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ABSTRACT
In the past, decisions on wastewater treatment methods have predominantly rested on expert 
opinions, utilizing the Delphi method. Yet, with an anticipated increase in diversification and 
customization, especially in the “small-batch and diverse” market over the next decade, 
addressing the formulation and execution of wastewater treatment for these non-traditional 
production processes will present substantial challenges. Relying solely on Delphi experts’ 
decision-making within a short and time-constrained production planning window is expected 
to prove inadequate. Predominantly relies on the authors’ over 15 years of industry experience 
in wastewater treatment, this perspective paper proposes an inventive solution that integrates 
Membrane Bioreactors (MBRs) with Artificial Intelligence (AI) applications. This approach sig-
nifies a more advanced method for industrial wastewater treatment compared to conventional 
methods, with the intention of garnering increased interest for future research endeavors.
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1. Introduction

Industrial production heavily depends on water for 
various purposes, presenting distinct challenges in 
wastewater treatment [1–3]. Currently, the focus of 
industrial wastewater treatment has been primarily 
on adhering to discharge standards, with experts 
employing traditional Delphi methods [4]. However, 

the influx of novel chemicals in industrial waste-
water has diminished the accuracy of expert assess-
ments [5–8]. For example, in the traditional synthetic 
process of the textile industry, Ethylene glycol and 
Polyethylene terephthalate are commonly used. Yet, 
due to lower costs and the emergence of its by- 
product Benzyl alcohol, Ethylene has rapidly 
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supplanted Ethylene glycol in the textile industry 
since 2023. This shift in raw materials in the semi-
conductor industry has led to the evolution of next- 
generation and subsequent-generation materials. 
Notably, gallium nitride, an emerging chemical 
material, has exhibited superior properties – higher 
breakdown strength, faster switching, greater ther-
mal conductivity, and lower on-state resistance – 
compared to traditional silicon wafers, thereby gra-
dually replacing silicon-based semiconductor tech-
nology in power conversion, radio frequency, and 
analog applications.

While the Delphi method proves effective when raw 
materials are consistent and predictable, enabling the 
formulation of wastewater treatment strategies prior to 
production planning, the rise of diversification, the use 
of the novel chemicals, and customization in the “small- 
batch and diverse” market poses significant challenges. 
An escalating number of studies [4,5] have highlighted 
the concerns associated with exclusive dependence on 
Delphi experts within the production planning window, 
revealing inadequacies that become more pronounced, 
particularly in light of the anticipated surge in non- 
traditional production processes.

Predominantly relies on the authors’ over 15 years 
of industry experience in wastewater treatment, this 
perspective paper advocates for a solution that com-
bines Membrane Bioreactors (MBRs) with Artificial 
Intelligence (AI) applications (Artificial Neural 
Networks, ANN and Genetic Algorithms, GA), offering 
a more advanced alternative to the traditional Delphi 
method in industrial wastewater treatment. Framing 
the integration of AI and MBR as a comprehensive 
system aligns with Systems Theory [e.g. 7], emphasiz-
ing understanding interactions within complex sys-
tems. Implementing AI-based control strategies for 
MBR systems, enhancing contaminant removal and 
optimizing resource usage, also aligns with Process 
Systems Engineering theory [e.g. 8], advocating for 
optimization in intricate processes. Integrating ANN 
and GA for real-time monitoring, anomaly detection, 
and fault diagnosis enhances the reliability and robust-
ness of MBR operations, in line with the view of Data- 
Driven Fault Detection and Diagnosis approach [9]. 
Wastewater treatment plants should recognize the 
benefits of incorporating AI, moving beyond sole reli-
ance on expert knowledge, to improve accuracy and 
efficiency in water treatment.

It is worth noting that the proposed concepts 
and recommendations in this perspective paper 
are universally applicable to wastewater treatment. 
While wastewater treatment in industries like tex-
tiles and electronic components are likely to 
urgently require AI integration, other sectors, such 
as food processing, can also leverage AI to enhance 
wastewater treatment and recycling as an emerging 
trend.

2. Traditional wastewater treatment system

Traditional wastewater treatment systems have two 
main phases: “pre-facility planning” and “monitoring 
and operation during use.” In the pre-facility planning 
phase, the business owner proposes an establishment 
model based on the scale of wastewater treatment, 
determined by facility planning. Experts, scholars, 
operational managers, and wastewater specialists deter-
mine the treatment volume and types required. This 
leads to a wastewater treatment facility plan designed 
to accommodate the expected treatment volume over 
the next decade and culminates in facility construction. 
During operation, monitoring is typically done using 
Supervisory Control and Data Acquisition (SCADA) sys-
tems. Production managers and experts provide pro-
duction plans and pollutant wastewater quality 
expectations. SCADA collects data from various stages, 
including collection, dosing, sedimentation, and dis-
charge, all managed manually at each plant [10].

Wastewater treatment can be categorized into pri-
mary, secondary, and tertiary treatment based on effluent 
quality. Primary treatment removes suspended solids, 
colloidal matter, and heavy metals through physical or 
chemical processes. Secondary treatment uses biological 
processes to remove aerobic substances, while tertiary 
treatment focuses on further pollutant removal or higher- 
quality effluent production. The choice of treatment pro-
cess depends on effluent standards and the scale of 
water resource recovery centers [11]. When constructing 
a wastewater treatment system, the traditional Delphi 
method relies on the experiences of senior managers 
and technical experts. They consider historical data on 
wastewater emissions per ton, designing treatment 
within specified limits to meet local discharge standards.

Nonetheless, as previously highlighted, the Delphi 
method falls short of adequacy and accuracy due to the 
adoption of novel chemistry and the market shift toward 
small-batch customized production. Some studies [12,13] 
propose an enhancement to the simulation framework 
and models for wastewater treatment through a fuzzy 
Delphi approach. This approach facilitates the categoriza-
tion of wastewater into classification pools, considering 
factors like wastewater load and pollution concentration. 
It enables the adjustment of additive quantities and 
cycles based on accurately defined, independent mem-
bership functions for measuring wastewater additives. 
These functions map specific pollution ranges to truth 
values, guiding the control of additives and supporting 
pre-production wastewater treatment decisions.

Despite its advantages, the fuzzy logic approach has 
its significant limitations. Crafting precise and compre-
hensive fuzzy logic rules can be intricate, demanding an 
in-depth understanding of the system and its variables. 
The complexity of rule formulation may impede practi-
cality and ease of implementation [14]. Furthermore, 
fuzzy logic systems often rely on expert knowledge for 
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rule creation and parameter tuning, posing challenges in 
cases where domain expertise is scarce, or knowledge 
transfer is difficult. Model interpretation difficulty is 
another challenge, as water treatment fuzzy logic models 
can be intricate for non-experts to comprehend, compli-
cating the decision-making process [15]. Sensitivity to 
variations in input parameters is a notable drawback, 
potentially leading to suboptimal performance in the 
face of uncertainties. Moreover, fuzzy logic systems 
encounter limitations in handling highly dynamic or 
rapidly changing conditions [16].

For more complex substances, this paper suggests 
that fuzzy logic could be replaced using MBRs in 
conjunction with an AI system (applying ANN and 
GA) to establish a real-time AI decision-making emis-
sion system, enhancing outdated capabilities to cater 
to diverse and customized production trends. The 
proposed approach is indirectly supported by exist-
ing studies: Abuwatfa [17] delved into AI-based foul-
ing prediction models using ANN. Their findings 
indicate that ANN provides an effective approach 
for separation with applications spanning desalina-
tion, water reuse, and wastewater treatment. Despite 
these advantages, membrane fouling poses 
a significant challenge, underscoring the need for 
ongoing research to develop effective mitigation 
strategies and enhance the performance of mem-
brane-based processes. Alam [18] and Safeer [19] 
also highlighted the application of AI techniques in 
water treatment and desalination to optimize pro-
cesses and provide practical solutions to water pollu-
tion and scarcity. Furthermore, they suggested that 
the use of AI is anticipated to lower operational costs 
in water treatment by reducing expenses and opti-
mizing the utilization of chemicals. Sahu [20] sug-
gested that AI and (Machine Learning serve as 
transformative catalysts, particularly in addressing 
complex challenges in wastewater treatment and 
microalgae-bacteria symbiosis. In the context of ana-
lyzing and managing control systems in drinking 
water treatment, Li [21] suggested that AI could 
serve as a valuable tool for enhancing the efficiency 
of water recycling processes.

These advanced AI technologies contribute to the 
development of innovative solutions, playing a crucial 
role in optimizing wastewater treatment processes, 
improving biomass yield, and enabling real-time moni-
toring. Although the main focus of these studies is not 
primarily on industrial wastewater treatment, they lend 
support to the argument and perspective of utilizing AI 
for predicting wastewater treatment approaches in this 
paper.

3. Utilizing MBRs combined with AI (ANN & GA)

The application AI to wastewater treatment and water 
recycling methods involves the processing of AI and 

vast amounts of data, particularly image recognition 
and natural language processing. This approach is to 
utilize water quality and operating parameters of water 
treatment systems, along with big data collection, to 
train AI models. These models analyze the composition 
of wastewater components and generate decision 
results, enabling intelligent control of the system. 
Initially, during facility establishment, aside from con-
structing wastewater treatment pools, monitoring sys-
tems equipped with intelligent data collection 
terminals within Programmable Logic Controllers 
(PLCs) are employed. These terminals extract real-time 
data on wastewater treatment water quality and equip-
ment operations from PLCs. By upgrading on-site PLCs 
with wireless remote intelligent data collection term-
inals, real-time data on wastewater treatment water 
quality and equipment operations are collected from 
PLCs and transmitted to Web Access. These data are 
transformed into management dashboards through the 
WISE-PaaS Industrial IoT cloud platform, initiating the 
visualization and AI intelligent wastewater manage-
ment. This includes ANN modeling, GA and the integra-
tion of MBRs production and discharge data.

3.1. MBRs

MBRs combine activated sludge with membrane 
separation technology, offering advantages such as 
high-efficiency effluent, high load capacity, and 
a small footprint. Currently, large (10,000 m3/d) and 
super-large (100,000 m3/d) MBRs sewage treatment 
plants have been constructed and put into operation 
worldwide, including in China, the United States, and 
Europe. The materials, reactor operating conditions, 
and characteristics of mixed sludge in MBRs are closely 
related to membrane fouling, which is influenced by 
various factors such as influent water quality, sludge 
retention time, and hydraulic retention time [22,23]. 
Changes in operating conditions not only directly 
affect membrane fouling but also alter the character-
istics of mixed sludge, consequently impacting mem-
brane fouling rates [24]. As a result, it is challenging to 
identify their specific roles. Thus, utilizing AI-integrated 
technologies, including ANN and GA with MBRs data 
can more accurately learn and predict membrane foul-
ing for membrane fouling control in wastewater treat-
ment is highly advantageous [25].

3.2. ANN

An ANN is an algorithm that mimics the behavior of 
animal neural networks to perform distributed and 
parallel information processing. ANN’s information 
processing capabilities rely on adjusting input and 
output of neural nodes, neuron thresholds, and con-
nection weight magnitudes. ANN’s predictive perfor-
mance can be evaluated through parameters such as 
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Root Mean Square Error, coefficient of determination, 
and relative error. While previous studies have demon-
strated the superior performance of ANN in predicting 
MBRs membrane fouling, differences in technical 
equipment scale and wastewater characteristics 
between laboratory-scale reactors and large-scale 
reactors are often significant [26–28]. Therefore, pro-
moting predictive research on MBRs membrane foul-
ing using ANN on a pilot scale holds significant 
significance. For example, collecting long-term opera-
tional data from a pilot-scale submerged MBRs and 
constructs an ANN model between membrane flux 
after membrane chemical cleaning, membrane filtra-
tion time, influent water quality, and membrane 
permeability.

Moreover, AI technologies applicable to water treat-
ment and water recovery methods can be categorized 
into massive data, image recognition, and natural lan-
guage [29]. (A) Massive data applications are the most 
prevalent, involving the utilization of water quality and 
water treatment system operating parameters to train 
AI models for prediction and decision-making, 
enabling system intelligent regulation. Examples of AI 
applications extend to precise dosing in chemical sys-
tems for managing chemical sludge and sedimenta-
tion. In biological systems, AI contributes to intelligent 
regulation, particularly in conjunction with devices like 
the Mixed Liquor Suspended Solids sensor. This sensor, 
deployed in wastewater treatment plants, facilitates 
the measurement of suspended solids concentration 
in the mixed liquor of activated sludge processes. The 
data collected aids in optimizing processes such as 
sludge discharge, return sludge, and digestion liquid 
reflux systems. Furthermore, AI is instrumental in 
addressing physical system challenges, including the 
prediction of filter blockages, membrane system block-
age prevention, and the optimization of overall system 
control. These AI-driven applications enhance preci-
sion, efficiency, and responsiveness in the manage-
ment of complex wastewater treatment processes. (B) 
Image recognition employs image collection and 
layered image discrimination to assess system states, 
such as microbial species determination, biological 
filter height determination, and chemical coagulation 
size determination. (C) Although natural language 
application in water treatment and water recovery 
cases is rare, its potential applications include provid-
ing standard operating procedures and troubleshoot-
ing for water treatment facility operators [30]. For 
example, when system anomalies occur, how to 
promptly detect, process, and rectify the situation is 
crucial for system operators. When abnormal alarms 
are generated, an AI natural language system provides 
processing standard operating procedures and opera-
tional steps through dialogue or a one-click process in 
SCADA, benefiting 24-hour shift workers and under-
staffed sites. Rapid resolution helps water treatment 

and water recovery systems return to normal quickly, 
making natural language an important auxiliary and 
decision-making tool [31]. The effectiveness and 
opportunities of water recovery depend on the front- 
end water treatment water quality status and effi-
ciency. As AIoT aids in enhancing water treatment 
efficiency, water quality is also improved, contributing 
to water recovery and application [32,33].

3.3. GA

GA can directly utilize fitness as the search information 
without the need for derivatives or other auxiliary infor-
mation. It possesses inherent implicit parallelism and 
better global optimization capabilities. By employing 
probabilistic optimization methods, it can automatically 
access and guide the optimization search space, adap-
tively adjust search directions, and does not require 
fixed rules. The species conserving GA can be utilized 
to optimize the conditions of reverse osmosis waste-
water treatment processes. By optimizing multi-stage 
reverse osmosis conditions, they performed permeation 
reprocessing and recovery degradation of 
N-Nitrosodimethylamine [34]. The optimal operational 
configuration was determined from the perspectives of 
inhibition rate, recovery rate, and energy consumption. 
Environmental quality standards such as dissolved oxy-
gen, biochemical oxygen demand, and corresponding 
measures for wastewater treatment systems were used 
as constraint conditions or objective functions. 
Combining GA with water quality models, the lowest 
wastewater removal efficiency of wastewater treatment 
plants was determined and applied to the San Maria da 
Victoria River Basin in Brazil. The results demonstrated 
that this optimized model combination was an effective 
tool for determining the minimum wastewater removal 
efficiency of wastewater treatment plants, while keep-
ing costs at a minimum by considering the river’s self- 
purification capacity [35,36].

4. Discussions, implications and conclusions

In the past, due to lower levels of customization, fac-
tory manufacturing was primarily focused on mass 
production, making the use of expert-based Delphi 
method sufficient to meet most wastewater treatment 
needs. However, with the increasing variety of chemi-
cal substances and the composition of customized 
products, the effectiveness of the Delphi method has 
encountered significant bottlenecks, leading to fore-
seeable difficulties and challenges in wastewater treat-
ment in the future.

With global water resources dwindling and stricter 
water management regulations, integrating and apply-
ing water treatment technologies with innovative 
intelligent approaches is essential. This paper offers 
solutions for industrial production wastewater 
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treatment needs, considering changing market 
demands, evolving times, and stricter environmental 
regulations. In practical terms, this study proposes the 
use of AI technologies such as ANN and GA to assist in 
suggesting wastewater composition and recovery stra-
tegies. The resulting wastewater treatment approach 
can be used to enhance the filtration process of MBRs, 
achieving a faster response in wastewater composition 
analysis and meeting the customization needs of the 
market customers. AI facilitates advanced data collec-
tion, including anomalies, and dynamically adapts to 
unforeseen challenges. It optimizes resource utiliza-
tion, minimizing chemical and energy wastage, 
thereby enhancing overall efficiency.

In terms of theoretical contribution, the perspective 
that this study proposed aligns with the concept of 
Systems Theory, Data-Driven Fault Detection and 
Diagnosis, and Process Systems Engineering theories. 
AI applications actively monitor equipment, predicting 
maintenance needs and reducing downtime. They 
ensure water consistently meets quality standards, 
thereby elevating production quality. Data-driven 
decision-making helps mitigate risks, preventing acci-
dents and safeguarding both production processes 
and the environment. Tailoring its capabilities to the 
specific needs of small-scale customers, this initiative 
assumes a pivotal role in advancing circular economy 
principles. In addition, while some previous research 
has explored the application of AI in water treatment, 
the perspectives presented have mainly focused on 
transforming water components, such as desalinating 
seawater or converting wastewater into drinking 
water, fundamentally differing from the approach 
taken in this study. Drawing on the authors’ industrial 
experience in the field of wastewater treatment, this 
study not only makes a significant theoretical contribu-
tion from the perspective of wastewater treatment in 
the context of factory production and market demand 
but also serves as a catalyst for future advancements in 
using AI for wastewater treatment.

As previously discussed, there is a profound link 
between industrial production, wastewater recycling, 
and factory productivity. In this context, the AI water 
treatment approach plays a crucial role by reducing 
resource waste and promoting resource recycling and 
reutilization for sustainability and environmental preser-
vation. To fully leverage AI’s potential, future research 
should expand beyond solving spatial processing chal-
lenges in industry and explore broader applications. 
A visionary approach could involve gradually imple-
menting advanced RO filtration systems to convert was-
tewater into drinking water. This holistic approach 
aligns with recycling principles and has the potential 
to transform industrial practices, making them more 
sustainable and environmentally friendly. We hope 
that this perspective paper will inspire further waste-
water treatment and AI studies in the near future alike.
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