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Abstract

This paper presents a new formulation for the routing problem in which the available fleet consists of trucks
and trailers divided into compartments. Solving the model for large instances is computationally expensive.
Therefore, we introduce and implemented a two-phase heuristic algorithm. In the first phase, an initial solu-
tion is generated through a constructive heuristic algorithm based on concepts from the classic Clarke—Wright
algorithm. In the second phase, the initial solution is improved by an iterated tabu search metaheuristic. Our
algorithm was tested on 21 instances that were converted from the classic truck and trailer routing problem.
The results of our computational study prove the effectiveness of our proposal; the algorithm always finds
a feasible solution, which in small-sized problems it is proven to be of good quality. In addition, the algo-
rithm outperforms previous approaches for some truck and trailer routing problem instances. Furthermore,
an application of the proposed model and heuristic is demonstrated in the field of agricultural logistics by
comparing the obtained results.

Keywords: truck and trailer routing problem; compartmentalized vehicles; construction heuristic algorithm; tabu search;
logistics

1. Introduction

In recent years, transport logistics has played a fundamental role in industry. Many public and
private companies are interested in developing computational tools to design their routes, with
objectives such as minimizing costs and/or maximizing the distribution of products. Thus, vehicle
routing problems (VRPs) are a popular type of combinatorial optimization problem, through which
transport routes for vehicles visiting a set of customers located at different places can be modeled.
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Fig. 1. Possible solution to the TTRP.

Solving these mathematical optimization problems is a challenge for operational researchers. When
new features from real-world applications are considered, such as capacitated vehicles, delivering in
limited time windows, and stochastic behaviors, new variations of the original VRP arise, creating
a need to develop new models and solution techniques.

One promising modification of the VRP is the truck and trailer routing problem (TTRP) pro-
posed by Chao (2002), which incorporates accessibility restrictions. In this variant, a fleet of trucks
and trailers visits a set of customers, where some customers (vehicle customers; VCs) can be served
by a complete vehicle (i.e., a truck pulling a trailer), while others are only reachable by a truck
alone (truck customers; TCs). Examples of TCs are customers in inner-city areas, mountainous
regions, or places where maneuvering or access with a trailer is not possible. To solve this problem,
we distinguish three types of routes: pure truck routes (PTRs), which can be traveled only by trucks,
pure vehicle routes (PVRs), which can be traveled entirely by a complete vehicle, and mixed vehi-
cle routes (MVRs), which consist of a main tour traveled by a complete vehicle and one or more
sub-tours traveled only by the truck part of the vehicle. Figure 1 illustrates a possible solution to
the TTRP. Although this model can be very useful in many land-based logistical applications, the
presence of three different types of routes makes solving the associated optimization problem more
difficult, suiting it to the application of heuristics and metaheuristics, such as in Lin et al. (2009).
Real-world applications include farm milk collection (Caramia and Guerriero, 2010b), delivery by
feed mills (Lin et al., 2009), and the provisioning of infrastructure services in urban areas with
accessibility restrictions (Parragh and Cordeau, 2017).

Another interesting variation of the VRP is the multi-compartment case, where different prod-
ucts must be split into different storages during transport, making it challenging to maximize the
use of vehicle capacity on the generated routes. Although the inclusion of compartments adds ex-
tra complexity, it can be a requirement in real logistical applications, as explained by Guitian de
Frutos and Casas-Méndez (2019). Therefore, this paper proposes a novel mixed integer linear pro-
gramming (MILP) approach to combine the TTRP with product compartmentalization, which we
call the multi-compartment TTRP (MC-TTRP). The combination of these two features is moti-
vated by the needs of a Spanish agricultural cooperative that produces feed for cattle, which we
used to test, illustrate, and apply the proposed formulation. A tentative MC-TTRP was originally
introduced in an unpublished preliminary work by Davila-Pena (2019).
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Meanwhile, the effectiveness of the Clarke—Wright algorithm (Clarke and Wright, 1964) in build-
ing a solution for different VRPs and the requirement to solve MC-TTRPs that involve a relatively
high number of customers served as motivation to modify this heuristic algorithm for the case of the
MC-TTRP. To the best of our knowledge, only Derigs et al. (2013) reported adaptation of this algo-
rithm to build an initial TTRP solution, although no details about such adaptation were provided.
In addition to this constructive method, we propose a metaheuristic approach based on an iterated
tabu search to improve the initial solution obtained. Both the constructive and improvement phases
are integrated into a novel two-stage algorithm to solve the MC-TTRP. A corresponding compu-
tational study was conducted through a series of instances created from other existing ones in the
literature, obtaining excellent results. However, these problems could not be benchmarked with the
exact model due to the computational time required. In contrast, a series of small-sized real-world
problems were solved, achieving solutions that are competitive and close to those provided by the
exact method.

The remainder of this paper is organized as follows. Section 2 reviews related work. Section 3
presents the current case study in detail and an in-depth description and formulation of the MC-
TTRP. Section 4 presents the two-stage heuristic to solve the MC-TTRP. Section 5 reports the
computational results for the designed heuristic on the MC-TTRP, using a set of instances adapted
from those in literature and data of a real application. Finally, Section 6 summarizes the main
conclusions of our study.

2. Related work

To solve the logistics of an agricultural cooperative that distributes feed for cattle to a large number
of customers, many of whom have accessibility restrictions, the TTRP appears to be a satisfac-
tory model. Although Chao (2002) introduced the term TTRP, previous works have incorporated
trailers to solve similar case studies. The first approach could be that presented by Semet and Tail-
lard (1993). These authors proposed a VRP that considered the use of trailers under accessibility
restrictions. Semet (1995) proposed another example describing a new variant of the VRP formu-
lated as an integer linear programming (ILP) problem called the partial accessibility constrained
VRP (PACVRP). Despite being very similar to Chao’s TTRP, it has specific differences, such as
the utilization of all available trucks. Other studies have considered a heterogeneous fleet of vehi-
cles composed of trucks and trailers, such as the case of Gerdessen (1996), whose model is known
as the VRP with trailers (VRPT). Moreover, Chao et al. (1998) studied the site-dependent VRP
(SDVRP), where every customer has a specific type of vehicle assigned. Some seminal papers on
the TTRP do not offer a mathematical formulation through an MILP model, although Scheuerer
(2004) presented a formulation of the TTRP by Chao (2002). This turns out to be an adaptation
of the proposal by Semet (1995) for the PACVRP and can be considered as the motivation for the
current paper.

Other researchers have built new models based on the proposal of Chao (2002) to meet various
real-world requirements, such as a TTRP with time windows (TTRPTW) proposed by Lin et al.
(2011). In the TTRPTW, besides its type and demand, each customer has three associated measur-
able times: the earliest and latest time of day at which it can be served and the service time required.
Recently, Accorsi and Vigo (2020) considered a generalization of the TTRP, the extended single
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TTRP (XSTTRP), which contains, all together, a variety of node types that were previously con-
sidered only separately: truck customers, vehicle customers with and without parking places, and
parking-only locations. In the XSTTRP, a single vehicle, consisting of a truck and a detachable
trailer, is used to serve a set of customers with known demand and accessibility constraints.

Regarding TTRP solution methods, heuristics are popular approximation-based strategies for
solving medium- to large-scale instances. In fact, heuristics have been used in the solutions of several
VRP variants, with Lespay and Suchan (2021) being one of the most recent references. That study
considered the problem of a food company’s distribution center. This was solved by constructing
an initial solution, which was subsequently improved using a guided local search. Gerdessen (1996)
proposed constructive and improvement heuristics for solving the VRPT. Semet (1995) described
a two-stage heuristic method for obtaining PACVRP solutions: the first phase of the algorithm in-
volves assigning trailers to trucks and determining the optimal allocation between customers and
trucks/vehicles, and then, the second phase builds the routes. Other works, such as those by Chao
(2002) and Scheuerer (2006), also proposed two-phase methods, where they first defined an initial
solution by applying constructive procedures and then used improvement metaheuristics based on
techniques such as tabu search (Glover and Laguna, 1998). Later, Caramia and Guerriero (2010a)
combined a mathematical programming and local search approach to solve the TTRP, and they
compared their results with those of Chao (2002) using a set of benchmarks. Furthermore, the
TTRP can be addressed using a metaheuristic approach, as in the work by Lin et al. (2011), where
a simulated annealing algorithm was designed to find approximate TTRP solutions according to
given time windows, achieving improved results in 11 of the 21 instances of Chao (2002). In ad-
dition, in an original research, Derigs et al. (2013) analyzed different variants of the TTRP and
proposed two-stage heuristics for solving these problems, starting by building an initial solution
and then moving to an improvement phase combining techniques such as local search (LS) and
large neighborhood search (LNS). The behavior of the heuristics created for the TTRPTW were
compared with the heuristic proposed by Lin et al. (2011). Depending on the TTRP variant con-
sidered, the authors applied a specific construction heuristic and, among them, an adaptation of the
Clarke—Wright savings algorithm stood out. In terms of exact solution methods, recent references
include the paper by Parragh and Cordeau (2017), which proposes a branching and pricing algo-
rithm for the TTRPTW. It adapts the LNS algorithm to obtain good initial columns. Compared
with existing metaheuristic algorithms, such as those designed by Lin et al. (2011) and Derigs et al.
(2013), they obtained highly competitive results. Some instances with up to 100 customers were
optimally solved. Rothenbécher et al. (2018) also solved the TTRPTW exactly using a branching,
bounding, and cutting algorithm. Their computational studies showed that their algorithm outper-
forms existing approaches on the TTRP and TTRPTW benchmark instances used in the literature.
To solve the XSTTRP, Accorsi and Vigo (2020) developed a fast and efficient hybrid metaheuris-
tic based on a four-phase solution approach, in which the main improvement phase consists of an
iterated local search.

Another challenging variation of the VRP arises when customers demand various types of prod-
ucts that cannot be mixed. This is the case in the multi-compartment VRP (MC-VRP), which was
initially presented in Brown and Graves (1981) and Brown et al. (1987), whose objective was the
distribution of petroleum products in the United States.

Concerning the solving of multi-compartment problems, different approaches have been followed
in recent years based on heuristics and metaheuristics. Simple constructive algorithms, such as the
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Clarke—Wright algorithm, have also been successfully adapted in this context, as can be seen in
the literature. El Fallahi et al. (2008) compared a constructive algorithm, memetic algorithm, and
tabu search, concluding that the results provided by the tabu search were slightly better, although it
required more computation time. Muyldermans and Pang (2010) used the Clarke—Wright savings
algorithm to obtain a feasible initial solution. Subsequently, they performed a local search with
movements taken from the literature and improved the quality of the solution previously obtained
through a metaheuristic based on a guided local search. They performed a sensitivity analysis on
certain parameters (number of customers and their demands, depot location, vehicle capacity, or
number of products). Their computational study included a comparison with the work of El Fallahi
et al. (2008). Derigs et al. (2011) considered a model with a homogeneous fleet, that is, all vehicles
have the same number of compartments, all with equal capacities. This problem is a particular case
of that addressed in the current paper. They implemented their own benchmarks and a collection
of optimization methods capable of obtaining high-quality solutions, which covered a wide range
of alternative approaches to construction, such as LS, LNS, and metaheuristics. Coelho and La-
porte (2015) defined and compared four categories of multi-compartment problems. They proposed
two formulations for each case and presented a branching and cutting algorithm to solve single-
and multi-period cases containing up to 50 and 20 customers, respectively. Mendoza et al. (2010)
extended the MC-VRP to the case in which the demands are stochastic, giving rise to the MC-
VRP with stochastic demands (MC-VRPSD). Mendoza et al. (2011) proposed a set of constructive
heuristics to solve this problem, which included stochastic versions of the nearest neighbor, nearest
insertion, and savings-based approaches, adapted to the multi-compartment scenario.

Among the most recent investigations of solution methods for the MC-VRP, we highlight those
by Henke et al. (2015, 2019). Starting from a real problem of collecting glass containers, a model for-
mulation and branch-and-cut algorithm for solving the problem to optimality were presented. The
performance of the proposed algorithm was evaluated through extensive numerical experiments.
Furthermore, the economic benefits of introducing compartments to vehicles were investigated. Sil-
vestrin and Ritt (2017) proposed a tabu search heuristic algorithm and integrated it with an iterated
local search to solve the MC-VRP. In several experiments, they analyzed the performance of the al-
gorithm and compared it with results in the literature, finding that it produces better solutions than
those provided by other existing heuristic algorithms. They considered an initial solution obtained
by the Clarke—Wright savings algorithm extended to handle multiple compartments. Metaheuris-
tics based on iterated local searches have shown very good behavior in various VRP variants (cf.
Alvarez et al., 2018, who proposed efficient metaheuristics based on iterated local search and sim-
ulated annealing). Alinaghian and Shokouhi (2018) presented a new mathematical model for the
multi-depot MC-VRP. They designed a hybrid algorithm composed of adaptive large neighbor-
hood search (ALNS) and variable neighborhood search (VNS). The results were compared to the
exact solutions of small instances and compared with each other in large instances. Ostermeier and
Hiibner (2018) proposed an MC-VRP with a fleet of vehicles with flexible compartments. The aim
of their work was to demonstrate the benefits of considering a mixed fleet consisting of both single-
compartment and compartmentalized vehicles. The problem was solved using LNS. Ostermeier
et al. (2021) introduced a typology for MC-VRPs and extensively reviewed the existing literature.
They also made suggestions for future research.

Finally, the work of Caramia and Guerriero (2010b) should be highlighted as the first (and to
the best of our knowledge, the only) to consider the TTRP with compartments, which we refer
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to as the MC-TTRP hereinafter. They investigated a VRP in which at most one type of product
could be assigned to each compartment. Furthermore, they established the additional constraint
that some delivery locations were small and inaccessible by large vehicles. Due to the similarity be-
tween the problem addressed in that paper and the present one, it is considered convenient to point
out the differences between the two studies. First, with regard to actual motivation, the problem
analyzed by Caramia and Guerriero (2010b) was for milk collection on farms by an Italian com-
pany, while in our real-world case study, which will be described in more detail in the next section,
the problem of the distribution of feed among members of a Spanish agricultural cooperative was
analyzed. Regarding the model and methodology used, Caramia and Guerriero (2010b) proposed
two mathematical programming models. One of them aimed to assign vehicles to farmers with the
objective of minimizing the number of vehicles used, satisfying restrictions on capacity, demand,
and types of milk. It should be noted that the group of farmers was divided into four zones, and
an initial allocation of vehicles was made to each zone. The fleet considered was heterogeneous.
The second model was used to minimize the lengths of the routes. In the proposed methodology,
the possibility of serving VCs on sub-tours was not permitted. Accordingly, they used a two-phase
heuristic. Such a process might result in no feasible solutions with respect to the times of work
shifts. Therefore, a multiple-restart mechanism was implemented, and additional constraints, local
search, and a tabu list were added to avoid cycling. Following a different approach, in our setup,
there is a homogeneous truck fleet and a trailer fleet, and vehicle pre-assignments are not made
to groups of customers. In this case, the sub-tours on an MVR, traveled by only a truck, can visit
both TCs and VCs. In addition, what makes an important difference is that the formulation of a
single model covering the whole problem is provided. We solved the model exactly for small-sized
instances and then developed a two-phase heuristic, in which a generalization of the Clarke—Wright
algorithm is used to find an initial solution that is then improved by a tabu search. The results of
the heuristic were compared to the optimal solutions in problems where it was possible to do so,
and a comprehensive computational study was conducted by creating MC-TTRP test problems for
the heuristic. It is also worth mentioning that we studied the performance of our heuristic on TTRP
instances, in addition to studying the scope of our model with instances built from real data.

3. Problem description and formulation
3.1. Case study

The motivation for this study stemmed from the needs of a Spanish cooperative that produces and
distributes feed for farm animals. The company is located in Galicia, a region in the northwestern
Spain with an area of 29,565 km” spread over four provinces and 315 municipalities. The coop-
erative, which was created 16 years ago, currently has a total clientele of more than 1500 farmers
distributed throughout the four provinces of Galicia (although not all of them order from the feed
factory) and covering 60 municipalities across a large geographical area. The annual amount of
feed produced exceeds 150,000 tons.

The agricultural company produces different types of feed, and farmers usually place one or
two orders per month. The number of daily orders is approximately 40, where each order ranges
from 500 to more than 14,000 kg. The average number of annual orders per feed customer is
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approximately 17. There are also occurrences such as the loss or incorporation of new customers.
The roads leading to some of the farms or the farms themselves are inaccessible by large trailers.
Moreover, customers sometimes request different types of feed because they have different species
of animals. Naturally, goods that are not of the same type cannot be mixed. Thus, it is necessary to
have compartmentalized vehicles. In addition to not being able to mix different kinds of feed in the
same hopper, the same compartment cannot be used to supply two different customers because the
cooperative does not have technology to measure out each customer’s supply from their vehicles.

The purpose of this study was to provide a tool for the cooperative to automatically design routes
for each vehicle such that their restrictions are met and the distance traveled is minimized. Each day,
new orders may be received, trucks may experience breakdowns, and customers may change their
demands at short notice. All these factors suggest that route planning is only useful within two or
three days at most.

A team of agricultural engineers designed a comprehensive global positioning system (GPS) that
can monitor various vehicle routes. The GPS provides all the geographic information required to
provide the data to solve the problem. We also know the capacity of each compartment, the de-
mands of different customers, and whether a trailer can access each farm as well as its load restric-
tions.

3.2. Multi-compartment truck and trailer routing problem (M C-TTRP)

As stated before, this paper proposes an MC-TTRP model—a novel MILP implementation of the
TTRP with multi-compartmentalized vehicles.

The MC-TTRP can be described as follows. Let G = (N, E) be an undirected, weighted graph
consisting of a node set N = {0, 1, ..., n}, representing the depot ({0}) and customers ({1, ..., n}),
and an arc set £ = {(i, j) : i, j € N, i # j}, representing the arcs that can be traveled between dif-
ferent nodes. N and N, are subsets of N that contain the n; and n — n; VCs and TCs, respectively. A
nonnegative cost ¢;;, (i, j) € E, is assigned to each arc, which represents the distance a vehicle must
travel from i to j. Each nodei € N requires a service time s;, which, in the case of the depot, refers to
the time required to load the vehicles. For transportation, aset K7 = {1,...,my, ..., my} of trucks
and set KX = {1,...,m} of trailers are available. K[ ={1,...,m;} and K] = {m; + 1, ..., mr}
are the subsets of K7 that consist of trucks that can pull a trailer and pure trucks (without trailer
attached), respectively. Note that [K[ | = |K’|, that is, there are m; complete vehicles. In addition,
my is the number of trailers, and my is the number of trucks (m; < my). Complete vehicles and
pure trucks are assumed to be homogeneous. Let O be the capacity of each truck and Q; be the
capacity of each trailer. Hence, Q7 + Q, is the capacity of a complete vehicle.

As mentioned above and illustrated in Fig. 1, three different types of routes can appear in this
variant of the TTRP. For MVRs, the complete vehicle leaves the depot and serves some VCs; this
part of the MVR is known as the main tour. The main tour is entirely covered by a complete vehicle
and starts and ends at the depot. During the tour of an MVR, it is possible to uncouple the trailer
from the truck and leave it parked at one of the VC locations to start a sub-tour (or even at the
depot, which is always a candidate for trailer parking places). VCs and TCs can be served in a sub-
tour because they are performed by a pure truck. Sub-tours begin and end at the parking place (the
depot or any of the VCs of the main tour), also known as the root of the sub-tour. There are no
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restrictions on the number of sub-tours in an MVR or on the number of sub-tours that can start
from the same VC on a given main tour, as long as the vehicle capacity restrictions are satisfied.
That is, the demands transported on the MVR cannot exceed the capacity of a complete vehicle,
Or + Q;, and Q7 cannot be surpassed in a sub-tour. Another type of route is a PVR, which is
fully traveled by a complete vehicle, implying that only VCs can be delivered to and their demands
cannot exceed Q7 + Q. On the contrary, PTRs serve both types of customers because trucks travel
without a trailer attached. The demand transported on a PTR cannot exceed Q7.

For the sake of simplicity, it is also assumed that travel costs are the same for all vehicles, regard-
less of whether a trailer is attached. Each trailer r € K* is divided into a set of compartments, H”,
where Q¥ is the capacity of a trailer compartment. Similarly, each truck k € K7 is split into a set
of compartments, H”, where Q¥ is the capacity of a truck compartment. Furthermore, let the set
F ={1,...,nr}of feed types be given. Each node (except for the depot) has a nonnegative demand
dir (i € N\{0}, f € F) for every feed type. The demands must be served at customers’ locations and
transported from the depot without the feed types being mixed. In addition, products for different
customers cannot be carried within the same compartment. The total demands of each customer
must be met by the same vehicle, and it is possible to divide a customer’s demand for the same feed
type among several compartments. Trucks and trailers have a maximum usage time allowed of D,
an average speed of vm, and legal capacities, L1 and L, , respectively, which may appear depending
on regulations or laws in some specific areas.

Regarding the decision variables involved in the model, xf‘/’ and yff}" (both binary) are related
to the construction of routes. The former involves routes covered by complete vehicles (MVRs or
PVRs), and it takes a value of 1 if the complete vehicle consisting of truck k € K[ and trailer r € K-
travels from node i to j (i, j € Ny U {0}); otherwise, it is 0. In contrast, yf."]“ refers to routes covered
only by trucks (PTRs or sub-tours of MVRs), and it takes a value of 1 if truck k € K7 traverses
the arc (i, j) on the vth route/sub-tour (v € V = {1, ..., n})! with root / € N; U {0}; otherwise, it
is 0. For / = 0, the associated tour is a PTR (k € K]') or a sub-tour in an MVR whose root is
the depot (k € K['). However, if / € Ny, then such a root refers to the VC of the main tour of an
MVR working as a trailer parking place to start a sub-tour (and k € K'). The remaining variables
are related to the vehicle compartments. In particular, Z T,’”f ,; takes values in [0,1] and represents

the proportion of compartment it € H' of truck k € K7 carrying feed f € F for customeri € N,
whereas Ul]‘ fht is a binary variable equal to 1 if Z lef » > 0and 0 otherwise. Analogously, ZL; 1l

takes values in [0,1] representing the proportion of compartment 4/ € H” of trailer r € K loaded
with feed f € F for customer i € N;, while V,’f 4 18 a binary variable equal to 1 if ZL; h > 0 and
0 otherwise.

The objective of the MC-TTRP is to determine a set of vehicle tours that minimizes the total cost
of all edges to be traveled, that is, the total distance of the solution routes, such that all constraints
are met, that is, the demands are satisfied, no vehicle capacities are exceeded, and the restrictions
of access to customers and constraints related to the loading of compartments are considered.

From now on, we will denote the set of VCs and the depot, N; U {0}, as N?, and we will denote
the set of customers, N \ {0}, by N*. Table 1 gives a summary of the sets, parameters, and decision
variables involved in the model to facilitate better understanding of our proposal. Given this termi-

"Note that a root candidate / € N, U {0} can have as many sub-tours as there are customers, 7.
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Table 1

Notation of the proposed MC-TTRP

Set or parameter Definition Parameter  Definition

{0} Depot n Total number of customers

N, Set of VCs n Number of VCs

N> Set of TCs mp Number of trailers (and of complete
vehicles)

N ={0}UN; UN, Setof nodes (customers and depot) my Number of trucks

N* = N\ {0} Set of customers Cij Distance a vehicle must travel from 7 to j

N;] = N, U {0} Set of VCs and depot nr Number of different types of feed

KT Set of trucks that can hitch a trailer diy Demand of customer i for feed f°

KT Set of pure trucks Or Capacity of a truck

KT = KT UKT Set of trucks Or Capacity of a trailer

K* Set of trailers a Capacity of a truck’s hopper

F Set of different types of feed i Capacity of a trailer’s hopper

HT Set of truck hoppers D Maximum time allowed to use a
truck/vehicle

HF Set of trailer hoppers vm Average speed of trucks/vehicles

V Set of tours/sub-tours leaving a specific ~ s; Service time required for node i € N

root

Ly Legal capacity of trucks L, Legal capacity of trailers

Variable Definition

x{/’ Binary variable equal to 1 if truck k with trailer r passes through arc (i, j); 0 otherwise

yﬁ.’ ’ Binary variable equal to 1 if truck k passes through arc (i, j) on route/sub-tour v with parking place /; 0

otherwise

Ul"f n Binary variable equal to 1 if compartment /¢ of truck k is loaded with feed f for customer 7; 0 otherwise

Vl’f W Binary variable equal to 1 if compartment 4/ of trailer r is loaded with feed f for customer #; 0 otherwise

Z le/ " Proportion of compartment /¢ of truck k loaded with feed f for customer i

ZL’I.': o Proportion of compartment 4/ of trailer r loaded with feed f for customer i

nology and notation, the objective function and constraints of the MC-TTRP can be formulated

as follows:
minimize:

IDIPIPIMITES 3 39 3P I I

ieN? jeN? keK[ reK” ieN jeN keKT [eN? veV

subject to

2.2 2. 2 22 2 =1 JeN

ieN? keK[ reKt ieN keKT [eN? veV
I#]

)SDIDIED 3P SR EL RN TY

ieN? keKT reKt ieN keKT

(1)

2)

3)
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D> =1 jeNy (@)

ieN keKT leN? vey

D22 2 =0 (5)

ieN keKT leN, veV

Y=<l keK';leN);veV; (6)
JEN .
J’Z/'VSZZXQI‘, j € N¥, keKlT; le Ny, veV, )
ieN? reKt
yf”/]"fzyécplv’ i’jeN;keKT;ZGNO;VEV; (8)
PEN

ZZZJ’?}VZO’ keK'; leN; )
ieN jeN veV
Y =0, kek; o
ieN jeN veVy
ZZJ’IS_?VSL ke K, )
veV jeN*
Yo X<l kek: )
JEN| reKt
oS <t rekh .
JEN keKT
YD dipl < 0r. keK[;leN;veV; (14
iEN* jeN* feF

J#l
Z Z Zdjfyﬁov <Qr., keKi;veV; s

ieN jeN* feF

DI AT+ YD Y Y diyl < Or+ 01, keK[; rekh (16)

ieN}’ JEN| feF ieN* _/i]é\;* [eN, veV feF
J
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IR DIOIIPB DI MCTELH

ieNy jeN? IeN) veV IEN* JEN ieN} jeN?

* Z 2:2:2:(‘7//"’”))’/‘1L <D-s, keK;rekh

leN? vey ieN jeN

DD (s ey/vmyl <D, keK);

veV ieN jeN
Zyk” Zy’jll,‘ jeN; keK'; 1eN; veV;
ieN peN

. 0. T. L.
le. ijp, jeN;; keK;; reK"
ieN) peN?

ZZXZ.SIBI—I, keKl; re K*; VBC Ny : |B| > 2;
ieB jeB

DXV =3" > Y Xy <IBI-1, keK:leNg;
ieB jeB i€eBNN, jeN\B reKL

veV; VBC N : |B| > 2;

SN <IBI-1, keKliveViVBCN :|B22
ieB jeB

FED 2D MRS ) 30 DU S U

feF hteHT zeN? reKL ieN [eN; veV
B ; J €N
|HT|ZZZ /ht<zzyf€10‘ kEKZT]EN
feF hteHT ieN veV
Hle Y 202 Y Y A rekh jen:
feF hleHL ieN? keK[
<D D DN keKijeNy
feF hteHT ieN leN? vey
kr H H r T. L.
Sl <N oz, + Y Y Y ZL . ke K re kY
ieN} feF hteHT fEeF hleHL

J € Ni;

1041

(17)

(18)

(19)

(20)

ey

(22)

(23)

(24)

(25)

(26)

27)

(28)
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Zzylol < Z Z QfZT!,,. keK]: jeN; (29)
ieN veV feF hteHT
SY YA Y Y ofzrty,. keklijen: )
ieN [eN; veV feF hteHT
SY YA =Y X ozt kekTijen: 6n
ieN IeNy veV feF hteHT
Y0z + Y Y OFZTS =dy, jEN; fEF; (32)
reKL hleHL keKT hteHT
Y. Y OFZT  =dis, jENs; feF; (33)
keKT hteHT
22 D Q2T <L, keK'; (9
ieN* feF hteHT
S>> ofzL,,, <L rekh (35)
ieN)| feF hieHL
Yyozrh, <1, keK';iheH" (36)
ieN* feF
Y>> zr,,, <1, rek" hleH" (37)
IENlAfEF
ZT) ) — Ul <0, ieN% feFikeK's e H'; (38)
ZL = Viiw <0, i€N;: feF:rek" hleH" (39)
Ul Ul =1 L jeN' fi,faeF: fis fri ke K's ht e H; (40)
Viifl,hl-i_szhl <1, i,jENl; flaf2€F; fl?éf2; VGKL; hleHL; (41)
U+ Ul <1, i jeN% i#j feFikeK's heH; (42)
View+Viw<1l i jeNy;i#j feF;rek" hleH: (43)
X7 €f0.1}, ijeN): keKl:rek" (44)
klv T . T. 0. .
Vii'el0,1}, i, jeN; keK';leN);veV; (45)
ZT! ,, €01, ieN: feF:keK'; heH"; (46)
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ZL €01, ieN); feF;rek" nleH" (47)
U'wef0.1), ieN: feFikeK'; heH"; (48)
Viwel0.1}, ieN);s feF;reK" hleH" (49)

The objective function and above restrictions are explained in the following, separating them into
thematic blocks to fully understand the model:

* Objective function (1): This minimizes the total cost of all tours. The first term refers to the routes
traveled by a complete vehicle (PVRs and main routes of MVRs), while the second term includes
the PTRs and MVR sub-tours.

* Customer-specific restrictions (2-8): (2) establishes that each VC must be present exactly once
either in the main route of a complete route or in a sub-tour of which it is not the parking place.
From (3), a VC can be present twice if it is the root of a sub-tour. (4) indicates that TCs must be
visited only once, either on a sub-tour or on a PTR (when / = 0). From (5), the depot cannot be
present in any sub-tour that begins at a VC. Constraint (6) shows that for each sub-tour or PTR,
the corresponding truck goes from the parking place or depot, as appropriate, to a customer no
more than once. (7) implies that if a VC is not served by a complete vehicle, then that customer
cannot be a parking place candidate to start a sub-tour. (8) describes that other customers can
only belong to a sub-tour starting from a candidate parking place if that candidate is actually
selected as a parking place.

* Vehicle-specific restrictions (9-18): From (9), trucks that do not have an associated trailer do not
have a main route. (10) indicates that trucks with a trailer attached cannot perform PTRs. From
(11), for trucks without trailers, there can be at most one route, that is, a PTR (there is no mul-
tiple use of vehicles). From constraints (12-13), for complete vehicles, the number of sub-tours
is not limited, but the number of main routes cannot exceed one. (14—15) describe the customer
demands, which cannot exceed the capacity of a truck, O, on a route/sub-tour without a trailer.
(16) explains the demand limits on a route performed by a truck pulling a trailer, which cannot
exceed Q7 + Q. From (17), complete vehicles cannot exceed their maximum usage time, includ-
ing the loading or unloading time of a vehicle in the depot, s¢. (18) specifies the maximum usage
time in the case of trucks, which also cannot be surpassed.

» Formulation-specific restrictions (19-23): (19) covers flow conservation in sub-tours and PTRs.
(20) represents the flow conservation on PVRs and main routes. (21) provides disconnected cycle
elimination constraints on the main routes of MVRs and PVRs. (22) outlines the suppression of
disconnected cycles in sub-tours. (23) models the removal of disconnected cycles on PTRs.

* Relations between routes and load distribution in different compartments (24-31): (24) specifies that
if a truck in an MVR or PVR does not visit a VC, then that truck does not load goods for that
customer in any of its compartments. From (25), if a truck in a PTR does not visit a VC, then
that truck does not load products for that customer in any of its compartments. From (26), if a
trailer does not visit a VC, then that trailer does not load goods for that customer in any of its
compartments. From (27), if a truck does not visit a TC, then it does not load goods for that
customer. (28) states that if a complete vehicle visits a VC, then either the truck or the trailer is
loaded with goods for that customer. From (29), if a VC is visited by a truck (in a PTR), then

© 2021 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies

85U8017 SUOWWOD 8A 81D 3ot (dde 8Ly Aq peusenob afe o O ‘8sn J0 Sa|nJ Joj Ariqi]8UIUO /8|1 UO (SUONIPUOD-PUR-SWLBH W0 A8 | 1M ARe1d 1 pul|u0//SdnL) SUORIPUOD Pue SWe | 8 88S *[202/20/90] Uo AriqiTauliuo A8|IM ‘581 Aq TZ0ET J0M/TTTT OT/I0P/WO0D A8 1M Ae.q 1 jpul|uo//Sdny Wouy papeoumod ‘Z ‘€202 ‘S66ES.HT



1044 L. Davila-Pena et al. / Intl. Trans. in Op. Res. 30 (2023) 1031-1064

the truck distributes goods for that customer. Constraint (30) states that if a truck in a sub-tour
serves a VC, then that truck is loaded with goods for that customer. From (31), if a truck visits a
TC, then it transports goods to that customer in some of its compartments.

* Demand delivery restrictions (32-33): From (32), every VC receives all of its demand. From con-
straint (33), every TC is delivered all of its demand.

* Volume of goods that can be transported (34-37): From (34), no truck loads more than what is
legally allowed. Constraint (35) states that no trailer loads more than what is legally allowed. (36)
states that no truck compartment loads above its capacity. From (37), no trailer compartment
loads above its capacity.

* Technical restrictions in the loading procedure (38—43): (38) defines the logical relationship between
U and ZT. (39) defines the logical relationship between V' and Z L. From (40), it is not possible to
mix products of different types (neither from the same customer nor from different customers) in
the same compartment of a truck. Constraint (41) states that products of different types cannot be
mixed (neither from the same customer nor from different customers) in the same compartment of
a trailer. (42) prohibits mixing products from different customers in the same truck compartment.
(43) disallows the mixing of products from different customers in the same compartment of a
trailer.

* Nature of the variables involved in the model (44-49): From (44) and (45), x and y variables are bi-
nary, respectively. (46) and (47) specify that ZT and ZL variables take values in [0,1], respectively.
From (48) and (49), U and V variables are binary, respectively.

Our proposed MC-TTRP offers a comprehensive way to model compartments using the TTRP
approach. It was formulated as an MILP problem, considering the complexity associated with this
type of problem. The following sections analyze how to solve it both approximately or exactly,
alongside the advantages and disadvantages of each method.

4. Heuristic approach

Our proposal for solving the novel MC-TTRP model is a two-phase method: (1) a constructive
heuristic that creates a feasible solution and (2) a metaheuristic approach that iteratively improves
the solution provided in the previous stage. Moreover, our algorithm can consider additional fea-
tures, such as fleet limitations, and solve the classic TTRP. The following subsections describe the
proposed method in detail.

4.1. Construction phase

For the first phase, we designed an ad hoc Clarke-Wright algorithm (CW) capable of handling
TTRP problems with compartments. The CW is a popular constructive heuristic for the basic VRP.
Its strategy is to build a feasible solution based on the notion of savings in the routing cost.
Typically, the CW begins by creating a starting solution for which all routes start at the depot,
visit one customer, and return to the depot. It continues by computing the savings of joining each
pair of these routes. Throughout each iteration, the CW considers the savings in descending order
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Algorithm 1. Savings-based construction heuristic for the MC-TTRP

1: procedure CW_MC-TTRP (n,n,,C,d, Or, O;, H, H", f)

2 Create Ny ={1,...,m}and N, = {n; + 1, ..., n} > Initialization.
3 Create R and R

4: Create S and S

5:  Create matrices H , HL ,and T

6: Sn=1

7 while S,, > 0 do > Constructive heuristics.
8: S,» = Maximum saving in {S, S‘}

9: if S, € S then

10: Extract coordinates [i, j] of S,, € S

11: Check type of routes r; and r; using T

12: if r; and r; can be merged then

13: Apply fusion > Different fusion cases can be seen in the description.
14: Update {R, R, S, S, H: , HT | T}

15: else

16: Update {S, 5'}

17 end if

18: else

19: Extract coordinates [i, j] of S,, € S

20: [ = Check last customer using r; or r; and R

21: if r; or r; can be converted into a sub-tour then

22: Create MVR

23: Update {R, R, S, S, H: , HT | T}

24: else

25: Update {.§}

26: end if

27: end if

28:  end while

29:  solution_route = Create route using R, Rand T

30:  Add disconnected customers in solution_route, and update {7, HI , HE } > Refining the construction phase.
31:  Adjust vehicle fleet creating or completing MVRs in solution_route, and update {R, R, T, HE HT 1
32:  Adjust vehicle fleet splitting routes in solution_route, and update {R, R, T', H: , H' }

33:  Adjust vehicle fleet switching residual routes in solution_route, and update {R, R, T, H: , H

34:  Apply tour improvement in solution_route, and update {R, R, T}

35:  Apply local search movements in solution_route, and update {R, R, T, H. , HL }

36: cw_solution = Create final route using R, R, and solution_route

37:  return(list(cw_solution, T)))

38: end procedure

to choose which routes to merge, given that such merging is feasible. It stops when all customers
have been served.

The pseudocode for our proposed CW is shown in Algorithm 1. First, the initial parameters,
such as the total number of customers and number of VCs (n and n;, respectively), matrices of de-
mands and distances (¢ and C), vehicle capacities (Qr and Q;), vehicle compartment configuration
(H" and H"), and number of different types of products ( /), are defined. Moreover, unlike classic
CW, our heuristic considers two matrices of routes: R and R. The former is updated considering
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J 1 q
Cij
Coj i i
Cio Coi Cjo
Cio

Fig. 2. Calculation of s;; fori, j € N.

jo ia ci

. Cii .
Coj I ! |
Cio Coi .
0i
Cio Cio

Fig. 3. Calculation of §;; fori € N, and j € N,.

those tours directly connected to the depot, while R considers the sub-tours whose roots are VCs.
Consequently, as indicated in line 3 of Algorithm 1, we initialize both matrices as follows:

01 0

0 2 0 R
R=1]1. . .|=R

0 n O

assuming that routes (0, i, 0) for i € N; are traveled by complete vehicles and routes (0, j, 0) for
j € N; are covered by trucks alone. Each customer’s corresponding row represents the previous
and next customer in the transport network, as appropriate.

_ Furthermore, at the beginning of the proposed algorithm, two saving matrices are created: S and
S. The entries of S are computed as s;; = ¢jo + coj — ¢;; (for i, j € N, i # j)?, which represents the
standard savings matrix. This scenario is illustrated in Fig. 2. However, because we have two dif-
ferent classes of customers and given that VCs can serve as trailer parking places, we also consider
savings §;;. These values are calculated as follows:

s §;j=us;fori,je Nyori, je N,.

s §i;j=cjo+coj —c;j—cji for i e Ny and j € N,. These savings are the result of removing route
(0, j,0) and converting it into a sub-tour whose root is i. That is, we will have the route
©,...,4,j,i,...,0)instead of (0, j,0)and (O, ..., 14, ..., 0). Figure 3 illustrates this situation.

* §ij = cjo + coi — ¢jj — ¢ji for j € Ny and i € N>. These savings are analogous to the previous ones,
swapping i and j in their type of customer.

>Moreover, s; = 0 for all i € N.
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Hence, matrix S will have the following structure:

S1.1 S1,m S1n+1 T Sl,n

S = Sny. 1 o Smm | Snpm+l T Smn
Sm+1,1 0 Su+Lm Sm+1Lm+1 0 Su+1n

Sn,1 e Sn,nl Sn,n1+1 et Sn,n

We must also consider the features related to compartments. As shown in line 5 of Algorithm 1,
we create matrices HL ., HEL ~and T. The former two are initialized as H” and H”, respectively,
and are updated by setting the compartments that have already been used to —1. Matrix 7 plays
a fundamental role in this implementation because it contains all information about the vehicles’
loading procedures; it indicates the allocation details of each customer’s demand for its correspond-
ing vehicle.

Once all initial parameters have been created, our CW implementation follows an iterative pro-
cess, where different routes are merged based on the maximum saving, S,, (lines 7-28 of Algo-
rithm 1). Thereafter, r; and r; are considered to be routes containing customers i and j, respectively.
By checking matrix 7" (line 11), the algorithm knows which vehicles cover each of these routes; thus,
we can determine the PTRs, PVRs, and MVRs. Therefore, our proposed method repeats a set of
steps, while S, the maximum saving of S and S, is positive (stop condition). Thereafter, each iter-
ation of the algorithm has two discernible cases: S,, € S or its opposite, S,, € S.

The first case occurs when S,,, belongs to S (lines 9—17 of the pseudocode). Our heuristic applies
the classic routing merge of the CW, which considers the type of customers (VCs or TCs) involved
in such saving, which is a decisive factor in the type of route generated. Thus, four different unions
between routes (by connecting customer i to customer j) can be conducted, as long as 7 is the first
customer of route 7; and j the last one of route r;:

1. Merging two PVRs: If routes r; and r; are PVRs covered by different complete vehicles, where
the trucks are not yet loaded, the algorithm must count the number of unavailable compart-
ments between both trailers. Two situations arise from this: (i) If the number does not exceed the
number of trailer compartments, our method can move all goods to one trailer, emptying the
other. (ii) If the number exceeds the number of trailer compartments, our method starts to load
one of the trucks as long as the total number of available compartments is sufficient to meet the
demands of both routes. Thus, it moves the goods from the other trailer to the chosen complete
vehicle, giving preference to the filling of the trailer.

2. Merging two PTRs: When both routes r; and r; are PTRs, our heuristic can merge them as long
as the number of unavailable compartments between both trucks does not surpass the number
of truck compartments. In this case, the goods are moved to one of the trucks, leaving the other
free.

3. Combining an MVR with a PVR: If one of the routes is an MVR and the other is a PVR with an
empty truck, say r; and r;, respectively, then their union is possible when the demands already
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Fig. 4. Merges performed when S € S,,.

met by route r; fit in the trailer of route r;. That is, when the trailer of route r; has a sufficient
number of available compartments to move goods from the trailer of route r;.

4. Inserting route r; in a PTR: If route r; = (0, 7, 0), where i is a VC, and route r; is a PTR, then
merging both routes is possible when the number of available compartments in the truck is
sufficient to hold i’s demands.

For all the above considered fusions, updating matrices {R, R, S, S‘, Hrgm, HrLem, T} is necessary
to contemplate the changes conducted, as indicated in line 14. If merging cannot be completed, we
must simply update matrices S and S by setting their corresponding entries to zero.

The second case occurs when S contains S,,, which means that the current saving arises from
merging a PTR and PVR (obtaining a sub-tour as a result). Lines 18-27 of Algorithm 1 correspond
to this situation. In such a case, it is clear that customers involved in S,, have different types. Let us
see how to proceed when i € N; and j € N,, because the other case is analogous. Our method can
only execute merges when r; is a PVR with an empty truck and r; is a PTR. With this in mind, two

possibilities arise:

* If r; = (0, j, 0), the algorithm uncouples the truck of route r; and hitches the truck of route r;,
loaded with j’s demands, to the trailer of route r;. This proceeds as illustrated in Fig. 4a.

» Suppose j is the first customer of the route but not the only one. In this case, we must also consider
the last customer of route r;, say, /. To join routes r; and r;, it is necessary that co; + cjo — ¢;; — ¢
is positive. We illustrate this merging in Fig. 4b.

4.2. Refining the construction phase

Once we have exited the main loop and no saving is positive, the algorithm must check whether the
resulting route configuration is feasible. The following post-processing functions (lines 30-35 of the
pseudocode) are applied in the order in which they are presented to verify such feasibility, correct
the tours if needed, improve the quality of the results, and limit the vehicle fleet:

* Add disconnected customers: This checks if there exists a route r; = (0, 7, 0), which means that
customer 7 has not yet been served. During the initialization of R, we mentioned that the starting
routes should be covered by complete vehicles or trucks alone, depending on whether i is a VC or
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Fig. 5. Adjusting vehicle fleet by creating or completing MVRs.

TC, respectively. Considering this, we supply customer i with its corresponding type of vehicle,
contemplating the compartment load in matrix 7'. After that, we are able to add the route (0, 7, 0)
to the solution.

Adjust vehicle fleet by creating or completing MVRs: The aim of this function is to use all the
available trailers in the solution obtained by eliminating excess PTRs and PVRs, either by chang-
ing or merging them into MVRs, respectively. First, because all PTRs with at least a VC can be
transformed into MVRs, we convert as many PTRs into MVRs as necessary to reach the required
number of trailers. Subsequently, the lowest quality PVRs and PTRs are selected to be joined ei-
ther to the main tour or to one of the sub-tours of an existing MVR, provided that the result is a
feasible solution. This procedure is illustrated in Fig. 5.

Adjust vehicle fleet by destroying routes: It is assumed that the routes to be deleted or preserved
have already been selected to adjust the fleet. Iteratively, an attempt is made to insert the first
group into the second group. The method of merging these routes depends on their nature. For
instance, a PTR could only be part of a sub-tour of an MVR or join another PTR. If there are
no feasible insertions of a specific route to be deleted, it is split in half. The algorithm will try to
add it again in the next iteration, repeating this process until there are no more residual routes or
until they cannot be divided anymore.

Adjust vehicle fleet by switching residual routes: After applying the previous function, if there
are still routes to be eliminated, they will consist of a single customer. This last procedure to
adjust the fleet exchanges these residual customers for others that have less load on the routes to
be preserved while aiming to keep the cost function from increasing as much as possible. Once
the exchange is conducted, the customer to be inserted requires less space. In this manner, the
algorithm aims to relocate it to one of the existing routes, repeating the process until there are no
residual routes left.

Apply tour improvement: This function performs 2-opt, 3-opt, and 4-opt* moves on the resulting
routes®, including the sub-tours, individually. For each route, the move that leads to the greatest
cost reduction, if any, is applied.

Apply local search moves: Finally, a local search is applied to the solution obtained from Algo-
rithm 1. This iteratively applies a set of small modifications to intensify the search on routes
close to the current solution. To implement these moves, we were inspired by the work of Derigs
et al. (2013), where a hybrid approach for solving the TTRP, combining local search and large
neighborhood search, was presented. We adapted some of the moves implemented in their local

3The 4-opt* procedure uses a subset of potential 4-opt moves, cf. Renaud et al. (1996).
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Fig. 6. Local search moves for the MC-TTRP. (a) Replacing the single customer of a sub-tour with a VC, (b) replacing
a sub-tour root with another VC, (c) replacing a main tour customer with a TC, (d) exchanging a PTR and a sub-tour
and relocating the parking place, (¢) moving a main tour customer to a new sub-tour, and (f) moving a sub-tour
customer to the main tour and splitting the sub-tour.

search to the MC-TTRP. Therefore, this function contains both specific TTRP moves as well
as the standard 2-opt, 2-opt*, exchange, and relocate operators commonly used in many VRP
implementations. Figure 6 shows some of the moves performed in this step.

Finally, as shown in Algorithm 1, our heuristic for the MC-TTRP completes the work, returning
a feasible route and the loading configuration of all the vehicles involved in the transport network.

4.3. Iterated tabu search

As stated before, in the second phase of our proposal, an iterated tabu search (ITS) is implemented.
We developed this metaheuristic based on previous related works, such as that by Cordeau and
Maischberger (2012) for some VRP variants and the approach implemented by Silvestrin and Ritt
(2017) for the MC-VRP.

The ITS starts from a feasible solution, which, in our case, is the solution provided by the con-
structive heuristic. This procedure is usually based on two main actions: a tabu search and a per-
turbation. The former involves a set of local moves applied sequentially to improve the solution,
with the ability to accept slightly worse solutions or to move through the infeasible region when the
search is stuck. Moreover, to avoid returning to already-visited solutions, they use the short-term
memory strategy known as the tabu list. In the case of the perturbation process, the objective is to
escape from local optima by exploring the vicinity of the current solution through small changes
in the routes. As a general overview, the ITS aims to improve the best-known solution by com-
bining the diversification provided by the perturbation with the intensification and diversification
produced by the tabu search.

Algorithm 2 describes the scheme of our proposed ITS, of which we will now present a brief
outline. The input parameters are the solution returned by the CW, which is the starting point, and
a maximum number of iterations used as a stopping criterion. In the main loop (lines 5-14), the
current solution is perturbed at each iteration after having applied the tour improvement function
(presented in Subsection 4.2). This modified solution will be used as an initial guess for the tabu
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Algorithm 2. Iterated tabu search for the MC-TTRP

1: procedure ITS_MC-TTRP (cw_solution, max_iterlTS)

2 best_solution < cw_solution

3 current_solution < cw_solution

4. iterITS =0

5: while iterITS < max_iterIT S do

6: current_solution_i < Improve tours in current_solution

7 current_solution_i, ¢ < Perturbs the current_solution_i

8 current_solution_i, best_TS_solution <— TABUSEARCH(current_solution_i, ¢, iterlT S, max_iterlTS)

9: if cost(best_TS_solution) < cost(best_solution) then

10: best_solution < best_TS_solution

11: end if

12: with probability (iterl T S/max_iterI T S)?, current_solution < best_solution
13: iterITS = iterITS + 1

14:  end while
15:  return(best_solution)
16: end procedure

search. In turn, as can be seen in line 8, this latter method returns its current solution, which will be
the one to be perturbed in the next iteration, and its best solution, which can update the best overall
solution (lines 9-11). In this way, throughout the iterations, the algorithm perturbs and searches the
current solution, which is initially the best-known solution. However, as the algorithm progresses,
there is a probability of working with another solution to avoid stagnation (line 12). Finally, the
algorithm terminates when the stopping conditions are fulfilled, and it outputs the best solution
found during the search.

Regarding the perturbation procedure, this is a key point in our proposal because it guarantees
diversity in the method. First, a random number, ¢, is chosen between 1% and 10% of the total
number of customers. Then, ¢ customers are randomly selected and removed from the solution,
to be subsequently reinserted. For the deletion and insertion operations, we use the generalized
insertion procedure (GENI) and unstringing and stringing (US) algorithm proposed by Gendreau
et al. (1992). This is followed by 3-opt and 4-opt* local search algorithms to improve the routes.
Depending on the type of customer to be deleted or inserted, as well as its position in the solution,
different possibilities of moves can arise. Some examples are shown in Fig. 7. Each customer is
inserted into the route and position that minimizes the increase in the solution cost. If the pertur-
bation failed to introduce the nodes that have been removed, we allow a threshold of infeasibility
in the perturbed solution.

After the solution is perturbed, the algorithm performs the tabu search, whose implementation
requires an additional explanation. This is an iterative procedure, where the strategy is essentially
to apply the best possible MC-TTRP local search moves (some of which are shown in Fig. 6) in
the neighborhood of the current solution, as long as these moves are not stored in the tabu list.
The approach adopted for the tabu list is as follows. As it is known, a move involves a set of routes
and the customers to be deleted or inserted into them. At each iteration, the tabu list stores for
each move applied to the current solution, a set of pairs {customi, rj}, with customi being the
customer removed from route rj. In this way, the tabu search only accepts those moves where
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Fig. 7. Removal and insertion operations in the perturbation for the MC-TTRP. (a) Inserting a VC into a PVR, (b)

inserting a TC into a PTR, (c) inserting a TC into a sub-tour, (d) converting a PVR into an MVR by creating a sub-tour
with a single TC, (e) removing a VC from a PTR, and (f) removing a VC that works as parking place from an MVR.

all the customers introduced in the routes are different from all the pairs {customi, rj} stored in
the tabu list. The exception to this rule occurs when the result improves the best solution found
so far, in which case an aspiration criterion is applied. Consequently, the tabu list prevents the
insertion of customers into the same routes for a number 7 of iterations. Each pair {customi, rj}
has an associated survival counter that controls the number of iterations that will be in the tabu list,
and that requires to be updated at each iteration of the tabu search. When one of these counters
reaches T, its corresponding pair is removed from the tabu list. The parameter 7 is initialized at the
beginning of the tabu search and is chosen randomly from the uniform distribution on the interval
[1, /n - nr], where n is the number of total customers, and nr corresponds to the number of routes
in the current solution.

As the algorithm applies the best possible move, it may not improve the cost of the current
solution or may even be infeasible. However, this is desirable because exploring new regions using
worse or/and infeasible solutions prevents us from getting stuck in a local optimum. Therefore, to
measure the total cost of each route, r, we consider the following objective function:

F@r)=d(r)+ aC(r), (50)

where d(r) is the total distance traveled, o a parameter of penalty, and C(r) denotes the excess
load on both vehicles and compartments. To calibrate the « penalty, we follow the approxima-
tion proposed by Cordeau and Maischberger (2012), which we recommend referring to for further
details about this mechanism. Briefly, the « penalty is initially set to 1 and then updated through-
out the tabu search, depending on the excess load in the current solution. In the case of feasibil-
ity, that is, if constraints are not violated, the penalty is decreased by a factor 1 + y. Otherwise,
if the current solution has excess load on its routes, « is increased by 1+ y. The parameter y
is randomly selected at the beginning of the tabu search from the uniform distribution on [0,1].
Consequently, this update strategy produces an oscillatory effect between feasible and infeasible
solutions.

In addition, as in other tabu search methods such as Cordeau and Maischberger (2012) or Sil-
vestrin and Ritt (2017), a table with the most frequent moves is also used to penalize the function
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Algorithm 3. Tabu search for the MC-TTRP

1: procedure TABUSEARCH (current_solution_i, ¢, iterl TS, max_iterITS)

2 Choose t randomly from U[1, 4/n - nr] and create a new tabuList = {}

3 Create a new freqPenList = {} and choose ¢ randomly from U[0,1]

4 Initialize « = 1 and choose y randomly from U[0,1]

5: best_TS_solution <« current_solution_i

6 counter_iters_without_improvement = 0

7 max_iters_without_improvement = \/ (max_iterIT S — iterITS) - ¢

8 while counter_iters_without_improvement < max_iters_without_improvement do

9: Check all local search moves in the neighborhood of the current_solution_i

10: Evaluate the cost of the moves, penalizing infeasible solutions using « (see expression (50))
11: If the moves do not produce an improvement, they are penalized using ¢ and freqPenList (see expression (51))
12: Apply the best possible move in current_solution_i according to tabuList

13: if cost(current_solution_i) < cost(best_TS_solution) then

14: best_TS_solution < current_solution_i

15: counter_iters_without_improvement = 0

16: else

17: counter_iters_without_improvement = counter_iters_without _improvement + 1

18: end if

19: if current_solution_i is infeasible then

20: a=a-(1+y)

21: else

22: a=a/(1+7y)

23: end if

24: Save the selected move in freqPenList

25: Update tabulList

26: end while

27: return(current_solution_i, best_TS_solution)

28: end procedure

cost when the search is stuck in a local minimum. Thus, when the best possible move decreases the
current solution cost, we reevaluate all possible moves according to a new objective function:

F'nrM)y=Fr)|1+¢ Z freqPenList(ci, r)/i], G

ciecMr

where M is a specific move, ¢ is a penalty uniformly randomly chosen from [0,1], cMr is the set of
customers involved in M to be inserted into a route r, freqPenList is the table of frequencies, which
returns how many times a customer ci entered in the route r, and i is the current iteration.
Algorithm 3 shows the main scheme for the implemented tabu search. In the first lines of
the pseudocode (lines 2-7), the tabu list (fabuList) and the table with the most frequent moves
(freqPenList) are created, and all the parameters explained above are initialized (z, «, y, and
). Furthermore, a maximum number of iterations without improvement is set (line 7), which,
in this case, will be the stopping criterion. During the main loop (lines 8-26), the tabu search
evaluates all possible moves, selecting the best possible one according to the constraints imposed
by the tabu list. If the current solution is a local optimum, the algorithm selects the best move
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considering freqPenList and expression (51). Once a new solution is created, we check if it in-
creases the cost of the best one found during the tabu search (lines 13-18). Next, « is calibrated
based on the solution feasibility (lines 19-23). Moreover, the algorithm adds the selected move in-
formation to freqPenList. The tabu list is updated in line 25 by reducing the survival counter of the
stored pairs. Notably, those pairs that reached the iteration limit inside the list are then released,
and new pairs involved in the last applied move are included. Finally, after the algorithm reaches
the stop condition, the tabu search returns both the best solution visited during the search and the
current solution. The latter is from which Algorithm 2 will continue to work, perturbing it in the
next iteration of the I'TS algorithm.

5. Computational results and discussion

To evaluate the efficiency of our proposals, we analyzed the impact of the MC-TTRP model and
two-phase heuristic using a modified version of a set of well-known benchmarks from the literature
and a real-world problem.

The proposed heuristic described in Section 4 was implemented in R 4.0.2. To validate its perfor-
mance, a set of experiments was conducted on the Finisterrae II supercomputer, provided by the
Galicia Supercomputing Centre* (CESGA), which consists of 306 nodes powered by two deca-core
Intel Haswell 2680v3 CPUs with 128 GB RAM connected through an Infiniband FDR network.
The mathematical model presented in Subsection 3.2 was solved using the Gurobi 8.1.0 solver. The
code was run on a hexa-core Intel i7-8700 CPU with 16 GB RAM.

The following subsections report the computational study. Subsection 5.1 reports a detailed study
of the exact solution of the proposed MC-TTRP model using the case study. To the best of our
knowledge, there are currently no existing MC-TTRP benchmark problems. Hence, before show-
ing the computational results of our algorithm, Subsection 5.2 describes the generation of a set
of new MC-TTRP test problems based on the 21 well-known TTRP cases introduced by Chao
(2002). Subsection 5.3 describes the solutions obtained both in the instances created by Chao for
the TTRP as well as in our generated datasets for the MC-TTRP using our proposed heuristic.
Finally, the real-world application described in Subsection 3.1 was used to validate our heuristic,
as reported in Subsection 5.4, comparing the quality of the results achieved to those in the case of
the exact method.

5.1. Exact solving of a real example

As we have real data for this case study, an optimization scenario was built to assess our MC-
TTRP model. In particular, we know the distances between the different nodes (customers and
central depot) as well as customer demands and vehicle capacities. Moreover, the drivers work 8
hours per day, and we estimated the average vehicle speed to be 60 km/h. Furthermore, because
we do not have information about the service time of each customer or the time employees need
to load the trucks, we assumed it to be negligible. In addition, in our real instance of the model,

“https://www.cesga.es/
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10 customers were selected, five of each type, provided by the company’s vehicles: three trucks and
two trailers.

The trucks have 13 hoppers each, which can carry up to 1.5 tons of loads, while the trailers have
15 hoppers each with a maximum capacity of 2 tons. The demand d of the customers (in kilograms),
according to the four types of feed distributed by the cooperative, and the matrix of distances, C,
(in kilometers) between the nodes are as follows:

0 21 20 17 65 63 60 19 22 24 60
2100 4 6 60 58 55 15 18 20 55

20 4 0 4 59 56 53 13 8 12 53
19059 9(5’1 ‘2‘888 g 17 6 4 0 57 54 52 11 13 16 52
O 65 60 59 57 0 3 7 66 6 71 6
d=| o 203 0 [andc=]63 58 56 54 3 0 4 64 66 6 3
e W00 60 55 53 52 7 4 0 61 64 66 2
RN 19 15 13 11 66 64 61 0 3 5 6l
o 2 18 8 13 69 66 64 3 0 7 64
e % 24 20 12 16 71 69 66 S 7 0 66

\60 55 53 52 6 3 2 61 64 66 0

1000 0 0 2300
4000 O 0 2041

To solve the associated mathematical problem, Gurobi® was used as an exact MILP solver. The
optimization process required 31.2 hours to obtain the optimal solution. The value of the objective
function was 207 km, containing an MVR of 74 km, whose main route, 0-3-2-1-0, is traveled by
truck 1 with trailer 1 attached. Customer 2 serves as a trailer parking place for the sub-tour 2-8-7-
9-2 with the truck. The remaining customers are served by truck 3 on a PTR, 0-6-5-4-10-0.

It can be seen that only a trailer is required to supply these 10 customers. We studied the effect
of trailers in the solution and compared the results with those obtained if only trucks were used. In
such a case, and after a runtime of 6.23 hours, we obtained the following results: the value of the
objective function was 232 km; truck 1 distributes feed to customers 1-3, traveling 46 km; truck 2
travels 53 km and serves customers 7-9; and truck 3 performs the route 0-4-5-10-6-0, whose length
is of 133 km.

As can be seen, when the company introduces trailers, a reduction is achieved not only in the
total length traveled (which decreases by 25 km) but also in the number of drivers required (which
decreases from 3 to 2).

Moreover, we can deduce that when using only trucks, we are faced with an MC-VRP. However,
because of the large amount of feed that the cooperative must distribute daily, we suggest the in-
corporation of trailers to accommodate the use of the MC-TTRP model. Furthermore, given the
existence of access restrictions to some farms, this model seems appropriate. The purchase or rental
of these additional vehicles can indeed be a significant initial investment, but the benefits usually
compensate in the long term because, among other things, it is not necessary to hire more drivers.

To study the increase in the computation time when the instance is slightly modified, we tried
to solve this problem when adding a new VC. By having one more node, the number of variables
involved increases considerably, and this causes the execution time to exceed two weeks.

Shttps://www.gurobi.com/
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Agricultural cooperatives often must supply a large number of members, and it is not feasible
to take more than 15 days to solve a problem with 11 customers. As stated in Subsection 3.1, the
cooperative that motivated our study receives orders from approximately 40 customers per day.
Furthermore, certain occurrences could require a sudden reorganization of the routes. This issue
encouraged us to consider designing the heuristic described above, which quickly and efficiently
solves the problem of multi-compartmental trucks and trailers.

5.2. Set of instances

To the best of our knowledge, there are no benchmark instances in the literature for the MC-
TTRP. Therefore, it was necessary to slightly modify the 21 TTRPs® developed by Chao (2002).
Thus, to test our algorithm, we generated 21 new MC-TTRP instances by adding compartments
to Chao’s benchmarks. These test problems were derived from seven VRPs created by Christofides
et al. (1979), with 50 to 199 customers by specifying 25%, 50%, and 75% of the customers as truck
customers. For further details about the nature of these problems, we recommend referring to the
original work of Chao (2002).

Regarding the characteristics of our MC-TTRPs, Table 2 gives a general overview of our in-
stances’, which present variety in terms of the number of customers and vehicles, vehicle capacity,
and compartment configuration. The strategy chosen to generate them was as follows: first, the
number of available vehicles is computed as [1.5 - av], where av denotes the corresponding avail-
able vehicle in Chao’s TTRPs. Also, the original capacity of each truck and trailer was divided into
compartments of capacity 5 and 10, respectively. As a result, depending on the instance, trucks
could be split into 20 or 30 compartments, while trailers were all split into 10. Furthermore, we
assumed that every customer demands two different types of products, so we equally split the total
original demand.

Moreover, we classified these instances into three categories depending on their percentage of
truck customers:

* Gl:instances 1, 4, 7, 10, 13, 16, and 19 belong to group one.
* (G2: instances 2, 5, 8, 11, 14, 17, and 20 belong to group two.
* G3:instances 3, 6,9, 12, 15, 18, and 21 belong to group three.

5.3. Results on test instances

The following computational results help to evaluate the performance of the proposed heuristic.
Having shown in Subsection 5.1 that the exact solving of a medium-sized problem can be extremely
computation-intensive, we highlight that the main focus of this study was to obtain good-quality
solutions in reasonable computation time. Moreover, to the best of our knowledge, there are no
other solution methods for MC-TTRP in the literature.

%The 21 test problems of the TTRP (Chao, 2002) are available at http://web.ntust.edu.tw/~vincent/ttrp/.

"Note that every three consecutive instances come from the same VRP.
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Table 2
Dimensions of the MC-TTRP test problems

Trucks Trailers
Problem —Customers Capacity of Total Capacity of Total
number VCs TCs Number Compart. compartments capacity Number Compart. compartments capacity
1 38 12
2 25 25 8 20 5 100 5 10 10 100
3 13 37
4 57 18
5 38 37 14 20 5 100 8 10 10 100
6 19 56
7 75 25
8 50 50 12 30 5 150 6 10 10 100
9 25 75
10 113 37
11 75 75 18 30 5 150 9 10 10 100
12 38 112
13 150 49
14 100 99 26 30 5 150 14 10 10 100
15 50 149
16 90 30
17 60 60 11 30 5 150 6 10 10 100
18 30 90
19 75 25
20 50 50 15 30 5 150 8 10 10 100
21 25 75

Therefore, to obtain an initial validation of the quality of our CW and ITS, we analyzed their
performance with the TTRP instances described above in Table 2 but without using compartments.
Notably, in this manner, it is possible to compare the solutions obtained by our proposed method
with those reported by Chao (2002) and Caramia and Guerriero (2010a).

Table 3 summarizes the results obtained for both phases of the algorithms, where the first col-
umn represents the instance number, and columns 2, 3 and 4 show the objective value returned
by the constructive phase of the three approaches considered, that is, the distance covered by all
routes once an initial feasible solution is achieved. Note that we have considered the objectives
reported by Chao when a descent improvement subroutine is implemented. Concerning the solu-
tions obtained by the constructive stage, our savings-based heuristic allowed the creation of feasible
routes, improving on the objectives reported by Chao and Caramia and Guerriero in some cases,
and outperforming both of them in five problems (bold values of column 2).

Furthermore, the next four columns indicate the objective achieved in the improvement phase,
where BKS denotes the best known solution values according to Caramia and Guerriero (2010a).
For Chao and Caramia and Guerriero’s algorithms, values represent their best obtained solutions,
with no further details given. In our case, we carried out 500 iterations of the ITS and report
the best value over 10 runs. Bolds values of column 5 indicate those problems in which our ITS
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Table 3

Computational results for 21 test TTRPs

Problem Constructive phase Improvement phase Number of vehicles
number Our CW Chao Caramia Our ITS Chao Caramia BKS Trucks Trailers
1 632.38 646.02 645.72 565.01 565.02 566.80 564.68 5 3
2 711.93 739.90 699.68 635.28 658.07 620.15 612.75 5 3
3 805.34 774.78 770.19 634.16 648.74 632.48 618.04 5 3
4 1002.58 943.47 902.89 809.29 856.20 803.32 798.53 9 5
5 1067.48 1130.85 1035.89 844.46 949.98 842.50 839.62 9 5
6 1193.98 1236.69 1171.50 981.08 1053.23 938.18 933.26 9 5
7 899.74 906.31 902.18 852.93 832.26 832.56 830.48 8 4
8 1028.96 971.60 970.45 887.26 900.54 878.87 878.36 8 4
9 1138.93 1106.66 1082.99 958.50 971.62 980.42 934.47 8 4
10 1213.15 1159.78 1151.23 1079.73 1073.50 1060.41 1039.07 12 6
11 1276.23 1288.74 1288.74 1123.43 1170.17 1170.70 1094.11 12 6
12 1408.93 1453.82 1440.12 1224.71 1217.01 1178.34 1155.13 12 6
13 1530.66 1481.40 1480.46 1344.82 1364.50 1288.46 1287.18 17 9
14 1617.71 1624.96 1612.34 1444.89 1464.20 1372.52 1353.08 17 9
15 1706.19 1858.87 1752.94 1499.29 1540.25 1470.21 1457.61 17 9
16 1349.67 1267.87 1060.26 1015.26 1041.36 1004.69 1002.49 7 4
17 1376.31 1261.17 1120.34 1073.77 1090.46 1042.35 1042.35 7 4
18 1439.34 1366.21 1220.25 1205.46 1141.36 1129.16 1129.16 7 4
19 1141.59 969.96 880.22 852.01 854.02 813.50 813.50 10 5
20 1097.47 1140.47 961.25 908.87 942.39 848.93 848.93 10 5
21 1085.61 1174.43 1009.68 930.70 926.47 909.06 909.06 10 5

outperformed the other two approaches. Finally, the last two columns indicate the corresponding
available numbers of trucks and trailers.

With respect to computation times, our algorithm requires from 7 to 200 min to achieve the best
solutions reported in Table 3. Note that our heuristic is efficient to solve the TTRP, but it is actually
designed to solve the MC-TTRP. We present the above comparison with existing TTRP solutions
in an indicative way to show that our algorithm performs well on problems that may be similar.

Returning to the specific problem of interest, Table 4 shows the performance of the proposed
heuristic, on the 21 instances of the MC-TTRP described in Table 2, considering the hoppers prop-
erly. The first columns indicate the problem number and the objective of the constructive phase.
The remaining columns refer to the ITS solution. Columns 3-8 show the objective of the improve-
ment phase (after 100 iterations of the ITS, reporting the best value over 10 runs), vehicles used,
and different routes created. The next columns list the vehicle occupancy rate. Column 9 shows the
number of truck compartments used divided by the total number of truck compartments in the
solution. For instance, the total number of truck compartments in problem 1 was 160 (eight trucks
used with 20 compartments each). Column 10 is analogous, considering trailers instead of trucks.
The “Total” column is the quotient of the sum of used truck and trailer compartments divided
by the total number of compartments in the solution. That is, for problem 1, the total number is

© 2021 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies

85U8017 SUOWWOD 8A 81D 3ot (dde 8Ly Aq peusenob afe o O ‘8sn J0 Sa|nJ Joj Ariqi]8UIUO /8|1 UO (SUONIPUOD-PUR-SWLBH W0 A8 | 1M ARe1d 1 pul|u0//SdnL) SUORIPUOD Pue SWe | 8 88S *[202/20/90] Uo AriqiTauliuo A8|IM ‘581 Aq TZ0ET J0M/TTTT OT/I0P/WO0D A8 1M Ae.q 1 jpul|uo//Sdny Wouy papeoumod ‘Z ‘€202 ‘S66ES.HT



L. Davila-Pena et al. / Intl. Trans. in Op. Res. 30 (2023) 1031-1064 1059

Table 4
Computational results for 21 test MC-TTRPs

Problem CW ITS No. of used vehicles  Number of routes Occupancy rate Time

number  objective  objective  Trucks Trailers PTR PVR MVR Trucks Trailers Total (min)

1 662.93 640.66 8 5 3 4 1 0.79 0.84 0.80 5.58
2 832.60 708.08 8 4 4 0 4 0.88 0.85 0.88 5.28
3 885.79 764.81 8 3 5 0 3 1 0.73 0.96 5.76
4 1013.57 908.53 13 8 5 5 3 0.85 0.88 0.85 10.55
5 1168.01 1012.83 14 7 7 3 4 0.85 0.83 0.84 8.93
6 1264.09 1101.90 14 7 7 1 6 0.92 0.69 0.87 14.13
7 1013.72 938.90 11 6 5 4 2 0.89 0.90 0.89 28.8

8 1065.39 1003.95 12 5 7 4 1 0.84 0.84 0.84 24.59
9 1357.49 1113.95 11 5 6 0 5 0.96 0.80 094  23.82
10 1336.30 1275.87 18 9 9 7 2 0.83 0.80 0.83  49.13
11 1422.92 1367.46 18 9 9 4 5 0.87 0.73 0.85 46.72
12 1683.38 1434.51 18 6 12 0 6 0.92 0.70 0.90 62.71
13 1670.52 1584.96 23 14 9 10 4 0.87 0.89 0.87 93.38
14 1858.73 1836.16 26 14 12 4 10 0.85 0.64 0.82  90.90
15 2072.07 1958.46 25 11 14 0 11 0.90 0.75 0.88  83.76
16 1681.62 1471.36 11 6 5 2 4 0.89 0.87 0.89  41.73
17 1891.04 1606.92 11 5 6 1 4 0.95 0.84 0.94  45.00
18 1968.90 1590.13 11 4 7 0 4 0.96 1 097 60.41
19 1026.89 885.93 12 8 4 3 5 0.70 0.90 0.74  22.69
20 1125.27 1037.27 13 7 6 3 4 0.70 0.83 0.72  17.24
21 1115.85 978.19 12 3 9 0 3 0.89 0.80 0.89 2431

210 (160 truck plus 50 trailer compartments). Finally, the last column refers to the running time
in minutes.

To complement the analysis presented in Table 4, it should be noted that the occupancy rates
are relatively high, with averages of 87%, 81%, and 87% for trucks, trailers, and total, respectively.
To provide a better interpretation of the results, we calculated the average rates for groups G1, G2,
and G3. The values obtained for trucks were 83%, 85%, and 94%, respectively; thus, we can see that
there is a growth in the truck occupancy rate as the number of truck customers increases. The oppo-
site applies in the case of trailers: the rates are 87%, 79%, and 78% for groups G1-G3, respectively.
These results are promising because feasible solutions were achieved at low computational cost.

5.4. Application to real-world data

To evaluate the quality of our heuristic algorithm, we considered the data of the real-world example
described in Subsection 3.1. We solved a set of different-sized problems by combining customers
of the agricultural cooperative: P1-P3 have four customers of each class; P4 and P5 have nine
customers, five of which are VCs; and P6-P8 involve 10 customers, five VCs and five TCs. All of
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Table 5
Results obtained by the exact model versus results obtained with our heuristic algorithm (after 100 iterations of the ITS)

Occupancy rate

Problem number Size Method Objective Trucks Trailers Total Time (s)
Pl 8 Exact 189 0.92 0.80 0.88 309.27
Heuristic 189 0.88 0.87 0.88 5.03
P2 8 Exact 140 0.81 0.73 0.78 6733.20
Heuristic 142 0.81 0.73 0.78 3.88
P3 8 Exact 106 0.77 0.67 0.73 1275.75
Heuristic 106 0.77 0.67 0.73 3.90
P4 9 Exact 256 0.85 0.80 0.83 16,766.7
Heuristic 256 0.81 0.87 0.83 5.58
P5 9 Exact 109 0.81 0.80 0.80 17,511
Heuristic 109 0.62 1 0.76 4.72
P6 10 Exact 222 0.96 0.67 0.85 221,019
Heuristic 223 0.92 0.67 0.83 6.48
P7 10 Exact 237 0.92 0.80 0.88 671,316
Heuristic 238 0.88 0.87 0.88 7.97
P8 10 Exact 207 0.96 0.67 0.85 112,389
Heuristic 213 0.69 1 0.80 6.09
Table 6
Lower and upper bounds and gaps for the exact formulation
Problem number Lower bound Upper bound Relative gap
Pl 189 189 0
P2 140 140 0
P3 106 106 0
P4 256 256 0
P5 109 109 0
P6 198 222 0.11
P7 185 237 0.22
P8 73 207 0.65

these instances imply two trucks with 13 hoppers that can contain up to 1.5 tons each and one
trailer with 15 hoppers with a maximum capacity of 2 tons. Given this information, Table 5 gives a
comparison between the solutions of both methods. Furthermore, Table 6 provides the lower and
upper bounds and relative gaps for the exact formulations of those 8 problems by setting a time
limit of three hours. It can be seen that problems with 10 customers present a positive gap, which
in the particular case of P8 is relatively large.

Table 5 shows that our algorithm achieved the exact objective for problems P1, P3, and P4, al-
though the loading procedures were not always the same. Our heuristic did not achieve the exact
optimal values for the remaining instances, but there was an increase of at most 2.90% in the objec-
tive (which occurred for P8). However, the execution times of the heuristic were significantly shorter
(by several orders of magnitude) than those of the exact method. Although optimality convergence
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Fig. 8. Solutions obtained by Gurobi (left) and the two-phase heuristic (right) for problem P5.
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Fig. 9. Solutions obtained by Gurobi (left) and the two-phase heuristic (right) for problem PS8.

was not achieved for all problems, these results are promising because a feasible solution (close to
the optimal one) was obtained at a much smaller computational cost (in less than 10 seconds).

Moreover, the number of vehicles and types of routes were the same for both methods in every
problem, except for P5; in this case, our approach served all VCs in an MVR, while TCs were served
by a PTR. However, the exact solution allocated one of the TCs to a sub-tour with customer 3 as
the trailer parking place. Figure 8 illustrates the results for this instance.

As another illustrative example of the difference between the exact solution and the heuristic,
we show the route configuration for P8 in Fig. 9. The customers of the sub-tour presented in the
optimal solution, 2-9-7-8-2, are part of a PTR in our algorithm’s result. Customer 5 was selected
the trailer parking place for the sub-tour of the heuristic solution, 5-10-6-5.

Table 5 also indicates that, as opposed to the exact result, the heuristic approach gives preference
to the loading of trailers, having an average occupancy rate of 86%, while the trucks are 78% full
on average. The total occupancy rate does not differ significantly between these two methods.

6. Conclusions

This study considered a routing problem for trucks and trailers divided into compartments, called
the MC-TTRP. We proposed a novel mathematical formulation of this model as an MILP problem
and presented a detailed explanation of its constraints. A real-world example of a Spanish agricul-
tural cooperative that distributes feed to its customers was considered to verify the proposed model.
Given that exactly solving the problem for large-sized instances is computationally expensive, the
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use of operational research techniques is necessary to obtain solutions. Therefore, we introduced
and implemented a new heuristic algorithm to reduce computation time. Our proposal is a two-
stage approach: the first phase iteratively builds an initial solution, based on the savings method
of Clarke and Wright, and then the second phase aims to refine the solution. To achieve this, an
iterative tabu search was designed. We conducted a thorough computational study on different in-
stances. First, the 21 benchmark problems of Chao (2002) were analyzed and the solutions reported
by both Chao (2002) and Caramia and Guerriero (2010a) were compared to ours. In addition, we
suitably adapted these data sets to consider compartments, leading to 21 challenging test problems.
Our heuristic always generated a feasible solution to the test problems, and the results obtained
showed that our method can effectively and efficiently solve the MC-TTRP. Furthermore, this al-
gorithm was applied to the previously mentioned real-world case of a cooperative. A comparison
between our results and those provided by the exact formulation showed a significant decrease in
computational cost, achieving good-quality solutions to the problems. Considering this, we believe
that the proposed heuristic is a promising solution approach for the MC-TTRP.

There is still much room for further research on this variant of the VRP. It would be interest-
ing to apply the model and solution algorithm to other feed producing companies similar to that
considered in this study as well as other businesses, such as milk collection and fuel distribution
companies. Another open research direction is to extend the model to include modifications, such
as stochastic demands, time windows, or heterogeneous vehicle fleets, to address other similar real-
world problems. In addition, future work could be to develop other metaheuristic methods, such as
simulated annealing or evolutionary algorithms, that take our solution as a benchmark to compare
with it. Finally, in view of the different ingredients that make up our model, including route design,
assignment of customers to vehicles, and loading of compartments, exploring the performance of
decomposition techniques for solving it could provide good results.

The code and instances required to reproduce the results reported herein are available at
https://github.com/LauraDavilaPena/ITS_MC-TTRP
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