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 Heron Triangles 
and the Hunt 
for Unicorns
Andrew N. W. Hone

One of the oldest problems in the theory of Dio-
phantine equations is to find right triangles with 
integer side lengths, or equivalently, triples of 
positive integers (a, b, c) such that a2 + b2 = c2 , 

which are called Pythagorean triples. Examples were 
known to the Babylonians around 1800 BCE. Taking posi-
tive integers m > n and � , all such triples can be deter-
mined from the formula

which was given by Euclid, but without the arbitrary scale 
factor � . A primitive Pythagorean triple is one for which 
gcd(a, b, c) = 1 , and (up to switching a and b) all primi-
tive triples are obtained from (1) by taking � = 1 and m, n 
coprime with at least one of them even.

The formula (1) can be derived directly from simple 
congruences modulo 2 and 4, but another way to obtain it 
is to consider rational points on an algebraic curve, namely 
the unit circle

For any rational point (x, y) ∈ ℚ2 on this circle distinct 
from the point (−1, 0) , we form the chord joining them, 
given by the line y = t(x + 1) with slope t. Hence we 
obtain the rational parametrization of the circle

related to the usual trigonometric parametrization 
x = cos � , y = sin � by the “t-substitution” of integral cal-
culus, that is, t = tan �∕2 , and formula (1) follows by taking 
rational t = n∕m with 0 < t < 1.

Heron Triangles and Unicorns
For a triangle with sides (a, b, c) and semiperimeter s, the 
area formula

is attributed to Heron of Alexandria. If the side lengths 
of a triangle are integers and the area Δ is also an integer, 
then it is called a Heron triangle. Allowing the freedom to 
rescale all the sides by the same factor, it is convenient to 
define a triangle to be Heron whenever the side lengths and 
the area are all rational numbers.

Trivially, every right triangle given by a Pythagorean 
triple is Heron. More generally, dropping a perpendicular 
from any vertex of a Heron triangle splits it into a pair of 
right triangles with the same height, either joined back 
to back or overlapping each other, and it is not hard to 
see that both triangles must have rational sides, so that 
(up to rescaling) the Heron triangle is built from a pair of 

(1)a = �(m2 − n2), b = 2�mn, c = �
(
m2 + n2

)
,

x2 + y2 = 1, where x =
a

c
, y =

b

c
.

(2)x =
1 − t2

1 + t2
, y =

2t

1 + t2
,

(3)Δ =
√
s(s − a)(s − b)(s − c), s =

a + b + c

2
,
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Pythagorean triples. This construction can be used to de-
rive a parametric formula for Heron triangles,

with Δ = rc , for arbitrary positive rational numbers p, q, r 
such that r2 ≠ pq , which was known to Brahmagupta in the 
seventh century CE [4].

For a particular example, taking p = 3, q = 4, r = 6 in 
(4) leads to the Heron triangle with a = 15 , b = 13 , c = 14 
and area Δ = 84 , which can be built out of the Pythagorean 
triangles (5, 12, 13) and (9, 12, 15) by placing them back 
to back along the altitude 2r = 12 , as in Figure 1. (This 
choice of parameters is not unique: for instance, by order-
ing the sides differently as (a, b, c) = (15, 14, 13) instead of 
(15, 13, 14), one can obtain the same Heron triangle from 
p = 147∕13 , q = 126∕13 , r = 84∕13.)

A systematic method for enumerating Heron triangles 
with integer sides was given by Hermann Schubert [12]. 
In Schubert’s scheme, (15, 13, 14) is the first example of a 
Heron triangle with integer sides that is not right or isos-
celes. However, if we combine the same two Pythagorean 
triples by overlapping the triangles (rather than arrang-
ing them back to back as in the figure), then we get the 
(15, 13, 4) Heron triangle with the smaller area Δ = 24 , 
which nevertheless appears farther down in Schubert’s 
list.

The unicorns in our story are perfect triangles: trian-
gles that have three integer sides, three integer medi-
ans, and integer area. Does a perfect triangle exist, or 
equivalently, is there a Heron triangle with three rational 
medians? It is generally believed that there is no such 
thing, all the “proofs” in the literature having proven to 
be incorrect. The problem remains open [8]. The rest of 
our discussion is devoted to seeing how close we can get 
to perfection.

Hereinafter, the medians bisecting sides a, b, c will  
be denoted respectively by k,�,m , which leads to the 
relations

(4)a =
p2 + r2

p
, b =

q2 + r2

q
, c =

(p + q)|r2 − pq|
pq

,

k2 =
1

4

(
2b2 + 2c2 − a2

)
,

�
2 =

1

4

(
2c2 + 2a2 − b2

)
,

m2 =
1

4

(
2a2 + 2b2 − c2

)
.

We label the angles adjacent to the median k as in Figure 2, 
and our first step toward the elusive perfect triangle will be 
to consider the requirement that just this median be rational.

Heron Triangles with One Rational Median
From a construction of parallelograms with rational 
sides, area, and diagonals, Schubert was led to the case 
of Heron triangles with one rational median, and he 
went on to present an argument that such triangles 
could not have a second rational median, which a for-
tiori would rule out the existence of perfect triangles. 
However, as pointed out by Leonard Eugene Dickson 
[4], his argument contained an oversight that rendered it 
insufficient. That flaw notwithstanding, an identity of 
Schubert’s for Heron triangles with one rational median 
is crucial for what follows.

If we write b, c,k for the vectors corresponding to 
the lengths b, c, k, directed outward from the top ver-
tex in Figure 2, and a = b − c = 2(k − c) = 2(b − k) , 
then the dot product (b − c) ⋅ k = a ⋅ k gives 
bk cos � − ck cos � = ak cos � , while the area of the tri-
angle is Δ = |b × k| = |c × k| = 1

2
|a × k| , which gives 

Δ = bk sin � = ck sin � =
1

2
ak sin � . Combining these rela-

tions produces the identity

Given three angles �, �, � in the interval (0,�) subject to 
𝛼 + 𝛽 < 𝜋 , it is convenient to take

as parameters, and then by standard trigonometric identi-
ties (equivalent to the “t-substitution” in (2) above), the 
identity (5) becomes a rational relation between these three 
quantities, namely

This gives the equation of a surface in three-space with 
coordinates (M, P, X), which can be rewritten as the van-
ishing of a polynomial:

 We shall refer to it as the Schubert surface.
From the half-angle identity cot(�∕2) = sin �∕(1 − cos �) , 

we have M = Δ∕(bk − b ⋅ k) . Using the analogous expres-
sions for P and X together with dot product relations, we can 
express these Schubert parameters in terms of the area, side 
lengths, and median by the formulas

(5)2 cot � = cot � − cot �.

(6)M = cot
�

2
, P = cot

�

2
, X = cot

�

2

(7)M −
1

M
= P −

1

P
+ 2

(
X −

1

X

)
.

2MP(X2 − 1) +MX(P2 − 1) − PX(M2 − 1) = 0.

Figure 1:  The (15, 13, 14) Heron triangle from the two 
Pythagorean triples (9, 12, 15) and (5, 12, 13).

Figure 2:  A triangle with one labeled median.
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The ratios of the side lengths are given in terms of the 
Schubert parameters by

Formulas (8) show that every Heron triangle with a 
rational median k produces a rational point on the Schu-
bert surface (7), with positive coordinates (M,P,X) ∈ ℚ3 . 
How about the converse: does every rational point on this 
surface correspond to a Heron triangle with (at least) one 
rational median? In fact, using certain discrete symmetries 
of the surface (sending (M, P, X) to (M−1,P−1,X−1) or 
replacing one of the Schubert parameters by its negative 
reciprocal), we can begin with any triple of nonzero values 
(M,P,X) ∈ ℚ3 satisfying (7) and turn it into a valid posi-
tive triple. Then the side lengths (a, b, c) are determined 
by (M, P, X) using the rational expressions (9), up to an 
arbitrary choice of scale; after fixing the scale, any pair 
of equations (8) allow the rational numbers k and Δ to be 
recovered.

Triangles with Two Rational Medians
In striving to get closer to perfection, another possible direc-
tion for our first step is to drop the requirement that the area 
Δ be rational and just consider triangles with rational sides 
(a, b, c) and two rational medians k,� . In his PhD thesis [1], 
Ralph H. Buchholz obtained a rational parametrization of all 
such triangles, given by the formulas

where �,� are rational numbers subject to constraints 
ensuring positivity of the side lengths, namely,

and the positive parameter � ∈ ℚ allows for an arbitrary 
choice of scale. Conversely, the parameters (�,�) ∈ ℚ2 can 
be written as rational functions of the side lengths and two 
medians, given by

where s = (a + b + c)∕2 is the semiperimeter, as before.
Note that in (12), there are two independent choices of ± 

signs, and hence four different pairs (�,�) associated with 
the same rational triangle with two rational medians.

(8)

M =
4Δ

4bk + a2 − 3b2 − c2
,

P =
4Δ

4ck + a2 − b2 − 3c2
,

X =
4Δ

2ak − b2 + c2
.

(9)a

c
=

2(X + X−1)

P + P−1
,

b

c
=

M +M−1

P + P−1
.

(10)

a = �(−2�2� − ��2 + 2�� − �2 + � + 1) ,

b = �(�2� + 2��2 − �2 + 2�� − � + 1) ,

c = �(�2� − ��2 + �2 + 2�� + �2 + � − �) ,

(11)0 < 𝜃 < 1, 0 < 𝜙 < 1, 𝜙 + 2𝜃 > 1 ,

(12)� =
c − a ± 2�

2s
, � =

b − c ± 2k

2s
,

Intermezzo: Somos‑5 Sequences
Before we continue our quest for the perfect triangle, we 
must recall some beautiful observations made by Michael 
Somos [13]. The saga of Somos sequences attracted wide-
spread attention due to Mathematical Intelligencer articles 
by David Gale [7], and they provided inspiration for the 
study of the Laurent phenomenon and its development 
in Fomin and Zelevinksy’s theory of cluster algebras [5, 
6], which has been one of the hottest topics in algebra for 
almost twenty-five years.

A recurrence relation of Somos type is a homogeneous 
quadratic recurrence of a particular form. Here we focus on 
the example of Somos-5 sequences, which are recurrence 
relations of order 5 given by

for n > 4 . Somos noticed that if all five initial values  
are equal to 1, then the resulting Somos-5 sequence1 
begins

and consists entirely of integers. This seems very surpris-
ing, because at each iteration of (13), one must divide 
the right-hand side by Sn to obtain the new term Sn+5 . 
The Laurent property provides one explanation for the 
integrality of the Somos-5 sequence: if the initial values 
Sj , 1 ≤ j ≤ 5 , for the recurrence are considered variables, 
then each iterate turns out to be a polynomial in these 
quantities and their reciprocals with integer coefficients: 
Sn = Pn(S

±1
1 , S±12 , S±13 , S±14 , S±15 ) (that is, a Laurent polyno-

mial). On substituting S1 = S2 = S3 = S4 = S5 = 1 into each 
polynomial Pn , the integer sequence (14) results.

Another completely different way to understand So-
mos-5 sequences relies on a connection with integrable 
maps, which are discrete analogues of exactly solvable 
systems in Hamiltonian mechanics. To see this connection, 
note that the recurrence (13) has three independent scaling 
symmetries: rescaling even/odd index terms separately, so 
S2j → A+S2j , S2j+1 → A−S2j+1 , and rescaling Sn → BnSn for 

any n, where A+,A−,B are arbitrary nonzero constants. 
Moreover, we can form a sequence of ratios that is left in-
variant by these scaling symmetries and find that it satisfies 
a recurrence of second order:

By considering (U ,V ) = (un, un+1) as a point in the plane, 
we see that each shift n ↦ n + 1 of the discrete “time” in 
(15) is equivalent to an iteration of a birational transforma-
tion (a rational map with a rational inverse)

The transformation (16) is an example of a Quispel– 
Roberts–Thompson (QRT) map: such maps have arisen in 
various physical contexts, including statistical mechanics, 

(13)Sn+5Sn = Sn+4Sn+1 + Sn+3Sn+2 ,

(14)
1, 1, 1, 1, 1, 2, 3, 5, 11, 37, 83, 274, 1217, 6161, 22833, 165713

(15)un =
Sn−2Sn+1
Sn−1Sn

⟹ un+1un−1 = 1 +
1

un
.

(16)� ∶

(
U
V

)
↦

(
V

U−1(1 + V−1)

)
.

1Sequence A006721 in the On-line Encyclopedia of Integer Sequences (OEIS).
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nonlinear waves (solitons), and quantum field theory [11]. 
In a suitable regime, the iterates of the map appear like a 
stroboscopic view of a mechanical system with one degree 
of freedom. More precisely, the transformation � is area-pre-
serving (symplectic): it preserves the logarithmic area element 
(UV )−1 dU dV in the plane, and it obeys conservation of 
energy, where “energy” in this case is the rational function

The level sets of this function are plane curves 
J̃ = constant , and each orbit of � lies on a fixed level set. 
The behavior is especially regular in the positive quadrant 
U > 0 , V > 0 , where each orbit densely fills a compact oval 
(see Figure 3, where three hundred points are plotted on 
each orbit).

We shall see that in relation to Heron triangles with two 
rational medians, two different integer sequences appear, 
namely the pair of Somos-5 sequences given by

where the terms above are listed starting from the index 
n = 0 . The first one, (Sn) , is just the original Somos-5 
sequence (14), but indexed differently: it corresponds to 
the orbit of the map � through the point (1, 1), while the 
second sequence, (Tn) , corresponds to the orbit through 
the point (−1, 7) . It is easily verified that both of these 
orbits lie on the same level curve J̃ = 5 of the function (17),

a plane cubic curve (total degree 3) that is also biquadratic 
(quadratic in both U and V). The first orbit corresponds to 
the oval shown in red in Figure 3, whereas the second orbit 
lies outside the positive quadrant, moving around the three 
unbounded components of this curve, which can be seen in 
Figure 4.

Heron Triangles with Two Rational 
Medians
Buchholz found the first example of a Heron triangle with 
two rational medians: the (73, 51, 26) triangle with area 
420 and k = 35∕2 , � = 97∕2 , which had been overlooked 
by Schubert in his work on parallelograms. After join-
ing forces, Buchholz and Randall Rathbun conducted a 
systematic search for such triangles, using the following 
algorithm based on (10): fix the scale � = 1 , enumerate pairs 
of rational numbers (�,�) , and for each pair use Heron’s 
formula (3) to check whether the area Δ is rational [2]. The 
first few triangles obtained from this search are shown in 
Table 1, where each triangle is represented by positive 
integers (a, b, c) with gcd(a, b, c) = 1 . Their initial investi-
gations suggested that there should be an infinite family 
of such triangles (rows labeled with a positive integer n), 
together with an unknown number of sporadic triangles 
that do not fit into this family (rows labeled with asterisks).

Heron triangles with two rational medians are associ-
ated with two different triples of Schubert parameters, 
(Ma,Pa,Xa) , (Mb,Pb,Xb) , each corresponding to a particu-
lar set of angles �, �, � adjacent respectively to one of the 
medians k,� . These triples provide two different rational 
points on the Schubert surface (7), coupled by two con-
straints coming from the ratios of side lengths, as in (9). Re-
markably, by considering the patterns of prime factors ap-
pearing in these rational numbers, Buchholz and Rathbun 

(17)J̃ = U + V +
1

U
+

1

V
+

1

UV
.

(18)
(Sn) ∶ 1, 1, 1, 2, 3, 5, 11, 37, 83, 274,… ,

(Tn) ∶ 0, 1,−1, 1, 1,−7, 8,−1,−57, 391,… ,

(19)U2V + UV2 + U + V − 5UV + 1 = 0,
Figure 3:  Some orbits of the map (16) in the positive quad-
rant.

Figure 4:  The curve (19) in the (U, V)-plane.
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found conjectural formulas for a subset of these parameter 
triples in terms of the two Somos sequences (18), such as

and analogous expressions for the other elements of each 
triple. When for successive integers n = 1, 2, 3,… , they 
plotted the corresponding pairs (�,�) found from (12) 
with a fixed choice of ± signs, they found them to lie on 
one of five algebraic curves Cj , 1 ≤ j ≤ 5 , isomorphic to 
one another and repeating in a pattern with period 7, the 
simplest-looking curve being the biquadratic cubic

It was pointed out by Elkies (see [2]) that the sequences (18) 
can be written using theta functions associated with the 
elliptic curve given by the equation

which has infinitely many rational points2 and is isomor-
phic (birationally equivalent) to C4 . Indirectly, this led to 
a proof that every rational point (�,�) on the genus-one 

(20)Ma = −
Sn+1S

2
n+2Tn

SnTn+1T
2
n+2

, Mb =
Sn+1Sn+4Tn+1Tn+4

Sn+2Sn+3Tn+2Tn+3

,

(21)C4 ∶ �2� − ��2 + �� + 2� − 2� − 1 = 0 .

(22)E(ℚ) ∶ y2 + xy = x3 + x2 − 2x ,

curve C4 given by (21), subject to the constraints (11), cor-
responds to a Heron triangle with two rational medians [3].

However, until very recently, (20) and the explicit expres-
sions for the other Schubert parameters remained conjec-
tural. The key to progress in [9] was to observe the elegant 
factorization pattern in the quantities appearing under the 
square root in Heron’s formula, namely the semiperimeter s 
and the reduced side lengths s − a , s − b , s − c (see Table 2). 
It turns out that (up to an overall sign) each of these four 
quantities is given by a specific product of terms from the 
two Somos-5 sequences, leading to the following result.

Theorem 1. For every integer n ≥ 1, the terms in the pair 
of Somos-5 sequences (Sn) and (Tn) in (18) provide a Heron 
triangle with two rational medians having integer side lengths 
given by

a =
|||Sn+1S

3
n+2Sn+3Tn+2 + S2nSn+1Tn+3T

2
n+4

||| ,

b =
|||S

2
nSn+1Tn+3T

2
n+4 − Tn+1T

3
n+2Tn+3Sn+2

||| ,

c =
|||Tn+1T

3
n+2Tn+3Sn+2 − Sn+1S

3
n+2Sn+3Tn+2

||| ,

Table 1.:  The smallest Heron triangles with two rational medians.

n a b c k � Δ

1 73 51 26 35/2 97/2 420
2 626 875 291 572 433/2 55440
* 1241 4368 3673 7975/2 1657 2042040
** 14384 14791 11257 11001 21177/2 75698280
3 28779 13816 15155 3589/2 21937 23931600
4 1823675 185629 1930456 2048523/2 3751059/2 142334216640
*** 2288232 1976471 2025361 1641725 3843143/2 1877686881840
**** 22816608 20565641 19227017 16314487 36845705/2 185643608470320
5 2442655864 2396426547 46263061 1175099279 2488886435/2 2137147184560080

Table 2.:  Prime factors of the semiperimeter, reduced side lengths, and area in the infinite family.

n s s − a s − b s − c Δ

1 3 ⋅ 52 2 23 ⋅ 3 72 22 ⋅ 3 ⋅ 5 ⋅ 7

2 5 ⋅ 112 3 ⋅ 7 2 ⋅ 33 ⋅ 5 27 ⋅ 7 24 ⋅ 32 ⋅ 5 ⋅ 7 ⋅ 11

3 11 ⋅ 372 23 ⋅ 5 ⋅ 73 3 ⋅ 53 ⋅ 7 ⋅ 11 25 ⋅ 3 24 ⋅ 3 ⋅ 52 ⋅ 72 ⋅ 11 ⋅ 37

4 7 ⋅ 37 ⋅ 832 29 ⋅ 7 ⋅ 11 23 ⋅ 5 ⋅ 113 ⋅ 37 34 ⋅ 5 ⋅ 192 26 ⋅ 32 ⋅ 5 ⋅ 7 ⋅ 112 ⋅ 19 ⋅ 37 ⋅ 83

5 25 ⋅ 72 ⋅ 83 ⋅ 1372 23 ⋅ 3 ⋅ 19 ⋅ 37 11 ⋅ 373 ⋅ 83 3 ⋅ 52 ⋅ 11 ⋅ 172 ⋅ 19 ⋅ 232 24 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 372 ⋅ 83 ⋅ 137

Table 3.:  Prime factors of the semiperimeter, reduced side lengths, and area in the sporadic cases.

n s s − a s − b s − c Δ

* 3 ⋅ 7 ⋅ 13 ⋅ 17 23 ⋅ 52 ⋅ 17 3 ⋅ 7 ⋅ 13 23 ⋅ 112 23 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17

** 23 ⋅ 7 ⋅ 192 23 ⋅ 36 52 ⋅ 7 ⋅ 31 172 ⋅ 31 23 ⋅ 33 ⋅ 5 ⋅ 7 ⋅ 17 ⋅ 19 ⋅ 31

*** 23 ⋅ 32 ⋅ 112 ⋅ 192 25 ⋅ 32 ⋅ 52 ⋅ 7 ⋅ 17 232 ⋅ 472 7 ⋅ 17 ⋅ 972 24 ⋅ 32 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 47 ⋅ 97

**** 17 ⋅ 232 ⋅ 592 52 ⋅ 72 ⋅ 132 ⋅ 41 24 ⋅ 3 ⋅ 112 ⋅ 432 24 ⋅ 3 ⋅ 17 ⋅ 192 ⋅ 41 24 ⋅ 3 ⋅ 5 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 41 ⋅ 43 ⋅ 59

2See https:// www. lmfdb. org/ Ellip ticCu rve/Q/ 102a1/.

https://www.lmfdb.org/EllipticCurve/Q/102a1/
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with gcd(a, b, c) = 1, rational median lengths

and integer area

The curve (19) is birationally equivalent to the curve C4 
in (21), hence also to the curve (22). Its set of rational points 
is the union of two orbits of the map (16): the orbit associ-
ated with the sequence (Sn) lying on the oval in the positive 
quadrant in Figure 4, and the orbit associated with (Tn) , 
which jumps around the other three quadrants in a pat-
tern that repeats with period 7. Thus these two Somos-5 
sequences completely encode the structure of this infinite 
family of Heron triangles with two rational medians. It 
would be natural to wonder whether any of the triangles 
in this family can have a third rational median m, but it has 
been proven that such is not the case [10].

Still, this leaves some big challenges to the reader: so far, 
only four sporadic triangles have been found that do not 
belong to the infinite family! The prime factorization of each 
semiperimeter and the reduced lengths in Table 3 give tanta-
lizing hints of further structure. Can you extend the search 
to find more sporadic examples and fit them into one or more 
new infinite families encoded by Somos (or other) sequenc-
es? Or can you show that these four are the only sporadic 
triangles, thereby proving that unicorns do not exist?
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