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Abstract— Nondestructive detection methods, based on vibrational spectroscopy, are vitally important in a wide range of applications
including industrial chemistry, pharmacy and national defense. Recently, deep learning has been introduced into vibrational spectroscopy
showing great potential. Different from images, text, etc. that offer large labeled data sets, vibrational spectroscopic data is very limited,
which requires novel concepts beyond transfer and meta learning. To tackle this, we propose a task-enhanced augmentation network
(TeaNet). The key component of TeaNet is a reconstruction module that inputs randomly masked spectra and outputs reconstructed
samples that are similar to the original ones, but include additional variations learned from the domain. These augmented samples
are used to train the classification model. The reconstruction and prediction parts are trained simultaneously, end-to-end with back-
propagation. Results on both synthetic and real-world datasets verified the superiority of the proposed method. In the most difficult
synthetic scenarios TeaNet outperformed CNN by 17%. We visualized and analysed the neuron responses of TeaNet and CNN, and
found that TeaNet'’s ability to identify discriminant wavenumbers was excellent compared to CNN. Our approach is general and can be
easily adapted to other domains, offering a solution to more accurate and interpretable few-shot learning.

Index Terms—Masked CNN, deep learning, vibrational spectroscopy
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1 INTRODUCTION

IBRATIONAL spectroscopy, including infrared and Ra-
man, has been widely used for identification and quan-
tification of solids (particles, pellets, powers, films, fibers),

liquids (gels, pastes) and gases. Infrared spectroscopy makes 1.2

use of the vibrational transitions of a molecule, provides 1.0 R
fast, non-contact, and non-destructive analysis and has 08

found a wide range of applications in a variety of industries >

such as petrochemical, chemical, pharmaceutical, cosmetic, % 0.6

food. =

An infrared spectrum captures unique molecular infor-
mation that can be used to characterize a substance and 0.2
is therefore often referred to as “molecular fingerprint”. 0.0

Examples of infrared spectra of minerals are shown in 5000 10000 =~ 15000 20000 25000
Fig. 1. It can be seen that decryption of such spectra is non- Wavenumber(cm™)
trivial, especially in the presence of impurity in the sample

and noise caused by the acquisition process. Typically, the 19
analysis of spectra relies heavily upon machine learning
methods [1], [2], [3], [4], [5]. 10
Traditionally, automatic recognition of infrared spectra 08
has been based on conventional machine learning methods Bos
such as kNN, SVM, PLS [9], [10], [11]. These methods often 2
require pre-processing that typically includes some or all of 04
the following steps: smoothing, baseline correction, multi- 0.2
plicative scatter correction (MSC), standard normal variate oo
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Fig. 2. lllustration of typical augmentation behaviors of existing popular data augmentation strategies and the proposed TeaNet. The variations
generated by the existing methods and the proposed TeaNet are indicated in orange and purple respectively. (a) A spectrum with one characteristic
peak. (b) Randomly masking generates spectra where a random segment is dropped. (c) CutMix masks the spectrum which is then filled with a
random segment from other sample. (d) MixUp combines multiple spectra linearly and conceptually may be regarded as a merging of masking and
filling in one step. (e) GAN trained with small data tends to generate augmented sample with no or false variations due to the insufficient training
(as observed in our experiments). (f) Our approach TeaNet is able to generate artificial samples with sensible variations.

(SNV) correction, wavenumber selection and principal com-
ponents analysis (PCA) [12], [13], [14]. Such pre-processing
in most cases is non-trivial and could erroneously remove
useful features while retaining undesirable noise in the
signal.

In recent years, deep neural networks have been pro-
posed for vibrational spectroscopy that have significantly
outperformed the conventional machine learning methods
in many applications including mineral classification [2],
[15], chemical analysis [15], [16], pathogenic bacteria iden-
tification [17], rapid detection of COVID-19 causative virus
(SARS-CoV-2) [18], [19], [20], metabolite gradients monitor-
ing [21], cytopathology [22], soil properties prediction [15],
[23], mine water inrush [24], etc. The use of deep networks
in analysing spectra has not only improved the accuracy,
but also removed the need for manual, non-trivial, and time
consuming preprocessing of spectra.

In many real-world applications of vibrational spec-
troscopy, there are only a handful of samples/spectra avail-
able for each substance. As training deep networks usu-
ally requires very large datasets, applications with small
data regimes are especially difficult for deep networks. To
tackle this problem, previous work proposed and adopted
data augmentation techniques [2], [25], employed transfer
learning [15], [26] or meta-learning [3]. Despite these efforts,
the success of large neural networks in few-shot spectrum
recognition has been limited.

Generative adversarial networks (GANSs) have shown to
be a powerful tool for learning distributions from examples
and generating artificial samples. GANs have been used for
data augmentation [8], [27], [28] in various tasks. However,
we show here that state-of-the-art GANSs fail in improving
few-shot spectrum recognition (see Table 3). This is expected
as training GANs requires even more data than training
classifiers. This result motivated us to develop an alter-
native generative model that trains with self-supervision
and makes better use of the small training data (i.e. small
volumes of training data).

Besides GANSs, there exist a number of popular data
augmentation strategies involving masking a signal such as
Random Erasing [29] and CutMix [6]. These methods mask
random regions of samples which are then “roughly” filled
with zeros or random patches from other samples. It has

been shown that they are quite effective when a sufficient
number of training samples are available. However, as
shown in our experiments, when only a handful of samples
are available, these strategies are of little use. When large
data is available, introducing a relatively small amount of
roughly-filled masked samples could help regularizing the
model. In the case of small data where true variations are
limited, it is essential to generate artificial samples with
sensible variations, instead of near-arbitrary mixups. Fig. 2
shows a graphical illustration of typical variations generated
by existing data augmentation strategies and the proposed
TeaNet.

Inspired by these augmentation strategies including
Random Erasing and CutMix which can be viewed as
(random) masking followed by a rough operation of filling,
we take this one step further and propose to use a gen-
erative model to reconstruct the randomly masked regions
to create artificial samples with sensible variations, instead
of rough fillings. With the task of “mask-reconstruct”, we
can create from a single spectrum many training sample
pairs to train the generative model. This is especially useful
in small data applications. We named our novel method
Task-Enhanced Augmentation Network (TeaNet). The mask-
reconstruct approach was also inspired by masked language
model training BERT [30] and the inpainting task in com-
puter vision [31], [32], [33].

1.1 Contributions

We propose a new method for few-shot classification based
on a novel tasked-enhanced augmentation network. Our
approach outperforms previous state-of-the-art methods in
infrared spectra classification and it offers interpretability by
selecting the most discriminant parts of the input (defined
over a range of wavenumbers). Specifically,

1) We propose TeaNet, a task-enhanced augmenta-
tion network that learns to produce novel samples
by filling in the masked part of the input signal
with the goal of maximizing the accuracy of the
classifier. Source codes of TeaNet are available at
https:/ / github.com/Chaoscendence/TeaNet.

2) Our experiments on synthetic and real-world in-
frared spectrum datasets showed that TeaNet sig-
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nificantly outperforms the state-of-the-art methods
in the field.

3) We analysed TeaNet and other methods, and
showed that TeaNet possessed an excellent ability
for discriminating between spectra that were very
similar to one another. Our visualization showed
that TeaNet was able to locate discriminant regions
with much better accuracy than CNN, and therefore
offers much better interpretability in addition to
superior classification performance.

The main idea behind the TeaNet is general and the archi-
tecture can be easily adapted to other domains, offering a
general approach to more accurate and interpretable few-
shot learning.

1.2 Structure of the Paper

The remainder of this paper is organized as follows: Section
2 reviews the related work. Section 3 describes the proposed
task-enhanced augmentation network (TeaNet). Section 4
and 5 present and discuss the experiments on synthetic data
and real-world benchmark datasets. Section 6 summarises
our work and discusses potential directions for future re-
search.

2 RELATED WORK

Our work addresses the few-shot learning by augmentation
and proposes a generation network which creates syn-
thetic samples that are reconstructed from the real masked
samples. It is trained by minimizing a combination of re-
construction and classification losses. We discuss the rele-
vant work in the related areas, specifically, self-supervision
through masking and augmentation.

2.1 Data Augmentation

A straightforward solution to the problem of insufficient
training data is to synthesize new samples by applying
various transforms to the real samples. Simple geometric
transforms such as flipping, scaling, rotation and shifting are
often applied to image data, whilst patch sampling [34], [35],
sample mixing [36], [37] and random erasing and occlusion
[29], [38] are among other common strategies. However, all
these augmentation methods only involve low-level image
operations and do not account for semantic knowledge
of the content of the data. We show in our experiments
(Section 5) that augmenting training of a deep classification
network with spectra obtained by low-level signal opera-
tions (we refer to it as CNN-Partial in our experiments) was
not always beneficial and even worsened the results in some
cases.

Instead of applying low-level transformations, Wang et
al. [39] proposed synthesizing new samples at semantic
levels by manipulating features. Since features at higher
layers of a deep network are characterized by better ab-
straction, one can assume that introducing some variation
at the feature level could offer augmentation with semantic
variation.

In recent years, GAN models have shown great capabil-
ity in synthesizing image data (especially facial images [40])

3

with high fidelity. GAN models with special architectures
have also demonstrated potential for data augmentation [8],
[27], [41]. The CWGAN [27] was proposed to augment the
electroencephalogram (EEG) data for emotion recognition.
It combines WGAN and CGAN and feeds a class label as
an additional input to both the generator and discriminator
to synthesize samples of specific classes. Antoniou et al. [8]
developed DAGAN which consists of a CGAN generator
and an improved WGAN critic network. The generator
takes a real data item and a random vector as inputs and
synthesizes a new data item through an encoder-decoder
pipeline. The random vector is sampled from a multi-variate
Gaussian distribution to encode the intra-class variations.
The generated and the input samples form a combined fake
item, while the input sample and another real sample from
the same class form a combined real item. The discriminator
is trained to distinguish the fake from the real. After train-
ing, the original data is then augmented to train a classifier
for the target task.

Data augmentation in the feature domain was con-
sidered to assist a few-shot learning. Different from our
application, [42] makes an assumption on the availability
of a large set of labeled data that is related/similar to
classes with the small training data. A special case of GAN
is trained to model the latent distribution of each novel
class given examples from similar “large” classes. The work
in [43] uses an auto-encoder to learn differences between
same-class pairs of training examples in the latent space,
and then applies these “deltas” to small novel data to
synthesize samples from the new class. The work in [44]
also performs augmentation in the latent space, but the
augmentation is guided by the classification loss, which
is similar to our method. However, our overall approach
is very different from [44]: in our method we create new
samples (not features) by reconstructing the masked regions
using a reconstruction loss in addition to the classification
loss.

2.2 Self-supervised learning

Self-supervision via reconstruction of partially masked in-
puts has been widely used in language modeling e.g.,
BERT [30] and more recently in computer vision e.g.,
ViT [45]. The main goal of these architectures is to utilize
the large unlabeled data for pre-training the encoder and
then fine-tuning it for the downstream tasks.

A recent work in [46] proposed an asymmetric architec-
ture for masked auto-encoder in which the encoder inputs a
small number of randomly selected image patches from an
input image with positional information, while the decoder
receives the embeddings and the masked symbols and re-
constructs the missing parts. It is suggested that masking a
very large number of patches in the input encourages the
encoder to learn semantic information and not just hole
filling. The specific architecture makes the training more
efficient. While our approach also employs masking for
self-supervision of the reconstruction network, it is used
in combination with the classification loss. We do not use
the encoder after training, the reconstruction network in our
approach is used to enlarge small training data by adding
variation to the existing samples via generating the masked
parts.
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Fig. 3. Diagram of the proposed method TeaNet. It consists of two neural networks, namely reconstruction network and a differential classifier for a
given application. The reconstruction network is responsible for generating augmented samples by repairing the masked/corrupt spectra and being
led by the classification results. The trainable weights in the reconstruction network are optimised against the weighted sum of the classification
and reconstruction losses. While the classifier is trained towards minimizing the classification loss only.
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Fig. 4. Examples of masked spectra and the corresponding original
ones. Similar to generating pairs to train Siamese networks for few-shot
learning [3], generating lots of original-masked spectrum pairs allow
us to exploit the training samples in a novel way and thus may help
train larger model and achieve better accuracy in the case of few-shot
spectrum recognition.

LTSA [47] is a self-supervised feature learning frame-
work where a damage-and-repair network learns to synthe-
size images with mild artifacts by randomly masking the
latent representation of input images, and a discriminator
is trained simultaneously to differentiate the images with
artifacts from normal ones. The features extracted by the dis-
criminator can later be used for downstream classification
tasks. Note that the damage and repair network is relevant
to, but different from, our approach. In LTSA, masking or
damaging was applied to the latent representation, instead
of the input images, in order to generate global artifacts. The
success of this scheme greatly relies on good representation
to be learned before it can take effect. Our experiments
showed that in the case of few-shot learning this approach
performed significantly worse than the baseline methods, as
shown in Table 3.

3 TEANET:
NETWORKS

The small training data problem has been traditionally
approached by transfer learning and by meta-learning [48],
[49], [50], [51]. We cannot use either of these approaches in
the infrared spectrum domain, as transfer learning assumes
the existence of a large labeled training set in a similar do-
main, which does not exist in our application; meta-learning
assumes a data set with many episodes from a similar

TASK-ENHANCED AUGMENTATION

domain and is limited to a relatively small classification
problems (with 5-50 ways). In infrared spectrum recogni-
tion the classification problem is usually large, including
hundreds of classes.

To tackle the problem of few-shot learning with a large
number of classes and no auxiliary training data, we choose
data augmentation using generative models. This is a non-
trivial task, as training a good generative model with no
prior information requires large training sets that we do
not have in our setting. This makes regular GANs fail as
experimentally confirmed in Table 3. One way to approach
this problem is to impose additional constraints on the
generative model to reduce its need for a large number of
training samples.

Inspired by masking ideas in pre-training large trans-
formers in language modeling [30], and computer vi-
sion [45], [46] as well as the inpainting task in images [31],
[32], [33], we propose task-enhanced augmentation net-
works (TeaNet), where a generative model learns through
reconstructing samples from randomly masked ones. Note
that the masking approach in previous work was used to
pretrain the encoder on a very large data and then fine-tune
it to the downstream tasks. In this work, we take a different
approach and train an auto-encoder not only to reconstruct
masked inputs, but to fill the gaps, such that the repaired
sample minimizes the classification loss. We augment the
original sample with a number of masked samples by ran-
domly masking the original one, as shown in Fig. 4 and
repairing them using the auto-encoder. The repaired sam-
ples are passed to the classifier and the classification loss on
these samples is used to train simultaneously the classifier
and the auto-encoder (in addition to the reconstruction loss).
A graphical illustration can be found in Fig. 3.

The success of masking in training language models was
attributed to the fact that languages are human-generated,
and thus are highly semantic and information-dense [46].
Masking words is enough to facilitate the model to capture
the semantics of the language. In images, due to spatial
redundancy, a missing patch can be recovered from neigh-
boring patches without capturing much of the semantics,
thus requiring very heavy masking [46]. The question is
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Fig. 5. Network architectures of the classification modules for TeaNet
used in the real-world and synthetic datasets. BN stands for batch
normalization and DO stands for Dropout.

whether the masking approach would work in spectroscopy
and what should be the masking strategy here? The spec-
troscopy theory in physics shows that any part of an in-
frared spectrum is related to other parts, which indicates
that inferring a missing/masked part from the rest of an
infrared spectrum is indeed physically possible, though is
very challenging [52].

3.1 Network Architecture

Our network consists of two modules, namely the recon-
struction module and the classification module, which are
combined in a pipeline. The classification module is respon-
sible for a spectrum recognition task. Any differentiable
model, e.g., convolutional networks, can be used for the
classification module. We employ double-pyramid LeNets
that have been shown to be very effective in spectrum recog-
nition [2], [3] in our experiments. The detailed architectures
especially the number of layers were optimised for different
applications (datasets) as shown in Fig. 5.

The reconstruction module creates artificial spectra for
domain-specific data augmentation. It inputs a randomly
masked real spectrum and outputs a full spectrum, by filling
in the missing parts. As the input and the output of this
module are both spectra (1D signal), the reconstruction
task falls into the category of dense regression where U-
Net and its variants are shown to be the most effective
architectures [33], [53], [54], [55], [56]. We therefore employ
a U-Net architecture in the reconstruction module as shown
in Fig. 6. The reconstruction network contains 34 trainable
convolutional layers in total and is larger than almost all
neural networks previously used for vibrational spectrum
recognition.

3.2 Training Protocol

The classification network is trained on real samples along
with the corresponding reconstructed samples using the
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Fig. 6. Network architecture of the reconstruction module in the pro-
posed TeaNet. (U) stands for feature concatenation.

cross-entropy loss. The reconstruction network is trained
to minimize the weighted sum of the classification (cross-
entropy) and reconstruction (MSE) losses. The reconstruc-
tion network does not input class label of the sample,
but the reconstruction is guided by the classification loss,
meaning that the reconstructed sample must lie within the
class boundaries, but otherwise could be arbitrary. In other
words, the classification loss allows the reconstruction to
move away from the original sample towards samples that
minimize the classification loss. To increase diversity in sam-
ples generated from the same input, it is essential to train
both networks jointly. If the reconstruction loss dominates
the training process of the reconstruction module, it might
quickly converge and learn to repair a masked spectrum
perfectly. Then, the spectra that it generates would have
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no/little difference from the original ones and play no role
in data augmentation. The algorithm for training TeaNet is
detailed in Algorithm 1.

An important question is how many samples to generate
from the original sample. On the one hand, generating lots
of original-masked pairs allows us to exploit the training
samples in a novel way for training a larger model that
may help achieving better accuracy in the case of few-shot
spectrum recognition. On the other hand, as the number of
pairs grows, the gain from training on those pairs might
peak at some point and then start decreasing. We verified
this behaviour in our experiments (see Table 5). The extra
information/variation embedded in these pairs is bounded,
thus many of them will become more and more similar as
more masked spectra are generated.

3.3 Masking Schemes

Generation of masks is a key component of the proposed
approach. Fig. 4 shows examples of masked spectra and
the corresponding original ones. There are several aspects
we need to consider in designing the masking scheme.
Specifically, should the masks be generated randomly or
with fixed position and size and how large they should be?

In general any mask can be represented as a union of
small masks U{(a;,b;),i =1, -+ ,u} where a; € [0,1),b; €
(0, 1] denote the relative position of the ends of each seg-
ment, and v is the number of segments.

For convenience, we define another variable 7, which is
the ratio of mask to spectrum length

T =300 — ai D

Clearly 7 € (0,1). As 7 becomes larger, the difficulty of
predicting the masked parts of a spectrum increases, requir-
ing the embedding to capture the semantics of the domain
and not only trivial dependencies. However, when the mask
is too wide, the reconstruction becomes ambiguous which
could slow down the learning process.

We consider the following masking schemes controlled
by the parameters a and 7:

e MSI: both a and T are fixed

o MS2: ais fixed, T is random

o MS3: ais random, T is fixed

e MS4: both a and T are random

e MSb5: union of several masks of MS4

Our designs of masking schemes include fixed masks
(MS1), random masks (MS4 and MS5) and hybrid masks
(MS2 and MS3). All schemes, except for MS5, generate
continuous masks. MS5 might produce several masked frag-
ments that are disconnected from each other. These designs
were inspired by masking schemes in existing work [6], [29],
[30] and inpainting tasks in computer vision [31], [32], [33].
In particular, the masking scheme MS4 (random masking)
can be regarded as a specific version of Random Erasing
(with fixed fillings of zeros) within the spectrum context,
except for some specific design choices. Our experiments
in Section 5.5.1 showed that reconstructing with MS4 with
a € U(0,1) and 7 ~ U(0.3,0.7) (were U stands for uniform
distribution) produced the best results.

Algorithm 1: TeaNet: Task-Enhanced Augmenta-

tion Network
Input: A training set S; = {(z;,l;),i = 1,--- ,N}
and a masked set {(Z;,1;),7 = 1,--- , N} generated
from S;. A validation set .S, for selecting the best
model. The reconstruction and classification modules
®g,,, Do, with trainable weights O and O¢. A1, A2
are step sizes. v € (0,1) is predefined to balance the
reconstruction and the classification loss.
fort=0to T do

(1) The reconstruction module takes a mini-batch
of masked samples {Z;,i = 1,--- ,m} and out-

puts the repaired ones {’x\l(-t),i =1,---,m}, ie

0 = Do (%)

()

The reconstruction loss Ly’ is computed as

J AN,
IR = S
i=1

where m is the size of a mini-batch.

(2) The classification module takes both the
original and repaired samples {z;, :/Eit 1=
1,---,m}, denoted as %Et) to simplify the no-
tation, and predicts their labels

~(t) ~(8)
Yy = D@(Cf) (@)

The cross-entropy loss L(Cf) for classification is
computed as

1~ "
L) = —— 313" = 1) - 3"
i=1

where 7 is an indicator function.
(3) Calculating the joint-loss L(Jt)

LY =y LY + (1 =)« LY
and updating O and O¢
¢
oL
0Or

oL
00¢
Output: D§ , is the classification module with the

@R(Hl) _ @R(t) -\

@C(“rl) _ @C(t) — Xy

smallest Lg;) on the validation set S,,.

4 EXPERIMENT I: ON SYNTHETIC SPECTRA

To analyse the advantage of the proposed TeaNet compared
to previous architectures (e.g., CNN [2], [3]), we perform a
set of tests on synthetic infrared spectra in which we can
control the variation in data, in particular the location and
appearance of the peaks (which are the most meaningful
parts of a spectrum).

The following experiments showed that TeaNet is able
to detect peaks in a wide range of scales. Namely, it is
capable of capturing information from both sharp and wide
peaks. Conversely, the performance of CNN depended on
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Fig. 7. Synthetic spectra of two classes for few-shot classification cre-
ated using the Lorentz model. Three samples of each class were plot-
ted here with different colors. The characteristic peaks are marked by
circles, while the rest are non-characteristic peaks or simply noise. For
these samples, we have set ¥ = 1—30 and FWHM € 0 ~ 50. Details can
be found in section 4.1.2.

the scale of the peaks. It performed well on inputs in which
characteristic peaks were sharper and much stronger than
non-characteristic peaks. However its performance dropped
significantly on spectra with wide and weak peaks.

4.1 Generating synthetic spectra
4.1.1 Physical model

We generate the synthetic spectra using the Lorentz
model [57] (in Eq. (2)), which is an infrared spectrum model
used in physics:

flp)=C+ 4

>

P—po_12
{FWHM, A,po } 1+{ WHMO/2}

@)

where p denotes a position/wavenumber, py stands for the
position of the maximum, FWHM is the full width at half
maximum, and A controls the height of a peak. C' is a
constant, which has been set to be zero in our experiments.

4.1.2 Few-shot Classification Problem

We set up the few-shot classification with N, ways and
M, shots, namely each classification problem included N,
classes with M, samples in each. For each class, we first
generated K! characteristic peaks at random. These peaks
were shared among all samples in a class. We then produced
K? non-characteristic (noisy) peaks with random or prede-
fined parameters in Eq. (2) and combined them with the
characteristic peaks to form samples of the class. We set
N, =100, My = 20, K} € [1,3], K2 € [3,5]. The length of
each spectrum was 1024. We then generated 20 experiments
as explained below with a different set of 100 classes, each
class including 20 samples.

4.1.3 Experimental Setting

We denote ¥ to be the ratio of the height of the characteristic
and non-characteristic peaks:

A of a characteristic peak

v ®)

A of a non-characteristic peak
¥ controls the difficulty of the problem, i.e.,, when ¥ is
smaller, it is more difficult for learning models to capture
the discriminant information.

To thoroughly investigate the proposed method, we var-
ied two main factors: FWHM (the width) of the characteris-
tic peaks (signals) and ¥J. We tested five typical values of ¥:
10, 10/3, 1, 0.3, 0.1 and four values of FWHM from [0, 50]
to [150,200]. FWHM € [h;, h,] means when generating the
spectra, FWHM were randomly generated from the region
hy ~ h,. Consequently, we performed 5 x 4 = 20 sets of
experiments in total.

Fig. 7 shows examples of two (out of 100) synthetic
classes, generated with ¥ = 1, FWHM € [0,50]. For
each class, it shows three samples in different colors. The
characteristic peaks are marked by circles, while the rest are
non-characteristic peaks. For each the synthetic problem, we
randomly partitioned the data set into training, validation
and test sets in the ratio of 60%, 20%, 20%.

4.2 Network Architecture and Training Protocol

For comparison, we trained a double-pyramid LeNet, de-
noted as CNN_Full, for the synthetic classification prob-
lems, the detailed architecture of which can be found in
Fig. 5(a).

For TeaNet, we have kept the reconstruction module for
all the experiments presented in this paper, as shown in
Fig. 6. The masking scheme was MS4 with a € ¢/(0,1) and
T ~U(0.3,0.7). The classification module is the same as the
CNN_Full.

To train CNN_Full, we used an Adam optimizer with a
learning rate of le—4 and a batch size of 256. We also used
Adam optimizers for both reconstruction and classification
modules with learning rates of le—3 and le—4 respectively
and a batch size of 256. The maximum number of epochs
was 300. All the experiments were carried out on multiple
NVIDIA GTX-3090(3080) GPUs. These settings have also
been adopted for experiments on real-world datasets.

TABLE 1
Performance comparison of TeaNet and CNN on experiments with
synthetic spectra.

¥
FWHM

small
large

large medium/small

TeaNet ~ CNN  TealNet ~ CNN
TeaNet ~ CNN  TeaNet > CNN

A = B - the performance of A and B are similar.
A > B - A performs much better than B.

4.3 Results and Analysis

We investigated four typical scenarios shown in Table 1
and the results are shown in Fig. 8 and summarised in
Table 1. When ¢ is large, in which case the characteristic
peaks dominate the non-characteristic ones, both methods
performed equally well. As ¢ decreases, the recognition
task become harder. In this setting, TeaNet performed much
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Fig. 8. Comparison of TeaNet with CNN on a synthetic dataset with
different settings of characteristic peaks(signals) and non-characteristic
peaks(noise or interference). ¥ denotes the ratio of the height of the
characteristic peaks and the non-characteristic peaks. Note that when
¥ is medium or small and FWHM is large, the spectrum recognition
becomes very difficult. In this case, TeaNet outperformed CNN by a
large margin.

better than CNN by a large margin, though the accuracy of
both methods dropped.

5 EXPERIMENT Il: ON REAL-WORLD SPECTRA
5.1 The Compared Methods

We compared the proposed TeaNet to several alterna-
tive augmentation schemes, namely, 1) plain augmentation:
CNN_Full [2], 2) inputting partial spectra by randomly
masking the full spectra: CNN_Partial, 3) randomly mask-
ing followed by filling with random patches from other
samples: CutMix [6], 4) randomly combining samples lin-
early: MixUp [7], 5) generating new samples via GANs:
CWGAN [27], DAGAN [8], 6) augmentation in the feature
domain: LTSA [47].

CNN_Full was included as the main baseline. We in-
cluded CNN_Partial for two reasons. First, partial images,
aka patches, have been used in computer vision for data
augmentation to facilitate the training of large CNNs. Train-
ing the classifier on masked spectra is equivalent to training
on image patches. The second reason is more hypothet-
ical. Due to randomness, there is a chance that some of
the masked spectra would contain only the characteristic
peaks. In that ideal case, the masking process would be
equivalent to a randomized wavenumber selection, which
would lead to a performance improvement. In fact, in real
world applications, especially in industry, it is a common
practice to use human experts for manually selecting the
discriminant wavenumbers and then using them as an input
to the conventional machine learning methods, such as PLS.
However, in reality, many of the randomly masked spectra
would contain lots of non-characteristic peaks, and would
require the CNN to detect the characteristic peaks in the
masked samples and ignore the noise. So, we may view
CNN_Partial as a crude attempt of realizing an automatic
wavenumber selection procedure.

8

CutMix and MixUp are both popular augmentation
methods used in computer vision and to some extent both
are related to masking for augmentation. In the context of
spectrum recognition, CutMix masks a spectrum randomly
and then fills the masked region with random patches from
other spectra. MixUp combines multiple spectra linearly
and conceptually may be regarded as a merging of masking
and filling in one step. The rest of the methods ( GANs and
LTSA) are the natural competitors in data augmentation.
Moreover, As CWGAN, DAGAN and LTSA were originally
proposed for images, we re-implemented them with neces-
sary modifications associated with 1D signals.

We also tested conventional machine learning methods,
such as correlation, kNN, random forest, and support vector
machines, as shallow models usually require fewer training
examples than the deep models. Moreover, these models are
popular among practitioners.

TABLE 2
Benchmark datasets used in this study

Dataset Type #Samples # Classes # Samples/class
RRUFFE_IR IR 698 430 ~1.62
USGS NIR 887 212 ~ 4.18
ReLab NIR 6675 855 ~ 781

5.2 Datasets and Evaluation Protocol

In our experiments, we used three publicly available
datasets, namely RRUFF_IR [58], USGS [59], ReLab. All
these datasets contain infrared spectra of minerals. Details
can be found in Table 2. It is worth noting that these datasets
contain 1.62, 4.18 and 7.81 samples per class on average,
which fit the few-shot learning setting.

As the number of samples per class is rather small
(see Table 2), we performed the leave-one-out scheme to
generate a test set with a single sample per class (chosen at
random). The rest of the samples were used for training and
validation. We repeated this procedure N = 10 times and
we reported the averaged accuracy over these experiments.

5.3 Network Architecture and Training Protocol

For the classification module in TeaNet, we adopt a double-
pyramid LeNet with the number of convolutional blocks
optimised for each benchmark data set. For USGS, the clas-
sification module was the same as the one described in 4.2,
as shown in Fig. 5(a). For the RRUFF_IR and Relab datasets,
the classification module included two convolutional blocks
with one dense layer. Details can be found in Fig. 5(b). The
architecture of the reconstruction module in TeaNet was
the same in all experiments. Please refer to Fig. 6 for more
details.

We used Adam optimizer for both reconstruction and
classification modules with the learning rate: le—3 and
le—4 respectively and 256 batch size. The maximum num-
ber of epochs was 300. All the experiments were carried out
on multiple NVIDIA GTX-3090(3080) GPUs.

5.4 Results and Analysis
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TABLE 3
Classification accuracy (%) of the compared methods on several
benchmark spectral datasets

Dataset
m RRUFF_IR USGS ReLab
kNN 79.32%=+1.56  64.73%+2.31  73.33%+0.87
SVM(linear) 71.22%4+1.29  50.70%+2.00  29.91%+1.13
SVM(rbf) 76.33%=+1.17  62.17%+2.21  49.52%+1.13
Random Forest 69.46%+3.11  67.44%+1.90  70.68%=0.59
Correlation 74.69%=+1.97 38.14%+1.54 51.95%+0.84
LTSA [47] 80.98%+2.60 72.94%+3.44  74.66%=+4.04
CWGAN [27] 81.97%+2.13  82.56%+3.31  82.47%=40.99
DAGAN [8] 88.98%+1.21 83.57%+1.42  82.97%=0.92
MixUp [7] 88.85%+1.56  84.58%+1.32  78.44%=+0.87
CutMix [6] 87.21%+1.49 85.43%+1.29  82.84%40.98
CNN_Full [2] 88.03%+0.98 84.81%+1.56 82.06%=+1.75
CNN_Partial 86.53%+1.32  86.59%+1.55  83.90%+1.23
TeaNet (ours) 90.07%+1.33  87.37%+1.47  85.43%=+1.00

5.4.1 Performance on benchmark datasets

Results in Table 3 show the classification accuracy of the
compared methods on the benchmark datasets. First, it is
evident that the proposed TeaNet significantly outperforms
all the compared methods achieving the state-of-the-art
results on all three datasets.

The results of the conventional machine learning meth-
ods, such as correlation, kNN, random forest and support
vector machines show that even though the conventional
methods generally require less data than the deep models,
their accuracy is poorer as they are unable to recover useful
features and thus require hand-crafted feature engineering.

The accuracy of LTSA on all three datasets is worse
than that of the other deep networks by a large margin.
In particular, its accuracy is on average nearly 10% lower
than the baseline CNN_Full. We believe that even though
LTSA utilized inpainting — a concept similar to ours, it was
not designed to deal with the few-shot learning scenarios,
but rather to learn better representations with the help of
pretraining.

We note that CWGAN [27] is merely a plain GAN and
serves as a baseline for GAN-like methods in our tests.
DAGAN was specifically designed for data augmentation
and thus was expected to perform better than the plain
CWGAN. Note that on RRUFF_IR and USGS, which have
fewer samples per class, DAGAN performed better than
CWGAN, yet still worse than the baseline CNN on full
spectra. It is not surprising that a plain GAN failed to
generate sensible samples when only few samples were
provided for its training, as GAN is generally known as a
data demanding model. When relatively more samples were
available, as in ReLab dataset, both CWGAN and DAGAN
performed better and the accuracy increased by about 0.4%
and 1.0% respectively.

While similar to approaches for training on image
patches, which are beneficial in computer vision problems,
CNN_Partial did not perform well in all cases. We observe
that, training on partial/masked samples directly improved
the accuracy by 1.8% and 1.9% on USGS and ReLab re-
spectively. However, on RRUFF_IR its accuracy dropped
dramatically by 1.5%.
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Recall that CutMix can be viewed as random masking
followed by a naive/rough reconstruction, so if the naive
reconstruction helps, one should observe a performance
improvement over CNN_Partial. This, however, was not the
case. In fact, the accuracy on USGS and ReLab dropped by
around 1% . MixUp also experienced a significant perfor-
mance drop on these two datasets, though it performed
relatively well on RRUFF_IR. Overall both methods per-
formed significantly worse than the proposed TeaNet. This
may indicate that, in the case of small data where true
variations are limited, generating artificial samples with
sensible variations is of greater importance, though that
dropping/masking a certain amount of regions with a
rough reconstruction could help regularize the model when
a large amount of data is available.

5.4.2 Analysis of augmented samples

The purpose of the reconstruction module in our ap-
proach is to produce dataset augmentation for training
the classifier. Thus the best way to evaluate the re-
construction module is by testing whether using recon-
structed /augmented samples in classifier training improves
the classification accuracy. The results in the previous sec-
tion show that the augmented samples generated by TeaNet
facilitated the training of the classifiers. Moreover, to better
understand the behavior of TeaNet, we further investigate
the variations (of augmented samples) generated by the
reconstruction module.

Visualization of generated variations: To illustrate the varia-
tions generated by TeaNet, we plot four augmented spectra
for each of two minerals, as shown in Fig. 9. The dissim-
ilarity measured by MSE between these artificial samples
and the corresponding original samples were also calcu-
lated to be 0.74+0.81 and 3.3942.02, the former of which
corresponds to the sample shown in the left column of
Fig. 9, the latter of which corresponds to the sample in the
right column. It can be seen that TeaNet was indeed able
to generate sensible variation within each masked region.
By randomly masking different wavenumbers/regions, we
generated augmented samples where variation occurred
in the masked regions. These augmented samples helped
TeaNet to identify the discriminant regions of a spectrum.

Explainability of generated wvariations: It is not unex-
pected that augmented samples do not have to be human-
understandable to assist the training of a complex deep
neural network. A good related example is the popular
method CutMix which has shown to be effective in image
applications, though it generates incoherent artificial sam-
ples. On the other hand, we found that TeaNet was indeed
able to generate explainable variations. To be specific, these
variations generated by TeaNet not only obey the funda-
mental physical law of continuity, but also reflect physical
factors or have performed distinct meanings or functions for
learning.

Continuity is a fundamental physical law that a real
spectrum should conform to. Though that augmented sam-
ples do not necessarily obey physical laws so as to facilitate
the training of the classifiers,it is still of interest to investi-
gate whether the augmented samples generated by TeaNet
obey the physical law of continuity. It was observed in our


Stuart Gibson
Pencil


1.0 —— predicted
> l =— - mask
g 05 | —— groundtruth
2 | \\M
£ H

0.0 D !

0.5 1.0 15 2.0 2.5
Wavelength(um)

1.0 —— predicted
> — - mask
g 0.5 — groundtruth
3
= : \\f\’\\

0.0 .. i

0.5 1.0 1.5 2.0 2.5
Wavelength(um)

1.0 —— predicted
> =+ mask
g 0.5 — groundtruth
9]
c \/\

0.0 [ !

0.5 1.0 1.5 2.0 2.5
Wavelength(um)

1.0 —— predicted
> =+ mask
g 0.5 - groundtruth
QL
k=

0.0 )

0.5 1.0 1.5 2.0 2.5
Wavelength(um)

10

1.0
Py
20.5
g —— predicted
c
- =+ mask
0.0{ = groundtruth | H
0.5 1.0 15 2.0 2.5
Wavelength(um)
1.0
2
20.5
9 —— predicted
£ =+ mask |
0.0/ — groundtruth | |
0.5 1.0 1.5 2.0 2.5
Wavelength(um)
1.0
2
205 I
9 —— predicted
C
- =+ mask
0.0{ = groundtruth 3
0.5 1.0 1.5 2.0 2.5
Wavelength(um)
1.0
> i
205 I .
9 —— predicted |
£ =+ mask |
0.01 = groundtruth ' __| J
0.5 1.0 1.5 2.0 2.5

Waveleng'th(um)

Fig. 9. Variations generated by predicting missing parts of spectra. The original spectra were plotted in blue. The masked regions were indicated by
dot lines. The predicted spectra were highlighted in red. The dissimilarity measured by MSE between these artificial samples and the corresponding
original samples were calculated as 0.74+0.81 (left) and 3.39+2.02 (right).

experiments that all the generated samples were continuous
and the reconstruction module learned to fill the masked
region/wavenumbers without breaking the continuity. This
suggested that the reconstructed spectra indeed conform to
the physical law of continuity. In contrast, CutMix do not
preserve the continuity as it simply fills the masked regions
with random patches from other samples.

Fig. 10 shows four typical examples of explainable vari-
ations generated by TeaNet. Fig. 10(a) demonstrated that
TeaNet was able to produce a series of augmented samples
by reconstructing different masked regions of the same
spectrum. The deformations/variations of these artificial
samples bear a resemblance to those induced by physical
factors in the real world e.g. temperature changing [60].
Fig. 10(b) showed that TeaNet learned to generate a smooth
reconstruction of the masked region of a noisy input. In
Fig. 10(c), TeaNet generated the baseline of the input spec-
trum which implied that it essentially performed a baseline
correction which was a popular preprocessing technique
for spectrum recognition when non-deep-learning methods
were employed [60]. Fig. 10(d) shows an augmented sample
where one peak was surgically removed.

Simulated variations which reflect physical factors can
be beneficial to the training of the classifiers. Both smoothing
and baseline correction have been widely used as prepro-
cessing for vibrational spectroscopy. Masking out a peak
“surgically” may be viewed as a smart version of CutMix.
All these explainable variations demonstrated that TeaNet
was indeed able to generate sensible augmented samples to
assist the training of the classifiers.

Cases for which reconstruction failed: We observed that
there were a small fraction, around 0.168% on the ReLab
dataset, of augmented samples with dramatic variations of
large magnitude, the typical cases of which were shown in
Fig. 11. Purely from a reconstruction point of view, these
might be regarded as failure cases since the augmented
samples were vastly different from the original ones. To be
particular, the augmented sample shown in the first row
of Fig. 11 seems to be arbitrary, but after examination we
found that it did not jeopardize the classification. We suspect
that this large variation was generated probably because
this particular class was easy to classify and therefore could
tolerate large variations.

Different from the first one, the variations shown in the
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Fig. 10. Typical examples of explainable variations generated by TeaNet. The original spectrum is plotted in blue. The augmented spectra are shown
in red and pink. (a) Predicting different masked regions of the same spectrum produced variations which bear a resemblance to those induced by
physical factors in the real world e.g. changing temperature [60]. To avoid clutter, the masks are not shown. (b) TeaNet generated a smoothed
reconstruction of the masked region of a noisy spectrum. (c) The augmented spectrum corresponds the baseline of the original one on the masked
region. Here, TeaNet essentially performed a baseline correction which was a popular preprocessing technique for spectrum recognition when
non-deep-learning methods were used [60]. (d) TeaNet generated an augmented sample one peak of which was surgically removed.

second and third rows of Fig. 11 were large, yet sensible,
and could still be beneficial, because the corresponding
augmented samples could be viewed as the original one
with one peak/valley mirrored or trimmed respectively. In
this sense, these samples might be meant to be produced
to serve our main goal of generating artificial samples with
sensible variations to help train the classifier.

The averaged mask size of these samples with large
variations was 0.5840.11 where all the masks were sampled
uniformly from 0.3 to 0.7. So we can reduce the number of
the failure cases by imposing smaller masks if needed.

5.5 Ablation Analysis
5.5.1 Masking Schemes

Following the protocol outlined in subsection 5.2, we con-
ducted a set of experiments to investigate different masking
schemes discussed in Section 3.3. The results are shown
in Table 4. For small masks (7 < 0.1), the performance
was comparable to the baseline CNN_full, which indicated
that variations generated by masking-reconstruction were
limited and contributed little to training. With large masks,
(r > 0.8), the accuracy dropped significantly which indi-
cated that the generated variations were inappropriate and
contributed negatively to the training.

Overall, the best masking scheme was “MS4” with 7 ~
URN(0.3, 0.7) with randomized position and length of the
mask. Note that MS1 performed significantly worse than
the others. This agrees with the fact that some degree of
randomization boosts the training of deep models.

5.5.2 Joint vs. separate training of modules in TeaNet

We investigated whether joint training of the reconstruction
and classification modules in TeaNet is beneficial over a
separate training. We ran the experiments for a varying
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Fig. 11. Large variations generated by TeaNet which might be con-
sidered as failure cases from reconstruction point of view as the re-
constructed samples were greatly different from the original ones. The
original spectra are plotted in blue. The masked regions are indicated by
dot lines. The predicted spectra are highlighted in red.

amount of augmentation on all three databases. The results
in Table 5 show that joint training of the reconstruction
and classification models significantly outperforms training
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TABLE 4
Comparison of different masking schemes on the benchmark spectral
datasets
Dataset  RRUFF_IR USGS ReLab

Mask

MS1

a=0,b=0.5 87.35%+1.86  82.71%+2.30  80.89%=+1.51
a=05b=1 88.03%+1.53  84.03%+2.00 83.33%+1.26
MS2:

a=0,be (0,1) 81.97%+3.08  80.85%+2.33  77.93%=+1.32
a=0.5,b€ (0.5,1) 88.78%+1.40 85.35%=+2.18 83.96%=+0.61
MS3:

7=0.01 87.96%+1.85 86.82%=+1.63 82.21%=+1.06
7=01 88.78%+1.96  86.36%+1.39  83.04%+1.02
7=02 88.64%+1.14  86.67%=+1.66  84.28%=+0.79
7=05 90.07%+1.81  86.98%+1.73  84.89%=0.95
7=08 87.85%+2.13  85.58%=+1.90 83.70%=+0.91
=09 87.08%+1.83  83.26%+2.03  81.55%+1.19
7=0.99 72.18%+2.36  73.41%+2.69  70.12%=+1.60
MS4:

7 ~U(0.1,0.9) 89.32%+1.75 84.73%+2.08  84.74%40.79
7 ~U(0.3,0.7) 90.07%+1.33  87.37%+1.47  85.43%=1.00
MS5:

i ~U(0.1,0.3)

37 ~U(0.3,0.7) 89.53%+0.87  86.13%=+2.15  85.45%=+0.62

U stands for uniform random number sampler.
a, b are the two ends of a mask. 7 is defined in Equation (1).

TABLE 5
Comparison of joint vs. separate training of two modules in TeaNet.
(xn) corresponds to the number of masked samples generated for
training the network

Dataset
m RRUFF_IR

USGS ReLab

Separately(x 5) 86.94%+2.06  84.81%+1.56  83.57%=+1.21
Jointly(x5) 89.05%+1.03  86.12%+1.85  84.69%30.50
Separately(x10) 87.96%=+0.92  84.65%+1.38  83.056%%1.22
Jointly(x10) 90.07%=+1.33  87.37%+1.47  85.43%%1.00
Separately(x 20) 87.76%+1.83  84.26%+1.67  83.78%%1.42
Jointly(x20) 89.66%=+1.00 87.06%+£1.55 85.48%%1.18

them separately.

5.5.3 Masking vs. Reconstruction

In our approach, both components of masking and recon-
struction are crucial and together they cooperate to generate
artificial samples with sensible variations. Without masking,
one would need to generate artificial samples from random
noise which demands a large amount of data to train. As
shown in Table 3, GANs were even inferior to the baseline
CNN_Full. Without reconstruction, as showed in Table 3,
only masking e.g. CNN_Partial or masking with rough
reconstruction e.g. CutMix and MixUp, they all performed
poorly. Masking followed by careful sensible reconstruction
as in the proposed TeaNet indeed led to a significant im-
provement.

5.6 Model Complexity and Computational Cost

In this section, we discuss the model complexity and the
computational cost for the proposed methods with a com-
parison to existing generative model-based methods. As all
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TABLE 6
Model complexity and the computational cost for the training of the
proposed TeaNet compared to existing methods, excluding the
classification model. For inference, only the classification model is to be

used.
Method Model Size GPU Memo. Forw. Pass Back. Pass
LTSA [47] 280.23 M 512G 11217 ms 11594 ms
CWGAN [27] 17.64 M 181G 4.39 ms 7.96 ms
DAGAN [8] 1.85M 197 G 33.95ms 101.24 ms
TeaNet (ours) 43.36 M 2.06 G 17.27 ms 40.64 ms

the compared methods are proposed for data augmentation,
and play no direct role in inference where only the classifi-
cation is to be used, we calculated related metrics only for
the training. Results can be found in Table 6. The required
GPU memory and run-time were computed within an epoch
with a batch size of 16 on a server with a NVIDIA GTX
3090 GPU and Intel(R) Xeon(R) CPU E5-2678. It can be seen
that the proposed TeaNet used comparable GPU memory
to DAGAN and CWGAN, ran much faster than DAGAN,
and yet was slower than CWGAN. We conclude that with
the augmented samples, generated by reconstructing from
randomly masked spectra, we were able to train a relatively
large model and achieved superior performance with com-
putational costs that are comparable to the GANS.

5.7 Interpreting TeaNet on Challenging Cases

Our experiments on real and synthetic data showed a clear
advantage of TeaNet over other methods. We subsequently
tried to interpret how the TeaNet makes decisions in com-
parison to the baseline CNN. To this end, we focus on the
most challenging cases of very similar samples that belong
to different classes. Fig. 12 depicts two such examples that
were correctly classified by TeaNet, but confused the CNN.
Namely, the first and second rows in Fig. 12 show samples
in the training and test sets respectively. The last row shows
samples from the training set of the class misclassified by
CNN. It can be seen that in both cases, the similarity be-
tween the spectra of the correct and the misclassified classes
is very high, and therefore it is challenging to distinguish
between them. In fact, visually it is almost impossible for
non-experts to make correct classification.

By analysing these cases, we demonstrate a limited abil-
ity of CNN in identifying discriminant wavenumbers espe-
cially when dealing with very similar spectra. In contrast,
TeaNet showed superior performance in locating discrimi-
nant regions and achieving high classification accuracy as
we show below.

To interpret how the networks make decisions, we
visualize their neuron responses to spectra using Grad-
CAM [63], and quantitatively evaluate what discriminant
information was extracted and utilized for classification.
To this end we define two measures; the similarity of two
responses 8§ and the attention on discriminant wavenumbers A.

4)

VeV
[ llflvs |

where v, and v, are two responses/vectors which corre-
spond to a segment or a full spectrum. 8 measures how
similar two responses are. For instance, § = 1 means the

8
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Fig. 12. Challenging cases where TeaNet succeeded while the state-of-the-art CNN failed. Each figure presents a case where the first and second
rows plot samples in the training and test sets, respectively. The last row plots samples from the training set of the class misclassified by CNN. It

can be seen that visually they are nearly indistinguishable.

TABLE 7

Analysis of neuron responses of TeaNet and CNN on different regions of IR spectra of Riebeckite and Antigorite.

Ry Ro R3 Ry Ryi_4
Wavenumber (cm~1) 400 — 475 476 — 600 601 — 1200 3600 — 3700 -
Assigned Bands [61] T(Fe?* — OH) bending Si—-O-Si  vs(Si-Oy—Si)  OH stretching -
T(Mg** - OH) Vas(Si—Op —Si)
Vas(O-5i-0)
8 of CNN 0.795 0.567 0.809 0.398 0.748 |
A of CNN (Riebeckite) 0.066 0.054 0.446 0.010 0.576 1
A of CNN (Antigorite) 0.082 0.094 0.355 0.055 0.586 1
8 of TeaNet 0.587 0.572 0.382 0.132 0.331 |
A of TeaNet (Riebeckite) 0.278 0.117 0.505 0.019 0.919 1
A of TeaNet (Antigorite) 0.086 0.130 0.611 0.136 0.963 1

T - Transational modes; vs - Symmetric stretching; vqs - Asymmetric stretching; sy, - Similarity of Neuron
Responses; tnr - Intensity of Neuron Responses; | - lower, better; 1 - higher, better.

corresponding network reacts almost constantly to any spec-
tra, which of course may lead to a very low classification
accuracy.

_ vl
vl

i ®)
where v; is the j*" segment of a spectrum v, and A; € (0, 1]
is the normalized sum of the intensity of a response on the
jt" segment (region). A; on discriminant regions/segments
indicates how the intensity/energy is distributed over the
spectrum. Ideally, high values of A should correspond to the
discriminative segments in the input, which in turn should
correlate with improved classification accuracy.

Due to space limitations, we only present detailed anal-
ysis for two challenging examples shown in Fig. 12. Addi-

tional examples of challenging cases are shown in supple-
mentary information.

5.7.1 Antigorite vs Riebeckite

Fig. 12(a) shows the spectra of the minerals Riebeck-
ite and Antigorite, the chemical formula of which are
Naz(Fe?Feg*)SigOzz(OH)z and Mg3Si,Os5(OH), respectively.
According to [61], we identified all the discriminant re-
gions (wavenumbers) on the spectra of Riebeckite. We
categorized all the characteristic peaks into four regions
{R;,i = 1,--- ,4} and marked the peaks as R¥ where k
is the index of the peak within its region.

Fig. 13 shows the discriminant peaks on the spectrum
and the corresponding matches (peaks) on the neuron re-
sponses of TeaNet and CNN, which were found as the
closest peak within a small neighborhood, 0.5% of the
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Fig. 13. Comparison of neuron responses of TeaNet and CNN on a challenging case of discriminating between “Riebeckite” and “Antigorite”,
the spectra of which, see Fig. 12, is almost indistinguishable visually from one another. On this case, TeaNet succeeded while the CNN failed.
According to [61], we categorized the peaks into {R;,i = 1,--- ,4} and marked the peaks as R¥ where k is the index of the peak within its region
for convenience. We visualize the neuron responses(activation maps) of TeaNet and CNN by Grad-CAM, and highlighted the matches to the peaks
of the spectrum. The peaks which were ignored by either method were circled and marked in grey. It can be seen that responses of TeaNet to
almost all of the characteristic peaks are accurate and well-shaped, while CNN missed quite a few.
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Fig. 14. Comparison of neuron responses of TeaNet and CNN on a challenging case of discriminating between “Riebeckite” and “Antigorite”, the
spectra of which, see Fig. 12, is almost indistinguishable visually from one another. On this case, TeaNet succeeded while the state-of-the-art CNN
failed. According to [62], we categorized the peaks into {R;,i = 1,--- ,5} and marked the peaks as R¥ where k is the index of the peak within its
region for convenience. We visualize the neuron responses(activation maps) of TeaNet and CNN by Grad-CAM, and highlighted the matches to the
peaks of the spectrum. The peaks which were ignored by either method were circled and marked in grey. It can be seen that responses of TeaNet
to almost all of the characteristic peaks are accurate and well-shaped, while CNN missed quite a few.
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TABLE 8
Analysis of neuron responses of TeaNet and CNN on different regions of IR spectra of Rhodonite and Bustamite.

Ry R R3 Ry Rs Ri—5

Wavenumber (cm~1) 400 — 550 551 — 750 850 — 1100 1600 — 1650 3400 — 3450 -

Assigned Bands [62] (M-O)stretching  (Si—O-5i) (5i-0) OH bending and stretching -

(5i-0O) bending stretching stretching

8 of CNN 0.090 0.081 0.000 0.803 0.798 0.347 |
A of CNN (Rhodonite) 0.070 0.071 0.114 0.009 0.016 0.281 1
A of CNN (Bustamite) 0.008 0.079 0.000 0.028 0.038 0.153 1
8 of TeaNet 0.325 0.054 0.533 0.000 0.000 0.392 |
A of TeaNet (Rhodonite) 0.231 0.139 0.370 0.000 0.003 0.743 1
A of TeaNet (Bustamite) 0.136 0.145 0.710 0.000 0.000 0.992 1

Snr - Similarity of Neuron Responses; v, - Intensity of Neuron Responses; | - lower, better; 1 - higher, better.

spectrum length, of the discriminant peaks on the original
spectrum. Peaks which were ignored by either method were
circled and marked in grey. It can be seen that responses of
TeaNet to almost all of the characteristic peaks are accurate
and well-shaped, while CNN missed 7 out of 15 peaks. The
ability to capture more discriminant peaks enables TeaNet
to distinguish spectra with high similarity.

Further more, to quantitatively analyse the neuron re-
sponses, we calculated 8 and A on each region of {R;,i =
1,---4} individually as well as the combination of these
regions. Results are shown in Table 7. It can be seen that
8 of TeaNet on full spectra was 0.331 which is significantly
lower than 0.748 of CNN. This indicates that compared
to CNN, TeaNet reacted differently to spectra of different
minerals which enables it to distinguish spectra with minor
differences. A of CNN on the regions combined was less
than 60%, while that of TeaNet was more than 90%. This
demonstrated that compared to CNN, TeaNet could better
identify the discriminant regions, make predictions based
upon those selected wavenumbers and therefore achieve
higher accuracy.

5.7.2 Bustamite vs Rhodonite

Fig. 12(b) shows the spectra of the minerals, Bus-
tamit and Rhodonite, the chemical formula of which are
Mn;,Ca,MnCa(SizOg); and CaMnzMn(SisOq5) respectively.

Similar to Fig. 13, we plot discriminant peaks on the
original spectrum and their matches on neuron responses in
Fig. 14. Evidently TeaNet captured much more discriminant
peaks than CNN.

We calculated 8 and A on full spectra as well as 5
discriminant regions [62]. Results are presented in Table 8.
It can be seen that in this case § of TeaNet and CNN are
0.392 and 0.347 respectively, which indicates both reacted
differently to the compared minerals. On the other hand, A
of CNN to both minerals are 28.1% and 15.3% respectively,
which is extremely low and indicates that CNN actually
failed to concentrate on the discriminant regions. Indeed, by
checking the neuron responses, we observed that when fed
with Bustamite, CNN completely missed the discriminant
region Iis.

This confirms that CNN'’s ability to locate the discrim-
inant regions is limited, especially for challenging cases as

the above-mentioned ones . While enhanced by the task of
reconstruction of masked spectra, even with the same net-
work architecture, TeaNet showed great potential in iden-
tifying discriminant wavenumbers and achieved superior
performance of classification. In this sense, TeaNet seems to
be able to implicitly perform wavenumbers selection, a tech-
nique which has been widely used in industrial applications
of vibrational spectroscopy.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a task-enhanced augmentation
network for a few-shot vibrational spectrum recognition. By
reconstructing randomly masked samples, the network is
encouraged to generate augmented samples with meaning-
ful variation in the masked regions. Results on both syn-
thetic and real-world datasets verified the superiority of the
proposed method. Moreover, by visualizing and analysing
the neuron responses of TeaNet, we demonstrated TeaNet’s
excellent ability of identifying discriminant wavenumbers,
which allows it to distinguish spectra with high similarity
in challenging cases where the state-of-the-art methods in-
cluding CNN tend to fail. Future research will investigate
additional losses which measure the diversity of artificial
samples and learnable masking parameters to further im-
prove the diversity and efficiency of the sample-generating
process, and ultimately increase the classification accuracy.
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