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the practical applications of cooperative transferable utility games involves determining the

rs of a given facility, whose construction or maintenance costs need to be recouped. In th

ciency and equity criteria guide the considered solutions. This paper analyzes how to al

of a highway among its users through tolls, considering that different classes of vehicles o

service. For this purpose, we make use of generalized highway games with a priori unions t

t user groups, such as frequent travelers or truckers, who, due to enhanced bargaining po

ctions in their fares in real-world scenarios. In particular, the Owen value, the coalitional

value termed the Shapley-Tijs value are axiomatically characterized. Additionally, straig

s for calculating these values are provided. Finally, the proposed methodology is applied

from the AP-9 highway in Spain.

Game theory; Generalized highway problems; A priori unions; Cost allocation; Coalition

uction

rent paper attempts to study a cost-sharing problem within the realm of transportation. Th

to examine the distribution of highway construction costs among its users considering the

ities. In particular, we use the so-called a priori unions to assess the bargaining power o

luding various classes of vehicles (light, heavy 1, and heavy 2) or frequent travelers.

ative games have diverse applications across several domains, with cost-sharing problem

ently. Within the cost allocation problems, the work conducted by Fiestras-Janeiro et

prehensive review of the literature concerning the applications of cooperative transfera

his context. Within this expansive landscape, three sectors are specifically examined, co

domains for such problems: the energy industry, natural resource management, and trans

equent discussion, we highlight pertinent papers focused on the transport sector.

& Ergun (2008) investigate a logistics network in which several shippers collaborate and

quests to negotiate improved rates with a common carrier. Their research identifies op

routes, minimizing overall empty truck movements, and introduces several cost-sharing me

ing properties familiar in cooperative game theory and novel contributions. One of the mo

e transportation field is Littlechild & Owen (1973), where airport games are defined, in

iated with building a runway are allocated among the aircraft that use it. Vázquez-Brage et

Méndez et al. (2003) provide expressions for the Owen value (Owen, 1977) and the coali

as-Méndez et al., 2003), respectively, within the framework of airport games. These con

tinct solutions to distributing runway costs, considering the bargaining power of each air
rporate the model of a priori unions in cooperative games, as initially introduced by Owen (1977).
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The use of cooperative game theory in the pursuit of an optimal toll for highways has already been investi-

gated in a tudies are

noteworthy logies that

extend the by means
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number of papers, following different approaches. From the existing literature, the next s

. Villarreal-Cavazos & Garćıa-Dı́az (1985) develop two highway cost allocation methodo

basic concepts of incremental and proportional allocation procedures and illustrate them

e example. Makrigeorgis (1991) investigates an equitable and stable rule for sharing the to

highway service among users, employing game theory concepts such as the core and the m

x-min ratio nucleolus. Both of these works consider classes of vehicles as players. In Cast

ı́az (1995), each vehicle passage is treated as an individual player, and the value of the co

mic game is used to find the solution to the pavement cost allocation problem. The cha

the game is formulated as a non-linear optimization problem. Dong et al. (2012) designa

input-output pairs of the highway, with each pair representing the vehicles entering throu

d exiting through a given exit. The proposed pricing method charges each vehicle the t

ts across the highway sections it traverses. This approach adheres to important axioms a

users to adopt strategic responses. In Mosquera (2007), Çiftçi et al. (2010), Kuipers et

lter & Zarzuelo (2017), players are considered to be the different trips taken. Çiftçi et

e concavity and balancedness of certain highway games on weakly cyclic graphs. Mosqu

rs et al. (2013) introduce the so-called highway games, a generalization of the airport g

r them the Shapley value (Shapley, 1953), the Tijs value (Tijs, 1981), and the nucleolus (S

uipers et al. (2013), the Shapley value and the nucleolus are applied to the apportionm

of the AP-68 highway (Spain) among its users. Nevertheless, its scope is restricted to the d

clusively among light vehicles. By relaxing some assumptions of the model, Sudhölter &

ulate a new problem referred to as the generalized highway problem. They provide axiom

, the prenucleolus, and the Shapley value on the class of games associated with these g

oblems. While the aforementioned studies focus on distributing highway costs among

) analyze how to allocate the total toll collected among the different highway sections. Th

d axiomatically characterize three allocation procedures, establishing a connection to th

ecific cooperative games with transferable utility, which, in this case, are benefit games ra

.

esent work also considers generalized highway problems. Our first contribution is the in

dology designed to distribute highway costs among various types of users extending b

llocation to light vehicles. The approach adopted in our setup, to include the different

inspired by the methodology used in Fragnelli et al. (2000) to analyze a cost allocation

infrastructure cost problem. Such a problem emerged during the railway reorganization

in the 1990s. In Fragnelli et al. (2000), the allocation of construction and maintenance
network in Italy is investigated, involving two classes of trains with different requirements–fast and
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slow trains. Fast trains require high-quality tracks, while basic tracks suffice for slow trains. The construction
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odeled as an airport game, where both train classes utilize the basic level of track (equ

ction of the runway), but fast trains additionally need the next level of quality (corresp

way). In our study, we apply a similar conceptualization to light, heavy 1, and heavy

vehicle type entails distinct road operational requirements. To illustrate, the expenses

ucting a bridge intended for use by small cars versus large trucks exhibit disparities. Gen

highway initially planned for a specific volume of light vehicles necessitates subsequent ad

odate varying volumes of heavier vehicles (Villarreal-Cavazos & Garćıa-Dı́az, 1985). Th

, heavy 1, and heavy 2 vehicles will now traverse a highway consisting of three road level

o-level framework introduced in the railway infrastructure allocation model.

lusion of different levels in our problem prompts the consideration of an airport game f

ing it belong to the class of generalized highway games. This classification is attributed to o

that users can utilize disconnected sections of the highway. Similar to the approach in Ku

proposed model excludes consideration of maintenance costs. However, our methodology e

al pricing structure, wherein the fee for heavy 2 vehicles exceeds that of heavy 1 vehicles, an

heavy 1 vehicles surpasses that of light vehicles. This aligns with real-world scenarios, a

ing weights of vehicle types and their consequential impact on infrastructure. The cohere

ecomes apparent through the outcomes derived in the application discussed in Section 4.

hat the fares calculated using our methodology and applying the Shapley value coincide

s for each of the three vehicle types considered in each of the analyzed sections.

ond contribution of this paper is motivated by recent negotiations in the context of the AP-

ading to special fares for certain groups, such as truck drivers or users undertaking roun

20 trips per month. Consequently, in conjunction with the generalized highway game, w

a priori unions to model the bargaining power of these user groups. We follow the approac

o introduced a model accounting for potential affinities between players in a general c

ow these affinities can influence the distribution of costs.

del of games with a priori unions has proven useful in modeling the bargaining power of

nts in a wide range of cost-sharing problems. Examples include the design of airport la

t types of aircraft grouped into airlines (Vázquez-Brage et al., 1997), the sharing of connec

ts are grouped into streets or cities (Bergantiños & Gómez-Rúa, 2010), or the agreeme

partments in a building to install an elevator and share corresponding costs by groupin

s on the same floor (Alonso-Meijide et al., 2020).

more, from the dawn of the study of cooperative cost allocation games, as shown in Driess

n concepts with favorable properties, straightforward expressions for concrete problems, a
terpretations have been explored: the Shapley and Tijs values. While the nucleolus is another

4
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solution with desirable properties in cost allocation problems, its computational complexity has led to its
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rom this work. Notable applications of the Shapley and Tijs values include the Tennes

allocation problem (Driessen, 1988), or the airport (Driessen, 1988) and highway (Mosqu

Additionally, in the case of the Tijs value in the highway game, it is worth mentioni

allocations closely aligned with the fundamental concept of proportional allocation, as

n the work of Villarreal-Cavazos & Garćıa-Dı́az (1985). The first extensions of these two

ext of games with a priori unions are the Owen value (Owen, 1977) and the coalitional

ndez et al., 2003). It is well known that these two values allow for a two-stage interpretat

Initially, an allocation is made between the different a priori unions, and subsequently

stituting each union. While the Owen value employs the Shapley value in both stages, the

ses the Tijs value. In our setup, we present formulations for the Owen value and the coali

e case of generalized highway games with a priori unions, along with axiomatic character

s.

ld be taken into account that the choice of principles guiding the fair distribution of benefi

ent topic of debate in economic analysis. In Choudhury et al. (2021), a proposed solution

average between the Shapley value and an egalitarian solution. This approach accounts fo

rent coalitions, asserting that in smaller groups, principles of equity or solidarity tend

larger groups, marginalist criteria, inherent in the Shapley value, tend to prevail. Similar

cates that a coalition often exhibits a predisposition towards a generous reallocation of surp

s. This inclination is illustrated through different examples from the realms of human

, or scientific labor management. Calvo & Gutiérrez (2013) argue that in the presence

s between a priori unions and among players within the same a priori union need not adh

It is posited that in the latter case, players are inclined towards more solidarity-oriented

rs introduce a coalitional value operating at two levels, denoted as the Shapley-solida

to different unions are determined using the Shapley value, while players within each uni

ion based on the solidarity value (Nowak & Radzik, 1994). One of the properties of the

t it is more benevolent towards null players, allocating them a portion of the generated pro

may be advantageous in benefit-sharing problems (Calvo & Gutiérrez, 2013), a notable

the specific context of the cost-sharing problem of a highway: if a player does not use any

y, they would still be charged a small fee. A similar difficulty is encountered with the value

(2009), wherein, in a game with a priori unions, a null player may receive a non-null assignm

hich they belong is not a null player in the game played by the unions. In contrast, such a

rise when employing the Tijs value, according to which players that do not use any secti

payment of 0. Furthermore, unlike what happens with the Shapley value, the allocation
value facilitates the financing of less-used sections by those with higher utilization, demanding a

5
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heightened level of solidarity among the agents. These considerations, coupled with the observation that the
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tween unions may be detrimental to them according to the coalitional Tijs value, but no

, motivate the definition of a new coalitional value at two levels. We therefore introduce th

which utilizes the Shapley value to distribute costs among different unions and the Tijs

within each union. For this newly proposed value, a straightforward expression is assum

atically characterized.

the three values explored throughout this paper, along with the methodology for dist

fferent types of vehicles and user groups, are illustrated using real data from the AP-9 h

ably, the fares obtained for grouped users generally result in a reduction compared to fares

ilizing the a priori unions–a strategy commonly employed in real-life negotiations aimed at

certain groups of users.

ainder of this paper is organized as follows. Section 2 introduces the cooperative ga

ecessary to address the problem at hand. Section 3 focuses on tailoring the formulatio

en value and coalitional Tijs value of the airport game to the context of the generalize

provide characterizations of these values and examine for each case how the assigned cost

ation of groups. Additionally, a new coalitional value, the Shapley-Tijs value, is intro

lly characterized. In Section 4, we utilize traffic data from the Spanish AP-9 highway to allo

our model and compare the different solution approaches analyzed in Section 3. Finally,

s the main conclusions of our study.

inaries

section, we present some basic notions and results concerning cost games and highway pr

ir extensions to the existence of externalities modeled by means of a priori unions, whi

e rest of the paper.

ames and generalized highway problems

transferable utility (TU) game is defined by a pair (N, c), where N is the finite set of p

is the cost function, which satisfies c(∅) = 0. We usually interpret c(S) as the maximum

⊆ N must assume by itself. In order to simplify notation, we will use c(i) instead of c({
so, G(N) represents the set of all cost TU games with set of players N . We say that a

N) → R|N | that assigns to each game (N, c) ∈ G(N) a vector f(N, c) = (fi(N, c))i∈N , whi

of the cost allocated to each player i ∈ N . Prominent values are the so-called Shapley

oduced by Shapley (1953) and Tijs (1981), respectively. Let (N, c) ∈ G(N) be a cost TU g
6
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Shapley value (Shapley, 1953) is defined by the vector (Φi(N, c))i∈N such that for all i ∈ N ,

A game (N )−c(T ) ≤
c(S ∪ {i}) e, the Tijs

value (Tijs

where α ∈ i(N, c) =

min{S⊆N |i∈ i, respec-

tively. Not (N), it is

said that i are called

symmetric ) ∈ G(N),

the sum ga me (N, c)

is said to b
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(2017). To d of M to

denote sect is paper.
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Φi(N, c) =
∑

S⊆N\{i}

|S|! · (|N | − |S| − 1)!

|N |! · (c(S ∪ {i})− c(S)) .

, c) ∈ G(N) is said to be concave if for all i ∈ N and all S, T ⊆ N \{i}, with S ⊆ T , c(T∪{i}
− c(S). The game is convex when the opposite inequality is satisfied. If (N, c) is concav

, 1981) is defined by the vector (τi(N, c))i∈N such that for all i ∈ N ,

τi(N, c) = mi(N, c) + α · (Mi(N, c)−mi(N, c)) ,

[0, 1] is such that
∑

i∈N τi(N, c) = c(N), and Mi(N, c) = c(N) − c(N\{i}) and m

S}{c(S)−
∑

j∈S\{i}Mj(N, c)} are the utopia payoff and the lower payoff of (N, c) for player

e that the Tijs value is defined for the larger class of quasi-balanced games. Let (N, c) ∈ G

∈ N is a null player in (N, c) if for each S ⊆ N , c(S ∪ {i}) = c(S). Two players i, j ∈ N

in (N, c) if, for each S ⊆ N \{i, j}, it holds that c(S∪{i}) = c(S∪{j}). Let (N, c1), (N, c2

me (N, c1 + c2) ∈ G(N) is defined by (c1 + c2)(S) = c1(S) + c2(S) for all S ⊆ N . The ga

e monotone if c(S) ≤ c(T ) for each S ⊆ T ⊆ N .

recall the concept of generalized highway problem, which was introduced in Sudhölter &

do so, we will use the notation presented in Kuipers et al. (2013) but employing K instea

ions, in order to avoid confusion with the set of a priori unions, which appears later in th

2.1 (Sudhölter & Zarzuelo, 2017). A generalized highway problem is a 4-tuple Γ = (N

s a finite set of agents, K is a finite nonempty ordered set of sections, C : K → R+

g the cost of section t ∈ K, and T : N → 2K\{∅} with T (i) ⊆ K representing the set of sec

∈ N . Additionally, each section is required to be used by at least one agent, that is, ∪i∈N

ote the set of generalized highway problems by H∗. Given a generalized highway prob

) ∈ H∗, and following Kuipers et al. (2013), its associated cost TU game is defined by c(S) =

N , with T (S) = ∪i∈ST (i) and C(K ′) =
∑

t∈K′ C(t) for all K ′ ⊆ K. A cost TU game is sa

highway game if it is the associated game of a generalized highway problem.

quera (2007), the expressions of the Shapley and Tijs values are obtained for the non-g

oblem, which considers that players use only connected sections. However, since this co

the proofs, the following results are still valid for the generalized case.

on 2.1 (Mosquera, 2007). Let Γ = (N,K,C, T ) ∈ H∗ be a generalized highway problem,
7
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associated game, and Φ the Shapley value. Then,
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Φi(N, c) =
∑

t∈T (i)

C(t)

|Nt|
,

N , with Nt = {j ∈ N | t ∈ T (j)} the set of agents that use section t, for each t ∈ K.

expression of the Tijs value, we will adopt a notation different from that of Mosquera (20

ticularly useful when proving the results proposed in this paper.

2.2. Let Γ = (N,K,C, T ) ∈ H∗ be a generalized highway problem, we define the set o

s by Ke = {t ∈ K | |Nt| = 1} and the set of shared use sections by Ks = {t ∈ K | |Nt| >
s} is a partition of K, i.e., K = Ke ∪Ks and Ke ∩Ks = ∅. Also, if Ke ̸= ∅, let T e : N

T e(i) = T (i) ∩Ke for all i ∈ N , with T e(i) representing the set of exclusive use sections

will also define the set of shared use sections of player i ∈ N by T s(i) = T (i) \ T e(i).

2.3. Let Γ = (N,K,C, T ) ∈ H∗ be a generalized highway problem, we say that the g

oblem Γ|K′ = (N |K′ ,K ′, C|K′ , TK′
) is the restriction of Γ to the set of sections K ′ ⊆ K

= {i ∈ N |T (i) ∩K ′ ̸= ∅}.
: K ′ → R+ is the restriction of C to K ′.

N |K′ → 2K
′\{∅} is the function defined by TK′

(i) = T (i) ∩K ′.

.1. The restriction of Γ|K′ to K ′′ ⊆ K ′ coincides with Γ|K′′ . That is, Γ|K′
∣∣
K′′ = Γ|K′′ .

gy with Γ, we can consider the associated cost TU games for the generalized highway prob

and Γ|Ks (if Ks ̸= ∅), (N |Ke , ce) and (N |Ks , cs), respectively. In particular, let ce(S) =

ition S ⊆ N |Ke and cs(S) = C(T s(S)) for all coalition S ⊆ N |Ks , where T e(S) = ∪i∈S

∈ST s(i) for all coalition S ⊆ N .

on 2.2 (Mosquera, 2007). Let Γ = (N,K,C, T ) ∈ H∗ be a generalized highway problem,

game, and τ the Tijs value. Then,

τi(N, c) =





ce(i) if Ks = ∅

ce(i) + cs(N) · cs(i)∑
j∈N cs(j)

if Ks ̸= ∅,

N .

ames and generalized highway problems with a priori unions (or a coalitional structure)

game with a coalitional structure is a triple (N, c, P ), where (N, c) is a cost TU game
} is a partition of the player set N , where each set Pa, a ∈ {1, . . . , A}, contains the players of a

8
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specific a priori union. We denote by U(N) the set of all cost games with a coalitional structure and set of players
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i, j ∈

� Sym tric in the

quoti

� Add .

Theorem ency, null

player prop

Casas-M ns, which

consists in ach union.

Let (N, c, P ame. The

coalitional

(1)
Jo
ur

na
l P

re
-p

ro
of

ally identify each set Pa with its index a and denote the set of a priori unions by M = {1
ate the total cost among the a priori unions, an approach similar to that of Owen (1977) i

so-called quotient game (M, cP ) ∈ G(M), defined by the set of a priori unions, M , an

(H) = c(∪a∈HPa) for all coalition H ⊆ M . We define a value for games with a coalitiona

: U(N) → R|N |.

1977) introduced the Owen value for games with a priori unions, which consists in ap

lue twice: first on the quotient game and then among the players of each union. Let (

cost game with a coalitional structure. The Owen value (Owen, 1977) is defined by

)i∈N ) such that for all i ∈ Pa ∈ P ,

Ψi(N, c, P ) =
∑

H⊆M\{a}

∑

S⊆Pa\{i}

1

|Pa| ·A
· 1
(
A−1
|H|
)
·
(|Pa|−1

|S|
) · (c(R ∪ S ∪ {i})− c(R ∪ S)) ,

∪b∈HPb. Furthermore, Owen characterized this value through its properties, as presented

2.4. Let f : U(N) → R|N | be a value in U(N). We define the following properties.

iency: For all (N, c, P ) ∈ U(N),
∑

i∈N fi(N, c, P ) = c(N).

player property: For all (N, c, P ) ∈ U(N), if player i ∈ N is a null player in (N

c, P ) = 0.

metry within unions: For all (N, c, P ) ∈ U(N), if players i, j ∈ N are symmetric in

Pa with Pa ∈ P , then fi(N, c, P ) = fj(N, c, P ).

metry between unions: For all (N, c, P ) ∈ U(N), if two unions a, b ∈ M are symme

ent game (M, cP ), then
∑

i∈Pa
fi(N, c, P ) =

∑
i∈Pb

fi(N, c, P ).

itivity: For all (N, c1, P ), (N, c2, P ) ∈ U(N), f(N, c1 + c2, P ) = f(N, c1, P ) + f(N, c2, P )

2.1 (Owen, 1977). The Owen value, Ψ, is the unique value in U(N) that satisfies effici

erty, symmetry within unions, symmetry between unions, and additivity.

éndez et al. (2003) introduced the coalitional Tijs value for games with a priori unio

applying the Tijs value twice: first on the quotient game and then among the players of e

) ∈ U(N) be a cost game with a coalitional structure, where (N, c) is a concave cost g

Tijs value is defined by the vector (Ti(N, c, P ))i∈N such that for all i ∈ Pa ∈ P ,

Ti(N, c, P ) = mi(N, c, P ) + αa · (Mi(N, c, P )−mi(N, c, P )) ,
9
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where αa ∈ [0, 1] is such that
∑ Ti(N, c, P ) = τa(M, cP ), and Mi(N, c, P ) = c(N) − c(N\{i}) and

mi(N, c, P ) payoff of

(N, c, P ) fo T ⊆ Pa}.
In the e between

different ty ific round

trip every d

Definition ted game.

Let also P y problem

with a coal te the set

of generaliz HE∗, the

restriction ∩K ′ ̸= ∅}.

3. Main r

In this the Owen

value and nvestigate

certain pro one larger

union, sim ort games.

Additional y problem,

similar to h cleolus for

the highwa h a priori

unions, wh locate the

correspond

3.1. Owen

Let Γ = ion of N .

Following t se section

t ∈ K by A ction t by

Na
t = {i ∈ es is given

below.

Propositi coalitional

structure a e (N, c, P )

1Note tha nded to the
generalized c
Jo
ur

na
l P

re
-p

ro
of

i∈Pa

= min{S∈P (a)|i∈S}{c(S) −
∑

j∈S\{i}Mj(N, c, P )} are the utopia payoff and the lower

r player i, respectively, with P (a) = {S ⊆ N | S = ∪l∈LPl ∪ T for some L ⊆ M \ {a} and

analysis of highway problems, externalities can arise when, for example, we discriminat

pes of vehicles or certain characteristics of the trips they make (a vehicle can make a spec

ay). This fact motivates the following definition.

2.5. Let Γ = (N,K,C, T ) ∈ H∗ be a generalized highway problem and (N, c) its associa

= {P1, . . . , PA} be a partition of N . The pair (Γ, P ) is called a generalized highwa

itional structure and (N, c, P ) its associated game with a coalitional structure. We deno

ed highway problems with a coalitional structure by HE∗. Furthermore, given (Γ, P ) ∈
of P to the set of sections K ′ ⊆ K,K ′ ̸= ∅, is defined by P |K′ = {Pa∩N |K′ | Pa ∈ P, T (Pa)

esults

section, we present the main results of our paper. We provide straightforward formulas for

the coalitional Tijs value in generalized highway games with a priori unions.1 We also i

perties of these two values concerning their behavior when a group of unions merges into

ilar to the findings of Vázquez-Brage et al. (1997) in the case of the Owen value for airp

ly, we propose axiomatic characterizations of these values in terms of the generalized highwa

ow Sudhölter & Zarzuelo (2017) characterized the core, the Shapley value, and the prenu

y problem. We also introduce the Shapley-Tijs value for generalized highway games wit

ich consists in computing the Shapley value among unions and using the Tijs value to al

ing costs within the unions.

value

(N,K,C, T ) ∈ H∗ be a generalized highway problem and P = {P1, . . . , PA} a partit

he notation of Vázquez-Brage et al. (1997), we denote the set of a priori unions that u

t = {a ∈ M | t ∈ T (Pa)} and the set of agents of an a priori union a ∈ M that use se

Pa | t ∈ T (i)}. The expression of the Owen value in the case of generalized highway gam

on 3.1. Let (Γ, P ) ∈ HE∗, with Γ = (N,K,C, T ), be a generalized highway problem with a

nd (N, c, P ) its associated game with a coalitional structure. The Owen value of the gam

t highway games are concave and monotone (Kuipers et al., 2013) and that result can be immediately exte
ase since it does not involve the condition of connected sections.
10
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is given by

for all i ∈

Proof. For

for all S ⊆ roperty of

additivity nsider the

quotient ga that

for all H ⊆ refore, for

a ∈ M , usi value,

To complet ic. By the

properties

Finally, usi

for all i ∈ P

Vázque hen there

is an allian e alliance

between un
Jo
ur

na
l P

re
-p

ro
of

Ψi(N, c, P ) =
∑

t∈T (i)

C(t)

|At| · |Na
t |
,

Pa ∈ P .

all t ∈ K, we define the cost game with a priori unions (N, ct, P ) by

ct(S) =




C(t) if t ∈ T (S)

0 otherwise,

N . Note that, in (N, ct, P ), all players that do not use section t are null players. By the p

of the Owen value, it suffices to obtain Ψ(N, ct, P ) and then apply that c =
∑

t∈K ct. Co

me (M, ctP ), with M = {1, . . . , A} and ctP (H) = ct(∪a∈HPa) for all H ⊆ M . Observe also

ctP (H) =




C(t) if t ∈ T (∪a∈HPa)

0 otherwise,

M . Note that, in (M, ctP ), all unions of players that use section t are symmetric. The

ng the efficiency, the null player property, and the symmetry between unions of the Owen

∑

i∈Pa

Ψi(N, ct, P ) =





C(t)
|At| if t ∈ T (Pa)

0 otherwise.

e the proof, let us notice now that, in (N, ct, P ), all agents that use section t are symmetr

of symmetry within unions and null player of the Owen value, if i ∈ Pa ∈ P ,

Ψi(N, ct, P ) =





∑
j∈Pa

Ψj(N,ct,P )

|Na
t |

if t ∈ T (i)

0 otherwise

=





C(t)
|At|·|Na

t |
if t ∈ T (i)

0 otherwise.

ng the additivity of the Owen value, we get

Ψi(N, c, P ) =
∑

t∈T (i)

C(t)

|At| · |Na
t |
,

a ∈ P .

z-Brage et al. (1997) study, for the airport problem with a priori unions, what happens w

ce between unions, and shows that, if costs are distributed following the Owen value, th
ions is always beneficial for them. We will analyze the situation in the case of generalized highway

11
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problems, for which we need to introduce some previous notation.

Let (Γ, structure,

(N, c, P ) it ions. The

total paym i(N, c, P ).

We say tha o a single

union, a∗. , with the

same sectio defined by

P ∗ = {Pa∗ ,

Propositi coalitional

structure, f a priori

unions. Le hen,

where the i s from the

alliance an

Proof. For ile for the

game resul ve that

and

with at = | ds that

(2)

Notice tha e alliance

a∗, then th
 Jo
ur

na
l P

re
-p

ro
of

P ) ∈ HE∗, with Γ = (N,K,C, T ), be a generalized highway problem with a coalitional

s associated game with a coalitional structure, and M = {1, . . . , A} the set of a priori un

ent assigned to a ∈ M by the Owen value will be denoted by Ψa(N, c, P ) =
∑

i∈Pa
Ψ

t unions {1, . . . , a} ⊆ M with a ≤ A are allied (or form an alliance) if they merge int

This results in a new generalized highway game with a coalitional structure, (N, c, P ∗)

ns and the same costs to be distributed, but with a different partition of a priori unions,

Pa+1, . . . , PA}, where Pa∗ = ∪a
α=1Pα and M∗ = {a∗, a+ 1, . . . , A}.

on 3.2. Let (Γ, P ) ∈ HE∗, with Γ = (N,K,C, T ), be a generalized highway problem with a

(N, c, P ) its associated game with a coalitional structure, and M = {1, . . . , A} the set o

t a∗ be the alliance that resulted from merging unions {1, . . . , a} ⊆ M (with 2 ≤ a ≤ A). T

Ψa∗(N, c, P ∗) ≤
∑

α∈{1,...,a}
Ψα(N, c, P ),

nequality is strict if and only if there exists at least one section used by at least two union

d by, at least, another union that is not part of the alliance.

the original game with a priori unions, (N, c, P ), we employ the usual notation At, wh

ted from merging unions {1, . . . , a}, (N, c, P ∗), we use A ∗
t = {b ∈ M∗ | t ∈ T (P ∗

b )}. We ha

Ψa∗(N, c, P ∗) =
∑

t∈T (Pa∗ )

C(t)

|A ∗
t |

∑

α∈{1,...,a}
Ψα(N, c, P ) =

∑

α∈{1,...,a}

∑

t∈T (Pα)

C(t)

|At|
=

∑

t∈T (Pa∗ )

∑

α∈{1,...,a}:
t∈T (Pα)

C(t)

|At|
=

∑

t∈T (Pa∗ )

at · C(t)

|At|
,

{α ∈ {1, . . . , a} | t ∈ T (Pα)}|. Therefore, it suffices to check that, for all t ∈ T (Pa∗), it hol

C(t)

|A ∗
t |

≤ at · C(t)

|At|
.

t |A ∗
t | = |At| − at + 1. Moreover, at ≥ 1 for all t ∈ T (Pa∗), i.e., if t is a section used by th

ere exists at least one union in such alliance that used t. Returning to (2), we have that

C(t)

|At| − at + 1
≤ at · C(t)

|At|
⇐⇒ 1

|At| − at + 1
≤ at

|At|
⇐⇒ a (|A | − a + 1)− |A | ≥ 0 ⇐⇒ (|A | − a )(a − 1) ≥ 0,
t t t t t t t

12
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and, due to |At| ≥ at and at ≥ 1, the inequality is proved.

Now, if n t is used

by at least by two or

more union

The pre al. (1997).

Those auth all players

(and thus st of more

than one a ch at > 1.

In the case nefit from

negotiating

3.2. Coalit

The co k, authors

obtained it sult to the

case of the

To com cture, we

first compu ed to each

alliance a ∈ equality is

straightforw

We sha s that are

shared or e hat union.

Therefore,

Definition coalitional

structure a ∈ K is an

exclusive u ons in the

quotient ga is the set

of shared u

We defi esents the

set of exclu ⊆ M . In

addition, fo can define

T s
P and T s

P

In orde coalitional

structure, w
Jo
ur

na
l P

re
-p

ro
of

t ∈ T (Pa∗), (2) is strict if |At| > at and at > 1. The first condition establishes that sectio

one union outside the alliance and the second condition guarantees that section t is used

s from the alliance. This proves the result.

vious proposition includes a novelty compared to the result presented in Vázquez-Brage et

ors only required the condition a < A for the strict inequality to hold. This is because

all unions) use the first section in the airport game. By requesting the alliance to consi

priori union, it is already certain that there will be a section t ∈ K, the first one, in whi

of the highway, this has an interesting interpretation, which is that two agents only be

together if they share the use of some section.

ional Tijs value

alitional Tijs value, T , was first introduced in Casas-Méndez et al. (2003). In that wor

s expression for the airport game with a priori unions. This subsection will extend that re

generalized highway game.

pute the coalitional Tijs value of the generalized highway game with a coalitional stru

te the Tijs value of each alliance in the quotient game of (N, c, P ). The amount allocat

M will be denoted by Ta(N, c, P ) =
∑

i∈Pa
Ti(N, c, P ) = τa(M, cP ), where the second

ardly obtained by the definition of T .

ll notice that, when considering the quotient game, we have to be careful with the section

xclusive because a section could be exclusive to one union but shared by many agents of t

we introduce the following notation.

3.1. Let (Γ, P ) ∈ HE∗, with Γ = (N,K,C, T ), be a generalized highway problem with a

nd (N, c, P ) its associated game with a coalitional structure. We say that a section t

se section in the quotient game if |At| = 1. We denote the set of exclusive use secti

me by Ke
P . Hence, we have a partition in K, K = Ke

P ∪Ks
P and Ke

P ∩Ks
P = ∅, where Ks

P

se sections in the quotient game.

ne the function T e
P : M → 2K

e
P by T e

P (a) = T (Pa) ∩Ke
P for all union a ∈ M , which repr

sive use sections used by that union. Also, we define T e
P (H) =

⋃
a∈H T e

P (a), for each H

r all a ∈ M and all H ⊆ M , ceP (a) = C(T e
P (a)) and ceP (H) = C(T e

P (H)). Analogously, we

(H) and csP (H), for each H ⊆ M .

r to obtain the formula of the coalitional Tijs value for the generalized highway game with a

e will first show how the allocation between unions is performed.
13
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Proposition 3.3. Let (Γ, P ) ∈ HE∗, with Γ = (N,K,C, T ), be a generalized highway problem with a coalitional

structure a ient game

(M, cP ) is

for all a ∈

Proof. It is 3.1.

To calc of Pa, for

each union

Propositi coalitional

structure a the game

(N, c, P ) is

with ce(a)

Proof. Let sition 3.3,

Ta(N, c, P ) 2013), we

know that definition

of the coal , c, P ) for

player i, it

To ana 007) when

proving Pr ained that

Mi(N, c, P definition

of the coali

To complet uivalence,

as stated in th a priori

unions, (N
Jo
ur

na
l P

re
-p

ro
of

nd (N, c, P ) its associated game with a coalitional structure. The Tijs value of the quot

given by

τa(M, cP ) = Ta(N, c, P ) =





ceP (a) if Ks
P = ∅

ceP (a) + csP (M) · csP (a)∑
b∈M csP (b)

if Ks
P ̸= ∅,

M .

enough to apply Proposition 2.2 to the quotient game (M, cP ), making use of Definition

ulate the coalitional Tijs value, T (N, c, P ), Ta(N, c, P ) is distributed among the members

a ∈ M .

on 3.4. Let (Γ, P ) ∈ HE∗, with Γ = (N,K,C, T ), be a generalized highway problem with a

nd (N, c, P ) its associated game with a coalitional structure. The coalitional Tijs value of

given by

Ti(N, c, P ) =





ce(i) if Ks = ∅

ce(i) + (Ta(N, c, P )− ce(a)) · cs(i)∑
j∈Pa

cs(j)
if Ks ̸= ∅,

=
∑

j∈Pa
ce(j), for all i ∈ Pa ∈ P .

i ∈ Pa ∈ P . First, if Ks = ∅, then Mi(N, c, P ) = ce(i) and Ks
P = ∅. By Propo

= ceP (a). Also, note that in this case ceP (a) =
∑

j∈Pa
ce(j). Now, from Kuipers et al. (

the game (N, c) is monotone, from which mi(N, c, P ) = ce(i)−∑j∈N\Pa
ce(j). Using the

itional Tijs value presented in (1), and having derived the utopia and lower payoffs of (N

directly follows that Ti(N, c, P ) = ce(i).

lyze the case where Ks ̸= ∅, we will use arguments similar to that found in Mosquera (2

oposition 2.1. Let us initially assume that |Nt| > 1 for all t ∈ K. It is then easily obt

) = 0. Furthermore, due to (N, c) being monotone, mi(N, c, P ) = cs(i). Applying again the

tional Tijs value, the calculation leads to

Ti(N, c, P ) = Ta(N, c, P ) · cs(i)∑
j∈Pa

cs(j)
.

e the proof, it suffices to note that the coalitional Tijs value is covariant under strategic eq

Casas-Méndez et al. (2003). As it is well known, this means that given two cost games wi
∑

, c, P ) and (N, c′, P ), d > 0, and (ai)i∈N ∈ RN such that c(S) = d ·c′(S)+ i∈S ai for each S ⊆ N (we

14
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say that (N, c, P ) and (N, c′, P ) are strategically equivalent), then we have Ti(N, c, P ) = d · Ti(N, c′, P ) + ai for

each i ∈ N ,P ) when

section t is e property

of covarian f.

As it w neficial for

them when

Before .2 and 3.1

depend on d between

the a prior ons in the

original gam motivates

the followin

Definition coalitional

structure, ( ri unions,

and (N, c, P t (N, c, P )

is the origi ill be the

original an

Conside the shared

use section the shared

use section Kse
P ∗ , and

Kss
P ∗ are m on a ∈ M ,

T ee
P ∗(a) ⊆ K a similar

way.

We wil ion in the

original qu ce will be

beneficial.

Propositi coalitional

structure, f a priori

unions. Le . Let also

(N, c, P ∗) b

where the i there is a

section use
Jo
ur

na
l P

re
-p

ro
of

. If |Nt| = 1 for some t ∈ K, the games (N, c, P ) and (N, c|K\{t}, P ), resulting from (N, c

excluded, are strategically equivalent, as highlighted by Mosquera (2007). Leveraging th

ce under strategic equivalence of the coalitional Tijs value, we can then conclude the proo

as done for the Owen value, it is worth asking if the alliance between unions is always be

the costs are allocated using the coalitional Tijs value.

stating the results, it is necessary to point out that the partitions used in Definitions 2

the problem Γ ∈ H∗ and (Γ, P ) ∈ HE∗ considered, respectively. When alliances are forme

i unions, there may be sections in the quotient game that go from being shared use secti

e, (N, c, P ), to being exclusive use sections in the game with the alliance, (N, c, P ∗). This

g definition.

3.2. Let (Γ, P ) ∈ HE∗, with Γ = (N,K,C, T ), be a generalized highway problem with a

N, c, P ) its associated game with a coalitional structure, M = {1, . . . , A} the set of a prio

∗) the game resulting from the alliance, a∗, among the unions {1, . . . , a} ⊆ M . We say tha

nal game and (N, c, P ∗) is the modified game. In the same way, (M, cP ) and (M∗, cP ∗) w

d modified quotient games, respectively.

r a partition of K consisting of the exclusive use sections in both quotient games, Kee
P ∗ ;

s in the original quotient game and exclusive use in the modified quotient game, Kse
P ∗ ; and

s in both quotient games, Kss
P ∗ . Note that indeed K = Kee

P ∗ ∪Kse
P ∗ ∪Kss

P ∗ and that Kee
P ∗ ,

utually disjoint. The set of exclusive use sections in both quotient games used by the uni

ee
P ∗ , is defined by T ee

P ∗(a) =
⋃

i∈Pa
T (i) ∩Kee

P ∗ . The sets T se
P ∗(a) and T ss

P ∗(a) are defined in

l see below that if an alliance a∗ is formed such that Kse
P ∗ = ∅, i.e., no shared use sect

otient game becomes an exclusive use section in the modified quotient game, such an allian

on 3.5. Let (Γ, P ) ∈ HE∗, with Γ = (N,K,C, T ), be a generalized highway problem with a

(N, c, P ) its associated game with a coalitional structure, and M = {1, . . . , A} the set o

t a∗ be the alliance resulting from merging the unions {1, . . . , a} ⊆ M (with 2 ≤ a ≤ A)

e the modified game with a coalitional structure. If Kse
P ∗ = ∅, then

Ta∗(N, c, P ∗) ≤
∑

α∈{1,...,a}
Tα(N, c, P ),

nequality is strict if and only if the alliance shares the use of some highway section and
d by at least two unions of the alliance.
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Proof. Two cases will be distinguished. First, we will assume that Kss
∗ = ∅, which implies that cs ∗(a∗) = 0.

Because K

where the s he original

quotient ga

Second the result

is true. Let

In addition

Note that c

or, equivale

(3)

Now, n (a∗) > 0.

Finally, ine ̸= −y is

monotonic nd only if
∑

α∈{1,...,a} ∩T (Pβ) ̸=
∅. This com

The fol ction that

changes fro modified

quotient ga

Example , and
Jo
ur

na
l P

re
-p

ro
of

P P

se
P ∗ = ∅, then csP (α) = 0 for all α ∈ {1, . . . , a}. Therefore,

Ta∗(N, c, P ∗) = ceP ∗(a∗) =
∑

α∈{1,...,a}
ceP (α) =

∑

α∈{1,...,a}
Tα(N, c, P ),

econd equality holds because the sections used by the allied unions are of exclusive use in t

me. Thus, in this case, we have the result.

, we will assume that Kss
P ∗ ̸= ∅. If csP ∗(a∗) = 0, we can reason as in the previous case and

us then assume that csP ∗(a∗) > 0. Then,

Ta∗(N, c, P ∗) = ceP ∗(a∗) + csP ∗(M∗) · csP ∗(a∗)∑
b∈M∗ csP ∗(b)

.

,
∑

α∈{1,...,a}
Tα(N, c, P ) =

∑

α∈{1,...,a}
ceP (α) + csP (M) ·

∑
α∈{1,...,a} c

s
P (α)∑

b∈M csP (b)
.

e
P ∗(a∗) =

∑
α∈{1,...,a} c

e
P (α) and csP ∗(M∗) = csP (M), so it is enough to prove that

csP ∗(a∗)∑
b∈M∗ csP ∗(b)

≤
∑

α∈{1,...,a} c
s
P (α)∑

b∈M csP (b)

ntly,

csP ∗(a∗)∑
b∈M∗\{a∗} c

s
P ∗(b) + csP ∗(a∗)

≤
∑

α∈{1,...,a} c
s
P (α)∑

b∈M\{1,...,a} c
s
P (b) +

∑
α∈{1,...,a} c

s
P (α)

.

ote that
∑

b∈M∗\{a∗} c
s
P ∗(b) =

∑
b∈M\{1,...,a} c

s
P (b), which is strictly positive because csP ∗

quality (3) follows from the fact that the function f(x) = x
y+x , with x ≥ 0, y > 0, x

non-decreasing and that
∑

α∈{1,...,a} c
s
P (α) ≥ csP ∗(a∗). Clearly, the inequality is strict if a

csP (α) > csP ∗(a∗) or, equivalently, there exist two unions α, β ∈ {1, . . . , a} such that T (Pα)

pletes the proof.

lowing example illustrates that the alliance is not necessarily beneficial if there is some se

m a shared use section in the original quotient game to an exclusive use section in the

me.

3.1. Let ((N,K,C, T ), P ) ∈ HE∗, with M = {1, . . . , 104}, K = {t1, t2}, C(t1) = C(t2) = 1

T (a) =




{t1} if a ∈ {1, 2}
{t2} if a ∈ M\{1, 2}.
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An alliance a∗ is formed by merging unions {1, 2, 3, 4}. Let (N, c, P ) and (N, c, P ∗) be the original and

modified ga

and

It can be s 1 has gone

from being art of the

alliance) to △

3.3. Shaple

The de presented

below.

Definition coalitional

structure a s value by

the vector

Remark 3 ional Tijs

value in a g

for all Pa ∈

3.4. Chara

We star

Definition

� Pare

� Equa a, T (i) =

T (j)
Jo
ur

na
l P

re
-p

ro
of

mes, respectively (see Definition 3.2). Then,

Ta∗(N, c, P ∗) = 1 + 1 · 1

101
=

102

101
> 1

4∑

α=1

Tα(N, c, P ) = 4 · 2

104
=

1

13
< 1.

een that the unions are disadvantaged by having formed the alliance. Note that section t

a shared use section in the original quotient game (used by two unions that are now p

being an exclusive use section in the modified quotient game (used by a∗).

y-Tijs value

finition of the Shapley-Tijs value for generalized highway games with a priori unions is

3.3. Let (Γ, P ) ∈ HE∗, with Γ = (N,K,C, T ), be a generalized highway problem with a

nd (N, c, P ) its associated game with a coalitional structure. We define the Shapley-Tij

(Λi(N, c, P ))i∈N such that for all a ∈ M and all i ∈ Pa ∈ P ,

Λi(N, c, P ) =





ce(i) if Ks = ∅

ce(i) + (Ψa(N, c, P )− ce(a)) · cs(i)∑
j∈Pa

cs(j)
if Ks ̸= ∅.

.1. It can be seen that the previous expression differs from the one given for the coalit

eneralized highway problem with a coalitional structure because we have

∑

i∈Pa

Λi(N, c, P ) = Ψa(N, c, P ) = Φa(M, cP )

P , while
∑

i∈Pa

Ti(N, c, P ) = Ta(N, c, P ) = τa(M, cP ).

cterization of coalitional values in generalized highway problems

t by defining the various properties that will be used to characterize these values.

3.4. Let σ : HE∗ → R|N | be a value on HE∗. We define the following properties.

to optimality (PO): For all (Γ, P ) ∈ HE∗,
∑

i∈N σi(Γ, P ) = C(K).

l treatment property for agents (ETPA): For all (Γ, P ) ∈ HE∗, Pa ∈ P , and i, j ∈ P
implies σi(Γ, P ) = σj(Γ, P ).

17
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� Equal treatment property for unions (ETPU): For all (Γ, P ) ∈ HE∗ and Pa, Pa′ ∈ P , T (Pa) = T (Pa′)

impli

� Indiv with Γ =

(N,K σi(Γ, P ) =

σi(Γ
′

� Coal with Γ =

(N,K ′
a)

implies
∑

i∈P

� Prop ∈ M with

T e(P

� Prop e (M) = ∅,
there

� Cova ), (Γ′, P ′)

∈ HE = P ′|K ,

and {

� Cova (Γ′, P ′) ∈
HE∗, P ′|K , and

{Pb ∈

(PO) m en used by

Sudhölter & , although

they are ad Here, we

extend tho vel within

a single un omatically

characteriz as-Méndez

et al. (2003
Jo
ur

na
l P

re
-p

ro
of

es
∑

i∈Pa
σi(Γ, P ) =

∑
i∈Pa′

σi(Γ, P ).

idual independence of outside changes (IIOC): For all (Γ, P ), (Γ′, P ′) ∈ HE∗,

, C, T ), Γ′ = (N ′,K ′, C ′, T ′), and i ∈ N∩N ′, Γ|T (i) = Γ′|T ′(i) and P |T (i) = P ′|T ′(i) implies

, P ′).

itional independence of outside changes (CIOC): For all (Γ, P ), (Γ′, P ′) ∈ HE∗,

, C, T ), Γ′ = (N ′,K ′, C ′, T ′), and a ∈ M ∩ M ′, Γ|T (Pa) = Γ′|T ′(P ′
a)

and P |T (Pa) = P ′|T ′(P

a
σi(Γ, P ) =

∑
i∈P ′

a
σi(Γ

′, P ′).

ortionality in shared sections among agents (PSSA): For all (Γ, P ) ∈ HE∗ and a

a) = ∅, there exists ca ∈ R+ such that for all i ∈ Pa, σi(Γ, P ) = ca · cs(i).

ortionality in shared sections among unions (PSSU): For all (Γ, P ) ∈ HE∗ with TP

exists c ∈ R+ such that for all a ∈ M ,
∑

i∈Pa
σi(Γ, P ) = c · csP (a).

riance under a prolongation for exclusive use by an agent (CPEA): For all (Γ, P

∗, with Γ = (N,K,C, T ) and Γ′ = (N ′,K ′, C ′, T ′), if i ∈ N ′, K ′ = K ∪ {t}, Γ = Γ′|K , P

j ∈ N ′ | t ∈ T ′(j)} = {i}, then for all j ∈ N ′

σj(Γ
′, P ′) =




σj(Γ, P ) + C ′(t) if i = j

σj(Γ, P ) otherwise.

riance under a prolongation for exclusive use by a union (CPEU): For all (Γ, P ),

with Γ = (N,K,C, T ) and Γ′ = (N ′,K ′, C ′, T ′), if Pa ∈ P ′, K ′ = K ∪ {t}, Γ = Γ′|K , P =

P ′ | t ∈ T ′(Pb)} = {Pa}, then for all Pb ∈ P ′

∑

i∈Pb

σi(Γ
′, P ′) =





∑
i∈Pb

σi(Γ, P ) + C ′(t) if Pa = Pb

∑
i∈Pb

σi(Γ, P ) otherwise.

eans that the fees collected cover the cost of the installation. This property has already be

Zarzuelo (2017). The following properties are introduced for the first time in this paper

aptations of axioms already existing in the literature for group-free highway problems.

se axioms to the coalitional context, both to the level of a priori unions and to the agent le

ion. Although Owen (1977) has previously utilized similar two-level properties to axi

e the Owen value, their application has persisted over time, evident in works such as Cas
), Lorenzo-Freire (2019), Alonso-Meijide et al. (2023), and Casajus & Tido Takeng (2023). (ETPA)
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and (ETPU) imply that vehicles (or coalitions of vehicles, respectively) using the same sections have to pay the

same fare. these two

properties pectively)

pays does from the

individual s that the

vehicles be to the cost

of the secti e sections,

the total p properties

to (PSSA) Tijs value

in Casas-M ive use by

one vehicle ehicles (or

unions). T olongation

proposed in

Given t ted game,

(N, c, P ), t associated

game. The d highway

problems w

Theorem PU), and

(IIOC).

Proof. It is ms with a

coalitional

Now, le d (IIOC).

We will pr coalitional

structure a

If |K| = i(Γ, P ) =

C(K)
|M |·|Pa| = Ψ the result.

Suppose th

For each i is we have

that σ and
)
= P |T (i),

and that σ
Jo
ur

na
l P

re
-p

ro
of

Originating from the equal treatment property defined in Sudhölter & Zarzuelo (2017),

have been newly formulated. (IIOC) and (CIOC) imply that what a vehicle (or union, res

not depend on how unused sections are traveled. These two properties have been defined

independence of outside changes proposed in Sudhölter & Zarzuelo (2017). (PSSA) state

longing to unions that do not use exclusive use sections will make a payment proportional

ons they use. Similarly, (PSSU) states that in a problem where no union uses exclusive us

ayment of each union will be proportional to the cost of the sections used. Analogous

and (PSSU) are employed to characterize the Tijs value in Tijs (1987) or the coalitional

éndez et al. (2003). Lastly, (CPEA) and (CPEU) state that adding a section of exclus

(or by a union of vehicles, respectively) does not affect the payment of the remaining v

hese properties have been formulated from the property of covariance under exclusive pr

Sudhölter & Zarzuelo (2017).

hat every generalized highway problem with a coalitional structure, (Γ, P ), has an associa

he value of a highway problem with a coalitional structure can be defined as a value of its

following theorem provides an axiomatic characterization of the Owen value for generalize

ith a coalitional structure.

3.1. The Owen value on HE∗ is the unique solution that satisfies (PO), (ETPA), (ET

immediate to see from its expression that the Owen value of generalized highway proble

structure, Ψ, satisfies (PO), (ETPA), (ETPU), and (IIOC).

t (Γ, P ) ∈ HE∗ and let σ be a solution on HE∗ satisfying (PO), (ETPA), (ETPU), an

ove that σ(Γ, P ) = Ψ(N, c, P ) by induction on |K|, where (N, c, P ) is the game with a

ssociated to (Γ, P ).

1, then T (i) = T (j) for all i, j ∈ N and T (Pa) = T (Pb) for all Pa, Pb ∈ P . Thus, σ

i(N, c, P ), for all a ∈ M and all i ∈ Pa, due to (PO), (ETPA), and (ETPU), and we have

at σ(Γ, P ) = Ψ(N, c, P ) holds for all 2 ≤ l < |K|, and take l = |K|. We define

R = {i ∈ N | T (i) ⊊ K} and Q = {i ∈ N | T (i) = K}.

∈ R, consider the restriction (Γ|T (i), P |T (i)). Since |T (i)| < |K|, by the induction hypothes

Ψ coincide on (Γ|T (i), P |T (i)) for player i. Now, given that Γ|T (i)

∣∣
T (i)

= Γ|T (i), P |T (i)

∣∣
T (i

and Ψ satisfy (IIOC),
σi(Γ, P ) = σi(Γ|T (i), P |T (i)) = Ψi(N, c, P ).
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In this way, σi(Γ, P ) = Ψi(N, c, P ) for all i ∈ R. If R = N , we have finished. If R ⊊ N , then Q ̸= ∅. Let us see
now that σ

Let H t i ∈ Pa.

Because σ we obtain

σa(Γ, P ) = R = ∅, by
(ETPA) we y (ETPA)

and using t a ∩Q.

Next, t

� (PO) P ) ∈ HE∗

and f

� (ETP

for al

� (ETP , c), for all

(Γ, P

� (IIOC P ), for all

(Γ, P

We wil ms with a

coalitional

Theorem , (PSSU),

(CPEA), a

Proof. Fro , (CPEA),

and (CPEU

Now, le ent of the

theorem. W h that
Jo
ur

na
l P

re
-p

ro
of

i(Γ, P ) = Ψi(N, c, P ) for all i ∈ Q, if Q ̸= ∅.
= {a ∈ M | T (Pa) = K}. Note that, for all i ∈ Q, there exists a ∈ H such tha

and Ψ satisfy (PO) and (ETPU) and given that σi(Γ, P ) = Ψi(N, c, P ), for all i ∈ R,

Ψa(N, c, P ) for all a ∈ H. To conclude, two cases are considered. If a ∈ H and Pa ∩
obtain σi(Γ, P ) = Ψi(N, c, P ), for all i ∈ Pa. Finally, if a ∈ H and Pa ∩ R ̸= ∅, again b

hat σi(Γ, P ) = Ψi(N, c, P ) for all i ∈ R, we have that σi(Γ, P ) = Ψi(N, c, P ), for all i ∈ P

he logical independence of the properties used in Theorem 3.1 is shown.

is independent of the rest of the properties. For the proof we define fi(Γ, P ) = 0, for all (Γ,

or all i ∈ N .

A) is independent of the rest of the properties. For the proof we define

fi(Γ, P ) =





∑

t∈T (i)

C(t)

|At|
if i = min{j ∈ Na

t }

0 otherwise,

l (Γ, P ) ∈ HE∗, for all Pa ∈ P , and for all i ∈ Pa.

U) is independent of the rest of the properties. For the proof we define fi(Γ, P ) = Φi(N

) ∈ HE∗ and for all i ∈ N , where Φ denotes the Shapley value.

) is independent of the rest of the properties. For the proof we define fi(Γ, P ) = Ti(N, c,

) ∈ HE∗ and for all i ∈ N , where T denotes the coalitional Tijs value.

l now give a characterization of the coalitional Tijs value for generalized highway proble

structure, just as it has been done for the Owen value.

3.2. The coalitional Tijs value on HE∗ is the unique solution that satisfies (PO), (PSSA)

nd (CPEU).

m Proposition 3.4, it follows that the coalitional Tijs value satisfies (PO), (PSSA), (PSSU)

).

t (Γ, P ) ∈ HE∗ and let σ be a solution on HE∗ satisfying the five properties of the statem

e will prove that σ(Γ, P ) = T (N, c, P ). By (PSSU) and (CPEU), there exists c ∈ R+ suc

∑

i∈Pa

σi(Γ, P ) = ceP (a) + c · csP (a),
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for all a ∈ M . By (PO), it follows that

if Ks
P ̸= ∅,

for all a ∈ f the first

part of the

for all i ∈ N

Next, t

� (PO)

for al

� (PSS

for al

� (PSS P ), for all

(Γ, P

� (CPE

for al
Jo
ur

na
l P

re
-p

ro
of

c =
cP (M)−∑b∈M ceP (b)∑

b∈M csP (b)
=

csP (M)∑
b∈M csP (b)

and c = 0 if Ks
P = ∅. Therefore, it holds that

∑

i∈Pa

σi(Γ, P ) = Ta(N, c, P ),

M . This, together with (PSSA) and (CPEA), and following a reasoning similar to that o

proof, implies that

σi(Γ, P ) = Ti(N, c, P ),

, thus having the result.

he logical independence of the properties used in Theorem 3.2 is shown.

is independent of the rest of the properties. For the proof we define

fi(Γ, P ) = ce(i) + (Ea(N, c, P )− ce(a)) · cs(i)∑
j∈Pa

cs(j)
,

l (Γ, P ) ∈ HE∗, for all Pa ∈ P , and for all i ∈ Pa, where

Ea(N, c, P ) =
∑

t∈T (Pa):
|At|=1

C(t).

A) is independent of the rest of the properties. For the proof we define

fi(Γ, P ) =





ce(i) if Ks = ∅

ce(i) +
Ta(N, c, P )− ce(a)

|N a
s |

if Ks ̸= ∅,

l (Γ, P ) ∈ HE∗, for all Pa ∈ P , and for all i ∈ Pa, where N a
s = {j ∈ Pa | cs(j) ̸= 0}.

U) is independent of the rest of the properties. For the proof we define fi(Γ, P ) = Λi(N, c,

) ∈ HE∗ and for all i ∈ N , where Λ denotes the Shapley-Tijs value.

A) is independent of the rest of the properties. For the proof we define

fi(Γ, P ) = Ta(N, c, P ) · cs(i)∑
j∈Pa

cs(j)
,

l (Γ, P ) ∈ HE∗, for all Pa ∈ P , and for all i ∈ Pa.
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� (CPEU) is independent of the rest of the properties. For the proof we define

for al

Finally, ing lemma

will be use

Lemma 3

for all (Γ, P

Proof. Let e done by

induction o e have the

result. Sup e l = |K|.
We define

For each a ted to the

sections T ( result on

(Γ|T (Pa), P σ satisfies

(CIOC), w

where the

If R = oof, (PO),

and (ETPU

for all a ∈
Jo
ur

na
l P

re
-p

ro
of

fi(Γ, P ) =





ce(i) if Ks = ∅

ce(i) + T a(N, c, P ) · cs(i)∑
j∈Pa

cs(j)
if Ks ̸= ∅,

l (Γ, P ) ∈ HE∗, for all Pa ∈ P , and for all i ∈ Pa, where

T a(N, c, P ) =

(
cP (M)−

∑

i∈N
ce(i)

)
· csP (a)∑

b∈M csP (b)
.

a characterization of the Shapley-Tijs value, defined above, will be provided. The follow

d in the proof of such an axiomatic characterization.

.1. Let σ be a solution on HE∗ that satisfies (PO), (ETPU), and (CIOC). Then,

∑

i∈Pa

σi(Γ, P ) = Ψa(N, c, P ) =
∑

t∈T (Pa)

C(t)

|{b ∈ M | t ∈ T (Pb)}|
,

) ∈ HE∗, and all a ∈ M , with (N, c, P ) the associated game with a coalitional structure.

(Γ, P ) ∈ HE∗ and suppose that σ satisfies (PO), (ETPU), and (CIOC). The proof will b

n |K|. If |K| = 1, then T (Pa) = T (Pb) for all a, b ∈ M . Thus, due to (PO) and (ETPU), w

pose that
∑

i∈Pa
σi(Γ, P ) = Ψa(N, c, P ) for all a ∈ M holds for all 2 ≤ l < |K|. Now, tak

R = {a ∈ M | T (Pa) ⊊ K} and Q = {a ∈ M | T (Pa) = K}.

∈ R, we can consider the generalized highway problem with a coalitional structure restric

Pa) ⊊ K, (Γ|T (Pa), P |T (Pa)). Since |T (Pa)| < |K|, by the induction hypothesis we have the

|T (Pa)) for the union a. Considering that Γ|T (Pa)

∣∣
T (Pa)

= Γ|T (Pa) for all a ∈ R and that

e obtain

∑

i∈Pa

σi(Γ, P ) =
∑

i∈Pa

σi(Γ|T (Pa), P |T (Pa)) =
∑

i∈Pa

Ψi(N, c, P ) = Ψa(N, c, P ),

second-to-last equality is fulfilled because Ψ also satisfies (CIOC).

M , we have the result. If R ⊊ M , then Q ̸= ∅. In such a case, using the first part of the pr

), it can be seen that
∑

i∈Pa

σi(Γ, P ) = Ψa(N, c, P ),
Q. This concludes the proof of the result.
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Theorem 3.3. The Shapley-Tijs value on HE∗ is the unique solution that satisfies (PO), (ETPU), (CIOC),

(PSSA), an

Proof. Fro SSA), and

(CPEA).

Now, le rove that

σ(Γ, P ) = Λ

for all a ∈ d (CIOC),

we have th

for all a ∈

and that co

Next, t

� (PO) i), for all

(Γ, P

� (ETP

for al

� (CIO P ), for all

(Γ, P
Jo
ur

na
l P

re
-p

ro
of

d (CPEA).

m Definition 3.3, it follows that the Shapley-Tijs value satisfies (PO), (ETPU), (CIOC), (P

t (Γ, P ) ∈ HE∗ and let σ be a solution on HE∗ satisfying these properties. We will p

(N, c, P ). By (PSSA) and (CPEA), there exists ca ∈ R+ such that

σi(Γ, P ) = ce(i) + ca · cs(i),

M , i ∈ Pa ∈ P , and ca = 0 if Ks = ∅. By Lemma 3.1, since σ satisfies (PO), (ETPU), an

at
∑

i∈Pa

σi(Γ, P ) = Ψa(N, c, P ),

M . It is therefore obtained that for all a ∈ M and for all i ∈ Pa ∈ P ,

σi(Γ, P ) = Λi(N, c, P ) =





ce(i) if Ks = ∅

ce(i) +
(
Ψa(N, c, P )− ce(a)

)
· cs(i)∑

j∈Pa
cs(j)

if Ks ̸= ∅,

ncludes the proof.

he logical independence of the properties used in Theorem 3.3 is shown.

is independent of the rest of the properties. For the proof we define fi(Γ, P ) = ce(

) ∈ HE∗ and for all i ∈ N .

U) is independent of the rest of the properties. For the proof we define

fi(Γ, P ) =





ce(i) if Ks = ∅

ce(i) + Ψa(N, c, P ) · cs(i)∑
j∈Pa

cs(j)
if Ks ̸= ∅,

l (Γ, P ) ∈ HE∗, for all Pa ∈ P , and for all i ∈ Pa, where

Ψa(N, c, P ) =
∑

t∈T (Pa)∩Ks:
a=min{b∈M |t∈T (Pb)∩Ks}

C(t).

C) is independent of the rest of the properties. For the proof we define fi(Γ, P ) = Ti(N, c,

) ∈ HE∗ and for all i ∈ N .
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� (PSSA) is independent of the rest of the properties. For the proof we define fi(Γ, P ) = Ψi(N, c, P ), for

all (Γ

� (CPE

for al

Table 1 Tijs value,

and the Sh lighting in

bold those oportional

allocation a allocation

of a priori e of losing

the propor

Table 1: Ove value, Λ. In
bold, the pro

4. An app

Kuipers g its users

using coop thors only

considered l its users.

What actu ght, heavy

1, and heav

In this tegories of

users, as w the AP-9

highway co ctions are

represented sist of the

segments jo
Jo
ur
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, P ) ∈ HE∗ and for all i ∈ N , where Ψ denotes the Owen value.

A) is independent of the rest of the properties. For the proof we define

fi(Γ, P ) = Ψa(N, c, P ) · cs(i)∑
j∈Pa

cs(j)
,

l (Γ, P ) ∈ HE∗, for all Pa ∈ P , and for all i ∈ Pa.

provides a concise overview of the characterizations for the Owen value, the coalitional

apley-Tijs value. Each column lists the properties satisfied by each coalitional value, high

that characterize the solutions. It can be seen that the Shapley-Tijs value combines the pr

mong the members of each union (PSSA) and the independence of outside changes in the

unions (CIOC), property that allows the merging of unions to be advantaged, in exchang

tional allocation among unions (PSSU) that the coalitional Tijs value satisfies.

Ψ T Λ

(PO) (PO) (PO)
(ETPA) (ETPA) (ETPA)
(ETPU) (ETPU) (ETPU)
(IIOC)
(CIOC) (CIOC)

(PSSA) (PSSA)
(PSSU)

(CPEA) (CPEA) (CPEA)
(CPEU) (CPEU) (CPEU)

rview of the properties satisfied by the Owen value, Ψ, the coalitional Tijs value, T , and the Shapley-Tijs
perties that characterize these values.

lication to the Spanish AP-9 highway

et al. (2013) showed how to allocate the fixed costs of the Spanish AP-68 highway amon

erative games values, in particular the Shapley value and the nucleolus. However, the au

vehicles of the same category (light vehicles) and therefore obtained a single price for al

ally happens in practice is quite different, since there are several categories of vehicles (li

y 2) with different rates.

setup, we extend the model considered in Kuipers et al. (2013) to include different ca

ell as the relationship that may exist between them. To do this, data from sections of

nnecting A Coruña and Vigo, two cities in the northwest of Spain, will be used. These se

in Figure 1, where each node is an entrance/exit point of the highway and sections con

ining two consecutive nodes.
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Figure 1: Sections of the AP-9 highway between A Coruña and Vigo.

-9 highway users can be classified into three types, according to their type of vehicle: li

vy 2.2 To be able to include them in the model, it is considered that each section of th

d of three levels and that larger vehicles need to use more levels of the highway than sm

dure was inspired by Fragnelli et al. (2000). The authors distribute the costs of a railwa

ow and fast trains. Fast trains need a higher quality track and therefore a higher cost t

. This additional cost is reflected in the fact that they must use both the basic level of

or slow trains) and an extra level whose cost is the difference between the cost of the high

he lower quality track.

ase, three levels will be considered, as we work with three categories. Figure 2 shows a hig

ns (t1, t2, and t3) used by three vehicles, one of each type. By dividing the highway into t

2}), nine subsections are obtained, which will be the sections of the generalized highwa

idered.3 It is necessary to work with the generalized version because the subsections m

User 1 is a light vehicle that uses highway sections t1 and t2 and therefore uses subsection

lem, i.e., only the basic level. User 2 is a heavy 1 vehicle using t2 and t3 and therefore co

ons t02, t
0
3, t

1
2, and t13 of the generalized highway problem. The third user is a heavy 2 ve

t2, and t3, so it will use subsections tl1, t
l
2, and tl3, with l ∈ {0, 1, 2}.

t21 t22 t23

t11 t12 t13

t01 t02 t03

t1 t2 t3

l = 2

l = 1

l = 0 1
2

3

Figure 2: Subsections used by three types of vehicles that travel through three highway sections.

tion to distinguishing between different types of vehicles, another issue of interest in th

ration of different groups of agents that can negotiate together in order to obtain lower

ation, two cases will be considered. Firstly, the problem without a priori unions and, sec

th an alliance among the members of the heavy 2 category. The analysis of this grouping is

icles include cars, motorcycles, or vans; heavy 1 vehicles include 3-axle vehicles, such as cars with traile
eavy 2 vehicles are generally vehicles with more than 3 axles (AUDASA, n.d.).
of visualization, we display the three subsections of each section stacked, rather than consecutively as in

em.
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ount obtained should not be compared faithfully with the actual amount of the discount

plate the distribution of fixed costs and, moreover, the costs that we consider for each s

dified with respect to the real ones, for ease of illustration.

purpose, the traffic data of the AP-9 highway from Ministerio de Transportes, Movilidad

España (2019b) and the prices for each journey (Ministerio de Transportes, Movilidad

España, 2019a) have been employed. The data used can be found in Table 2 and are

the official traffic data consist of the average number of vehicles that travel through ea

on a daily basis, referred to as the Average Daily Index (ADI), distinguishing between

vehicles, and corresponding to the year 2019. The towns considered, connected by the A

C), Macenda (Ma), Ordes (Or), Sigüeiro (Si), Santiago (Sa), Padrón (Pa), Carracedo (C

l), Curro (Cu), Pontevedra (Po), Vilaboa (Vl), Morrazo (Mo), and Vigo (Vg). As the per

1) and heavy 2 (H2) vehicles on the AP-9 is not publicly available, it has been assume

avy vehicles is evenly divided between the two heavy vehicle categories. The official fare

also included, again from 2019.4

ADI Lg ADI H1 ADI H2 Toll Lg Toll H1 Toll H2

AC-Ma 22661 1032 1032 1.90 3.30 4.05
Ma-Or 16602 718 718 3.05 5.40 6.60
Or-Si 18082 808 808 1.80 2.95 3.80
Si-Sa 16127 745 745 1.75 3.10 3.80
Sa-Pa 22075 1170 1170 2.40 4.00 4.95
Pa-Cr 18218 1027 1027 1.05 1.85 2.65
Cr-Cl 20702 1206 1206 0.75 1.15 1.35
Cl-Cu 19426 1095 1095 1.25 2.20 2.75
Cu-Po 21948 1244 1244 1.35 2.45 3.05
Po-Vl 29796 1318 1318 1.10 1.95 2.40
Vl-Mo 28279 1229 1229 1.70 1.85 3.50
Mo-Vg 61032 2277 2277 1.10 2.00 2.80

Table 2: Traffic data (ADI) and fees of the three types of vehicle for the AP-9.

ed construction costs for each level in each section have been calculated in a similar mann

et al. (2013), by multiplying the price of each section by the number of users. To obtain

rent levels for each section, the level 0 fare is considered to be the light vehicle fare, the l

rence between the fare of heavy 1 vehicles and light vehicles, and the level 3 fare is the

e fare of heavy 2 vehicles and heavy 1 vehicles. The result of these calculations can b

be noted that the prices are not generally additive and only the fares for consecutive sections are i
the Vilaboa-Morrazo and Padrón-Carracedo routes cannot be performed, the prices chosen for these sect
tween Pontevedra-Morrazo and Pontevedra-Vilaboa, and between Padrón-Caldas de Reis and Carraced
ively.
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nterpreted as the daily fixed cost to be distributed on the highway, and the a priori unio

n same-day users.

AC-Ma Ma-Or Or-Si Si-Sa Sa-Pa Pa-Cr

l = 0 46977.50 55015.90 35456.40 30829.75 58596.00 21285.60
l = 1 2889.60 3374.60 1858.40 2011.50 3744.00 1643.20
l = 2 774.00 861.60 686.80 521.50 1111.50 821.60

Cr-Cl Cl-Cu Cu-Po Po-Vl Vl-Mo Mo-Vg

l = 0 17335.50 27020.00 32988.60 35675.20 52252.90 72144.60
l = 1 964.80 2080.50 2736.80 2240.60 368.70 4098.60
l = 2 241.20 602.25 746.40 593.10 2027.85 1821.60

Table 3: Fixed costs obtained for each level of each section.

e costs of each section and the number of users have been obtained, different values are

games associated with the generalized highway problems without and with a priori union

cost associated with a coalition is determined by taking into account the sections of th

least one agent in the coalition. However, the number of agents that have used each of the

n into account, in contrast to the maintenance games defined in Fragnelli et al. (2000).

that the Shapley value of the cost game associated with a highway problem can be exp

i ∈ N , by Φi(N, c) =
∑

t∈T (i)
C(t)
|Nt| =

∑
t∈T (i) kt · C(t), where kt is a constant that only d

o it is sufficient to obtain the values kt · C(t) for each t ∈ K, which play the role of a

ing section t. Once the tolls kt · C(t) for each section have been computed, each Φi(N,

ained by adding the tolls for the sections used by i (t ∈ T (i)). Additionally, the Tijs va

d in a similar way:

∑

t∈T e(i)

C(t) + cs(N) ·
∑

t∈T s(i)C(t)
∑

j∈N cs(j)
=

∑

t∈T (i)∩Ke

C(t) + cs(N) ·
∑

t∈T (i)∩Ks C(t)
∑

j∈N cs(j)
=
∑

t∈T (i)

k

k′t =





1 if t ∈ Ke

cs(N)∑
j∈N cs(j)

if t ∈ Ks.

vious argument implies that obtaining the corresponding tolls for each section in the proble

ions is sufficient. The results of calculating the Shapley value and the Tijs value in tha

able 4. The coalitional values considered in this setup, for each agent, can also be decom

t in these cases, it should be noted that the constants depend not only on the sections b

i unions that use each section or to which each agent belongs.

es obtained with the Shapley value are identical to the original ones due to how the cos
e been considered, and this already occurred in Kuipers et al. (2013). It can be seen how the Tijs
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Lg H1 H2 Lg H1 H2

AC-Ma 1.90 3.30 4.05 1.68 1.79 1.82
Ma-Or 3.05 5.40 6.60 1.97 2.09 2.12
Or-Si 1.80 2.95 3.80 1.27 1.34 1.36
Si-Sa 1.75 3.10 3.80 1.11 1.18 1.20
Sa-Pa 2.40 4.00 4.95 2.10 2.24 2.28
Pa-Cr 1.05 1.85 2.65 0.76 0.82 0.85
Cr-Cl 0.75 1.15 1.35 0.62 0.66 0.66
Cl-Cu 1.25 2.20 2.75 0.97 1.04 1.07
Cu-Po 1.35 2.45 3.05 1.18 1.28 1.31
Po-Vl 1.10 1.95 2.40 1.28 1.36 1.38
Vl-Mo 1.70 1.85 3.50 1.87 1.89 1.96
Mo-Vg 1.10 2.00 2.80 2.59 2.73 2.80

Table 4: Shapley value and Tijs value for the generalized highway problem without a priori unions.

vantages users of highly used sections such as Morrazo-Vigo (Mo-Vg), while heavy 2 vehic

ed, since level 2 sections are the least used. As presented in Table 1, all of the values that w

property of Pareto optimality (PO), that is, the sum of the allocations to each player is eq

to be distributed. Naturally, in order to determine highway tolls, the actual values provid

ing allocation must be rounded to two decimal places. This rounding is the reason why the

f the Tijs value in Table 4 does not satisfy (PO). A possible way to deal with this issue is

obtained, thus ensuring the recovery of the highway’s total costs. The exact results are av

m the authors.

ults of the alliance between the heavy 2 vehicles can be found in Table 5. In this case,

ori unions because each light or heavy 1 vehicle gives rise to an individual union. Neverth

ry to provide the rates for each of them due to the symmetry in the ratio. In addition, t

considered contains all the heavy 2 vehicles and, therefore, the rates can be divided into

It can be observed how the alliance of the heavy 2 vehicles achieves a significant disco

htly increasing the prices of the other two categories.

Ψ T Λ

Lg H1 H2 Lg H1 H2 Lg H1 H2

AC-Ma 1.98 4.78 0.75 1.73 1.84 0.85 1.98 4.78 0.83
Ma-Or 3.18 7.87 1.21 2.02 2.14 0.99 3.18 7.87 0.97
Or-Si 1.88 4.18 0.85 1.30 1.37 0.64 1.88 4.18 0.62
Si-Sa 1.83 4.53 0.70 1.13 1.20 0.56 1.83 4.53 0.55
Sa-Pa 2.52 5.72 0.95 2.15 2.29 1.07 2.52 5.72 1.04
Pa-Cr 1.11 2.71 0.80 0.78 0.84 0.40 1.11 2.71 0.39
Cr-Cl 0.79 1.59 0.20 0.64 0.68 0.31 0.79 1.59 0.30
Cl-Cu 1.32 3.22 0.55 0.99 1.07 0.50 1.32 3.22 0.49
Cu-Po 1.42 3.62 0.60 1.21 1.31 0.61 1.42 3.62 0.60
Po-Vl 1.15 2.85 0.45 1.31 1.39 0.65 1.15 2.85 0.63
Vl-Mo 1.77 2.07 1.65 1.92 1.93 0.92 1.77 2.07 0.90
Mo-Vg 1.14 2.94 0.80 2.65 2.80 1.31 1.14 2.94 1.28

n value, coalitional Tijs value, and Shapley-Tijs value for the generalized highway problem with a priori un
ehicles.
h in this case the alliance of heavy 2 vehicles makes level 2 of exclusive use in the quotient game, the
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As previously proven, this need not be the case, and we can illustrate it by repeating the p

that the level 2 sections have a cost of four times higher. These results are found in Ta

can be seen how the coalitional Tijs value worsens the rates of heavy 2 vehicles. The Sh

tains the property that alliances benefit while preserving the philosophy of proportional s

ions) within the alliance.

Φ τ

Lg H1 H2 Lg H1 H2

AC-Ma 1.90 3.30 6.30 1.78 1.89 2.01
Ma-Or 3.05 5.40 10.20 2.09 2.22 2.35
Or-Si 1.80 2.95 6.35 1.35 1.42 1.52
Si-Sa 1.75 3.10 5.90 1.17 1.25 1.33
Sa-Pa 2.40 4.00 7.80 2.22 2.36 2.53
Pa-Cr 1.05 1.85 5.05 0.81 0.87 0.99
Cr-Cl 0.75 1.15 1.95 0.66 0.70 0.74
Cl-Cu 1.25 2.20 4.40 1.03 1.11 1.20
Cu-Po 1.35 2.45 4.85 1.25 1.35 1.46
Po-Vl 1.10 1.95 3.75 1.35 1.44 1.53
Vl-Mo 1.70 1.85 8.45 1.98 1.99 2.30
Mo-Vg 1.10 2.00 5.20 2.74 2.90 3.18

pley value and Tijs value for the generalized highway problem without a priori unions in which level 2 sect
xpensive than those in Table 3.

Ψ T Λ

Lg H1 H2 Lg H1 H2 Lg H1 H2

AC-Ma 1.98 4.78 3.00 1.73 1.83 3.34 1.98 4.78 3.32
Ma-Or 3.18 7.87 4.81 2.02 2.15 3.90 3.18 7.87 3.87
Or-Si 1.88 4.17 3.41 1.30 1.37 2.52 1.88 4.17 2.51
Si-Sa 1.83 4.52 2.81 1.13 1.21 2.20 1.83 4.52 2.19
Sa-Pa 2.52 5.72 3.80 2.15 2.29 4.21 2.52 5.72 4.18
Pa-Cr 1.11 2.70 3.20 0.78 0.84 1.65 1.11 2.70 1.64
Cr-Cl 0.79 1.59 0.80 0.64 0.67 1.21 0.79 1.59 1.21
Cl-Cu 1.32 3.21 2.20 0.99 1.07 1.99 1.32 3.21 1.97
Cu-Po 1.42 3.62 2.40 1.21 1.31 2.44 1.42 3.62 2.43
Po-Vl 1.15 2.85 1.80 1.31 1.39 2.54 1.15 2.85 2.52
Vl-Mo 1.77 2.07 6.60 1.92 1.93 3.83 1.77 2.07 3.80
Mo-Vg 1.14 2.94 3.20 2.65 2.80 5.26 1.14 2.94 5.23

n value, coalitional Tijs value, and Shapley-Tijs value for the generalized highway problem with a priori un
ehicles and being level 2 sections four times more expensive than those in Table 3.

ly, some users make round trips within a day and receive a discount on the AP-9 toll (

w category of vehicles satisfying this condition could also be considered in our setup. If tw

were to ally in an a priori union, that coalition would be symmetrical to another union

trip with the same characteristics. This can be interpreted as that a round trip pays on

ourney (a round trip has the same cost as a one-way trip). Consequently, to include th

ould be sufficient to remove same-day return trips from the user matrix and add to the

ame-day return trips have a cost of 0. This is because only fixed costs are being distribu
ease even if the highway is more used.
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per addresses the allocation of fixed costs in highway problems with externalities. In par

generalization of the methodology presented in Kuipers et al. (2013), considering a mod

s various vehicle categories. To tackle this situation, we adopt an approach similar to Frag

omposing each highway section into different quality levels, giving rise to the so-called subs

that larger vehicles utilize more subsections than smaller vehicles. Given that the set of us

not be connected, we employ the generalized highway problem introduced in Sudhölter &

addition, our model incorporates a priori unions (Owen, 1977) to reflect potential rel

oups of agents, such as the bargaining power within an association of truck drivers.

stigate the cost allocation in our setup, we extend several theoretical results on coalitiona

lized highway problem. Specifically, we consider the Owen value (Owen, 1977) and the

(Casas-Méndez et al., 2003), and introduce the Shapley-Tijs value. This latter allocation

n of the two former ones to achieve a more equitable distribution within the unions, on the

ure that the alliance of unions is always beneficial to them, on the other. Furthermore,

mulations, study properties for these coalitional values, and provide an axiomatic charac

them. The methodology introduced is then applied and illustrated using a real datab

-9 highway.

nalyzing the expression of the coalitional Tijs value applied to each union, denoted as Ta and
ion 3.3, we observe that it can be considered as a union value in the sense of van den Brin

their work, they investigate two union values that generalize the Shapley value and assign

game with a coalitional structure. These values differ in their axiomatization only in th

property used. While player collusion neutrality states that the payoff of a union does n

bers of that union collude, union collusion neutrality states that the collusion of two un

the sum of their payoffs. Both values are studied in the context of an airport problem wi

is worth analyzing the implications of collusion properties in the realm of highway problem

roposed in the current article.

work, we have adopted the use of solutions defined by a two-stage approach, resulting in a

of each a priori union. An alternative strategy involves assigning a distinct treatment

alition. In existing literature, various works have employed exogenously defined weigh

ne can also endogenously provide a natural weight for each coalition based on its card

úa & Vidal-Puga (2010). The incorporation of weighted values is also observed in appl

, as exemplified in Gómez-Rúa (2013). In light of this, it is valuable to delve into this lit

vel approaches for tariff design within the context of highway games with grouped player

ing other future lines of research, it would be interesting to incorporate maintenance cost
30
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model, in addition to fixed costs. Fragnelli et al. (2000) introduced maintenance cost games and presented

an expressi the Owen

value, and generally

non-concav
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rage, M., van den Nouweland, A., & Garćıa-Jurado, I. (1997). Owen’s coalitional value an

ees. Mathematical Social Sciences, 34 , 273–286. doi:10.1016/S0165-4896(97)00018-8.
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