TOWARDS NEUROMORPHIC GRADIENT DESCENT:
EXACT GRADIENTS AND LOW-VARIANCE ONLINE
ESTIMATES FOR SPIKING NEURAL NETWORKS

A THESIS SUBMITTED TO
THE UNIVERSITY OF KENT
IN THE SUBJECT OF COMPUTER SCIENCE
FOR THE DEGREE

OF PHD.

By
Florian Bacho

September 2023

Abstract

Spiking Neural Networks (SNNs) are biologically-plausible models that can run on
low-powered non-Von Neumann neuromorphic hardware, positioning them as promis-
ing alternatives to conventional Deep Neural Networks (DNNs) for energy-efficient
edge computing and robotics. Over the past few years, the Gradient Descent (GD) and
Error Backpropagation (BP) algorithms used in DNNs have inspired various training
methods for SNNs. However, the non-local and the reverse nature of BP, combined
with the inherent non-differentiability of spikes, represent fundamental obstacles to
computing gradients with SNNs directly on neuromorphic hardware. Therefore, novel
approaches are required to overcome the limitations of GD and BP and enable online
gradient computation on neuromorphic hardware.

In this thesis, I address the limitations of GD and BP with SNNs by proposing
three algorithms. First, I extend a recent method that computes exact gradients with
temporally-coded SNNs by relaxing the firing constraint of temporal coding and allow-
ing multiple spikes per neuron. My proposed method generalizes the computation of
exact gradients with SNNs and enhances the tradeoffs between performance and vari-
ous other aspects of spiking neurons. Next, I introduce a novel alternative to BP that
computes low-variance gradient estimates in a local and online manner. Compared to
other alternatives to BP, the proposed method demonstrates an improved convergence
rate and increased performance with DNNs. Finally, I combine these two methods and
propose an algorithm that estimates gradients with SNNs in a manner that is compatible

with the constraints of neuromorphic hardware. My empirical results demonstrate the

il

effectiveness of the resulting algorithm in training SNNs without performing BP.

il

To both my uncle and my granddad, who left us too soon.

v

Acknowledgements

I would like to express my gratitude:

My supervisor, Dr. Dominique Chu, for his guidance, patience, and expertise.

The University of Kent and its staff for providing me with a supportive academic
environment.

My family and my partner Daniela for their love and support.

Finally, my friends and colleagues with whom I had lengthy discussions throughout

my academic journey.

Publications

e Bacho, F. and Chu, D. (2023). Exploring Trade-Offs in Spiking Neural Networks.
Neural Computation, 35(10), pp. 1627-1656. doi: 10.1162/neco_a_01609.

e Bacho, F. and Chu, D. (2024). Low-variance Forward Gradients using Direct
Feedback Alignment and momentum. Neural Networks, 169, pp. 572-583. doi:
10.1016/j.neunet.2023.10.051.

vi

Source Code

e https://github.com/Florian—BACHO/bats
e https://github.com/Florian—BACHO/FDFA

e https://github.com/Florian—BACHO/SFDFA

vii

https://github.com/Florian-BACHO/bats
https://github.com/Florian-BACHO/FDFA
https://github.com/Florian-BACHO/SFDFA

Contents

[Abstract i
[Acknowledgements| v
vi

vii

Contents| viii
List of Tables xiii
[List of Figures| XV
[List of Algorithms| xxvii
(I__Introduction| 1
[L1_Thesis Contributionsl 3

1.2 Thesi linel. 4

2 Literature Revi 6
21 TheBraml 6
[2.1.1 Structure and Dynamics of Biological Neurons| 7

2.1.2 Information Codingl. 8

viii

[2.1.3 Biological Plasticity| 0000 10

2.2 Artificial Neural Networks| 11
22.1 The McCulloch-Pitts Neuron/ 12
[2.2.2 The Perceptron| 13
[2.2.3 Continuous Neurons and Error Backpropagation| 15
[2.2.4 The Fundamental Deep Learning Problem|. 19
2.2.5 Convolutional Neural Networks| 21
2.2 Recurren ral ksl .o 25
2277 Hardware Acceleration| 27

2.3 Spiking Neural Networks| 29
[2.3.1 Hodgkin—Huxley Model| 30
232 IzhkevichModel o000 32
[2.3.3 Leaky Integrate-and-Fire Model| 33
[2.3.4 Spike Response Model 36
235 Simulations| 37
3.6 Hardware Acceleration] 39
.37 SpikeCodingl 41
[2.3.8 Unsupervised Learning| 44
[2.3.9 Supervised Learning| 0oL 46

[2.4 Gradient-Based Optimization| 52
241 GradientDescentl L. 52
2.4.2 hastic Gradient Descent! 53
2.4.3 Mini-Batch Gradient Descentl 53
2.4.4 Stochastic Gradient Descent with Momentum| 54
BA3 RMSPIOD| . .« o o o oo 54
246 Adam| 55

2.5 Automatic Differentiationl 56
2.5.1 Reverse-Mode Automatic Differentiation 57

X

13

2.6 Chapter Summary|.o 59
Exact Gradients of Spiking Neural Networks| 61
3.1 Introduction| 62
[3.2 The Lack of Closed-Form Solution for Spike Timings| 65
[3.3 Closed-Form Solution by Time Constant Constraints| 66
[3.4 Exact Gradients of Temporally-Coded Spiking Neural Networks| 68
[3.4.1 Error Backpropagation in Temporally-Coded Spiking Neural |
Networksl 69

[3.5 Exact Gradients of Unconstrained Spiking Neural Networks| 70
[3.5.1 Error Backpropagation in Unconstrained Spiking Neural Net- |
works| . ..o 71

[3.6 Experimental Settings|. 75
B.6.1 BenchmarkDatasets 75
[3.6.2 Encoding| 75
3.6.3 Network Architectures| 76
[3.6.4 Decoding and Loss Functions| 76
[3.6.5 Update Method and Hyperparameters| 78
3.6.6 Event-Based Simulatonson GPU| 78

(3.7 Empirical Results| 0oL 79
[3.7.1 Convergence Likelthood| 79
B72 Performancel 82
[3.7.3 Convergence Rate] 88
[3.7.4 Sparsity| 89
[3.7.5 Prediction Latency| 93
[3.7.6 Robustness to Noise and Weight Quantization|. 94

3.8 Discussion|. 96

4 Low-Variance Gradient Estimates without Backpropagation| 100

4.1 Introduction| L 101
42 ForwardGradientlo 105
4.3 Weight-Perturbed Forward Gradient) 106
4.4 Activity-Perturbed Forward Gradient{ 108
4.5 Direct Feedback Alignment|. 110
4.6 Forward Direct Feedback Alignment| 112

Theoretical Results| 115

4.7.1 Variance Decomposition of Unbiased Gradient Estimates|. . . . 115

4.7.2 Estimation Variance of Weight-Perturbed Forward Gradients| . . 117

@.7.3 Estimation Variance of Activity-Perturbed Forward Gradients| . 119

4.7.4 Estimation Variance of Forward Direct Feedback Alignment |

I Gradients| 121
4.8 Experimental Settings|. 123
4.8.1 Benchmark Datasets| 123

“4.8.2 Network Architecturel. 124

483 Tossfunction 124

4.8.4 Update Method and Hyperparameters| 125

“4.8.5 Software and Hardwaref. 125

4.9 Empirical Results| L 126
49.1 Performancel 126

4.9.2 Convergencelt 128

493 Variancel. 130

4.9.4 Gradient Alignment in Feedback Methods|. 133

10 D1 100/ 134

IS Online Gradient Estimates of Spiking Neural Networks| 137
0.1 Introductionl L 138
[5.2 Spiking Direct Feedback Alignment 140

xi

[5.3 Spiking Forward Direct Feedback Alignment, 141
0.3.1 Online Local Gradients|. 146

2 ritical Points of [Local Gradients| 149

[5.3.3 Neuromorphic Hardware Compatibility| 151

[5.4 Experimental Settings|. 152
5.4.1 Benchmark Datasets| 152
[5.4.2 Encodingl 152
5.4.3 Network Architectures| 153

[5.4.4 Decoding and Loss Function| 153
[5.4.5 Firing Rate Regularization| 153
[5.4.6 Update Method and Hyperparameters| 154
D.4.7 Event-Based Simulatonson GPU| 154

[5.5 Empirical Results| oo oL 154
[5.5.1 Critical Points Analysis| 155
.52 Performancel, 159

[5.5.3 Convergence| 160
[5.5.4 Weights and Gradient Alignment|. 165

D1 1ON] .« v e e e e e e e 167

Di i 170
6.1 Future Workl 172
[6.1.1 Improving Learning with Spatio-Temporal Data]. 172
[6.1.2 Spiking Forward Direct Feedback Alignment with Spike Time- |
Dependent Plasticity| 173

[6.1.3 Implementation on Neuromorphic Hardware] 173
graphyi 175

xii

List of Tables

[Reverse-Mode Automatic Differentiation of y = f(z1,22) = x129 — |

| In(x,) evaluated at z; = 7 and x5y = 3. The arrows on the sides of |

| the table indicate the order of evaluation. Table inspired from (Baydin |

| etal.2017). o 57

2 Forward-Mode Automatic Differentiation of y = f(x1,x5) = x129 — |

| In(x,) evaluated at x; = 7 and xo = 3. The arrows on the sides of |

| the table indicate the order of evaluation. Table inspired from (Baydin |

| etall2017).) oo 58

[3 Descriptions of the benchmark datasets used in my experiments.| 75

{4 Performances comparison between Fast & Deep and my method on |

| the MNIST, EMNIST, Fashion-MNIST, and Spiking Heidelberg Digits |

| (SHD) datasets. The 1nitial weight distribution used 1n each column 1s |

| specified 1n the first row of the table. Conv. refers to a convolutional |
| SNN with the following architecture: 15C5-P2-40C5-P2-300-10.. . . . 82
> Performances of several methods on the MNIST dataset. Results for |
| Fast & Deep and my method are highlighted inbold.| 83
6 Performances of several methods on the EMNIST dataset. Results for |
| Fast & Deep and my method are highlighted inbold.| 83
I Performances of several methods on the Fashion-MNIST dataset. Re- |
| sults for Fast & Deep and my method are highlighted in bold. The |
[recurrence column indicates if the model contains recurrent connections.] 84

Xiii

(8 Network architectures used 1n Table 9l 15C5 represents a convolution |

| layer with 15 5x5 filters and P2 represents a 2x2 pooling layer,| 84

[Performances of several methods on the MNIST dataset with Spiking |

| Convolutional Neural Networks. The network topologies are given 1n |

[Tablelsl The DA column indicates 1f the model has been trained with |

| data augmentation to improve the performance. 85

(10 Performances of several methods on the Spiking Heidelberg Digits (SHD) |

| dataset. Results for Fast & Deep and my method are highlighted 1n |
L bold. The recurrence column indicates if the model contains recurrent |

(1T Number of neurons and number of parameters in fully-connected DNNs |

| with different depths. In this example, I consider a /84 input network |

| with hidden layers of 800 neurons and 10 outputs. 110

(12 Theoretical gradient estimation variance produced by the FG-W, FG-A |

| and FDFA algorithm given a single input sample.| 115

(13 Descriptions of the benchmark datasets used in my empirical experiments.|123

(14 Performance of fully-connected DNNs with different depths. LG-FG- |

| A was not evaluated with two-layers DNNs as these networks are not |

| deep enough to require greedy learning.| 127

{15 Performance of a shallow CNN (15C5-P2-40C5-P2-128-10 where 15C5 |

| represents 15 5x5 convolutional layers and P2 represents a 2x2 max |
| pooling layer) on the MNISTT, Fashion MNIST and CIFARI10 datasets.| . 127

(16 Performance of AlexNet (Krizhevsky, Sutskever and Hinton 2012al) |
| trained on the CIFAR100 and Tiny ImageNet 200 datasets with the of- |

| ficial train-testsphit.| oo oo 128

(17 Average best test performance of BP, DFA and the proposed SFDFA on |
| the MNIST, EMNIST, Fashion MNIST and SHD datasets.| 160

X1V

List of Figures

Reproduction of a drawing of a single neuron by Ramon y Cajal. This

figure depicts the dendrites, the soma, and the axon of the neuron as

well as a schematic of an action potential recorded by an electrode

placed at the axon. Figure from (Gerstner et al.|[2014).|.

7

‘Temporal requirements of synaptic changes Aw;; between a pre-synaptic

neuron 7 firing at time t{ and a post-synaptic neuron ¢ firing at time tzf

in cultured hippocampal neurons. Long-Term Potentiation (LTP) oc-

curs 1f the pre-synaptic spike shortly precedes the post-synaptic spike.

Long-Term Depression (LTD) occurs 1f the pre-synaptic spike 1s fired

after the post-synaptic spike. Figure from (Gerstner and Kistler|2002)

and data points from (B1 and Poo|[1998).|

10

[3

Illustration of the McCulloch-Pitts neuron model. Here, the neuron

receives three binary inputs x;, x5, and x5 that are summed and then

passed through a threshold function to produce a binary output /.|

12

[llustration of the Perceptron. Here, the neuron receives two real-valued

puts x; and x5 and a bias b 1s added (represented as an additional con-

nection with a constant input of 1). All inputs are scaled by their cor-

responding weights, summed together then passed through a threshold

function to produce a binary output y.|

Example of a fully-connected neural network with two layers (MLP) |

XV

[llustration of a continuously-activated artificial neuron. Here, the neu-

ron receives two real-valued inputs z; and x, and a bias b 1s added

(represented as an additional connection with a constant mput of 1).

All mputs are scaled by their corresponding weights, summed together

then passed through a continuous and differentiable activation to pro-

duce areal-valuedoutputy.|. L Lo

16

Sigmoid activation function (Figure [/a) and 1ts first order derivative

(Figure [/b). The sigmoid function monotonically increases and satu-

[ratestoOand 1. This causes its derivative to vanish as x tends towards |

—ocoand oo

16

ReL.U activation function (Figure [8a) and its first order derivative (Fig-

ure|8b). The sigmoid function monotonically increases and saturates to

0 and 1. This causes its derivative to vanish as x tends towards —oco and

[llustration of the two dimensional neuron layout in the Neocognitron

model. Here, individual neurons are connected to a sub-area of their

two-dimensional inputs, locally detecting spacial features. Figure from

(Fukushimal|1988)).| oo

[0

Example of a convolutional neural network. This network contains two

convolutional layers, each followed by a max pooling layer. The out-

puts of the last pooling layer are then flattened and fed to two fully

connected (dense) layers.| oo

21

T

Example of a two-dimensional convolution performed with a single 2 x

2 x 1 filteron a4 x 4 x 1 mput map with a stride of 1 and no padding,

no bias, and a linear activation function. This convolution results in a

3 X 3 X 1 output map of activations.|

Xvi

2

Computational graph of a recurrent layer in a compressed form (Figure

[12a) and unfolded through time (Figure[12b)). At each time step, neu-

rons receive inputs from upstream layers as well as the states of neurons

from the previous time step.| L L L.

M3

Comparison of different spiking neuron models according to their bio-

logical plausibility and computational complexity. In this figure “# of

FLOPS” refers to the numbers of floating point operations required to

stmulate 1ms with the model. Figure from (Izhikevich2004)|.

29

(14

Schematic diagram of the circuit defining the Hodgkin-Huxley neuron

model (Hodgkin and Huxley||1952). The membrane potential u(t) is

1
gNg’

represented by the voltage across the capacitor C'. Here, Ry, =

Ry = giK and Ry, = giL are the resistance values for the sodium,

potassium, and leak channels respectively.|

3

Schematic diagram of the parallel Resistor-Capacitor circuit that de-

fines the membrane potential behaviour of the Leaky Integrate-and-Fire

6

[llustration of the exponential o function (Figure |[16al) and its corre-

sponding PSP kernel € (Figure [16b). Here, 7 = 10ms, 7, = 5ms and

O 11T P

T

7

Computational graph of a clock-based simulation of neurons’ mem-

brane potentials. At each time step ¢, the membrane potential u(t — At)

at the previous time step t — At is decayed, and the input current /(¢)

1s integrated. If an output spike y(¢ — At) was produced at the previous

time step, the membrane potential 1s reset using a negative current Ay.| .

37

IE

Different rate and temporal spike coding schemes. Figure from (Auge

etal | 2021). o

Xvii

41

o

[llustration of STDP according to the relative temporal distance be-

tween a pre-synaptic spike fired at time ¢ and a post-synaptic spike

fired at time ¢7. In this figure, A, =1, A_ =0.5and 7, = 7_ = 0.1.

The blue line corresponds to LTP, increasing the connection between

the two neurons, and the red line corresponds to LTD, decreasing the

P0

The spike escape rate function p() defines the probability of state change

(from spiking to non-spiking or non-spiking to spiking) as a function

of the difference between the membrane potential and the threshold as

atimet. Herea=land 5 =8|

1

The linear relationship between the spike timing and the membrane po-

tential assumed in SpikeProp (Bohté, Kok and Poutré

2000). Here, u(t)

1s the membrane potential, ¢ the spike time, O the threshold, Au(t) the

change 1n membrane potential and At the change in spike timing. The

solid and dashed lines respectively represent the membrane potential

before and after applying the perturbation.|

49

22

Computational graph of y = f(z1,x2) = x129 — In(z5), inspired from

Baydin et al. (2017). See the Forward Primal Trace column 1n Tablel|l]

n3

[llustration of error backpropagation through spikes. This figure repre-

sents a three-layered network where the spike trains of only one neuron

per layer are shown. The grey arrows represent the error coming from

the loss function, the dashed blue arrows are the errors backpropagated

from the downstream spikes (i.e. inter-neuron dependencies) and the

red arrows are the error backpropagated from the future activity of the

neuron due to the recurrence of the reset function (i.e. intra-neuron

dependencies). e

xviii

[24

Example of classification of two simple patterns (Figures [24al and [24b])

where relevant information 1s carried by the two last spikes. When us-

ing TTFES coding (Figure [24c)), neurons can miss the relevant informa-

tion 1f they spike too early and never converge. By using unconstrained

SNNs (Figure[24d), neurons can fire several spikes, thus increasing the

likelihood of convergence.|

3

Average accuracy achieved by different imitial weight distributions for

a single-spike model (Figure[25a) and a multi-spike model (Figure[25b)

on the simple spatio-temporal pattern classification problem shown 1n

Figure 24lo

6

Spiking activity of hidden neurons 1n an SNN trained with my method

(Figure [26b) and Fast & Deep (Figures [26¢[and 26d) given a spoken

“zero~ (Figure [26a) from the SHD dataset. TTES neurons in Fast &

Deep mainly respond to early stimuli, missing most of the input infor-

mation. In contrast, my method allows for multiple spikes per neuron

which enables them to capture all the information from the inputs. This

demonstrates the importance of relaxing the spike constraint of TTES

when processing temporal data.|.o oL

86

n7

Evolution of the test accuracy of both Fast & Deep and my method

on the MNIST dataset with the same learning rate. The unconstrained

SNN trained with my method benefits from a higher convergence rate

than the temporally-coded networks trained with Fast & Deep.|

XiX

g

Comparison of the population spike count and the number of active

neurons 1n fully connected SNNs trained using Fast & Deep and the

proposed method on the MNIST dataset. These results indicate that

the sparsity of SNNs after training depends on the weight distribution,

with the SNN 1nitialized with only positive weights appearing to be less

sparse than those initialized with both negative and positive weights.

Additionally, the proposed method demonstrates a similar level of spar-

sity and fewer active neurons as Fast & Deep for the same 1nitial weight

distribution, despite the relaxed constraint on neuron spike counts.| . . .

89

29

Figures [29a] and Figure [29b] show the average spike count of hidden

neurons trained with Fast & Deep on the MNISTT dataset, while Figure

[29¢| shows the average spike count of hidden neurons trained with the

proposed method. Each row corresponds to the average activity over all

the test samples of a particular digit. As TTES networks mainly encode

information temporally, we observe that neurons trained with Fast &

Deep fire indiscriminately 1n response to stimuli, making it difficult to

differentiate the labels from the mean spike count, regardless of the ini-

tial weight distribution. However, the proposed SNN training method

results 1n a different distribution of firing activity. More precisely, key

neurons respond selectively to particular digits, while most of the other

neurons remain mostly silent.|o 000000 L.

XX

90

30

Influence of the output threshold on the sparsity of a 2-layer SNN

trained on MNIST with my method. Figure |30alillustrates that a lower

output threshold results in fewer spikes generated after 1 epoch. Figure

[30b| indicates that decreasing the output threshold increases the initial

activity 1n the output layer, thereby leading to a greater number of neg-

ative errors transmitted during the backward pass (as shown 1n Figure

[30c]). This, 1n turn, leads to a decrease in the weights 1n the hidden

layer, as depicted in Figure[30df

BI

Figure [31a) shows the evolution of the average prediction confidence

during simulations on the MNIST test set. To produce this figure, I

measured the probability of predictions at a time ¢ being equal to the

final predictions at the end of the simulations. The vertical dotted line

represents the end of input spikes. The 1nitial weight distribution seems

to have a crucial impact on the latency of predictions. More precisely,

negative 1nitial weights produce confidence earlier than positive initial

weights. Therefore, simulation time can be reduced to further improve

sparsity. Figure [31b] shows the relationship between spike count and

accuracy as the simulation time increases. It demonstrates that the du-

ration of simulation can be used as a post-training method to further

reduce energy consumption while maintaining high performance.|. . . .

xxi

93

32

Figure [32a) shows the effect of spike jitter on the performance of each

method. This was achieved by introducing artificial noise to the spike

timings, following a normal distribution N (0, o). Figure [32b|displays

the 1mpact of weight clipping, which 1nvolved restricting weights to

the range |—wip, Werip) during training. Lastly, Figure [32c| demon-

strates the effect of weight precision, which was obtained by discretiz-

ing weights into 2" — 1 bins (n bits plus one bit for the sign of the

synapse) within the range [—1, 1|. Overall, my method was found to be

more resilient to noise and reduced weight precision than Fast & Deep.|.

95

B3

[llustrations of the error backpropagation (Figure |[33) in a DNN. Solid

arrows represent forward inference paths and dotted arrows represent

error backpropagation paths. During the backward pass, errors are se-

quentially backpropagated to hidden layers.|

B4

Figure[34a Projection of the Jacobian J at w onto a given direction v.

The vector d - v 1s obtained by scaling the direction v by the directional

derivative ¢ evaluated at w 1n the direction of v. Figure [34bf The

expected directional derivative (green arrow), computed by averaging

directional gradients (red arrows) over many random directions (black

arrows), 1s an unbiased estimate of the true gradient (blue arrow).|. . .

. 105

B35

[llustrations of the Direct Feedback Alignment algorithm applied to a

DNN. Solid arrows represent forward inference paths and dotted arrows

represent error backpropagation paths.|o

110

36

Training loss and test accuracy of a 2-layer fully-connected network

(Figures [36a and [36¢) and a CNN (Figures [36b] and [36d) trained on

the CIFAR10 dataset. FDFA has a similar convergence rate as BP on

fully connected networks. With CNNs, FDFA 1s not able to overfit the

training data. However, my method has the highest convergence rate

compared to FG-W, FG-A,and DFA

xxii

129

37

Variance of the FG-W (red triangles) and FG-A (blue squares) gradient

estimates as a function of the number of neurons n; (Figure [37a)) and

number of inputs ny (Figure [37/b)) in a two-layer fully connected net-

work. Each point was produced by computing the variance of gradient

estimates over 10 iterations on the MNIST dataset. The pixels of input

1mages were duplicated, to increase the number of inputs ny. The red

and blue lines were fitted using linear regression. The slope a and the

asymptotic standard error of each line are given with the same color.

These figures show that the variance of FG-W scales linearly with the

number of neurons and puts while the variance of FG-A only scales

linearly with the number of neurons.|

130

B33

The variance of FDFA gradient estimates as a function of the feedback

learning rate o 1n a two-layer fully connected network. Each point

was produced by computing the variance of gradient estimates over 10

iterations of the MNIS'T dataset. The blue line was fitted using linear

regression. The slope a and the asymptotic standard error 1s given with

the same color. This figure shows that the variance of FDFA scales

quadratically withoof 0 0 0 0000

139

Correlation between the normalized variance of gradient estimates and

the loss of a two-layer network with 1000 hidden neurons, following a

single traimning epoch on the MNIST dataset. The variance of BP was

artificially increased by adding Gaussian noise to the gradients to simu-

late the stochasticity of forward gradients. All gradient variances were

normalized with the expected squared norm of the gradient estimates to

ensure 1nvariance to the amplitude. Pairs of variance-loss for the FG-

W, LGA, and FDFA algorithms are represented in green, red, and blue,

respectively. This figure shows that the differences in convergence are

solely due to the variance of the gradient estimates.|

xxiii

{40

Layerwise alignment between gradient estimates and the true gradi-

ent computed using BP. These figures show that the proposed FDFA

method (Figure |40c) produces gradient estimates that better align with

the true gradients than DFA (Figure [40a) which suggests improved de-

scending directions.| L L o

133

@1

=
z—Ay

Original factor (red line) and the modified factor - as a function

k

' > As af exp (%Zk) approaches Ay, the original

2
Ts

of z = afexp(

factor diverges towards infinity while the modified factor 1s bounded.| .

. 150

i)

Gradient fields of a single neuron computed using the exact local gra-

dients (Figure42al) and the modified local gradients (Figure42b)). I can

observe that the exact local gradient contains critical points where the

norm 1s abnormally large compared to neighboring regions. However,

with the modified local gradients, the norm of the gradient 1s consistent

throughout the weight space, mitigating the gradient explosion caused

by the critical points. The red crosses at w;; = 2.5 and w; o = 2.0

correspond to the critical point visualized in Figure 43}

XXiv

43

Evolution over time of the membrane potential (Figure {43a)), input cur-

rent (Figured3b), gradient factors (Figure43c|) and local gradients (Fig-

ure [43d) at an 1nstability point (w;; = 2.5 and w; > = 2.0 1n Figure

2). Here all vertical dotted lines correspond to post-synaptic spike

times. The red lines 1n both Figures 43c|and [43d|represent the original

factor and local gradient, while the blue lines represent the modified

factor and local gradient. These figures show that the last post-synaptic

spike fired by the neuron occurs when the membrane potential narrowly

reaches the threshold. This narrow threshold crossing is attributed to

the low input current /;(¢) which causes large factors T and con-

T
DAy

sequently large local gradients. In contrast, the modified factor LL(t)

restricts the amplitude of the factor, thereby moderating the scale of the

gradient.|.

157

{44

Evolution of the training accuracy (Figure |44al), test accuracy (Figure

[44b)), train Toss (Figure[d4c)) and test Toss (Figure[d4d)) during the train-

ing of a two-layers SNN on the MNIST dataset. Red lines correspond

to the metrics of the SNN updated using the exact local gradient while

blue lines correspond to the metrics of the SNN updated using the mod-

ified local gradient defined in Equation|162] These figures show that the

modified gradient converges slightly faster than the exact local gradient.| 159

45

Evolution of the averaged train accuracy (Figure |45a)), test accuracy

(Figure [43b), train loss (Figure F5c) and test loss (Figure F5d) dur-

ing the training of two-layers SNNs on the MNIST dataset. Black

dashed lines correspond to BP. Blue and red solid lines correspond to

the SFDFA and DFA algorithms respectively|

XXV

{46

Evolution of the averaged train accuracy (Figure [45a)), test accuracy

(Figure 3b)), train loss (Figure B5¢) and test loss (Figure B5d) dur-

ing the training of two-layers SNNs on the EMNIST dataset. Black

dashed lines correspond to BP. Blue and red solid lines correspond to

the SFDFA and DFA algorithms respectively|

@7

Evolution of the averaged train accuracy (Figure |45a), test accuracy

(Figure A5b), train loss (Figure [45¢c) and test loss (Figure d3d) during

the training of two-layers SNNs on the Fashion MNIST dataset. Black

dashed lines correspond to BP. Blue and red solid lines correspond to

the SFDFA and DFA algorithms respectively|

48

Evolution of the averaged train accuracy (Figure [45a)), test accuracy

(Figure [45b), train loss (Figure 3¢ and test loss (Figure F5d) dur-

ing the training of two-layers SNNs on the Spiking Heidelberg Digits

dataset. Black dashed lines correspond to BP. Blue and red solid lines

correspond to the SFDFA and DFA algorithms respectively.|.

164

A9

Layerwise alignment between spiking gradient estimates and the true

gradient computed using BP. These figures show that the SFDFA algo-

rithm (Figure49b)) aligns better with the true gradient than DFA (Figure

{49a)), especially 1n layers close to the outputs.|

50

Evolution of the alignment between the output weights and last hid-

den layer feedbacks 1n a 4-layer SNN trained on MNIST with DFA

(red line) and SFDFA (blue line). The weights and feedback connec-

tions align faster and better with the SEFDFA algorithm than with DFA.

Moreover, the weights alignment in SNNs correlates with the gradient

alignment (see Figure 9D

XXVi

List of Algorithms

(1 Perceptron algorithm|o L oo 13

[2 Error Backpropagation (BP) algorithm given a single training sample.

| Here © is the Hadamard product (or elementwise product) and o’'(x) is

| the first order derivativeof o(x).[. Lo L. 17

[3 Weight-Perturbed Forward Gradient algorithm (Baydin et al.[2022) with
| a fully-connected DNN.| 107

{4 Activity-Perturbed Forward Gradient algorithm (Ren et al.[2023) with a
| fully-connnected DNN|. 109

[5 Forward Direct Feedback Alignment algorithm with a fully-connected

(6 Inference of a single hidden neuron ¢ with the Spiking Forward Direct

| Feedback Alignment algorithm. 142

[/ Weights update of a single hidden neuron ¢ with the Spiking Forward

| Direct Feedback Alignment algorithm.| 142

XXVvil

Chapter 1

Introduction

Over the past decades, Deep Neural Networks (DNNs) trained with the well-established
Gradient Descent (GD) and the Error Backpropagation (BP) algorithms have become
the workhorse of modern machine learning. These powerful computational models
have started a new era of artificial intelligence, enabling computers to perform various
challenging tasks with state-of-the-art performance such as computer vision (Krizhevsky,
Sutskever and Hinton|[2012b; Szegedy, Toshev and Erhan|2013)), natural language pro-
cessing (Vaswanti et al.|2017; Devlin et al.|2018; |Brown et al.|2020), or reinforcement
learning (Mnih et al.| 2013} 2016)). However, the hardware and energy cost of DNN's
represent a significant challenge in terms of sustainability and restrict the practical
applicability of deep learning in resource-limited environments such as low-powered
edge devices (Daghero, Pagliar1 and Poncino|2021)). Therefore, exploring more energy-
efficient alternatives to DNNSs is crucial to address the environmental cost of machine
learning and provide sustainable solutions for edge computing.

One possible alternative to DNNs is Spiking Neural Networks (SNNs). Inspired
by the dynamics of biological neurons and offering a greater computational power
than DNNs (Maass||1997), SNNs process information through discrete spatio-temporal

events known as spikes rather than continuous activations. More importantly, spikes

CHAPTER 1. EXACT GRADIENTS OF SNNS 2

enable efficient event-driven implementations of neural networks on massively paral-
lel neuromorphic hardware that only consumes a fraction of the power required by
DNNSs on von Neumann computers (Furber et al.|[2014; Hoppner et al.|2022; Akopyan
et al. |2015; Schemmel et al. 2010; Pehle et al.|2022; [Davies et al. 2018; Frady et al.
2022)). Therefore, SNNs represent promising alternatives to DNNss for energy-efficient
machine learning and low-powered edge computing. However, the lack of general-
purpose training algorithms that can match the performance of DNNs trained with GD
and BP while also being compatible with neuromorphic hardware significantly limits
the widespread adoption of SNNs (Griining and Bohte 2014). Therefore, the explo-
ration of novel training algorithms compatible with neuromorphic hardware represents
one major step towards the adoption of neuromorphic computing for real-world ma-
chine learning applications.

One fundamental obstacle to the application of GD and BP to SNNs is the non-
differentiability of spikes. Unlike DNNs where gradients can be computed by differ-
entiating the continuous activations of neurons, the discrete activation of spiking neu-
rons is generally not differentiable (Bohté, Kok and Poutré |2000; |Shrestha and Orchard
2018). Many alternatives have been proposed to address this issue and compute approx-
imate gradients of SNNs. For instance, surrogate derivatives can be used to replace the
inexisting derivative between spikes and the membrane potential (Shrestha and Orchard
2018; |Zheng et al.|2020; [Wu et al.[2018). While these methods achieve performance
close to that of DNNSs, they often backpropagate errors even when no spike occurs, con-
tradicting the event-based nature of neuromorphic hardware. In contrast, other methods
compute approximate gradients by propagating errors through spike timings, making
them particularly suitable for neuromorphic hardware (Goltz et al. 2021). However,
the absence of a closed-form solution for spike timings represents a major obstacle in
deriving exact gradients for SNNs (Mostafa|2016; Comsa et al.[2020; Goltz et al.[2021;
Wunderlich and Pehle 2021} Lee, Haghighatshoar and Karbasi|2023)) and event-based

methods often have to rely on approximations (Bohte, Kok and Poutré¢|2000; Jin, Zhang

CHAPTER 1. EXACT GRADIENTS OF SNNS 3

and Li1[2018)).

In addition to the lack of differentiability of spikes, the BP algorithm represents
one of the major obstacles to the computation of gradients on neuromorphic hardware.
When computing gradients of SNNs with BP, the states of neurons are first stored dur-
ing a forward pass and then unfolded through both time and space to propagate errors
in reverse during a backward pass (Rumelhart, Hinton and Williams| 1986; Shrestha
and Orchard|2018}; |Goltz et al.|2021f [Wunderlich and Pehle|2021). However, neuro-
morphic hardware operate in real-time and are thus unable to propagate information
in reverse, as required by BP. Moreover, they exclusively perform computations with
locally available information, such as pre-synaptic and post-synaptic spikes, thereby
avoiding the bottlenecks created by data transfers between processing elements and
memory (Sze et al.[2017; Schuman et al.[2022). Therefore, storing the states of neu-
rons for the backward pass of BP not only violates the locality principle inherent to
neuromorphic hardware but also substantially increases the risk of introducing memory
bottlenecks causing processing latency and significant power consumption (Horowitz

2014 |Sze et al.|2017; |Schuman et al.|2022)).

1.1 Thesis Contributions

The aim of this thesis is to address the challenges associated with the computation of

gradients on neuromorphic hardware. More particularly, I propose three algorithms:

o [extend Fast & Deep (GOltz et al.|[2021), an algorithm that isolates closed-
form solutions for post-synaptic spike timings and computes exact gradients of
temporally-coded SNNs. The proposed algorithm generalizes the computation
of exact gradients to SNNs firing multiple spikes per neuron. By relaxing the
spike constraint associated with temporal coding, my method achieves improved
tradeoffs between performance, convergence, energy efficiency, latency and ro-

bustness to noise and weight quantization when compared to the original Fast &

CHAPTER 1. EXACT GRADIENTS OF SNNS 4

Deep algorithm.

e [introduce the Forward Direct Feedback Alignment (FDFA), a novel method that
combines Activity-Perturbed Forward Gradients (Ren et al. [2023) with Direct
Feedback Alignment (Ngkland|2016) and Momentum to estimate the derivatives
between output and hidden neurons as feedback connections. By computing low-
variance gradient estimates without performing backpropagation, the proposed
FDFA algorithm improves the performance and convergence of DNNs compared

to other online and local alternatives to BP.

o [propose the Spiking Forward Direct Feedback Alignment (SFDFA) algorithm, a
spiking adaptation of the FDFA algorithm. By using additional payloads carried
by spikes called grades and by computing local gradients during the inference,
the proposed SFDFA algorithm estimates gradients of SNNs in a local and online
manner that complies with the constraints of neuromorphic hardware. When
compared to Direct Feedback Alignment, the SFDFA algorithm offers advantages

both in terms of performance and convergence.

These algorithms collectively aim to provide novel perspectives for training SNNs.
By addressing the fundamental challenges associated with local and online gradient
computations, my work represents a promising direction for fast, performant, energy-

efficient and robust trainings of SNNs on neuromorphic hardware.

1.2 Thesis Outline

The rest of this thesis is structured as follows:

o In Chapter[2] I review the relevant literature forming the technical background of
this thesis. I provide an overview of biological neurons, deep neural networks,
and spiking neural networks including neuron models, network architectures,

hardware accelerations neural coding, and training methods. Finally, I review

CHAPTER 1. EXACT GRADIENTS OF SNNS 5

various gradient-based optimization techniques and the two main approaches for

automatic differentiation.

e In Chapter 3] I start by reviewing the Fast & Deep (GO6ltz et al|2021) algorithm
applied to temporally-coded SNNs. I then introduce my extension of Fast &
Deep that relaxes the spike constraint of temporal coding and computes gradients
with multiple spikes per neuron. I finally compare my proposed method with
the original Fast & Deep algorithm on multiple criteria such as convergence,
likelihood, performance, sparsity, classification latency, and robustness to noise
and weight quantization. In addition, I investigate the role of weight initialization

in Fast & Deep and highlight several tradeoffs between these different aspects.

e In Chapter 4] I first review the Forward Gradient (Baydin et al[[2022) algorithm
and its variants for DNNs (Silver et al.[|2021; [Ren et al. [2023) as well as the
Direct Feedback Alignment (Ngkland|2016)) algorithm. I then introduce our For-
ward Direct Feedback Alignment (FDFA) algorithm and provide both theoretical
and empirical results demonstrating the advantages of my method in terms of

performance and convergence compared to other alternatives to BP.

e In Chapter[5] I review the application of Direct Feedback Alignment to SNNs and
introduce our Spiking Forward Direct Feedback Alignment (SFDFA) algorithm.
I describe how the local gradient of post-synaptic spikes can be computed in an
online manner and show the existence of critical points causing gradient explo-
sions. I then propose an ad-hoc solution to these critical points and derive an
eligibility trace for neuromorphic hardware compatibility. Finally, I compare the
proposed SFDFA algorithm with Direct Feedback Alignment and demonstrate

the advantages of my method in terms of performance and convergence.

Chapter 2

Literature Review

In this chapter, we give an overview of the relevant literature that forms the technical
background of this thesis. We start by providing a brief overview of biological neurons
in Section [2.1] In Sections [2.2] we give a brief history of artificial neural networks,
introduce different architectures used in modern deep learning as well as the possible
hardware acceleration for DNNs. In Section we describe several popular spiking
neuron models, and discuss the different simulation techniques and hardware accelera-
tion for SNNs. Then, we review methods of spike coding as well as unsupervised and
supervised approaches for training SNNs. Finally, we review in Sections and

gradient-based optimization and automatic differentiation techniques respectively.

2.1 The Brain

The human brain is capable of performing a broad range of complex cognitivee tasks
such as vision, motor control, sound recognition, speech, or planning with a power con-
sumption of only 20 Watts (Balasubramanian|2021). For comparison, standard comput-
ers consume, on average, 80 Watts. With its estimated 86 billion neurons and kilometers
of connections per cubic millimeter, the human brain is a powerful and energy-efficient

structure (Gerstner and Kistler[2002; |Azevedo et al.|[2009; Gerstner et al.[[2014).

CHAPTER 2. LITERATURE REVIEW 7

2.1.1 Structure and Dynamics of Biological Neurons

SO0
action
potential
_ _.]'[‘.I my
1 ms

axon -~ :i

.: ;ﬁ"u‘lwlrmlc

I

Figure 1: Reproduction of a drawing of a single neuron by Ramoén y Cajal. This figure
depicts the dendrites, the soma, and the axon of the neuron as well as a schematic of
an action potential recorded by an electrode placed at the axon. Figure from (Gerstner
et al.[2014).

Neurons are the fundamental processing units of the brain. They are composed of
synapses, a cell body (or soma), and an axon. Synapses are the inputs of the neuron.
They receive information from other neurons and transmit them to the soma through the
dendrites. The soma integrates input stimuli and exhibits important non-linear dynam-
ics. When input stimuli are strong enough to excite the soma past a certain threshold, an
output signal is emitted and delivered to downstream neuron through the axon (Kandel,
Schwartz and Jessell[1991; Gerstner and Kistler|2002; |Gerstner et al.2014). See Figure
[T] for a schematic representation of a single biological neuron.

The signals transmitted between neurons are composed of short and discrete elec-
trical pulses referred to as action potentials or spikes (see Figure 1| for a schematic rep-
resentation). Occurring in time, sequences of action potentials emitted by pre-synaptic
neurons (or spike trains) cause complex biochemical reactions that trigger extracellular

ion influxes into the soma. This leads to voltage changes in the membrane potential

CHAPTER 2. LITERATURE REVIEW 8

of the neuron, depending on the strengths of its synaptic connections. In the absence
of stimulus, the membrane potential relaxes to its resting potential due to ion leakage.
Referred to as Post-Synaptic Potential (PSP), this voltage response to a pre-synaptic ac-
tion potential can either be excitatory (i.e. induces a positive charge) or inhibitory (i.e.
induces a negative charge). When the membrane potential reaches the firing thresh-
old of the neuron, an action potential is released through the axon, and the membrane
potential returns to its resting potential for further spike integration (Kandel, Schwartz

and Jesselll[1991}; |Gerstner and Kistler|[2002; [(Gerstner et al.|[2014]).

2.1.2 Information Coding

Biologial neurons can exhibit a large range of spiking behaviors. However, it is still
unclear how neurons encode information in the brain. Two main theories are at the

center of debates: rate coding or spike time coding (Brette| 2015} \Gautrais and Thorpe

1998)).

Rate Coding

In rate coding, the information carried by a neuron is defined by its firing rate over
a period of time (Brette|[2015). The firing rate f of a neuron is represented by the

temporal average of the spike count n, such as:

6]

NS

where 7' is the time period of the measurement.

Alternatively, information can be encoded through the firing rate of a give popula-
tion of neurons. (Brette|[2015). This encoding mechanism is commonly referred to as
population coding.

However, computing neurons firing rates requires a large temporal window 7" which

is in contradiction with the fast responses observed in the brain (Thorpe, Delorme and

CHAPTER 2. LITERATURE REVIEW 9

Van Rullen 2001a). For example, it has been shown that the brain of primates can re-
spond to visual stimuli in only 100-150ms (Thorpe and Imbert|1989). As information
about stimuli would cross approximately 10 layers of neurons, Thorpe and Imbert ar-
gued that each neuron would have to respond under 10ms which is too fast for their
average firing rate (= 100 Hz). This suggests that information might be carried by

spike timings rather than firing rates.

Temporal Coding

In the theory of temporal coding, the firing rate defines the rate of information rather
than encoding stimuli (Brette/2015). Instead, spikes encode stimuli through their rel-
ative timings (Brette |2015; Thorpe, Delorme and Van Rullen/[2001a). Such a coding
scheme maximizes the amount of information carried by individual spikes as only a
single action potential per neuron is sufficient to process inputs (Thorpe, Delorme and
Van Rullen|[2001a). This also allows fast information processing that could explain the
observed response time of the brain (Thorpe and Imbert |1989; Thorpe, Delorme and
Van Rullen|2001a)).

For example, in First Time Latency coding or Time-To-First-Spike (TTFS), informa-
tion is encoded through the relative latency between spikes and stimuli, as observed in
both the auditory (Furukawa and Middlebrooks|2002) and visual (Reich, Mechler and
Victor|2001) systems. However, most studies of TTFS assume an independent stimulus
onset in the brain which, in most situations, does not exist (Phillips||1998)).

Other studies have suggested that the order in which neurons spike could encode in-
formation (Gautrais and Thorpe||1998]). Thus referred to as Rank Order Coding (ROC),
such coding scheme is decorrelated from the stimulus onset and is believed to be more
robust to spike jitter than TTFS (Gautrais and Thorpe||1998|).

Finally, Phase-of-Firing is another form of temporal coding where information is
temporally coded with respect to the oscillations of the neural population. In this case,

the synchronous population firing is considered to be a reference offset for the relative

CHAPTER 2. LITERATURE REVIEW 10

timings of spikes (Chase and Young/2007)).

2.1.3 Biological Plasticity

Figure 2: Temporal requirements of synaptic changes Aw;; between a pre-synaptic
neuron j firing at time tf and a post-synaptic neuron ¢ firing at time th in cultured
hippocampal neurons. Long-Term Potentiation (LTP) occurs if the pre-synaptic spike
shortly precedes the post-synaptic spike. Long-Term Depression (LTD) occurs if the
pre-synaptic spike is fired after the post-synaptic spike. Figure from (Gerstner and
Kistler||2002) and data points from (B1 and Poo|1998)).

When an axon of cell A is near enough to excite cell B and repeatedly or persis-
tently takes part in firing it, some growth process or metabolic change takes place in
one or both cells such that A ‘s efficiency, as one of the cells firing B, is increased”

Hebb| (1949)

The underlying mechanisms of learning in the brain is not yet fully understood to
this day and remain a topic of ongoing research. However, numerous theories and in
vivo studies have provided valuable insights into fundamental plasticity mechanisms
of the brain that are considered to be essential for learning. For example, Hebb intro-

duced in 1949 the Cell Assembly Theory or Hebbian Learning whereby neurons that

CHAPTER 2. LITERATURE REVIEW 11

exhibit synchronous firing undergo synaptic strengthening, highlighting an important
mechanism underlying learning in the brain.

While Hebb/'s postulate describes the conditions in which synaptic strengthening
occurs, it neglects the temporal aspects of plasticity |Gerstner and Kistler (2002)). Mul-
tiple in vivo studies of synaptically connected neurons have enabled high-resolution
recordings of the temporal requirements of Hebbian learning in the brain (Levy and
Steward|[1983; Magee and Johnston|[1997} Bi and Poo|[1998)). Figure 19 depicts these
temporal dependencies between pre-synaptic and post-synaptic neurons recorded in
cultured hippocampal neurons (B1 and Poo|[1998). It shows that positive change of
weights or Long-Term Potentiation (LTP) occurs if the pre-synaptic spike occurs shortly
before the post-synaptic spike. In contrast, a decrease in synaptic efficiency or Long-
Term Depression (LTD) occurs if the pre-synaptic spike is fired after the post-synaptic
spike. More importantly, the strength of these changes depends on the relative timing
between the pre-synaptic and post-synaptic spikes, exponentially decreasing as the rela-
tive difference in timing increases. Known as Spike Time-Dependent Plasticity (STDP),
these observations align with Hebb/'s theory of learning as only pre-synaptic spikes
that occur before action potentials contribute to synaptic growth (Gerstner and Kistler,

2002).

2.2 Artificial Neural Networks

The idea of reproducing the brain’s computational behaviors to give computers the ca-
pability to learn has been a topic of interest since as early as 1943. Since, multiple ab-
stracted mathematical models of neurons and training algorithms have been proposed.

In this section, we give a brief history and a detailed description of these neuron models.

CHAPTER 2. LITERATURE REVIEW 12

Figure 3: Illustration of the McCulloch-Pitts neuron model. Here, the neuron receives
three binary inputs x1, x2, and x3 that are summed and then passed through a threshold
function to produce a binary output y.

2.2.1 The McCulloch-Pitts Neuron

In 1943, McCulloch and Pitts proposed the first computational model of a neuron that
implements boolean logic functions. Named the McCulloch-Pitts (MCP) neuron, it is
composed of n excitatory inputs ¢ € {0, 1}", m inhibitory inputs '™ € {0, 1}"™ that
are aggregated then passed through a linear threshold gate function ©(z) producing a
single binary output y € {0, 1} (McCulloch and Pitts 1943), such as:

s = Zx?xc — ixij“h

i=1 j=1 (2)
y:=0(s—1)

where 1 € R7 is the threshold of the neuron and

1 ifxz>0
O(x) := (3)

0 otherwise

is the Heavyside step function. The McCulloch-Pitts neuron model is capable of com-
puting simple linear binary functions such as the OR and AND gates but is incapable
of performing non-linear functions such as the exclusive OR (or XOR). Therefore,

its computational power is only limited to manually designed and linearly separable

CHAPTER 2. LITERATURE REVIEW 13

boolean tasks. While the MCP neuron has represented an important step towards the
development of artificial neural networks, no learning mechanism has been introduced

with the model, limiting its applicability to complex problems.

2.2.2 The Perceptron

wq

<

Figure 4: Illustration of the Perceptron. Here, the neuron receives two real-valued
inputs x; and x5 and a bias b is added (represented as an additional connection with
a constant input of 1). All inputs are scaled by their corresponding weights, summed
together then passed through a threshold function to produce a binary output y.

Algorithm 1: Perceptron algorithm

73\ Mdata

1: Input: Training data D = {x;, 7; },
2: Randomly initialize w and .
3: repeat

4: {Loop through training samples}

5: fori =1, ngu, do

6: y < O (w - x; + b) {Infer neuron}
7: ify, = 1and y =0 then

8: w < w + x; {False negative}
9: end if

10: ify;, =0and y =1 then

11: w < w — x; {False positive}
12: end if

13: end for

14: until converged

In 1958, Rosenblatt| proposed the Perceptron based on the MCP neuron model and

CHAPTER 2. LITERATURE REVIEW 14

Hebb| findings on synaptic efficiency and plasticity. In contrast with the MCP neuron
model, the Perceptron uses real-valued inputs * € R" and weights w € R" between
the inputs and the neuron, representing synaptic strengths. Unlike the MCP, the per-
ceptron does not use absolute inhibition, meaning that synapses are capable of freely
transitioning between being inhibitory and excitatory, and vice versa. Moreover, a bias
b € R is introduced in the model, which corresponds to the negative of the MCP thresh-
old ¥. The result of the weighted sum between the inputs and the weights is then passed
through the Heavyside step function to produce a binary output, such as:

j=1

e (iwj a:j—i-b))

In vector form, Equation []is written as:
y =0 (wx+b) 3)

Note that the threshold) of the MCP model (Equation [2)) is replaced by the trainable
bias b in the equation of the Perceptron.

In addition to these modifications, Rosenblatt| proposed a training algorithm called
the Perceptron algorithm (see Algorithm[I)). Intuitively, the Perceptron algorithm mod-
ifies the weights when samples are misclassified. When a false negative prediction
occurs (i.e. the target is positive but the prediction is negative), the dot product between
the inputs & and the weights w is negative but needs to be positive. Therefore, the in-
puts x are added to the weights to reinforce the result of the dot product w-x. Inversely,
when a false positive prediction occurs (i.e. the target is negative but the prediction is
positive), the dot product between the inputs and the weights w is positive but needs
to be negative. Ther