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Abstract
The automorphism group of a quantised coordinate
algebra is usually much smaller than that of its clas-
sical counterpart. Nevertheless, these automorphism
groups are often very difficult to calculate. In this paper,
we calculate the automorphism group of the quantum
grassmannian in the case that the deformation parame-
ter is not a root of unity. The main tool employed is the
dehomogenisation equality which shows that a localisa-
tion of the quantum grassmannian is equal to a skew
Laurent extension of quantum matrices. This equal-
ity is used to connect the automorphism group of the
quantum grassmannian with that of quantum matrices,
where the automorphism group is known.
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1 INTRODUCTION

The quantum grassmannian 𝑞(𝐺(𝑘, 𝑛)) is a non-commutative algebra that is a deformation of
the homogeneous coordinate ring of the classical grassmannian of 𝑘-planes in 𝑛-space. In this
paper, we calculate the automorphism group of the quantum grassmannian in the generic case
where the deformation parameter 𝑞 is not a root of unity.
Typically, quantised coordinate algebras are much more rigid than their classical counterparts,

in the sense that the automorphism group of the quantum object is much smaller than that of
the classical object. Nevertheless, it has proven difficult to calculate these automorphism groups
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2 LAUNOIS and LENAGAN

F IGURE 1 The partial order on Π for 𝑞(𝐺(3, 6)).

and only a few examples are known where the calculation has been completed, see, for example,
[1, 6, 9–11, 17, 18]. The automorphism group of quantummatrices [10, 17] will prove crucial in our
present work.
The quantum grassmannian 𝑞(𝐺(𝑘, 𝑛)) is generated as an algebra by the 𝑘 × 𝑘 quantum

minors of the quantummatrix algebra𝑞(𝑀(𝑘, 𝑛)). These generators are called quantum Plücker
coordinates and there is a natural partial order on the quantum Plücker coordinates that is illus-
trated in the case of 𝑞(𝐺(3, 6)) in Figure 1. There are two obvious sources of automorphisms for
𝑞(𝐺(𝑘, 𝑛)). The first is by restricting column automorphisms of 𝑞(𝑀(𝑘, 𝑛)) to the subalgebra
𝑞(𝐺(𝑘, 𝑛)), these automorphisms are described in Section 4. The second is via studying certain
automorphisms of the (non-commutative) dehomogenisation of 𝑞(𝐺(𝑘, 𝑛)) that is isomorphic
to a skew Laurent extension of 𝑞(𝑀(𝑘, 𝑝)), with 𝑝 = 𝑛 − 𝑘, as we shall see in Section 3.
In Section 4, we study these ‘obvious’ automorphisms of𝑞(𝐺(𝑘, 𝑛)) and consider the relations

between them. We then claim that these provide all of the automorphisms of 𝑞(𝐺(𝑘, 𝑛)), and
justify the claim in the following sections. More precisely, we show the following result.

Theorem.

(1) The automorphism groupAut(𝑞(𝐺(𝑘, 𝑛))) of𝑞(𝐺(𝑘, 𝑛)) is isomorphic to (𝐾∗)𝑛 when 2𝑘 ≠ 𝑛.
(2) Assume 2𝑘 = 𝑛. There is an automorphism 𝜏 of 𝑞(𝐺(𝑘, 𝑛)) that sends the quantum Plücker

coordinate [𝐼] to [𝑤0( �̂� )], where �̂� is the complement of 𝐼 in {1, … , 𝑛} and 𝑤0 is the longest
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THE AUTOMORPHISM GROUP OF THE QUANTUM GRASSMANNIAN 3

permutation of {1, … , 𝑛}. Moreover, the automorphism group Aut(𝑞(𝐺(𝑘, 𝑛))) of 𝑞(𝐺(𝑘, 𝑛))

is isomorphic to (𝐾∗)𝑛 ⋊ ⟨𝜏⟩.
The quantum grassmannian carries the structure of an ℕ-graded algebra, with each quan-

tum Plucker coordinate having degree one. In Section 5, we exploit this grading in a
series of lemmas to see that we can essentially fix the minimal and maximal elements
in the poset after allowing adjustment by the automorphisms that we have found in
Section 4.
In Section 6, we study these adjusted automorphisms and show that such an automorphism

induces, via the dehomogenisation equality, an automorphism of𝑞(𝑀(𝑘, 𝑛)). Once this has been
done, our main result follows easily in Section 7 from the known structure of the automorphism
group of quantum matrices.

2 BASIC DEFINITIONS

Throughout the paper, we work with a field 𝐾 and a non-zero element 𝑞 ∈ 𝐾 that is not a root
of unity.
The algebra of 𝑚 × 𝑛 quantum matrices over 𝐾, denoted by 𝑞(𝑀(𝑚, 𝑛)), is the algebra gen-

erated over 𝐾 by𝑚𝑛 indeterminates 𝑥𝑖𝑗 , with 1 ⩽ 𝑖 ⩽ 𝑚 and 1 ⩽ 𝑗 ⩽ 𝑛, which commute with the
elements of 𝐾 and are subject to the relations:

𝑥𝑖𝑗𝑥𝑖𝑙 = 𝑞𝑥𝑖𝑙𝑥𝑖𝑗, for 1 ⩽ 𝑖 ⩽ 𝑚, and 1 ⩽ 𝑗 < 𝑙 ⩽ 𝑛 ;

𝑥𝑖𝑗𝑥𝑘𝑗 = 𝑞𝑥𝑘𝑗𝑥𝑖𝑗, for 1 ⩽ 𝑖 < 𝑘 ⩽ 𝑚, and 1 ⩽ 𝑗 ⩽ 𝑛 ;

𝑥𝑖𝑗𝑥𝑘𝑙 = 𝑥𝑘𝑙𝑥𝑖𝑗, for 1 ⩽ 𝑘 < 𝑖 ⩽ 𝑚, and 1 ⩽ 𝑗 < 𝑙 ⩽ 𝑛 ;

𝑥𝑖𝑗𝑥𝑘𝑙 − 𝑥𝑘𝑙𝑥𝑖𝑗 = (𝑞 − 𝑞−1)𝑥𝑖𝑙𝑥𝑘𝑗, for 1 ⩽ 𝑖 < 𝑘 ⩽ 𝑚, and 1 ⩽ 𝑗 < 𝑙 ⩽ 𝑛.

It is well-known that 𝑞(𝑀(𝑚, 𝑛)) is an iterated Ore extension over 𝐾 with the 𝑥𝑖𝑗 added in
lexicographic order. An immediate consequence is that 𝑞(𝑀(𝑚, 𝑛)) is a Noetherian domain.
When𝑚 = 𝑛, the quantum determinant 𝐷𝑞 is defined by;

𝐷𝑞 ∶=
∑

(−𝑞)𝑙(𝜎)𝑥1𝜎(1)⋯𝑥𝑛𝜎(𝑛),

where the sum is over all permutations 𝜎 of {1, … , 𝑛} and 𝑙(𝜎) denotes the length of the per-
mutation 𝜎. The quantum determinant is a central element in the algebra of quantum matrices
𝑞(𝑀(𝑛, 𝑛)).
If 𝐼 and 𝐽 are 𝑡-element subsets of {1, … ,𝑚} and {1, … , 𝑛}, respectively, then the quantumminor

[𝐼 ∣ 𝐽] is defined to be the quantumdeterminant of the 𝑡 × 𝑡 quantummatrix subalgebra generated
by the variables 𝑥𝑖𝑗 with 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽.
Assume that 𝑛 ⩾ 𝑘. The homogeneous coordinate ring of the 𝑘 × 𝑛 quantum grassmannian,

𝑞(𝐺(𝑘, 𝑛)) (informally known as the quantum grassmannian) is the subalgebra of 𝑞(𝑀(𝑘, 𝑛))

generated by the 𝑘 × 𝑘 quantum minors of 𝑞(𝑀(𝑘, 𝑛)), see, for example, [7].
The quantum grassmannian 𝑞(𝐺(1, 𝑛)) is a quantum affine space, and, as such, its automor-

phism group is known, see [1]; so we will assume throughout this paper that 𝑘 > 1. Also, we will
see in Proposition 3.4 that 𝑞(𝐺(𝑘, 𝑛)) ≅ 𝑞(𝐺(𝑛 − 𝑘, 𝑛)), so in calculating the automorphism
group we will assume that 2𝑘 ⩽ 𝑛 (and so 𝑛 ⩾ 4, as 𝑘 ⩾ 2).
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4 LAUNOIS and LENAGAN

A 𝑘 × 𝑘 quantum minor of 𝑞(𝑀(𝑘, 𝑛)) must use all of the 𝑘 rows, and so we can specify the
quantum minor by specifying the columns that define it. With this in mind, we will write [𝐽]
for the quantum minor [1, … , 𝑘 ∣ 𝐽], for any 𝑘-element subset 𝐽 of {1, … , 𝑛}. Quantum minors
of this type are called quantum Plücker coordinates. The set of quantum Plücker coordinates in
𝑞(𝐺(𝑘, 𝑛)) is denoted by Π. There is a natural partial order on Π defined in the following way:
if 𝐼 = [𝑖1 < ⋯ < 𝑖𝑘] and 𝐽 = [𝑗1 < ⋯ < 𝑗𝑘] then [𝐼] ⩽ [𝐽] if and only if 𝑖𝑙 ⩽ 𝑗𝑙 for each 𝑙 = 1, … , 𝑘.
This partial order is illustrated for the case of𝑞(𝐺(3, 6)) in Figure 1. A standard monomial in the
quantum Plücker coordinates is an expression of the form [𝐼1][𝐼2] … [𝐼𝑡] where 𝐼1 ⩽ 𝐼2 ⩽ ⋯ ⩽ 𝐼𝑡
in this partial order. The set of all standard monomials forms a vector space basis of 𝑞(𝐺(𝑘, 𝑛))

over 𝐾, see, for example, [7, Proposition 2.8].

3 DEHOMOGENISATION OF 𝒒(𝑮(𝒌, 𝒏))

An element 𝑎 in a ring 𝑅 is said to be a normal element of 𝑅 provided that 𝑎𝑅 = 𝑅𝑎.
If 𝑅 is a domain then a non-zero normal element 𝑎 may be inverted, as the Ore condi-
tion for the set 𝑆 ∶= {𝑎𝑛} is easily verified. Standard results for non-commutative Noethe-
rian rings can be found in the books by Goodearl and Warfield [5] and McConnell and
Robson [16].
Set 𝑢 = {1, … , 𝑘}. Then [𝑢] commuteswith all other quantumPlücker coordinates up to a power

of 𝑞. We need to specify which power occurs. Here, and throughout the paper, for any quantum
Plücker coordinate [𝐼] of 𝑞(𝐺(𝑘, 𝑛)), we set 𝑑(𝐼) ∶= #(𝐼∖(𝐼 ∩ 𝑢)) ⩾ 0.

Lemma 3.1. Let [𝐼] be a quantum Plücker coordinate in 𝑞(𝐺(𝑘, 𝑛)). Then [𝑢][𝐼] = 𝑞𝑑(𝐼)[𝐼][𝑢].

Proof. This can be obtained from [8] by combining Lemma 3.7 and Theorem 3.4 of that paper.
(Note that [8] uses 𝑞−1 as the deformation parameter where we use 𝑞; so care must be taken in
interpreting their results.) It can also be extracted from [7, Corollary 1.1] by setting [𝐼] = [𝑢] in the
statement of the corollary and noting that the summation on the right-hand side of the displayed
equation is then empty. □

As 𝑞(𝐺(𝑘, 𝑛)) is generated by the quantum Plücker coordinates it follows from the previous
lemma that the element [𝑢] is a normal element and so we may invert [𝑢] to obtain the overring
𝑞(𝐺(𝑘, 𝑛))[[𝑢]

−1].
For 1 ⩽ 𝑖 ⩽ 𝑘 and 1 ⩽ 𝑗 ⩽ 𝑛 − 𝑘, set

𝑥𝑖𝑗 ∶= [1, … , ˆ𝑘 + 1 − 𝑖, … , 𝑘, 𝑗 + 𝑘][𝑢]−1 ∈ 𝑞(𝐺(𝑘, 𝑛))[[𝑢]
−1]. (1)

The case 𝑎 = 1 of [15, Theorem 3.2] shows that the elements 𝑥𝑖𝑗 generate an algebra 𝑅, say, that
sits inside 𝑞(𝐺(𝑘, 𝑛))[[𝑢]

−1] and is isomorphic to 𝑞(𝑀(𝑘, 𝑛 − 𝑘)). Also,

𝑞(𝐺(𝑘, 𝑛))[[𝑢]
−1] = 𝑅[[𝑢], [𝑢]−1].

(Note that, the way we have fixed things, that really is an equality in the above display, rather than
just an isomorphism.) In the rest of this note, we will write 𝑅 = 𝑞(𝑀(𝑘, 𝑝)) where 𝑝 ∶= 𝑛 − 𝑘

and when we are operating on the right-hand side of this equality, we will write 𝑦 for [𝑢].
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THE AUTOMORPHISM GROUP OF THE QUANTUM GRASSMANNIAN 5

As 𝑑([1, … , ˆ𝑘 + 1 − 𝑖, … 𝑘, 𝑗 + 𝑘]) = 1, it follows from Lemma 3.1 that [𝑢]𝑥𝑖𝑗 = 𝑞𝑥𝑖𝑗[𝑢] and that
𝑦𝑥𝑖𝑗 = 𝑞𝑥𝑖𝑗𝑦.
The equality above says that

𝑇 ∶= 𝑞(𝐺(𝑘, 𝑛))[[𝑢]
−1] = 𝑞(𝑀(𝑘, 𝑝))[𝑦, 𝑦−1; 𝜎], (2)

where 𝜎 is the automorphism of 𝑞(𝑀(𝑘, 𝑝)) such that 𝜎(𝑥𝑖𝑗) = 𝑞𝑥𝑖𝑗 for each 𝑖 = 1, … , 𝑘 and 𝑗 =
1,… , 𝑝. We will refer to Equation (2) as the dehomogenisation equality.
The next lemma gives the formulae for passing between quantum minors and Plücker coor-

dinates in the above equality. In the lemma, and elsewhere, we use the following notation: if 𝑎
is an integer and 𝑆 = {𝑠1, … , 𝑠𝑡} is a set of integers then 𝑎 + 𝑆 ∶= {𝑎 + 𝑠1, … , 𝑎 + 𝑠𝑡} and 𝑎 − 𝑆 ∶=

{𝑎 − 𝑠1, … , 𝑎 − 𝑠𝑡}.

Lemma 3.2.

(i) Let [𝐼 ∣ 𝐽] be a quantum minor in 𝑅 = 𝑞(𝑀(𝑘, 𝑝)). Then

[𝐼 ∣ 𝐽] = [{1…𝑘}∖(𝑘 + 1 − 𝐼) ⊔ (𝑘 + 𝐽)][𝑢]−1 ∈ 𝑞(𝐺(𝑘, 𝑛))[[𝑢]
−1] .

(ii) Let [𝐿] be a quantum Plücker coordinate in 𝑞(𝐺(𝑘, 𝑛)) and write 𝐿 = 𝐿⩽𝑘 ⊔ 𝐿>𝑘 where 𝐿⩽𝑘 =
𝐿 ∩ {1, … , 𝑘} and 𝐿>𝑘 = 𝐿 ∩ {𝑘 + 1,… , 𝑛}. Then

[𝐿] = [(𝑘 + 1) −
(
{1, … , 𝑘}∖𝐿⩽𝑘

)
∣ 𝐿>𝑘 − 𝑘]𝑦 ∈ 𝑞(𝑀(𝑘, 𝑝))[𝑦, 𝑦−1; 𝜎].

Proof.

(i) This formula occurs as the case 𝑎 = 1 of [15, Proposition 4.3] that gives the formula for general
quantumminors of𝑅 = 𝑞(𝑀(𝑘, 𝑝)) in terms of quantumPlücker coordinates of𝑞(𝐺(𝑘, 𝑛)).

(ii) Let [𝐿] be a quantum Plücker coordinate in𝑞(𝐺(𝑘, 𝑛)). Set 𝐼 = (𝑘 + 1) − ({1, … , 𝑘}∖𝐿⩽𝑘) and
𝐽 = 𝐿>𝑘 − 𝑘. Note that |𝐼| = |𝐽| = |𝐿>𝑘| and so we can form the quantumminor [𝐼 ∣ 𝐽]. Apply
(i) to [𝐼 ∣ 𝐽] to see that

[𝐼 ∣ 𝐽][𝑢] = [{1, … , 𝑘}∖{(𝑘 + 1) − {(𝑘 + 1) − ({1, … , 𝑘}∖𝐿⩽𝑘)}} ⊔ 𝑘 + (𝐿>𝑘 − 𝑘)]

= [{1, … , 𝑘}∖({1, … , 𝑘}∖𝐿⩽𝑘) ⊔ 𝐿>𝑘] = [𝐿⩽𝑘 ⊔ 𝐿>𝑘] = [𝐿],

so that (ii) is established.

□

The following corollary to the above lemma will be useful in later calculations.

Corollary 3.3. Suppose that [𝐿] is a quantum Plücker coordinate in 𝑞(𝐺(𝑘, 𝑛)) and write [𝐿] =
[𝐼 ∣ 𝐽][𝑢] for some [𝐼 ∣ 𝐽] ∈ 𝑞(𝑀(𝑘, 𝑝)).

(i) Let 𝑖 ∈ {1, … , 𝑘}. Then 𝑖 ∈ 𝐼 if and only if (𝑘 + 1) − 𝑖 ∉ 𝐿.
(ii) Let 𝑗 ∈ {1… , 𝑝}. Then 𝑗 ∈ 𝐽 if and only if 𝑗 + 𝑘 ∈ 𝐿.

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12994 by T

est, W
iley O

nline L
ibrary on [28/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 LAUNOIS and LENAGAN

We will use the dehomogenisation equality (2) in the next three sections to transfer the prob-
lem of finding automorphisms of 𝑞(𝐺(𝑘, 𝑛)) to that of finding automorphisms of 𝑞(𝑀(𝑘, 𝑝))

where the problem has been solved in [10] and [17]. Before doing that, we illustrate the useful-
ness of dehomogenisation by the following two results, the second of which identifies an extra
automorphism of 𝑞(𝐺(𝑘, 𝑛)) in the case that 𝑛 = 2𝑘.
First, there is an isomorphism 𝜏 between the quantum matrix algebras 𝑞(𝑀(𝑘, 𝑛 − 𝑘)) =

𝐾(𝑥𝑖𝑗) and 𝑞(𝑀(𝑛 − 𝑘, 𝑘)) = 𝐾(𝑥′
𝑖𝑗
) that sends 𝑥𝑖𝑗 to 𝑥′𝑗𝑖 and more generally sends a quantum

minor [𝐼 ∣ 𝐽] of 𝑞(𝑀(𝑘, 𝑛 − 𝑘)) to the quantum minor [𝐽 ∣ 𝐼] of 𝑞(𝑀(𝑛 − 𝑘, 𝑘)). With a slight
abuse of notation, we denote quantumminors of𝑞(𝑀(𝑛 − 𝑘, 𝑘))without dashes to differentiate
them fromquantumminors from𝑞(𝑀(𝑘, 𝑛 − 𝑘)). (When 𝑘 = 𝑛 − 𝑘 and𝑥𝑖𝑗 = 𝑥′

𝑖𝑗
this is the auto-

morphism of quantum matrices given by transposition and so we will refer to 𝜏 as the transpose
isomorphism.) This automorphism extends to an isomorphism from𝑞(𝑀(𝑘, 𝑛 − 𝑘))[𝑦, 𝑦−1; 𝜎] to
𝑞(𝑀(𝑛 − 𝑘, 𝑘))[𝑦′, 𝑦′−1; 𝜎′], where 𝜎(𝑥𝑖𝑗) = 𝑞𝑥𝑖𝑗 and 𝜎′(𝑥′𝑖𝑗) = 𝑞𝑥′

𝑖𝑗
. We also denote this exten-

sion by 𝜏. If 𝐿 is a subset of {1, … , 𝑛}, then �̂� denotes the complement of 𝐿 in {1, … , 𝑛}. We use 𝑤0

to denote the longest element of the symmetric group on {1, … , 𝑛}; that is, 𝑤0 reverses the order
of {1, … , 𝑛}.

Proposition 3.4. 𝑞(𝐺(𝑘, 𝑛)) ≅ 𝑞(𝐺(𝑛 − 𝑘, 𝑛)) via an isomorphism that sends the quantum
Plücker coordinate [𝐿] of 𝑞(𝐺(𝑘, 𝑛)) to the quantum Plücker coordinate [𝑤0( �̂� )] of the quantum
grassmannian 𝑞(𝐺(𝑛 − 𝑘, 𝑛)).

Proof. We may assume that 2𝑘 ⩽ 𝑛. There is an isomorphism

𝑞(𝐺(𝑘, 𝑛))[[𝑢]
−1] = 𝑞(𝑀(𝑘, 𝑛 − 𝑘))[𝑦, 𝑦−1; 𝜎] ≅1

𝑞(𝑀(𝑛 − 𝑘, 𝑘)[𝑦′, 𝑦′−1; 𝜎′] ≅ 𝑞(𝐺(𝑛 − 𝑘, 𝑛))[[𝑢′]−1],

where [𝑢′] = [1, … , 𝑛 − 𝑘] ∈ 𝑞(𝐺(𝑛 − 𝑘, 𝑛)) and 𝜎′(𝑥′
𝑖𝑗
) = 𝑞𝑥′

𝑖𝑗
. (Note that ≅1 is given by apply-

ing the transpose isomorphism 𝜏 that sends [𝐼 ∣ 𝐽] to [𝐽 ∣ 𝐼] and sends 𝑦 = [𝑢] = [1, … , 𝑘] to
𝑦′ = [𝑢′] = [1, … , 𝑛 − 𝑘].)
We need to track the destination of an arbitrary quantum Plücker coordinate of [𝐿] of

𝑞(𝐺(𝑘, 𝑛)) under this isomorphism, using the formulae that we have developed above for
translating between quantum Plücker coordinates and quantum minors.

[𝐿] = [𝐿⩽𝑘 ⊔ 𝐿>𝑘]

= [(𝑘 + 1) − ({1, … , 𝑘}∖𝐿⩽𝑘) ∣ 𝐿>𝑘 − 𝑘]𝑦 (∈ 𝑞(𝑀(𝑘, 𝑛 − 𝑘))𝑦)

1
↦ [𝐿>𝑘 − 𝑘 ∣ (𝑘 + 1) − ({1, … , 𝑘}∖𝐿⩽𝑘)]𝑦

′ (∈ 𝑞(𝑀(𝑛 − 𝑘, 𝑘))𝑦′)

= [{1, … , 𝑛 − 𝑘}∖(𝑛 + 1 − 𝐿>𝑘) ⊔ (𝑛 − 𝑘) + ((𝑘 + 1) − ({1, … , 𝑘}∖𝐿⩽𝑘))]

= [{1, … , 𝑛 − 𝑘}∖(𝑛 + 1 − 𝐿>𝑘) ⊔ ((𝑛 + 1) − ({1, … , 𝑘}∖𝐿⩽𝑘))]

= [{1, … , 𝑛 − 𝑘}∖𝑤0(𝐿>𝑘) ⊔ 𝑤0({1, … , 𝑘}∖𝐿⩽𝑘)]

= [{1, … , 𝑛 − 𝑘}∖𝑤0(𝐿>𝑘) ⊔ {𝑛 − 𝑘 + 1,…𝑛}∖𝑤0(𝐿⩽𝑘)]

= [{1, … , 𝑛}∖{𝑤0(𝐿>𝑘) ⊔ 𝑤0(𝐿⩽𝑘)}]
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THE AUTOMORPHISM GROUP OF THE QUANTUM GRASSMANNIAN 7

= [{1, … , 𝑛}∖𝑤0(𝐿)]

= [𝑤0(𝐿) ] = [𝑤0( �̂� )].

As the quantum Plücker coordinates of 𝑞(𝐺(𝑘, 𝑛)) generate 𝑞(𝐺(𝑘, 𝑛)) as an algebra, and
their images generate𝑞(𝐺(𝑛 − 𝑘, 𝑛)) as an algebra, this calculation shows that the isomorphism
displayed at the beginning of the proof restricts to an isomorphism between 𝑞(𝐺(𝑘, 𝑛)) and
𝑞(𝐺(𝑛 − 𝑘, 𝑛)). □

An immediate corollary of this result is the following.

Corollary 3.5. When 2𝑘 = 𝑛, there is an automorphism of 𝑞(𝐺(𝑘, 𝑛)) that sends the quantum
Plücker coordinate [𝐼] to [𝑤0( �̂� )].

Remark 3.6. The automorphism in the previous corollary will be called the diagram auto-
morphism. In Figure 1, which shows the standard poset for 𝑞(𝐺(3, 6)), the effect of this
automorphism on the quantum Plücker coordinates is seen by reflection of the poset in the
vertical. For example, [126] is sent to [𝑤0( 1̂26 )] = [𝑤0(345)] = [234]. There is a diagram automor-
phism for𝑞(𝐺(𝑘, 𝑛)) only in the case that 𝑛 = 2𝑘. Note that both the diagram automorphism and
the transpose automorphism 𝜏 extend to 𝑞(𝐺(𝑘, 2𝑘)([𝑢]

−1) = 𝑞(𝑀(𝑘, 𝑘))[𝑦, 𝑦−1; 𝜎] and they
agree on this common overring, so we denote the diagram automorphism by 𝜏 also.

4 OBVIOUS AUTOMORPHISMS OF 𝒒(𝑮(𝒌, 𝒏))

There are two obvious sources of automorphisms of 𝑞(𝐺(𝑘, 𝑛)). The first is via the inclusion
𝑞(𝐺(𝑘, 𝑛)) ⊆ 𝑞(𝑀(𝑘, 𝑛)). The second is by using the dehomogenisation equality introduced in
Section 3:

𝑞(𝑀(𝑘, 𝑝))[𝑦±1; 𝜎] = 𝑞(𝐺(𝑘, 𝑛))[[𝑢]
−1],

where 𝑝 = 𝑛 − 𝑘 and 𝑢 = {1, … , 𝑘}while 𝜎 is the automorphism of𝑞(𝑀(𝑘, 𝑝)) such that 𝜎(𝑥𝑖𝑗) =
𝑞𝑥𝑖𝑗 for each 𝑖 = 1, … , 𝑘 and 𝑗 = 1,… , 𝑝.
In this section,we introduce these automorphisms and consider the connections between them.
First, 𝑞(𝐺(𝑘, 𝑛)) is a subalgebra of 𝑞(𝑀(𝑘, 𝑛)) by definition. The torus 0 ∶= (𝐾∗)𝑛 acts

by column multiplication on 𝑞(𝑀(𝑘, 𝑛)) and this induces an action on 𝑞(𝐺(𝑘, 𝑛)) defined on
quantum Plücker coordinates by

(𝛽1, … , 𝛽𝑛) ⋅ [𝑖1, … , 𝑖𝑘] = 𝛽𝑖1 … 𝛽𝑖𝑘 [𝑖1, … , 𝑖𝑘].

This is the torus action on 𝑞(𝐺(𝑘, 𝑛)) that is considered in papers such as [12, 14].
Second, there is an action of the torus (𝐾∗)𝑘+𝑝 on𝑞(𝑀(𝑘, 𝑝)) that operates by row and column

scaling, so that (𝛼1, … , 𝛼𝑘; 𝛽1, … , 𝛽𝑝) ⋅ 𝑥𝑖𝑗 = 𝛼𝑖𝛽𝑗𝑥𝑖𝑗 . As 𝑛 = 𝑘 + 𝑝, we can extend this to an action
of the torus1 ∶= (𝐾∗)𝑛+1 on 𝑞(𝑀(𝑘, 𝑝))[𝑦±1; 𝜎] by setting

(𝛼0; 𝛼1, … , 𝛼𝑘; 𝛽1, … , 𝛽𝑝) ⋅ 𝑥𝑖𝑗 = 𝛼𝑖𝛽𝑗𝑥𝑖𝑗, (𝛼0; 𝛼1, … , 𝛼𝑘; 𝛽1, … , 𝛽𝑝) ⋅ 𝑦 = 𝛼0𝑦.
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8 LAUNOIS and LENAGAN

Setℎ = (𝛼0; 𝛼1, … , 𝛼𝑘; 𝛽1, … , 𝛽𝑝) ∈ 1. It is easy to check thatℎ ⋅ [𝐼 ∣ 𝐽] = 𝛼𝐼𝛽𝐽[𝐼 ∣ 𝐽], where𝛼𝐼 ∶=
𝛼𝑖1 …𝛼𝑖𝑘 when 𝐼 = [𝛼𝑖1 , … , 𝛼𝑖𝑘 ] and 𝛽𝐽 = 𝛽𝑗1 … 𝛽𝑗𝑝 when 𝐽 = [𝛽𝑗1 , … , 𝛽𝑗𝑘 ].
The dehomogenisation equality induces an action of 1 on 𝑞(𝐺(𝑘, 𝑛))[[𝑢]

−1]. For ℎ =

(𝛼0; 𝛼1, … , 𝛼𝑘; 𝛽1, … , 𝛽𝑝) ∈ 1 we have ℎ ⋅ [𝑢] = 𝛼0[𝑢]. If [𝐿] is any other quantum Plücker coor-
dinate then we may write [𝐿] = [𝐼 ∣ 𝐽][𝑢], where 𝐼 = (𝑘 + 1) − ({1, … , 𝑘}∖𝐿⩽𝑘) and 𝐽 = 𝐿>𝑘 − 𝑘,
by Lemma 3.2. Then

ℎ ⋅ [𝐿] = ℎ ⋅ [𝐼 ∣ 𝐽] × ℎ ⋅ [𝑢] = 𝛼𝐼𝛽𝐽[𝐼 ∣ 𝐽] × 𝛼0[𝑢] = 𝛼0𝛼𝐼𝛽𝐽[𝐼 ∣ 𝐽][𝑢] = 𝛼0𝛼𝐼𝛽𝐽[𝐿].

As the quantum Plücker coordinates generate 𝑞(𝐺(𝑘, 𝑛)) and are sent to scalar multiples of
themselves by each ℎ ∈ 1, such ℎ act as automorphisms of 𝑞(𝐺(𝑘, 𝑛)).
We now consider connections between the actions of0 and1 on 𝑞(𝐺(𝑘, 𝑛)).

Lemma 4.1. For every automorphism g ∈ 0 acting on 𝑞(𝐺(𝑘, 𝑛)), there is an automorphism
𝑓 ∈ 1 that has the same action on 𝑞(𝐺(𝑘, 𝑛)).

Proof. Let g = (𝑎1, … , 𝑎𝑛) ∈ 0. We seek 𝑓 = (𝛼0; 𝛼1, … , 𝛼𝑘; 𝛽1, … , 𝛽𝑝) ∈ 1 such that the
actions of g and 𝑓 on 𝑞(𝐺(𝑘, 𝑛)) are the same. As g ⋅ [𝑢] = 𝑎1 …𝑎𝑘[𝑢], we may extend
g to act on 𝑞(𝐺(𝑘, 𝑛))[[𝑢]

−1]. The dehomogenisation equality then transfers this action
to 𝑞(𝑀(𝑘, 𝑝))[𝑦±1; 𝜎]. We calculate the action of g on the generators 𝑥𝑖𝑗 and 𝑦±1 of
𝑞(𝑀(𝑘, 𝑝))[𝑦±1; 𝜎]. As 𝑦 corresponds to [𝑢] in the dehomogenisation equality, g ⋅ 𝑦 = 𝑎1 …𝑎𝑘𝑦

and g ⋅ 𝑦−1 = (𝑎1 …𝑎𝑘)
−1𝑦−1. Now, 𝑥𝑖𝑗 ∶= [1, … , ˆ𝑘 + 1 − 𝑖, … 𝑘, 𝑗 + 𝑘][𝑢]−1; so

g ⋅ 𝑥𝑖𝑗 = g ⋅ [1, … , ˆ𝑘 + 1 − 𝑖, … 𝑘, 𝑗 + 𝑘] × g ⋅ [𝑢]−1

= 𝑎1 …𝑎𝑘𝑎
−1
𝑘+1−𝑖

𝑎𝑗+𝑘[1, … , ˆ𝑘 + 1 − 𝑖, … 𝑘, 𝑗 + 𝑘] × (𝑎1 …𝑎𝑘)
−1[𝑢]−1

= 𝑎𝑗+𝑘𝑎
−1
(𝑘+1)−𝑖

[1, … , ˆ𝑘 + 1 − 𝑖, … 𝑘, 𝑗 + 𝑘][𝑢]−1

= 𝑎𝑗+𝑘𝑎
−1
(𝑘+1)−𝑖

𝑥𝑖𝑗 .

We seek an 𝑓 ∈ 0 that has the same effect on the generators 𝑥𝑖𝑗 and 𝑦. Set 𝑓 =

(𝑎1 …𝑎𝑘; 𝑎
−1
𝑘
, … , 𝑎−1

1
; 𝑎𝑘+1, … , 𝑎𝑛) ∈ 0. Then 𝑓 ⋅ 𝑦 = 𝑎1 …𝑎𝑘𝑦 = g ⋅ 𝑦. Also, the entry in 𝑓

multiplying the 𝑖th row is 𝑎−1
(𝑘+1)−𝑖

and the entry multiplying the 𝑗th column is 𝑎𝑘+𝑗 so
𝑓 ⋅ 𝑥𝑖𝑗 = 𝑎−1

(𝑘+1)−𝑖
𝑎𝑘+𝑗𝑥𝑖𝑗 = g ⋅ 𝑥𝑖𝑗 . Hence, 𝑓 and g agree on the generators 𝑥𝑖𝑗 and 𝑦±1 of

𝑞(𝑀(𝑘, 𝑝))[𝑦±1; 𝜎] = 𝑞(𝐺(𝑘, 𝑛))[[𝑢]
−1]; so the actions of 𝑓 and g on 𝑞(𝐺(𝑘, 𝑛)) are the

same. □

The converse question is more delicate, as the following example shows.

Example 4.2. Let 𝐾 be a field in which there is no element 𝑏 such that 𝑏2 = 2 (eg ℚ) and
consider 𝑞(𝐺(2, 4)) over this field. Let 𝑓 = (1; 2, 1; 1, 1) ∈ 1. Then there is no element g =

(𝑎1, 𝑎2, 𝑎3, 𝑎4) ∈ 0 whose action on 𝑞(𝐺(2, 4)) coincides with the action of 𝑓 on 𝑞(𝐺(2, 4)).
To verify this claim, we use the formulae in Lemma 3.2 to see that

[12] = [𝑢], [13] = 𝑥11[𝑢], [14] = 𝑥12[𝑢], [23] = 𝑥21[𝑢], [24] = 𝑥22[𝑢], [34] = [12 ∣ 12][𝑢].

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12994 by T

est, W
iley O

nline L
ibrary on [28/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



THE AUTOMORPHISM GROUP OF THE QUANTUM GRASSMANNIAN 9

These equations lead to the following actions of 𝑓 on the quantum Plücker coordinates:

𝑓 ⋅ [12] = [12], 𝑓 ⋅ [13] = 2[13], 𝑓 ⋅ [14] = 2[14], 𝑓 ⋅ [23] = [23], 𝑓 ⋅ [24] = [24],

𝑓 ⋅ [34] = 2[34].

Next, for g = (𝑎1, 𝑎2, 𝑎3, 𝑎4) ∈ 0 we see that

g ⋅ [12] = 𝑎1𝑎2[12], g ⋅ [13] = 𝑎1𝑎3[13], g ⋅ [14] = 𝑎1𝑎4[14],

g ⋅ [23] = 𝑎2𝑎3[23], g ⋅ [24] = 𝑎2𝑎4[24], g ⋅ [34] = 𝑎3𝑎4[34];

so for this g to act in the same way as 𝑓 we require that

𝑎1𝑎2 = 1, 𝑎1𝑎3 = 2, 𝑎1𝑎4 = 2, 𝑎2𝑎3 = 1, 𝑎2𝑎4 = 1, 𝑎3𝑎4 = 2.

The fourth and fifth equations on the line above show that we need 𝑎3 = 𝑎4 (= 𝑏 say) and then
the sixth equation gives 𝑏2 = 2, which is not possible for any 𝑏 ∈ 𝐾.

In view of this example, it is appropriate to assume that𝐾 is algebraically closed in the following
result.

Lemma 4.3. Suppose that𝐾 is algebraically closed. Consider𝑞(𝐺(𝑘, 𝑛)) and𝑞(𝑀(𝑘, 𝑝)) over𝐾.
For every automorphism 𝑓 ∈ 1 acting on 𝑞(𝐺(𝑘, 𝑛)), there is an automorphism g ∈ 0 that has
the same action on 𝑞(𝐺(𝑘, 𝑛)).

Proof. Consider the set 𝑆 of elements 𝑓 = (𝛼0; 𝛼1, … , 𝛼𝑘; 𝛽1, … , 𝛽𝑝) ∈ 1 that are equal to 1 in
all positions except one. The set 𝑆 generates 1 so it is enough to show that the action of each
member of 𝑆 can be realised via the action of an element of0.
Let [𝐿] ≠ [𝑢] be a quantum Plücker coordinate in 𝑞(𝐺(𝑘, 𝑛)) with [𝐿] = [𝐼 ∣ 𝐽][𝑢] for some

quantum minor [𝐼 ∣ 𝐽] ∈ 𝑞(𝑀(𝑘, 𝑝)). Then

𝑓 ⋅ [𝐿] = (𝑓 ⋅ [𝐼 ∣ 𝐽])(𝑓 ⋅ [𝑢]) = 𝛼0(𝑓 ⋅ [𝐼 ∣ 𝐽])[𝑢].

We look at three cases separately.
The first case we consider is when one of the 𝛽𝑖 terms is not equal to 1. Suppose that the element

𝛽𝑗 in position 𝑘 + 1 + 𝑗 of 𝑓 is not equal to 1 but that all other positions of 𝑓 contain the element
1. Note that 𝛼0 = 1 and so 𝑓 ⋅ [𝑢] = [𝑢]. Thus, 𝑓 ⋅ [𝐿] = (𝑓 ⋅ [𝐼 ∣ 𝐽])[𝑢] so that 𝑓 ⋅ [𝐿] = [𝐿] when
𝑗 ∉ 𝐽 and 𝑓 ⋅ [𝐿] = 𝛽𝑗[𝐿] when 𝑗 ∈ 𝐽.
By using Corollary 3.3(ii), we see that 𝑓 ⋅ [𝐿] = [𝐿] if 𝑗 + 𝑘 ∉ 𝐿 and that 𝑓 ⋅ [𝐿] = 𝛽𝑗[𝐿] when

𝑗 + 𝑘 ∈ 𝐿. An element g ∈ 0 that has the same effect on quantum Plücker coordinates is g =

(g1, … , g𝑛) where g𝑗+𝑘 = 𝛽𝑗 while all other g𝑖 = 1.
The next case that we consider is when 𝛼𝑖 is not equal to 1 for some 𝑖 ∈ {1, … , 𝑘} but all other

entries of 𝑓 are equal to 1. Again, 𝑓 ⋅ [𝑢] = [𝑢]. Then 𝑓 ⋅ [𝐿] = (𝑓 ⋅ [𝐼 ∣ 𝐽])[𝑢] so that 𝑓 ⋅ [𝐿] = [𝐿]

when 𝑖 ∉ 𝐼 and 𝑓 ⋅ [𝐿] = 𝛼𝑖[𝐿] when 𝑖 ∈ 𝐼. By using Corollary 3.3(i), we see that 𝑓 ⋅ [𝐿] = [𝐿] if
(𝑘 + 1) − 𝑖 ∈ 𝐿 and 𝑓 ⋅ [𝐿] = 𝛼𝑖[𝐿] when (𝑘 + 1) − 𝑖 ∉ 𝐿. Let 𝑏 be an element in 𝐾 such that 𝑏𝑘 =
𝛼𝑖 . Let g = (g1, … , g𝑛) ∈ 0 be such that g𝑘+1−𝑖 = 𝑏−(𝑘−1)while every other entry g𝑗 = 𝑏. Let [𝐿] =
[𝑙1, … , 𝑙𝑘]. Then g ⋅ [𝐿] = g𝑙1 … g𝑙𝑘 [𝐿]. Suppose that 𝑘 + 1 − 𝑖 ∈ 𝐿. Then one of g𝑙1 , … , g𝑙𝑘 is equal to
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10 LAUNOIS and LENAGAN

𝑏−(𝑘−1) while the other 𝑘 − 1 are equal to 𝑏. Thus, g𝑙1 … g𝑙𝑘 = 𝑏𝑘−1𝑏−(𝑘−1) = 1 and so g ⋅ [𝐿] = [𝐿].
Now assume that 𝑘 + 1 − 𝑖 ∉ 𝐿. Then each of the g𝑙𝑗 is equal to 𝑏 and so g ⋅ [𝐿] = 𝑏𝑘[𝐿] = 𝛼𝑖[𝐿].
This shows that the action of g coincides with the action of 𝑓, as required.
The final case to consider is when 𝛼0 is not equal to 1 but all other entries are equal to 1. Thus,

𝑓 ⋅ [𝑢] = 𝛼0[𝑢] and 𝑓 ⋅ [𝐼 ∣ 𝐽] = [𝐼 ∣ 𝐽] for all quantumminors [𝐼 ∣ 𝐽]. Hence, 𝑓 ⋅ [𝐿] = 𝛼0[𝐿] for all
quantum minors [𝐿] of 𝑞(𝐺(𝑘, 𝑛)). Let 𝑏 ∈ 𝐾 be such that 𝑏𝑘 = 𝛼0 and set g = (𝑏,… , 𝑏). Then
g ⋅ [𝐿] = 𝑏𝑘[𝐿] = 𝛼0[𝐿] for all [𝐿] and the actions of 𝑓 and g coincide. □

The action of 1 on 𝑞(𝐺(𝑘, 𝑛)) is not faithful, as we will see in the next proposition. Let 
denote 1 factored by this kernel of this action. Then  acts faithfully on 𝑞(𝐺(𝑘, 𝑛)). The next
result shows that is isomorphic to a torus (𝐾∗)𝑛.

Proposition 4.4. The group is isomorphic to a torus (𝐾∗)𝑛.

Proof. The kernel of the action of1 on 𝑞(𝐺(𝑘, 𝑛)) is the same as the kernel of the action of1

on𝑞(𝐺(𝑘, 𝑛))[[𝑢]
−1] = 𝑞(𝑀(𝑘, 𝑝))[𝑦±1]. Recall from earlier in the section that the action of1

on the right-hand side of this equality is given by

(𝛼0; 𝛼1, … , 𝛼𝑘; 𝛽1, … , 𝛽𝑝) ⋅ 𝑥𝑖𝑗 = 𝛼𝑖𝛽𝑗𝑥𝑖𝑗, (𝛼0; 𝛼1, … , 𝛼𝑘; 𝛽1, … , 𝛽𝑝) ⋅ 𝑦 = 𝛼0𝑦.

Using the right-hand side, it is easy to check that this kernel is {(1; 𝜆, … , 𝜆; 𝜆−1, … , 𝜆−1) ∣ 𝜆 ∈ 𝐾∗}.
Hence, choosing 𝜆 = 𝛽𝑝, we see that ℎ = (𝛼0; 𝛼1, … , 𝛼𝑘; 𝛽1, … , 𝛽𝑝) ∈ 1 has the same action as
ℎ′ ∶= (𝛼0; 𝛼1𝛽𝑝, … , 𝛼𝑘𝛽𝑝; 𝛽1𝛽

−1
𝑝 , … , 𝛽𝑝−1𝛽

−1
𝑝 , 1) ∈ 1. It is also easy to check that two distinct ele-

ments in1 that eachhave 1 in the final place act differently on𝑞(𝑀(𝑘, 𝑝))[𝑦±1], and so the claim
is established. □

In view of this result, we refer to the action on 𝑞(𝐺(𝑘, 𝑛)) provided by  as the torus
automorphisms of 𝑞(𝐺(𝑘, 𝑛)).
In the case that 𝑛 = 2𝑘, so that 𝑘 = 𝑝, the dehomogenisation equality (2) states that

𝑇 = 𝑞(𝑀(𝑘, 𝑘))[𝑦±1; 𝜎] = 𝑞(𝐺(𝑘, 𝑛))[[𝑢]
−1].

In this case, a simple analysis using the formula [𝐿] = [𝐼 ∣ 𝐽][𝑢] shows that the extra automor-
phism of 𝑞(𝑀(𝑘, 𝑘)) given by transposition of the 𝑥𝑖𝑗 variables extends to an automorphism of
𝑇 that, when restricted to 𝑞(𝐺(𝑘, 𝑛)), gives rise to the diagram automorphism 𝜏 of Corollary 3.5.
We will denote this automorphism by 𝜏 for each of the three algebras 𝑞(𝐺(𝑘, 𝑛)), 𝑞(𝑀(𝑘, 𝑘))

and 𝑇.
In the case where 2𝑘 = 𝑛, let (𝛼0; 𝛼1, … , 𝛼𝑘; 𝛽1, … , 𝛽𝑘) ∈ 1. It is easy to check that

𝜏◦(𝛼0; 𝛼1, … , 𝛼𝑘; 𝛽1, … , 𝛽𝑘)◦𝜏 = (𝛼0; 𝛽1, … , 𝛽𝑘; 𝛼1, … , 𝛼𝑘) ∈ 1,

so that < 𝜏 > acts on 1. Also, if (1; 𝜆, … , 𝜆; 𝜆−1, … , 𝜆−1) is in the kernel of the action of 1 on
𝑞(𝐺(𝑘, 𝑛))[[𝑢]

−1] then

𝜏◦(1; 𝜆, … , 𝜆; 𝜆−1, … , 𝜆−1)◦𝜏 = (1; 𝜆−1, … , 𝜆−1; 𝜆, … , 𝜆)

= (1; 𝜆−1, … , 𝜆−1; (𝜆−1)−1, … , (𝜆−1)−1)

is also in the kernel of this action and so < 𝜏 > acts on.
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THE AUTOMORPHISM GROUP OF THE QUANTUM GRASSMANNIAN 11

Definition 4.5. Set ∶=  when 2𝑘 ≠ 𝑛 and ∶=  ⋊ ⟨𝜏⟩ when 2𝑘 = 𝑛.

The analysis above shows that the elements of act naturally as automorphisms of𝑞(𝐺(𝑘, 𝑛))

via the dehomogenisation equality.

Claim 4.6. The automorphism group of 𝑞(𝐺(𝑘, 𝑛)) is.

We will prove this claim in the following sections.

5 ADJUSTING AUTOMORPHISMS

The quantum grassmannian 𝑞(𝐺(𝑘, 𝑛)) carries the structure of an ℕ-graded algebra generated
in degree one when we give degree one to each of the quantum Plücker coordinates. In addi-
tion, [13, Theorem 5.3] shows that 𝑞(𝐺(𝑘, 𝑛)) is a unique factorisation domain in the sense of
Chatters [3]. According to Chatters, an element 𝑝 of a Noetherian domain 𝑅 is said to be prime
if (i) 𝑝𝑅 = 𝑅𝑝, (ii) 𝑝𝑅 is a height one prime ideal of 𝑅 and (iii) 𝑅∕𝑝𝑅 is an integral domain.
A Noetherian domain R is then said to be a unique factorisation domain (UFD) if 𝑅 has at
least one height one prime ideal, and every height one prime ideal is generated by a prime
element.
In this section,we exploit these properties of𝑞(𝐺(𝑘, 𝑛)) in a series of results to see that given an

arbitrary automorphism of𝑞(𝐺(𝑘, 𝑛))we can essentially fix the minimal and maximal elements
in the poset after allowing adjustment of the automorphism by elements of.

Lemma 5.1. Let 𝐴 = ⊕∞
𝑖=0

𝐴𝑖 be a graded algebra that is a domain with 𝐴0 equal to the base field
and𝐴 generated in degree one. Suppose that 𝑎 = 𝑎1 +⋯ + 𝑎𝑚 is a normal element with 𝑎𝑖 ∈ 𝐴𝑖 for
each 𝑖. Then 𝑎1 is a normal element.

Proof. If 𝑎1 = 0, then there is nothing to prove; so assume that 𝑎1 ≠ 0. As𝐴 is generated in degree
one, it is enough to check normality with respect to homogeneous elements of degree one; so sup-
pose that 𝑏 ∈ 𝐴1. Then 𝑏𝑎 = 𝑏𝑎1 +⋯ + 𝑏𝑎𝑚 = 𝑎𝑐 = (𝑎1 +⋯ + 𝑎𝑚)(𝑐0 + 𝑐1 +⋯ + 𝑐𝑡) for some
𝑐 = 𝑐0 + 𝑐1 +⋯ + 𝑐𝑡 ∈ 𝐴with 𝑐𝑖 ∈ 𝐴𝑖 . Comparing degree one terms gives 0 = 𝑎1𝑐0; so 𝑐0 = 0. The
degree two terms then show that 𝑏𝑎1 = 𝑎1𝑐1 ∈ 𝑎1𝐴, and this demonstrates that 𝑎1 is normal. □

Lemma 5.2. Let 𝐴 = ⊕∞
𝑖=0

𝐴𝑖 be a graded algebra that is a domain with 𝐴0 equal to the base field.
Suppose also that 𝐴 is a UFD.
Let 𝑎 be a homogeneous element of degree one that is normal. Then 𝑎 generates a prime ideal of

height one.

Proof. Let 𝑃 be a prime that is minimal over the ideal 𝑎𝑅. By the non-commutative principal ideal
theorem [16, Theorem 4.1.11], the height of 𝑃 is one. Hence, 𝑃 = 𝑝𝐴 for some normal element 𝑝,
as𝐴 is a UFD. Thus, 𝑎 is a (right) multiple of 𝑝. By degree considerations, 𝑝must have degree one
and 𝑎 must be a scalar multiple of 𝑝. Thus, 𝑎 and 𝑝 generate the same ideal, which is the prime
ideal 𝑃. This establishes the claim. □

The remaining results in this section all deal with 𝑞(𝐺(𝑘, 𝑛)). As in earlier sections, let [𝑢] =
[1, … , 𝑘].
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12 LAUNOIS and LENAGAN

Lemma 5.3. Suppose that 𝑎 =
∑
𝑎𝐼[𝐼] ≠ 0, with 𝑎𝐼 ∈ 𝐾, is a linear combination of quantum

Plücker coordinates that is a normal element. Then 𝑑(𝐼) is the same for each 𝐼 that has 𝑎𝐼 ≠ 0.

Proof. As 𝑎 =
∑
𝑎𝐼[𝐼] has degree one, 𝑎 is irreducible, as well as being normal. Hence, the ideal

𝑃 generated by 𝑎 is a height one prime ideal of 𝑞(𝐺(𝑘, 𝑛)), by Lemma 5.2.
If 𝑎 = 𝑎𝐼[𝐼] for some [𝐼], then the result holds. Thus we may assume that at least two scalars 𝑎𝐼

are non-zero. In particular, 𝑎𝐾 ≠ [𝑢]𝐾, and so [𝑢] ∉ 𝑎𝑞(𝐺(𝑘, 𝑛)) = 𝑃.
Let 𝐽 be such that 𝑑(𝐽) is as small as possible among those 𝑑(𝐼) for which 𝑎𝐼 ≠ 0. We will show

that 𝑑(𝐼) = 𝑑(𝐽) for all 𝐼 such that 𝑎𝐼 ≠ 0.
Now

[𝑢]𝑎 = [𝑢]

(∑
𝐼≠𝐽

𝑎𝐼[𝐼] + 𝑎𝐽[𝐽]

)
=

(∑
𝐼≠𝐽

𝑎𝐼𝑞
𝑑(𝐼)[𝐼] + 𝑎𝐽𝑞

𝑑(𝐽)[𝐽]

)
[𝑢],

by using Lemma 3.1, and so(∑
𝐼≠𝐽

𝑎𝐼𝑞
𝑑(𝐼)[𝐼] + 𝑎𝐽𝑞

𝑑(𝐽)[𝐽]

)
[𝑢] − 𝑞𝑑(𝐽)

(∑
𝐼≠𝐽

𝑎𝐼[𝐼] + 𝑎𝐽[𝐽]

)
[𝑢] = [𝑢]𝑎 − 𝑞𝑑(𝐽)𝑎[𝑢] ∈ 𝑃;

that is,

𝑏 ∶=

(∑
𝐼≠𝐽

(𝑞𝑑(𝐼) − 𝑞𝑑(𝐽))𝑎𝐼[𝐼]

)
[𝑢] ∈ 𝑃.

As [𝑢] ∉ 𝑃 this gives

𝑏 =

(∑
𝐼≠𝐽

(𝑞𝑑(𝐼) − 𝑞𝑑(𝐽))𝑎𝐼[𝐼]

)
∈ 𝑃 = 𝑎𝑞(𝐺(𝑘, 𝑛)).

Thus, there is a scalar 𝜆 ∈ 𝐾 with 𝑏 = 𝜆𝑎. If 𝜆 ≠ 0 then this is a contradiction, as [𝐽] occurs non-
trivially in 𝜆𝑎 and not in 𝑏. Therefore, 𝑏 = 0 and so each 𝑞𝑑(𝐼) − 𝑞𝑑(𝐽) = 0. This forces 𝑑(𝐼) = 𝑑(𝐽),
as 𝑞 is not a root of unity. □

Before proceeding further with our analysis, we recall a result from [10] that we need. The
notation is adapted from that paper.

Proposition 5.4. Let𝐴 =
⨁

𝑖∈ℕ 𝐴𝑖 be anℕ-graded (connected)𝐾-algebra that is a domain. Suppose
that 𝐴 is generated as an algebra by 𝑥1, … , 𝑥𝑡 and that 𝐴1 = 𝐾𝑥1 ⊕⋯⊕𝐾𝑥𝑡 . Set 𝐴>𝑑 ∶= ⊕𝑖>𝑑𝐴𝑖 .
Assume that for all 𝑖 ∈ {1, … , 𝑡} there exists 𝑗 and 1 ≠ 𝑞𝑖𝑗 ∈ 𝐾 with 𝑥𝑖𝑥𝑗 = 𝑞𝑖𝑗𝑥𝑗𝑥𝑖 . Let 𝜎 be an
automorphism of 𝐴 and 0 ≠ 𝑥 ∈ 𝐴𝑑. Then 𝜎(𝑥) = 𝑦𝑑 + 𝑦>𝑑, where 𝑦𝑑 ∈ 𝐴𝑑∖{0} and 𝑦>𝑑 ∈ 𝐴>𝑑.

Proof. This is [10, Proposition 4.2]. □

To prove the next lemma, we need to check that we can apply this proposition to the quantum
grassmannian. To do this, we need to observe that for each quantum Plücker coordinate [𝐿] there
exists a quantum Plücker coordinate [𝐿′] such that [𝐿][𝐿′] = 𝛼[𝐿′][𝐿] for some 1 ≠ 𝛼 ∈ 𝐾. We use
Lemma 3.1 to do this. If [𝐿] = [𝑢] = [1, … , 𝑘], then set [𝐿′] = [1, … , 𝑘 − 1, 𝑘 + 1] so that [𝐿][𝐿′] =
𝑞[𝐿′][𝐿] while if [𝐿] ≠ [𝑢] set [𝐿′] = [𝑢] so that [𝐿][𝐿′] = 𝑞−𝑑(𝐿)[𝐿′][𝐿].
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THE AUTOMORPHISM GROUP OF THE QUANTUM GRASSMANNIAN 13

Lemma 5.5. Let 𝜌 be an automorphism of 𝑞(𝐺(𝑘, 𝑛)). Then 𝜌([𝑢])1 = 𝜆[𝑢], for some 𝜆 ∈ 𝐾∗.

Proof. The previous proposition shows that 𝜌([𝑢])0 = 0. Note that 𝜌([𝑢]) is a normal element of
𝑞(𝐺(𝑘, 𝑛)); so Lemma 5.1 applied to 𝜌([𝑢]) shows that 𝜌([𝑢])1 is a normal element. Assume that
𝜌([𝑢])1 ∉ 𝐾∗[𝑢]. Then 𝜌([𝑢])1 =

∑
𝑎𝐼[𝐼] for some [𝐼] with each 𝑑(𝐼) = 𝑑 > 0, by Lemma 5.3.

Let𝑓 ∈ 𝑞(𝐺(𝑘, 𝑛)) be such that 𝜌(𝑓) = [𝑢], or, equivalently, 𝜌−1([𝑢]) = 𝑓. Note that the degree
zero term of 𝑓 must be zero. Write 𝑓 = 𝑓1 + 𝑓>1. As 𝜌(𝑓>1)1 = 0, by [10, Proposition 4.2], we see
that [𝑢] = 𝜌(𝑓) = 𝜌(𝑓1) + 𝜌(𝑓>1); so that [𝑢] = 𝜌(𝑓)1 = 𝜌(𝑓1)1. If 𝑓1 = 𝜆[𝑢] then [𝑢] = 𝜌(𝑓1)1 =

𝜌(𝜆[𝑢])1 = 𝜆𝜌([𝑢])1 and so 𝜌([𝑢])1 = 𝜆−1[𝑢], a contradiction; so we have 𝑓1 ≠ 𝜆[𝑢], for any 𝜆 ∈

𝐾∗. By applying Lemma 5.3 to 𝑓1, wemay write 𝑓1 =
∑
𝑏𝐽[𝐽] for some [𝐽]with each 𝑑(𝐽) = 𝑒 > 0,

say. Hence, [𝑢]𝑓1 = 𝑞𝑒𝑓1[𝑢].
Consider the degree two term in 𝜌([𝑢]𝑓). We know that 𝜌([𝑢]𝑓) = 𝜌([𝑢])𝜌(𝑓) and that the

degree zero terms of 𝜌([𝑢]) and 𝜌(𝑓) are both zero, by [10, Proposition 4.2]. Hence,

𝜌([𝑢]𝑓)2 = 𝜌([𝑢])1𝜌(𝑓)1 =
(∑

𝑎𝐼[𝐼]
)
[𝑢] = 𝑞−𝑑[𝑢]

(∑
𝑎𝐼[𝐼]

)
.

On the other hand, 𝜌([𝑢]𝑓) = 𝜌([𝑢]𝑓1 + [𝑢]𝑓>1) = 𝜌([𝑢]𝑓1) + 𝜌([𝑢]𝑓>1). Now, [𝑢]𝑓>1 has no
term in degree less than three. Hence, the same is true for 𝜌([𝑢]𝑓>1), by [10, Proposition 4.2],
and, in particular,𝜌([𝑢]𝑓>1)2 = 0. Thus,𝜌([𝑢]𝑓)2 = 𝜌([𝑢]𝑓1)2. However,𝜌([𝑢]𝑓1) = 𝜌(𝑞𝑒𝑓1[𝑢]) =

𝑞𝑒𝜌(𝑓1)𝜌([𝑢]). Therefore,

𝜌([𝑢]𝑓)2 = 𝜌([𝑢]𝑓1)2 = 𝜌(𝑞𝑒𝑓1[𝑢])2 = 𝑞𝑒𝜌(𝑓1)1𝜌([𝑢])1 = 𝑞𝑒[𝑢]
(∑

𝑎𝐼[𝐼]
)
.

The two expressions we have obtained for 𝜌([𝑢]𝑓)2 must be equal; so 𝑞−𝑑[𝑢](
∑
𝑎𝐼[𝐼]) =

𝑞𝑒[𝑢](
∑
𝑎𝐼[𝐼]). Hence, 𝑞−𝑑 = 𝑞𝑒; so that 𝑞𝑒+𝑑 = 1. As 𝑞 is not a root of unity and 𝑒 + 𝑑 > 0, this is

a contradiction, and our lemma is proved. □

Lemma 5.6. Let 𝜌 be an automorphism of 𝑞(𝐺(𝑘, 𝑛)). Then 𝜌([𝑢]) = 𝜆[𝑢], for some 𝜆 ∈ 𝐾∗.

Proof. The element 𝜌([𝑢]) is a normal element, and the degree zero term of 𝜌([𝑢]) is equal to
0, by [10, Proposition 4.2]. Suppose that the degree of 𝜌([𝑢]) is 𝑡 and that 𝜌([𝑢]) = 𝑎1 +⋯ + 𝑎𝑡
with deg(𝑎𝑖) = 𝑖. Recall that 𝑎1 = 𝜆[𝑢], for some 𝜆 ∈ 𝐾∗, by Lemma 5.5. There is an element 𝑟 ∈
𝑞(𝐺(𝑘, 𝑛)) with [𝑢]𝜌([𝑢]) = 𝜌([𝑢])𝑟. The degree of 𝑟 must be one. Assume 𝑟 = 𝑟0 + 𝑟1 with 𝑟𝑖
having degree 𝑖. Thus,

[𝑢](𝜆[𝑢] + 𝑎2 +⋯ + 𝑎𝑡) = (𝜆[𝑢] + 𝑎2 +⋯ + 𝑎𝑡)(𝑟0 + 𝑟1).

As there is no term in degree one on the left-hand side of the above equation, wemust have 𝑟0 = 0.
Looking at terms in degree two, we then see that 𝜆[𝑢]2 = 𝜆[𝑢]𝑟1; so that 𝑟1 = [𝑢] and [𝑢]𝜌([𝑢]) =
𝜌([𝑢])[𝑢].
Write 𝜌([𝑢]) in terms of the standard basis for𝑞(𝐺(𝑘, 𝑛)), as in [7], say 𝜌([𝑢]) =

∑
𝛼𝑖𝑆𝑖 , where

𝛼𝑖 is in the field and each 𝑆𝑖 is a standard monomial. If 𝑆 = [𝐼1] … [𝐼𝑚] is such a standard mono-
mial, then set 𝑑(𝑆) ∶=

∑
𝑑(𝐼𝑖) and note that each 𝑑(𝐼𝑖) ⩾ 0 with 𝑑(𝐼𝑖) = 0 if and only if [𝐼𝑖] = [𝑢].

Then, 𝑆[𝑢] = 𝑞𝑑(𝑆)[𝑢]𝑆, and so 𝑆[𝑢] = [𝑢]𝑆 if and only if 𝑑(𝑆) = 0 (in which case 𝑆 = [𝑢]𝑚 for
some𝑚).
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14 LAUNOIS and LENAGAN

In any case, note that [𝑢]𝑆 is a standard monomial, as [𝑢] is the unique minimal quantum
Plücker coordinate. Hence,∑

𝛼𝑖[𝑢]𝑆𝑖 = [𝑢]𝜌([𝑢]) = 𝜌([𝑢])[𝑢] =
(∑

𝛼𝑖𝑆𝑖

)
[𝑢] = [𝑢]

(∑
𝛼𝑖𝑞

𝑑(𝑆𝑖)𝑆𝑖

)
=
∑

𝛼𝑖𝑞
𝑑(𝑆𝑖)[𝑢]𝑆𝑖.

As the extreme left and right terms in the above display are in the standard basis, this forces
𝑑(𝑆𝑖) = 0 whenever 𝛼𝑖 ≠ 0. Hence, 𝜌([𝑢])must be a polynomial in [𝑢].
The same argument applies to the automorphism 𝜌−1; so 𝜌−1([𝑢]) must also be a polynomial

in [𝑢].
Suppose that 𝜌([𝑢]) =

∑𝑡
𝑖=1 𝛼𝑖[𝑢]

𝑖 with 𝛼𝑡 ≠ 0, and, similarly, suppose that 𝜌−1([𝑢]) =∑𝑠
𝑖=1 𝛽𝑖[𝑢]

𝑖 with 𝛽𝑠 ≠ 0

Then,

[𝑢] = 𝜌−1𝜌([𝑢]) = 𝜌−1

(
𝑡∑

𝑖=1

𝛼𝑖[𝑢]
𝑖

)
=

𝑡∑
𝑖=1

𝛼𝑖𝜌
−1([𝑢])𝑖 = 𝛼1𝛽1[𝑢] +⋯ + 𝛼𝑡𝛽𝑠[𝑢]

𝑠𝑡.

Therefore, 𝑠 = 𝑡 = 1, and 𝜌([𝑢]) = 𝜆[𝑢], for some 𝜆 ∈ 𝐾∗, as required. □

The above result refers to [𝑢] = [1, … , 𝑘], the extreme leftmost quantum Plücker coordinate.
We want to establish a similar result for [𝑤] ∶= [𝑛 − 𝑘 + 1,… , 𝑛], the extreme rightmost quan-
tum Plücker coordinate. To do this we employ an antiautomorphism of 𝑞(𝐺(𝑘, 𝑛)) that we
now describe.
Let 𝑤0 denote the longest element on the symmetric group on 𝑛 elements; that is, 𝑤0(𝑖) =

𝑛 + 1 − 𝑖. The discussion immediately before Proposition 2.12 of [2] shows that the map 𝜃 ∶

𝑞(𝐺(𝑘, 𝑛)) ⟶ 𝑞(𝐺(𝑘, 𝑛)) given by 𝜃([𝐼]) = [𝑤0(𝐼)] for each quantum Plücker coordinate [𝐼]
is an antiautomorphism. Note that 𝜃([𝑢]) = 𝜃([1, … , 𝑘]) = [𝑛 + 1 − 𝑘,… , 𝑛] = [𝑤].

Corollary 5.7. Let 𝜌 be an automorphism of 𝑞(𝐺(𝑘, 𝑛)). Then there exists ℎ ∈  such that
(ℎ◦𝜌)([𝑢]) = 𝑢 and (ℎ◦𝜌)([𝑤]) = [𝑤].

Proof. Themap 𝜃𝜌𝜃 is an automorphismof𝑞(𝐺(𝑘, 𝑛)). By Lemma 5.6, there is an element𝜇 ∈ 𝐾∗

such that 𝜃𝜌𝜃([𝑢]) = 𝜇[𝑢]. Apply 𝜃 to both sides of this equality to obtain 𝜌𝜃([𝑢]) = 𝜇𝜃([𝑢]); that
is, 𝜌([𝑤]) = 𝜇[𝑤].We also know that 𝜌([𝑢]) = 𝜆[𝑢] for some 𝜆 ∈ 𝐾∗. Set ℎ ∶= (𝜆−1, 1, … , 1, 𝜇−1) ∈

0. Then (ℎ◦𝜌)([𝑢]) = [𝑢] and (ℎ◦𝜌)([𝑤]) = [𝑤]. Lemma 4.1 shows that the action of an element
of0 is realised by the action of an element of1 and hence of, so the result follows. □

In what follows, we will often replace the original automorphism 𝜌 by ℎ◦𝜌 so that we may
assume that 𝜌([𝑢]) = [𝑢] and 𝜌([𝑤]) = [𝑤] in calculations.

Remark 5.8. Although the assumption that 𝑞 is not a root of unity was not necessary in Sections 2,
3 and 4, it was used in a number of places in this section.

6 TRANSFER TO QUANTUMMATRICES

Recall from the discussion in Section 2 that when discussing 𝑞(𝐺(𝑘, 𝑛)) we are assuming that
1 < 𝑘 and that 2𝑘 ⩽ 𝑛. We also continue to use the notation 𝑝 ∶= 𝑛 − 𝑘.
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THE AUTOMORPHISM GROUP OF THE QUANTUM GRASSMANNIAN 15

Let 𝜌 be an automorphism of 𝑞(𝐺(𝑘, 𝑛)). Recall from earlier that [𝑢] = [1, … , 𝑘] and [𝑤] =

[𝑛 − 𝑘 + 1,… , 𝑛]. By using Corollary 5.7, at the expense of adjusting 𝜌 by an element of , we
can, and will, assume that 𝜌([𝑢]) = [𝑢] and 𝜌([𝑤]) = [𝑤]. The automorphism 𝜌 now extends to
𝑇 = 𝑞(𝐺(𝑘, 𝑛))[[𝑢]

−1] = 𝑞(𝑀(𝑘, 𝑝))[𝑦±1; 𝜎] and we know that 𝜌(𝑦) = 𝑦.
We will show that such a 𝜌 sends 𝑞(𝑀(𝑘, 𝑝)) to itself. Once we have done this, we will know

how 𝜌 acts on each quantum minor in 𝑞(𝑀(𝑘, 𝑝)) as we know the automorphism group of
𝑞(𝑀(𝑘, 𝑝)). We can then calculate how 𝜌 acts on arbitrary quantum Plücker coordinates of
𝑞(𝐺(𝑘, 𝑛)), by using the formulae of Lemma 3.2.
From Equation (1), we know that the quantum matrix generators 𝑥𝑖𝑗 are defined by

𝑥𝑖𝑗 ∶= [1, … , ˆ𝑘 + 1 − 𝑖, … , 𝑘, 𝑗 + 𝑘][𝑢]−1,

for 1 ⩽ 𝑖 ⩽ 𝑘 and 1 ⩽ 𝑗 ⩽ 𝑝. In the following calculations, all quantumminors [− ∣ −] are formed
from the generators 𝑥𝑖𝑗 of 𝑞(𝑀(𝑘, 𝑝)).
As 2𝑘 ⩽ 𝑛, we know that 𝑘 ⩽ 𝑛 − 𝑘 = 𝑝. Thus, [𝐼 ∣ 𝐽] ∶= [1, … , 𝑘 ∣ 𝑝 + 1 − 𝑘,… , 𝑝] is a well

defined quantum minor (we are using all the rows of 𝑞(𝑀(𝑘, 𝑝)) and the last 𝑘 columns (and
there are at least 𝑘 columns, by the assumption).
Now, Lemma 3.2 shows that [𝐼 ∣ 𝐽] = [𝑝 + 1,… , 𝑛][1, … , 𝑘]−1 = [𝑤][𝑢]−1, and it follows from

this that 𝜌([𝐼 ∣ 𝐽]) = [𝐼 ∣ 𝐽] for any element 𝜌 ∈  such that 𝜌([𝑢]) = [𝑢] and 𝜌([𝑤]) = [𝑤].
We can calculate how [𝐼 ∣ 𝐽] commutes with [𝑢] = [1, … , 𝑘]. Note that 𝑘 < 𝑛 − 𝑘 + 1, as 2𝑘 ⩽ 𝑛.

Thus the index sets {1, … , 𝑘} and {𝑝 + 1,… , 𝑛} do not overlap, and

[𝑢][𝐼 ∣ 𝐽] = [𝑢][𝑤][𝑢]−1 = 𝑞𝑘[𝑤][𝑢][𝑢]−1 = 𝑞𝑘[𝑤][𝑢]−1[𝑢] = 𝑞𝑘[𝐼 ∣ 𝐽] [𝑢],

where the second equality comes from Lemma 3.1.
Also, we know how [𝐼 ∣ 𝐽] commutes with the 𝑥𝑖𝑗 by the following lemma.

Lemma 6.1.

(i) If 𝑗 ⩾ 𝑛 + 1 − 2𝑘 = 𝑝 + 1 − 𝑘, then 𝑥𝑖𝑗[𝐼 ∣ 𝐽] = [𝐼 ∣ 𝐽] 𝑥𝑖𝑗 .
(ii) If 𝑗 < 𝑛 + 1 − 2𝑘 = 𝑝 + 1 − 𝑘, then 𝑥𝑖𝑗[𝐼 ∣ 𝐽] = 𝑞[𝐼 ∣ 𝐽] 𝑥𝑖𝑗 .

Proof.

(i) In this case, 𝑥𝑖𝑗 is in the quantum matrix algebra determined by the rows from 𝐼 and the
columns from 𝐽 and [𝐼 ∣ 𝐽] is the quantum determinant of this algebra, so the claim follows
as [𝐼 ∣ 𝐽] is central in this algebra.

(ii) This result is obtained from the first equation in E(1.3c) in [4, section 1.3].

□

We define two gradings on 𝑇 ∶= 𝑞(𝑀(𝑘, 𝑝))[𝑦±1; 𝜎] = 𝑞(𝐺(𝑘, 𝑛))[[𝑢]
−1] that grade 𝑇

according to how elements commute with 𝑦 = 𝑢 and [𝐼 ∣ 𝐽] = [1, … , 𝑘 ∣ 𝑝 + 1 − 𝑘,… , 𝑝].
First, set 𝑇𝑖 ∶= {𝑎 ∈ 𝑇 ∣ 𝑦𝑎𝑦−1 = 𝑞𝑖𝑎}.

Lemma 6.2.

(i) 𝑇 =
⨁∞

𝑖=1 𝑇𝑖 ,
(ii) 𝜌(𝑇𝑖) = 𝑇𝑖 .
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16 LAUNOIS and LENAGAN

Proof. Note that 𝑇 is generated by 𝑦±1 and the 𝑥𝑖𝑗 , and that 𝑦±1 ∈ 𝑇0, while 𝑥𝑖𝑗 ∈ 𝑇1, as 𝑦𝑥𝑖𝑗 =
𝑞𝑥𝑖𝑗𝑦. As 𝑞(𝑀(𝑘, 𝑝)) is an iterated Ore extension with the elements 𝑥𝑖𝑗 added lexicographically,
the elements of the form 𝑥

𝑎11
11

… 𝑥
𝑎𝑘𝑝
𝑘𝑝

𝑦𝑠 with 𝑎𝑖𝑗 ⩾ 0 and 𝑠 ∈ ℤ form a basis for 𝑇. Part (i) now
follows as 𝑦𝑥𝑖𝑗𝑦−1 = 𝑞𝑥𝑖𝑗 . Part (ii) follows from the fact that 𝜌(𝑦) = 𝑦. □

Next, set 𝑇(𝑖) ∶= {𝑎 ∈ 𝑇 ∣ [𝐼 ∣ 𝐽]𝑎[𝐼 ∣ 𝐽]−1 = 𝑞−𝑖𝑎}. The commutation rules given in Lemma 6.1
show that 𝑥𝑖𝑗 ∈ 𝑇(0) ∪ 𝑇(1). Also, note that 𝑦[𝐼 ∣ 𝐽] = [𝑢][𝐼 ∣ 𝐽] = 𝑞𝑘[𝐼 ∣ 𝐽][𝑢] = 𝑞𝑘[𝐼 ∣ 𝐽]𝑦, so 𝑦 =

𝑢 ∈ 𝑇(𝑘) and 𝑦−1 ∈ 𝑇(−𝑘).

Lemma 6.3.

(i) 𝑇 =
⨁

𝑖∈ℤ 𝑇(𝑖),
(ii) 𝜌(𝑇(𝑖)) = 𝑇(𝑖).

Proof. Part (i) is proved as in the previous lemma, and Part (ii) follows since 𝜌([𝐼 ∣ 𝐽]) =

[𝐼 ∣ 𝐽]. □

Lemma 6.4. (𝑇(0) ∪ 𝑇(1)) ∩ 𝑇1 ⊆ 𝑞(𝑀(𝑘, 𝑝)).

Proof. Suppose that 𝑎 ∈ (𝑇(0) ∪ 𝑇(1)) ∩ 𝑇1. Then 𝑎 is a sum of scalarmultiples ofmonomials of the
form𝑚 ∶= 𝑥

𝑎11
11

… 𝑥
𝑎𝑘𝑝
𝑘𝑝

𝑦𝑠 with each 𝑎𝑖𝑗 ⩾ 0 and 𝑠 ∈ ℤ. Such amonomial is in 𝑇𝑓 , where 𝑓 =
∑
𝑎𝑖𝑗

and so we must have
∑
𝑎𝑖𝑗 = 1, as 𝑎 ∈ 𝑇1. Thus, only one 𝑥𝑖𝑗 can occur in each monomial and 𝑎

is a sum of scalar multiples of monomials of the form𝑚 ∶= 𝑥𝑖𝑗𝑦
𝑏. Such an𝑚 is in 𝑇(𝑒+𝑏𝑘), where

𝑒 = 0 or 𝑒 = 1. As each𝑚must be in 𝑇(0) ∪ 𝑇(1) we must have 𝑒 + 𝑏𝑘 = 0 or 𝑒 + 𝑏𝑘 = 1. The only
possible solutions to these restrictions is that 𝑏 = 0, as 𝑘 ⩾ 2. Hence, 𝑎 is a sum of scalar multiples
of monomials of the form 𝑥𝑖𝑗 which means that 𝑎 ∈ 𝑞(𝑀(𝑘, 𝑝)). □

Theorem 6.5. Let 𝜌 be an automorphism of 𝑞(𝐺(𝑘, 𝑛)) with 1 < 𝑘 and 2𝑘 ⩽ 𝑛 that sat-
isfies 𝜌([𝑢]) = [𝑢] and 𝜌([𝑤]) = [𝑤]. Then 𝜌 extends naturally to an automorphism of 𝑇 =

𝑞(𝐺(𝑘, 𝑛))[[𝑢]
−1] = 𝑞(𝑀(𝑘, 𝑝))[𝑦±1; 𝜎] such that 𝜌(𝑦) = 𝑦 and 𝜌(𝑞(𝑀(𝑘, 𝑝))) = 𝑞(𝑀(𝑘, 𝑝)).

Proof. We know that 𝜌(𝑦) = 𝑦 and so only need to show that 𝜌(𝑞(𝑀(𝑘, 𝑝))) = 𝑞(𝑀(𝑘, 𝑝)).
To do this, it is sufficient to prove that 𝜌(𝑥𝑖𝑗) ∈ 𝑞(𝑀(𝑘, 𝑝)) for each generator 𝑥𝑖𝑗 . Note that
𝑥𝑖𝑗 ∈ (𝑇(0) ∪ 𝑇(1)) ∩ 𝑇1 for each 𝑖, 𝑗, and so 𝜌(𝑥𝑖𝑗) ∈ (𝑇(0) ∪ 𝑇(1)) ∩ 𝑇1 for each 𝑖, 𝑗. Hence, 𝜌(𝑥𝑖𝑗) ∈
𝑞(𝑀(𝑘, 𝑝)) by the previous lemma. □

In this section, we have again made crucial use of the assumption that 𝑞 is not a root of unity.

7 THE AUTOMORPHISM GROUP OF 𝒒(𝑮(𝒌, 𝒏))

In Definition 4.5 and Claim 4.6, we identified a group of automorphisms of 𝑞(𝐺(𝑘, 𝑛)) that we
claimed would give us all the automorphisms. We are now in a position to justify this claim.
Recall from Definition 4.5 that =  when 2𝑘 ≠ 𝑛 and ∶=  ⋊ ⟨𝜏⟩ when 2𝑘 = 𝑛.

Theorem 7.1. The automorphism group Aut(𝑞(𝐺(𝑘, 𝑛))) of 𝑞(𝐺(𝑘, 𝑛)) is isomorphic to.
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THE AUTOMORPHISM GROUP OF THE QUANTUM GRASSMANNIAN 17

Proof. Let 𝜌 be an arbitrary automorphism of 𝑞(𝐺(𝑘, 𝑛)). By Corollary 5.7, there is an auto-
morphism ℎ ∈  such that ℎ ⋅ 𝜌([𝑢]) = [𝑢] and ℎ ⋅ 𝜌([𝑤]) = [𝑤]. It is enough to prove that this
adjusted automorphism is in or in ⋊ ⟨𝜏⟩; so we may assume that 𝜌([𝑢]) = [𝑢] and 𝜌([𝑤]) =
[𝑤]. This adjusted automorphism satisfies the hypothesis for Theorem 6.5 and so 𝜌 extends nat-
urally to an automorphism of 𝑇 = 𝑞(𝐺(𝑘, 𝑛))[[𝑢]

−1] = 𝑞(𝑀(𝑘, 𝑝))[𝑦±1; 𝜎] such that 𝜌(𝑦) = 𝑦

and 𝜌(𝑞(𝑀(𝑘, 𝑝))) = 𝑞(𝑀(𝑘, 𝑝)). Given this, the action of 𝜌 is completely determined by its
restriction to 𝑞(𝑀(𝑘, 𝑝)); so it is enough to show that 𝜌 restricted to 𝑞(𝑀(𝑘, 𝑝)) is realised by
an element of or, if 2𝑘 = 𝑛, that either 𝜌 or 𝜌◦𝜏 is realised by an element of.
If 2𝑘 ≠ 𝑛, then by [10, Corollary 4.11 and its proof] 𝜌 is determined on 𝑞(𝑀(𝑘, 𝑝)) by row and

column operations and so is in, as required.
If 2𝑘 = 𝑛, then by [17, Theorem 3.2] either 𝜌 or 𝜌◦𝜏 is determined by row and column operations

and so is in. In either case, 𝜌 ∈  ⋊ ⟨𝜏⟩, as required. □
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