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Abstract

Spiking Neural Networks (SNNs) are biologically-plausible models that can run on
low-powered non-Von Neumann neuromorphic hardware, positioning them as promis-
ing alternatives to conventional Deep Neural Networks (DNNs) for energy-efficient
edge computing and robotics. Over the past few years, the Gradient Descent (GD) and
Error Backpropagation (BP) algorithms used in DNNs have inspired various training
methods for SNNs. However, the non-local and the reverse nature of BP, combined
with the inherent non-differentiability of spikes, represent fundamental obstacles to
computing gradients with SNNs directly on neuromorphic hardware. Therefore, novel
approaches are required to overcome the limitations of GD and BP and enable online
gradient computation on neuromorphic hardware.

In this thesis, I address the limitations of GD and BP with SNNs by proposing
three algorithms. First, I extend a recent method that computes exact gradients with
temporally-coded SNNs by relaxing the firing constraint of temporal coding and allow-
ing multiple spikes per neuron. My proposed method generalizes the computation of
exact gradients with SNNs and enhances the tradeoffs between performance and vari-
ous other aspects of spiking neurons. Next, I introduce a novel alternative to BP that
computes low-variance gradient estimates in a local and online manner. Compared to
other alternatives to BP, the proposed method demonstrates an improved convergence
rate and increased performance with DNNs. Finally, I combine these two methods and
propose an algorithm that estimates gradients with SNNs in a manner that is compatible

with the constraints of neuromorphic hardware. My empirical results demonstrate the
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effectiveness of the resulting algorithm in training SNNs without performing BP.
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sequently large local gradients. In contrast, the modified factor LL(t)
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Chapter 1

Introduction

Over the past decades, Deep Neural Networks (DNNs) trained with the well-established
Gradient Descent (GD) and the Error Backpropagation (BP) algorithms have become
the workhorse of modern machine learning. These powerful computational models
have started a new era of artificial intelligence, enabling computers to perform various
challenging tasks with state-of-the-art performance such as computer vision (Krizhevsky,
Sutskever and Hinton|[2012b; Szegedy, Toshev and Erhan|2013)), natural language pro-
cessing (Vaswanti et al.|2017; Devlin et al.|2018; |Brown et al.|2020), or reinforcement
learning (Mnih et al.| 2013} 2016)). However, the hardware and energy cost of DNN's
represent a significant challenge in terms of sustainability and restrict the practical
applicability of deep learning in resource-limited environments such as low-powered
edge devices (Daghero, Pagliar1 and Poncino|2021)). Therefore, exploring more energy-
efficient alternatives to DNNSs is crucial to address the environmental cost of machine
learning and provide sustainable solutions for edge computing.

One possible alternative to DNNs is Spiking Neural Networks (SNNs). Inspired
by the dynamics of biological neurons and offering a greater computational power
than DNNs (Maass||1997), SNNs process information through discrete spatio-temporal

events known as spikes rather than continuous activations. More importantly, spikes
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enable efficient event-driven implementations of neural networks on massively paral-
lel neuromorphic hardware that only consumes a fraction of the power required by
DNNSs on von Neumann computers (Furber et al.|[2014; Hoppner et al.|2022; Akopyan
et al. |2015; Schemmel et al. 2010; Pehle et al.|2022; [Davies et al. 2018; Frady et al.
2022)). Therefore, SNNs represent promising alternatives to DNNss for energy-efficient
machine learning and low-powered edge computing. However, the lack of general-
purpose training algorithms that can match the performance of DNNs trained with GD
and BP while also being compatible with neuromorphic hardware significantly limits
the widespread adoption of SNNs (Griining and Bohte 2014). Therefore, the explo-
ration of novel training algorithms compatible with neuromorphic hardware represents
one major step towards the adoption of neuromorphic computing for real-world ma-
chine learning applications.

One fundamental obstacle to the application of GD and BP to SNNs is the non-
differentiability of spikes. Unlike DNNs where gradients can be computed by differ-
entiating the continuous activations of neurons, the discrete activation of spiking neu-
rons is generally not differentiable (Bohté, Kok and Poutré |2000; |Shrestha and Orchard
2018). Many alternatives have been proposed to address this issue and compute approx-
imate gradients of SNNs. For instance, surrogate derivatives can be used to replace the
inexisting derivative between spikes and the membrane potential (Shrestha and Orchard
2018; |Zheng et al.|2020; [Wu et al.[2018). While these methods achieve performance
close to that of DNNSs, they often backpropagate errors even when no spike occurs, con-
tradicting the event-based nature of neuromorphic hardware. In contrast, other methods
compute approximate gradients by propagating errors through spike timings, making
them particularly suitable for neuromorphic hardware (Goltz et al. 2021). However,
the absence of a closed-form solution for spike timings represents a major obstacle in
deriving exact gradients for SNNs (Mostafa|2016; Comsa et al.[2020; Goltz et al.[2021;
Wunderlich and Pehle 2021} Lee, Haghighatshoar and Karbasi|2023)) and event-based

methods often have to rely on approximations (Bohte, Kok and Poutré¢|2000; Jin, Zhang
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and Li1[2018)).

In addition to the lack of differentiability of spikes, the BP algorithm represents
one of the major obstacles to the computation of gradients on neuromorphic hardware.
When computing gradients of SNNs with BP, the states of neurons are first stored dur-
ing a forward pass and then unfolded through both time and space to propagate errors
in reverse during a backward pass (Rumelhart, Hinton and Williams| 1986; Shrestha
and Orchard|2018}; |Goltz et al.|2021f [Wunderlich and Pehle|2021). However, neuro-
morphic hardware operate in real-time and are thus unable to propagate information
in reverse, as required by BP. Moreover, they exclusively perform computations with
locally available information, such as pre-synaptic and post-synaptic spikes, thereby
avoiding the bottlenecks created by data transfers between processing elements and
memory (Sze et al.[2017; Schuman et al.[2022). Therefore, storing the states of neu-
rons for the backward pass of BP not only violates the locality principle inherent to
neuromorphic hardware but also substantially increases the risk of introducing memory
bottlenecks causing processing latency and significant power consumption (Horowitz

2014 |Sze et al.|2017; |Schuman et al.|2022)).

1.1 Thesis Contributions

The aim of this thesis is to address the challenges associated with the computation of

gradients on neuromorphic hardware. More particularly, I propose three algorithms:

o [ extend Fast & Deep (GOltz et al.|[2021), an algorithm that isolates closed-
form solutions for post-synaptic spike timings and computes exact gradients of
temporally-coded SNNs. The proposed algorithm generalizes the computation
of exact gradients to SNNs firing multiple spikes per neuron. By relaxing the
spike constraint associated with temporal coding, my method achieves improved
tradeoffs between performance, convergence, energy efficiency, latency and ro-

bustness to noise and weight quantization when compared to the original Fast &
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Deep algorithm.

e [ introduce the Forward Direct Feedback Alignment (FDFA), a novel method that
combines Activity-Perturbed Forward Gradients (Ren et al. [2023) with Direct
Feedback Alignment (Ngkland|2016) and Momentum to estimate the derivatives
between output and hidden neurons as feedback connections. By computing low-
variance gradient estimates without performing backpropagation, the proposed
FDFA algorithm improves the performance and convergence of DNNs compared

to other online and local alternatives to BP.

o [ propose the Spiking Forward Direct Feedback Alignment (SFDFA) algorithm, a
spiking adaptation of the FDFA algorithm. By using additional payloads carried
by spikes called grades and by computing local gradients during the inference,
the proposed SFDFA algorithm estimates gradients of SNNs in a local and online
manner that complies with the constraints of neuromorphic hardware. When
compared to Direct Feedback Alignment, the SFDFA algorithm offers advantages

both in terms of performance and convergence.

These algorithms collectively aim to provide novel perspectives for training SNNs.
By addressing the fundamental challenges associated with local and online gradient
computations, my work represents a promising direction for fast, performant, energy-

efficient and robust trainings of SNNs on neuromorphic hardware.

1.2 Thesis Outline

The rest of this thesis is structured as follows:

o In Chapter[2] I review the relevant literature forming the technical background of
this thesis. I provide an overview of biological neurons, deep neural networks,
and spiking neural networks including neuron models, network architectures,

hardware accelerations neural coding, and training methods. Finally, I review
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various gradient-based optimization techniques and the two main approaches for

automatic differentiation.

e In Chapter 3] I start by reviewing the Fast & Deep (GO6ltz et al|2021) algorithm
applied to temporally-coded SNNs. I then introduce my extension of Fast &
Deep that relaxes the spike constraint of temporal coding and computes gradients
with multiple spikes per neuron. I finally compare my proposed method with
the original Fast & Deep algorithm on multiple criteria such as convergence,
likelihood, performance, sparsity, classification latency, and robustness to noise
and weight quantization. In addition, I investigate the role of weight initialization

in Fast & Deep and highlight several tradeoffs between these different aspects.

e In Chapter 4] I first review the Forward Gradient (Baydin et al[[2022) algorithm
and its variants for DNNs (Silver et al.[|2021; [Ren et al. [2023) as well as the
Direct Feedback Alignment (Ngkland|2016)) algorithm. I then introduce our For-
ward Direct Feedback Alignment (FDFA) algorithm and provide both theoretical
and empirical results demonstrating the advantages of my method in terms of

performance and convergence compared to other alternatives to BP.

e In Chapter[5] I review the application of Direct Feedback Alignment to SNNs and
introduce our Spiking Forward Direct Feedback Alignment (SFDFA) algorithm.
I describe how the local gradient of post-synaptic spikes can be computed in an
online manner and show the existence of critical points causing gradient explo-
sions. I then propose an ad-hoc solution to these critical points and derive an
eligibility trace for neuromorphic hardware compatibility. Finally, I compare the
proposed SFDFA algorithm with Direct Feedback Alignment and demonstrate

the advantages of my method in terms of performance and convergence.



Chapter 2

Literature Review

In this chapter, we give an overview of the relevant literature that forms the technical
background of this thesis. We start by providing a brief overview of biological neurons
in Section [2.1] In Sections [2.2] we give a brief history of artificial neural networks,
introduce different architectures used in modern deep learning as well as the possible
hardware acceleration for DNNs. In Section we describe several popular spiking
neuron models, and discuss the different simulation techniques and hardware accelera-
tion for SNNs. Then, we review methods of spike coding as well as unsupervised and
supervised approaches for training SNNs. Finally, we review in Sections and

gradient-based optimization and automatic differentiation techniques respectively.

2.1 The Brain

The human brain is capable of performing a broad range of complex cognitivee tasks
such as vision, motor control, sound recognition, speech, or planning with a power con-
sumption of only 20 Watts (Balasubramanian|2021). For comparison, standard comput-
ers consume, on average, 80 Watts. With its estimated 86 billion neurons and kilometers
of connections per cubic millimeter, the human brain is a powerful and energy-efficient

structure (Gerstner and Kistler[2002; |Azevedo et al.|[2009; Gerstner et al.[[2014).
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2.1.1 Structure and Dynamics of Biological Neurons
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Figure 1: Reproduction of a drawing of a single neuron by Ramoén y Cajal. This figure
depicts the dendrites, the soma, and the axon of the neuron as well as a schematic of
an action potential recorded by an electrode placed at the axon. Figure from (Gerstner
et al.[2014).

Neurons are the fundamental processing units of the brain. They are composed of
synapses, a cell body (or soma), and an axon. Synapses are the inputs of the neuron.
They receive information from other neurons and transmit them to the soma through the
dendrites. The soma integrates input stimuli and exhibits important non-linear dynam-
ics. When input stimuli are strong enough to excite the soma past a certain threshold, an
output signal is emitted and delivered to downstream neuron through the axon (Kandel,
Schwartz and Jessell[1991; Gerstner and Kistler|2002; |Gerstner et al.2014). See Figure
[T] for a schematic representation of a single biological neuron.

The signals transmitted between neurons are composed of short and discrete elec-
trical pulses referred to as action potentials or spikes (see Figure 1| for a schematic rep-
resentation). Occurring in time, sequences of action potentials emitted by pre-synaptic
neurons (or spike trains) cause complex biochemical reactions that trigger extracellular

ion influxes into the soma. This leads to voltage changes in the membrane potential
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of the neuron, depending on the strengths of its synaptic connections. In the absence
of stimulus, the membrane potential relaxes to its resting potential due to ion leakage.
Referred to as Post-Synaptic Potential (PSP), this voltage response to a pre-synaptic ac-
tion potential can either be excitatory (i.e. induces a positive charge) or inhibitory (i.e.
induces a negative charge). When the membrane potential reaches the firing thresh-
old of the neuron, an action potential is released through the axon, and the membrane
potential returns to its resting potential for further spike integration (Kandel, Schwartz

and Jesselll[1991}; |Gerstner and Kistler|[2002; [(Gerstner et al.|[2014]).

2.1.2 Information Coding

Biologial neurons can exhibit a large range of spiking behaviors. However, it is still
unclear how neurons encode information in the brain. Two main theories are at the

center of debates: rate coding or spike time coding (Brette| 2015} \Gautrais and Thorpe

1998)).

Rate Coding

In rate coding, the information carried by a neuron is defined by its firing rate over
a period of time (Brette|[2015). The firing rate f of a neuron is represented by the

temporal average of the spike count n, such as:

6]

NS

where 7' is the time period of the measurement.

Alternatively, information can be encoded through the firing rate of a give popula-
tion of neurons. (Brette|[2015). This encoding mechanism is commonly referred to as
population coding.

However, computing neurons firing rates requires a large temporal window 7" which

is in contradiction with the fast responses observed in the brain (Thorpe, Delorme and
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Van Rullen 2001a). For example, it has been shown that the brain of primates can re-
spond to visual stimuli in only 100-150ms (Thorpe and Imbert|1989). As information
about stimuli would cross approximately 10 layers of neurons, Thorpe and Imbert ar-
gued that each neuron would have to respond under 10ms which is too fast for their
average firing rate (= 100 Hz). This suggests that information might be carried by

spike timings rather than firing rates.

Temporal Coding

In the theory of temporal coding, the firing rate defines the rate of information rather
than encoding stimuli (Brette/2015). Instead, spikes encode stimuli through their rel-
ative timings (Brette |2015; Thorpe, Delorme and Van Rullen/[2001a). Such a coding
scheme maximizes the amount of information carried by individual spikes as only a
single action potential per neuron is sufficient to process inputs (Thorpe, Delorme and
Van Rullen|[2001a). This also allows fast information processing that could explain the
observed response time of the brain (Thorpe and Imbert |1989; Thorpe, Delorme and
Van Rullen|2001a)).

For example, in First Time Latency coding or Time-To-First-Spike (TTFS), informa-
tion is encoded through the relative latency between spikes and stimuli, as observed in
both the auditory (Furukawa and Middlebrooks|2002) and visual (Reich, Mechler and
Victor|2001) systems. However, most studies of TTFS assume an independent stimulus
onset in the brain which, in most situations, does not exist (Phillips||1998)).

Other studies have suggested that the order in which neurons spike could encode in-
formation (Gautrais and Thorpe||1998]). Thus referred to as Rank Order Coding (ROC),
such coding scheme is decorrelated from the stimulus onset and is believed to be more
robust to spike jitter than TTFS (Gautrais and Thorpe||1998|).

Finally, Phase-of-Firing is another form of temporal coding where information is
temporally coded with respect to the oscillations of the neural population. In this case,

the synchronous population firing is considered to be a reference offset for the relative
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timings of spikes (Chase and Young/2007)).

2.1.3 Biological Plasticity

Figure 2: Temporal requirements of synaptic changes Aw;; between a pre-synaptic
neuron j firing at time tf and a post-synaptic neuron ¢ firing at time th in cultured
hippocampal neurons. Long-Term Potentiation (LTP) occurs if the pre-synaptic spike
shortly precedes the post-synaptic spike. Long-Term Depression (LTD) occurs if the
pre-synaptic spike is fired after the post-synaptic spike. Figure from (Gerstner and
Kistler||2002) and data points from (B1 and Poo|1998)).

When an axon of cell A is near enough to excite cell B and repeatedly or persis-
tently takes part in firing it, some growth process or metabolic change takes place in
one or both cells such that A ‘s efficiency, as one of the cells firing B, is increased”

Hebb| (1949)

The underlying mechanisms of learning in the brain is not yet fully understood to
this day and remain a topic of ongoing research. However, numerous theories and in
vivo studies have provided valuable insights into fundamental plasticity mechanisms
of the brain that are considered to be essential for learning. For example, Hebb intro-

duced in 1949 the Cell Assembly Theory or Hebbian Learning whereby neurons that
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exhibit synchronous firing undergo synaptic strengthening, highlighting an important
mechanism underlying learning in the brain.

While Hebb/'s postulate describes the conditions in which synaptic strengthening
occurs, it neglects the temporal aspects of plasticity |Gerstner and Kistler (2002)). Mul-
tiple in vivo studies of synaptically connected neurons have enabled high-resolution
recordings of the temporal requirements of Hebbian learning in the brain (Levy and
Steward|[1983; Magee and Johnston|[1997} Bi and Poo|[1998)). Figure 19 depicts these
temporal dependencies between pre-synaptic and post-synaptic neurons recorded in
cultured hippocampal neurons (B1 and Poo|[1998). It shows that positive change of
weights or Long-Term Potentiation (LTP) occurs if the pre-synaptic spike occurs shortly
before the post-synaptic spike. In contrast, a decrease in synaptic efficiency or Long-
Term Depression (LTD) occurs if the pre-synaptic spike is fired after the post-synaptic
spike. More importantly, the strength of these changes depends on the relative timing
between the pre-synaptic and post-synaptic spikes, exponentially decreasing as the rela-
tive difference in timing increases. Known as Spike Time-Dependent Plasticity (STDP),
these observations align with Hebb/'s theory of learning as only pre-synaptic spikes
that occur before action potentials contribute to synaptic growth (Gerstner and Kistler,

2002).

2.2 Artificial Neural Networks

The idea of reproducing the brain’s computational behaviors to give computers the ca-
pability to learn has been a topic of interest since as early as 1943. Since, multiple ab-
stracted mathematical models of neurons and training algorithms have been proposed.

In this section, we give a brief history and a detailed description of these neuron models.



CHAPTER 2. LITERATURE REVIEW 12

Figure 3: Illustration of the McCulloch-Pitts neuron model. Here, the neuron receives
three binary inputs x1, x2, and x3 that are summed and then passed through a threshold
function to produce a binary output y.

2.2.1 The McCulloch-Pitts Neuron

In 1943, McCulloch and Pitts proposed the first computational model of a neuron that
implements boolean logic functions. Named the McCulloch-Pitts (MCP) neuron, it is
composed of n excitatory inputs ¢ € {0, 1}", m inhibitory inputs '™ € {0, 1}"™ that
are aggregated then passed through a linear threshold gate function ©(z) producing a
single binary output y € {0, 1} (McCulloch and Pitts 1943), such as:

s = Zx?xc — ixij“h

i=1 j=1 (2)
y:=0(s—1)

where 1 € R7 is the threshold of the neuron and

1 ifxz>0
O(x) := (3)

0 otherwise

is the Heavyside step function. The McCulloch-Pitts neuron model is capable of com-
puting simple linear binary functions such as the OR and AND gates but is incapable
of performing non-linear functions such as the exclusive OR (or XOR). Therefore,

its computational power is only limited to manually designed and linearly separable
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boolean tasks. While the MCP neuron has represented an important step towards the
development of artificial neural networks, no learning mechanism has been introduced

with the model, limiting its applicability to complex problems.

2.2.2 The Perceptron

wq

<

Figure 4: Illustration of the Perceptron. Here, the neuron receives two real-valued
inputs x; and x5 and a bias b is added (represented as an additional connection with
a constant input of 1). All inputs are scaled by their corresponding weights, summed
together then passed through a threshold function to produce a binary output y.

Algorithm 1: Perceptron algorithm

73\ Mdata

1: Input: Training data D = {x;, 7; },
2: Randomly initialize w and .
3: repeat

4:  {Loop through training samples}

5:  fori =1, ngu, do

6: y < O (w - x; + b) {Infer neuron}
7: ify, = 1and y =0 then

8: w < w + x; {False negative}
9: end if

10: ify;, =0and y =1 then

11: w < w — x; {False positive}
12: end if

13:  end for

14: until converged

In 1958, Rosenblatt| proposed the Perceptron based on the MCP neuron model and
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Hebb| findings on synaptic efficiency and plasticity. In contrast with the MCP neuron
model, the Perceptron uses real-valued inputs * € R" and weights w € R" between
the inputs and the neuron, representing synaptic strengths. Unlike the MCP, the per-
ceptron does not use absolute inhibition, meaning that synapses are capable of freely
transitioning between being inhibitory and excitatory, and vice versa. Moreover, a bias
b € R is introduced in the model, which corresponds to the negative of the MCP thresh-
old ¥. The result of the weighted sum between the inputs and the weights is then passed
through the Heavyside step function to produce a binary output, such as:

j=1

e (iwj a:j—i-b) )

In vector form, Equation []is written as:
y =0 (wx+b) 3)

Note that the threshold ) of the MCP model (Equation [2)) is replaced by the trainable
bias b in the equation of the Perceptron.

In addition to these modifications, Rosenblatt| proposed a training algorithm called
the Perceptron algorithm (see Algorithm[I)). Intuitively, the Perceptron algorithm mod-
ifies the weights when samples are misclassified. When a false negative prediction
occurs (i.e. the target is positive but the prediction is negative), the dot product between
the inputs & and the weights w is negative but needs to be positive. Therefore, the in-
puts x are added to the weights to reinforce the result of the dot product w-x. Inversely,
when a false positive prediction occurs (i.e. the target is negative but the prediction is
positive), the dot product between the inputs  and the weights w is positive but needs
to be negative. Ther