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Abstract

The automorphism group of a quantised coordinate algebra is usually much smaller

than that of its classical counterpart. Nevertheless, these automorphism groups are often

very difficult to calculate. In this paper, we calculate the automorphism group of the

quantum grassmannian in the case that the deformation parameter is not a root of unity.

The main tool employed is the dehomogenisation equality which shows that a localisation

of the quantum grassmannian is equal to a skew Laurent extension of quantum matrices.

This equality is used to connect the automorphism group of the quantum grassmannian

with that of quantum matrices, where the automorphism group is known.

1 Introduction

The quantum grassmannian Oq(G(k, n)) is a noncommutative algebra that is a deformation

of the homogeneous coordinate ring of the classical grassmannian of k-planes in n-space. In

this paper, we calculate the automorphism group of the quantum grassmannian in the generic

case where the deformation parameter q is not a root of unity.

Typically, quantised coordinate algebras are much more rigid than their classical counter-

parts, in the sense that the automorphism group of the quantum object is much smaller than

that of the classical object. Nevertheless, it has proven difficult to calculate these automor-

phism groups and only a few examples are known where the calculation has been completed,

see, for example, [1, 6, 9, 10, 11, 17, 18]. The automorphism group of quantum matrices

[10, 17] will prove crucial in our present work.

The quantum grassmannian Oq(G(k, n)) is generated as an algebra by the k× k quantum

minors of the quantum matrix algebra Oq(M(k, n)). These generators are called quantum

Plücker coordinates and there is a natural partial order on the quantum Plücker coordinates

which is illustrated in the case of Oq(G(3, 6)) in Figure 1. There are two obvious sources

of automorphisms for Oq(G(k, n)). The first is by restricting column automorphisms of

Oq(M(k, n)) to the subalgebra Oq(G(k, n)), these automorphisms are described in Section 4.

The second is via studying certain automorphisms of the (noncommutative) dehomogenisa-

tion of Oq(G(k, n)) which is isomorphic to a skew Laurent extension of Oq(M(k, p)), with

p = n− k, as we shall see in Section 3.
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In Section 4 we study these “obvious” automorphisms of Oq(G(k, n)) and consider the

relations between them. We then claim that these provide all of the automorphisms of

Oq(G(k, n)), and justify the claim in the following sections. More precisely, we show the

following result:

Theorem. 1. The automorphism group Aut(Oq(G(k, n))) of Oq(G(k, n)) is isomorphic to

(K∗)n when 2k 6= n.

2. Assume 2k = n. There is an automorphism τ of Oq(G(k, n)) which sends the quan-

tum Plücker coordinate [I] to [w0( Î )], where Î is the complement of I in {1, . . . , n}
and w0 is the longest permutation of {1, . . . , n}. Moreover, the automorphism group

Aut(Oq(G(k, n))) of Oq(G(k, n)) is isomorphic to (K∗)n o 〈τ〉.

The quantum grassmannian carries the structure of an N-graded algebra, with each quan-

tum Plucker coordinate having degree one. In Section 5, we exploit this grading in a series

of lemmas to see that we can essentially fix the minimal and maximal elements in the poset

after allowing adjustment by the automorphisms that we have found in Section 4.

In Section 6 we study these adjusted automorphisms and show that such an automorphism

induces, via the dehomogenisation equality, an automorphism of Oq(M(k, n)). Once this

has been done, our main result follows easily in Section 7 from the known structure of the

automorphism group of quantum matrices.

2 Basic definitions

Throughout the paper, we work with a field K and a nonzero element q ∈ K which is not a

root of unity.

The algebra of m× n quantum matrices over K, denoted by Oq(M(m,n)), is the algebra

generated over K by mn indeterminates xij , with 1 ≤ i ≤ m and 1 ≤ j ≤ n, which commute

with the elements of K and are subject to the relations:

xijxil = qxilxij , for 1 ≤ i ≤ m, and 1 ≤ j < l ≤ n ;

xijxkj = qxkjxij , for 1 ≤ i < k ≤ m, and 1 ≤ j ≤ n ;

xijxkl = xklxij , for 1 ≤ k < i ≤ m, and 1 ≤ j < l ≤ n ;

xijxkl − xklxij = (q − q−1)xilxkj , for 1 ≤ i < k ≤ m, and 1 ≤ j < l ≤ n.

It is well known that Oq(M(m,n)) is an iterated Ore extension over K with the xij added in

lexicographic order. An immediate consequence is that Oq(M(m,n)) is a noetherian domain.

When m = n, the quantum determinant Dq is defined by;

Dq :=
∑

(−q)l(σ)x1σ(1) · · ·xnσ(n),

where the sum is over all permutations σ of {1, . . . , n} and l(σ) denotes the length of the

permutation σ. The quantum determinant is a central element in the algebra of quantum

matrices Oq(M(n, n)).
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If I and J are t-element subsets of {1, . . . ,m} and {1, . . . , n}, respectively, then the quan-

tum minor [I | J ] is defined to be the quantum determinant of the t × t quantum matrix

subalgebra generated by the variables xij with i ∈ I and j ∈ J .

Assume that n ≥ k. The homogeneous coordinate ring of the k × n quantum grass-

mannian, Oq(G(k, n)) (informally known as the quantum grassmannian) is the subalgebra of

Oq(M(k, n)) generated by the k × k quantum minors of Oq(M(k, n)), see, for example, [7].

The quantum grassmannian Oq(G(1, n)) is a quantum affine space, and, as such, its au-

tomorphism group is known, see [1]; so we will assume throughout this paper that k > 1.

Also, we will see in Proposition 3.4 that Oq(G(k, n)) ∼= Oq(G(n− k, n)), so in calculating the

automorphism group we will assume that 2k ≤ n (and so n ≥ 4, as k ≥ 2).

A k× k quantum minor of Oq(M(k, n)) must use all of the k rows, and so we can specify

the quantum minor by specifying the columns that define it. With this in mind, we will write

[J ] for the quantum minor [1, . . . , k | J ], for any k-element subset J of {1, . . . , n}. Quantum

minors of this type are called quantum Plücker coordinates. The set of quantum Plücker

coordinates in Oq(G(k, n)) is denoted by Π. There is a natural partial order on Π defined in

the following way: if I = [i1 < · · · < ik] and J = [j1 < · · · < jk] then [I] ≤ [J ] if and only

if il ≤ jl for each l = 1, . . . , k. This partial order is illustrated for the case of Oq(G(3, 6)) in

Figure 1. A standard monomial in the quantum Plücker coordinates is an expression of the

form [I1][I2] . . . [It] where I1 ≤ I2 ≤ · · · ≤ It in this partial order. The set of all standard

monomials forms a vector space basis of Oq(G(k, n)) over K, see, for example, [7, Proposition

2.8].

3 Dehomogenisation of Oq(G(k, n))

An element a in a ring R is said to be a normal element of R provided that aR = Ra. If R

is a domain then a nonzero normal element a may be inverted, as the Ore condition for the

set S := {an} is easily verified. Standard results for noncommutative noetherian rings can be

found in the books by Goodearl and Warfield [5] and McConnell and Robson [16].

Set u = {1, . . . , k}. Then [u] commutes with all other quantum Plücker coordinates up to

a power of q. We need to specify which power occurs. Here, and throughout the paper, for

any quantum Plücker coordinate [I] of Oq(G(k, n)), we set d(I) := # (I\(I ∩ u)) ≥ 0.

Lemma 3.1. Let [I] be a quantum Plücker coordinate in Oq(G(k, n)). Then [u][I] = qd(I)[I][u].

Proof. This can be obtained from [8] by combining Lemma 3.7 and Theorem 3.4 of that

paper. (Note that [8] uses q−1 as the deformation parameter where we use q; so care must be

taken in interpreting their results.) It can also be extracted from [7, Corollary 1.1] by setting

[I] = [u] in the statement of the corollary and noting that the summation on the right-hand

side of the displayed equation is then empty.
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Figure 1: The partial order on Π for Oq(G(3, 6)).

As Oq(G(k, n)) is generated by the quantum Plücker coordinates it follows from the pre-

vious lemma that the element [u] is a normal element and so we may invert [u] to obtain the

overring Oq(G(k, n))[[u]−1].

For 1 ≤ i ≤ k and 1 ≤ j ≤ n− k, set

xij := [1, . . . , ̂k + 1− i, . . . , k, j + k][u]−1 ∈ Oq(G(k, n))[[u]−1]. (1)

The case a = 1 of [15, Theorem 3.2] shows that the elements xij generate an algebra R,

say, that sits inside Oq(G(k, n))[[u]−1] and is isomorphic to Oq(M(k, n− k)). Also,

Oq(G(k, n))[[u]−1] = R[[u], [u]−1].

(NB. The way we have fixed things, that really is an equality in the above display, rather

than just an isomorphism.) In the rest of this note, we will write R = Oq(M(k, p)) where

p := n− k and when we are operating on the right-hand side of this equality, we will write y

for [u].

As d([1, . . . , ̂k + 1− i, . . . k, j + k]) = 1, it follows from Lemma 3.1 that [u]xij = qxij [u]

and that yxij = qxijy.
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The equality above says that

T := Oq(G(k, n))[[u]−1] = Oq(M(k, p))[y, y−1;σ], (2)

where σ is the automorphism of Oq(M(k, p)) such that σ(xij) = qxij for each i = 1, . . . , k

and j = 1, . . . , p. We will refer to Equation (2) as the dehomogenisation equality.

The next lemma gives the formulae for passing between quantum minors and Plücker

coordinates in the above equality. In the lemma, and elsewhere, we use the following notation:

if a is an integer and S = {s1, . . . , st} is a set of integers then a + S := {a + s1, . . . , a + st}
and a− S := {a− s1, . . . , a− st}.

Lemma 3.2. (i) Let [I | J ] be a quantum minor in R = Oq(M(k, p)). Then

[I | J ] = [{1 . . . k}\(k + 1− I) t (k + J)][u]−1 ∈ Oq(G(k, n))[[u]−1] .

(ii) Let [L] be a quantum Plücker coordinate in Oq(G(k, n)) and write L = L≤k t L>k where

L≤k = L ∩ {1, . . . , k} and L>k = L ∩ {k + 1, . . . , n}. Then

[L] = [(k + 1)− ({1, . . . , k}\L≤k) | L>k − k]y ∈ Oq(M(k, p))[y, y−1;σ].

Proof. (i) This formula occurs as the case a = 1 of [15, Proposition 4.3] which gives the formula

for general quantum minors of R = Oq(M(k, p)) in terms of quantum Plücker coordinates of

Oq(G(k, n)).

(ii) Let [L] be a quantum Plücker coordinate in Oq(G(k, n)). Set I = (k+1)−({1, . . . , k}\L≤k)
and J = L>k − k. Note that |I| = |J | = |L>k| and so we can form the quantum minor [I | J ].

Apply (i) to [I | J ] to see that

[I | J ][u] = [{1, . . . , k}\{(k + 1)− {(k + 1)− ({1, . . . , k}\L≤k)}} t k + (L>k − k)]

= [{1, . . . , k}\({1, . . . , k}\L≤k) t L>k] = [L≤k t L>k] = [L],

so that (ii) is established.

The following corollary to the above lemma will be useful in later calculations.

Corollary 3.3. Suppose that [L] is a quantum Plücker coordinate in Oq(G(k, n)) and that

[L] = [I | J ][u] for some [I | J ] ∈ Oq(M(k, p)).

(i) Let i ∈ {1, . . . , k}. Then i ∈ I if and only if (k + 1)− i 6∈ L.

(ii) Let j ∈ {1 . . . , p}. Then j ∈ J if and only if j + k ∈ L.

We will use the dehomogenisation equality (2) in the next three sections to transfer

the problem of finding automorphisms of Oq(G(k, n)) to that of finding automorphisms of

Oq(M(k, p)) where the problem has been solved in [10] and [17]. Before doing that, we il-

lustrate the usefulness of dehomogenisation by the following two results, the second of which

identifies an extra automorphism of Oq(G(k, n)) in the case that n = 2k.

5



First, note that there is an isomorphism τ between the quantum matrix algebrasOq(M(k, n−
k)) = K(xij) and Oq(M(n− k, k)) = K(x′ij) that sends xij to x′ji and more generally sends a

quantum minor [I | J ] of Oq(M(k, n− k)) to the quantum minor [J | I] of Oq(M(n− k, k)).

With a slight abuse of notation, we denote quantum minors of Oq(M(n − k, k)) without

dashes to differentiate them from quantum minors from Oq(M(k, n− k)). (When k = n− k
and xij = x′ij this is the automorphism of quantum matrices given by transposition and so

we will refer to τ as the transpose isomorphism.) This automorphism extends to an isomor-

phism from Oq(M(k, n − k))[y, y−1;σ] to Oq(M(n − k, k))[y′, y′−1;σ′], where σ(xij) = qxij

and σ′(x′ij) = qx′ij . We also denote this extension by τ . If L is a subset of {1, . . . , n} then L̂

denotes the complement of L in {1, . . . , n}. We use w0 to denote the longest element of the

symmetric group on {1, . . . , n}; that is, w0 reverses the order of {1, . . . , n}.

Proposition 3.4. Oq(G(k, n)) ∼= Oq(G(n−k, n)) via an isomorphism that sends the quantum

Plücker coordinate [L] of Oq(G(k, n)) to the quantum Plücker coordinate [w0( L̂ )] of Oq(G(n−
k, n)).

Proof. We may assume that 2k ≤ n. There is an isomorphism

Oq(G(k, n))[[u]−1] = Oq(M(k, n− k))[y, y−1;σ] ∼=1

Oq(M(n− k, k)[y′, y′−1;σ′] ∼= Oq(G(n− k, n))[[u′]−1],

where [u′] = [1, . . . , n − k] ∈ Oq(G(n − k, n)) and σ′(x′ij) = qx′ij . (Note that ∼=1 is given by

applying the transpose isomorphism τ that sends [I | J ] to [J | I] and sends y = [u] = [1, . . . , k]

to y′ = [u′] = [1, . . . , n− k].)

We need to track the destination of an arbitrary quantum Plücker coordinate of [L] of

Oq(G(k, n)) under this isomorphism, using the formulae that we have developed above for

translating between quantum Plücker coordinates and quantum minors.

[L] = [L≤k t L>k]

= [(k + 1)− ({1, . . . , k}\L≤k) | L>k − k]y (∈ Oq(M(k, n− k))y)
17→ [L>k − k | (k + 1)− ({1, . . . , k}\L≤k)]y′ (∈ Oq(M(n− k, k))y′)

= [{1, . . . , n− k}\(n+ 1− L>k) t (n− k) + ((k + 1)− ({1, . . . , k}\L≤k))]

= [{1, . . . , n− k}\(n+ 1− L>k) t ((n+ 1)− ({1, . . . , k}\L≤k))]

= [{1, . . . , n− k}\w0(L>k) t w0({1, . . . , k}\L≤k)]

= [{1, . . . , n− k}\w0(L>k) t {n− k + 1, . . . n}\w0(L≤k)]

= [{1, . . . , n}\{w0(L>k) t w0(L≤k)}]

= [{1, . . . , n}\w0(L)]

= [ ŵ0(L) ] = [w0( L̂ )].
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As the quantum Plücker coordinates of Oq(G(k, n)) generate Oq(G(k, n)) as an algebra,

and their images generate Oq(G(n − k, n)) as an algebra, this calculation shows that the

isomorphism displayed at the beginning of the proof restricts to an isomorphism between

Oq(G(k, n)) and Oq(G(n− k, n)).

An immediate corollary of this result is the following.

Corollary 3.5. When 2k = n, there is an automorphism of Oq(G(k, n)) which sends the

quantum Plücker coordinate [I] to [w0( Î )].

Remark 3.6. The automorphism in the previous corollary will be called the diagram auto-

morphism. In Figure 1, which shows the standard poset for Oq(G(3, 6)), the effect of this auto-

morphism on the quantum Plücker coordinates is seen by reflection of the poset in the vertical.

For example, [126] is sent to [w0( 1̂26 )] = [w0(345)] = [234]. There is a diagram automorphism

for Oq(G(k, n)) only in the case that n = 2k. Note that both the diagram automorphism and

the transpose automorphism τ extend to Oq(G(k, 2k)([u]−1) = Oq(M(k, k))[y, y−1;σ] and

they agree on this common overring, so we denote the diagram automorphism by τ also.

4 Obvious automorphisms of Oq(G(k, n))

There are two obvious sources of automorphisms of Oq(G(k, n)). The first is via the inclusion

Oq(G(k, n)) ⊆ Oq(M(k, n)). The second is by using the dehomogenisation equality introduced

in Section 3:

Oq(M(k, p))[y±1;σ] = Oq(G(k, n))[[u]−1],

where p = n − k and u = {1, . . . , k} while σ is the automorphism of Oq(M(k, p)) such that

σ(xij) = qxij for each i = 1, . . . , k and j = 1, . . . , p.

In this section, we introduce these automorphisms and consider the connections between

them.

First, Oq(G(k, n)) is a subalgebra of Oq(M(k, n)) by definition. The torus H0 := (K∗)n

acts by column multiplication on Oq(M(k, n)) and this induces an action on Oq(G(k, n))

defined on quantum Plücker coordinates by

(β1, . . . , βn) · [i1, . . . , ik] = βi1 . . . βik [i1, . . . , ik].

This is the torus action on Oq(G(k, n)) that is considered in papers such as [12, 14].

Secondly, there is an action of the torus (K∗)k+p on Oq(M(k, p)) which operates by row

and column scaling, so that (α1, . . . , αk;β1, . . . , βp) · xij = αiβjxij . As n = k + p, we can

extend this to an action of the torus H1 := (K∗)n+1 on Oq(M(k, p))[y±1;σ] by setting

(α0;α1, . . . , αk;β1, . . . , βp) · xij = αiβjxij , (α0;α1, . . . , αk;β1, . . . , βp) · y = α0y.
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Set h = (α0;α1, . . . , αk;β1, . . . , βp) ∈ H1. It is easy to check that h · [I | J ] = αIβJ [I | J ],

where αI := αi1 . . . αik when I = [αi1 , . . . , αik ], and βJ = βj1 . . . βjp when J = [βj1 , . . . , βjk ].

The dehomogenisation equality induces an action of H1 on Oq(G(k, n))[[u]−1]. For h =

(α0;α1, . . . , αk;β1, . . . , βp) ∈ H1 we have h · [u] = α0[u]. If [L] is any other quantum Plücker

coordinate then we may write [L] = [I | J ][u], where I = (k + 1) − ({1, . . . , k}\L≤k) and

J = L>k − k, by Lemma 3.2. Then

h · [L] = h · [I | J ]× h · [u] = αIβJ [I | J ]× α0[u] = α0αIβJ [I | J ][u] = α0αIβJ [L].

As the quantum Plücker coordinates generate Oq(G(k, n)) and are sent to scalar multiples

of themselves by each h ∈ H1, such h act as automorphisms of Oq(G(k, n)).

We now consider connections between the actions of H0 and H1 on Oq(G(k, n)).

Lemma 4.1. For every automorphism g ∈ H0 acting on Oq(G(k, n)) there is an automor-

phism f ∈ H1 which has the same action on Oq(G(k, n)).

Proof. Let g = (a1, . . . , an) ∈ H0. We seek f = (α0;α1, . . . , αk;β1, . . . , βp) ∈ H1 such that

the actions of g and f on Oq(G(k, n)) are the same. As g · [u] = a1 . . . ak[u], we may ex-

tend g to act on Oq(G(k, n))[[u]−1]. The dehomogenisation equality then transfers this ac-

tion to Oq(M(k, p))[y±1;σ]. We calculate the action of g on the generators xij and y±1 of

Oq(M(k, p))[y±1;σ]. As y corresponds to [u] in the dehomogenisation equality, g·y = a1 . . . aky

and g · y−1 = (a1 . . . ak)
−1y−1. Now, xij := [1, . . . , ̂k + 1− i, . . . k, j + k][u]−1; so

g · xij = g · [1, . . . , ̂k + 1− i, . . . k, j + k]× g · [u]−1

= a1 . . . aka
−1
k+1−iaj+k[1, . . . ,

̂k + 1− i, . . . k, j + k]× (a1 . . . ak)
−1[u]−1

= aj+ka
−1
(k+1)−i[1, . . . ,

̂k + 1− i, . . . k, j + k][u]−1

= aj+ka
−1
(k+1)−ixij .

We seek an f ∈ H0 which has the same effect on the generators xij and y. Set f =

(a1 . . . ak; a
−1
k , . . . , a−11 ; ak+1, . . . , an) ∈ H0. Then f · y = a1 . . . aky = g · y. Also, the entry

in f multiplying the ith row is a−1(k+1)−i and the entry multiplying the jth column is ak+j so

f · xij = a−1(k+1)−iak+jxij = g · xij . Hence, f and g agree on the generators xij and y±1 of

Oq(M(k, p))[y±1;σ] = Oq(G(k, n))[[u]−1]; so the actions of f and g on Oq(G(k, n)) are the

same.

The converse question is more delicate, as the following example shows.

Example 4.2. Let K be a field in which there is no element b such that b2 = 2 (eg Q) and

consider Oq(G(2, 4)) over this field. Let f = (1; 2, 1; 1, 1) ∈ H1. Then there is no element

g = (a1, a2, a3, a4) ∈ H0 whose action on Oq(G(2, 4)) coincides with the action of f on

Oq(G(2, 4)). To verify this claim, we use the formulae in Lemma 3.2 to see that

[12] = [u], [13] = x11[u], [14] = x12[u], [23] = x21[u], [24] = x22[u], [34] = [12 | 12][u].
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These equations lead to the following actions of f on the quantum Plücker coordinates:

f · [12] = [12], f · [13] = 2[13], f · [14] = 2[14], f · [23] = [23], f · [24] = [24], f · [34] = 2[34].

Next, for g = (a1, a2, a3, a4) ∈ H0 we see that

g · [12] = a1a2[12], g · [13] = a1a3[13], g · [14] = a1a4[14],

g · [23] = a2a3[23], g · [24] = a2a4[24], g · [34] = a3a4[34];

so for this g to act in the same way as f we require that

a1a2 = 1, a1a3 = 2, a1a4 = 2, a2a3 = 1, a2a4 = 1, a3a4 = 2.

The fourth and fifth equations on the line above show that we need a3 = a4 (= b say) and

then the sixth equation gives b2 = 2, which is not possible for any b ∈ K.

In view of this example, it is appropriate to assume that K is algebraically closed in the

following result.

Lemma 4.3. Suppose that K is algebraically closed. Consider Oq(G(k, n)) and Oq(M(k, p))

over K. For every automorphism f ∈ H1 acting on Oq(G(k, n)) there is an automorphism

g ∈ H0 which has the same action on Oq(G(k, n)).

Proof. Consider the set S of elements f = (α0;α1, . . . , αk;β1, . . . , βp) ∈ H1 that are equal to

1 in all positions except one. The set S generates H1 so it is enough to show that the action

of each member of S can be realised via the action of an element of H0.

Let [L] 6= [u] be a quantum Plücker coordinate in Oq(G(k, n)) with [L] = [I | J ][u] for

some quantum minor [I | J ] ∈ Oq(M(k, p)). Then

f · [L] = (f · [I | J ])(f · [u]) = α0(f · [I | J ])[u].

We look at three cases separately.

The first case we consider is when one of the βi terms is not equal to 1. Suppose that the

element βj in position k+ 1 + j of f is not equal to 1 but that all other positions of f contain

the element 1. Note that α0 = 1 and so f · [u] = [u]. Thus, f · [L] = (f · [I | J ])[u] so that

f · [L] = [L] when j 6∈ J and f · [L] = βj [L] when j ∈ J .

By using Corollary 3.3(ii) we see that f · [L] = [L] if j + k 6∈ L and that f · [L] = βj [L]

when j+k ∈ L. An element g ∈ H0 that has the same effect on quantum Plücker coordinates

is g = (g1, . . . , gn) where gj+k = βj while all other gi = 1.

The next case that we consider is when αi is not equal to 1 for some i ∈ {1, . . . , k} but

all other entries of f are equal to 1. Again, f · [u] = [u]. Then f · [L] = (f · [I | J ])[u] so

that f · [L] = [L] when i 6∈ I and f · [L] = αi[L] when i ∈ I. By using Corollary 3.3(i) we

see that f · [L] = [L] if (k + 1) − i ∈ L and f · [L] = αi[L] when (k + 1) − i 6∈ L. Let b be
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an element in K such that bk = αi. Let g = (g1, . . . , gn) ∈ H0 be such that gk+1−i = b−(k−1)

while every other entry gj = b. Let [L] = [l1, . . . , lk]. Then g · [L] = gl1 . . . glk [L]. Suppose

that k+ 1− i ∈ L. Then one of gl1 , . . . , glk is equal to b−(k−1) while the other k− 1 are equal

to b. Thus, gl1 . . . glk = bk−1b−(k−1) = 1 and so g · [L] = [L]. Now assume that k + 1− i 6∈ L.

Then each of the glj is equal to b and so g · [L] = bk[L] = αi[L]. This shows that the action

of g coincides with the action of f , as required.

The final case to consider is when α0 is not equal to 1 but all other entries are equal to

1. Thus, f · [u] = α0[u] and f · [I | J ] = [I | J ] for all quantum minors [I | J ]. Hence,

f · [L] = α0[L] for all quantum minors [L] of Oq(G(k, n)). Let b ∈ K be such that bk = α0

and set g = (b, . . . , b). Then g · [L] = bk[L] = α0[L] for all [L] and the actions of f and g

coincide.

The action of H1 on Oq(G(k, n)) is not faithful, as we will see in the next proposition. Let

H denote H1 factored by this kernel of this action. Then H acts faithfully on Oq(G(k, n)).

The next result shows that H is isomorphic to a torus (K∗)n.

Proposition 4.4. The group H is isomorphic to a torus (K∗)n.

Proof. The kernel of the action of H1 on Oq(G(k, n)) is the same as the kernel of the action

of H1 on Oq(G(k, n))[[u]−1] = Oq(M(k, p))[y±1]. Recall from earlier in the section that the

action of H1 on the right-hand side of this equality is given by

(α0;α1, . . . , αk;β1, . . . , βp) · xij = αiβjxij , (α0;α1, . . . , αk;β1, . . . , βp) · y = α0y.

Using the right-hand side, it is easy to check that this kernel is {(1;λ, . . . , λ;λ−1, . . . , λ−1) |
λ ∈ K∗}. Hence, choosing λ = βp, we see that h = (α0;α1, . . . , αk;β1, . . . , βp) ∈ H1 has

the same action as h′ := (α0;α1βp, . . . , αkβp;β1β
−1
p , . . . , βp−1β

−1
p , 1) ∈ H1. It is also easy to

check that two distinct elements in H1 that each have 1 in the final place act differently on

Oq(M(k, p))[y±1], and so the claim is established.

In view of this result, we refer to the action on Oq(G(k, n)) provided by H as the torus

automorphisms of Oq(G(k, n)).

In the case that n = 2k, so that k = p, the dehomogenisation equality (2) states that

T = Oq(M(k, k))[y±1;σ] = Oq(G(k, n))[[u]−1].

In this case, a simple analysis using the formula [L] = [I | J ][u] shows that the extra automor-

phism of Oq(M(k, k)) given by transposition of the xij variables extends to an automorphism

of T which, when restricted toOq(G(k, n)), gives rise to the diagram automorphism τ of Corol-

lary 3.5. We will denote this automorphism by τ for each of the three algebras Oq(G(k, n)),

Oq(M(k, k)) and T .

In the case where 2k = n, let (α0;α1, . . . , αk;β1, . . . , βk) ∈ H1. It is easy to check that

τ ◦ (α0;α1, . . . , αk;β1, . . . , βk) ◦ τ = (α0;β1, . . . , βk;α1, . . . , αk) ∈ H1,
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so that 〈τ〉 acts on H1. Also, if (1;λ, . . . , λ;λ−1, . . . , λ−1) is in the kernel of the action of H1

on Oq(G(k, n))[[u]−1] then

τ ◦ (1;λ, . . . , λ;λ−1, . . . , λ−1) ◦ τ = (1;λ−1, . . . , λ−1;λ, . . . , λ)

= (1;λ−1, . . . , λ−1; (λ−1)−1, . . . , (λ−1)−1)

is also in the kernel of this action and so 〈τ〉 acts on H.

Definition 4.5. Set A := H when 2k 6= n and A := Ho 〈τ〉 when 2k = n.

The analysis above shows that the elements of A act naturally as automorphisms of

Oq(G(k, n)) via the dehomogenisation equality.

Claim 4.6. The automorphism group of Oq(G(k, n)) is A.

We will prove this claim in the following sections.

5 Adjusting automorphisms

The quantum grassmannian Oq(G(k, n)) carries the structure of an N-graded algebra gener-

ated in degree one when we give degree one to each of the quantum Plücker coordinates. In

addition, [13, Theorem 5.3] shows that Oq(G(k, n)) is a unique factorisation domain in the

sense of Chatters [3]. According to Chatters, an element p of a noetherian domain R is said to

be prime if (i) pR = Rp, (ii) pR is a height one prime ideal of R, and (iii) R/pR is an integral

domain. A noetherian domain R is then said to be a unique factorisation domain (UFD) if

R has at least one height one prime ideal, and every height one prime ideal is generated by

a prime element.

In this section, we exploit these properties of Oq(G(k, n)) in a series of results to see

that given an arbitrary automorphism of Oq(G(k, n)) we can essentially fix the minimal and

maximal elements in the poset after allowing adjustment of the automorphism by elements

of H.

Lemma 5.1. Let A = ⊕∞i=0Ai be a graded algebra that is a domain with A0 equal to the base

field and A generated in degree one. Suppose that a = a1 + · · ·+ am is a normal element with

ai ∈ Ai for each i. Then a1 is a normal element.

Proof. If a1 = 0 then there is nothing to prove; so assume that a1 6= 0. As A is generated in

degree one, it is enough to check normality with respect to homogeneous elements of degree

one; so suppose that b ∈ A1. Then ba = ba1+· · ·+bam = ac = (a1+· · ·+am)(c0+c1+· · ·+ct)
for some c = c0 + c1 + · · ·+ ct ∈ A with ci ∈ Ai. Comparing degree one terms gives 0 = a1c0;

so c0 = 0. The degree two terms then show that ba1 = a1c1 ∈ a1A, and this demonstrates

that a1 is normal.
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Lemma 5.2. Let A = ⊕∞i=0Ai be a graded algebra that is a domain with A0 equal to the base

field. Suppose also that A is a UFD.

Let a be a homogeneous element of degree one that is normal. Then a generates a prime

ideal of height one.

Proof. Let P be a prime that is minimal over the ideal aR. By the noncommutative principal

ideal theorem [16, Theorem 4.1.11], the height of P is one. Hence, P = pA for some normal

element p, as A is a UFD. Thus, a is a (right) multiple of p. By degree considerations, p must

have degree one and a must be a scalar multiple of p. Thus, a and p generate the same ideal,

which is the prime ideal P . This establishes the claim.

The remaining results in this section all deal with Oq(G(k, n)). As in earlier sections, let

[u] = [1, . . . , k].

Lemma 5.3. Suppose that a =
∑
aI [I] 6= 0, with aI ∈ K, is a linear combination of quantum

Plücker coordinates that is a normal element. Then d(I) is the same for each I that has

aI 6= 0.

Proof. Since a =
∑
aI [I] has degree one, a is irreducible, as well as being normal. Hence, the

ideal P generated by a is a height one prime ideal of Oq(G(k, n)), by Lemma 5.2.

If a = aI [I] for some [I] then the result holds. Thus we may assume that at least two

scalars aI are nonzero. In particular, aK 6= [u]K, and so [u] 6∈ aOq(G(k, n)) = P .

Let J be such that d(J) is as small as possible among those d(I) for which aI 6= 0. We

will show that d(I) = d(J) for all I such that aI 6= 0.

Now

[u]a = [u]

∑
I 6=J

aI [I] + aJ [J ]

 =

∑
I 6=J

aIq
d(I)[I] + aJq

d(J)[J ]

 [u],

by using Lemma 3.1, and so∑
I 6=J

aIq
d(I)[I] + aJq

d(J)[J ]

 [u]− qd(J)
∑
I 6=J

aI [I] + aJ [J ]

 [u] = [u]a− qd(J)a[u] ∈ P ;

that is,

b :=

∑
I 6=J

(qd(I) − qd(J))aI [I]

 [u] ∈ P.

As [u] 6∈ P this gives

b =

∑
I 6=J

(qd(I) − qd(J))aI [I]

 ∈ P = aOq(G(k, n)).

Thus, there is a scalar λ ∈ K with b = λa. If λ 6= 0 then this is a contradiction, as [J ] occurs

nontrivially in λa and not in b. Therefore, b = 0 and so each qd(I) − qd(J) = 0. This forces

d(I) = d(J), since q is not a root of unity.
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Before proceeding further with our analysis, we recall a result from [10] that we need. The

notation is adapted from that paper.

Proposition 5.4. Let A =
⊕

i∈NAi be an N-graded (connected) K-algebra that is a domain.

Suppose that A is generated as an algebra by x1, . . . , xt and that A1 = Kx1 ⊕ · · · ⊕Kxt. Set

A>d :=
⊕

i>dAi. Assume that for all i ∈ {1, . . . , t} there exists j and 1 6= qij ∈ K with

xixj = qijxjxi. Let σ be an automorphism of A and 0 6= x ∈ Ad. Then σ(x) = yd + y>d,

where yd ∈ Ad\{0} and y>d ∈ A>d.

Proof. This is [10, Proposition 4.2].

In order to prove the next lemma, we need to check that we can apply this proposition to

the quantum grassmannian. In order to do this, we need to observe that for each quantum

Plücker coordinate [L] there exists a quantum Plücker coordinate [L′] such that [L][L′] =

α[L′][L] for some 1 6= α ∈ K. We use Lemma 3.1 to do this. If [L] = [u] = [1, . . . , k] then

set [L′] = [1, . . . , k − 1, k + 1] so that [L][L′] = q[L′][L] while if [L] 6= [u] set [L′] = [u] so that

[L][L′] = q−d(L)[L′][L].

Lemma 5.5. Let ρ be an automorphism of Oq(G(k, n)). Then ρ([u])1 = λ[u], for some

λ ∈ K∗.

Proof. The previous proposition shows that ρ([u])0 = 0. Note that ρ([u]) is a normal element

of Oq(G(k, n)); so Lemma 5.1 applied to ρ([u]) shows that ρ([u])1 is a normal element. Assume

that ρ([u])1 /∈ K∗[u]. Then ρ([u])1 =
∑
aI [I] for some [I] with each d(I) = d > 0, by

Lemma 5.3.

Let f ∈ Oq(G(k, n)) be such that ρ(f) = [u], or, equivalently, ρ−1([u]) = f . Note that the

degree zero term of f must be zero. Write f = f1 + f>1. As ρ(f>1)1 = 0, by [10, Proposition

4.2], we see that [u] = ρ(f) = ρ(f1) + ρ(f>1); so that [u] = ρ(f)1 = ρ(f1)1. If f1 = λ[u]

then [u] = ρ(f1)1 = ρ(λ[u])1 = λρ([u])1 and so ρ([u])1 = λ−1[u], a contradiction; so we have

f1 6= λ[u], for any λ ∈ K∗. By applying Lemma 5.3 to f1, we may write f1 =
∑
bJ [J ] for

some [J ] with each d(J) = e > 0, say. Hence, [u]f1 = qef1[u].

Consider the degree two term in ρ([u]f). We know that ρ([u]f) = ρ([u])ρ(f) and that the

degree zero terms of ρ([u]) and ρ(f) are both zero, by [10, Proposition 4.2]. Hence,

ρ([u]f)2 = ρ([u])1ρ(f)1 =
(∑

aI [I]
)

[u] = q−d[u]
(∑

aI [I]
)
.

On the other hand, ρ([u]f) = ρ([u]f1 + [u]f>1) = ρ([u]f1) + ρ([u]f>1). Now, [u]f>1 has no

term in degree less than three. Hence, the same is true for ρ([u]f>1), by [10, Proposition

4.2], and, in particular, ρ([u]f>1)2 = 0. Thus, ρ([u]f)2 = ρ([u]f1)2. However, ρ([u]f1) =

ρ(qef1[u]) = qeρ(f1)ρ([u]). Therefore,

ρ([u]f)2 = ρ([u]f1)2 = ρ(qef1[u])2 = qeρ(f1)1ρ([u])1 = qe[u]
(∑

aI [I]
)
.
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The two expressions we have obtained for ρ([u]f)2 must be equal; so q−d[u](
∑
aI [I]) =

qe[u](
∑
aI [I]). Hence, q−d = qe; so that qe+d = 1. As q is not a root of unity and e+ d > 0,

this is a contradiction, and our lemma is proved.

Lemma 5.6. Let ρ be an automorphism of Oq(G(k, n)). Then ρ([u]) = λ[u], for some λ ∈ K∗.

Proof. The element ρ([u]) is a normal element, and the degree zero term of ρ([u]) is equal to

0, by [10, Proposition 4.2]. Suppose that the degree of ρ([u]) is t and that ρ([u]) = a1+ · · ·+at
with deg(ai) = i. Recall that a1 = λ[u], for some λ ∈ K∗, by Lemma 5.5. There is an element

r ∈ Oq(G(k, n)) with [u]ρ([u]) = ρ([u])r. The degree of r must be one. Assume r = r0 + r1

with ri having degree i. Thus,

[u](λ[u] + a2 + · · ·+ at) = (λ[u] + a2 + · · ·+ at)(r0 + r1).

As there is no term in degree one on the left hand side of the above equation, we must have

r0 = 0. Looking at terms in degree two, we then see that λ[u]2 = λ[u]r1; so that r1 = [u] and

[u]ρ([u]) = ρ([u])[u].

Write ρ([u]) in terms of the standard basis for Oq(G(k, n)), as in [7], say ρ([u]) =
∑
αiSi,

where αi is in the field and each Si is a standard monomial. If S = [I1] . . . [Im] is such a

standard monomial, then set d(S) :=
∑
d(Ii) and note that each d(Ii) ≥ 0 with d(Ii) = 0 if

and only if [Ii] = [u]. Then, S[u] = qd(S)[u]S, and so S[u] = [u]S if and only if d(S) = 0 (in

which case S = [u]m for some m).

In any case, note that [u]S is a standard monomial, as [u] is the unique minimal quantum

Plücker coordinate. Hence,∑
αi[u]Si = [u]ρ([u]) = ρ([u])[u] =

(∑
αiSi

)
[u] = [u]

(∑
αiq

d(Si)Si

)
=
∑

αiq
d(Si)[u]Si.

As the extreme left and right terms in the above display are in the standard basis, this

forces d(Si) = 0 whenever αi 6= 0. Hence, ρ([u]) must be a polynomial in [u].

The same argument applies to the automorphism ρ−1; so ρ−1([u]) must also be a polyno-

mial in [u].

Suppose that ρ([u]) =
∑t

i=1 αi[u]i with αt 6= 0, and, similarly, suppose that ρ−1([u]) =∑s
i=1 βi[u]i with βs 6= 0

Then,

[u] = ρ−1ρ([u]) = ρ−1

(
t∑
i=1

αi[u]i

)
=

t∑
i=1

αiρ
−1([u])i = α1β1[u] + · · ·+ αtβs[u]st.

Therefore, s = t = 1, and ρ([u]) = λ[u], for some λ ∈ K∗, as required.

The above result refers to [u] = [1, . . . , k], the extreme leftmost quantum Plücker co-

ordinate. We want to establish a similar result for [w] := [n − k + 1, . . . , n], the extreme
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rightmost quantum Plücker coordinate. In order to do this we employ an antiautomorphism

of Oq(G(k, n)) which we now describe.

Let w0 denote the longest element on the symmetric group on n elements; that is, w0(i) =

n + 1 − i. The discussion immediately before Proposition 2.12 of [2] shows that the map θ :

Oq(G(k, n)) −→ Oq(G(k, n)) given by θ([I]) = [w0(I)] for each quantum Plücker coordinate

[I] is an antiautomorphism. Note that θ([u]) = θ([1, . . . , k]) = [n+ 1− k, . . . , n] = [w].

Corollary 5.7. Let ρ be an automorphism of Oq(G(k, n)). Then there exists h ∈ H such that

(h ◦ ρ)([u]) = u and (h ◦ ρ)([w]) = [w].

Proof. The map θρθ is an automorphism of Oq(G(k, n)). By Lemma 5.6, there is an element

µ ∈ K∗ such that θρθ([u]) = µ[u]. Apply θ to both sides of this equality to obtain ρθ([u]) =

µθ([u]); that is, ρ([w]) = µ[w]. We also know that ρ([u]) = λ[u] for some λ ∈ K∗. Set

h := (λ−1, 1, . . . , 1, µ−1) ∈ H0. Then (h ◦ ρ)([u]) = [u] and (h ◦ ρ)([w]) = [w]. Lemma 4.1

shows that the action of an element of H0 is realised by the action of an element of H1 and

hence of H, so the result follows.

In what follows, we will often replace the original automorphism ρ by h ◦ ρ so that we

may assume that ρ([u]) = [u] and ρ([w]) = [w] in calculations.

Remark 5.8. While the assumption that q is not a root of unity was not necessary in Sections

2, 3 and 4, it was used in a number of places in this section.

6 Transfer to quantum matrices

Recall from the discussion in Section 2 that when discussing Oq(G(k, n)) we are assuming

that 1 < k and that 2k ≤ n. We also continue to use the notation p := n− k.

Let ρ be an automorphism of Oq(G(k, n)). Recall from earlier that [u] = [1, . . . , k] and

[w] = [n− k + 1, . . . , n]. By using Corollary 5.7, at the expense of adjusting ρ by an element

of H, we can, and will, assume that ρ([u]) = [u] and ρ([w]) = [w]. The automorphism ρ now

extends to T = Oq(G(k, n))[[u]−1] = Oq(M(k, p))[y±1;σ] and we know that ρ(y) = y.

We will show that such a ρ sends Oq(M(k, p)) to itself. Once we have done this, we will

know how ρ acts on each quantum minor in Oq(M(k, p)) as we know the automorphism group

of Oq(M(k, p)). We can then calculate how ρ acts on arbitrary quantum Plücker coordinates

of Oq(G(k, n)), by using the formulae of Lemma 3.2.

From Equation (1) in Section 3, we know that the quantum matrix generators xij are

defined by

xij := [1, . . . , ̂k + 1− i, . . . , k, j + k][u]−1,

for 1 ≤ i ≤ k and 1 ≤ j ≤ p. In the following calculations, all quantum minors [− | −] are

formed from the generators xij of Oq(M(k, p)).
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As 2k ≤ n, we know that k ≤ n − k = p. In this case, the quantum minor [I | J ] :=

[1, . . . , k | p+ 1− k, . . . , p] is defined (we are using all the rows of Oq(M(k, p)) and the last k

columns (and there are at least k columns, by the assumption).

Now, Lemma 3.2 shows that [I | J ] = [p + 1, . . . , n][1, . . . , k]−1 = [w][u]−1, and it follows

from this that ρ([I | J ]) = [I | J ] for any element ρ ∈ H such that ρ([u]) = [u] and ρ([w]) = [w].

We can calculate how [I | J ] commutes with [u] = [1, . . . , k]. Note that k < n− k + 1, as

2k ≤ n. Thus the index sets {1, . . . , k} and {p+ 1, . . . , n} do not overlap, and

[u][I | J ] = [u][w][u]−1 = qk[w][u][u]−1 = qk[w][u]−1[u] = qk[I | J ] [u],

where the second equality comes from Lemma 3.1.

Also, we know how [I | J ] commutes with the xij by the following lemma.

Lemma 6.1. (i) If j ≥ n+ 1− 2k = p+ 1− k then xij [I | J ] = [I | J ]xij.

(ii) If j < n+ 1− 2k = p+ 1− k then xij [I | J ] = q[I | J ]xij.

Proof. (i) In this case, xij is in the quantum matrix algebra determined by the rows from I

and the columns from J and [I | J ] is the quantum determinant of this algebra, so the claim

follows as [I | J ] is central in this algebra.

(ii) This result is obtained from the first equation in E(1.3c) in [4, Section 1.3].

We define two gradings on T := Oq(M(k, p))[y±1;σ] = Oq(G(k, n))[[u]−1] which grade T

according to how elements commute with y = u and [I | J ] = [1, . . . , k | p+ 1− k, . . . , p].
First, set Ti := {a ∈ T | yay−1 = qia}.

Lemma 6.2. (i) T =
⊕∞

i=1 Ti,

(ii) ρ(Ti) = Ti.

Proof. Note that T is generated by y±1 and the xij , and that y±1 ∈ T0, while xij ∈ T1,

as yxij = qxijy. As Oq(M(k, p)) is an iterated Ore extension with the elements xij added

lexicographically, the elements of the form xa1111 . . . x
akp
kp y

s with aij ≥ 0 and s ∈ Z form a basis

for T . Part (i) now follows as yxijy
−1 = qxij . Part (ii) follows from the fact that ρ(y) = y.

Next, set T (i) := {a ∈ T | [I | J ]a[I | J ]−1 = q−ia}. The commutation rules given in

Lemma 6.1 show that xij ∈ T (0) ∪ T (1). Also, note that y[I | J ] = [u][I | J ] = qk[I | J ][u] =

qk[I | J ]y, so y = u ∈ T (k) and y−1 ∈ T (−k).

Lemma 6.3. (i) T =
⊕

i∈Z T
(i),

(ii) ρ(T (i)) = T (i).

Proof. Part (i) is proved as in the previous lemma, and Part (ii) follows from the fact that

ρ([I | J ]) = [I | J ].

Lemma 6.4.
(
T (0) ∪ T (1)

)
∩ T1 ⊆ Oq(M(k, p)).
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Proof. Suppose that a ∈
(
T (0) ∪ T (1)

)
∩T1. Then a is a sum of scalar multiples of monomials

of the form m := xa1111 . . . x
akp
kp y

s with each aij ≥ 0 and s ∈ Z. Such a monomial is in Tf ,

where f =
∑
aij and so we must have

∑
aij = 1, as a ∈ T1. Thus, only one xij can occur in

each monomial and a is a sum of scalar multiples of monomials of the form m := xijy
b. Such

an m is in T (e+bk), where e = 0 or e = 1. As each m must be in T (0) ∪ T (1) we must have

e + bk = 0 or e + bk = 1. The only possible solutions to these restrictions is that b = 0, as

k ≥ 2. Hence, a is a sum of scalar multiples of monomials of the form xij which means that

a ∈ Oq(M(k, p)).

Theorem 6.5. Let ρ be an automorphism of Oq(G(k, n)) with 1 < k and 2k ≤ n that

satisfies ρ([u]) = [u] and ρ([w]) = [w]. Then ρ extends naturally to an automorphism of

T = Oq(G(k, n))[[u]−1] = Oq(M(k, p))[y±1;σ] such that ρ(y) = y and ρ(Oq(M(k, p))) =

Oq(M(k, p)).

Proof. We know that ρ(y) = y and so only need to show that ρ(Oq(M(k, p))) = Oq(M(k, p)).

To do this, it is sufficient to prove that ρ(xij) ∈ Oq(M(k, p)) for each generator xij . Note that

xij ∈
(
T (0) ∪ T (1)

)
∩ T1 for each i, j, and so ρ(xij) ∈

(
T (0) ∪ T (1)

)
∩ T1 for each i, j. Hence,

ρ(xij) ∈ Oq(M(k, p)) by the previous lemma.

In this section, we have again made crucial use of the assumption that q is not a root of

unity.

7 The automorphism group of Oq(G(k, n))

In Definition 4.5 and Claim 4.6 we identified a group of automorphisms of Oq(G(k, n)) that

we claimed would give us all the automorphisms. We are now in a position to justify this

claim.

Recall from Definition 4.5 that A = H when 2k 6= n and A := Ho 〈τ〉 when 2k = n.

Theorem 7.1. The automorphism group Aut(Oq(G(k, n))) of Oq(G(k, n)) is isomorphic to

A.

Proof. Let ρ be an arbitrary automorphism of Oq(G(k, n)). By Corollary 5.7, there is an

automorphism h ∈ H such that h · ρ([u]) = [u] and h · ρ([w]) = [w]. It is enough to prove that

this adjusted automorphism is in H or in H o 〈τ〉; so we may assume that ρ([u]) = [u] and

ρ([w]) = [w]. This adjusted automorphism satisfies the hypothesis for Theorem 6.5 and so ρ

extends naturally to an automorphism of T = Oq(G(k, n))[[u]−1] = Oq(M(k, p))[y±1;σ] such

that ρ(y) = y and ρ(Oq(M(k, p))) = Oq(M(k, p)). Given this, the action of ρ is completely

determined by its restriction to Oq(M(k, p)); so it is enough to show that ρ restricted to

Oq(M(k, p)) is realised by an element of H or, if 2k = n, that either ρ or ρ ◦ τ is realised by

an element of H.
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If 2k 6= n, then by [10, Corollary 4.11 and its proof ] ρ is determined on Oq(M(k, p))by

row and column operations and so is in H, as required.

If 2k = n, then by [17, Theorem 3.2] either ρ or ρ ◦ τ is determined by row and column

operations and so is in H. In either case, ρ ∈ Ho 〈τ〉, as required.
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[1] J Alev and M Chamarie, Dérivations et automorphismes de quelques algèbres quan-
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