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Abstract—A frequency modulated continuous wave 

(FMCW) light detection and ranging (LiDAR) system based on 

reservoir computing (RC) is proposed and its reliability is 

verified through simulations and experiments. Fundamentally 

different from previous approaches where Fourier analysis is 

always required to determine distance information, here 

temporal signal analysis using RC is adopted. The system is 

robust to nonlinearity in frequency modulation of optical 

carrier, hence improving the range detection resolution. An 

intensity-modulated light is injected into a semiconductor laser 

to deliberately generate a non-ideal nonlinear wavelength 

scanning light source. The change in distance corresponds to the 

change in the IF signal over time. The RC classifies the IF signal 

waveform in the time domain to eliminate the need for 

linearization, and determines the distance from the 

classification results. The distance measurement resolution of 

this method is 1 cm in the 6.1 GHz scanning range, which shows 

that the method effectively addresses the effect of source 

nonlinearity due to the scanning wavelength while reducing 

computational complexity. The method has been demonstrated 

to reduce calculation cost. 
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I.  INTRODUCTION 

Frequency-modulated continuous wave (FMCW) LiDAR 
systems are widely used in remote sensing [1], remote sensing 
[2] and 3D imaging [3] due to their advantages of high 
interference immunity, high resolution, high signal-to-noise 
ratio and low optical power requirements [4]. 

FMCW LiDAR typically uses an external optical 
aberration method for coherent detection. The signal light is 
coupled to the reference light and an IF signal containing 
distance and velocity information are generated after PD. A 
fast Fourier transform (FFT) is then performed on the IF signal 
to detect very narrow power peaks in the power spectrum, 
allowing accurate distance and velocity information to be 
demodulated. Almost all wavelength sources, however, have 
difficulty achieving perfectly linear sweep. This can 
significantly affect the FFT peaks and broaden the spectrum, 
thus significantly degrading the resolution and SNR of LiDAR 
and even hindering target identification [5]. 

So far, the purpose of nonlinear correction has been to 
remove the spectrum broadening after FFT. However, spectral 
broadening makes the FFT peaks indistinguishable while 
complicating the corresponding waveforms in the time 
domain. Therefore, changing the distance inevitably changes 
the waveform in the time domain. This change allows accurate 
distance measurements to be made by distinguishing 
waveforms at different distances. The reservoir calculation 
(RC) is suitable for this task. In recent years, based on its fast 
learning rate and low cost, RC has shown excellent 
performance in waveform classification, time series 
prediction, and instantaneous frequency classification [13-15]. 
RC is a special variant of RNN [16]. Compared to 
conventional RNN models, RC requires only training the 
output weights, which provides higher training efficiency and 
faster computation while maintaining similar recognition 
performance. RC is also much less computationally intensive 
than FFT [17-18]. 

We present an RC-based FMCW LiDAR system that 
generates wavelength sweeping light by optical injection into 
a semiconductor laser [19-21]. We then use a Mach-Zehnder 
interferometer (MZI) and an adjustable delay line to simulate 
the change in distance to an object: the two arms of the MZI 
represent the reference and signal light, respectively. The 
reference and signal light are connected via a 3 dB coupler and 
detected by a PD to obtain a time-domain IF waveform. The 
different waveforms can then be quickly classified by RC to 
determine the measurement distance. The proposed method 
avoids the negative effects caused by the non-linearity of the 
light source by identifying the waveforms. 

II. PRINCIPLE 

As shown in Fig. 1, the overall structure of the proposed 
system consists of two main parts. The first part aims to extract 
the waveform of the IF signal together with the distance 
information in the time domain. As shown in Fig. 1(a), the 
system uses a light source with a fully nonlinear wavelength 
sampling process as the wavelength sampling source, and the 
IF signal is obtained at . Due to the nonlinearity, the frequency 
difference between the two beams is not constant in 
continuous time, and the IF signal is scattered as shown in Fig. 
1(b). As the distance changes, even small changes in the 
frequency range cause changes in the waveform as shown in 
Fig. 1(c). 
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The second module aims to classify the waveforms of IF 
signals acquired at different distances using RC. The distances 
can be determined from the classification results. 

A typical RC model has an input layer, a storage layer and 
an output layer, which are trained by summing the state 
vectors of the reservoir in response to the training data; due to 
the nature of RC, only the output weights need to be trained, 
so the input weights and internal state weights are randomised 
according to the size of the reservoir's water layer should be 
generated. Thereafter, the updated states of the nodes in the 
stock water layer need only be stored: 
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where �� is the jth sample of the input data,���� is the previous 

state vector, 	
�  is the input matrix, 	���  is the memory 
weight matrix and tanh is the tangential activation function. �� 
is the current state vector. 

The next training uses the training output weight matrix 
���� with the ridge regression algorithm: 
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where X is the input matrix, �� is the transfer matrix of X, Y 
is the corresponding output matrix, I is the unit matrix, and λ 
is the degree of normalization. The purpose of the degree of 
normalization is to control the complexity of the model and 
prevent overfitting. The larger the value, the larger the penalty 
of the normalization term in the model, the lower the 
complexity of the model and the worse the fit in the training 
set, but the better the generalization to the test set. Conversely, 
the smaller the value, the greater the complexity of the model, 
the better the fit to the training set, but the worse the 
generalization to the test set. 

We use ����� to represent the output of the ESN network. 

The formula is as follows 

����� � � !�"���#$� (3) 

where #$  is the output obtained after the ridge regression 
algorithm, which is calculated as follows 

#$ � %���� (4) 

Softmax is an activation function that takes a vector as 
input and returns the ratio of the exponent of each element to 
the sum of the elements. In this paper softmax is calculated as 
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where '�  denotes the jth element of the input vector and K 

denotes the length of the input vector. This function 
compresses each element to between [0,1] and makes the sum 
of all elements equal to 1. 

III. SIMULATION AND EXPERIMENT RESULTS 

The effect of non-linearity on the accuracy of distance 
measurements was investigated by simulation. Using an 
LFMCW signal with a sampling range of 6 GHz as the 
sampling source, the distance variation was simulated using 
MZI, with a relative time delay of 10 ns for the two MZI arms, 
a refractive index of 1.4502 for the fibres and the fibre length 
expressed as:  
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where, n  represents the refractive index of fiber, τ the 
represents the relative time delay of two arms of MZI. 

When τ  is changed to simulate the distance change. 
Based on the bandwidth of the detected signal and the 
frequency of the IF signal, the distance d is obtained as follows: 
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where, c  is the speed of light, of  is the frequency of IF signal, 

and B  is the sweep range of the wavelength sweep light 
source. 

To validate the method proposed in this work, a FMCW 
signal with a nonlinear sweep bandwidth of 6 GHz was used 
as the sweep source, as shown in Figure 2(a). The length of 
the fibre used in the simulation is the same as before. As 
shown in Figure 2(b), the spectrum widens significantly and 
the accuracy of the measurement decreases significantly, 
making it impossible to measure the fiber length accurately. 

 

Fig.1. Schematic of the FMCW LiDAR system. 

 

Fig. 2. (a) Instantaneous frequency of FMCW signal. (b) Spectrum 
broadening due to nonlinearity. 

 

Fig.3. Waveforms of IF signals from 2m to 2.11m with an interval of 1 
cm.  



However, the non-linearity of the sampling source causes 
spectral broadening as well as differences in the IF waveform. 
Next, the relative delay of the MZI was increased from 10 ns 
to 10.75 ns in 0.05 ns steps, corresponding to distances from 
2 m to 2.11 m. Time domain waveforms were generated at 
different distances in 1 cm steps, as shown in Figure 3. 

As can be seen in figure 3, the IF signals have different 
waveforms. By gradually increasing the measurement 
distance, the waveform changes cyclically every 5 cm in the 
low frequency band. However, this does not mean that the 
waveforms are uniform, as the waveforms in the time domain 
inevitably become more intense as the frequency of the IF 
signal increases. Therefore, it is necessary to try to test very 
similar waveforms. 

The 11 waveform signals were selected from a distance of 
2m to 2.1m and trained on the RC in the order of 2m to 2.1m. 
The test set still uses that set of data but arranges them in 
reverse order, which is 2.1m to 2 m. In this case, we set the 
reservoir size to 1000, the spectral radius of the reservoir 
weight matrix to 0.8, the input scaling to 0.2, the connection 
threshold between neurons or nodes to 0.3, the normalisation 
ratio to 500 and the activation function to tan. As shown in 
Figure 4, the upper half shows the test results and the lower 
half shows the actual labels; comparing the two results, it can 
be seen that the peaks in the results match well with the actual 
labels. This shows that RC successfully classifies waveforms 
between 2 m and 2.1 m. 

The classification results show that RC successfully 
classifies waveforms from 2m to 2.1m. In addition, 
waveforms with a high degree of similarity, such as 2m, 2.05m 
and 2.1m, were successfully classified, indicating that the 
method has a strong ability to recognise waveforms. 

IV. CONCLUSION 

In this study, an RC-based FMCW LiDAR system is 
proposed and experimentally demonstrated. This scheme uses 
RC to classify IF signal waveforms, thereby eliminating the 
non-linear effects of wavelength-scanning light sources and 
ensuring accurate measurements. Compared to conventional 
FFT-based schemes, the system complexity is reduced as it 

does not require the use of an auxiliary interferometer. On the 
other hand, the RC can be trained quickly and inexpensively, 
eliminating the need for complex resampling at a later stage. 
This method has been experimentally validated using 
simulated data. 
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Fig. 4. Results of waveform classification for all the 11 waveforms 
corresponding to different distances. 


