sO(n) = (O⊗Λ)(n) = O(n)⊗Λ(n) with

diagonal composition. Similarly, we define the operadic desuspension

arity-wise as s−1O(n) = O(n)⊗ Λ−(n).

Even though the elements of sO are tensor products of the form x⊗en,

we may identify the elements of O with the elements the elements of sO

and simply write x as an abuse of notation.

Definition 3.1.3. For x ∈ O(n) of degree deg(x), its natural degree |x|

is the degree of x⊗en as an element of sO, namely, |x| = deg(x)+n−1.

To distinguish both degrees we call deg(x) the internal degree of x, since

this is the degree that x inherits from the grading of O.

If we write ◦i for the operadic insertion on O and ◦̃i for the operadic
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insertion on sO, we may find a relation between the two insertion maps

in the following way.

Lemma 3.1.4. For x ∈ O(n) and y ∈ O(m) we have

(x⊗en)◦̃i(y⊗em) = (−1)(n−1)(m−1)+(n−1) deg(y)+(i−1)(m−1)(x◦i y)⊗en+m−1,

or written more compactly,

x◦̃iy = (−1)(n−1)(m−1)+(n−1) deg(y)+(i−1)(m−1)x ◦i y. (3.1)

Proof. Let x ∈ O(n) and y ∈ O(m), and let us compute (x⊗en)◦̃i(y⊗em).

sO(n)⊗ sO(m) = (O(n)⊗ Λ(n))⊗ (O(m)⊗ Λ(m))

∼= (O(n)⊗O(m))⊗ (Λ(n)⊗ Λ(m))

◦i⊗◦i−−−→ O(m+ n− 1)⊗ Λ(n+m− 1) = sO(n+m− 1).

The symmetric monoidal structure produces the sign (−1)(n−1) deg(y)

in the isomorphism Λ(n) ⊗ O(m) ∼= O(m) ⊗ Λ(n), and the operadic

structure of Λ produces the sign (−1)(n−i)(m−1), so

(x⊗ en)◦̃i(y ⊗ em) = (−1)(n−1) deg(y)+(n−i)(m−1)(x ◦i y)⊗ en+m−1.

Abusing notation, this can be written as

x◦̃iy = (−1)(n−1) deg(y)+(n−i)(m−1)x ◦i y.

Now we can rewrite the exponent using that we have mod 2
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(n− i)(m− 1) = (n− 1− i− 1)(m− 1) = (n− 1)(m− 1)+ (i− 1)(m− 1)

so we conclude

x◦̃iy = (−1)(n−1)(m−1)+(n−1) deg(y)+(i−1)(m−1)x ◦i y.

Remark 3.1.5. The sign from Lemma 3.1.4 is exactly the sign in [RW11,

§1.2] from which the sign in the equation defining A∞-algebras, i.e. Equa-

tion (2.4) is derived. This means that if ms ∈ O(s) has degree 2− s and

mr+1+t ∈ O(r + 1 + t) has degree 1− r − t, abusing notation we get

mr+1+t◦̃r+1ms = (−1)rs+tmr+1+t ◦r+1 ms.

Next, we are going to use the above fact to obtain a way to describe

A∞-algebras in simplified operadic terms. We are also going to compare

this description with a classical approach that is more general but requires

heavier operadic machinery.

Definition 3.1.6. An operad O has an A∞-multiplication if there is a

map A∞ → O from the operad of A∞-algebras.

Therefore, we have the following.

Lemma 3.1.7. An A∞-multiplication on an operad O is equivalent to

an element m ∈ sO of degree 1 trivial on arity 0 such that m◦̃m = 0,

where x◦̃y =
∑

i x◦̃iy.

79



Proof. By definition, an A∞-multiplication on O corresponds to a map

of operads

f : A∞ → O.

Such a map is determined by the images of the generators µi ∈ A∞(i) of

degree 2− i. Whence, f it is determined by mi = f(µi) ∈ O(i).

Let m = m1 +m2 + · · · . Since deg(mi) = deg(µi) = 2 − i, we have

that the image of mi in sO is of degree 2 − i + i − 1 = 1. Therefore,

m ∈ sO is homogeneous of degree 1. Now, let us check that m◦̃m = 0.

Note that by Equation (3.1) we have the operation ◦̃ defined as

x◦̃y =
n∑

i=1

(−1)(n−1)(m−1)+(n−1) deg(y)+(i−1)(m−1)x ◦i y

for x ∈ O(n) and y ∈ O(m). Therefore, applying this definition to

mr+1+t and ms we obtain that

mr+1+t◦̃r+1ms = (−1)rs+tmr+1+t ◦r+1 ms, (3.2)

which is the sign appearing in the definition of an A∞-algebra (Equa-

tion (2.4)). Since the elements µi satisfy the A∞-equation and f is a

map of operads, so do the elements mi = f(µi). Therefore, we have

0 =
∑
r+s+t

r,t≥0, s≥1

(−1)rs+tmr+1+t ◦r+1 ms =
∑
r+s+t

r,t≥0, s≥1

mr+1+t◦̃r+1ms = m◦̃m.

Conversely, if m ∈ sO of degree 1 such that m◦̃m = 0, let mi be the

component of m lying in arity i. We have m = m1 +m2 + · · · . By the
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usual identification, mi has degree 1 − i + 1 = 2 − i in O. Now we can

use Equation (3.2) to conclude that m◦̃m = 0 implies

∑
r+s+t

r,t≥0, s≥1

(−1)rs+tmr+1+t ◦r+1 ms = 0.

This shows that the elements mi determine a map f : A∞ → O

defined on generators by f(µi) = mi, as desired.

Remark 3.1.8. If one works with dg operads, then the definition of A∞

as a quasi-free operad should be used, see Remark 2.3.12. In that case,

similarly to Lemma 3.1.7, the equation that an A∞-multiplication on O

satisfies is ∂(m) +m◦̃m = 0, where ∂ is the differential on O and m is

concentrated on arity at least 2. A similar analysis can be carried out

from here, but we will stick to operads of graded modules for the most

part.

We can connect Lemma 3.1.7 with the existing literature. Recall that

the Koszul dual cooperad As¡ of the associative operad As is kµn in arity

n, where µn has degree n − 1 for n ≥ 1, see [LV12, §7.1]. Thus, for a

graded module A, we have the following operad isomorphisms, where the

notation (≥ 1) means that we are taking the reduced sub-operad with

trivial arity 0 component.

Hom(As
¡
,EndA) ∼= EndS−1A(≥ 1) ∼= sEndA(≥ 1).

The first operad is the convolution operad, see [LV12, §6.4.1], for
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which

Hom(As
¡
,EndA)(n) = HomR(As

¡
(n),EndA(n)).

Explicitly, for f ∈ EndA(n) and g ∈ EndA(m), the convolution product

is given by

f ⋆ g =
n∑

i=1

(−1)(n−1)(m−1)+(n−1) deg(b)+(i−1)(m−1)f ◦i g =
n∑

i=1

f ◦̃ig = f ◦̃g.

It is known that A∞-structures on A are determined by elements

φ ∈ Hom(As¡,EndA) of degree 1 such that φ ⋆ φ = 0 [LV12, Proposi-

tion 10.1.3]. Since the convolution product coincides with the operation

◦̃, such an element φ is sent via the above isomorphism to an element

m ∈ sEndA(≥ 1) of degree 1 satisfying m◦̃m = 0. Therefore, we see

that this classical interpretation of A∞-algebras is equivalent to the one

that Lemma 3.1.7 provides in the case of the operad EndA. See [LV12,

Proposition 10.1.11] for more details about convolution operads and the

more classical operadic interpretation of A∞-agebras, taking into account

that in the dg-setting the definition has to be modified slightly, see Re-

mark 3.1.8. There is also a difference in sign conventions that arises from

the choice of the isomorphism EndSA
∼= s−1 EndA, see Theorem 3.1.10.

What is more, replacing EndA by any operad O and doing similar

calculations to [LV12, Proposition 10.1.11], we retrieve the notion of A∞-

multiplication on O given by Definition 3.1.6.

Remark 3.1.9. Above we needed to specify that only positive arity was

considered. This is the case in many situations in literature, but for our

purposes, we cannot assume that operads have trivial component in arity
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0 in general, and this is what forces us to specify that A∞-multiplications

are trivial on arity 0.

When we obtain the signs for the full operadic composition on op-

eradic suspension we will be able to also give a new interpretation of

∞-morphisms But before that, let us expose the relation between op-

eradic suspension and the usual suspension or shift of graded modules.

Theorem 3.1.10. ([MSS07, Chapter 3, Lemma 3.16]) Given a graded R-

module A, there is an isomorphism of operads σ−1 : EndSA
∼= s−1 EndA,

where EndA is the endomorphism operad of A.

The original statement is about vector spaces, but it is still true when

R is not a field. The proof in the original reference is not very explicit,

see Theorem A.2 for a detailed proof. But in the case of the operadic

suspension defined above, the isomorphism is given by

σ−1 : EndSA → s−1 EndA,

where σ−1(F ) = (−1)(
n
2)S−1 ◦ F ◦ S⊗n for F ∈ EndSA(n). The symbol ◦

here is just composition of maps. Note that we are using the identification

of elements of EndA with those in s−1 EndA. The notation σ−1 comes

from [RW11], where a twisted version of this map is the inverse of a

map σ. Here, we define σ : EndA(n) → EndSA(n) as the map of graded

modules given by

σ(f) = S ◦ f ◦ (S−1)⊗n. (3.3)

In [RW11] the sign for the insertion maps was obtained by computing
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σ−1(σ(x)◦i σ(y)). This can be interpreted as sending x and y from EndA

to EndSA via σ (which is a map of graded modules, not of operads), and

then applying the isomorphism induced by σ−1. In the end this is the

same as simply sending x and y to their images in s−1 EndA, which is

what Theorem 3.1.10 does.

Even though σ is only a map of graded modules, it can be shown in a

completely analogous way to Theorem 3.1.10 that σ = (−1)(
n
2)σ induces

an isomorphism of operads

σ : EndA
∼= sEndSA . (3.4)

This isomorphism can also be proved in a more direct way using the

isomorphism

ss−1O ∼= O

from Lemma 3.1.11, namely, since EndSA
∼= s−1 EndA, we have

sEndSA
∼= ss−1 EndA

∼= EndA .

In this case, the isomorphism map that we obtain goes in the opposite

direction to σ, and it is precisely its inverse.

Lemma 3.1.11. There are isomorphisms of operads s−1sO ∼= O and

O ∼= ss−1O.

Proof. We are only showing the first isomorphism since the other one is
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analogous. Note that as graded R-modules,

s−1sO(n) = O(n)⊗ S1−nR⊗ Sn−1R ∼= O(n),

and any automorphism of O(n) determines such an isomorphism. There-

fore, we are going to find an automorphism f of O(n) such that the above

isomorphism induces a map of operads, i.e f induces a map that preserves

insertions. Observe that the insertion in s−1sO differs from that of O in

just a sign. The insertion on s−1sO is defined as the composition of the

isomorphism

(O(n)⊗ Λ(n)⊗ Λ−(n))⊗ (O(m)⊗ Λ(m)⊗ Λ−(m)) ∼=

(O(m)⊗O(m))⊗ (Λ(n)⊗ Λ(m))⊗ (Λ−(n)⊗ Λ−(m))

with the tensor product of the insertions corresponding to each operad.

After cancellations, the only sign left is (−1)(n−1)(m−1). So we need to

find an automorphism f of O such that, for x ∈ O(n) and y ∈ O(m),

f(x ◦i y) = (−1)(n−1)(m−1)f(x) ◦i f(y).

By Lemma A.1, f(x) = (−1)(
n
2)x is such an automorphism.

3.1.2 Functorial properties of operadic suspension

Here we study operadic suspension at the level of the underlying collec-

tions as an endofunctor. Recall from Definition 2.3.1 that a collection is

a family O = {O(n)}n≥0 of graded R-modules.
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We define the suspension of a collection O as sO(n) = O(n)⊗Sn−1R,

where Sn−1R is the ground ring concentrated in degree n − 1. We first

show that s is a functor both on collections and on operads. Given a

morphism of collections f : O → P , there is an obvious induced mor-

phism

sf : sO → sP , sf(x⊗ en) = f(x)⊗ en. (3.5)

Since morphisms of collections preserve arity, this map is well defined

because en is the same for x and f(x). Note that if f is homogeneous,

the degree of sf is the same as that of f .

Lemma 3.1.12. The assignment O 7→ sO and f 7→ sf is a functor on

both the category Col of collections and the category Op of operads.

Proof. The assignment preserves composition of maps. Indeed, given any

g : P → C, by definition s(g ◦ f)(x⊗ en) = g(f(x))⊗ en, and also

(sg ◦ sf)(x⊗ en) = sg(f(x)⊗ en) = g(f(x))⊗ en.

This means that s defines an endofunctor on the category Col of collec-

tions.

We know that when O is an operad, sO is again an operad. What

is more, if f is a map of operads, then the map sf is again a map of

operads, since for a ∈ O(n) and b ∈ O(m) we have
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sf(x◦̃iy) = sf((x⊗ en)◦̃i(y ⊗ em))

= (−1)(n−1) deg(y)+(n−i)(m−1)sf((x ◦i y)⊗ en+m−1)

= (−1)(n−1) deg(y)+(n−i)(m−1)f(x ◦i y)⊗ en+m−1

= (−1)(n−1) deg(y)+(n−i)(m−1)+deg(f) deg(x)(f(x) ◦i f(y))⊗ en+m−1

By the definition of ◦̃ this equals

(−1)(n−1) deg(y)+(n−1)(deg(y)+deg(f))+deg(f) deg(x)(f(x)⊗ en)◦̃i(f(y)⊗ em)

= (−1)deg(f)(deg(x)+n−1)sf(x)◦̃isf(y).

Note that deg(x) + n − 1 is the degree of x ⊗ en, and as we said before

deg(sf) = deg(f), so the above relation is consistent with the Koszul

sign rule. In any case, recall that a morphism of operads is necessarily of

degree 0, but the above calculation hints at some monoidality properties

of s that we will study afterwards. Clearly sf preserves the unit, so sf

is a morphism of operads.

The fact that s is a functor allows to describe algebras over operads

using operadic suspension. For instance, an A∞-algebra is equivalent to a

map of operadsO → EndA whereO is an operad with A∞-multiplication.

Since s is a functor, this map corresponds to a map sO → sEndA. Since

in addition the map sO → sEndA is fully determined by the original

map O → EndA, this correspondence is bijective, and algebras over O

are equivalent to algebras over sO. In fact, using Lemma 3.1.11, it is not

hard to show the following.
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Proposition 3.1.13. The functor s is an equivalence of categories both

at the level of collections and at the level of operads.

In particular, for A∞-algebras it is more convenient to work with sO

since the formulation of an A∞-multiplication on this operad is much

simpler, yet we do not lose any information.

3.1.3 Monoidal properties of operadic suspension

Now we are going to explore the monoidal properties of operadic sus-

pension. Since operads are precisely monoids on the category Col of

collections, we have the following.

Proposition 3.1.14. The endofunctor s : Col → Col sends monoids to

monoids and morphisms of monoids to morphisms of monoids, in other

words, it induces a well-defined endofunctor on the category of monoids

Mon(Col).

In fact, we can show a stronger result.

Proposition 3.1.15. The functor s : Col → Col defines a lax monoidal

functor. When restricted to the subcategory of reduced operads, it is

strong monoidal.

Proof. Firstly, we need to define the structure maps of a lax monoidal

functor. Namely, we define the unit morphism ε : I → sI to be the

map ε(n) : I(n) → I(n) ⊗ Sn−1R to be the identity for n ̸= 1 and the

isomorphism R ∼= R ⊗ R for n = 1. We also need to define a natural
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transformation µ : sO ◦ sP → s(O ◦ P). To define it, observe that for

P = O we would want the map

sO ◦ sO µ−→ s(O ◦ O)
sγ−→ sO

to coincide with the operadic composition γ̃ on sO, where γ is the com-

position on O.

We know that sγ does not add any signs. Therefore, if γ̃ = (−1)ηγ,

with η explicitly computed in Proposition 3.2.3, the sign must come

entirely from the map sO ◦ sO → s(O ◦ O). Thus, we define the map

µ : sO ◦ sP → s(O ◦ P)

as the map given by

x⊗ eN ⊗ x1 ⊗ ea1 ⊗ · · · ⊗ xN ⊗ eaN 7→ (−1)ηx⊗ x1 ⊗ · · · ⊗ xN ⊗ en,

where a1 + · · ·+ aN = n and

η =
∑
j<l

aj deg(bl) +
N∑
j=1

(aj + deg(bj)− 1)(N − j),

which is the case k0 = · · · = kn = 0 in Proposition 3.2.3. Note that

(−1)η only depends on degrees and arities, so the map is well defined.

Another way to obtain this map is using the associativity isomorphisms

and operadic composition on Λ to obtain a map sO ◦ sP → s(O ◦ P).

We now show that µ is natural, or in other words, for f : O → O′
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and g : P → P ′, we show that the following diagram commutes.

sO ◦ sP sO′ ◦ sP ′

s(O ◦ P) s(O′ ◦ P ′)

sf◦sg

µ µ

s(f◦g)

Let c = x⊗ eN ⊗ x1 ⊗ ea1 ⊗ · · ·⊗ xN ⊗ eaN ∈ sO ◦ sP and let us compute

s(f ◦ g)(µ(c)). One has

s(f ◦ g)(µ(c)) = s(f ◦ g)((−1)εx⊗ x1 ⊗ · · · ⊗ xN ⊗ en)

= (−1)ε+δf(x)⊗ g(x1)⊗ · · · ⊗ g(xN)⊗ en

where

ε =
∑
j<l

aj deg(xl) +
N∑
j=1

(deg(xj) + aj − 1)(N − j).

and

δ = N deg(g) deg(x) + deg(g)
∑
j=1N

deg(xj)(N − j)

Now, let us compute µ((sf ◦ sg)(c)). We have

µ((sf ◦ sg)(c)) = (−1)σf(x)⊗ g(x1)⊗ · · · ⊗ g(xN)⊗ en,

where

σ =deg(g)
N∑
j=1

(deg(xj) + aj − 1)(N − j) +N deg(g)(deg(x) +N − 1)

+
∑
j<l

aj(deg(xj) + deg(g))

+
N∑
j=1

(aj + deg(xj) + deg(g)− 1)(N − j).
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Now we compare the two signs by computing ε+ δ+σ mod 2. After

some cancellations of common terms and using thatN(N−1) = 0 mod 2

we get

deg(g)
N∑
j=1

(aj − 1)(N − j) +
∑
j<l

aj deg(g) +
N∑
j=1

deg(g)(N − j)

= deg(g)
N∑
j=1

aj(N − j) + deg(g)
∑
j<l

aj

= deg(g)

(
N∑
j=1

aj(N − j) +
N∑
j=1

aj(N − j)

)

= 0 mod 2.

This shows naturality of µ. Unitality follows directly from the defi-

nitions by direct computation. In the case of associativity, observe that

by the definition of µ, the associativity axiom for µ is equivalent to the

associativity of the operadic composition γ̃, which we know to be true.

This shows that s is a lax monoidal functor.

In the case where the operads have trivial arity 0 component, we may

define an inverse to the operadic composition on Λ from Section 3.1.1

Namely, for n > 0, we may define

Λ(n) →
⊕
N≥0

Λ(N)⊗

( ⊕
a1+···+aN=n

Λ(a1)⊗ · · · ⊗ Λ(aN)

)

as the map

en 7→
∑

a1+···+aN=n

(−1)δeN ⊗ ea1 ⊗ · · · ⊗ eaN ,

where δ is the same sign that appears in the operadic composition on Λ
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(Proposition 3.2.3) and where a1, . . . , ak > 0. Since there are only finitely

many ways of decomposing n into N positive integers, the sum is finite

and thus the map is well defined. In fact, this map defines a cooperad

structure on the reduced sub-operad of Λ with trivial arity 0 component.

This map induces the morphism µ−1 : s(O ◦ P) → sO ◦ sP that we are

looking for.

The unit morphism ε is always an isomorphism, so this shows s is

strong monoidal in the reduced case.

Remark 3.1.16. If we decide to work with symmetric operads, we just

need to introduce the sign action of the symmetric group on Λ(n), turn-

ing it into the sign representation of the symmetric group. The action

on tensor products is diagonal, and the results we have obtained follow

similarly replacing Col by the category of S-modules.

3.2 Brace algebras

Brace algebras appear naturally in the context of operads when we fix

the first argument of operadic composition [GV95]. This simple idea

gives rise to a very rich structure that is the building block of the derived

A∞-structures that we are going to construct.

In this section we define a brace algebra structure for an arbitrary

operad using operadic suspension. The use of operadic suspension will

have as a result a generalization of the Lie bracket defined in [RW11].

First recall the definition of a brace algebra.
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Definition 3.2.1. A brace algebra on a graded module A consists of a

family of maps

bn : A⊗1+n → A

called braces, that we evaluate on (x, x1, . . . , xn) as bn(x;x1, . . . , xn).

They must satisfy the brace relation

bm(bn(x;x1, . . . , xn); y1, . . . , ym) =∑
i1,...,in
j1...,jn

(−1)εbl(x; y1, . . . , bj1(x1; yi1+1, . . . ), . . . , bjn(xn; yin+1, . . . ), . . . , ym)

where l = m+ n−
∑n

p=1 jp and ε =
∑n

p=1 deg(xp)
∑ip

q=1 deg(yq), i.e. the

sign is picked up by the xi’s passing by the yi’s in the shuffle.

Remark 3.2.2. Some authors might use the notation b1+n instead of bn,

but the first element is usually going to have a different role from the oth-

ers, so we found bn more intuitive. A shorter notation for bn(x;x1, . . . , xn)

found in the literature ([GV95], [Get93]) is x{x1, . . . , xn}.

We will also see a bigraded version of this kind of map in Section 4.4.

3.2.1 Brace algebra structure on an operad

Given an operad O with composition map γ : O ◦O → O we can define

a brace algebra on the underlying module of O by setting

bn : O(N)⊗O(a1)⊗ · · · ⊗ O(an) → O
(
N − n+

∑
ai

)

bn(x;x1, . . . , xn) =
∑

γ(x; 1, . . . , 1, x1, 1, . . . , 1, xn, 1, . . . , 1),
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where the sum runs over all possible order-preserving insertions. The

brace bn(x;x1, . . . , xn) vanishes whenever n > N and b0(x) = x. The

brace relation follows from the associativity axiom of operads.

This construction can be used to define braces on sO. More precisely,

we define maps

bn : sO(N)⊗ sO(a1)⊗ · · · ⊗ sO(an) → sO
(
N − n+

∑
ai

)

using the operadic composition γ̃ on sO as

bn(x;x1, . . . , xn) =
∑

γ̃(x; 1, . . . , 1, x1, 1, . . . , 1, xn, 1, . . . , 1).

We have the following relation between the brace maps bn defined on

sO and the operadic composition γ on O.

Proposition 3.2.3. For x ∈ sO(N) and xi ∈ sO(ai) of internal degree

qi (1 ≤ i ≤ n), we have

bn(x;x1, . . . , xn) =
∑

N−n=k0+···+kn

(−1)ηγ(x⊗ 1⊗k0 ⊗ x1 ⊗ · · · ⊗ xn ⊗ 1⊗kn),

where

η =
∑

0≤j<l≤n

kjql+
∑

1≤j<l≤n

ajql+
n∑

j=1

(aj+qj−1)(n−j)+
∑

1≤j≤l≤n

(aj+qj−1)kl.

Proof. To obtain the signs that make γ̃ differ from γ, we must first look

at the operadic composition on Λ. We are interested in compositions of
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the form

γ̃(x⊗ 1⊗k0 ⊗ x1 ⊗ 1⊗k1 ⊗ · · · ⊗ xn ⊗ 1⊗kn)

where N − n = k0 + · · ·+ kn, x has arity N and each xi has arity ai and

internal degree qi. Therefore, let us consider the corresponding operadic

composition

Λ(N)⊗Λ(1)k0 ⊗Λ(a1)⊗ · · · ⊗Λ(an)⊗Λ(1)kn −→ Λ

(
N − n+

n∑
i=1

ai

)
.

This operadic composition can be described in terms of insertions in

the obvious way, namely, if f ∈ sO(N) and h1, . . . , hN ∈ sO, then we

have

γ̃(x; y1, . . . , yN) = (· · · (x◦̃1y1)◦̃1+a(y1)y2 · · · )◦̃1+∑
a(yp)yN ,

where a(yp) is the arity of yp (in this case yp is either 1 or some xi).

So we just have to find out the sign iterating the same argument as in

the i-th insertion. In this case, each Λ(ai) produces a sign given by the

exponent

(ai − 1)(N − k0 + · · · − ki−1 − i).

For this, recall that the degree of Λ(ai) is ai−1 and that the generator

of this space is inserted in the position 1+
∑i−1

j=0 kj +
∑i−1

j=1 aj of a wedge

of N+
∑i−1

j=1 aj− i+1 generators. Therefore, performing this insertion as

described in the previous section yields the aforementioned sign. Now,
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since N − n = k0 + · · ·+ kn, we have that

(ai − 1)(N − k0 + · · ·+ ki−1 − i) = (ai − 1)

(
n− i+

n∑
l=i

kl

)
.

Let us introduce for the rest of the proof the notation a0 = N for

the sake of compactness of the formulas. Now we can compute the sign

factor of a brace. For this, notice that the isomorphism

(O(1)⊗ Λ(1))⊗k ∼= O(1)⊗k ⊗ Λ(1)⊗k

does not produce any signs because of degree reasons. Therefore, the

sign coming from the isomorphism

n⊗
i=0

(O(ai)⊗ Λ(ai)⊗ (O(1)⊗ Λ(1))⊗ki

∼=

(
n⊗

i=0

O(ai)⊗O(1)⊗ki

)
⊗

(
n⊗

i=0

Λ(ai)⊗ Λ(1)⊗ki

)

is determined by the exponent

(a0 − 1)
n∑

i=1

qi +
n∑

i=1

(ai − 1)
∑
l>i

ql.

This equals

(
n∑

j=0

kj + n− 1

)
n∑

i=1

qi +
n∑

i=1

(ai − 1)
∑
l>i

ql.

After doing the operadic composition

n⊗
i=0

O(ai)⊗
n⊗

i=0

Λ(ai) → O

(
n∑

i=0

ai − n

)
⊗ Λ

(
n∑

i=0

ai − n

)
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we can add the sign coming from the suspension, so all in all the sign

(−1)η we were looking for is given by

η =
n∑

i=1

(ai−1)(n− i+
n∑
l=i

kl)+(
n∑

j=0

kj +n−1)
n∑

i=1

qi+
n∑

i=1

(ai−1)
∑
l>i

ql.

It can be checked that this can be rewritten modulo 2 as

η =
∑

0≤j<l≤n

kjql+
∑

1≤j<l≤n

ajql+
n∑

j=1

(aj+qj−1)(n−j)+
∑

1≤j≤l≤n

(aj+qj−1)kl

as we stated.

Notice that for O = EndA, the brace on operadic suspension is pre-

cisely

bn(f ; g1, . . . , gn) =
∑

(−1)ηf(1, . . . , 1, g1, 1, . . . , 1, gn, 1, . . . , 1).

Using the brace structure on sEndA, the sign η gives us in particular the

the same sign of the Lie bracket defined in [RW11]. More precisely, we

have the following.

Corollary 3.2.4. The brace b1(f ; g) is the operation f ◦ g defined in

[RW11] that induces a Lie bracket on the Hochschild complex of an A∞-

algebra via

[f, g] = b1(f ; g)− (−1)|f ||g|b1(g; f).

However, we prefer to use f ◦̃g to make clear that we are using the

operadic composition in sO. Note that

b1(f ; g) =
∑
i

f ◦̃ig = f ◦̃g,
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so the notation f ◦̃g is suggestive for operadic suspension. The notation

f ◦ g will still be used whenever the insertion maps are denoted by ◦i.

In [RW11], the sign is computed using a strategy that we generalize

in Appendix C, see Lemma C.2. The approach we have followed here

has the advantage that the brace relation follows immediately from the

associativity axiom of operadic composition. This approach also works

for any operad since the difference between γ and γ̃ is always the same

sign.

3.2.2 Reinterpretation of ∞-morphisms

As we mentioned before, we can show an alternative description of ∞-

morphisms of A∞-algebras and their composition in terms of suspension

of collections. Recall Definition 2.2.2 for the definition of these mor-

phisms.

Defining the suspension s at the level of collections as we did in Sec-

tion 3.1.2 allows us to talk about ∞-morphisms of A∞-algebras in this

setting, since they live in collections of the form

EndA
B = {HomR(A

⊗n, B)}n≥1.

More precisely, there is a left module structure on EndA
B over the operad

EndB

EndB ◦EndA
B → EndA

B

given by compostion of maps
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f ⊗ g1 ⊗ · · · ⊗ gn 7→ f(g1 ⊗ · · · ⊗ gn)

for f ∈ EndB(n) and gi ∈ EndA
B, and also an infinitesimal right module

structure (see [LV12, §6.1.4]) over the operad EndA

EndA
B ◦(1) EndA → EndA

B

given by insertion of maps

f ⊗ 1⊗r ⊗ g ⊗ 1⊗n−r−1 7→ f(1⊗r ⊗ g ⊗ 1⊗n−r−1)

for f ∈ EndA
B(n) and g ∈ EndA. In addition, we have a composition

EndB
C ◦EndA

B → EndA
C analogous to the left module described above.

They induce maps on the respective operadic suspensions which differ

from the original ones by some signs that can be calculated in an analo-

gous way to what we did on Proposition 3.2.3. These induced maps will

give us the characterization of ∞-morphisms in Lemma 3.2.5.

For these collections we also have s−1 EndA
B
∼= EndSA

SB in analogy with

Theorem 3.1.10, and the proof is similar but shorter since we do not need

to worry about insertions.

Lemma 3.2.5. An ∞-morphism of A∞-algebras A → B with respective

structure maps mA and mB is equivalent to an element f ∈ sEndA
B of

degree 0 trivial on arity 0 such that

ρ(f ◦(1) mA) = λ(mB ◦ f), (3.6)
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where

λ : sEndB ◦ sEndA
B → sEndA

B

is induced by the left module structure on EndA
B and

ρ : sEndB ◦(1) sEndA
B → sEndA

B

is induced by the right infinitesimal module structure on EndA
B. In addi-

tion, the composition of ∞-morphisms is given by the natural composition

sEndB
C ◦ sEndA

B → sEndA
C .

Proof. From the definitions of the operations in Equation (3.6), we know

that this equation coincides with the one defining ∞-morphisms of A∞-

algebras (Definition 2.2.2) up to sign. The signs that appear in the

above equation are obtained in a similar way to that on γ̃, see the proof

of Proposition 3.2.3. Thus, it is enough to plug into the sign η from

Proposition 3.2.3 the corresponding degrees and arities to obtain the

desired result. The composition of ∞-morphisms follows similarly.

Notice the similarity between this definition and the definitions given

in [LV12, §10.2.4], taking into account the minor modifications to ac-

commodate the dg case. In the case that f : A → A is an ∞-

endomorphism, Equation (3.6) can be written in terms of operadic com-

position as f ◦̃m = γ̃(m ◦ f).
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3.3 A∞-algebra structures on operads

Let O be an operad of graded R-modules and sO its operadic suspension.

Let us consider the underlying graded module of the operad sO, which

we call sO again by abuse of notation, i.e.

sO =
∏
n

sO(n)

with grading given by its natural degree, i.e. |x| = deg(x) + n − 1 for

x ∈ sO(n), where deg(x) is its internal degree, the degree in O(n). For

any operad O, recall the operation ◦ defined as

x ◦ y =
n∑

i=1

x ◦i y ∈ O(n+m− 1)

for x ∈ O(n) and y ∈ O(m). We write x◦̃y for the corresponding opera-

tion on sO, namely

x◦̃y =
n∑

i=1

x◦̃iy = b1(x; y) ∈ sO(n+m− 1)

where

x◦̃iy = (−1)(n−1) deg(y)+(n−i)(m−1)x ◦i y.

Definition 3.3.1. Let m ∈ sO be of natural degree 1 and trivial on arity

0 such that m◦̃m = 0, or equivalently m = m1+m2+ · · · is a formal sum

of maps mj ∈ O(j)2−j satisfying the usual A∞-equation for all n ≥ 1

∑
r+s+t=n

(−1)rs+tmr+1+t ◦r+1 ms = 0. (3.7)
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Such m is an A∞-multiplication on O. As we saw in Lemma 3.1.7, its

existence is equivalent to a map of operads A∞ → O from the operad A∞

of A∞-algebras to O. We may call each mj the j-th component of m.

Remark 3.3.2. An A∞-multiplication on the operad EndA is equivalent

to an A∞-algebra structure on A.

Following [GV95] and [Get93], if O has an A∞-multiplication m, one

would define an A∞-algebra structure on sO using the maps

M ′
1(x) := [m,x] = m◦̃x− (−1)|x|x◦̃m,

M ′
j(x1, . . . , xj) := bj(m;x1, . . . , xj), j > 1.

The prime notation here is used to indicate that these are not the defini-

tive maps that we are going to take. Getzler shows in [Get93] that

M ′ = M ′
1 + M ′

2 + · · · satisfies the relation M ′ ◦ M ′ = 0 using that

m ◦ m = 0, and the proof is independent of the operad in which m is

defined, so it is still valid if m◦̃m = 0. But we have two problems here.

First, the equation M ′ ◦M ′ = 0 does depend on how the circle operation

is defined. More precisely, this circle operation in [Get93] is the natural

circle operation on the endomorphism operad, which does not have any

additional signs, so M ′ is not an A∞-structure under our convention.

The other problem has to do with the degrees. We need M ′
j to be ho-

mogeneous of degree 2− j as a map sO⊗j → sO, but we find that M ′
j is

homogeneous of degree 1 instead, as the following lemma shows.

Lemma 3.3.3. For x ∈ sO we have that the degree of the map of graded

modules bj(x;−) : sO⊗j → sO is precisely |x|.
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Proof. Let a(x) denote the arity of x, i.e. a(x) = n whenever x ∈ sO(n).

Also, let deg(x) be its internal degree in O. The natural degree of

bj(x;x1, . . . , xj) for a(x) ≥ j is computed as follows. By definition, we

have that the natural degree of bj(x;x1, . . . , xj) as an element of sO is

|bj(x;x1, . . . , xj)| = a(bj(x;x1, . . . , xj)) + deg(bj(x;x1, . . . , xj))− 1.

We have

a(bj(x;x1, . . . , xj)) = a(x)− j +
∑
i

a(xi)

and

deg(bj(x;x1, . . . , xj) = deg(x) +
∑
i

deg(xi).

Combining these two we obtain

a(bj(x;x1, . . . , xj)) + deg(bj(x;x1, . . . , xj))− 1 =

a(x)− j +
∑
i

a(xi) + deg(x) +
∑
i

deg(xi)− 1 =

a(x) + deg(x)− 1 +
∑
i

a(xi) +
∑
i

deg(xi)− j =

a(x) + deg(x)− 1 +
∑
i

(a(xi) + deg(xi)− 1) =

|x|+
∑
i

|xi|.

This means that the degree of the map bj(x;−) : sO⊗j → sO equals |x|.
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Corollary 3.3.4. The maps

M ′
j : sO⊗j → sO, (x1, . . . , xj) 7→ bj(m;x1, . . . , xj)

for j > 1 and the map

M ′
1 : sO → sO, x 7→ b1(m;x)− (−1)|x|b1(m;x)

are homogeneous of degree 1.

Proof. For j > 1 it is a direct consequence of Lemma 3.3.3. For

j = 1 we have the summand b1(m;x) whose degree follows as well

from Lemma 3.3.3. The degree of the other summand, b1(x;m), can

be computed in a similar way as in the proof Lemma 3.3.3, giving that

|b1(x;m)| = 1 + |x|. This concludes the proof.

The problem we have encountered with the degrees can be resolved

using shift maps as the following proposition shows. Recall that the shift

of a graded module A is given by SAi = Ai−1 and that we have maps

A → SA of degree 1 given by the identity.

Proposition 3.3.5. If O is an operad with an A∞-multiplication m ∈ O,

then there is an A∞-algebra structure on the shifted module SsO.

Proof. Note in the proof of Lemma 3.3.3 that a way to turn M ′
j into a

map of degree 2 − j is introducing a grading on sO given by arity plus

internal degree (without subtracting 1). This is equivalent to defining an

A∞-algebra structure M on SsO shifting the map M ′ = M ′
1 +M ′

2 + · · · ,

104



where S is the shift of graded modules. Therefore, we define Mj to be

the map making the following diagram commute.

(SsO)⊗j SsO

sO⊗j sO

Mj

(S⊗j)−1

M ′
j

S

In other words, Mj = σ(M ′
j), where σ(F ) = S ◦ F ◦ (S⊗n)−1 for F ∈

EndsO(n) is the map inducing an isomorphism EndsO ∼= sEndSsO, see

Equation (3.4). Since σ is an operad morphism, for M = M1+M2+ · · · ,

we have

M ◦̃M = σ(M ′)◦̃σ(M ′) = σ(M ′ ◦M ′) = 0.

So now we have that M ∈ sEndSsO is an element of natural degree

1 such that M ◦̃M = 0. Therefore, in light of Remark 3.3.2, M is the

desired A∞-algebra structure on SsO.

Notice that M is defined as an structure map on SsO. This kind of

shifted operad is called odd operad in [KWZ15]. This means that SsO is

not an operad anymore, since the associativity relation for graded operads

involves signs that depend on the degrees, which are now shifted.

3.3.1 Iterating the process

We have defined A∞-structure maps Mj ∈ sEndSsO. Now we can use the

brace structure of the operad sEndSsO to define a A∞-algebra structure

given by maps

M j : (SsEndSsO)
⊗j → SsEndSsO (3.8)
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by applying σ to maps

M
′
j : (sEndSsO)

⊗j → sEndSsO

defined as

M
′
j(f1, . . . , fj) = Bj(M ; f1, . . . , fj) j > 1,

M
′
1(f) = B1(M ; f)− (−1)|f |B1(f ;M),

where Bj denotes the brace map on sEndSsO.

We define the Hochschild complex as done by Ward in [KWZ15].

Definition 3.3.6. The Hochschild cochains of a graded module A are

defined to be the graded module SsEndA. If (A, d) is a (co)chain complex,

then SsEndA is endowed with a differential

∂(f) = [d, f ] = d ◦ f − (−1)|f |f ◦ d

where |f | is the natural degree of f and ◦ is the plethysm operation given

by insertions.

In particular, SsEndSsO is the module of Hochschild cochains of SsO.

If O has an A∞-multiplication, then the differential of the Hochschild

complex is M1 from Equation (3.8).

Remark 3.3.7. The functor Ss is called the “oddification” of an op-

erad in the literature [War13]. The reader might find odd to define

the Hochschild complex in this way instead of just EndA. The reason
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is that operadic suspension provides the necessary signs and the extra

shift gives us the appropriate degrees. In addition, this definition al-

lows the extra structure to arise naturally instead of having to define

the signs by hand. For instance, if we have an associative multiplication

m2 ∈ EndA(2) = Hom(A⊗2, A), the element m2 would not satisfy the

equation m2 ◦m2 = 0 and thus cannot be used to induce a multiplication

on EndA as we did above.

A natural question to ask is what relation there is between the A∞-

algebra structure on SsO and the one on SsEndSsO. In [GV95] it is

claimed that given an operad O with an A∞-multiplication, the map

O → EndO

x 7→
∑
n≥0

bn(x;−)

is a morphism of A∞-algebras. In the associative case, this result leads to

the definition of homotopy G-algebras, which connects with the classical

Deligne conjecture. We are going to adapt the statement of this claim

to our context and prove it. This way we will obtain an A∞-version

of homotopy G-algebras and consequently an A∞-version of the Deligne

conjecture. Let Φ′ the map defined as above but on sO, i.e.

Φ′ : sO → EndsO

x 7→
∑
n≥0

bn(x;−).

Let Φ : SsO → SsEndSsO the map making the following diagram com-
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mute
SsO SsEndSsO

sO EndsO sEndSsO

Φ

Φ′ ∼=

(3.9)

where the isomorphism EndsO ∼= sEndSsO is given in Equation (3.4).

Note that the degree of the map Φ is zero.

Remark 3.3.8. Notice that we have only used the operadic structure on

sO to define an A∞-algebra structure on SsO, so the constructions and

results in these sections are valid if we replace sO by any graded module

A such that SA is an A∞-algebra.

Theorem 3.3.9. The map Φ defined in diagram (3.9) above is a mor-

phism of A∞-algebras, i.e. for all j ≥ 1 the equation

Φ(Mj) = M j(Φ
⊗j) (3.10)

holds, where the Mj is the j-th component of the A∞-algebra structure

on SsO and M j is the j-th componnent of the A∞-algebra structure on

SsEndSsO.

Proof. Let us have a look at the following diagram
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(SsO)⊗j (SsEndSsO)
⊗j

sO⊗j (EndsO)
⊗j (sEndSsO)

⊗j

sO EndsO sEndSsO

SsO SsEndSsO

Mj

Φ⊗j

Mj

(Φ′)⊗j

M ′
j

σ⊗j

Mj M
′
j

Φ′ σ

Φ

(3.11)

where the diagonal red arrows are shifts of graded R-modules. We

need to show that the diagram defined by the external black arrows

commutes. But these arrows are defined so that they commute with the

red and blue arrows, so it is enough to show that the inner blue diagram

commutes, since the outer squares commute by definition. The blue

diagram can be split into two different squares using the dashed arrow

Mj that we are going to define next, so it will be enough to show that

the two squares commute. The commutativity of the left square will be

more involved as we will have to distinguish between different kinds of

insertions.

The map

Mj : (EndsO)
⊗j → EndsO

109



is defined by

Mj(f1, . . . , fj) = Bj(M
′; f1, . . . , fj) for j > 1,

M1(f) = B1(M
′; f)− (−1)|f |B1(f ;M

′),

where Bj is the natural brace structure map on the operad EndsO, i.e.

for f ∈ EndsO(n),

Bj(f ; f1, . . . , fj) =
∑

k0+···+kj=n−j

f(1⊗k0 ⊗ f1 ⊗ 1⊗k1 ⊗ · · · ⊗ fj ⊗ 1⊗kj).

The 1’s in the braces are identity maps. In the above definition, |f |

denotes the degree of f as an element of EndsO, which is the same as the

degree σ(f) ∈ sEndSsO because σ is an isomorphism, as mentioned in

Equation (3.4).

The inner square of diagram (3.11) is divided into two halves, so we

divide the proof into two as well, showing the commutativity of each half

independently.

Commutativity of the right blue square

Let us show now that the right square commutes. Recall that σ is an

isomorphism of operads and M = σ(M ′). Then we have for j > 1

M
′
j(σ(f1), . . . , σ(fj)) = Bj(M ;σ(f1), . . . , σ(fj))

= Bj(σ(M
′);σ(f1), . . . , σ(fj)).
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Now, since the brace structure is defined as an operadic composition, it

commutes with σ, so

Bj(σ(M
′);σ(f1), . . . , σ(fj)) = σ(Bj(M

′; f1, . . . , fj))

= σ(Mj(f1, . . . , fj))

and therefore the right blue square commutes for j > 1. For j = 1 the

result follows analogously taking into account that the degree of f in

EndsO is the same as the degree of σ(f) in sEndSsO.

The proof that the left blue square commutes consists of several

lengthy calculations so we are going to devote the next section to that.

However, it is worth noting that the commutativity of the left square

does not depend on the particular operad sO, so it is still valid if m

satisfies m◦m = 0 for any circle operation defined in terms of insertions.

This is essentially the original statement in [GV95].

Commutativity of the left blue square

We are going to show here that the left blue square in diagram (3.11)

commutes, i.e. that

Φ′(M ′
j) = Mj((Φ

′)⊗j) (3.12)

for all j ≥ 1. First we prove the case j > 1. Let x1, . . . , xj ∈ sO⊗j.

We have on the one hand
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Φ′(M ′
j(x1, . . . , xj)) = Φ′(bj(m;x1, . . . , xj)) =

∑
n≥0

bn(bj(m;x1, . . . , xj);−)

=
∑
n

∑
l

∑
bl(m;−, bi1(x1;−), · · · , bij(xj;−),−)

where l = n− (i1+ · · ·+ ij)+ j. The sum with no subindex runs over all

the possible order-preserving insertions. Note that l ≥ j. Evaluating the

above map on elements would yield Koszul signs coming from the brace

relation. Also recall from Lemma 3.3.3 that |bj(x;−)| = |x|. Now, fix

some value of l ≥ j and let us compute the M ′
l component of

Mj(Φ
′(x1), . . . ,Φ

′(xj)) = Bj(M
′; Φ′(x1), . . . ,Φ

′(xj))

that is, Bj(M
′
l ; Φ

′(x1), . . . ,Φ
′(xj)). By definition, this equals

∑
M ′

l (−,Φ′(x1), · · · ,Φ′(xj),−) =∑
i1,...,ij

∑
M ′

l (−, bi1(x1;−), · · · , bij(xj;−),−) =

∑
i1,...,ij

∑
bl(m;−, bi1(x1;−), · · · , bij(xj;−),−).

We are using hyphens instead of 1’s to make the equality of both

sides of the Equation (3.12) more apparent, and to make clear that when

evaluating on elements those are the places where the elements go.

For each tuple (i1, . . . , ij) we can choose n such that

n− (i1 + · · ·+ ij) + j = l,

so the above sum equals
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∑
n,i1,...,ij

n−(i1+···+ij)+j=l

∑
bl(m;−, bi1(x1;−), · · · , bij(xj;−),−).

So each M ′
l component for l ≥ j produces precisely the terms

bl(m; . . . ) appearing in Φ′(M ′
j). Conversely, for every n ≥ 0 there ex-

ists some tuple (i1, . . . , ij) and some l ≥ j such that n is the that

n − (i1 + · · · + ij) + j = l, so we do get all the summands from the

left hand side of the Equation (3.12), and thus we have the equality

Φ′(M ′
j) = Mj((Φ

′)⊗j) for all j > 1.

It is worth treating the case n = 0 separately since in that case we

have the summand

b0(bj(m;x1, . . . , xj))

in Φ′(bj(m;x1, . . . , xj)), where we cannot apply the brace relation. This

summand is equal to

Bj(M
′
j; b0(x1), . . . , b0(xj)) = M ′

j(b0(x1), . . . , b0(xj))

= bj(m; b0(x1), . . . , b0(xj)),

since by definition b0(x) = x.

Now we are going to show the case j = 1, that is

Φ′(M ′
1(x)) = M1(Φ

′(x)). (3.13)

This is going to be divided into two parts, since M ′
1 has two clearly

distinct summands, one of them consisting of braces of the form bl(m; · · · )

(insertions in m) and another one consisting of braces of the form
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bl(x; · · · ) (insertions in x). We will therefore show that both types of

braces cancel on each side of Equation (3.13).

Insertions in m

Let us first focus on the insertions in m that appear in equation (3.13).

Recall that

Φ′(M ′
1(x)) = Φ′([m,x]) = Φ′(b1(m;x))− (−1)|x|Φ′(b1(x;m)) (3.14)

so we focus on the first summand

Φ′(b1(m;x)) =
∑
n

bn(b1(m;x);−)

=
∑
n

∑
i

n≥i

∑
bn−i+1(m;−, bi(x;−),−)

=
∑
n,i

n−i+1>0

∑
bn−i+1(m;−, bi(x;−),−)

where the sum with no indices runs over all the positions in which bi(x;−)

can be inserted (from 1 to n− i+ 1 in this case).

On the other hand, since |Φ′(x)| = |x|, the right hand side of Equa-

tion (3.13) becomes

M1(Φ
′(x)) = B1(M

′; Φ′(x))− (−1)|x|B1(Φ
′(x);M ′). (3.15)

Again, we are focusing now on the first summand, but with the ex-

ception of the part of M ′
1 that corresponds to b1(Φ(x);m). From here

the argument is a particular case of the proof for j > 1, so the terms of

the form bl(m; · · · ) are the same on both sides of Equation (3.13).
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Insertions in x

And now, let us study the insertions in x that appear in Equation (3.13).

For that we will check that insertions in x from the left hand side and

right hand side cancel. Let us look first at the left hand side. From

Φ′(M ′
1(x)) in Equation (3.14) we had

−(−1)|x|Φ′(b1(x;m)) = −(−1)|x|
∑
n

bn(b1(x;m);−).

The factor −(−1)|x| is going to appear everywhere, so we may cancel

it. Thus we just have

Φ′(b1(x;m)) =
∑
n

bn(b1(x;m);−).

We are going to evaluate each term of the sum, so let z1, . . . , zn ∈ sO.

We have by the brace relation that

bn(b1(x;m); z1, . . . , zn) = (3.16)∑
l+j=n+1

n−j+1∑
i=1

(−1)εbl(x; z1, . . . , bj(m; zi, . . . , zi+j), . . . , zn)

+
n+1∑
i=1

(−1)εbn+1(x; z1, . . . , zi−1,m, zi, . . . , zn),

where ε is the usual Koszul sign with respect to the grading in sO.

We have to check that the insertions in x that appear inM1(Φ
′(x)) (right

hand side of eq. (3.13)) are exactly those in Equation (3.16) above (left

hand side of eq. (3.13)).

Therefore let us look at the right hand side of Equation (3.13). Here
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we will study the cancellations from each of the two summands that

naturally appear. From Equation (3.15), i.e.

M1(Φ
′(x)) = B1(M

′; Φ′(x))− (−1)|x|B1(Φ
′(x);M ′)

we have

−(−1)|x|b1(Φ
′(x);m) = −(−1)|x|

∑
n

b1(bn(x;−);m)

coming from the first summand since B1(M
′
1; Φ

′(x)) = M ′
1(Φ

′(x)). We

are now only interested in insertions in x. Again, cancelling −(−1)|x| we

get

b1(Φ
′(x);m) =

∑
n

b1(bn(x;−);m).

Each term of the sum can be evaluated on (z1, . . . , zn) to produce

b1(bn(x; z1, . . . , zn);m) = (3.17)

n∑
i=1

(−1)ε+|zi|bn(x; z1, . . . , b1(zi;m), . . . , zn)

+
n+1∑
i=1

(−1)εbn+1(x; z1, . . . , zi−1,m, zi, . . . , zn)

Note that we have to apply the Koszul sign rule twice: once at evalu-

ation, and once more to apply the brace relation. Now, from the second

summand of M1(Φ
′(x)) in the right hand side of eq. (3.15), after can-

celling −(−1)|x| we obtain
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B1(Φ
′(x);M ′) =

∑
l

B1(bl(x;−);M ′)

=
∑
l

∑
bl(x;−,M ′,−)

=
∑
l

∑
j>1

∑
bl(x;−, bj(m;−),−)

+
∑
l

∑
bl(x;−, b1(−;m),−).

We are going to evaluate on (z1, . . . , zn) to make this map more explicit.

This evaluation gives us the following

∑
l+j=n+1

n−j+1∑
i=1

(−1)εbl(x; z1, . . . , bj(m; zi, . . . , zi+j), . . . , zn) (3.18)

−
n∑

i=1

(−1)ε+|zi|bn(x; z1, . . . , b1(zi;m), . . . , zn).

The minus sign comes from the fact that b1(zi;m) comes from M ′
1(zi),

so we apply the signs in the definition of M ′
1(zi). We therefore have that

the right hand side of eq. (3.15) is the result of adding equations (3.17)

and (3.18). After this addition we can see that the first sum of eq. (3.17)

cancels the second sum of eq. (3.18).

We also have that the second sum in eq. (3.17) is the same as the sec-

ond sum in eq. (3.16), so we are left with only the first sum of eq. (3.18).

This is the same as the first sum in eq. (3.16), so we have already checked

that the equation Φ′(M ′
1) = M1(Φ

′) holds.

In the case n = 0, we have to note that B1(b0(x);m) vanishes because

of arity reasons: b0(x) is a map of arity 0, so we cannot insert any inputs.

And this finishes the proof.
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3.3.2 Explicit structure and Deligne conjecture

We have given an implicit definition of the components of the A∞-algebra

structure on SsO, namely,

Mj = σ(M ′
j) = (−1)(

j
2)S ◦M ′

j ◦ (S−1)⊗j,

but it is useful to have an explicit expression that determines how it is

evaluated on elements of SsO. We will also need these expressions to

state the A∞-version of the Deligne conjecture in a precise way. Recall

that the classical Deligne conjecture [GV95] states that the Hochschild

complex of an associative algebra has a structure of homotopy G-algebra.

Here, we will define J-algebras as the A∞-generalization of homotopy G-

algebras. We will do this in terms of the explicit expressions we give for

the maps Mj. These explicit formulas will also clear up the connection

with the work of Gerstenhaber and Voronov. We hope that these explicit

expressions can be useful to perform calculations in other mathematical

contexts where A∞-algebras are used.

Lemma 3.3.10. For x, x1, . . . , xn ∈ sO, we have the following expres-

sions.

Mn(Sx1, . . . , Sxn) = (−1)
∑n

i=1(n−i)|xi|Sbn(m;x1, . . . , xn) n > 1,

M1(Sx) = Sb1(m;x)− (−1)|x|Sb1(x;m).

Here |x| is the degree of x as an element of sO, i.e. its natural degree.

Proof. The deduction of these explicit formulas is done as follows. Let
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n > 1 and x1, . . . , xn ∈ sO. Then

Mn(Sx1, . . . , Sxn) = SM ′
n((S

⊗n)−1)(Sx1, . . . , Sxn)

= (−1)(
n
2)SM ′

n((S
−1)⊗n)(Sx1, . . . , Sxn)

= (−1)(
n
2)+

∑n
i=1(n−i)(|xi|+1)SM ′

n(x1, . . . , xn) (3.19)

Now, note that
(
n
2

)
is even exactly when n ≡ 0, 1 mod 4. In these

cases, an even amount of |xi|’s have an odd coefficient in the sum (when

n ≡ 0 mod 4 these are the |xi| with even index, and when n ≡ 1 mod 4,

the |xi| with odd index). This means that 1 is added on the exponent an

even number of times, so the sign is not changed by the binomial coeffi-

cient nor by adding 1 on each term. Similarly, when
(
n
2

)
is odd, i.e. when

n ≡ 2, 3 mod 4, there is an odd number of |xi| with odd coefficient, so

the addition of 1 an odd number of times cancels the binomial coefficient.

This means that Equation (3.19) can be simplified to

Mn(Sx1, . . . , Sxn) = (−1)
∑n

i=1(n−i)|xi|SM ′
n(x1, . . . , xn),

which by definition equals

(−1)
∑n

i=1(n−i)|xi|Sbn(m;x1, . . . , xn).

The case n = 1 is analogous, one just has to note that

M ′
1(x) = b1(m;x)− (−1)|x|b1(x;m)

and that σ is linear.
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It is possible to show that the maps defined explicitly as we have just

done satisfy the A∞-equation without relying on the fact that σ is a map

of operads, but it is a lengthy and tedious calculation.

Remark 3.3.11. In the case n = 2, omitting the shift symbols by abuse

of notation, we obtain

M2(x, y) = (−1)|x|b2(m;x, y).

Let MGV
2 be the product defined in [GV95] as

MGV
2 (x, y) = (−1)|x|+1b2(m;x, y).

We see that M2 = −MGV
2 . Since the authors of [GV95] work in the

associative case m = m2, this minus sign does not affect the A∞-relation,

which in this case reduces to the associativity and differential relations.

This difference in sign can be explained by the difference between (S⊗n)−1

and (S−1)⊗n, since any of these shift maps can be used to define a map

(SsO)⊗n → sO⊗n.

Now that we have the explicit formulas for the A∞-structure on SsO

we can state and prove an A∞-version of the Deligne conjecture. Let us

first re-adapt the definition of homotopy G-algebra from [GV95, Defini-

tion 2] to our conventions.

Definition 3.3.12. A homotopy G-algebra is differential graded al-

gebra V with a differential M1 and a product M2 such that the shift

S−1V is a brace algebra with brace maps bn. The differential M1 and
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the product M2 must satisfy the following compatibility identities. Let

x, x1, x2, y1, . . . , yn ∈ S−1V . We demand

Sbn(S
−1M2(Sx1, Sx2); y1, . . . , yn) =

n∑
k=0

(−1)(|x2|+1)
∑k

i=1 |yi|M2(bk(x1; y1, . . . , yk), bn−k(x2; yk+1, . . . , yn))

and

Sbn(S
−1M1(Sx); y1, . . . , yn)−M1(Sbn(x; y1, . . . , yn))

−(−1)|x|+1

n∑
p=1

(−1)
∑p

i=1 |yi|Sbn(x; y1, . . . ,M1(Syp), . . . , yn)

=− (−1)(|x|+1)|y1|M2(Sy1, Sbn−1(x; y2, . . . , yn))

+ (−1)|x|+1

n−1∑
p=1

(−1)n−1+
∑p

i=1 |yi|Sbn−1(x; y1, . . . ,M2(Syp, Syp+1), . . . yn)

− (−1)|x|+
∑n−1

i=1 |yi|M2(Sbn−1(x; y1, . . . , yn−1), Syn)

Notice that our signs are slightly different to those in [GV95] as a

consequence of our conventions. Our signs will be a particular case of

those in Definition 3.3.13, which are set so that Corollary 3.3.14 holds

in consistent way with operadic suspension and all the shifts that the

authors of [GV95] do not consider.

We now introduce J-algebras as an A∞-generalization of homotopy

G-algebras. This will allow us to generalize the Deligne conjecture to the

A∞-setting. These algebras seem to be related to B∞-algebras where the

B∞-products µp,q vanish for p > 1, see [CLW21, §5.2].
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Definition 3.3.13. A J-algebra V is an A∞-algebra with structure maps

{Mj}j≥1 such that the shift S−1V is a brace algebra. Furthermore, the

braces and the A∞-structure satisfy the following compatibility relations.

Let x, x1, . . . , xj, y1, . . . , yn ∈ S−1V . For n ≥ 0 we demand

(−1)
∑n

i=1(n−i)|yi|Sbn(S
−1M1(Sx); y1, . . . , yn) =∑
l+k−1=n

1≤i1≤n−k+1

(−1)εMl(Sy1, . . . , Sbk(x; yi1 , . . . ), . . . , Syn)

−(−1)|x|
∑

l+k−1=n
1≤i1≤n−k+1

(−1)ηSbk(x; y1, . . . , S
−1Ml(Syi1 , . . . , ), . . . , yn)

where

ε =

i1−1∑
v=1

|yv|(|x| − k + 1) +
k∑

v=1

|yi1+v−1|(k − v) + (l − i1)|x|.

and

η =

i1−1∑
v=1

(k − v)|yv|+ l

i1−1∑
v=1

|yv|+
i1+l−1∑
v=i1

(k − i1)|yv|+
n−l∑
v=i1

(k − v)|yv+l|

For j > 1 we demand

(−1)
∑n

i=1(n−i)|yi|Sbn(S
−1Mj(Sx1, . . . , Sxj); y1, . . . , yn) =∑

(−1)εMl(Sy1, . . . , Sbk1(x1; yi1 , . . . ), . . . , Sbkj(xj; yij , . . . ), . . . , Syn).

The unindexed sum runs over all possible choices of non-negative integers

that satisfy l+k1+· · ·+kj−j = n and over all possible ordering-preserving

insertions. The right hand side sign is given by

122



ε =
∑
1≤t≤j

1≤v≤kt

|yit+v−1|(kt − v) +
∑

1≤v<l≤j

kv|xl|+
∑

1≤v≤l≤j

|xv|(il+1 − il − kl)

+
∑

0≤t<l≤j

it≤v<it+1

(|yv|+ 1)(|xl| − kl + 1) +
∑

0≤v<l≤j

(iv+1 − iv − kv)(|xl| − kl + 1)

In the sums we are setting i0 = 0 and ij+1 = n+ 1.

Corollary 3.3.14 (The A∞-Deligne conjecture). If A is an A∞-algebra,

then its Hochschild complex SsEndA is a J-algebra.

Proof. Clearly, sEndA is a brace algebra as it is an operad. Since A

is an A∞-algebra, the structure map m = m1 + m2 + · · · determines

an A∞-multiplication m ∈ sEndA. It follows by Proposition 3.3.5 that

SsEndA is an A∞-algebra. Therefore, we need to show the compatibility

relations. The result follows by direct computation from Theorem 3.3.9,

expanding the definitions and taking into account the sign rules described

in Appendix B. Let us do this in detail.

Recall that Theorem 3.3.9 states that Φ ◦Mj = M j ◦ Φ⊗j. We start

with the case j > 1. Let Sx1, . . . , Sxj ∈ SsEndA. Recall Diagram

(3.9) for the definition of Φ. The left hand side of Equation (3.10) is by

definition

Φ(Mj(Sx1, . . . , Sxj)) = SσΦ′(S−1Mj(Sx1, . . . , Sxj)).

Notice that this map belongs to SsEndSsO, where O = EndA, so let us

consider just its arity n component. We are going to omit the external

shift and consider the equation on sEndSsO since this extra shift will
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cancel.

σbn(S
−1Mj(Sx1, . . . , Sxj);−) = (−1)(

n
2)Sbn(S

−1Mj(Sx1, . . . , Sxj);S
−n).

Now evaluate this on Sy1, . . . , Syn ∈ SsEndA. Using the same calcula-

tion as in the proof of Lemma 3.3.10 we get

(−1)
∑n

i=1(n−i)|yi|Sbn(S
−1Mj(Sx1, . . . , Sxj); y1, . . . , yn). (3.20)

This is already the left hand side in Definition 3.3.13. Let us now have

a look at the right hand side of Equation (3.10). We evaluate again on

Sx1, . . . , Sxj to obtain

M j(Φ
⊗j)(Sx1, . . . , Sxj) = M j(Φ(Sx1), . . . ,Φ(Sxj))

=
∑

k1,...,kj

M j(SσΦ
′(x1), . . . , SσΦ

′(xj)).

Expanding, this equals

∑
k1,...,kj

M j(S(−1)(
k1
2 )Sbk1(x1;S

−k1), . . . , S(−1)(
kj
2 )Sbkj(xj;S

−kj)).

(3.21)

We now apply the definition of M j. Notice that by the isomorphism σ

and Lemma 3.3.3 we have

|Sbk(x;S−k)| = |σ(bk(x;−))| = |bk(x;−)| = |x|.

Therefore, from Equation (3.21) we proceed again similarly as in
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Lemma 3.3.10 to get

∑
k1,...,kj

(−1)
∑j

v=1[(
kv
2 )+(j−v)|xv |]Bj(M ;Sbk1(x1;S

−k1), . . . , Sbkj(xj;S
−kj)).

Here we have omitted the extra shift just like on the left hand side. Now

we need to use Proposition 3.2.3 to turn the above brace into composition

of maps. Taking only the arity n component yields

∑
(−1)

∑j
v=1 (

kv
2 )+ξMl(−, Sbk1(x1;S

−k1), . . . , Sbkj(xj;S
−kj),−).

where

ξ =
∑

1≤v<l≤j

kv|xl|+
∑

0≤v<l≤j

spacev(|xl| − kl + 1) +
∑

1≤v≤l≤j

|xv|spacel.

The variable spacev represents the space between the v-th and the (v+1)-

th brace. More precisely, if the v-th brace is inserted in the position iv,

spacev = iv+1 − iv − kv. The unindexed sum runs all possible ordering-

preserving insertions and over all possible choices of integers that satisfy

l + k1 + · · · + kj − j = n. We have also used the fact that k2
v ≡ kv

mod 2 to simplify the sign. Finally, we evaluate on Sy1, . . . , Syn. Here

we need to take into account the sign rules explained in Appendix B.

In particular, this means that we use the internal degree of Sbk(x;S
−k)

which is |x| − k + 1. This evaluation and some simplification produces

the desired sign (−1)ε.

Let us now treat the j = 1 case, where we have Φ ◦ M1 = M1 ◦ Φ.
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The left hand side is analogous to the general case, so we have

(−1)
∑n

i=1(n−i)|yi|Sbn(S
−1M1(Sx); y1, . . . , yn). (3.22)

On the right hand side we have

M1(Φ(Sx)) =
∑
k

M1(SσΦ
′(x))

=
∑
k

M1(S(−1)(
k
2)Sbk(x;S

−k)).

Recalling that |Sbk(x;S−k)| = |x| and cancelling again the extra shift we

may expand the above expression to obtain

∑
k

(−1)(
k
2)
(
B1(M ;Sbk(x;S

−k))− (−1)|x|B1(Sbk(x;S
−k);M)

)
(3.23)

The first term is analogous to the general case, yielding

∑
l+k−1=n

1≤i1≤n−k+1

(−1)εMl(Sy1, . . . , Sbk(x; yi1 , . . . ), . . . , Syn) (3.24)

upon evaluation and cancelling (−1)(
k
2), where

ε =

i1−1∑
v=1

(|yv|+1)(|x|−k+1)+
k∑

v=1

|yi1+v−1|(k−v)+(l−1)|x|+(i1−1)(k−1).

Let us now focus on the second term of Equation (3.23) and let us omit
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the sign (−1)(
k
2)+|x| for now. On arity n we have

B1(Sbk(x;S
−k);M) =∑

l+k−1=n
1≤i1≤n−k+1

(−1)l(k−1)+k−i1Sbk(x;S
−(i1−1), S−1Ml, S

−(k−i1)).

The sign is computed using Proposition 3.2.3 and the Koszul sign rule

for the shifts. Notice that here we need to use the internal degree of

Ml ∈ sEndA, that is, 2 − l. Finally, evaluating at Sy1, . . . , Syn and

combining the resulting signs with the factor (−1)(
k
2)+|x| produces the

result.

Remark 3.3.15. In Corollary 3.3.14, when A is just an associative algebra,

we recover the homotopy G-algebra structure on its Hochschild complex

according to Definition 3.3.12, as described in [GV95].
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Chapter 4

Derived A∞-algebras on

operads

A lot of the research on A∞-algebras relies on the existence and unique-

ness of minimal models for dgas. This is guaranteed by the results of

Kadeishvili [Kad80] when the dgas and their homologies are assumed

to be degree-wise projective. In practice, this is implied by assuming a

ground field. However, there are important examples arising from homo-

topy theory where projectivity cannot be guaranteed. In 2008, Sagave

introduced the notion of derived A∞-algebras, providing a framework for

not necessarily projective modules over an arbitrary commutative ground

ring [Sag10].

In this chapter we recall some definitions about derived A∞-algebras

and their motivation through minimal models. We also present some

new ways of interpreting them in terms of operads and collections. We

then recall the notion of filtered A∞-algebra, since it will play a role
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in obtaining derived A∞-algebras from A∞-algebras on totalization. We

combine a bigraded operadic suspension with totalization to encode de-

rived A∞-algebras. Using suitable brace structures we are able to define

derived A∞-algebra structures on certain operads and in turn show The-

orem 4.5.8, which generalizes Theorem 3.3.9 to the derived setting. From

this follows our major result, Corollary 4.5.10, a derived version of the

Deligne conjecture.

4.1 Derived A∞-algebras

In this section we introduce derived A∞-algebras. We first give some

definitions and then motivate them by explaining how they generalize

the theory of minimal models that we saw in Section 2.2.3.

4.1.1 Definitions

Here we recall some definitions about derived A∞-algebras from [Sag10]

and provide some operadic interpretations. We also refer to Section 2.4.2

to recall some definitions and sign conventions.

Definition 4.1.1. Using the notation in [RW11], a derived A∞-algebra

on a (Z,Z)-bigraded R-module A consist of a family of R-linear maps

mij : A
⊗j → A

of bidegree (i, 2− (i+ j)) for each j ≥ 1, i ≥ 0, satisfying the equation
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∑
u=i+p

v=j+q−1

j=r+1+t

(−1)rq+t+pjmij(1
⊗r ⊗mpq ⊗ 1⊗t) = 0 (4.1)

for all u ≥ 0 and v ≥ 1.

According to the above definition, there are two equivalent ways of

defining the operad of derived A∞-algebras dA∞ depending on the un-

derlying category. One of them works on the category of bigraded mod-

ules bgModR and the other one is suitable for the category of vertical

bicomplexes vbCR. This is similar to the alternative definition of the

A∞-operad in Remark 2.3.12. We give the two definitions here as we are

going to use both.

Definition 4.1.2. The operad dA∞ in bgModR is the operad generated

by {mij}i≥0,j≥1 subject to the derived A∞-relation

∑
u=i+p

v=j+q−1

j=r+1+t

(−1)rq+t+pjmij ◦r+1 mpq = 0

for all u ≥ 0 and v ≥ 1.

The operad dA∞ in vbCR is the dg operad generated by {mij}(i,j)̸=(0,1)

with vertical differential given by

∂∞(muv) = −
∑

u=i+p,v=j+q−1

j=r+1+t

(i,j)̸=(0,1) ̸=(p,q)

(−1)rq+t+pjmij ◦r+1 mpq.
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Definition 4.1.3. Let A and B be derived A∞-algebras with respective

structure maps mA and mB. An ∞-morphism of derived A∞-algebras

f : A → B is a family of maps fst : A
⊗t → B of bidegree (s, 1 − s − t)

satisfying

∑
u=i+p

v=j+q−1

j=r+1+t

(−1)rq+t+pjfij(1
⊗r ⊗mA

pq ⊗ 1⊗s) = (4.2)

∑
u=i+p1+···+pj
v=q1+···+qj

(−1)ϵmB
ij(fp1q1 ⊗ · · · ⊗ fpjqj)

for all u ≥ 0 and v ≥ 1, where

ϵ = u+
∑

1≤w<l≤j

qw(1− pl − ql) +

j∑
w=1

pw(j − w).

Example 4.1.4.

1. An A∞-algebra is the same as a derived A∞-algebra such that mij

vanishes for all i > 0.

2. One can check that, on any derived A∞-algebra A, the maps

di = (−1)imi1 define a twisted complex structure. This leads to

the possibility of defining a derived A∞-algebra as a twisted com-

plex with some extra structure, see Remark 4.5.4.

Analogously to Definition 3.3.1, we have the following.

Definition 4.1.5. A derived A∞-multiplication on a bigraded operad O

is a map of operads dA∞ → O.
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4.1.2 Minimal models

We would like to motivate the introduction of derived A∞-algebras by

stating the derived version of minimal models that we saw for A∞-

algebras in Section 2.2.3. In order to do that, we need some previous

definitions that we take from [Sag10]. We also refer to this paper for all

the technical details.

Definition 4.1.6. A bidga is a monoid in the category of bicomplexes.

Equivalently, a bidga is a derived A∞-algebra with mij = 0 for i+ j ≥ 3.

Recall that a quasi-isomorphism of A∞-algebras is a morphism of

A∞-algebras that induces a quasi-isomorphism of complexes with re-

spect to m1. In the case of derived A∞-algebras, the role of the quasi-

isomorphisms is played by the so called E2-equivalences, see [McC01] for

more details about these equivalences.

Remark 4.1.7. The equations (4.1) defining a derived A∞-structure in-

clude m01m01 = 0. For a derived A∞-algebra A, let H∗
ver(A) denote its

homology with respect to the vertical differential m01. The map m01 is

called the vertical differential because it raises the vertical degree.

Since the equations defining a derived A∞-algebra also include

m21m01 −m11m11 +m01m21 = 0,

it follows that the map m11 becomes a differential in horizontal di-

rection on the bigraded module H∗
ver(A). Therefore, we can form

H∗
hor(H

∗
ver(A)) = H∗(H∗

ver(A);m11).
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Definition 4.1.8. An ∞-morphism f : A → B of derived A∞-algebras

is called an E2-equivalence if H∗
hor(H

∗
ver(f01)) is an isomorphism of R-

modules.

We would like to extend some applications of A∞-algebras to differ-

ential graded algebras that are not necessarily projective over the ground

ring R or whose homology is not projective. The problem we encounter

is that not all differential graded algebras possess a minimal model as an

A∞-algebra. However, Sagave showed that dgas have reasonable minimal

models in the world of derived A∞-algebras. For this, one has to apply

a special projective resolution.

Definition 4.1.9. Let A be a graded algebra. A termwise R-projective

resolution of A is a termwise R-projective bidga P with m01 = 0 together

with an E2-equivalence P → A.

The following definition is analogue to Definition 2.2.4

Definition 4.1.10. A derived A∞-algebra is called minimal if m01 = 0.

Finally, we can state the derived version of Theorem 2.2.5.

Theorem 4.1.11. [Sag10, Theorem 1.1] Let A be a dga over R. Then

there is a degree-wise R-projective derived A∞-algebra E together with an

E2-equivalence E → A such that

� E is minimal,

� E is well-defined up to E2-equivalence,

� together with the differential m11 and the multiplication m02, E is

a termwise R-projective resolution of the graded algebra H∗(A).

134



4.2 Filtered A∞-algebras

We will make use of the filtration induced by the totalization functor in

order to relate classical A∞-algebras to derived A∞-algebras. For this

reason, we recall the notion of filtered A∞-algebras.

Definition 4.2.1. A filtered A∞-algebra is an A∞-algebra (A,mi) to-

gether with a filtration {FpA
i}p∈Z on each R-module Ai such that for all

i ≥ 1 and all p1, . . . , pi ∈ Z and n1, . . . , ni ≥ 0,

mi(Fp1A
n1 ⊗ · · · ⊗ FpiA

ni) ⊆ Fp1+···+piA
n1+···+ni+2−i.

Remark 4.2.2. Consider A∞ as an operad in filtered complexes with the

trivial filtration and let K be a filtered complex. There is a one-to-

one correspondence between filtered A∞-algebra structures on K and

morphisms of operads in filtered complexes A∞ → EndK (recall Hom

from Definition 2.4.4). To see this, notice that if one forgets the filtrations

such a map of operads gives an A∞-algebra structure on K. The fact

that this is a map of operads in filtered complexes implies that all the

mi’s respect the filtrations.

Since the image of A∞ lies in EndK = F0EndK , if we regard A∞ as an

operad in cochain complexes, then we get a one-to-one correspondence

between filtered A∞-algebra structures on K and morphisms of operads

in cochain complexes A∞ → EndK .

We will not need to distinguish between morphisms and∞-morphisms

in the filtered case, so we give the following definition.
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Definition 4.2.3. A morphism of filtered A∞-algebras from (A,mi, F )

to (B,mi, F ) is an ∞-morphism f : (A,mi) → (B,mi) of A∞-algebras

such that each map fj : A
⊗j → A is compatible with filtrations, i.e.

fj(Fp1A
n1 ⊗ · · · ⊗ FpjA

nj) ⊆ Fp1+···+pjB
n1+···+nj+1−j,

for all j ≥ 1, p1, . . . pj ∈ Z and n1, . . . , nj ≥ 0.

We will study the notions from this section from an operadic point

of view. For this purpose we introduce some useful constructions in the

next section.

4.3 Operadic totalization and vertical op-

eradic suspension

We extend the totalization functor from Section 2.4.3 to the category of

bigraded operads. We then extend operadic suspension from Chapter 3

to the bigraded setting. Combining these two devices we can use results

of classical A∞-algebras to study derived A∞-algebras.

4.3.1 Operadic totalization

By Proposition 2.4.17 and the fact that the image of an operad under a

lax monoidal functor is also an operad [Fre17, Proposition 3.1.1(a)], the

totalization functor defined in Section 2.4.3 will define a functor from

operads in brigraded modules (resp. twisted complexes) to operads in
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graded modules (resp. cochain complexes).

Therefore, let O be either a bigraded operad, i.e. an operad in the

category of bigraded R-modules or an operad in twisted complexes. We

define Tot(O) as the operad of graded R-modules (or cochain complexes)

for which

Tot(O(n))d =
⊕
i<0

O(n)d−i
i ⊕

∏
i≥0

O(n)d−i
i

is the image of O(n) under the totalization functor. The differential

would be as described after Definition 2.4.14. The insertion maps ◦̄r are

given by the composition

Tot(O(n))⊗Tot(O(m))
µ−→ Tot(O(n)⊗O(m))

Tot(◦r)−−−−→ Tot(O(n+m−1)),

(4.3)

that is explicitly

(x◦̄ry)k := (Tot(◦r) ◦ µ(x, y))k =
∑

k1+k2=k

(−1)k1d2xk1 ◦r yk2

for x = (xi)i ∈ Tot(O(n))d1 and y = (yj)j ∈ Tot(O(m))d2 .

More generally, operadic composition γ̄ is defined by the composite

Tot(O(N))⊗ Tot(O(a1))⊗ · · · ⊗ Tot(O(aN))

Tot(O(N)⊗O(a1)⊗ · · · ⊗ O(aN)) Tot (O (
∑

ai)) ,

µ

Tot(γ)

This map can be computed explicitly by iteration of the insertions

◦̄r, giving the following.

137



Lemma 4.3.1. The operadic composition γ̄ on Tot(O) is given by

γ̄(x;x1, . . . , xN)k =
∑

k0+k1+···+kN=k

(−1)εγ(xk0 ;x
1
k1
, . . . , xN

kN
)

for x = (xk)k ∈ Tot(O(N))d0 and xi = (xi
k)k ∈ Tot(O(ai))

di, where

ε =
m∑
j=1

dj

j−1∑
i=0

ki (4.4)

and γ is the operadic composition on O.

Notice that the sign is precisely the same appearing in Equa-

tion (2.13).

4.3.2 Vertical operadic suspension

On a bigraded operad we can use operadic suspension on the vertical

degree with analogue results to those of the graded case that we explored

in Chapter 3.

We define Λ(n) = Sn−1R, where S is a vertical shift of degree so

that Λ(n) is the underlying ring R concentrated in bidegree (0, n − 1).

As in the single-graded case, we express the basis element of Λ(n) as

en = e1 ∧ · · · ∧ en. Similarly, Λ−(n) = S1−nR is defined.

The operad structure on the bigraded Λ = {Λ(n)}n≥0 is the same as

in the graded case, namely

Λ(n)⊗ Λ(m) Λ(n+m− 1)

(e1 ∧ · · · ∧ en)⊗ (e1 ∧ · · · ∧ em) (−1)(n−r−1)(m−1)e1 ∧ · · · ∧ en+m−1.

◦r+1
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Definition 4.3.2. Let O be a bigraded linear operad, i.e. an operad on

the category of bigraded R-modules. The vertical operadic suspension

sO of O is given arity-wise by the Hadamard product of the operads O

and Λ, in other words, sO(n) = (O ⊗ Λ)(n) = O(n)⊗ Λ(n) with diago-

nal composition. Similarly, we define the vertical operadic desuspension

s−1O(n) = O(n)⊗ Λ−(n).

We may identify the elements of O with the elements of sO.

Definition 4.3.3. For x ∈ O(n) of bidegree (k, d− k), its natural bide-

gree in sO is the pair (k, d+ n− k − 1). To distinguish both degrees we

call (k, d − k) the internal bidegree of x, since this is the degree that x

inherits from the grading of O.

If we write ◦r+1 for the operadic insertion on O and ◦̃r+1 for the op-

eradic insertion on sO, we may find a relation between the two insertion

maps in a completely analogous way to Lemma 3.1.4.

Lemma 4.3.4. For x ∈ O(n) and y ∈ O(m)ql we have

x◦̃r+1y = (−1)(n−1)q+(n−1)(m−1)+r(m−1)x ◦r+1 y. (4.5)

As can be seen, this is the same sign as the single-graded operadic

suspension but with vertical degree. We will see that this is also the case

more generally for bigraded braces in Section 4.4. As a consequence we

have the following theorem with similar proof to the single-graded case,

where all the suspensions are vertical.
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Theorem 4.3.5. Given a bigraded R-module A, there is an isomorphism

of operads EndA
∼= sEndSA.

Another consequence of Lemma 4.3.4 is that ◦̃ leads to the Lie

bracket from [RW11], which implies that m =
∑

i,j mij is a derived A∞-

multiplication if and only if for all u ≥ 0

∑
i+j=u

∑
l,k

(−1)imjl◦̃mik = 0. (4.6)

In [RW11, Proposition 2.15] this equation is described in terms of a sharp

operator ♯.

We also get the functorial properties that we studied for the single-

graded case in Section 3.1.2 and Proposition 3.1.15.

4.3.3 Vertical suspension and totalization

Now we are going to combine vertical operadic suspension and total-

ization. More precisely, the totalized vertical suspension of a bigraded

operad O is the graded operad Tot(sO). This operad has an insertion

map explicitly given by

(x⋆r+1y)k =
∑

k1+k2=k

(−1)(n−1)(d2−k2−m+1)+(n−1)(m−1)+r(m−1)+k1d2xk1◦r+1yk2

(4.7)

for x = (xi)i ∈ Tot(sO(n))d1 and x = (xj)j ∈ Tot(sO(m))d2 . As usual,

denote

x ⋆ y =
m−1∑
r=0

x ⋆r+1 y. (4.8)
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This star operation is precisely the star operation from [LRW13, §5.1],

i.e. the convolution operation on Hom((dAs)¡,EndA). In particular, we

can recover the Lie bracket from in [LRW13]. We will do this in Corol-

lary 4.4.3.

Before continuing, let us show a lemma that allows us to work only

with the single-graded operadic suspension if needed.

Proposition 4.3.6. For a bigraded operad O we have an isomorphism

Tot(sO) ∼= sTot(O), where the suspension on the left hand side is the

bigraded version and on the right hand side is the single-graded version.

Proof. We may identify each element x = (xk ⊗ en)k ∈ Tot(sO(n)) with

the element x = (xk)k ⊗ en ∈ sTot(O(n)). Thus, abusing of notation,

for an element (xk)k ∈ Tot(sO(n)) the isomorphism is given by

f : Tot(sO(n)) ∼= sTot(O(n))

(xk)k 7→ ((−1)knxk)k

Clearly, this map is bijective so we just need to check that it commutes

with insertions. Recall from Equation (4.7) that the insertion on Tot(sO)

is given by

(x⋆r+1y)k =
∑

k1+k2=k

(−1)(n−1)(d2−k2−n+1)+(n−1)(m−1)+r(m−1)+k1d2xk1 ◦r+1yk2

for x = (xi)i ∈ Tot(sO(n))d1 and y = (yj)j ∈ Tot(sO(m))d2 . Similarly,

we may compute the insertion on sTot(O) by combining the sign pro-

duced first by Tot and then by s. This results in the following insertion
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map

(x⋆′r+1 y)k =
∑

k1+k2=k

(−1)(n−1)(d2−n+1)+(n−1)(m−1)+r(m−1)+k1(d2−m+1)xk1 ◦r+1 yk2

for x = (xi)i ∈ sTot(O(n))d1 and y = (yj)j ∈ sTot(O(m))d2 . Now

let us show that f(x ⋆ y) = f(x) ⋆ f(y). We do this by showing that

all the insertions are equal on both sides. By definition, we have that

f((x ⋆r+1 y))k equals the following.∑
k1+k2=k

(−1)k(n+m−1)+(n−1)(d2−k2−n+1)+(n−1)(m−1)+r(m−1)+k1d2xk1 ◦r+1 yk2

=
∑

k1+k2=k

(−1)(n−1)(d2−n+1)+(n−1)(m−1)+r(m−1)+k1(d2−m+1)f(xk1) ◦r+1 f(yk2)

= (f(x) ⋆r+1 f(y))k

as desired.

Remark 4.3.7. As we mentioned in Remark 2.4.19, there exist other pos-

sible ways of totalizing by varying the natural transformation µ. For

instance, we can choose the totalization functor Tot′ which is the same

as Tot but with a natural transformation µ′ defined in such a way that

the insertion on Tot′(O) is defined by

(x◦̂y)k =
∑

k1+k2=k

(−1)k2n1xk1 ◦ yk2 .

This is also a valid approach for our purposes and there is simply a

sign difference. But we have chosen our convention to be consistent with

other conventions, such as the derived A∞-equation. However, it can be
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verified that Tot′(sO) = sTot′(O). With the original totalization we have

a non identity isomorphism given by Proposition 4.3.6. Similar relations

can be found among the other alternatives mentioned in Remark 2.4.19.

Using the operadic structure on Tot(sO), we can describe derived

A∞-multiplications in a new conceptual way.

Lemma 4.3.8. A derived A∞-multiplication on a bigraded operad O is

equivalent to an element m ∈ Tot(sO) of degree 1 concentrated in positive

arity such that m ⋆m = 0.

Proof. A derived A∞-multiplication on O is by Definition 4.1.5 a map

f : dA∞ → O.

Since A∞ is generated by elements µij of bidegree (i, 2−i−j), such a map

is determined by the elements mij = f(µij) ∈ O2−i−j
i (j). Consider the

A∞-multiplicationmj = (mij)i ∈ Tot(sO(j)). We have that deg(mj) = 1

for all j. Therefore, let m = m1 +m2 + · · · ∈ Tot(sO). We may check

that m⋆m = 0. For that we just need to check Equation (4.7). On arity

n, this amounts to computing

(m ⋆m)k =
n−1∑
r=0

∑
i+p=k

j+q=n−1

(−1)rp+j−r−1+pjmij ◦r+1 mpq = 0.

The above expression vanishes precisely because the elements mij satisfy

the derived A∞-equation.

Conversely, let m ∈ Tot(sO) of degree 1, is concentrated in positive
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arity and satisfyingm⋆m = 0. We can splitm into its arity and horizontal

degree components as m =
∑

i,j mij. As we have seen, the fact that

m ⋆ m = 0 is equivalent to the elements mij satisfying the derived A∞-

equation, and therefore, a map f : dA∞ → O is determined by the

images f(µij) = mij, which are of bidegree (i, 2− i− j).

Remark 4.3.9. Similarly to Remark 3.1.8, one can use the definition of

dA∞ as an operad of vertical bicomplexes from Definition 4.1.2. In that

case, one obtains in an analogous way to Lemma 4.3.8, that a derived

A∞-multiplication on of vertical bicomplexes O with vertical differential

∂ is equivalent to an element of degree 1 concentrated on arity at least 2

satisfying the equation ∂(m) +m⋆m = 0. However, we stick to operads

of bigraded modules for the sake of consistency.

From Lemma 4.3.8, since now m is an A∞-multiplication on a single-

graded operad, we can proceed as in the proof of Proposition 3.3.5 to show

that m determines an A∞-algebra structure on S Tot(sO) ∼= SsTot(O).

The goal now is showing that this A∞-structure on S Tot(sO) is equiva-

lent to a derived A∞-structure on SsO and compute the structure maps

explicitly. We will do this in Section 4.5.

Before that, let us explore the brace structures that appear from

this new operadic constructions and use them to reinterpret derived ∞-

morphisms and their composition.

144



4.4 Bigraded braces and totalized braces

In this section we generalize the brace algebras we saw in Section 3.2 to

bigraded and totalized operads. This will allow to continue our general-

ization towards a derived version of the Deligne conjecture by following

similar steps to the A∞-case. We also use this generalization to reinter-

pret derived ∞-morphisms in a similar way to Section 3.2.2.

4.4.1 Braces

We are going to define a brace structure on Tot(sO) using totaliza-

tion. First note that one can define bigraded braces just like in the

single-graded case, only changing the sign ε in Definition 3.2.1 to be

ε =
∑n

p=1

∑ip
q=i⟨xp, yq⟩ according to the bigraded sign convention.

As one might expect, we can define bigraded brace maps bn on a

bigraded operad O and also on its operadic suspension sO, obtaining

similar signs as in the single-graded case, but with vertical internal de-

grees, see Proposition 3.2.3.

We can also define braces on Tot(sO) via operadic composition. In

this case, these are usual single-graded braces. More precisely, we define

the maps

b⋆n : Tot(sO(N))⊗
n⊗

j=1

Tot(sO(aj)) −→ Tot
(
sO
(
N − n+

∑
ai

))

using the operadic composition γ⋆ on Tot(sO) as

b⋆n(x;x1, . . . , xn) =
∑

γ⋆(x; 1, . . . , 1, x1, 1, . . . , 1, xn, 1, . . . , 1),
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where the sum runs over all possible ordering preserving insertions.

The brace map b⋆n(x;x1, . . . , xn) vanishes whenever n > N and b⋆0(x) = x.

Operadic composition can be described in terms of insertions in the

obvious way, namely

γ⋆(x; y1, . . . , yN) = (· · · (x ⋆1 y1) ⋆1+a(y1) y2 · · · ) ⋆1+∑
a(yp) yN , (4.9)

where a(yp) is the arity of yp (in the case of a brace yp is either 1

or some xi). If we want to express this composition in terms of the

composition γ in O we just have to find out the sign factor applying

the same strategy as in the single-graded case. In fact, as we said, there

is a sign factor that comes from vertical operadic suspension that is

identical to the graded case, but replacing internal degree by internal

vertical degree. This is the sign that determines the brace bn on sO.

Explicitly, it is given by the following lemma, whose proof is identical to

the single-graded case, see Proposition 3.2.3.

Lemma 4.4.1. For x ∈ sO(N) and xi ∈ sO(ai) of internal vertical

degree qi (1 ≤ i ≤ n), we have

bn(x;x1, . . . , xn) =
∑

N−n=h0+···+hn

(−1)ηγ(x⊗ 1⊗h0 ⊗ x1 ⊗ · · · ⊗ xn ⊗ 1⊗hn),

where

η =
∑

0≤j<l≤n

hjql+
∑

1≤j<l≤n

ajql+
n∑

j=1

(aj+qj−1)(n−j)+
∑

1≤j≤l≤n

(aj+qj−1)hl.

The other sign factor is produced by totalization. This was computed
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in Lemma 4.3.1. Combining both factors we obtain the following.

Lemma 4.4.2. We have

b⋆j(x;x
1, . . . , xN)k = (4.10)∑
k0+k1+···+kN=k

h0+h1+···+hN=j−N

(−1)η+
∑m

j=1 dj
∑j−1

i=0 kiγ(xk0 ; 1
h0 , x1

k1
, 1h1 , . . . , xN

kN
, 1hN )

for x = (xk)k ∈ Tot(sO(N))d0 and xi = (xi
k)k ∈ Tot(sO(ai))

di, where η

is defined in Lemma 4.4.1.

Corollary 4.4.3. For O = EndA, where A is a bigraded module, the

brace b⋆1(f ; g) is the operation f⋆g defined in [LRW13]. As a consequence,

[f, g] = b⋆1(f ; g)− (−1)NMb⋆1(g; f)

for f ∈ Tot(sEndA)
N and g ∈ Tot(sEndA)

M , is the same Lie bracket

that was defined in [LRW13].

Notice that in [LRW13] the sign in the bracket is (−1)(N+1)(M+1), but

this is because their total degree differs by one with respect to ours.

4.4.2 Reinterpretation of derived ∞-morphisms

Just like we did for graded modules in Section 3.2.2, for bigraded modules

A and B we may define the collection EndA
B = {HomR(A

⊗n, B)}n≥1 of

bigraded modules. Recall that this collection has a left module structure

over EndB

EndB ◦EndA
B → EndA

B
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given by composition of maps. Similarly, given a bigraded module C, we

can define composition maps

EndB
C ◦EndA

B → EndA
C .

The collection EndA
B also has an infinitesimal right module structure over

EndA

EndA
B ◦(1) EndA → EndA

B

given by insertion of maps.

Similarly to the single-graded case, we may describe derived ∞-

morphisms in terms of the above operations.

Lemma 4.4.4. A derived ∞-morphism of A∞-algebras A → B with

respective structure maps mA and mB is equivalent to a degree 0 element

f ∈ Tot(sEndA
B) concentrated in positive arity such that

ρ(f ◦(1) mA) = λ(mB ◦ f),

where

λ : Tot(sEndB) ◦ Tot(sEndA
B) → Tot(sEndA

B)

is induced by the left module structure on EndA
B, and

ρ : Tot(sEndB) ◦(1) Tot(sEndA
B) → Tot(sEndA

B)

is induced by the right infinitesimal module structure on EndA
B. In addi-
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tion, the composition of ∞-morphisms is given by the natural composition

Tot(sEndB
C) ◦ Tot(sEndA

B) → Tot(sEndA
C).

Proof. Since fj = (fij)i ∈ Tot(sEndA
B(j)) is of degree 0, we have that

that fij is of bidegree (i, 1− i− j). Thus, the equation

ρ(f ◦(1) mA) = λ(mB ◦ f)

coincides up to signs with with the Equation (4.2), the equation defin-

ing derived ∞-morphisms of derived A∞-algebras. The signs that appear

in the above equation are obtained in a similar way to that on the brace

b⋆j , see Equation (4.10). Thus, it is enough to plug in the sign provided

by Equation (4.10) from the corresponding degrees and arities to obtain

the desired result. The composition of derived ∞-morphisms follows

similarly.

In the case that f : A → A is an ∞-endomorphism, the above defini-

tion can be written in terms of operadic composition as f ⋆m = γ⋆(m◦f),

where γ⋆ is the composition map derived from the operation ⋆, see Equa-

tion (4.9). Here, ◦ is the plethysm of maps of collections, not to be

confused with composition of maps.

4.5 The derived A∞-structure on an operad

In this section we show that, under some reasonable assumptions, an

operad with a derived A∞-multiplication is a derived A∞-algebra and
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compute the structure maps explicitly. From this structure we obtain a

derived version of the Deligne conjecture for the Hochschild complex of

a derived A∞-algebra.

4.5.1 Derived A∞-structures

As in the single-graded case, we identify sO =
∏

n sO(n). We follow a

strategy inspired by the proof of the following theorem to show that there

is a derived A∞-structure on SsO. We refer the reader to Section 2.4 to

recall the definitions of the categories used.

Theorem 4.5.1. ([CESLW18, Proposition 4.55]) Let (A, dA) ∈ tCb
R be

a twisted complex horizontally bounded on the right and A its underlying

cochain complex. We have natural bijections

HomvbOp,dA(dA∞,EndA) ∼= HomvbOp(A∞,End A)

∼= HomvbOp(A∞,End Tot(A))

∼= HomfCOp(A∞,EndTot(A)),

where vbOp and fCOp denote the categories of operads in vbCR and fCR

respectively, and HomvbOp,dA denotes the subset of morphisms which send

µi1 to dAi . We view A∞ as an operad in vbCR sitting in horizontal degree

zero or as an operad in filtered complexes with trivial filtration.

Remark 4.5.2. According to Remark 4.2.2, the last isomorphism can be

replaced by

HomvbOp(A∞,End Tot(A))
∼= HomCOp(A∞,EndTot(A)),

150



where COp is the category of operads in cochain complexes.

There are several important assumptions to make in order to use the

theorem. First of all, we need A to be horizontally bounded on the right,

meaning that there exists some integer i such that Ad−k
k = 0 for all k > i.

In our case, A = SsO for O an operad with a derived A∞-multiplication

m, so being horizontally bounded on the right implies that, for each

j > 0, we can only have at most a finite number of non-zero components

mij. This situation happens in practice in all known examples of derived

A∞-algebras so far, some of them are in [MM21, Remark 6.5], [RW11],

and [ARLR+15, §5]. Under this assumption we may replace all direct

products by direct sums, implying thus extra monoidality properties.

We also need to provide A with a twisted complex structure. The

reason for this is that Theorem 4.5.1 uses the definition of derived A∞-

algebras on an underlying twisted complex, see Remark 4.5.4. We show

explicitly the existence of a twisted complex structure on an operad with

derived A∞-multiplication in Appendix D, but it also follows from Corol-

lary 4.5.6. We also provide another version of this theorem that works

for bigraded modules, Corollary 4.5.5.

With these assumption, by Theorem 4.5.1 we can guarantee the exis-

tence of a derived A∞-algebra structure on A provided that Tot(A) has

an A∞-algebra structure.

Theorem 4.5.3. Let A = SsO where O is an operad horizontally

bounded on the right with a derived A∞-multiplication m =
∑

ij mij ∈ O.

Let x1 ⊗ · · · ⊗ xj ∈ (A⊗j)d−k
k and let xv = Syv for v = 1, . . . , j and yv be
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of bidegree (kv, dv − kv). The following maps Mij for j ≥ 2 determine a

derived A∞-algebra structure on A.

Mij(x1, . . . , xj) = (−1)
∑j

v=1(j−v)(dv−kv)
∑
l

Sbj(mil; y1, . . . , yj).

Note that we abuse of notation and identify x1 ⊗ · · · ⊗ xj with an

element of Tot(A⊗j) with only one non-zero component. For a general

element, extend linearly.

Proof. Since m is a derived A∞-multiplication O, we have that m⋆m = 0

when we view m as an element of Tot(sO). By Proposition 3.3.5, this

defines an A∞-algebra structure on S Tot(sO) given by maps

Mj : (S Tot(sO))⊗j → S Tot(sO)

induced by shifting brace maps

b⋆j(m;−) : (Tot(sO))⊗j → Tot(sO).

The graded module S Tot(sO) is endowed with the structure of a filtered

complex with differential M1 and filtration induced by the column fil-

tration on Tot(sO). Note that b⋆j(m;−) preserves the column filtration

since every component b⋆j(mij;−) has positive horizontal degree.

Since S Tot(sO) ∼= Tot(SsO), we can view Mj as the image of a

morphism of operads of filtered complexes f : A∞ → EndTot(SsO) in such

a way that Mj = f(µj) for µj ∈ A∞(j).

We now work our way backwards using the strategy also employed
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by the proof of Theorem 4.5.1. The isomorphism

HomvbOp(A∞,End Tot(A))
∼= HomCOp(A∞,EndTot(A))

does not modify the map Mj at all but allows us to see it as a element

of End Tot(A) of bidegree (0, 2− j).

The isomorphism

HomvbOp(A∞,End A)
∼= HomvbOp(A∞,End Tot(A))

in the direction we are following is the result of applying HomvbOp(A∞,−)

to the map described in Lemma 2.5.17. Under this isomorphism, f is sent

to the map

µj 7→ Tot−1 ◦ c(Mj, µ
−1) = Tot−1 ◦Mj ◦ µ−1,

where c is the composition in fC
R
. The functor Tot−1 decomposesMj into

a sum of maps Mj =
∑

i M̃ij, where each M̃ij is of bidegree (i, 2− j− i).

More explicitly, let A = SsO and let x1⊗ · · ·⊗xj ∈ (A⊗j)d−k
k . We abuse

of notation and identify x1 ⊗ · · · ⊗ xj with an element of Tot(A⊗j) with

only one non-zero component. For a general element, extend linearly.

Then we have
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Tot−1(Mj(µ
−1(x1 ⊗ · · · ⊗ xj))) =

Tot−1(Sb⋆j(m; (S−1)⊗j(µ−1(x1 ⊗ · · · ⊗ xj)))) =∑
i

(−1)id
∑
l

Sb⋆j(mil; (S
−1)⊗j(µ−1(x1 ⊗ · · · ⊗ xj))) =

∑
i

(−1)id
∑
l

(−1)εSbj(mil; (S
−1)⊗j(µ−1(x1 ⊗ · · · ⊗ xj))) =

∑
i

∑
l

(−1)id+εSbj(mil; (S
−1)⊗j(µ−1(x1 ⊗ · · · ⊗ xj))) (4.11)

so that

M̃ij(x1, . . . , xj) =
∑
l

(−1)id+εSbj(mil; (S
−1)⊗j(µ−1(x1 ⊗ · · · ⊗ xj))),

where bj is the brace on sO and ε is given in Lemma 4.3.1.

According to the isomorphism

HomvbOp,dA(dA∞,EndA) ∼= HomvbOp(A∞,End A), (4.12)

the maps Mij = (−1)ijM̃ij define an A∞-structure on SsO. Therefore

we now just have to work out the signs. Notice that dv is the total

degree of yv as an element of sO and recall that d is the total degree of

x1 ⊗ · · · ⊗ xj ∈ A⊗j. Therefore, ε can be written as

ε = i(d− j) +
∑

1≤v<w≤j

kvdw.

The sign produced by µ−1, as we saw in Lemma 2.4.20, is precisely de-
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termined by the exponent

j∑
w=2

dw

w−1∑
v=1

kv =
∑

1≤v<w≤j

kvdw,

so this sign cancels the right hand summand of ε. This cancellation was

expected since this sign comes from µ−1, and operadic composition is de-

fined using µ, see Equation (4.3). Finally, the sign (−1)i(d−j) left from ε

cancels with (−1)id in Equation (4.11) and (−1)ij from the isomorphism

(4.12). This means that we only need to consider signs produced by ver-

tical shifts. This calculation has been done previously in Lemma 3.3.10

and as we claimed the result is

Mij(x1, . . . , xj) = (−1)
∑j

v=1(j−v)(dv−kv)
∑
l

Sbj(mil; y1, . . . , yj).

Remark 4.5.4. As in the case of A∞-algebras in CR, see Remark 2.3.12,

it can be seen that we have two equivalent descriptions of A∞-algebras

in tCR, see [CESLW18].

(1) A twisted complex (A, dA) together with a morphism A∞ → End A

of operads in vbCR, which is determined by a family of elements

Mi ∈ tCR(A⊗i, A)2−i
0 for i ≥ 2 for which the A∞-relations holds for

i ≥ 2, see Equation (2.4). The composition is the one prescribed by

the composition morphisms of tCR.
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(2) A bigraded module A with elements Mi ∈ bgMod
R
(A⊗i, A)2−i

0 for

i ≥ 1 for which all the A∞-relations hold, see Equation (2.4). The

composition is prescribed by the composition morphisms of bgMod
R
.

Since the composition morphism in bgMod
R
is induced from the one in

tCR by forgetting the differential, these two presentations are equivalent.

This equivalence allows us to formulate the following alternative ver-

sion of Theorem 4.5.1.

Corollary 4.5.5. Given a bigraded module A horizontally bounded on

the right we have isomorphisms

HombgOp(dA∞,EndA) ∼= HombgOp(A∞,End A)

∼= HombgOp(A∞,End Tot(A))

∼= HomfOp(A∞,EndTot(A)),

where bgOp is the category of operads of bigraded modules and fOp is the

category of operads of filtered modules.

Proof. Let us look at the first isomorphism

HombgOp(A∞,End A)
∼= HombgOp(dA∞,EndA).

Let f : A∞ → End A be a map of operads in bgOp. This is equivalent

to maps in bgOp

A∞(j) → End A(j)

for each j ≥ 1, which are determined by elements Mj := f(µj) ∈ End A(j)

for v ≥ 1 of bidegree (0, 2 − j) satisfying the A∞-equation with respect
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to the composition in bgMod
R
. Moreover, Mj := (m̃0j, m̃1j, . . . ) where

m̃ij := (Mj)i : A
⊗n → A is a map of bidegree (i, 2 − i − j). Since the

composition in bgMod
R

is the same as in tCR, the computation of the

A∞-equation becomes analogous to the computation done in [CESLW18,

Prop 4.47], showing that the maps mij = (−1)im̃ij for i ≥ 0 and j ≥ 0

define a derived A∞-algebra structure on A.

The second isomorphism

HombgOp(A∞,End A)
∼= HombgOp(A∞,End Tot(A))

follows from the bigraded module case of Lemma 2.5.16. Finally, the

isomorphism

HombgOp(A∞,End Tot(A))
∼= HomfOp(A∞,EndTot(A))

is analogous to the last isomorphism of Theorem 4.5.1, replacing the

quasi-free relation by the full A∞-algebra relations.

According to Corollary 4.5.5, if we have an A∞-algebra structure on

A = SsO, we can consider its arity 1 component M1 ∈ EndTot(A) and

split it into maps Mi1 ∈ EndA. Since these maps must satisfy the derived

A∞-relations, they define a twisted complex structure on A. The next

corollary describes the maps Mi1 explicitly.
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Corollary 4.5.6. Let O be a bigraded operad with a derived A∞-

multiplication and let

Mi1 : SsO → SsO

be the arity 1 derived A∞-algebra maps induced by Corollary 4.5.5 from

M1 : Tot(SsO) → Tot(SsO).

Then

Mi1(x) =
∑
l

(Sb1(mil;S
−1x)− (−1)⟨x,mil⟩Sb1(S

−1x;mil)),

where x ∈ (SsO)d−k
k and ⟨x,mil⟩ = ik + (1− i)(d− 1− k).

Proof. Notice that the proof of Corollary 4.5.5 is essentially the same

as the proof Theorem 4.5.1. This means that the proof of this result

is an arity 1 restriction of the proof of Theorem 4.5.3. Thus, we apply

Equation (4.11) to the case j = 1. Recall that for x ∈ (SsO)d−k
k ,

M1(x) = b⋆1(m;S−1x)− (−1)n−1b⋆1(S
−1x;m).

In this case, there is no µ involved. Therefore, introducing the final extra

sign (−1)i from the proof of Theorem 4.5.3, we get from Equation (4.11)

that

M̃i1(x) = (−1)i
∑
l

((−1)id+i(d−1)Sb1(mil;S
−1x)

−(−1)i
∑
l

(−1)d−1+id+kSb1(S
−1x;mil)),

158



where b1 is the brace on sO. Simplifying signs we obtain

M̃i1(x) =
∑
l

Sb1(mil;S
−1x)− (−1)⟨mil,x⟩Sb1(mil;S

−1x)) = Mi1(x),

where ⟨mil, x⟩ = ik + (1− i)(d− 1− k), as claimed.

4.5.2 The derived Deligne conjecture

Note that the maps given by Theorem 4.5.3 and Corollary 4.5.6 formally

look the same as their single-graded analogues in Lemma 3.3.10 but with

an extra index that is fixed for each Mij. This means that we can follow

the same procedure as in Section 3.3.1 to define higher derived A∞-maps

on the Hochschild complex of a derived A∞-algebra. More precisely,

given an operad O with a derived multiplication and A = SsO, we will

define a derived A∞-algebra structure on SsEndA. We will then connect

the algebraic structure on A with the structure on SsEndA through

braces. This connection will allow us to formulate and show a new, more

general version of the Deligne conjecture that generalizes the one that

we obtained in Corollary 3.3.14.

Let Bj be the bigraded brace map on sEndSsO and consider the maps

M
′
ij : (sEndSsO)

⊗j → sEndSsO (4.13)

defined as

M
′
ij(f1, . . . , fj) = Bj(Mi•; f1, . . . , fj) j > 1,

M
′
i1(f) = B1(Mi•; f)− (−1)ip+(1−i)qB1(f ;Mi•),
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for f of natural bidegree (p, q), where Mi• =
∑

j Mij. We define

M ij : (SsEndSsO)
⊗j → SsEndSsO,

M ij := σ(M ′
ij) = S ◦M ′

ij ◦ (S⊗n)−1.

As in the single-graded case we can define a map

Φ : SsO → SsEndSsO

as the map making the following diagram commute

SsO SsEndSsO

sO EndsO sEndSsO

Φ

Φ′ ∼=

(4.14)

where

Φ′ : sO → EndsO

x 7→
∑
n≥0

bn(x;−).

The isomorphism EndsO ∼= sEndSsO is given by σ.

In this setting we have the bigraded version of Theorem 3.3.9. But

before stating the theorem, for the sake of completeness let us state the

definition of the Hochschild complex of a bigraded module.

Definition 4.5.7. We define the Hochschild cochain complex of a bi-

graded module A to be the bigraded module SsEndA. If (A, d) is a vertical

bicomplex, then the Hochschild complex has a vertical differential given
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by ∂(f) = [d, f ] = d ◦ f − (−1)qf ◦ d, where f has natural vertical degree

q and ◦ is the plethysm corresponding to operadic insertions.

In particular, SsEndSsO is the Hochschild cochain complex of SsO. If

O has a derived A∞-multiplication, then the differential of the Hochschild

complex SsEndSsO is given by M01 from Equation (4.13).

The following is the same as Theorem 3.3.9 but carrying the extra

index i and using the bigraded sign conventions.

Theorem 4.5.8. The map Φ defined in diagram (4.14) above is a mor-

phism of dA∞-algebras, i.e. for all i ≥ 0 and j ≥ 1 the equation

Φ(Mij) = M ij(Φ
⊗j)

holds.

As a consequence of this theorem, we can obtain a derived version of

the Deligne conjecture. In order to formulate this new Deligne conjecture,

we need to introduce the notion of derived J-algebra, as a derived version

of J-algebras introduced in Definition 3.3.13. To have a more succinct

formulation we use the notation vdeg(x) for the vertical degree of x.

Definition 4.5.9. A derived J-algebra V is a derived A∞-algebra with

structure maps {Mij}i≥0,j≥1 such that the shift S−1V is a brace algebra.

Furthermore, the braces and the derived A∞-structure satisfy the follow-

ing compatibility relations. Let x, x1, . . . , xj, y1, . . . , yn ∈ S−1V . For all

n, i ≥ 0 we demand
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(−1)
∑n

i=1(n−v)vdeg(yv)Sbn(S
−1Mi1(Sx); y1, . . . , yn) =∑

l+k−1=n
1≤i1≤n−k+1

(−1)εMil(Sy1, . . . , Sbk(x; yi1 , . . . ), . . . , Syn)

−(−1)⟨x,Mil⟩
∑

l+k−1=n
1≤i1≤n−k+1

(−1)ηSbk(x; y1, . . . , S
−1Mil(Syi1 , . . . , ), . . . , yn)

where

ε =

i1−1∑
v=1

⟨Syv, S1−kx⟩+
k∑

v=1

vdeg(yi1+v−1)(k − v) + (l − i1)vdeg(x).

and

η =

i1−1∑
v=1

(k − v)vdeg(yv) + l

i1−1∑
v=1

vdeg(yv)

+

i1+l−1∑
v=i1

(k − i1)vdeg(yv) +
n−l∑
v=i1

(k − v)vdeg(yv+l)

For j > 1 we demand

(−1)
∑n

i=1(n−v)vdeg(yv)Sbn(S
−1Mij(Sx1, . . . , Sxj); y1, . . . , yn) =∑

(−1)εMil(Sy1, . . . , Sbk1(x1; yi1 , . . . ), . . . , Sbkj(xj; yij , . . . ), . . . , Syn).

The unindexed sum runs over all possible choices of non-negative integers

that satisfy l+k1+· · ·+kj−j = n and over all possible ordering preserving

insertions. The right hand side sign is given by
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ε =
∑
1≤t≤j

1≤v≤kt

vdeg(yit+v−1)(kv − v) +
∑

1≤i<l≤j

kvvdeg(xl) +
∑

0≤t<l≤j

it≤v<it+1

⟨Syv, S1−klxl⟩

+
∑

0≤v<l≤j

(iv+1 − iv − kv)vdeg(S
1−klxl) +

∑
1≤v≤l≤j

vdeg(xv)(il+1 − il − kl)

All the above shifts are vertical and we are setting i0 = 0, ij+1 = n+ 1.

Corollary 4.5.10 (The derived Deligne conjecture). If A is a derived

A∞-algebra horizontally bounded on the right, then its Hochschild complex

SsEndA is a derived J-algebra.

Proof. The result follows from Theorem 4.5.8 analogously to Corol-

lary 3.3.14 using the explicit expressions and signs given by Theo-

rem 4.5.3, Corollary 4.5.6 and Lemma 4.4.1.
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Chapter 5

Future research

We finish by outlining some questions that remain open after our research

and that would be interesting to investigate in the future. These ques-

tions arise naturally from the work done with derived A∞-algebras and

from the classical results by Gerstenhaber and Voronov [GV95]. First,

we recall the boundedness assumptions we needed to make on derived

A∞-algebras, see Remark 4.5.2, and wonder how we can either guarantee

or bypass them. Then we recall the implications of the classical Deligne

conjecture on the Hochschild complex of an associative algebra to try to

formulate a generalization for derived A∞-algebras.

5.1 Boundedness conditions

In Theorem 4.5.3 we obtained a derived A∞-algebra structure on the

bigraded module A = SsO for an operad O with a derived A∞-

multiplication. Since this structure was obtained from Theorem 4.5.1,
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a crucial assumption for it to exist is that A is horizontally bounded on

the right. This was necessary to apply strong monoidality on Tot(A⊗n).

As a consequence, the components mij of the derived A∞-multiplication

(Definition 4.1.5) vanish for sufficiently large i.

As we mentioned in Remark 4.5.2, this condition is satisfied in all

known examples of derived A∞-algebras [MM21, Remark 6.5], [RW11],

and [ARLR+15, §5]. These examples usually come as minimal models of

dgas. So a first question that arises is the following.

Question 1. Are there any conditions on a dga that guarantee that its

minimal model is horizontally bounded on the right?

An answer to this question would give us a better understanding

of how general our results are. In fact, it is open whether a derived

A∞-structure can be obtained for a more general operad. Even though

we needed to use some monoidality results that require boundedness,

the explicit maps that we obtained in Theorem 4.5.3 can be defined

for any operad with a derived A∞-multiplication. A first idea would

be attempting a direct computation to see if they satisfy the derived

A∞-equation, see Equation (4.1). Of course, we would like to use a

more conceptual approach. So more generally the question would be the

following.

Question 2. Can we define a derived A∞-structure on any operad with

a derived A∞-multiplication?
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5.2 Hochschild cohomology

The classical Deligne conjecture states that the Hochschild complex of

an associative algebra has a structure of homotopy G-algebra [GV95].

This has implications on the Hochschild cohomology of the associative

algebra, namely the homotopy G-algebra structure on the Hochschild

complex induces a Gerstenhaber algebra structure on cohomology. We

would like to extend this result to derived A∞-algebras.

Let us review the structure on the Hochschild complex of an associa-

tive operad in order to understand the question that we will be asking

about the derived A∞-case.

Let O be an operad with an associative multiplication m, i.e. an A∞-

multiplication m such that m = m2, see Definition 3.1.6. In this case, as

a consequence of Proposition 3.3.5 or by [GV95, Proposition 2], we have

a dg-algebra structure on SsO given by the differential

d(Sx) = Sb1(m;x)− (−1)|x|Sb1(x;m) (5.1)

and the multiplication

m(Sx, Sy) = Sb2(m;x, y). (5.2)

In particular, if O = EndA is the endomorphism operad of an as-

sociative algebra A, these maps provide a dg-algebra structure on the

Hochschild complex of A. But this is not all the structure that we get.

Since any operad is a brace algebra, we have an interaction between the
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dg-algebra and the brace structure. More precisely, O has a structure of

homotopy G-algebra, see Definition 2 and Theorem 3 of [GV95] for the

original statements and Definition 3.3.12 for our adapted definition.

Given the algebraic structure described above on the Hochschild com-

plex of an associative algebra, we can then take cohomology with respect

to d, eq. (5.1), to compute the Hochschild cohomology of A, denoted by

HH∗(A). It is known that m, eq. (5.2), and the bracket

[x, y] = Sb1(x; y)− (−1)|x||y|Sb1(y;x)

induce a structure of a Gerstenhaber algebra on HH∗(A) [GV95, Corol-

lary 5]. The proof relies on some identities that can be deduced from the

definition of homotopy G-algebra, such as graded homotopy commuta-

tivity.

If we try to replicate this argument for A∞-algebras, the structure

we get on the Hochschild complex is that of a J-algebra, see Defini-

tion 3.3.13. In this case, we have to compute cohomology with respect to

M1, see Lemma 3.3.10. In the definition of J-algebras, we encounter an

explosion in the number and complexity of relations and maps involved

with respect to homotopy G-algebras. Therefore, the resulting structure

has not been feasible to manipulate and it is not very clear what kind

of algebraic structure is induced on cohomology. The derived case is of

course even more difficult to handle as we would need to work with the

even more complex derived J-algebras, see Definition 4.5.9. In addition,

as we explained in Section 4.1.2, it is possible to consider vertical and
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horizontal cohomologies. These should be taken with respect to M01 and

M11 respectively, see Corollary 4.5.6. So the natural question to ask is

the following.

Question 3. What algebraic structure do derived J-algebras induce on

the vertical and horizontal cohomologies of a derived A∞-algebra?
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Appendix

A Some proofs and details

In this appendix we prove some results that rely on sign calculations and

combinatorics.

Lemma A.1. For any integers n and m, the following equality holds

mod 2. (
n+m− 1

2

)
+

(
n

2

)
+

(
m

2

)
= (n− 1)(m− 1).

Proof. Let us compute(
n+m− 1

2

)
+

(
n

2

)
+

(
m

2

)
+ (n− 1)(m− 1) mod 2.

By definition, this equals

(n+m− 1)(n+m− 2)

2
+

n(n− 1)

2
+

m(m− 1)

2
+ (n− 1)(m− 1)

Let us expand the above expression into the following.
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n2 + 2nm− 2n+m2 − 2m− n−m+ 2

2
+

n2 − n+m2 −m+ 2(nm− n−m+ 1)

2
=

n2 + 2nm− 3n+m2 − 3m+ 2 =

n2 +m+m2 +m =

0 mod 2

as desired, because n2 = n mod 2.

Recall that we define the suspension or shift of a graded module A

as the graded module SA having degree components (SA)i = Ai−1.

Theorem A.2. There is an isomorphism of (symmetric) operads

EndSA
∼= s−1 EndA.

Proof. For each n, we clearly have an isomorphism of graded modules

EndSA(n) = HomR((SA)
⊗n, SA)

∼= HomR(A
⊗n, A)⊗ S1−nsign

= s−1 EndA(n)

given by the map σ−1 defined before as

σ−1(F ) = (−1)(
n
2)S−1 ◦ F ◦ S⊗n,

where ◦ denotes the composition of maps. We must show that this map is

an isomorphism of operads, in other words, it commutes with insertions
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and with the symmetric group action.

Let us first check that σ−1 commutes with insertions. For that, let

F ∈ EndSA(n) and G ∈ EndSA(m). On the one had we have

σ−1(F ◦i G) = (−1)(
n+m−1

2 )+deg(G)(i−1)S−1 ◦ F (S⊗i−1 ⊗G(S⊗m)⊗ S⊗n−i),

and on the other hand

σ−1(F )◦̃iσ−1(G) =

(−1)(n−1)(m−1)+(n−1)(deg(G)+m−1)+(i−1)(m−1)σ−1(F ) ◦i σ−1(G) =

(−1)εS−1 ◦ F (S⊗i−1 ⊗G(S⊗m)⊗ S⊗n−i),

where

ε =

(
n

2

)
+

(
m

2

)
+ (n− 1)(m− 1) + (n− 1)(deg(G) +m− 1)

+ (i− 1)(m− 1) + (deg(G) +m− 1)(n− i).

By Lemma A.1,(
n+m− 1

2

)
=

(
n

2

)
+

(
m

2

)
+ (n− 1)(m− 1) mod 2,

so we only need to check that deg(G)(i− 1) mod 2 equals

(n− 1)(deg(G) +m− 1) + (i− 1)(m− 1) + (deg(G) +m− 1)(n− i).

This can be done by direct computation.

Now we are going to show that σ−1 commutes with the action of the

symmetric group. Recall that on EndSA we have the usual permuta-
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tion action, whilst on s−1 EndA the action is twisted by the sign of the

permutation. It is enough to show this for transpositions of the form

τ = (i i+ 1) since they generate the symmetric group.

Let us write (−1)v for (−1)deg(v). On the one hand,

σ−1(Fτ)(v1 ⊗ · · · ⊗ vn) = (−1)
∑n

j=1(n−j)vjS−1 ◦ (Fτ)(Sv1 ⊗ · · · ⊗ Svn)

Applying τ we obtain

(−1)
∑n

j=1(n−j)vj+(vi−1)(vi+1−1)S−1 ◦F (Sv1⊗ · · ·⊗Svi+1⊗Svi⊗ · · ·⊗Svn).

(A1)

The sign (−1)
∑n

j=1(n−j)vj comes from swapping the shift maps S past

the vj’s, and the sign (−1)(vi−1)(vi+1−1) comes from permuting vi and vi+1.

On the other hand, performing similar sign computations we have

(σ−1(F )τ)(v1 ⊗ · · · ⊗ vn) (A2)

= (−1)vivi+1−1S−1 ◦ F ◦ S⊗n(v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vn)

= (−1)δS−1 ◦ f(Sv1 ⊗ · · · ⊗ Svi+1 ⊗ Svi ⊗ · · · ⊗ Svn)

where δ = vivi+1 − 1 +
∑

j ̸=i,i+1(n− j)vj + (n− i− 1)vi + (n− i)vi+1.

Now we just have to check that the signs are the same. Modulo 2,

the sign on Equation (A1) is

vivi+1 + vi + vi+1 − 1 +
n∑

j=1

(n− j)vj =

vivi+1 − 1 +
n∑

j ̸=i,i+1

(n− j)vj + (n− i− 1)vi + (n− i)vi+1,

which indeed coincides with the sign on Equation (A2).
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Remark A.3. If in the proof above we replace S with S−1, we have that

the map

σ−1(F ) = (−1)(
n
2)S−1 ◦ F ◦ S⊗n

transforms into (−1)(
n
2)S ◦ F ◦ (S−1)⊗n = S ◦ F ◦ (S⊗n)−1. This is the

map σ(F ) from page 9 of [RW11], and following the same proof we have

done above but with this change of S into S−1 we get the isomorphism

of operads

σ : EndA
∼= sEndSA .

B Koszul sign on operadic suspension

The purpose of this section is to clear up the procedure to apply the

Koszul sign rule in situations in which operadic suspension is involved.

Let EndA be the endomorphism operad of some R-module A and

consider the operadic suspension sEndA. We are going to make a few

comments on the application of the Koszul rule when applying maps

from sEndA(n) to elements of A⊗n. Let f ⊗ en ∈ sEndA(n) be of degree

deg(f) + n− 1. For a ∈ A⊗n we have

(f ⊗ en)(a) = (−1)deg(a)(n−1)f(a)⊗ en

because deg(en) = n−1. Note that f⊗en = g⊗en if and only if f = g.

In addition, it is not possible that f⊗en = g⊗em for n ̸= m. The reader

may notice that f(a)⊗ en /∈ A, but it can be identified with an element
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of Sn−1A. This is a reminiscence of the isomorphism s−1 EndA
∼= EndSA.

If we take the tensor product of two maps f ⊗ en ∈ sEndA(n) and

g ⊗ em ∈ sEndA(m) and apply it to a⊗ b ∈ A⊗n ⊗ A⊗m, we have

((f ⊗ en)⊗(g ⊗ em))(a⊗ b)

= (−1)deg(a)(deg(g)+m−1)(f ⊗ en)(a)⊗ (g ⊗ em)(b)

= (−1)ε(f(a)⊗ en)⊗ (f(b)⊗ em),

where ε = deg(a)(deg(g) +m− 1) + deg(a)(n− 1) + deg(b)(m− 1). The

last remark that we want to make is the case of a map of the form

f(1⊗k−1 ⊗ g ⊗ 1⊗n−k)⊗ em+n−1 ∈ sEndA(n+m− 1),

such as those produced by the operadic insertion sf ◦̃ksg. In this case,

this map applied to ak−1 ⊗ b⊗ an−k ∈ A⊗k−1 ⊗ A⊗m ⊗ A⊗n−k results in

(f(1⊗k−1 ⊗ g ⊗ 1⊗n−k)⊗ em+n−1)(ak−1 ⊗ b⊗ an−k) =

(−1)νf(1⊗k−1 ⊗ g ⊗ 1⊗n−k(ak−1 ⊗ b⊗ an−k))⊗ em+n−1 =

(−1)ν+deg(ak−1) deg(g)f(ak−1 ⊗ g(b)⊗ an−k)⊗ em+n−1.

where ν = (m + n)(deg(ak−1) + deg(b) + deg(an−k)). To go from the

first line to the second, we switch em+n−1 of degree m + n − 2 with

ak−1 ⊗ b ⊗ an−k. To go from the second line to the third we apply the

usual sign rule for graded maps.

The purpose of this last remark is not only review the Koszul sign rule

but also remind that the insertion sf ◦̃ksg is of the above form, so that
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the em+n−1 component is always at the end and does not play a role in

the application of the sign rule with the composed maps. In other words,

it does not affect the individual degrees of the maps, just the degree of

the overall composition.

C Sign of the braces

In order to find the sign of the braces on sEndA, let us use an analogous

strategy to the one used in [RW11, Appendix] to find the signs of the Lie

bracket [f, g] on EndA.

Let A be a graded module. Let SA be the graded module with

SAv = Av+1, and so the suspension or shift map S : A → SA given

by the identity map has degree −1.

Let f ∈ EndA(N)i = HomR(A
⊗N , A)i. Recall that σ is the inverse of

the map from Theorem 3.1.10, so that σ(f) is defined as the map making

the following diagram commute.

SA⊗N SA

A⊗N A

σ(f)

(S−1)⊗N

f

S

Explicitly, σ(f) = S ◦ f ◦ (S−1)⊗N ∈ EndA(N)i+N−1.

Remark C.1. In [RW11] there is a sign (−1)N+i−1 in front of f , but it

seems to be irrelevant for our purposes. Another fact to remark on is

that the suspension of graded modules used here and in [RW11] is the

opposite that we have used to define the operadic suspension in the sense
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that in Section 3.1.1 we used SAv = Av−1. This does not change the

signs or the procedure, but in the statement of Theorem 3.1.10, operadic

desuspension should be changed to operadic suspension.

Notice that by the Koszul sign rule

(S−1)⊗N ◦ S⊗N = (−1)
∑N−1

j=1 j1

= (−1)
N(N−1)

2 1

= (−1)(
N
2 )1,

so (S−1)⊗N = (−1)(
N
2 )(S⊗N)−1. For this reason, given F ∈ EndS(A)(m)j,

we have

σ−1(F ) = (−1)(
m
2 )S−1 ◦ F ◦ S⊗m ∈ EndA(m)j−m+1.

For gj ∈ EndA(aj)
qj , let us write f [g1, . . . , gn] for the map

∑
k0+···+kn=N−n

f(1⊗k0 ⊗ g1 ⊗ 1⊗k1 ⊗ · · · ⊗ gn ⊗ 1⊗kn) ∈ EndA(N − n+
∑

aj)
i+

∑
qj

We define bn(f ; g1, . . . , gn) ∈ EndA(N − n+
∑

aj)
i+

∑
qj as

bn(f ; g1, . . . , gn) = σ−1(σ(f)[σ(g1), . . . , σ(gn)]).

With this the definition we can prove the following.
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Lemma C.2. We have

bn(f ; g1, . . . , gn) =
∑

N−n=k0+···+kn

(−1)ηf(1⊗k0 ⊗ g1 ⊗ · · · ⊗ gn ⊗ 1⊗kn),

where

η =
∑

0≤j<l≤n

kjql+
∑

1≤j<l≤n

ajql+
n∑

j=1

(aj+qj−1)(n−j)+
∑

1≤j≤l≤n

(aj+qj−1)kl.

Proof. Let us compute η using the definition of bn.

σ−1(σ(f)[σ(g1), . . . , σ(gn)])

= (−1)(
N−n+

∑
aj

2 )S−1◦

(σ(f)(1⊗k0 ⊗ σ(g1)⊗ 1⊗k1 ⊗ · · · ⊗ σ(gn)⊗ 1⊗kn)) ◦ S⊗N−n+
∑

aj

= (−1)(
N−n+

∑
aj

2 )S−1 ◦ S ◦ f ◦ (S−1)⊗N◦(
1⊗k0

⊗
((S ◦ gi ◦ (S−1)⊗ai)⊗ 1⊗ki)

)
◦ S⊗N−n+

∑
aj

= (−1)(
N−n+

∑
aj

2 )f ◦ ((S−1)k0 ⊗ S−1 ⊗ · · · ⊗ S−1 ⊗ (S−1)kn)◦(
1⊗k0

⊗
((S ◦ gi ◦ (S−1)⊗ai)⊗ 1⊗ki)

)
◦ S⊗N−n+

∑
aj

Now we move each 1⊗kj−1 ⊗ S ◦ gj ◦ (S−1)aj to apply (S−1)kj−1 ⊗ S−1

to it. Doing this for all j = 1, . . . , n produces a sign

(−1)(a1+q1−1)(n−1+
∑

kl)+(a2+q2−1)(n−2+
∑n

2 kl)+···+(an+qn−1)kn

= (−1)
∑n

j=1(aj+qj−1)(n−j+
∑n

j kl),

and we denote the exponent by
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ε =
n∑

j=1

(aj + qj − 1)

(
n− j +

n∑
j

kl

)
.

So now we have that, decomposing S⊗N−n+
∑

aj , the last map up to mul-

tiplication by (−1)(
N−n+

∑
aj

2 )+ε is

(−1)(
N−n+

∑
aj

2 )+εf ◦ ((S−1)k0 ⊗ g1 ◦ (S−1)⊗a1 ⊗ · · · ⊗ gn◦

(S−1)⊗an ⊗ (S−1)kn) ◦ (S⊗k0 ⊗ S⊗a1 ⊗ · · · ⊗ S⊗an ⊗ S⊗kn).

Now we turn the tensor of inverses into inverses of tensors by intro-

ducing the appropriate signs. More precisely, we introduce the sign

(−1)δ = (−1)(
k0
2 )+

∑
j((

aj
2 )+(

kj
2 )). (C3)

Therefore we have up to multiplication by (−1)(
N−n+

∑
aj

2 )+ε+δ the map

f ◦ ((Sk0)−1 ⊗ g1 ◦ (S⊗a1)−1 ⊗ · · · ⊗ gn ◦ (S⊗an)−1 ⊗ (Skn)−1)◦

(S⊗k0 ⊗ S⊗a1 ⊗ · · · ⊗ S⊗an ⊗ S⊗kn).

The next step is moving each component of the last tensor product in

front of its inverse. This will produce the sign (−1)γ, where

γ = −k0

n∑
1

(kj + aj + qj)− a1

(
n∑
1

kj +
n∑
2

(aj + qj)

)
− · · · − ankn

(C4)

=
n∑

j=0

kj

n∑
l=j+1

(kl + al + ql) +
n∑

j=1

aj

(
n∑
l=j

kl +
n∑

l=j+1

(al + ql)

)
mod 2.
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So in the end we have

bn(f ; g1, . . . , gn) =
∑

(−1)(
N−n+

∑
aj

2 )+ε+δ+γf(1⊗k0 ⊗ g1⊗· · ·⊗ gn⊗ 1⊗kn).

This means that

η =

(
N − n+

∑
aj

2

)
+ ε+ δ + γ.

Next, we are going to simplify this sign to get rid of the binomial coeffi-

cients.

Remark C.3. If the top number of a binomial coefficient is less than

2, then the coefficient is 0. In the case of arities or kj this is because

(S−1)⊗1 = (S⊗1)−1, and if the tensor is taken 0 times then it is the

identity and the equality also holds, so there are no signs.

We are now going to simplify the sign to obtain the desired result.

Notice that N − n+
∑

j aj =
∑

i ki +
∑

j aj. In general, consider a finite

sum
∑

i bi. We can simplify the binomial coefficients mod 2(∑
i bi
2

)
+
∑
i

(
bi
2

)

in the following way. Note that all the bi’s will appear squared once

in the big binomial coefficient and once in the sum, as so will do the

terms themselves, so they will cancel. This will leave the double products

which cancel out the 2 in the denominator. More precisely, we have the

following equality mod 2.
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(∑
bi

2

)
+
∑(

bi
2

)
=
∑
i<j

bibj mod 2.

The result of applying this to
(
N−n+

∑
aj

2

)
and adding δ from Equa-

tion (C3) in our sign η is

∑
0≤i<l≤n

kikl +
∑

1≤j<l≤n

ajal +
∑
i,j

kiaj. (C5)

Recall γ in the sign from Equation (C4).

γ =
n∑

j=0

kj

n∑
l=j+1

(kl + al + ql) +
n∑

j=1

aj

(
n∑
l=j

kl +
n∑

l=j+1

(al + ql)

)
.

As we see, all the sums in the previous simplification appear in γ so

we can cancel them. Let us rewrite γ in a way that this becomes more

clear.

γ =
∑

0≤j<l≤n

kjkl +
∑

0≤j<l≤n

kjal +
∑

0≤j<l≤n

kjql +
∑

1≤j≤l≤n

ajkl

+
∑

1≤j<l≤n

ajal +
∑

1≤j<l≤n

ajql.

So after adding the expression (C5) modulo 2 we have only the terms

that include the internal degrees, i.e.

∑
0≤j<l≤n

kjql +
∑

1≤j<l≤n

ajql. (C6)
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Let us move now to the ε term in the sign to rewrite it.

ε =
n∑

j=1

(aj + qj − 1)(n− j +
n∑
j

kl)

=
n∑

j=1

(aj + qj − 1)(n− j) +
∑

1≤j≤l≤n

(aj + qj − 1)kl

We may add this to what we had in (C6) in such a way that the brace

sign becomes

η =
∑

0≤j<l≤n

kjql+
∑

1≤j<l≤n

ajql+
n∑

j=1

(aj+qj−1)(n−j)+
∑

1≤j≤l≤n

(aj+qj−1)kl.

(C7)

as announced at the end of Section 3.2.

D Twisted complex on an operad

In this section we provide a description of the twisted complex structure

on an operad O with a derived A∞-multiplication. More precisely, we

show by hand that the maps found in Corollary 4.5.6 define a twisted

complex structure on SsO.

Lemma D.1. Let O be an operad and m ∈ sO a derived A∞-

multiplication. Then SsO becomes a twisted complex with structure maps

Mi1(x) =
∑
l

(Sb1(mil;S
−1x)− (−1)⟨x,mil⟩Sb1(S

−1x;mil)),

where x ∈ (SsO)n−k
k and ⟨x,mil⟩ = ik + (1− i)(n− 1− k).

Proof. Throughout the proof we omit the shift maps. Let us first check
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the twisted complex equation up to signs, to give a conceptual proof

before introducing the signs. Up to sign, the maps {Mi1}i≥0 must satisfy

the equation

∑
i+j=u

Mi1 ◦Mj1 = 0,

for all u, where ◦ is composition of maps.

Therefore, up to signs we have to compute

∑
i+j=u

Mi1(Mj1(x)) =
∑
i+j=u

Mi1

(∑
l

b1(mjl;x) + b1(x;mjl)

)

=
∑
i+j=u

∑
l,k

(b1(mik; b1(mjl;x)) + b1(mik; b1(x;mjl))

+b1(b1(mjl;x);mik) + b1(b1(x;mjl);mik)) .

Applying the brace relation we obtain

∑
i+j=u

∑
l,k

(b1(mik; b1(mjl;x)) + b1(mik; b1(x;mjl))+

b2(mjl;x,mik) + b1(mjl; b1(x;mik)) + b2(mjl;mik, x)+

b2(x;mjl,mik) + b1(x; b1(mjl;mik)) + b2(x;mik,mjl)).

In the sum, all terms of the form b1(x; b1(mjl;mik)) that can be seen

in the last line should add up to vanish provided that m is a dA∞-

multiplication, meaning that up to sign b1(m;m) = 0. Since i and j are

interchangeable, i.e. for each pair (i, j) there is the pair (j, i), the terms

b2(x;mjl,mik) + b2(x;mik,mjl) in the last line should cancel as well. For

this, we should have the pair (j, i) with the opposite sign. Here it is also
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relevant that the sum runs through all possible values of k and l, so that

the pair (j, i) appears with l and k interchanged as well. So far the entire

last line vanishes up to sign.

Then b1(mik; b1(x;mjl)) on the first line should cancel with

b1(mjl; b1(x;mik)) on the second line, but from a different summand:

the one where i and j are interchanged. Finally, the remaining

terms b1(mik; b1(mjl;x)) + b2(mjl;x,mik) + b2(mjl;mik, x) add up to

b1(b1(m;m);x) up to sign. That would cancel everything.

Let us now introduce the signs. We now compute for all u the sum

∑
i+j=u

(−1)iMi1 ◦Mj1.

For x ∈ sO, by definition, we have

∑
i+j=u

(−1)iMi1(Mj1(x)) =

∑
i+j=u

(−1)iMi1

(∑
l

b1(mjl;x)− (−1)⟨x,mjl⟩b1(x;mjl)

)
=

∑
i+j=u

(−1)i
∑
l,k

(
b1(mik; b1(mjl;x))− (−1)⟨x,mjl⟩b1(mik; b1(x;mjl))+

−(−1)⟨b1(mjl;x),mik⟩b1(b1(mjl;x);mik)

+(−1)⟨b1(mjl;x),mik⟩+⟨x,mjl⟩b1(b1(x;mjl);mik)
)
.

Observe that ⟨b1(mjl;x),mik⟩ = ⟨mij,mik⟩+ ⟨x,mik⟩.

Applying the brace relation we obtain
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∑
i+j=u

∑
l,k

((−1)ib1(mik; b1(mjl;x))− (−1)i+⟨x,mjl⟩b1(mik; b1(x;mjl))+

−(−1)i+⟨b1(mjl;x),mik⟩(b2(mjl;x,mik) + (−1)⟨x,mik⟩b2(mjl;mik, x))

−(−1)i+⟨b1(mjl;x),mik⟩b1(mjl; b1(x;mik))

+(−1)i+⟨b1(mjl;x),mik⟩+⟨x,mjl⟩(b2(x;mjl,mik) + (−1)⟨mik,mjl⟩b2(x;mik,mjl))

+(−1)i+⟨b1(mjl;x),mik⟩+⟨x,mjl⟩b1(x; b1(mjl;mik))).

(D8)

Recall from Equation (4.6) that m being a dA∞-multiplication means

that ∑
i+j=u

∑
k,l

(−1)ib1(mjl;mik) = 0.

Let us check now the cancellations with the signs. First, let us check

that the terms

(−1)i+⟨b1(mjl;x),mik⟩+⟨x,mjl⟩b1(x; b1(mjl;mik)))

can be added up to vanish. For that, we compute the sign

⟨b1(mjl;x),mik⟩+ ⟨x,mjl⟩ = ⟨mjl,mik⟩+ ⟨x,mik⟩+ ⟨x,mjl⟩.

Recall that the braces are defined on the operadic suspension, so that

the bidegree of mik is (i, 1 − i). Therefore, writing the bidegree of x as

(k, n− k), so that the total degree is |x| = n, the above equals
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ji+ (1− i)(1− j) + ki+ (n− k)(1− i) + kj + (n− k)(1− j)

= 1 + i+ j + (i+ j)k + (i+ j)(n− k) mod 2

= 1 + (i+ j)(1 + n) = 1 + u(1 + |x|).

Since this sign is constant for all terms b1(mik;mij) that share the same

horizontal degree i+ j = u, we can rewrite

(−1)i+⟨b1(mjl;x),mik⟩+⟨x,mjl⟩b1(x; b1(mjl;mik)))

as

−(−1)u(1+|x|)b1(x; (−1)ib1(mik;mjl)).

Hence,

∑
i+j=u

∑
k,l

−(−1)u(1+|x|)b1(x; (−1)ib1(mik;mjl)) = 0.

Therefore, after applying the brace relation, expression (D8) reduces to

∑
i+j=u

∑
l,k

((−1)ib1(mik; b1(mjl;x))− (−1)i+⟨x,mjl⟩b1(mik; b1(x;mjl))+

−(−1)i+⟨b1(mjl;x),mik⟩(b2(mjl;x,mik) + (−1)⟨x,mik⟩b2(mjl;mik, x))

−(−1)i+⟨b1(mjl;x),mik⟩b1(mjl; b1(x;mik))

+(−1)i+⟨b1(mjl;x),mik⟩+⟨x,mjl⟩(b2(x;mjl,mik) + (−1)⟨mik,mjl⟩b2(x;mik,mjl)).

(D9)

Let us focus on the last line. For each pair (i, j) we should have

cancellation with the pair (j, i), which adds the same elements, but with
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different signs. We also need to consider the pairs (k, l) and (l, k) to get

a cancellation. Let us compare the signs. For the pair ((i, j), (k, l)) we

have precisely the last line of the above equation

(−1)i+⟨b1(mjl;x),mik⟩+⟨x,mjl⟩(b2(x;mjl,mik) + (−1)⟨mik,mjl⟩b2(x;mik,mjl))

For the pair ((j, i), (l, k)) we have

(−1)j+⟨b1(mik;x),mjl⟩+⟨x,mik⟩(b2(x;mik,mjl) + (−1)⟨mjl,mik⟩b2(x;mjl,mik)).

Comparing the sign of b2(x;mjl,mik) we find that for ((i, j), (k, l)) we

have

−(−1)i+(i+j)(1+|x|)b2(x;mjl,mik) = −(−1)j+u|x|b2(x;mjl,mik)

and for the pair ((j, i), (l, k)) we have

(−1)j+u|x|b2(x;mjl,mik).

As we see, we get opposite signs and thus cancellation. For

b2(x;mik,mjl) it is completely analogous. Thus, we have reduced ex-

pression (D9) to

∑
i+j=u

∑
l,k

((−1)ib1(mik; b1(mjl;x))− (−1)i+⟨x,mjl⟩b1(mik; b1(x;mjl))+

−(−1)i+⟨b1(mjl;x),mik⟩(b2(mjl;x,mik) + (−1)⟨x,mik⟩b2(mjl;mik, x))

−(−1)i+⟨b1(mjl;x),mik⟩b1(mjl; b1(x;mik)).

(D10)
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In a similar fashion to the previous calculation, we are going to cancel

b1(mik; b1(x;mjl)) in the first line with b1(mjl; b1(x;mik)) in the last line

by considering switched pairs. For the pair ((i, j), (k, l)), the term in the

first line is

−(−1)i+⟨x,mjl⟩b1(mik; b1(x;mjl))

and for the pair ((j, i), (l, k)) the term in the last line is

−(−1)j+⟨b1(mik;x),mjl⟩b1(mik; b1(x;mjl)) =

(−1)1+j+⟨mik,mjl⟩+⟨x,mjl⟩b1(mik; b1(x;mjl)) =

(−1)i+⟨x,mjl⟩b1(mik; b1(x;mjl)),

which has precisely the opposite sign to the other pair, and thus

cancels. This reduces expression (D10) to

∑
i+j=u

∑
l,k

((−1)ib1(mik; b1(mjl;x))

−(−1)i+⟨b1(mjl;x),mik⟩(b2(mjl;x,mik) + (−1)i+⟨mjl,mik⟩b2(mjl;mik, x)).

(D11)

We want these terms to add up to something of the form

b1(b1(m;m);x). Notice that for this we need to switch some pairs. For

simplicity, we switch the pair of the first term and rewrite the sum as

∑
i+j=u

∑
l,k

((−1)jb1(mjl; b1(mik;x))

−(−1)i+⟨b1(mjl;x),mik⟩b2(mjl;x,mik) + (−1)i+⟨mjl,mik⟩b2(mjl;mik, x)).
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Simplifying the signs we get

∑
i+j=u

∑
l,k

((−1)jb1(mjl; b1(mik;x)) + (−1)j+⟨x,mik⟩b2(mjl;x,mik)

+(−1)jb2(mjl;mik, x)).

By the brace relation and Equation (4.6) this equals

∑
i+j=u

∑
l,k

(−1)jb1(b1(mjl;mik);x) = 0.

The reader can see that the twisted complex structure given by the

above Lemma is the same as the one given by Corollary 4.5.6.
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Glossary

R A ring of non-zero characteristic

HomR(A,B) The (bi)graded module of linear maps

deg(x) Degree of an element x in a graded module

Z The group of integers

S Shift map for single-graded modules,

vertical shift for bigraded modules

O A linear (bi)graded operad

⊗ Tensor product of (bi)graded R-modules,

also Hadamard product of operads

EndA Endomorphism operad

EndA
B Collection {HomR(A

⊗n, B)}n≥1

A∞ Operad of A∞-algebras

dA∞ Operad of derived A∞-algebras

m = m1 +m2 + · · · A∞-structure maps on an R-module,

or A∞-multiplication in an operad

M = M1 +M2 + · · · A∞-structure maps on SsO

M = M1 +M2 + · · · A∞-structure maps on SsEndSsO
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m =
∑

ij mij Derived A∞-structure maps,

or derived A∞-multiplication in O

M =
∑

ij Mij derived A∞-structure maps on SsO

M =
∑

ij M ij derived A∞-structure maps on SsEndSsO

γ Operadic composition

sometimes used as an exponent in signs

◦i Operadic insertion

◦ Plethysm of operads,

also circle operation

and composition of maps

Λ Operad structure on the shifts of R

sO = O ⊗ Λ Operadic suspension of O

also its underlying (bi)graded module

|x| Natural degree of x in sO if single-graded

also total degree of x in a bigraded module

vdeg(x) Vertical degree of a bigraded element x

⟨, ⟩ Dot product of bidegrees

γ̃ Operadic composition on sO

◦̃i Operadic insertion on sO

◦̃ Circle operation on sO

[, ] Lie bracket

also internal hom

bn Brace map on O or sO

Bn Brace map on EndsO
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Bn Brace map on sEndSsO

σ Isomorphism EndA
∼= sEndSA

Φ : SsO → SsEndSsO Morphism of (derived) A∞-algebras

C = (C,⊗C, 1C) A (closed) (symmetric) monoidal category

HomC(A,B) Set of morphism from A to B

Cb Category horizontally bounded on the right

CR Category of cochain complexes

fCR Category of filtered complexes

Hom(A,B) Filtered hom complex

bgModR Category of bigraded modules

vbCR Category of vertical bicomplexes

tCR Twisted complexes

C Enriched category

⊗ Enriched tensor product

End A Enriched endomorphism operad

bgMod
R

bgModR-enriched category

of bigraded modules

tCR vbCR-enriched category

of twisted complexes

fMod
R

bgModR-enriched category

of filtered modules

fC
R

vbCR-enriched category

of filtered complexes

Tot Totalization functor
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Tot Enriched totalization functor

◦̄i Operadic insertion on Tot(O)

⋆i Operadic insertion on Tot(sO)

γ̄ Operadic composition on Tot(O)

γ⋆ Operadic composition on Tot(sO)

b⋆n Brace map on Tot(sO)

µ = µA,B The map Tot(A)⊗ Tot(B) → Tot(A⊗B)
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