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Abstract

One of the practical applications of cooperative transferable utility games involves determining the fee struc-
ture for users of a given facility, whose construction or maintenance costs need to be recouped. In this context,
certain efficiency and equity criteria guide the considered solutions. This paper analyzes how to allocate the
fixed costs of a highway among its users through tolls, considering that different classes of vehicles or travelers
utilize the service. For this purpose, we make use of generalized highway games with a priori unions that repre-
sent distinct user groups, such as frequent travelers or truckers, who, due to enhanced bargaining power, often
secure reductions in their fares in real-world scenarios. In particular, the Owen value, the coalitional Tijs value,
and a new value termed the Shapley-Tijs value are axiomatically characterized. Additionally, straightforward
formulations for calculating these values are provided. Finally, the proposed methodology is applied to actual
traffic data from the AP-9 highway in Spain.

Keywords: Game theory; Generalized highway problems; A priori unions; Cost allocation; Coalitional values

1. Introduction

The current paper attempts to study a cost-sharing problem within the realm of transportation. The primary
objective is to examine the distribution of highway construction costs among its users considering the existence
of externalities. In particular, we use the so-called a priori unions to assess the bargaining power of different
groups, including various classes of vehicles (light, heavy 1, and heavy 2) or frequent travelers.

Cooperative games have diverse applications across several domains, with cost-sharing problems standing
out prominently. Within the cost allocation problems, the work conducted by Fiestras-Janeiro et al. (2011)
offers a comprehensive review of the literature concerning the applications of cooperative transferable utility
games in this context. Within this expansive landscape, three sectors are specifically examined, constituting
significant domains for such problems: the energy industry, natural resource management, and transportation.
In the subsequent discussion, we highlight pertinent papers focused on the transport sector.

Ozener & Ergun (2008) investigate a logistics network in which several shippers collaborate and pool their
shipping requests to negotiate improved rates with a common carrier. Their research identifies optimal col-
laborative routes, minimizing overall empty truck movements, and introduces several cost-sharing mechanisms,
encompassing properties familiar in cooperative game theory and novel contributions. One of the most popular
works in the transportation field is Littlechild & Owen (1973), where airport games are defined, in which the
costs associated with building a runway are allocated among the aircraft that use it. Vazquez-Brage et al. (1997)
and Casas-Méndez et al. (2003) provide expressions for the Owen value (Owen, 1977) and the coalitional Tijs
value (Casas-Méndez et al., 2003), respectively, within the framework of airport games. These contributions
propose distinct solutions to distributing runway costs, considering the bargaining power of each airline. Both

values incorporate the model of a priori unions in cooperative games, as initially introduced by Owen (1977).



The use of cooperative game theory in the pursuit of an optimal toll for highways has already been investi-
gated in a number of papers, following different approaches. From the existing literature, the next studies are
noteworthy. Villarreal-Cavazos & Garcia-Diaz (1985) develop two highway cost allocation methodologies that
extend the basic concepts of incremental and proportional allocation procedures and illustrate them by means
of a real-life example. Makrigeorgis (1991) investigates an equitable and stable rule for sharing the total cost of
providing a highway service among users, employing game theory concepts such as the core and the marginal to
rational max-min ratio nucleolus. Both of these works consider classes of vehicles as players. In Castafio-Pardo
& Garcia-Diaz (1995), each vehicle passage is treated as an individual player, and the value of the correspond-
ing non-atomic game is used to find the solution to the pavement cost allocation problem. The characteristic
function of the game is formulated as a non-linear optimization problem. Dong et al. (2012) designate players
as different input-output pairs of the highway, with each pair representing the vehicles entering through a given
entrance and exiting through a given exit. The proposed pricing method charges each vehicle the total of its
average costs across the highway sections it traverses. This approach adheres to important axioms and avoids
prompting users to adopt strategic responses. In Mosquera (2007), Ciftgi et al. (2010), Kuipers et al. (2013),
and Sudhoélter & Zarzuelo (2017), players are considered to be the different trips taken. Cift¢i et al. (2010)
examine the concavity and balancedness of certain highway games on weakly cyclic graphs. Mosquera (2007)
and Kuipers et al. (2013) introduce the so-called highway games, a generalization of the airport games, and
compute for them the Shapley value (Shapley, 1953), the Tijs value (Tijs, 1981), and the nucleolus (Schmeidler,
1969). In Kuipers et al. (2013), the Shapley value and the nucleolus are applied to the apportionment of the
fixed costs of the AP-68 highway (Spain) among its users. Nevertheless, its scope is restricted to the distribution
of costs exclusively among light vehicles. By relaxing some assumptions of the model, Sudhélter & Zarzuelo
(2017) formulate a new problem referred to as the generalized highway problem. They provide axiomatizations
of the core, the prenucleolus, and the Shapley value on the class of games associated with these generalized
highway problems. While the aforementioned studies focus on distributing highway costs among users, Wu
et al. (2024) analyze how to allocate the total toll collected among the different highway sections. The authors
propose and axiomatically characterize three allocation procedures, establishing a connection to the Shapley
value of specific cooperative games with transferable utility, which, in this case, are benefit games rather than
cost games.

The present work also considers generalized highway problems. Our first contribution is the introduction
of a methodology designed to distribute highway costs among various types of users extending beyond the
exclusive allocation to light vehicles. The approach adopted in our setup, to include the different classes of
vehicles, is inspired by the methodology used in Fragnelli et al. (2000) to analyze a cost allocation problem,
called the infrastructure cost problem. Such a problem emerged during the railway reorganization conducted
in Europe in the 1990s. In Fragnelli et al. (2000), the allocation of construction and maintenance costs for

the railway network in Italy is investigated, involving two classes of trains with different requirements—fast and



slow trains. Fast trains require high-quality tracks, while basic tracks suffice for slow trains. The construction
costs are modeled as an airport game, where both train classes utilize the basic level of track (equivalent to
the first section of the runway), but fast trains additionally need the next level of quality (corresponding to
the full runway). In our study, we apply a similar conceptualization to light, heavy 1, and heavy 2 vehicles,
since each vehicle type entails distinct road operational requirements. To illustrate, the expenses associated
with constructing a bridge intended for use by small cars versus large trucks exhibit disparities. Generally, the
design of a highway initially planned for a specific volume of light vehicles necessitates subsequent adaptations
to accommodate varying volumes of heavier vehicles (Villarreal-Cavazos & Garcfa-Diaz, 1985). Thus, in our
setup, light, heavy 1, and heavy 2 vehicles will now traverse a highway consisting of three road levels, aligning
with the two-level framework introduced in the railway infrastructure allocation model.

The inclusion of different levels in our problem prompts the consideration of an airport game for each of
them, making it belong to the class of generalized highway games. This classification is attributed to our model’s
assumption that users can utilize disconnected sections of the highway. Similar to the approach in Kuipers et al.
(2013), our proposed model excludes consideration of maintenance costs. However, our methodology establishes
a hierarchical pricing structure, wherein the fee for heavy 2 vehicles exceeds that of heavy 1 vehicles, and likewise,
the fee for heavy 1 vehicles surpasses that of light vehicles. This aligns with real-world scenarios, accounting
for the varying weights of vehicle types and their consequential impact on infrastructure. The coherence of this
approach becomes apparent through the outcomes derived in the application discussed in Section 4. It will be
observed that the fares calculated using our methodology and applying the Shapley value coincide with the
actual fares for each of the three vehicle types considered in each of the analyzed sections.

The second contribution of this paper is motivated by recent negotiations in the context of the AP-9 highway
(Spain), leading to special fares for certain groups, such as truck drivers or users undertaking round trips or
more than 20 trips per month. Consequently, in conjunction with the generalized highway game, we propose
employing a priori unions to model the bargaining power of these user groups. We follow the approach of Owen
(1977), who introduced a model accounting for potential affinities between players in a general cooperative
game and how these affinities can influence the distribution of costs.

The model of games with a priori unions has proven useful in modeling the bargaining power of groups of
similar agents in a wide range of cost-sharing problems. Examples include the design of airport landing fees
for different types of aircraft grouped into airlines (Vazquez-Brage et al., 1997), the sharing of connection costs
when agents are grouped into streets or cities (Bergantinos & Goémez-Rua, 2010), or the agreement among
owners of apartments in a building to install an elevator and share corresponding costs by grouping together
homeowners on the same floor (Alonso-Meijide et al., 2020).

Furthermore, from the dawn of the study of cooperative cost allocation games, as shown in Driessen (1988),
two solution concepts with favorable properties, straightforward expressions for concrete problems, and widely

accepted interpretations have been explored: the Shapley and Tijs values. While the nucleolus is another



solution with desirable properties in cost allocation problems, its computational complexity has led to its
exclusion from this work. Notable applications of the Shapley and Tijs values include the Tennessee Valley
Authority allocation problem (Driessen, 1988), or the airport (Driessen, 1988) and highway (Mosquera, 2007)
problems. Additionally, in the case of the Tijs value in the highway game, it is worth mentioning that it
yields cost allocations closely aligned with the fundamental concept of proportional allocation, as previously
discussed in the work of Villarreal-Cavazos & Garcia-Diaz (1985). The first extensions of these two solutions
to the context of games with a priori unions are the Owen value (Owen, 1977) and the coalitional Tijs value
(Casas-Méndez et al., 2003). It is well known that these two values allow for a two-stage interpretation of cost
allocation. Initially, an allocation is made between the different a priori unions, and subsequently within the
players constituting each union. While the Owen value employs the Shapley value in both stages, the coalitional
Tijs value uses the Tijs value. In our setup, we present formulations for the Owen value and the coalitional Tijs
value for the case of generalized highway games with a priori unions, along with axiomatic characterizations of
both values.

It should be taken into account that the choice of principles guiding the fair distribution of benefits or costs
is a permanent topic of debate in economic analysis. In Choudhury et al. (2021), a proposed solution takes the
form of an average between the Shapley value and an egalitarian solution. This approach accounts for the sizes
of the different coalitions, asserting that in smaller groups, principles of equity or solidarity tend to govern,
whereas in larger groups, marginalist criteria, inherent in the Shapley value, tend to prevail. Similarly, Kamijo
(2009) indicates that a coalition often exhibits a predisposition towards a generous reallocation of surplus among
its members. This inclination is illustrated through different examples from the realms of human evolution,
psychology, or scientific labor management. Calvo & Gutiérrez (2013) argue that in the presence of groups,
negotiations between a priori unions and among players within the same a priori union need not adhere to the
same rules. It is posited that in the latter case, players are inclined towards more solidarity-oriented solutions.
The authors introduce a coalitional value operating at two levels, denoted as the Shapley-solidarity value.
Payments to different unions are determined using the Shapley value, while players within each union receive
compensation based on the solidarity value (Nowak & Radzik, 1994). One of the properties of the solidarity
value is that it is more benevolent towards null players, allocating them a portion of the generated profit. While
this feature may be advantageous in benefit-sharing problems (Calvo & Gutiérrez, 2013), a notable challenge
emerges in the specific context of the cost-sharing problem of a highway: if a player does not use any section of
the highway, they would still be charged a small fee. A similar difficulty is encountered with the value proposed
by Kamijo (2009), wherein, in a game with a priori unions, a null player may receive a non-null assignment if the
union to which they belong is not a null player in the game played by the unions. In contrast, such a situation
does not arise when employing the Tijs value, according to which players that do not use any section will be
assigned a payment of 0. Furthermore, unlike what happens with the Shapley value, the allocation proposed

by the Tijs value facilitates the financing of less-used sections by those with higher utilization, demanding a



heightened level of solidarity among the agents. These considerations, coupled with the observation that the
alliance between unions may be detrimental to them according to the coalitional Tijs value, but not with the
Owen value, motivate the definition of a new coalitional value at two levels. We therefore introduce the Shapley-
Tijs value, which utilizes the Shapley value to distribute costs among different unions and the Tijs value for
allocation within each union. For this newly proposed value, a straightforward expression is assumed and is
also axiomatically characterized.

Finally, the three values explored throughout this paper, along with the methodology for distinguishing
between different types of vehicles and user groups, are illustrated using real data from the AP-9 highway in
Spain. Notably, the fares obtained for grouped users generally result in a reduction compared to fares calculated
without utilizing the a priori unions—a strategy commonly employed in real-life negotiations aimed at obtaining
bonuses for certain groups of users.

The remainder of this paper is organized as follows. Section 2 introduces the cooperative game theory
concepts necessary to address the problem at hand. Section 3 focuses on tailoring the formulations related
to the Owen value and coalitional Tijs value of the airport game to the context of the generalized highway
game. We provide characterizations of these values and examine for each case how the assigned cost is affected
by the formation of groups. Additionally, a new coalitional value, the Shapley-Tijs value, is introduced and
axiomatically characterized. In Section 4, we utilize traffic data from the Spanish AP-9 highway to allocate fixed
costs using our model and compare the different solution approaches analyzed in Section 3. Finally, Section 5

summarizes the main conclusions of our study.

2. Preliminaries

In this section, we present some basic notions and results concerning cost games and highway problems as
well as their extensions to the existence of externalities modeled by means of a priori unions, which will be

useful in the rest of the paper.

2.1. Cost games and generalized highway problems

A cost transferable utility (TU) game is defined by a pair (N, c), where N is the finite set of players and
c: 2V — R is the cost function, which satisfies ¢(()) = 0. We usually interpret c(S) as the maximum cost that
coalition S C N must assume by itself. In order to simplify notation, we will use c(i) instead of ¢({i}) for all
i € N. Also, G(N) represents the set of all cost TU games with set of players N. We say that a value is a
map f: G(N) — RNl that assigns to each game (N, ¢) € G(N) a vector f(N,¢) = (fi(N,¢))ien, which has the
information of the cost allocated to each player ¢ € N. Prominent values are the so-called Shapley and Tijs

values, introduced by Shapley (1953) and Tijs (1981), respectively. Let (N, ¢) € G(N) be a cost TU game. The



Shapley value (Shapley, 1953) is defined by the vector (®;(IV, ¢));cn such that for all i € N,

1T (N = [S] = 1)! :
O;i(N,o)= Y NI (e(SU{i}) = ¢(9))-
SCN\{i} '
A game (N, c¢) € G(N) is said to be concave if for alli € N and all S, T C N\{i}, with S C T, ¢(TU{i})—¢(T) <
c(SU{i}) — ¢(S). The game is convexr when the opposite inequality is satisfied. If (IV,c) is concave, the Tijs
value (Tijs, 1981) is defined by the vector (7;(N, ¢));en such that for all i € N,

7i(N,¢) =m;(N,c) + a - (M;(N,c) — m;(N,c¢)),

where o € [0,1] is such that ),y 7(N,c) = c¢(N), and M;(N,c) = ¢(N) — ¢(N\{i}) and m;(N,c) =
mingsc vjiesy{e(S) =22 jes\ iy Mj (N, ¢)} are the utopia payoff and the lower payoff of (N, ¢) for player i, respec-
tively. Note that the Tijs value is defined for the larger class of quasi-balanced games. Let (N, c) € G(N), it is
said that ¢ € N is a null player in (N, c) if for each S C N, ¢(S U {i}) = ¢(S). Two players i, j € N are called
symmetric in (N, c) if, for each S C N\ {1, 5}, it holds that c¢(SU{i}) = c¢(SU{j}). Let (N, c1), (N, c2) € G(N),
the sum game (N, c; + c2) € G(N) is defined by (¢1 + ¢2)(S) = ¢1(S) + c2(S) for all S C N. The game (N, c)
is said to be monotone if ¢(S) < ¢(T') for each S CT C N.

Now we recall the concept of generalized highway problem, which was introduced in Sudhélter & Zarzuelo
(2017). To do so, we will use the notation presented in Kuipers et al. (2013) but employing K instead of M to

denote sections, in order to avoid confusion with the set of a priori unions, which appears later in this paper.

Definition 2.1 (Sudhélter & Zarzuelo, 2017). A generalized highway problem is a 4-tuple I' = (N, K,C,T),
where N is a finite set of agents, K is a finite nonempty ordered set of sections, C: K — Ry with C(t)
representing the cost of section t € K, and T': N — 25\ {0} with T'(i) C K representing the set of sections used

by agent i € N. Additionally, each section is required to be used by at least one agent, that is, U;enT(i) = K.

We denote the set of generalized highway problems by H*. Given a generalized highway problem, I' =
(N,K,C,T) € H*, and following Kuipers et al. (2013), its associated cost TU game is defined by ¢(S) = C(T'(S))
for all S € N, with T'(S) = UjesT'(i) and C(K') = Y, 5 C(t) for all K’ C K. A cost TU game is said to be a
generalized highway game if it is the associated game of a generalized highway problem.

In Mosquera (2007), the expressions of the Shapley and Tijs values are obtained for the non-generalized
highway problem, which considers that players use only connected sections. However, since this condition is

not used in the proofs, the following results are still valid for the generalized case.

Proposition 2.1 (Mosquera, 2007). Let I' = (N, K,C,T) € H* be a generalized highway problem, (N,c) its



associated game, and ® the Shapley value. Then,

C(t
(I)i(ch): Z ’]\(”)7
teT() Y

for alli e N, with Ny ={j € N|teT(j)} the set of agents that use section t, for each t € K.

For the expression of the Tijs value, we will adopt a notation different from that of Mosquera (2007), which

will be particularly useful when proving the results proposed in this paper.

Definition 2.2. Let I' = (N, K,C,T) € H* be a generalized highway problem, we define the set of exclusive
use sections by K¢ = {t € K | |[N¢| = 1} and the set of shared use sections by K* = {t € K | |[N¢| > 1}. Notice
that {K¢, K*} is a partition of K, i.e., K = KU K® and K¢ N K* = (. Also, if K¢ # (), let T¢: N — 2K be
defined by T¢(i) = T'(i) N K¢ for all i € N, with T(i) representing the set of exclusive use sections of player
i € N. We will also define the set of shared use sections of player i € N by T%(i) = T(i) \ T°(4).

Definition 2.3. Let I' = (N, K,C,T) € H* be a generalized highway problem, we say that the generalized
highway problem T'|g» = (N|g+, K',C|xr, TX') is the restriction of T' to the set of sections K' C K, K' # 0,
where:

1. Nl ={i e N|T(G)NK' #0}.

2. C|g: K" — Ry is the restriction of C' to K.

3. TK": N|gr — 25"\ {0} is the function defined by T5'(i) = T'(i) N K'.

Remark 2.1. The restriction of I'|x/ to K” C K’ coincides with T'|x». That is, P\K/|K,, =T|gr.

In analogy with I, we can consider the associated cost TU games for the generalized highway problems I'| g
(if K¢ # 0) and T|gs (if K% # (), (N|ge,c) and (N|gs,c®), respectively. In particular, let ¢¢(S) = C(T%(S))
for all coalition S C N|ge and ¢*(S) = C(T%(S)) for all coalition S C N|gs, where T¢(S) = UjesT(i) and
T5(S) = UjesT*(7) for all coalition S C N.

Proposition 2.2 (Mosquera, 2007). Let I' = (N, K,C,T) € H* be a generalized highway problem, (N,c) its

associated game, and T the Tijs value. Then,

forallie N.

2.2. Cost games and generalized highway problems with a priori unions (or a coalitional structure)
A cost game with a coalitional structure is a triple (N, ¢, P), where (N,c) is a cost TU game and P =

{P1,..., P4} is a partition of the player set N, where each set P,, a € {1,..., A}, contains the players of a



specific a priori union. We denote by U(N) the set of all cost games with a coalitional structure and set of players
N. We usually identify each set P, with its index a and denote the set of a priori unions by M = {1,..., A}.

To allocate the total cost among the a priori unions, an approach similar to that of Owen (1977) is adopted.
We use the so-called quotient game (M,cp) € G(M), defined by the set of a priori unions, M, and the cost
function cp(H) = ¢(Ugen P,) for all coalition H C M. We define a value for games with a coalitional structure
as amap f: U(N) — RIN.

Owen (1977) introduced the Owen value for games with a priori unions, which consists in applying the
Shapley value twice: first on the quotient game and then among the players of each union. Let (N,c¢, P) €
U(N) be a cost game with a coalitional structure. The Owen value (Owen, 1977) is defined by the vector
(U;(N,c, P)ien) such that for all i € P, € P,

wN,eP) = Y Y Pal.A- = .1(Pa|_1) ((RUSUY) — c(RUS)) .
HCM\{a} SCP,\{i} |H| ]

where R = Upey Py. Furthermore, Owen characterized this value through its properties, as presented below.
Definition 2.4. Let f: U(N) — RVl be a value in U(N). We define the following properties.
e Efficiency: For all (N,c,P) € U(N), > ,cn fi(N, ¢, P) = ¢(N).

e Null player property: For all (N,¢,P) € U(N), if player i € N is a null player in (N,c), then
fi(N,C,P) =0.

e Symmetry within unions: For all (N,c, P) € U(N), if players i,j € N are symmetric in (NN, c¢) and
i,j € P, with P, € P, then f;(N,c, P) = f;j(N,c, P).

e Symmetry between unions: For all (N,¢, P) € U(N), if two unions a,b € M are symmetric in the
quotient game (M, cp), then > ;e p fi(N.c, P) = > ,cp fi(N,c, P).
e Additivity: For all (N, ¢y, P), (N,c2, P) € U(N), f(N,c1 + co, P) = f(N,c1, P) + f(N,co, P).

Theorem 2.1 (Owen, 1977). The Owen value, ¥, is the unique value in U(N) that satisfies efficiency, null

player property, symmetry within unions, symmetry between unions, and additivity.

Casas-Méndez et al. (2003) introduced the coalitional Tijs value for games with a priori unions, which
consists in applying the Tijs value twice: first on the quotient game and then among the players of each union.
Let (N,c,P) € U(N) be a cost game with a coalitional structure, where (V,¢) is a concave cost game. The

coalitional Tijs value is defined by the vector (7;(N, ¢, P));en such that for all i € P, € P,

Ti(N,c, P) = mi(N,c, P) + ag - (M;(N, ¢, P) — mi(N,c, P)), (1)



where a, € [0,1] is such that },.p Ti(N,c,P) = 7,(M,cp), and M;(N,c,P) = ¢(N) — ¢(N\{i}) and
m;(N,c, P) = minggep(a)jicsyic(S) — Zjes\{i} M;(N,c,P)} are the utopia payoff and the lower payoff of
(N, ¢, P) for player i, respectively, with P(a) ={S C N | S = Uje, B UT for some L C M \ {a} and T' C P, }.
In the analysis of highway problems, externalities can arise when, for example, we discriminate between
different types of vehicles or certain characteristics of the trips they make (a vehicle can make a specific round

trip every day). This fact motivates the following definition.

Definition 2.5. Let I' = (N, K,C,T) € H* be a generalized highway problem and (N, ¢) its associated game.
Let also P = {Py,...,Pa} be a partition of N. The pair (I', P) is called a generalized highway problem
with a coalitional structure and (N, c, P) its associated game with a coalitional structure. We denote the set
of generalized highway problems with a coalitional structure by HE*. Furthermore, given (I', P) € HE*, the
restriction of P to the set of sections K' C K, K' # (), is defined by P|g = {P,N\N|g+ | P, € P, T(P,)NK' # 0}.

3. Main results

In this section, we present the main results of our paper. We provide straightforward formulas for the Owen

1 We also investigate

value and the coalitional Tijs value in generalized highway games with a priori unions.
certain properties of these two values concerning their behavior when a group of unions merges into one larger
union, similar to the findings of Vazquez-Brage et al. (1997) in the case of the Owen value for airport games.
Additionally, we propose axiomatic characterizations of these values in terms of the generalized highway problem,
similar to how Sudhélter & Zarzuelo (2017) characterized the core, the Shapley value, and the prenucleolus for
the highway problem. We also introduce the Shapley-Tijs value for generalized highway games with a priori

unions, which consists in computing the Shapley value among unions and using the Tijs value to allocate the

corresponding costs within the unions.

3.1. Owen value

Let ' = (N,K,C,T) € H* be a generalized highway problem and P = {Py,...,Ps} a partition of N.
Following the notation of Vazquez-Brage et al. (1997), we denote the set of a priori unions that use section
te Kby o, ={a€ M |teT(FP,)} and the set of agents of an a priori union a € M that use section ¢ by
N ={i€ P, |t €T(i)}. The expression of the Owen value in the case of generalized highway games is given

below.

Proposition 3.1. Let (I', P) € HE*, withT = (N, K,C,T), be a generalized highway problem with a coalitional

structure and (N, ¢, P) its associated game with a coalitional structure. The Owen value of the game (N, ¢, P)

Note that highway games are concave and monotone (Kuipers et al., 2013) and that result can be immediately extended to the
generalized case since it does not involve the condition of connected sections.
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is given by
C(t)

¥;(N,c,P) = Z ] [Na]’

teT (i)

forallie P, € P.

Proof. For all t € K, we define the cost game with a priori unions (N, ¢!, P) by

#5) O@t) ifteT(S)

0 otherwise,

for all S C N. Note that, in (N, ¢, P), all players that do not use section ¢ are null players. By the property of
additivity of the Owen value, it suffices to obtain W(N, ¢!, P) and then apply that ¢ = Y oiek c!. Consider the
quotient game (M, c%), with M = {1,..., A} and ¢ (H) = ¢! (Usen Py) for all H C M. Observe also that

0 otherwise,

for all H C M. Note that, in (M, c%), all unions of players that use section ¢ are symmetric. Therefore, for

a € M, using the efficiency, the null player property, and the symmetry between unions of the Owen value,

CO it e T(P,
Z \Ijl(Na Ct7P) = 4] ( )

i€P, 0 otherwise.

To complete the proof, let us notice now that, in (N, ¢!, P), all agents that use section t are symmetric. By the

properties of symmetry within unions and null player of the Owen value, if 1 € P, € P,

. i
B o) AT HETO) [ iy it e
i yCy = =

0 otherwise 0 otherwise.

Finally, using the additivity of the Owen value, we get

_ C()
\I}Z(NﬂQP)_ Z ‘%||Ng|>
teT(4)

foralli e P, € P. O

Vazquez-Brage et al. (1997) study, for the airport problem with a priori unions, what happens when there
is an alliance between unions, and shows that, if costs are distributed following the Owen value, the alliance

between unions is always beneficial for them. We will analyze the situation in the case of generalized highway
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problems, for which we need to introduce some previous notation.

Let (T, P) € HE*, with T' = (N, K,C,T), be a generalized highway problem with a coalitional structure,
(N, ¢, P) its associated game with a coalitional structure, and M = {1,..., A} the set of a priori unions. The
total payment assigned to a € M by the Owen value will be denoted by V,(N,c,P) = > ;.p Wi(N,c, P).
We say that unions {1,...,a} € M with a < A are allied (or form an alliance) if they merge into a single
union, a*. This results in a new generalized highway game with a coalitional structure, (N, ¢, P*), with the
same sections and the same costs to be distributed, but with a different partition of a priori unions, defined by

P* ={Py+,Pyi1,...,Pa}, where Py = U2 _ P, and M* ={a*,a+1,..., A}.

Proposition 3.2. Let (I, P) € HE", with' = (N, K,C,T), be a generalized highway problem with a coalitional
structure, (N,c, P) its associated game with a coalitional structure, and M = {1,..., A} the set of a priori

unions. Let a* be the alliance that resulted from merging unions {1,...,a} C M (with2 <a < A). Then,
‘I’a*(N,C,P*)S Z \I/a(N,C,P>,
ae{l,...,a}

where the inequality is strict if and only if there exists at least one section used by at least two unions from the

alliance and by, at least, another union that is not part of the alliance.

Proof. For the original game with a priori unions, (N, ¢, P), we employ the usual notation <%, while for the

game resulted from merging unions {1,...,a}, (N, ¢, P*), we use o, = {b € M* |t € T(P;)}. We have that

C(t)

||

Vo (N,c, Py = >

tET(Pyx)

and

S Wa(Ne,P) = Z |C Z 3 C(t|): 5 0 C(t)
T(P, T(Pys e

||
ae{l,....a} ae{l,...,a} teT( ) ae{l,...,a}: teT(Py+)
teT (Py)

with a; = [{a € {1,...,a} |t € T(P,)}|. Therefore, it suffices to check that, for all ¢ € T'(P,~), it holds that

ct) _ a-C(t)
AR @)

Notice that |o7*| = 4| — a; + 1. Moreover, a; > 1 for all t € T'(P,+), i.e., if t is a section used by the alliance
a*, then there exists at least one union in such alliance that used t. Returning to (2), we have that
C(t) < ag - C(t) 1 < a
|| —ar+1 || || —ar +1 7 |
= a(l ] —a +1) =[] >0 = (|| —ar)(a; = 1) >0,
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and, due to || > a; and a; > 1, the inequality is proved.
Now, if t € T'(Py+), (2) is strict if |«%| > a; and a; > 1. The first condition establishes that section ¢ is used
by at least one union outside the alliance and the second condition guarantees that section t is used by two or

more unions from the alliance. This proves the result. O

The previous proposition includes a novelty compared to the result presented in Vazquez-Brage et al. (1997).
Those authors only required the condition a < A for the strict inequality to hold. This is because all players
(and thus all unions) use the first section in the airport game. By requesting the alliance to consist of more
than one a priori union, it is already certain that there will be a section ¢ € K, the first one, in which a; > 1.
In the case of the highway, this has an interesting interpretation, which is that two agents only benefit from

negotiating together if they share the use of some section.

3.2. Coalitional Tijs value

The coalitional Tijs value, T, was first introduced in Casas-Méndez et al. (2003). In that work, authors
obtained its expression for the airport game with a priori unions. This subsection will extend that result to the
case of the generalized highway game.

To compute the coalitional Tijs value of the generalized highway game with a coalitional structure, we
first compute the Tijs value of each alliance in the quotient game of (N, ¢, P). The amount allocated to each
alliance @ € M will be denoted by To(N,c, P) = > icp Ti(N, ¢, P) = 7,(M, cp), where the second equality is
straightforwardly obtained by the definition of 7.

We shall notice that, when considering the quotient game, we have to be careful with the sections that are
shared or exclusive because a section could be exclusive to one union but shared by many agents of that union.

Therefore, we introduce the following notation.

Definition 3.1. Let (I', P) € HE*, with ' = (N, K, C,T), be a generalized highway problem with a coalitional
structure and (N, ¢, P) its associated game with a coalitional structure. We say that a section t € K is an
exclusive use section in the quotient game if |o%| = 1. We denote the set of exclusive use sections in the
quotient game by K. Hence, we have a partition in K, K = K% U K3, and K& N K = 0, where K3, is the set
of shared use sections in the quotient game.

We define the function T%: M — 2KP by T¢(a) = T(P,) N K% for all union a € M, which represents the
set of exclusive use sections used by that union. Also, we define T5(H) = |J,cy T5(a), for each H C M. In
addition, for all @ € M and all H C M, c¢%(a) = C(T5(a)) and ¢ (H) = C(TH(H)). Analogously, we can define
Tp and T3 (H) and c¢p(H), for each H C M.

In order to obtain the formula of the coalitional Tijs value for the generalized highway game with a coalitional

structure, we will first show how the allocation between unions is performed.
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Proposition 3.3. Let (I', P) € HE*, withT = (N, K,C,T), be a generalized highway problem with a coalitional
structure and (N, c, P) its associated game with a coalitional structure. The Tijs value of the quotient game

(M, cp) is given by

cp(a) if K =10

e s g (a> : s
cp(a) +cp(M) - m if Kp # 0,

forallae M.

Proof. Tt is enough to apply Proposition 2.2 to the quotient game (M, cp), making use of Definition 3.1. O

To calculate the coalitional Tijs value, T (N, ¢, P), To(N, ¢, P) is distributed among the members of P,, for

each union a € M.

Proposition 3.4. Let (I', P) € HE®, with' = (N, K,C,T), be a generalized highway problem with a coalitional
structure and (N, c, P) its associated game with a coalitional structure. The coalitional Tijs value of the game

(N, ¢, P) is given by

(1) if K5 =10
ﬁ(N,C,P): ) Cs(')
(i) + (Ta(N, ¢, P) — c*(a)) -

with ¢(a) =3 cp, ¢(j), for all i € Py € P.

Proof. Let i € P, € P. First, if K* = (), then M;(N,c,P) = ¢°(i) and K} = (. By Proposition 3.3,
Ta(N.c,P) = cp(a). Also, note that in this case ¢p(a) = >-;cp, ¢°(j). Now, from Kuipers et al. (2013), we
know that the game (NN, ¢) is monotone, from which m;(N, ¢, P) = ¢*(i) — }_;cn\p, ¢°(j). Using the definition
of the coalitional Tijs value presented in (1), and having derived the utopia and lower payoffs of (N, ¢, P) for
player 7, it directly follows that T;(N, ¢, P) = ¢¢(1).

To analyze the case where K # (), we will use arguments similar to that found in Mosquera (2007) when
proving Proposition 2.1. Let us initially assume that |N;| > 1 for all ¢ € K. It is then easily obtained that
M;(N, ¢, P) = 0. Furthermore, due to (IV, ¢) being monotone, m;(N, ¢, P) = ¢*(i). Applying again the definition

of the coalitional Tijs value, the calculation leads to

7;(N,c,P)=7Z(N’C’P)'ECSP(iC)S(J)'

To complete the proof, it suffices to note that the coalitional Tijs value is covariant under strategic equivalence,

as stated in Casas-Méndez et al. (2003). As it is well known, this means that given two cost games with a priori

unions, (N, ¢, P) and (N, ', P), d > 0, and (a;)ien € RY such that ¢(S) = d-/(S)+,cq ai for each S C N (we
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say that (N, ¢, P) and (N, d, P) are strategically equivalent), then we have T;(N, ¢, P) = d- T;(N,d, P) + a; for
each i € N. If [Ny| = 1 for some ¢ € K, the games (N, ¢, P) and (N, c|g\ ¢}, P), resulting from (N, ¢, P) when
section t is excluded, are strategically equivalent, as highlighted by Mosquera (2007). Leveraging the property

of covariance under strategic equivalence of the coalitional Tijs value, we can then conclude the proof. 1

As it was done for the Owen value, it is worth asking if the alliance between unions is always beneficial for
them when the costs are allocated using the coalitional Tijs value.

Before stating the results, it is necessary to point out that the partitions used in Definitions 2.2 and 3.1
depend on the problem I' € H* and (T, P) € HE* considered, respectively. When alliances are formed between
the a priori unions, there may be sections in the quotient game that go from being shared use sections in the
original game, (N, ¢, P), to being exclusive use sections in the game with the alliance, (N, ¢, P*). This motivates

the following definition.

Definition 3.2. Let (I, P) € HE*, with ' = (N, K, C, T), be a generalized highway problem with a coalitional
structure, (N, ¢, P) its associated game with a coalitional structure, M = {1,..., A} the set of a priori unions,
and (N, ¢, P*) the game resulting from the alliance, a*, among the unions {1,...,a} C M. We say that (N, ¢, P)
is the original game and (N, ¢, P*) is the modified game. In the same way, (M, cp) and (M*, cp+) will be the

original and modified quotient games, respectively.

Consider a partition of K consisting of the exclusive use sections in both quotient games, K#.; the shared
use sections in the original quotient game and exclusive use in the modified quotient game, K7 ; and the shared
use sections in both quotient games, K3.. Note that indeed K = K%. U K. U K. and that K., K., and
K. are mutually disjoint. The set of exclusive use sections in both quotient games used by the union a € M,
TE(a) C K., is defined by Tg:(a) = U;cp, T(i) N Kg.. The sets T35 (a) and Tpi(a) are defined in a similar
way.

We will see below that if an alliance a* is formed such that K35 = 0, i.e., no shared use section in the
original quotient game becomes an exclusive use section in the modified quotient game, such an alliance will be

beneficial.

Proposition 3.5. Let (I, P) € HE®, with' = (N, K,C,T), be a generalized highway problem with a coalitional
structure, (N,c, P) its associated game with a coalitional structure, and M = {1,..., A} the set of a priori
unions. Let a* be the alliance resulting from merging the unions {1,...,a} C M (with 2 < a < A). Let also
(N, ¢, P¥) be the modified game with a coalitional structure. If K¥. =0, then

E*(N)C7P*>§ Z %(N,C,P),

ae{l,...,a}

where the inequality is strict if and only if the alliance shares the use of some highway section and there is a

section used by at least two unions of the alliance.
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Proof. Two cases will be distinguished. First, we will assume that K. = (), which implies that ¢%.(a*) = 0.

Because K35 =0, then ¢(a) =0 for all @ € {1,...,a}. Therefore,

T (N, e, P ) =cpu(a’) = Y pla)= D Ta(N,cP),

where the second equality holds because the sections used by the allied unions are of exclusive use in the original
quotient game. Thus, in this case, we have the result.
Second, we will assume that K% # 0. If ¢}.(a*) = 0, we can reason as in the previous case and the result

is true. Let us then assume that ¢%.(a*) > 0. Then,

CS *(a*)
Tox (N, ¢, P*) = ¢ (%) + cpu (M*) - L2
' ! " > ven= Cp« ()

In addition,

Zae{l,...,a} C?’(a)

> TlNeP)= 3T chle)+ep(). SR

ae{l,...,a} aed{l,...,a}

Note that cp.(a®) = > neq1,.. 01 €p(@) and cp. (M*) = cp(M), so it is enough to prove that

cp(a¥) et a) ch(a)
Dbenr Cp(0) = Ypenrcp(b)

or, equivalently,

C}g?* (a’*) Zae{l,...,a} CSP(a)

3)

-----

-----

Finally, inequality (3) follows from the fact that the function f(z) = y_%z, with 2 > 0,y > 0, x # —y is

-----

Zae{l,...,a} ch(a) > ch.(a*) or, equivalently, there exist two unions «, 5 € {1, ..., a} such that T'(P,)NT(Pg) #

(). This completes the proof. O

The following example illustrates that the alliance is not necessarily beneficial if there is some section that
changes from a shared use section in the original quotient game to an exclusive use section in the modified

quotient game.

Example 3.1. Let (N, K,C,T),P) € HE", with M = {1,...,104}, K = {t1,t2}, C(t1) = C(t2) = 1, and

(t1} ifae{1,2)

{t2} if a € M\{1,2}.

T(a) =
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An alliance a* is formed by merging unions {1,2,3,4}. Let (N,c, P) and (N,c, P*) be the original and
modified games, respectively (see Definition 3.2). Then,

1102

%*(N,C,P>:1+lﬁ—ﬁ>

and

4 9 1
NeP)=4.— = — <1.
;Ta( 6, P) 104 13 °

It can be seen that the unions are disadvantaged by having formed the alliance. Note that section ¢; has gone
from being a shared use section in the original quotient game (used by two unions that are now part of the

alliance) to being an exclusive use section in the modified quotient game (used by a*). A

8.8. Shapley-Tijs value
The definition of the Shapley-Tijs value for generalized highway games with a priori unions is presented

below.

Definition 3.3. Let (I', P) € HE*, with ' = (N, K, C,T), be a generalized highway problem with a coalitional
structure and (N, ¢, P) its associated game with a coalitional structure. We define the Shapley-Tijs value by

the vector (A;(V, ¢, P))ien such that for all a € M and alli € P, € P,

(i) if K¢ =10
AN e Py=9 U, (N, ¢, P) — c* (i)
(i) + (Yo (N, ¢, )—C(a))'m

Remark 3.1. It can be seen that the previous expression differs from the one given for the coalitional Tijs

if K¢ #0.

value in a generalized highway problem with a coalitional structure because we have
> Ai(N, e, P) = Uy(N,c, P) = ©4(M, cp)
1€EP,

for all P, € P, while
> Ti(N,e,P) = Ta(N, ¢, P) = 7a(M, cp).

1€P,
3.4. Characterization of coalitional values in generalized highway problems

We start by defining the various properties that will be used to characterize these values.

Definition 3.4. Let o: HE* — RV be a value on HE*. We define the following properties.
e Pareto optimality (PO): For all (I', P) € HE*, >,y 0i(l, P) = C(K).

¢ Equal treatment property for agents (ETPA): For all (I', P) € HE*, P, € P, and i,j € P, T(i) =
T'(j) implies o;(I", P) = o;(T", P).
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e Equal treatment property for unions (ETPU): For all (I', P) € HE* and P,, Py € P, T(P,) = T(Py)
implies » ;cp 0i(T, P) = ZiEPa/ o;(T, P).

e Individual independence of outside changes (IIOC): For all (T, P), (I',P’) € HE*, with T’ =
(N, K,C,T),T" = (N',K',C",T"), and i € NON', T'|ps) = I'|7v(;) and P|p() = P75y implies oy(T', P) =
oy (I, P').

e Coalitional independence of outside changes (CIOC): For all (T, P), (I'",P') € HE*, with T’ =
(]V7 K, C, T), I’ = (N/,K/,C/,T,), and a € M N M/, F|T(P,1) = F/|T’(Pé) and P|T(Pa,) = PllT’(Pé) 1mphes

Zz’EPa Ji(rv P) = Zz‘epé Ui(F,, Pl).

e Proportionality in shared sections among agents (PSSA): For all (T', P) € HE* and a € M with
T¢(P,) = 0, there exists ¢, € R4 such that for all i € Py, 0;(T', P) = ¢4 - ¢*(7).

e Proportionality in shared sections among unions (PSSU): For all (T', P) € HE* with TH(M) = 0,
there exists ¢ € Ry such that for all a € M, ), p 0i(T, P) = ¢ cp(a).

e Covariance under a prolongation for exclusive use by an agent (CPEA): For all (T', P), (I, P’)
€ HE*, with T = (N, K,C,T) and I’ = (N',K',C",T'),if i € N', K’ = KU {t}, = I|g, P = P'|g,
and {j € N' |t € T'(j)} = {i}, then for all j € N’

o;(I,P)+C'(t) ifi=j
.t 0
oi(I, P) otherwise.

e Covariance under a prolongation for exclusive use by a union (CPEU): For all (', P), (I, P’) €
HE*, with T = (N, K,C,T) and IV = (N', K',C", T"), if P, € P!, K' = K U{t}, T = I'|, P = P'|, and
{Pye P |te T (P)} ={F.}, then for all P, € P’

i o;(I', P +C/t) if P, =P,
S - | D

i€P, > iep, oi(l', P) otherwise.

(PO) means that the fees collected cover the cost of the installation. This property has already been used by
Sudholter & Zarzuelo (2017). The following properties are introduced for the first time in this paper, although
they are adaptations of axioms already existing in the literature for group-free highway problems. Here, we
extend those axioms to the coalitional context, both to the level of a priori unions and to the agent level within
a single union. Although Owen (1977) has previously utilized similar two-level properties to axiomatically
characterize the Owen value, their application has persisted over time, evident in works such as Casas-Méndez

et al. (2003), Lorenzo-Freire (2019), Alonso-Meijide et al. (2023), and Casajus & Tido Takeng (2023). (ETPA)
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and (ETPU) imply that vehicles (or coalitions of vehicles, respectively) using the same sections have to pay the
same fare. Originating from the equal treatment property defined in Sudholter & Zarzuelo (2017), these two
properties have been newly formulated. (IIOC) and (CIOC) imply that what a vehicle (or union, respectively)
pays does not depend on how unused sections are traveled. These two properties have been defined from the
individual independence of outside changes proposed in Sudholter & Zarzuelo (2017). (PSSA) states that the
vehicles belonging to unions that do not use exclusive use sections will make a payment proportional to the cost
of the sections they use. Similarly, (PSSU) states that in a problem where no union uses exclusive use sections,
the total payment of each union will be proportional to the cost of the sections used. Analogous properties
to (PSSA) and (PSSU) are employed to characterize the Tijs value in Tijs (1987) or the coalitional Tijs value
in Casas-Méndez et al. (2003). Lastly, (CPEA) and (CPEU) state that adding a section of exclusive use by
one vehicle (or by a union of vehicles, respectively) does not affect the payment of the remaining vehicles (or
unions). These properties have been formulated from the property of covariance under exclusive prolongation
proposed in Sudholter & Zarzuelo (2017).

Given that every generalized highway problem with a coalitional structure, (I, P), has an associated game,
(N, ¢, P), the value of a highway problem with a coalitional structure can be defined as a value of its associated
game. The following theorem provides an axiomatic characterization of the Owen value for generalized highway

problems with a coalitional structure.

Theorem 3.1. The Owen value on HE" is the unique solution that satisfies (PO), (ETPA), (ETPU), and
(I1I0C).

Proof. It is immediate to see from its expression that the Owen value of generalized highway problems with a
coalitional structure, ¥, satisfies (PO), (ETPA), (ETPU), and (IIOC).

Now, let (I', P) € HE® and let o be a solution on HE* satisfying (PO), (ETPA), (ETPU), and (IIOC).
We will prove that o(T', P) = ¥(N, ¢, P) by induction on |K|, where (N, ¢, P) is the game with a coalitional
structure associated to (I, P).

If |K| = 1, then T(i) = T(j) for all 4,5 € N and T(P,) = T(P,) for all P, P, € P. Thus, oy(T, P) =
% = W;(N,c, P), for all a € M and all i € P,, due to (PO), (ETPA), and (ETPU), and we have the result.
Suppose that o(I', P) = U(N, ¢, P) holds for all 2 < < |K]|, and take | = |K|. We define

R={ie N|T()CK} and Q={i e N |T(i) = K}.

For each i € R, consider the restriction (|7, Plpe;)). Since |T'(i)| < |K|, by the induction hypothesis we have
that o and ¥ coincide on (|7, P|7(;)) for player i. Now, given that P|T(i)|T(i) = Llre), P|T(i)|T(i) = Plrx),
and that o and W satisfy (IIOC),

oi(T, P) = oi(Tlr@), Plre)) = Wi(N, ¢, P).
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In this way, o;(T, P) = U;(N, ¢, P) for all i € R. If R = N, we have finished. If R C N, then @ # (). Let us see
now that o;(T', P) = ¥;(N,c, P) for all i € Q, if Q # 0.

Let H = {a € M | T(P,) = K}. Note that, for all i € @, there exists a € H such that i € PF,.
Because o and ¥ satisfy (PO) and (ETPU) and given that o;(T", P) = ¥;(N,¢, P), for all i € R, we obtain
0a(T, P) = ¥4(N,c, P) for all a € H. To conclude, two cases are considered. If « € H and P, N R = (), by
(ETPA) we obtain o;(T", P) = ¥;(N, ¢, P), for all i € P,. Finally, if « € H and P, N R # ), again by (ETPA)
and using that o;(I", P) = U;(N, ¢, P) for all i € R, we have that o;(I', P) = ¥;(N,¢, P), for alli € P,NQ. O

Next, the logical independence of the properties used in Theorem 3.1 is shown.

e (PO) is independent of the rest of the properties. For the proof we define f;(T", P) = 0, for all (T', P) € HE"
and for all i € N.

e (ETPA) is independent of the rest of the properties. For the proof we define

Z % if i = min{j € Nf*}
fr, Py = Lty 1

0 otherwise,

for all (I', P) € HE™, for all P, € P, and for all i € P,.

e (ETPU) is independent of the rest of the properties. For the proof we define f;(T', P) = ®;(N,¢), for all
(T', P) € HE® and for all i € N, where ® denotes the Shapley value.

e (ITOC) is independent of the rest of the properties. For the proof we define f;(T', P) = T;(N, ¢, P), for all

(I, P) € HE® and for all i € N, where T denotes the coalitional Tijs value.

We will now give a characterization of the coalitional Tijs value for generalized highway problems with a

coalitional structure, just as it has been done for the Owen value.

Theorem 3.2. The coalitional Tijs value on HE* is the unique solution that satisfies (PO), (PSSA), (PSSU),
(CPEA), and (CPEU).

Proof. From Proposition 3.4, it follows that the coalitional Tijs value satisfies (PO), (PSSA), (PSSU), (CPEA),
and (CPEU).

Now, let (T, P) € HE™ and let o be a solution on HE* satisfying the five properties of the statement of the
theorem. We will prove that o(I", P) = T(N, ¢, P). By (PSSU) and (CPEU), there exists ¢ € R, such that

S ol P) = pla) + ¢ cipla),
1€EP,
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for all @ € M. By (PO), it follows that

cp(M) — ZbeM cp(b) _ cp(M)
>bem Cp(b) > bem Cp(b)

C =
if K% # 0, and ¢ =0 if K§ = (. Therefore, it holds that

Zo’i(F,P) :%(qup)v

i€EP,

for all @ € M. This, together with (PSSA) and (CPEA), and following a reasoning similar to that of the first
part of the proof, implies that
Uz(rvp) = ﬁ(N,C, P)a

for all 4 € N, thus having the result. O

Next, the logical independence of the properties used in Theorem 3.2 is shown.

e (PO) is independent of the rest of the properties. For the proof we define

fiT', P) = () + (Ea(Ny e, P) = ¢“(a)) - Zp()o)

for all (T', P) € HE™, for all P, € P, and for all 7 € P,, where

Eo(N,e,P)= > C(t).
teT(P,):
| |=1

e (PSSA) is independent of the rest of the properties. For the proof we define

Ce(i) 1fK9:®
SR =S T (N.eP) - (a)

(i) + a if K%+#10,

for all (T, P) € HE™, for all P, € P, and for all i € P,, where N& = {j € P, | ¢*(j) # 0}.

e (PSSU) is independent of the rest of the properties. For the proof we define f;(I', P) = A;(V, ¢, P), for all
(T, P) € HE* and for all i € N, where A denotes the Shapley-Tijs value.

e (CPEA) is independent of the rest of the properties. For the proof we define

(i)

fi(L, P) :E(N7C>P)'m>
JjEL g

for all (T', P) € HE", for all P, € P, and for all i € P,.
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e (CPEU) is independent of the rest of the properties. For the proof we define

(1) if K5 =10
fi(T, P) = (1)

(i) + Ta(N, ¢, P) m if K°#0,
)€

for all (T", P) € HE™, for all P, € P, and for all i € P,, where

To(N,c,P) = (c,)(]\,j) — Z ce(z’)> cp(a)

N 2 ben €p(b)”
Finally, a characterization of the Shapley-Tijs value, defined above, will be provided. The following lemma
will be used in the proof of such an axiomatic characterization.

Lemma 3.1. Let o be a solution on HE™ that satisfies (PO), (ETPU), and (CIOC). Then,

‘ _ e P) — C()
iegl;a 7P = e ) teTE(;Da) Hbe M |teT (P}’

for all (T, P) € HE®, and all a € M, with (N, c, P) the associated game with a coalitional structure.

Proof. Let (I, P) € HE* and suppose that o satisfies (PO), (ETPU), and (CIOC). The proof will be done by
induction on |K|. If |K| = 1, then T(P,) = T'(F}) for all a,b € M. Thus, due to (PO) and (ETPU), we have the
result. Suppose that ) ;. p 0i(I', P) = ¥y (N, ¢, P) for all a € M holds for all 2 <1 < |K|. Now, take [ = [K].
We define

R={aeM|T(P)C K} and Q={ae M|T(P,) =K.

For each a € R, we can consider the generalized highway problem with a coalitional structure restricted to the
sections T'(P,) & K, (Ulr(p,), Plr(p,))- Since |T'(FP,)| < |K|, by the induction hypothesis we have the result on
(Tlr(p,)s Plr(p,)) for the union a. Considering that F|T(pa)}T(Pa) = ['|pp,) for all @ € R and that o satisfies
(CIOC), we obtain

> oiM,P) =Y 0i(Tlzp,), Plrpy) = D, Wil N, ¢, P) = Uu(N,c, P),
1€P, 1€P, 1€P,
where the second-to-last equality is fulfilled because ¥ also satisfies (CIOC).
If R = M, we have the result. If R C M, then @ # (). In such a case, using the first part of the proof, (PO),
and (ETPU), it can be seen that

> 6i(l,P) = Wo(N,¢c, P),
i€P,

for all @ € Q). This concludes the proof of the result. O
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Theorem 3.3. The Shapley-Tijs value on HE™ is the unique solution that satisfies (PO), (ETPU), (CIOC),
(PSSA), and (CPEA).

Proof. From Definition 3.3, it follows that the Shapley-Tijs value satisfies (PO), (ETPU), (CIOC), (PSSA), and
(CPEA).

Now, let (I, P) € HE™ and let o be a solution on HE™ satisfying these properties. We will prove that
o(I', P) = A(N,¢, P). By (PSSA) and (CPEA), there exists ¢, € Ry such that

oi(T, P) = (i) + ¢4 - *(0),

forallae M,i€ P, € P, and ¢, =0 if K* = (). By Lemma 3.1, since o satisfies (PO), (ETPU), and (CIOC),

we have that

Z Uz(F7P) = \Ija(Nac7P)7
i€P,

for all « € M. It is therefore obtained that for all a € M and for all 7 € P, € P,

(i) if K* = 0
oi(I', P) = Ai(N, ¢, P) =
(i) + (WalN, e, P) = ¢(a)) -

and that concludes the proof. O
Next, the logical independence of the properties used in Theorem 3.3 is shown.

e (PO) is independent of the rest of the properties. For the proof we define f;(I',P) = (i), for all
(I, P) € HE* and for all i € N.

e (ETPU) is independent of the rest of the properties. For the proof we define

(i) if K5=1
N D)+ Ta(N, e, P —0 s 2
c(t + ) , C, . -/ - i s )
( > jep, ¢(J)
for all (T', P) € HE", for all P, € P, and for all i € P,, where
U,(N, ¢, P) = > C(t).

LtET (P )NKS:
a=min{be M|teT(P,)NK*}

e (CIOC) is independent of the rest of the properties. For the proof we define f;(I', P) = T;(N, ¢, P), for all
(I, P) € HE® and for all i € N.
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e (PSSA) is independent of the rest of the properties. For the proof we define f;(I", P) = ¥,;(N,¢, P), for

all (T', P) € HE™ and for all i € N, where ¥ denotes the Owen value.

e (CPEA) is independent of the rest of the properties. For the proof we define

c*(4)

A0 P) = WV, P) - <,

for all (I', P) € HE™, for all P, € P, and for all i € P,.

Table 1 provides a concise overview of the characterizations for the Owen value, the coalitional Tijs value,
and the Shapley-Tijs value. Each column lists the properties satisfied by each coalitional value, highlighting in
bold those that characterize the solutions. It can be seen that the Shapley-Tijs value combines the proportional
allocation among the members of each union (PSSA) and the independence of outside changes in the allocation
of a priori unions (CIOC), property that allows the merging of unions to be advantaged, in exchange of losing

the proportional allocation among unions (PSSU) that the coalitional Tijs value satisfies.

o T A
(PO)  (PO) (PO
(ETPA)
(ETPU) (ETPU)
(I10C)
(CIOC)
(PSSA) (PSSA)
(PSSU)
(CPEA) (CPEA)
(CPEU)

Table 1: Overview of the properties satisfied by the Owen value, ¥, the coalitional Tijs value, 7, and the Shapley-Tijs value, A. In
bold, the properties that characterize these values.

4. An application to the Spanish AP-9 highway

Kuipers et al. (2013) showed how to allocate the fixed costs of the Spanish AP-68 highway among its users
using cooperative games values, in particular the Shapley value and the nucleolus. However, the authors only
considered vehicles of the same category (light vehicles) and therefore obtained a single price for all its users.
What actually happens in practice is quite different, since there are several categories of vehicles (light, heavy
1, and heavy 2) with different rates.

In this setup, we extend the model considered in Kuipers et al. (2013) to include different categories of
users, as well as the relationship that may exist between them. To do this, data from sections of the AP-9
highway connecting A Coruna and Vigo, two cities in the northwest of Spain, will be used. These sections are
represented in Figure 1, where each node is an entrance/exit point of the highway and sections consist of the

segments joining two consecutive nodes.
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Figure 1: Sections of the AP-9 highway between A Coruna and Vigo.

The AP-9 highway users can be classified into three types, according to their type of vehicle: light, heavy
1, and heavy 2.2 To be able to include them in the model, it is considered that each section of the highway
is composed of three levels and that larger vehicles need to use more levels of the highway than smaller ones.
This procedure was inspired by Fragnelli et al. (2000). The authors distribute the costs of a railway network
between slow and fast trains. Fast trains need a higher quality track and therefore a higher cost track than
slow trains. This additional cost is reflected in the fact that they must use both the basic level of the track
(sufficient for slow trains) and an extra level whose cost is the difference between the cost of the higher quality
track and the lower quality track.

In our case, three levels will be considered, as we work with three categories. Figure 2 shows a highway with
three sections (t1,t2, and t3) used by three vehicles, one of each type. By dividing the highway into three levels
(I € {0,1,2}), nine subsections are obtained, which will be the sections of the generalized highway problem
to be considered.® Tt is necessary to work with the generalized version because the subsections may not be
connected. User 1 is a light vehicle that uses highway sections #; and t» and therefore uses subsections t{ and #9
of the problem, i.e., only the basic level. User 2 is a heavy 1 vehicle using ¢3 and t3 and therefore corresponds
to subsections tg, tg, t%, and té of the generalized highway problem. The third user is a heavy 2 vehicle that

travels 1, to, and t3, so it will use subsections tll, tlz, and té, with [ € {0,1,2}.

=9 3 t t
=1 t t
_ 18 t ¢
=0 \ ] 2

t 12 t3

Figure 2: Subsections used by three types of vehicles that travel through three highway sections.

In addition to distinguishing between different types of vehicles, another issue of interest in the model is
the consideration of different groups of agents that can negotiate together in order to obtain lower fares. In
this application, two cases will be considered. Firstly, the problem without a priori unions and, secondly, the

problem with an alliance among the members of the heavy 2 category. The analysis of this grouping is motivated

2Light vehicles include cars, motorcycles, or vans; heavy 1 vehicles include 3-axle vehicles, such as cars with trailers, or 3-axle
trucks; and heavy 2 vehicles are generally vehicles with more than 3 axles (AUDASA, n.d.).

3For ease of visualization, we display the three subsections of each section stacked, rather than consecutively as in the classical
airport problem.
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by a discount that this category of vehicles recently obtained on the AP-9. However, the theoretical amount
of the discount obtained should not be compared faithfully with the actual amount of the discount, since we
only contemplate the distribution of fixed costs and, moreover, the costs that we consider for each section are
slightly modified with respect to the real ones, for ease of illustration.

For this purpose, the traffic data of the AP-9 highway from Ministerio de Transportes, Movilidad y Agenda
Urbana de Espana (2019b) and the prices for each journey (Ministerio de Transportes, Movilidad y Agenda
Urbana de Espana, 2019a) have been employed. The data used can be found in Table 2 and are explained
below.

Firstly, the official traffic data consist of the average number of vehicles that travel through each section
of the road on a daily basis, referred to as the Average Daily Index (ADI), distinguishing between light (Lg)
and heavy vehicles, and corresponding to the year 2019. The towns considered, connected by the AP-9, are A
Coruna (AC), Macenda (Ma), Ordes (Or), Sigiieiro (Si), Santiago (Sa), Padrén (Pa), Carracedo (Cr), Caldas
de Reis (Cl), Curro (Cu), Pontevedra (Po), Vilaboa (V1), Morrazo (Mo), and Vigo (Vg). As the percentage of
heavy 1 (H1) and heavy 2 (H2) vehicles on the AP-9 is not publicly available, it has been assumed that the
ADI for heavy vehicles is evenly divided between the two heavy vehicle categories. The official fares for each

section are also included, again from 2019.%

ADI Lg ADIH1 ADIH2 TollLg Toll HlI Toll H2

AC-Ma 22661 1032 1032 1.90 3.30 4.05
Ma-Or 16602 718 718 3.05 5.40 6.60
Or-Si 18082 808 808 1.80 2.95 3.80
Si-Sa 16127 745 745 1.75 3.10 3.80
Sa-Pa 22075 1170 1170 2.40 4.00 4.95
Pa-Cr 18218 1027 1027 1.05 1.85 2.65
Cr-Cl 20702 1206 1206 0.75 1.15 1.35
Cl-Cu 19426 1095 1095 1.25 2.20 2.75
Cu-Po 21948 1244 1244 1.35 2.45 3.05
Po-V1 29796 1318 1318 1.10 1.95 2.40
VI-Mo 28279 1229 1229 1.70 1.85 3.50
Mo-Vg 61032 2277 2277 1.10 2.00 2.80

Table 2: Traffic data (ADI) and fees of the three types of vehicle for the AP-9.

The fixed construction costs for each level in each section have been calculated in a similar manner to that
of Kuipers et al. (2013), by multiplying the price of each section by the number of users. To obtain the price
of the different levels for each section, the level 0 fare is considered to be the light vehicle fare, the level 1 fare
is the difference between the fare of heavy 1 vehicles and light vehicles, and the level 3 fare is the difference

between the fare of heavy 2 vehicles and heavy 1 vehicles. The result of these calculations can be found in

41t should be noted that the prices are not generally additive and only the fares for consecutive sections are included. In
addition, as the Vilaboa-Morrazo and Padrén-Carracedo routes cannot be performed, the prices chosen for these sections are the
difference between Pontevedra-Morrazo and Pontevedra-Vilaboa, and between Padréon-Caldas de Reis and Carracedo-Caldas de
Reis, respectively.
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Table 3. It should be noted that when working with daily user data and not annual data, the cost obtained
would be interpreted as the daily fixed cost to be distributed on the highway, and the a priori unions formed

only contain same-day users.

AC-Ma Ma-Or Or-Si Si-Sa Sa-Pa Pa-Cr

=0 46977.50 55015.90 35456.40 30829.75 58596.00 21285.60
=1 2889.60 3374.60 1858.40 2011.50 3744.00 1643.20
=2 774.00 861.60 686.80 521.50 1111.50 821.60

Cr-Cl Cl-Cu Cu-Po Po-V1 VI-Mo Mo-Vg

=0 17335.50 27020.00 32988.60 35675.20 52252.90 72144.60
=1 964.80 2080.50 2736.80 2240.60 368.70 4098.60
=2 241.20 602.25 746.40 593.10 2027.85 1821.60

Table 3: Fixed costs obtained for each level of each section.

Once the costs of each section and the number of users have been obtained, different values are calculated
for the cost games associated with the generalized highway problems without and with a priori unions. In these
games, the cost associated with a coalition is determined by taking into account the sections of the highway
used by at least one agent in the coalition. However, the number of agents that have used each of these sections
is not taken into account, in contrast to the maintenance games defined in Fragnelli et al. (2000).

Recall that the Shapley value of the cost game associated with a highway problem can be expressed, for
each agent ¢ € N, by ®;(N,c) = ZteT(i) % = ZteT(i) ki - C(t), where k; is a constant that only depends on
section ¢, so it is sufficient to obtain the values k; - C(t) for each t € K, which play the role of a toll to be
paid for using section t. Once the tolls k; - C(t) for each section have been computed, each ®;(N,c), i € N,
can be obtained by adding the tolls for the sections used by i (¢ € T'(i)). Additionally, the Tijs value can be

decomposed in a similar way:

s > iers(i) C(F) s > ierinks C(t)
AN = 3 CH+EN) S s 3 O+ (N ST = 3 ),
teTe(4) jeN €N teT(i)NKe jeN €N teT (i)
where
1 ift e K¢
k‘{f — S
_ W) e ke
> jen ()

The previous argument implies that obtaining the corresponding tolls for each section in the problem without
a priori unions is sufficient. The results of calculating the Shapley value and the Tijs value in that case are
found in Table 4. The coalitional values considered in this setup, for each agent, can also be decomposed into
sections, but in these cases, it should be noted that the constants depend not only on the sections but also on
the a priori unions that use each section or to which each agent belongs.

The fares obtained with the Shapley value are identical to the original ones due to how the costs of each

section have been considered, and this already occurred in Kuipers et al. (2013). It can be seen how the Tijs
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[ T

Lg HI H2 Lg H1 H2

AC-Ma 190 3.30 4.05 1.68 1.79 1.82
Ma-Or  3.05 540 6.60 1.97 209 2.12
Or-Si 1.80 2.95 3.80 127 134 1.36

Si-Sa 1.75 3.10 3.80 111 1.18 1.20
Sa-Pa 2.40 4.00 4.95 2.10 224 228
Pa-Cr 1.05 1.85 2.65 0.76 0.82 0.85
Cr-Cl 0.75 1.15 1.35 0.62 0.66 0.66
Cl-Cu 1.25 220 2.75 097 1.04 1.07
Cu-Po 1.35 245 3.05 1.18 1.28 1.31
Po-V1 1.10 1.95 2.40 1.28 1.36 1.38
VI-Mo 1.70 1.85 3.50 1.87 1.89 1.96
Mo-Vg 1.10 2.00 2.80 259 273 280

Table 4: Shapley value and Tijs value for the generalized highway problem without a priori unions.

value disadvantages users of highly used sections such as Morrazo-Vigo (Mo-Vg), while heavy 2 vehicles are the
least affected, since level 2 sections are the least used. As presented in Table 1, all of the values that we consider
satisfy the property of Pareto optimality (PO), that is, the sum of the allocations to each player is equal to the
total costs to be distributed. Naturally, in order to determine highway tolls, the actual values provided by the
corresponding allocation must be rounded to two decimal places. This rounding is the reason why the proposed
allocation of the Tijs value in Table 4 does not satisfy (PO). A possible way to deal with this issue is to ceiling
the results obtained, thus ensuring the recovery of the highway’s total costs. The exact results are available on
request from the authors.

The results of the alliance between the heavy 2 vehicles can be found in Table 5. In this case, there are
many a priori unions because each light or heavy 1 vehicle gives rise to an individual union. Nevertheless, it is
not necessary to provide the rates for each of them due to the symmetry in the ratio. In addition, the other a
priori union considered contains all the heavy 2 vehicles and, therefore, the rates can be divided into only three
categories. It can be observed how the alliance of the heavy 2 vehicles achieves a significant discount at the

cost of slightly increasing the prices of the other two categories.

T T A
Lg H1 H2 Lg HI H2 Lg HI H2

AC-Ma 1.98 4.78 0.75 1.73 184 0.85 1.98 4.78 0.83
Ma-Or 3.18 7.87 1.21 2.02 214 0.99 3.18 7.87 0.97
Or-Si 1.88 4.18 0.85 1.30 1.37 0.64 1.88 4.18 0.62
Si-Sa 1.83 4.53 0.70 1.13 1.20 0.56 1.83 4.53 0.55
Sa-Pa 252 5.72 0.95 215 229 1.07 2.52 5.72 1.04
Pa-Cr 1.11  2.71 0.80 0.78 0.84 0.40 1.11 271 0.39
Cr-Cl1 0.79 159 0.20 0.64 0.68 0.31 0.79 159 0.30
Cl-Cu 1.32  3.22 0.55 0.99 1.07 0.50 1.32 3.22 049

Cu-Po 1.42  3.62 0.60 1.21 131 0.61 1.42  3.62 0.60
Po-V1 1.15 2.85 0.45 1.31 1.39 0.65 1.15 2.85 0.63
VI-Mo 1.77  2.07 1.65 1.92 193 0.92 177 2.07 0.90
Mo-Vg 1.14 294 0.80 2.65 2.80 1.31 1.14 294 1.28

Table 5: Owen value, coalitional Tijs value, and Shapley-Tijs value for the generalized highway problem with a priori union between
the heavy 2 vehicles.

Although in this case the alliance of heavy 2 vehicles makes level 2 of exclusive use in the quotient game, the
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reduction obtained in the other levels prevents the alliance from worsening the rates obtained by the coalitional
Tijs value. As previously proven, this need not be the case, and we can illustrate it by repeating the process but
considering that the level 2 sections have a cost of four times higher. These results are found in Tables 6 and
7, where it can be seen how the coalitional Tijs value worsens the rates of heavy 2 vehicles. The Shapley-Tijs
value maintains the property that alliances benefit while preserving the philosophy of proportional sharing (in

shared sections) within the alliance.

[ T
Lg H1 H2 Lg Hi1 H2
AC-Ma 1.90 3.30 6.30 1.78 1.89 2.01
Ma-Or 3.05 5.40 10.20 2.09 222 235
Or-Si 1.80 2.95 6.35 1.35 142 1.52

Si-Sa 1.75 3.10 5.90 1.17 125 1.33
Sa-Pa 2.40 4.00 7.80 222 236 2.53
Pa-Cr 1.05 1.85 5.05 0.81 0.87 0.99
Cr-Cl 0.75 1.15 1.95 0.66 0.70 0.74

Cl-Cu 1.25 2.20 4.40 1.03 1.11 1.20
Cu-Po 1.35 245 4.85 1.25 135 1.46
Po-V1 1.10 1.95 3.75 1.35 144 1.53
VI-Mo 1.70 1.85 8.45 1.98 1.99 2.30

Mo-Vg 1.10 2.00 5.20 2.74 290 3.18

Table 6: Shapley value and Tijs value for the generalized highway problem without a priori unions in which level 2 sections are four
times more expensive than those in Table 3.

T T A
Lg H1 H2 Lg H1 H2 Lg HI H2
AC-Ma 198 4.78 3.00 173 1.83 3.34 1.98 478 3.32

Ma-Or 3.18 7.87 4.81 2.02  2.15 3.90 3.18 7.87 3.87
Or-Si 1.88 4.17 3.41 1.30 1.37 2.52 1.88 4.17 2.51

Si-Sa 1.83 4.52 281 113 121 2.20 1.83 452 219
Sa-Pa 252 5.72 3.80 2.15 229 4.21 252 5.72 4.18
Pa-Cr 1.11 270 3.20 0.78 0.84 1.65 1.11 270 1.64
Cr-Cl  0.79 1.59 0.80 0.64 0.67 1.21 0.79 1.59 1.21

Cl-Cu 132 321 220 0.99 1.07 1.99 1.32 321 1.97
Cu-Po 142 3.62 240 1.21 131 244 142 3.62 243
Po-V1 1.15 285 1.80 1.31 1.39 2.54 1.15 285 2.52
VI-Mo 1.77 2.07 6.60 1.92 193 3.83 177 207 3.80
Mo-Vg 1.14 294 3.20 2.65 2.80 5.26 1.14 294 5.23

Table 7: Owen value, coalitional Tijs value, and Shapley-Tijs value for the generalized highway problem with a priori union between
the heavy 2 vehicles and being level 2 sections four times more expensive than those in Table 3.

Currently, some users make round trips within a day and receive a discount on the AP-9 toll (AUDASA,
n.d.). A new category of vehicles satisfying this condition could also be considered in our setup. If two identical
round trips were to ally in an a priori union, that coalition would be symmetrical to another union consisting
of a single trip with the same characteristics. This can be interpreted as that a round trip pays only for the
outbound journey (a round trip has the same cost as a one-way trip). Consequently, to include them in the
model it would be sufficient to remove same-day return trips from the user matrix and add to the resulting
fares that same-day return trips have a cost of 0. This is because only fixed costs are being distributed, which

do not increase even if the highway is more used.
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5. Conclusions

This paper addresses the allocation of fixed costs in highway problems with externalities. In particular, we
propose a generalization of the methodology presented in Kuipers et al. (2013), considering a model that ac-
commodates various vehicle categories. To tackle this situation, we adopt an approach similar to Fragnelli et al.
(2000), decomposing each highway section into different quality levels, giving rise to the so-called subsections. It
is assumed that larger vehicles utilize more subsections than smaller vehicles. Given that the set of used subsec-
tions may not be connected, we employ the generalized highway problem introduced in Sudhélter & Zarzuelo
(2017). In addition, our model incorporates a priori unions (Owen, 1977) to reflect potential relationships
between groups of agents, such as the bargaining power within an association of truck drivers.

To investigate the cost allocation in our setup, we extend several theoretical results on coalitional values to
the generalized highway problem. Specifically, we consider the Owen value (Owen, 1977) and the coalitional
Tijs value (Casas-Méndez et al., 2003), and introduce the Shapley-Tijs value. This latter allocation arises as a
combination of the two former ones to achieve a more equitable distribution within the unions, on the one hand,
and to ensure that the alliance of unions is always beneficial to them, on the other. Furthermore, we derive
efficient formulations, study properties for these coalitional values, and provide an axiomatic characterization
for each of them. The methodology introduced is then applied and illustrated using a real database of the
Spanish AP-9 highway.

Upon analyzing the expression of the coalitional Tijs value applied to each union, denoted as 7, and presented
in Proposition 3.3, we observe that it can be considered as a union value in the sense of van den Brink & Dietz
(2014). In their work, they investigate two union values that generalize the Shapley value and assign payoffs to
unions in a game with a coalitional structure. These values differ in their axiomatization only in the collusion
neutrality property used. While player collusion neutrality states that the payoff of a union does not change
if two members of that union collude, union collusion neutrality states that the collusion of two unions does
not change the sum of their payoffs. Both values are studied in the context of an airport problem with a priori
unions. It is worth analyzing the implications of collusion properties in the realm of highway problems and the
solutions proposed in the current article.

In this work, we have adopted the use of solutions defined by a two-stage approach, resulting in a symmetric
treatment of each a priori union. An alternative strategy involves assigning a distinct treatment or weight
to each coalition. In existing literature, various works have employed exogenously defined weight systems.
However, one can also endogenously provide a natural weight for each coalition based on its cardinality, as
in Gémez-Ria & Vidal-Puga (2010). The incorporation of weighted values is also observed in applications of
cost games, as exemplified in Gémez-Ria (2013). In light of this, it is valuable to delve into this literature to
discover novel approaches for tariff design within the context of highway games with grouped players.

Regarding other future lines of research, it would be interesting to incorporate maintenance costs into our
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model, in addition to fixed costs. Fragnelli et al. (2000) introduced maintenance cost games and presented
an expression for the Shapley value in this context. Later, Costa (2015) obtained an expression for the Owen
value, and no further values have been explored yet, presumably because maintenance cost games are generally

non-concave.
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We use TU games to allocate fixed costs of a highway among its users through tolls
Our model considers distinct classes of vehicles or travelers utilizing the service
Generalized highway games with a priori unions are introduced and analyzed
Axiomatic characterizations of Owen, Tijs, and newly proposed Shapley-Tijs values

Our methodology is applied to real traffic data from the Spanish AP-9 highway



