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Mass Flowrate Measurement of Slurry Using Coriolis 

Flowmeters and Data Driven Modelling 
 

Wasif Shafaet Chowdhury, Yong Yan, Fellow, IEEE, Marc-Antony Coster-Chevalier, and Jinyu Liu 
 

 Abstract—Coriolis flowmeters have been proven to be effective 

while measuring single phase flows, however, the measurement 

accuracy degrades in case of multiphase flows. This paper presents 

data-driven models that are incorporated into Coriolis flowmeters 

for mass flowrate measurement of two-phase (sand-water) slurry. 

Three different data-driven models based on Support Vector 

Machine (SVM), Artificial Neural Network (ANN) and Gaussian 

Process Regression (GPR) are established through training and 

testing. To examine the behaviors of Coriolis flowmeter for slurry 

flow measurement, a series of experimental tests were conducted 

on a purpose-built slurry test rig under a range of mass flowrates 

(5435 - 18582 kg/h) and Solid Volume Fractions (SVFs) between 0 

- 3.3%. The effects of the geometry and orientation conditions of 

Coriolis measuring tubes are also examined by installing two 

Coriolis flowmeters on horizontal pipe sections with their 

measuring tubes in upward and downward orientations. The 

factors that lead to measurement errors including density 

difference, asymmetry, damping, Coriolis tube geometry and 

orientation conditions are practically evaluated. The 

performances of the SVM, ANN and GPR models are assessed in 

comparison with the reference readings. A data augmentation 

technique is also applied to generate unseen condition data with 

±5% deviation from the original data. The experimental results 

show that the GPR models are superior to the SVM and ANN 

models in terms of measurement accuracy. For the GPR models, 

97% and 95.5% of the original data and 99% and 98% of the 

augmented data yield a relative error within ±0.2% for upward 

and downward orientations of Coriolis flowmeters, respectively, 

under all test conditions.  

 
Index Terms— Slurry flow, mass flowrate measurement, Coriolis 

flowmeter, solid volume fraction, Gaussian Process Regression. 

I. INTRODUCTION 

OLIDS conveyance through pipes are encountered in 

many industries around the world, mostly for the 

economic advantages of this model of transportation [1]. 

A typical example of such a system is slurry transportation. 

Slurry is a mixture of solid particles with liquid and is typically 

used to convey solids by carrier liquid, such as coal-water 

slurry, paper pulp, drilling mud and clays [1, 2]. In the broad 

variety of environments where solids hydro transport is applied, 

different solid–liquid mixtures are produced and conveyed 

primarily through pressurized pipes. Water is a typical carrying 

liquid, but the carried solid particles can vary greatly, from very 

fine to very coarse and from very heavy to very light [3]. 

Hydraulic transport of solids is of importance in many 

industries, for instance, chemical (e.g. hydrochloric acid), 
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pharmaceutical (e.g. passivation process), petroleum (e.g. 

hydraulic fracturing), mining (e.g. drilling mud, clays and fine 

limestone) as well as manufacturing (e.g. production of cement, 

brick, mortar, concrete or glass) industries. Slurry flow is 

widely seen in oil refineries as well for the transportation of oil-

sand from mines to the extraction facilities [4]. In addition, 

slurry transportation is used in carbon capture and storage 

facilities for safe storage of CO2 in ocean sub-seabed sites in 

the form of clathrate hydrates [5, 6].  

In a slurry flow, the two phases (liquid and solid) interact with 

each other while flowing through a conduit, which significantly 

affects the behavior of the mixture [3]. The physical 

characteristics and behaviors of slurry flow depend on several 

factors such as size, concentration and distribution of solid 

particles as well as turbulence level, velocity, temperature and 

viscosity of the liquid carrier. Moreover, the diameter and 

orientation conditions of the pipe through which the mixture 

flows also influence its physical characteristics [4]. Depending 

on these factors, slurry flow regimes in a pipe can vary. Typical 

flow regimes include homogeneous, heterogeneous, 

heterogeneous with moving bed and stationary bed, etc. [3, 7]. 

Besides, slurry flow in a pipeline is different from liquid flow; 

a liquid of low viscosity can flow (although at slow speeds) in 

both laminar and turbulent flow, whereas for a slurry, the 

mixture must flow at a velocity above a critical value to avoid 

settling of solid particles [8]. All of these factors made slurry a 

very complex flow and has attracted considerable attention of 

many investigators across the world for many years. 

In highly demanding industrial processes, accurate 

measurement of solid-liquid two-phase flow is essential to 

realize flow quantification, operation monitoring, process 

optimization and product quality control [9]. Therefore, 

significant efforts have been devoted to address the challenges 

of slurry flow metering over the past few decades. As 

conventional flow measurement techniques, acoustic sensors 

[9], differential pressure devices incorporating pressure 

transducers [10] or venturi meters [11] have been used for slurry 

flow measurements. However, these methods have some 

limitations, for instance, in acoustic methods the external noise 

negatively affecting the measurement performance or blockage 

at the constricted area of a venturi meter. A combination of an 

Electromagnetic Flowmeter (EMF) with electrical resistance 

tomography for slurry flow measurement was attempted in [12]. 

However, the flowrates obtained by the EMF should be 

corrected by considering the slip velocity [12]. Besides, the 

working principle of EMF is based on Faraday’s law of 
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electromagnetic induction, hence, EMF is only able to sense 

electrically conductive fluid medium. Other tomography-based 

techniques such as magnetic induction [13], electrical 

capacitance [14] and electrical impedance [15] have also been 

used for two phase (solid-liquid) flow measurement. However, 

for tomography-based methods the measured electrical 

properties are always sensitive to changes in fluid dielectric 

properties as well as flow regimes. Frequent online calibrations 

are required in order to offer accurate flow measurement 

results, which would limit the application of tomography 

techniques into real-world industrial processes. 

Coriolis flowmeters have been in use for mass flow 

measurement of single-phase flows for decades. They are the 

most accurate single-phase mass flow metering devices, with 

the benefit of offering multiple outputs, including direct 

measurement of mass flowrate, density, temperature etc. [16]. 

Since volumetric flowrate can be sensitive to process 

conditions, mass flowrate measurement has become more 

favorable, particularly in highly demanding applications [16]. 

The potential extension of Coriolis flow metering technology 

from single-phase flows to multiphase flows has received 

considerable attention over the past few years. Coriolis 

flowmeters have been used for slurry flow metering as well [5, 

17, 18]. However, the primary limitation of this technique is the 

degradation of accuracy while measuring multiphase flows. 

Phase decoupling [19], compressibility [20], asymmetric 

damping [21] and velocity profile [22] are identified as the 

sources of measurement errors. Among them, phase decoupling 

effect is the most common and significant source that leads to 

measurement inaccuracies and it is a negative error [19]. 

Theoretical studies of this error for different types of mixtures 

(including slurry) flowing through Coriolis tubes are discussed 

in several reports [19, 21]. Although, these studies provide 

theoretical treatments of the error, there is lack of practical 

implementation in case of slurry flow measurement. With the 

rapid development of artificial intelligence and machine 

learning algorithms, data-driven models have shown a potential 

to assist Coriolis flowmeters for satisfactory multiphase flow 

metering [23, 24]. Data-driven models such as Support Vector 

Machine (SVM), Artificial Neural Network (ANN) have been 

implemented for gas-liquid flow measurement using Coriolis 

flowmeters [24, 25].  

This study aims to extend the Coriolis flow metering 

technology for two-phase slurry flow measurement by 

incorporating data-driven models, including SVM, ANN and 

Gaussian Process Regression (GPR). There has been limited 

literature in this area of research. In this study, the performance 

of Coriolis flowmeters while measuring slurry flow is evaluated 

through extensive experimental tests on a two-inch bore 

purpose-built slurry flow test rig. This study examines for the 

first time the effect of flowmeter tube geometry and orientation 

conditions leading to measurement inaccuracies by installing 

two Coriolis flowmeters (KROHNE OPTIMASS 6400 S50) in 

upward and downward orientations. The concept along with 

preliminary results were initially reported at the 2023 IEEE 

International Instrumentation and Measurement Technology 

Conference [26]. In this extended paper, new data were 

acquired under a wider range of mass flowrates (5435 - 18582 

kg/h) and Solid Volume Fractions (SVFs) 0 - 3.3%. The 

original errors along with additional factors that lead to the 

errors including density difference, asymmetry and damping 

are practically examined and reported. The behaviors of 

Coriolis flowmeters while measuring slurry flow as well as 

practical evaluation of the proposed mass flow metering system 

is discussed in detail. An augmented dataset is also generated 

to evaluate the generalizability of data-driven models. In 

addition, comparative analysis is conducted to evaluate the 

performance of data-driven models under seen and unseen 

conditions. 

II. METHODOLOGY 

A. Overall Measurement System 

Fig. 1 illustrates the basic principle and structure of the 

proposed slurry flow measurement system using a Coriolis 

flowmeter. The flowmeter provides apparent mass flowrate, 

density, temperature etc. information about the mixture flowing 

through the tubes [16]. Although, some of these parameters 

(e.g. mass flowrate, density) are erroneous under two-

phase/multiphase conditions, they still reflect the true mixture 

mass flowrate and SVF to some extent. These parameters are 

used to determine the expected mass flowrate of mixture by 

incorporating data-driven models based on SVM [25], ANN 

[25] and GPR [27]. These regression based models are 

computationally less expensive. They are used in this study 

because the observed original errors of Coriolis flowmeters for 

mass flowrate measurement of slurry are, to some extent, linear 

and repeatable. The error trends are discussed in Section III. D.  

 
Fig. 1. Principle and structure of the proposed slurry mass 

flowrate measurement system. 

B. Support Vector Machine (SVM) 

SVM models are one of the most popular and widely 

implemented data driven algorithms which perform linear 

regression in a high dimensional feature space and tend to 

reduce model complexity. The type of SVM model 

implemented in this research is regression for the measurement 

of mass flowrate of slurry. As shown in Fig. 2, the input features 

𝑥 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} are mapped into an 𝐿-dimensional feature 

space. The feature space consists of kernel function 𝑘(𝑥, 𝑥𝑛). 

The model then performs linear regression by using kernel 

function values, weights 𝑢 = {𝑢1, 𝑢2, ⋯ , 𝑢𝐿}  and biases to 

predict mass flowrate of slurry. Here, 𝑛 and 𝐿 denote number 

of input features and nodes, respectively.  SVM regression is 

 
Fig. 2. Structure of SVM [25]. 
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considered as a nonparametric technique because it relies on 

kernel functions. The kernel technique is useful to minimize the 

computational complexity of the input data which is comprised 

of several statistical features in the original space [25]. 

C. Artificial Neural Network (ANN) 

The ANN model is developed by training a network of 

neurons to represent the inherent relationship between the input 

data and the intended measurand on output. The ANN model 

(Fig. 3) consists of an input layer, a single-hidden layer and an 

output layer. This three-layer feedforward neural network is 

trained based on the backpropagation learning method. The 

nodes present in the hidden layer receive values from the input 

layer and generates a quantitative value thorough a pre-defined 

activation function. An activation function in the ANN model 

performs the complex computation in the hidden layer and then 

transfers the outcome to the output layer to generate the 

predicted mass flowrate of slurry. An activation function is used 

to introduce the non-linearity in the model [25]. 

 
Fig. 3. Structure of ANN [25]. 

D. Gaussian Process Regression (GPR) 

GPR is used to estimate the errors since it does not require a 

fitting function to be declared in exact form. It uses a covariance 

matrix that reflects correlation between the features of the 

sample in Gaussian Process (GP). It generates a confidence 

interval along with the predicted output. Thus, GPR shows good 

fitting ability. The GPR model is discussed in detail in [27].  

A GP is a collection of limited number of random variables 

which have consistent joint Gaussian distributions. That is, for 

any input feature 𝑥 from the feature matrix 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛}, 

its probability distribution function 𝑓(𝑥) follows the Gaussian 

distribution. Hence, the GP is specified as: 

𝑓(𝑥)~𝐺𝑃(µ(𝑥), 𝑘(𝑥𝑛, 𝑥𝑛))                         (1) 

where µ(𝑥) is the mean function and 𝑘(𝑥𝑛, 𝑥𝑛) is the kernel 

function created by the covariance matrix.  

In GPR the Bayesian principle is used to construct a predictive 

model. Where the undermined parameters of kernel function are 

iteratively achieved to determine the optimal parameters. Based 

on that a prior distribution is established for the training 

samples. Then the joint posterior distribution of training 

samples 𝑦 and estimated output �̂� for the test samples (�̂�) are 

established:   

[
𝑦
�̂�] ~ 𝑁 (0, [

𝐾(𝑋, 𝑋) 𝐾(𝑋, �̂�)𝑇

𝐾(𝑋, �̂�) 𝐾(�̂�, �̂�)
])                 (2) 

Where 𝑁()  indicates a normal distribution, T denotes the 

transpose matrix. 𝐾(𝑋, 𝑋), 𝐾(�̂�, �̂�) and 𝐾(𝑋, �̂�) represents the 

covariance matrices among inputs from training set (already 

observed points), test set (new input points) as well as training 

and test sets, respectively. The following equations give the 

covariance matrices:  

𝐾(𝑋, 𝑋) =  [

𝑘(𝑥1, 𝑥1) 𝑘(𝑥1, 𝑥2)
𝑘(𝑥2, 𝑥1) 𝑘(𝑥2, 𝑥2)

…
…

𝑘(𝑥1, 𝑥𝑛)
𝑘(𝑥2, 𝑥𝑛)

⋮             ⋮ ⋱ ⋮
𝑘(𝑥𝑛, 𝑥1) 𝑘(𝑥𝑛, 𝑥2) ⋯ 𝑘(𝑥𝑛, 𝑥𝑛)

]     (3) 

𝐾(𝑋, �̂�) = [𝑘(𝑥1, �̂�) 𝑘(𝑥2, �̂�) ⋯ 𝑘( 𝑥𝑛, �̂�)]        (4) 

𝐾(�̂�, �̂�) = 𝑘(�̂�, �̂�)     (5) 

The joint posterior distribution of estimated value �̂�  can be 

given as: 

𝑃(�̂�| 𝑥, 𝑦, �̂�) ~ 𝑁(𝑓|0, 𝐾(𝑋, 𝑋))                (6) 

Finally, the mean distribution is used as the estimated output.  

�̂� =  𝐾(𝑋, 𝑋)𝐾(𝑋, 𝑋)−1𝑦                     (7) 

As a key to GPR, the kernel function determines the property 

of GP, and is used to obtain covariance matrix. The choice of a 

kernel is based on assumptions such as smoothness and likely 

patterns to be expected in the data [28]. Common kernel 

functions includes Rational Quadratic Kernel (RQK), 

Exponential Kernel (ExK), Squared Exponential Kernel (SEK) 

and Matern 5/2 Kernel (M5/2K), which are defined as follows: 

𝑘𝑅𝑄𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜎2(1 + 
𝑟2

2𝛼𝑙2
)−𝛼 (8) 

𝑘𝐸𝑥𝐾(𝑥𝑖 , 𝑥𝑗) =  𝜎2𝑒𝑥𝑝 (−
𝑟

2𝑙2
) (9) 

𝑘𝑆𝐸𝐾(𝑥𝑖 , 𝑥𝑗) =  𝜎2𝑒𝑥𝑝 [−
𝑟2

2𝑙2
] (10) 

𝑘𝑀5/2𝐾(𝑥𝑖 , 𝑥𝑗) =  𝜎2  (1 + 
√5𝑟2

𝜎
+  

5𝑟2

3𝜎2
) 𝑒𝑥𝑝 (−

√5𝑟

𝜎
) (11) 

r is defined as:  

𝑟 =  ‖𝑥𝑖 − 𝑥𝑗‖                  (12) 

α is a scale-mixture parameter (α > 0), 𝜎 and 𝑙 are height and 

length scale parameters, respectively, 𝑥𝑖 and 𝑥𝑗 represents two 

points in feature space, respectively.  

In order to determine the optimal kernel function a 

comparative analysis is carried out in Section III based on the 

Root Mean Square Error (RMSE).  

𝑅𝑀𝑆𝐸 =  √
1

𝑚
∑(𝑦𝑖 − �̂�𝑖)

2

𝑚

𝑖=1

 (13) 

where 𝑚 is the number of training samples, 𝑦𝑖  and �̂�𝑖  are the 

reference and predicted mass flowrates of 𝑖 -th sample, 

respectively. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Test Facility and Conditions 

A laboratory-scale 50 mm bore sand-water slurry flow test rig 

was designed and constructed to acquire the experimental data of 

this study. Figs. 4 and 5 illustrates the schematic and physical 

implementation of the test rig, respectively. In order to investigate 

the effect of Coriolis measuring tubes orientation for slurry flow 

metering two deeper V-shaped Coriolis flowmeters (KROHNE 

OPTIMASS 6400 S50) with their measuring tubes upward and 

downward orientations are mounted on the same pipeline. Three 

tanks: slurry tank (1500 liters), weighing tank (300 liters) and 
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buffer tank; and three pumps: main pump (centrifugal, rated 5.5 

kW), secondary pump and agitator (0.37 kW) are also there in the 

rig. The slurry tank is used to store sand-water and the agitator is 

placed over the tank to create dilute sand-water slurry. A weighing 

system with uncertainly lower than the flowmeters under test is 

used to acquire the reference mixture mass readings. The buffer 

tank is used for sand-water separation and a secondary pump is 

there to feed the separated water back into slurry tank. All of these 

pumps, flowmeters and tanks are connected through a main 

circulation loop pipeline. The main pump is used to allow the 

slurry to flow throughout the pipeline homogenously. A number 

of valves are also fitted on the rig to regulate the direction of slurry 

flow. Two motor control inverters are in place to control the 

frequencies of main pump and agitator to achieve the desired mass 

flowrate and SVF, respectively. Fig. 6 illustrates the test matrix, 

which consists of seven different mass flowrates (5435, 8239, 

10743, 13074, 15186, 17045 and 18582 kg/h) over SVF 

 
Fig. 4. Schematic of the sand-water two-phase slurry test rig. 

 
Fig. 5. Photo of the two-phase slurry test rig. 

 
Fig. 6. Test matrix of two-phase slurry mass flow measurement 

(empty markers for training and filled markers for testing). 

0-3.3%. The measurements under each test conditions were 

repeated for five times. In this research 70% of data from the 

test matrix are used to train the data-driven models whereas the 

remaining 30% for testing the models. Training and test 

conditions are shown in Fig. 6 as empty and filled markers, 

respectively. 

B. Sensor Features 

Several features, including apparent mass flowrate, apparent 

density, process temperature, water density, sensors A & B 

amplitudes, tube frequency, two phase signal, drive level and 

time shift were obtained from each of the two Coriolis 

flowmeters. Additional features such as: SVF ( 𝛼𝑠,𝑎𝑝𝑝) , 

asymmetry (ASY) and damping ( 𝑃𝑑 ) were determined as 

follows:  

𝛼𝑠,𝑎𝑝𝑝 =  
𝜌𝑎𝑝𝑝 − 𝜌𝑤

𝜌𝑠 − 𝜌𝑤
 × 100% (14) 

𝐴𝑆𝑌 =  
𝑆𝐵

𝑆𝐴
 (15) 

𝑃𝑑 =  
𝐼𝑑𝑟

(𝑆𝐴 + 𝑆𝐵)/2 
 (16) 

where 𝜌𝑠 , 𝜌𝑤 , 𝜌𝑎𝑝𝑝 , 𝑆𝐴 , 𝑆𝐵  and 𝐼𝑑𝑟  are sand (2680 kg/m3), 

water (~998 kg/m3), mixture densities, Sensor A & B 

amplitudes and drivel level, respectively.  

The reference mass flowrate is obtained by dividing the 

weighing scale reading with operating time and is used to 

calculate the relative error (𝐸�̇�) (Eq. 17).  

𝐸�̇� =  
�̇�𝑎𝑝𝑝 − �̇�𝑟𝑒𝑓

�̇�𝑟𝑒𝑓
 × 100% (17) 

where �̇�𝑎𝑝𝑝  and �̇�𝑟𝑒𝑓  are the apparent and reference mass 

flowrates of slurry, respectively.  

TABLE I MODEL TRAINING FEATURES AND THEIR  PHYSICAL DEFINITIONS  

ID Features Physical definition 

x1 
Apparent mass 

flowrate (kg/h) 

The mass flowrate reading from upward or 

downward Coriolis flowmeter based on the 

calibration cahracteristics for single-phase 

flows. 

x2 
Apparent SVF 

(%) 
Solid volume fraction obtained from Eq. (14). 

x3 
Process 

temperature (°C) 

Fluid temperature reading from the Coriolis 

flowmeters. 

x4 
Water density 

(kg/m3) 

Water density determined from current 

process temperature using IAPWS R7-97 

method [29]. 

x5 
Two phase 

signal 

Indication of the presence of a second phase 

in the tube(s).  

x6 Drive level (%) 

The current amplitude of the driver output for 

the vibration of Coriolis tubes. It is the ratio 

between the input current and maximum 

available current of 85 mA. 

x7 Asymmetry 
The ratio between the amplitudes of the two 

sensor outputs, Eq. (15). 

x8 Damping 
The ratio between drive level and sensor 

voltage, Eq. (16). 

y 
Reference mass 

flowrate (kg/h) 

Obtained from the weighing scale readings 

and Coriolis flowmeter operating time. 

�̂� 
Predicted mass 

flowrate (kg/h) 

Output of a data-driven model for the 

measurement of slurry mass flowrate under 

two-phase flow conditions. 

Table I summarizes the model training features and their 

physical definitions. These features were obtained through 

measuring or transforming the internal parameters of the two 
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Coriolis flowmeters and no addition sensors or equipment were 

involved. 

C. Behavior analysis of Coriolis flowmeters while measuring 

slurry flow 

This section discusses about how the two Coriolis flowmeters 

(upward and downward) reacted while measuring slurry flow. 

A Coriolis flowmeter is a delicately designed vibrating system. 

The excellent symmetry and perfect balance between the 

measuring tubes are vital to achieve accurate flow 

measurement. However, under two-phase flow conditions, the 

second phase (solid particles) typically appears as a non-

continuous phase, which is usually dispersed or not uniformly 

distributed in the fluid, giving rise to the asymmetries along the 

Coriolis tube. Concerning a Coriolis flowmeter with twin bent 

tubes, the mixture flow may not be equally split into each 

measuring tube, resulting in imbalance. Once flowmeters are 

not symmetric and balanced, the sensor signal is likely to be 

distorted by the external influences. Particularly, when the flow 

velocity becomes low, the changes in flow regime and the 

gravity effect on particles distribution would bring the extra 

asymmetry and damping errors of Coriolis flow metering. 

● Two Phase Signal: This is a signal from the Coriolis 

flowmeter indicating the presence of a second phase, Fig. 7 

(a) and (b) illustrates the readings of two-phase signals from 

upward and downward Coriolis flowmeters, respectively. It 

is observable that, when SVF is below 1%, the two-phase 

signal is insignificant. However, as SVF is higher, there is a 

gradual growth in the two-phase signal strength. This is 

because, as SVF gets higher, the presence of second phase is 

becoming more significant. 

● Asymmetry: This usually refers to the uneven distribution of 

solid particles at inlet and outlet of the Coriolis measuring 

tubes, resulting in a difference between the two sensor 

signals. Fig. 7 (c) and (d) illustrates the degree of asymmetry 

that the upward and downward Coriolis flowmeters 

experiences while measuring slurry flow under the 

experimental conditions, respectively. It is evident that 

asymmetry is higher (1.017 – 1.019) in the upward orientation  

  
(a) Two phase signal - measuring tubes upward (b) Two phase signal - measuring tubes downward 

    
(c) Asymmetry - measuring tubes upward (d) Asymmetry - measuring tubes downward 
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(e) Damping - measuring tubes upward (f) Damping - measuring tubes downward 

Fig. 7. Behavior analysis of the Coriolis flowmeters while measuring slurry flow. 

and lower (0.9998 - 1.0015) in the downward orientation of 

Coriolis measuring tubes. It should be mentioned that these 

asymmetry readings are flowmeter-specific and the trend 

may not be applicable to other Coriolis flowmeters under the 

same orientation conditions. 

● Damping: Generally damping refers to as the decay in 

vibration amplitudes of Coriolis tube oscillation. A high 

damping of a free oscillation system suggests rapid decay in 

the amplitude of the Coriolis tube oscillation. Fig. 7 (e) and 

(f) demonstrates the effect of damping that the upward and 

downward flowmeters experiences while measuring slurry 

flow, respectively. It can be seen from Fig. 7 that damping 

has strong correlation with SVF.  

D. Analysis of original errors 

Fig. 8 illustrates the original errors of the two Coriolis 

flowmeters under all test conditions. For both flowmeters 

almost all errors are negative, which confirms that phase 

decoupling is the most significant source of error. The results 

also reveal a strong correlation between SVF and relative error, 

and the higher the SVF the higher the error. Moreover, the worst 

error of the downward meter (-3.4%) is higher than that of the 

upward meter (-2.4%). This is because sand particles get 

accumulated inside the Coriolis measuring tubes and affect the 

flowmeters density readings.  

Fig. 9 compares the density readings from both flowmeters 

for a single batching operation. It is observable that, for the 

initial seven seconds, the density reading from the upward 

flowmeter stays close to water density (~998 kg/m3). This is 

because, for the upward flowmeter more sand tends to settle at 

the inlet side of the deeper V-shaped tubes due to gravity effect, 

which adds extra damping on the inlet side and consequently 

causes additional positive errors in mass flowrate. There is a 

sharp peak at about 10s when the accumulated sand moves 

through the upward flowmeter tubes and the density reading 

returns to water density at the end of batching. 

  
(a) Measuring tubes upward (b) Measuring tubes downward 

Fig. 8. Original errors of the Coriolis flowmeters without the correction model. 



2 

I2MTC 2023 Paper ID: #1570872824 

 

  
(a) Measuring tubes upward (b) Measuring tubes downward 

Fig. 9. Difference in initial density readings of the Coriolis flowmeters 

In contrast, the initial density reading for the downward meter 

is significantly higher (~1300 kg/m3) because of sand particles 

accumulation at the bottom of the tubes, resulting in more 

damping imposed on the outlet as well as extra negative errors. 

Hence, there is a sharp decline in density readings at about 10s 

when the accumulated sand moves from the downward 

flowmeter tubes and the density reading goes back up again at 

the end of batching.  

As a result, for the upward meter, the additional positive error 

due to asymmetry cancels out a part of the negative error due to 

decoupling effect, whereas for the downward meter the 

negative error due to asymmetry introduces additional error to 

the decoupling error. Therefore, the upward installation 

orientation would produce smaller error than the downward 

orientation. Another possible source of error is imbalance, 

arising when the mixture flow is not equally split between the 

two measuring tubes. It is evident that, apart from the density 

differences between the phases in the mixture flow, tube 

geometry and installation orientations also affect the flowmeter 

behavior, and the upward installation orientation is favorable 

for slurry flow measurement compared to the downward 

orientation. 

E. Implementation of data-driven models 

While developing the data-driven models, it is crucial to 

determine the optimal parameters of the models to achieve good 

generalization capability.  

For the ANN and SVM models the number of nodes in the 

hidden layer is determined with the method discussed in [30]. 

The range of the number of nodes is determined from: 

𝐿 ≤ 2𝑚 + 1 (18) 

𝐿 =
𝑛

𝑚 + 1
 (19) 

where 𝐿, 𝑚 and 𝑛 are the numbers of nodes, training samples 

and features, respectively. Although eq. (18) and eq. (19) 

provide only a range of 𝐿 for SVM and ANN models, the exact 

number of 𝐿 is determined by trial-and-error for a given dataset. 

Table II shows the number of nodes of the SVM and ANN 

models. Moreover, the ANN model with the Rectified Linier 

Unit (ReLU) activation function outperforms other functions in 

terms of RMSE. Hence, the ReLU activation function is used in 

this study to develop the ANN model. For the SVM model, 

quadratic kernel function in conjunction with the Sequential 

Minimal Optimization (SMO) solver has been proven to be 

more effective than other versions of SVM. Thus, these 

parameters are used while developing the SVM models.  

TABLE II PARAMETERS OF ANN AND SVM MODELS 

Parameter ANN SVM 

Type of model Regression Regression 

Activation / kernel function ReLU Quadratic 

No. of Hidden layers 1 1 

Number of hidden nodes 10 10 

Learning rate 0.001 0.001 

Since, kernel functions in a GPR model play an important role 

in calculating the similarities between two signals from the 

sensor, it is crucial to determine the most suitable one prior to 

model training. As discussed in Section II four types of kernel 

functions (RQK, ExK, SEK and M5/2K) are typically used in 

GPR. In this study, four GPR models are implemented with all 

the four kernel functions. Fig. 10 shows the performances of the 

four kernel functions based on RMSE. It is observable that 

M5/2K, RQK and SEK performs almost similar, however, SEK 

exhibits lowest RMSE (0.092) while testing compared to 

M5/2K (0.095) and RQK (0.094). SEK exhibits the lowest 

RMSE because the GP with SEK has mean-square derivatives 

of all orders, and thus the GPR is relatively smooth [28]. 

Therefore, SEK is used in this study for the correction model.    

 

Fig. 10. Performance analysis of GPR model for different 

kernel functions. 

F. Slurry mass flowrate correction  

In order to compensate the significant errors as illustrated in 

Fig. 8, three data-driven models based on SVM, ANN and GPR  

are used in this study for each orientation.



1 

I2MTC 2023 Paper ID: #1570872824 

 

  

(a) SVM - measuring tubes upward (b) SVM - measuring tubes downward 

  

(c) ANN - measuring tubes upward (d) ANN - measuring tubes downward 

  

(e) GPR - measuring tubes upward (f) GPR - measuring tubes downward 

Fig. 11. Relative error in slurry mass flowrate measurement with the data-driven models  

(empty markers from training and filled markers from testing dataset) 
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Fig. 11 shows the relative errors of all the six models for upward 

and downward installations of the flowmeters, respectively. For 

both orientations the models are able to limit the errors within 

±0.2% under all test conditions for the following percentages of 

data: SVM 93.5% and 93.5% (Fig. 11 (a) and (b)), ANN 96% 

and 95% (Fig. 11 (c) and (d)) and GPR 97% and 95.5% (Fig. 

11 (e) and (f)), respectively. The GPR models outperform all 

other models in effectively predicting the mass flowrate of 

slurry.  

The models were trained and tested for seven different mass 

flowrates (5435, 8239, 10743, 13074, 15186, 17045 and 18582 

kg/h) and SVF ranging between 0-3.3%. However, the 

performance of the models under unseen conditions (e.g. 6000 

or 16500 kg/h) are yet to be assessed. Therefore, a data 

augmentation technique is used in this study to generate unseen 

conditions data. Data augmentation is a common practice in 

Machine Learning to generate additional data from the original 

dataset [31]. It is mostly used for model training when the 

number of data samples are low. However, in this study the 

augmented dataset is used for model performance evaluation 

under unseen conditions. A random rotation technique is used 

to randomly select 50% of the original data samples and shuffle 

them randomly for ten times. The augmented dataset is then 

achieved by taking an average of them. The unseen condition 

data are achieved by omitting the samples that are identical to  

Fig. 12. Mass flowrates achieved from the augmented dataset 

with ±5% deviation. 

  
(a) Original errors - measuring tubes upward (b) Original errors - measuring tubes downward 

  
(c) SVM -measuring tubes upward (d) SVM - measuring tubes downward 



2 

I2MTC 2023 Paper ID: #1570872824 

 

  
(e) ANN - measuring tubes upward (f) ANN - measuring tubes downward 

  
(g) GPR - measuring tubes upward (h) GPR - measuring tubes downward 

Fig. 13. Relative error in slurry mass flowrate measurement with and without the data-driven models for unseen conditions dataset. 

the original samples. Hence, the volume of data on the 

augmented dataset is reduced to 176 with a deviation of ±5% 

from the original data and SVF 0.35-2.2% for all the seven mass 

flowrates. Fig. 12 shows the mass flowrates and Fig. 13 (a) and 

(b) illustrates the errors achieved through the data augmentation 

technique. This further validation of the data-driven models is 

useful because, in real life scenario, it is highly unlikely that the 

mass flowrates or SVF will be the same as the models are 

trained with. As a result, how the models will perform under 

unseen conditions needs to be evaluated. As shown in Fig. 11, 

the models can effectively minimize the original errors within 

±0.2% over SVF 0-2.2%. Since, the SVF range in the 

augmented dataset is narrower (0.35 – 2.2%) than that in the 

original dataset, the models should have been able to limit the 

errors within ±0.2%. However, Fig. 13 indicates that the SVM 

and ANN models deteriorate significantly for the downward 

meter. The GPR model has performed as expected for >98% of 

the augmented data within ±0.2% error range for both upward 

and downward orientations, and for <2% of augmented data, 

the GPR model deteriorates slightly. The GPR model 

outperforms the SVM and ANN models because of the 

confidence interval it generated along with the predicted mass 

flowrate of slurry. Any new data either from test or augmented 

dataset that falls within the confidence interval is effectively 

predicted by the GPR. 

IV. CONCLUSION 

This paper has presented a slurry mass flowrate measurement 

system using Coriolis flowmeters through data-driven 

modelling. Extensive experimental tests were conducted on a 

purpose-built slurry flow test rig for upward and downward 

orientations of the flowmeters.  

• The experimental results have revealed that phase 

decoupling effect is the most significant source of error that 

a Coriolis flowmeter experiences while measuring slurry 

flow and the upward orientation is more favorable compared 

to the downward orientation for slurry flow metering.  

• Apart from the density differences between multiple phases, 

asymmetry, damping, Coriolis tube geometry and 
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orientation introduce additional errors to the flowmeter 

readings.  

• A comparative analysis between the SVM, ANN and GPR 

models for the prediction of mass flowrate under two-phase 

slurry flow conditions has suggested that the GPR models 

are superior to the SVM and ANN models in terms of 

robustness and accuracy.  

• The GPR models perform well under both seen and unseen 

conditions while the performance of the SVM and ANN 

models significantly deteriorates for unseen conditions.  

• For both the upward and downward orientations of Coriolis 

measuring tubes most of the corrected errors (>95.5% for 

seen conditions and >98% for unseen conditions) of the 

GPR models are within ±0.2%.  

In comparison with the original errors, the proposed models 

have provided significant improvements in measurement 

accuracy under all test conditions. This research outcome has 

effectively extended the applicability of Coriolis flowmeters to 

two-phase slurry mass flow measurement. It should be noted 

that the developed data-driven models are implemented with a 

dataset collected on a laboratory flow test rig. The models 

should work effectively for practical slurry flow metering, 

given the actual flow conditions are within the rage of their 

training conditions. However, for different conditions, e.g. 

higher SVF% or different orientations of Coriolis tubes, the 

models need to be retrained.  
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