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Summary: This paper proposes an estimator which combines spatial differencing with a two- 
step sample selection estimator. We derive identification, estimation, and inference results 
from ‘site-specific’ unobserved effects. These effects operate at a spatial scale that cannot be 
captured by administrative borders. Therefore, we use spatial differencing. We show that under 
justifiable assumptions, the estimator is consistent and asymptotically normal. A Monte Carlo 
experiment illustrates the small sample properties of our estimator. We apply our procedure to 
the estimation of a female wage offer equation in the United States and the results show the 
rele v ance of spatial differencing to account for ‘site-specific’ unobserved effects. 
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1. INTRODUCTION 

patial differencing offers an identification strategy in the situations when researchers are lim-
ted to cross-section data, suspect unobserved omitted variables, and lack suitable instrumental
ariables. 

It has been used in the context of linear regressions (e.g., Holmes, 1998 ; Black, 1999 ; Gibbons
nd Machin, 2003 ). 1 Ho we ver, little is known about its use (or its application) in the context of
onlinear models. Therefore, we extend spatial differencing in this direction. 

In the context of nonexperimental data, bias due to unobserved omitted variables can be a
erious concern. Researchers have three main options: (a) they can use proxies, (b) instrumental
ariables, or (c) differencing the data across time or space. 

(a) Proxies reduce the bias if they manage to capture the effect of omitted v ariables. Ho we ver,
proxies can be imperfect and their inclusion may even exacerbate the bias problem. 2 
1 Duranton et al. ( 2011 ) also use spatial differencing, but they complement it with instrumental variable estimation. 
2 See Todd and Wolpin ( 2003 ) for details on the use of proxy, and Oster ( 2019 ) for a rigorous treatment of the e v aluation 

f the robustness to omitted variables. 
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(b) Instrumental variables may help to alleviate the bias. However, as discussed in Todd and
Wolpin ( 2003 ), the ‘quasi-experimental’ local average treatment effect (LATE) obtained
in the instrumental variable model may not correspond to the ceteris paribus effect and
thus may not correspond to the deep structural parameter of interest (see, for example,
Heckman et al., 1997 ; Heckman and Vytlacil, 2005 ; Deaton and Cartwright, 2018 ). 

(c) Differencing across time and/or space helps researchers to control for individual-specific
unobserved heterogeneity. Differencing across time is widely used as panel data techniques
hav e been dev eloped o v er the years. Differencing across space is another option, but only
linear spatial differencing methods have been developed so far. 

Our paper develops an estimator for a sample selection model which uses spatial differencing
even in the presence of a nonlinear element—in our case Mill’s ratio. We derive the variance–
covariance matrix of the proposed estimator that accounts for spatial differencing and sample
selection, and examine its asymptotic distribution. The new estimator and the standard errors are
easy to implement. 

1.1. Motivation for the estimator 

Suppose we have cross-sectional data on individuals with information on wages, educational
attainment, and various socio-economic variables. Individuals self-select whether to work or
not. We are interested in estimating returns to education with a sample selection model. We
are concerned that there are unobserved variables in local labour markets which will bias our
estimates, unless we control for them. We can use location-specific fixed effects such as county
dummies or region dummies. Ho we ver, local labour markets might operate at a geographically
finer level than counties or regions, and they can be very heterogeneous. This means that the
county or region dummies will not fully control for such heterogeneity. There is also no a priori
reason to believe that the local labour markets will operate solely within the existing administrative
borders. 

As a result, even though location-specific dummies will control for some unobserved effects
pertaining to the location, they will not control for all unobserved heterogeneous location effects
at the finer spatial level, causing the estimated parameters to be inconsistent. 3 Spatial differencing
across individuals living in the same neighbourhood, however, can eliminate this fine-location
unobserved heterogeneity. The issue at stake, though, is that in a sample selection model, Mill’s
ratio cannot be differenced out using the assumptions and methods applied in linear models, since
it is a nonlinear function containing the location-specific ef fects. Our methodology, ho we ver,
accommodates this case. 

1.2. Main results 

We show that under justifiable assumptions that the spatially close individuals have similar unob-
served heterogeneity and a similar inverse Mill’s ratio deri v ati ve, spatial dif ferencing eliminates
the unobserved effects. The parameters of interest are then estimated using a two-step approach.
We derive asymptotic properties and propose a correction of standard errors which accounts for
the two-step nature of our estimation and spatial differencing. 
3 It is possible to envision a case when there is a very large number of observations at a finer geographical level which 
would then allow to estimate fixed effects at the finer geographical level. 

© The Author(s) 2023. 
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Spatial differencing, while removing unobserved spatial effects, also induces a correlation in
he error terms. We take that correlation into account and derive the asymptotic properties of our
stimator using similar arguments to those present in the deri v ation of the asymptotic behaviour
f clustered standard errors: the number of locations goes to infinity and the size of the location
s assumed random and almost surely bounded. 4 

We find that the results about the asymptotic behaviour of our estimator also extends to a
inear model without sample selection. This has important implications and researchers need to
e cautious about it. Indeed, we show that the consistency of the estimator applied to the spatially
ifferenced data requires (i) a large number of locations and (ii) a limited number of individuals
n each location. Monte Carlo simulations also suggest that it would be better if the number of
ndividuals in the site was small as well. 

1.3. Contribution to literature 

e contribute to spatial differencing literature by extending it to a sample selection model. 5 

Our paper also relates to sample selection literature which addresses a challenge posed by the
resence of individual-specific unobserved heterogeneity in both the outcome and the selection
quations. In such cases, the identification of the parameters is complicated by the nonlinearity
r the incidental parameter problem (see Chamberlain, 2010 ; Fern ́andez-Val and Weidner, 2016 ).
his literature examines it in the context of cross-section or panel data and the solutions are based
n either a full model specification or on a differencing procedure. Wooldridge ( 1995 ) uses a
undlak approach to specify the individual-specific unobserved heterogeneity in both equations.
e also imposes a special functional form on the selection mechanism. Kyriazidou ( 1997 ),
o we ver, does not impose strong restrictions on the selection equation functional form, and uses a
onparametric approach to difference out the unobserv ed fix ed effect. Rochina-Barrachina ( 1999 )
or panel data and Ahn and Powell ( 1993 ) for cross-section data similarly rely on differencing to
dentify the parameters of the model, but they also impose additional distributional or functional
orm assumptions to the selection equation or nonparametric equation. 

The main difference between our paper and the literature on the selection correction in panel
ata context is a different cluster asymptotic since, in each cluster, there is a finer common site-
pecific unobserved heterogeneity shared by individuals in that cluster. As a result, the outcomes
f the individuals in our model are not independent while they are in the panel data case. Therefore,
ur asymptotic results are derived using an asymptotic distribution theory for a large number of
lusters with heterogeneous, random, and bounded cluster sizes. Indeed, in each cluster, there is
 finer common site-specific unobserved heterogeneity shared by individuals in that cluster. 

The clustered dependence created by the finer site-specific unobserved heterogeneity also
elates our asymptotic discussion to the literature on clustering at variance level (see Wooldridge,
010 , for a textbook treatment). The asymptotic distribution in that literature is derived using
ither a large or a fixed number of clusters. The fixed number of clusters leads to non-normal
symptotic distribution, and discussion about recent contributions can be found in Hansen and
ee ( 2019 ). An asymptotic distribution theory for a large number of clusters was first derived
y White ( 1984 ), and has been investigated by several authors allowing either fixed cluster size
r heterogeneous cluster. Recent developments include Hansen and Lee ( 2019 ), who propose
onditions on the relation between the cluster sample sizes and the full sample in a regular
symptotic, or Djogbenou et al. ( 2019 ), who derive asymptotic with varying cluster sizes and
4 Locations in our model are equi v alent to clusters and we use ‘location’ and ‘cluster’ interchangeably. 
5 Additional references to already cited research are Belotti et al. ( 2018 ) and Druckenmiller and Hsiang ( 2018 ). 

The Author(s) 2023. 
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carry out a cluster wild bootstrap. Our results complement this literature by extending the many
cluster asymptotic to a sample selection model. 

In the empirical application, we are interested in estimating a sample selection model of
female wages in the decades of the twentieth century prior to W orld W ar II, times when the US
economy underwent substantial social and economic transformation that affected labour markets
and employment opportunities for women (Goldin and Katz, 2010 ; Goldin, 2021 ). We have
reasons to be concerned that individual unobserved heterogeneity is present in the main as well
as selection equation. Ho we ver, prior to World War II, the United States population censuses
recorded nominal wages only in 1940, hence no wage information is available in the censuses
before 1940. This poses a problem because we cannot use panel data techniques discussed
earlier. Fortunately, the 1940 population census provides detailed geographical information about
individual’s location: state, county, and city/town. This allows us to use the spatial differencing
technique proposed in this paper. We estimate a sample selection model with ordinary least
squares (OLS), Heckman’s two-step estimator, and the spatially differenced estimator proposed
in this paper. The results show that not controlling for unobserved individual heterogeneity using
spatial differencing biases the results of the standard Heckman sample selection estimator. 

The structure of the paper is as follows. First, we expand the spatial differencing method in the
case of the linear regression model to the case of sample selection. Then, we discuss identification
assumptions, propose an estimation procedure, and derive the estimator of the corrected standard
errors. We also conduct Monte Carlo simulations and then present an empirical application of
our estimator. 

2. SAMPLE SELECTION MODELS WITH SPATIAL CORRELATION 

2.1. Spatial differencing in a linear model 

In many economic applications, we are interested in estimating the following regression equation: 

y ij = x ′ ij δ + γj + γjα + ε ij , (2.1) 

where x ′ ij is a vector of exogenous controls variables for i residing at location j ( i can be, for
example, a firm or an individual), γj is location fixed effect, γjα is an unobserved specific effect
which is present at α, a finer spatial scale than location j , and ε ij is the error term. We will call
γjα a site-specific unobserved effect. 6 

An example of an application of this model can be found in the estimation of the effect of
local taxation on the growth of firms. The impact of local taxation on the growth of firms can be
affected by the location-specific effects such as county-specific ef fects. Ho we ver, it also can be
affected by finer-scale sites such as neighbourhoods, as highlighted in Duranton et al. ( 2011 ). We
can control for γj with location dummy v ariables. Ho we v er, the y might not be enough to capture
all unobserved heterogeneity related to location j , since there can be considerable heterogeneity
at a finer spatial scale γjα . Furthermore, standard location fixed effect γj relies on an arbitrary
specification of the comparison neighbourhood group, as pointed out by Gibbons and Machin
( 2003 ), making it an imperfect control for a finer, site-specific effect γjα . Including dummies
for γjα is often not feasible because there can be too many of them, and they would suffer from
the same issue of an arbitrary specification of the comparison neighbourhood group. If γjα is
6 The site-specific component, γjα , is a simplification for γjαi 
. We are implicitly assuming that the site-specific effects 

are the same for all its i. 

© The Author(s) 2023. 
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orrelated with x ij , the OLS estimate of δ will be biased. In the absence of suitable instrumental
ariables for x ij , the spatial differencing offers a solution by differencing out the unobserved
ite-specific effects γjα . 

Holmes ( 1998 ), Black ( 1999 ), Gibbons and Machin ( 2003 ), and Duranton et al. ( 2011 ) use
patial differencing in the case of linear models to solve endogeneity problems arising from
nobserved site-specific effect γjα . They take advantage of the fact that for sufficiently small
istances between sites, their specific effect γjα changes smoothly, allowing thus to difference
hem out. This corresponds to the following assumption. 

SSUMPTION I1: The site-specific unobservable effect is homo g enous in the neighbourhood of
he individual, i.e., � d γjα = 0 almost surely, for d small enough, where � d is a spatial difference
perator. 

2.2. Spatial differencing in a sample selection model 

n several economic models, in addition to the site-specific fixed effects γjα , the outcome of
nterest is not observed for a selected subsample. The selection can be the result of the decision of
ndividuals, firms, or the researcher. The presence of sample selection then introduces nonlinearity
o the model ( 2.1 ). 

We specify the model with sample selection as follows. Consider two latent dependent variables
 

∗
1 ij and y ∗2 ij in a cross-section which follow a regular linear model for individual i in a location
 : 7 

y ∗1 ij = z ′ ij β + θjα + θj + ε 1 ij —selection equation, 
y ∗2 ij = x ′ ij δ + γjα + γj + ε 2 ij —outcome equation. 

Individual error terms are ε 1 ij and ε 2 ij ; θjα and γjα are site-specific effects for a site α in location
 , affecting the selection and the outcome equation, respectively. The exogenous characteristics
 ij affect the outcome. They could be correlated with γjα + γj , but not with ε 1 ij and ε 2 ij . The
ariables z ij are exogenous variables determining selection, they can be a subset of x ij . Ho we ver,
or identification purposes, some elements of z ij are assumed to be absent from x ij . 

SSUMPTION I2: ε 1 ij , ε 2 ij are independent identically distributed normal random variables
or all i, j . 8 

The outcome is modelled in the form of a truncated sample selection model and is represented
y ( 2.2 ). 

y 2 ij = 

{ 

y ∗2 ij if y ∗1 ij > 0 

− if y ∗1 ij ≤ 0 

. (2.2)

Let us consider the following conditions. 

Condition 1: Cov[ z ij , θjα + θj + ε 1 ij ] = 0 ; z ij is exogenous 
7 For the sake of clarity and simplicity of exposition, we will refer to i as individual for the rest of the paper. 
8 The Assumption I2 under which our results are derived imposes homoscedasticity and normality. These assumptions 

ould be considered as strong. Ho we ver, since our goal is to derive conditions under which the intuition of spatial 
ifferencing that applies to simple linear models could be generalised to sample selection models, we do not consider 
 semi-parametric model similar to Das et al. ( 2003 ) and Newey ( 2009 ) here. The semi-parametric model comes with 
dditional identification challenges which could make the intuition behind the estimation of spatially differenced linear 
odels in the context of sample selection models difficult. 

The Author(s) 2023. 
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Condition 2: Cov[ x ij , γjα + γj + ε 2 ij ] = 0 ; x ij is exogenous 
Condition 3: and errors ( ε 1 ij , ε 2 ij ) satisfy ε 2 ij = ρ × ε 1 ij + v ij with ε 1 ij ∼ N (0 , 1) and

independent of v ij . 

It is possible to consistently estimate δ by Tobit regression under these three conditions. 9 In
most applications, Conditions 1 and 2 are unlikely to hold, because there is a possibility that
there could be a site-specific omitted variable affecting both the outcome and some observed
characteristics of interest. Thus, it is possible that Cov[ x ij , γjα + γj ] �= 0 . The standard way to
deal with the correlation between x ij and γjα would be to find a suitable instrument for the x ij 
and run an IV Tobit or IV two-stage Heckit. The very local nature of the site-specific effect
means that it is not al w ays evident to find a variable correlated with x ij and uncorrelated with γjα .
The exclusion restriction is likely to be violated and IV two-stage Heckit will yield inconsistent
estimates for δ. 

Another option is to use the site-specific γjα fixed effects, and estimate the model using
the classic Heckman two-stage procedure. This, ho we ver, has two main disadvantages. First, in
practice it will lead to a proliferation of parameters and loss of degrees of freedom. Second,
there is a conceptual issue: it relies on an arbitrary specification of the comparison sites (e.g.,
comparison neighbourhoods), which could cause a measurement error. 

2.3. Identification via spatial differencing 

This section investigates the application of this spatial differencing technique to the case of cross-
section sample selection models. We denote � d to be a spatial difference operator. One example
is a pairwise difference operator which takes the difference between each observation and another
observation located at distance less than d from that observation in location j , with individual i
and k who are neighbours. The pairwise differencing of the variable A is: 

� d A = A ij − A kj . 

Another example is the difference between the individual outcome and the average outcome of
their neighbourhood N id . This operator is similar to the neighbourhood fixed effect operator,
the difference being that the neighbourhoods can o v erlap. We call this operator the fixed effect
difference operator. Let N id = { k , in neig hbo urho o d d} , the sample size of N id is N d ,
the differencing is given by: 

� df A = A ij − 1 

N d 

∑ 

k∈ N id 

A kj . 

A further possibility is to use a kernel as in Kyriazidou ( 1997 ) to weight neighbours in N id 

according to how far they are, in term of observable characteristics. This operator is the kernel
difference operator: 

� dK 

A = A ij −
∑ 

k∈ N id 

ψ( i, k) A kj , 

where ψ( i, k) = 

1 
h N d 

K 

(
( z ′ ij −z ′ kj ) β+ ( x ′ ij −x ′ kj ) δ

h N d 

)
, K is a kernel density function while h N d 

, is a sequence

of bandwidths. To illustrate our identification strategy and for the asymptotic deri v ation, we use
9 Identification required an exclusion restriction, i.e., a variable that affects y ∗1 ij , but not y ∗2 ij . Otherwise, identification 
relies on the nonlinearity of the inverse Mill’s ratio. 

© The Author(s) 2023. 
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he pairwise spatial difference operator, while the fixed effect difference is used for the empirical
pplication and for the Monte Carlo simulations. 

For the spatial difference operator � d , � d y 2 ij = y 2 ij − y 2 kj with k an observation in the
eighbourhood d of i. Let ξij ≡ { x ij , z ij , y ∗1 ij > 0 , γid , θid } with γid = { γkj with k ∈ N id ∪
 i}} and θid = { θkj with k ∈ N id ∪ { i}} . 

E[ � d y 2 ij | ξij , ξkj ] = E[ y 2 ij − y 2 kj | ξij , ξkj ] (2.3)

= E[ y 2 ij | ξij ] − E[ y 2 kj | ξkj ] (2.4)

= x ′ ij δ + γjα + γj + ρλ
(
z ′ ij β + θjα + θj 

)
− [

x ′ kj δ + γjα + γj + ρλ
(
z ′ kj β + θjα + θj 

)]
= � d x 

′ 
ij δ + � d γjα + ρ� d λ

(
z ′ ij β + θjα + θj 

)
, (2.5)

here λ( c) = φ( c) /� ( c) is the inverse Mill’s ratio while φ( c) and � ( c) are respectively the
ensity and distribution function of a normal random variable with mean zero and variance 1. 

To go from ( 2.3 ) to ( 2.4 ) we use the linearity of expectation and the mean independence of
 2 ij and y ∗1 kj conditional on ξij , as well as the mean independence of y 2 kj and y ∗1 ij conditional on
kj , since we have assumed in Assumption I2 that ε 1 ij and ε 2 ij are independent and identically
istributed (i.i.d.). The separation of the conditional set, ξij and ξkj , is possible because we work
ith cross-sectional data. Such a separation is not possible for panel data. Indeed, in the context of
anel data with individual effects and sample selection, when the differencing is used to remo v e
he fixed effects, the conditional set cannot be separated as we have done to move from ( 2.3 )
o ( 2.4 ). To ‘difference out’ the unobserv ed heterogeneity, e xtra assumptions are imposed. For
xample, Kyriazidou ( 1997 ) imposes a ‘conditional exchangeability’ assumption that implies that
he distribution of error terms are equal o v er time for all individuals in the sample. In the case of
odels with censoring, Lee ( 2001 ) discusses conditions under which first difference can be used,

nd imposes the linear implication of the ‘conditional exchangeability’ assumption. In a similar
ontext using the first difference, Rochina-Barrachina ( 1999 ) imposes joint normality between
he difference in the error of the outcome equation and the error in the selections equation in the
wo time periods. 10 

Estimating ( 2.5 ) presents two challenges for the identification of the parameter of interest δ and
he sample selection parameter ρ: the site-specific difference � d γjα , and the sample selection
erm ρ� d λ( z ′ ij β + θjα + θj ) . As for the site-specific difference � d γjα , under Assumptions I1
nd I2, ( 2.5 ) becomes 

E[ � d y 2 ij | ξij , ξkj ] = � d x 
′ 
ij δ + ρ� d λ

(
z ′ ij β + θjα + θj 

)
. (2.6)

hese assumptions allow us to difference out the site-specific unobserved effect γjα , a strategy
hat was applied by Duranton et al. ( 2011 ). 

As for the sample selection term ρ� d λ( z ′ ij β + θjα + θj ) , we see that it depends on the unob-
ervable site-specific and location effects θjα + θj . Since that sample selection term is a nonlinear
unction, a simple spatial differencing will not al w ays w ork, unlik e the case of γja . Therefore,
he following assumption helps us to deal with this challenge: 

SSUMPTION I3: (i) The site-specific unobservable selection effect is homo g eneous in a neigh-
ourhood of an individual, i.e., � d θja = 0 almost surely for d small enough. (ii) The following
10 See Dustmann and Rochina-Barrachina ( 2007 ) for a re vie w on selection correction in panel data models. 

The Author(s) 2023. 
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equality holds for the inverse Mill’s ratio in a neighbourhood of all individuals: 

λ
(
z ′ ij β + θjαi 

+ θj 

) − λ
(
z ′ ij β

)
θjαi 

+ θj 

= 

λ
(
z ′ kj β + θjαk 

+ θj 

) − λ
(
z ′ kj β

)
θjαk 

+ θj 

, 

almost surely, for i and k in a neighbourhood d, and θjαi 
+ θj and θjαk 

+ θj are both different
from 0. 

Assumption I3(i) is similar to Assumption I1. It seems plausible that if that assumption holds
for the outcome equation, it will hold for the selection equation as well. 

Let λ′ ( . ) be the first deri v ati ve of the inverse Mill’s ratio. There exist c i and c k which are, respec-
tively, in the intervals formed by [ z ′ ij β, z ′ ij β + θjαi 

+ θj ] , and [ z ′ kj β, z ′ kj β + θjαk 
+ θj ] such that

λ′ ( c i ) = 

λ( z ′ ij β+ θjαi 
+ θj ) −λ( z ′ ij β) 

θjαi 
+ θj 

and λ′ ( c k ) = 

λ( z ′ kj β+ θjαk 
+ θj ) −λ( z ′ kj β) 

θjαk 
+ θj 

almost surely. Assumption I3(ii)
is no v el and one of the contributions of this paper. If the level of nonlinearity of λ( . ) is low, then
the assumption will also hold. In the extreme case of local linearity of the inverse Mill’s ratio, the
Assumption I3(ii) perfectly holds. 

2.4. Similarity with nonlinear panel data assumptions 

Assumption I3(ii) imposes a condition on the behaviour of the nonlinear part of the ( 2.6 ). In
the nonlinear panel data model, it is common to use assumptions on the functional form for
identification. F or e xample, Chamberlain ( 2010 ) deriv es identification results for panel data
model with binary outcome showing that identification is possible only in the logistic case.
Also, Bonhomme ( 2012 ) imposes compactness and a non-surjectivity assumption on the op-
erator associated with the conditional distribution of the unobserved heterogeneity, and uses
functional differencing to achieve identification and estimate the parameters of the model. Note
that Assumption I3(i) are restrictions on the conditional distribution of unobserved heterogeneity
similar to those in assumption 1(i) of Bonhomme ( 2012 ) while Assumption I3(ii) restricts the
behaviour of the conditional distribution of the outcome in the same spirit as Bonhomme ( 2012 )
assumption 1(ii). 

2.5. Intuition and application 

The intuition of the Assumption I3(ii) is similar to the smoothness assumption imposed on the
nonparametric selection control function in Ahn and Powell ( 1993 ) for cross-sectional data. In
empirical applications, if individuals in a neighbourhood share the same finer-level unobserved
heterogeneity (e.g., two neighbouring towns), the Assumption I3(i) should hold. Moreo v er, if the
inverses Mill’s ratio does not have substantial nonlinearity Assumption I3(ii) could hold. This is
possible because there will exist many data sets for which λ′ ( c i ) = λ′ ( c k ) in small neighbourhoods
(e.g., i and k two neighbouring towns). 11 

The combination of Assumptions I3(i) and I3(ii) implies that 

λ
(
z ′ ij β + θjαi 

+ θj 

) − λ
(
z ′ ij β

) = λ
(
z ′ kj β + θjαk 

+ θj 

) − λ
(
z ′ kj β

)
. 

Thus, � d λ( z ′ ij β) = � d λ( z ′ ij β + θjα + θj ) . 
11 c i , and c k are, respectively, in the intervals formed by [ z ′ ij β, z ′ ij β + θjαi 
+ θj ] and [ z ′ kj β, z ′ kj β + θjαk 

+ θj ] 

such that λ′ ( c i ) = 

λ( z ′ 
ij 

β+ θjαi 
+ θj ) −λ( z ′ 

ij 
β) 

θjαi 
+ θj 

and λ′ ( c k ) = 

λ( z ′ 
kj 

β+ θjαk 
+ θj ) −λ( z ′ 

kj 
β) 

θjαk 
+ θj 

. 

© The Author(s) 2023. 
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HEOREM 2.1. Let us consider the sample selection model presented in ( 2.2 ). Under Assump-
ions I1 to I3, the parameters δ and ρ are identified. 

roof of Theorem 2.1: We have already shown that under the Assumptions I1 and I2 we can
btain ( 2.6 ). Applying Assumption I3 to ( 2.6 ) leads to the following equation 

E[ � d y 2 ij | ξij , ξkj ] = � d x 
′ 
ij δ + ρ� d λ

(
z ′ ij β

)
. (2.7)

hus, Assumptions I1 to I3 are sufficient for the identification of δ and ρ. �
We have derived the results using the pairwise spatial difference operator. However, the identi-

cation result also holds for other spatial difference operators. In the case of the average or kernel
ifference operator, the conditioning in ( 2.7 ) is on ξkj with k ∈ N id for the average difference
perator, and k is in the full sample for the kernel operator. Note that under Assumptions I1
nd I3, any difference in the weighted average in a neighbourhood of the individual will enable
s to remo v e the site-specific effect. The conditional expectation presented in ( 2.7 ) depends on
xogenous observable variables and parameters of interest. 

2.6. Estimation and asymptotic properties 

n this section, we present an estimation procedure and derive the asymptotic properties of the
roposed estimator. The estimation procedure involves two steps. In the first step, the probit
odel is estimated and the inverse Mill’s ratio is predicted. In the second step, a spatial difference

perator differences out both location and the site-specific unobserved heterogeneity. The model
s then estimated using an ordinary least square estimator. When we have a full sample of N f 

ndividuals, the estimation procedure is thus as follows: 

Step 1: Estimate β by probit with location effect γj ; and calculate ˆ λi = λ( z ′ ij ̂  β) . 
Step 2: Estimate δ and ρ in the OLS regression 

� d y 2 ij = � d x 
′ 
ij δ + ρ� d λ

(
z ′ ij ̂  β

) + w ikj . (2.8)

Since we used spatial differencing and estimated λ( z ′ ij ̂  β) in Step 1, a particular structure of the
 ariance–cov ariance matrix emerges. Therefore we also need to derive the correct estimator of
tandard errors which we will do in Section 2.7 . 

We will no w sho w that the estimator obtained by this procedure is consistent and asymptotically
ormal. To derive the asymptotic properties, we use similar arguments as those used to derive the
symptotic properties of the clustered standard errors. Specifically, the population size of each
ocation is assumed random, and bounded almost surely, and the law of large numbers is applied
y letting the number of locations (clusters in case of clustered standard errors) go to infinity. 

We consider a generic matrix of spatial difference � . The matrix form notation of ( 2.8 ) can be
xpressed as 12 

�y 2 = �x ′ δ + ρ�λ( z ′ ˆ β) + �η, (2.9)

here ηij are the same errors as in standard sample selection models. 13 Let us denote θ = ( δ, ρ) ′

nd W = [ x ′ , λ( z ′ ˆ β)] . The simplified estimation ( 2.9 ) is 

�y 2 = �W θ + �η, 
12 The variables without subscript represent vectors or matrices of all observations in the sample. 
13 We assume in the notation that λ( z ′ ˆ β) is a vector with a typical element λ( z ′ ij ̂  β) . 

The Author(s) 2023. 
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and the OLS estimator of θ is 

ˆ θ = [( �W ) ′ �W ] −1 [( �W ) ′ �y 2 ] . (2.10) 

The spatial nature of data implies that an observation k with n neighbours may appear in several
pairs. This induces correlation in the error term �η for all n of these pairs because of the spatial
differencing in the second step of the estimation procedure. As a result, a particular structure
of the covariance matrix emerges, and we need to take that into account when calculating the
standard errors. 

To proceed further, we need to introduce assumptions under which the asymptotic properties
of our estimator are derived. 

ASSUMPTION E1: The selected sample size is N . 

( i ) We observed { x ij , z ij } independent and identically distributed random variables with
i = 1 , ..., N and j = 1 , ..., J . 

( ii ) The number of individuals in a location j , N j , is exo g enous, random, identically dis-
tributed with N j < n 0 almost surely, where n 0 is a scalar. Thus, E( N j ) < ∞ . 

( iii ) The outcomes and the latent variables are independent across locations, i.e., j 1 �= j 2 the
variables y 2 ij 1 ⊥ y 2 ij 2 and y ∗1 ij 1 ⊥ y ∗1 ij 2 . 

( iv ) θjαi 
is uncorrelated with z ij . 

An implication of Assumption E1(i) in conjunction with Assumption I2 is that θj , γj are
i.i.d. Ho we ver, within a location j , there is a certain level of correlation among individuals
which operates through γjαi 

. This means that our assumptions restrict how those within-location
individual correlations occur. 

Assumption E1(ii) restricts the location size to be bounded and implies that the number of
locations has to grow to achieve a large sample size in our asymptotic calculation. This assumption
is similar to those held in the literature on clustered samples asymptotic distributions, and it leads
to an asymptotic distribution theory for a ‘large number of clusters’ similar to Wooldridge
( 2010 ), which assumes fixed cluster size. Moreover, Assumption E1(ii) corresponds to having all
sampled clusters being small proportions of the population of clusters of interest. Thus, clustering
is required based on Abadie et al. ( 2023 ). 

This assumption corresponds to a specific case of assumption 1 in Hansen and Lee ( 2019 ),
which allows for different cluster sizes ranging from fixed to infinite. We have, ho we ver, deri ved
the asymptotic of our estimator under the more restrictive condition of Assumption E1(ii). The
reason is that it can be pro v en that under a joint asymptotic ( N, J → ∞ ), assumption 1 in Hansen
and Lee ( 2019 ) is equi v alent to assuming that the size of the sample in each location is bounded.
If we instead allow for a sequential asymptotic where the number of locations is fixed, and the
sample size goes to infinity, then there exists at least one location with an infinite number of
individuals, and the inequality used in the proof of Hansen and Lee’s ( 2019 ) theorem 1 becomes
invalid. 

To better illustrate our argument, let us consider the location sample size proposed by Hansen
and Lee ( 2019 ): N j = N 

α with 0 ≤ α < 1 ; we can pro v e that 1 − α = 

ln ( J ) 
ln ( N) . If we allow for a

joint asymptotic, α is not define. If, on the contrary, we assume that the number of locations J is
fixed, then, α goes to 1. In both cases, relying on Hansen and Lee’s ( 2019 ) assumption 1 seems
not enough to warrant the desired asymptotic regularities. 
© The Author(s) 2023. 
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Assumption E1(iv) implies that after controlling for location fixed effects, a consistent estimate
f β can be achieved using a maximum likelihood procedure. It, however, allows for a correlation
etween γjαi 

and θjαi 
, making differencing important to a v oid biased estimation of the parameters

f interest. 

SSUMPTION E2: z ′ and �W are full rank column, with each element having up to its fourth
oment. 

HEOREM 2.2. We consider the sample selection model presented in ( 2.2 ). Under Assumptions
1 to I3, E1, and E2. 

( i) ˆ θ → 

p θ as N → ∞ 

( i i ) 
√ 

N ( ̂  θ − θ ) → 

d N (0 , � ) with � = C �C 

′ 

here C 

−1 = E(( �W ij ) ′ �W ij ) , � = 

ρ2 

s 
E[( �W ij ) ′ �ij �W ij ] + 

1 
s 
E[( �W ij ) ′ �e ij �e ij ( �W ij )] ,

nd �ij = [ λ′ ( z ′ ij β)] 2 z ′ ij V βz ij taking V β as the first step probit variance–covariance matrix,
nd N/N f → 

p s. 

roof of Theorem 2.2: In the Appendix. 14 �

It is important to notice that the same type of asymptotic should be used in a linear model. In
his respect, we complement Duranton et al. ( 2011 ) who propose a correction for the standard
rrors, but do not discuss the asymptotic properties of their estimators. Similarly, Black ( 1999 )
nd Holmes ( 1998 ) use spatial differencing, but do not account for the fact that differencing will
ead to a correlation between the pairs in which the same individual is present. Our asymptotic
eri v ations do account for the presence of correlation between pairs and are valid, not only for
 model with, but also without, sample selection (in our model, the absence of selection implies
= 0 ). They also have important practical implications: the consistency of the estimator requires

 large number of locations γj , and a small number of individuals in each site γjα . 

2.7. Estimator of variance 

his section derives a procedure to estimate the v ariance–cov ariance of the estimator in ( 2.10 )
hich has a particular structure arising from ( i) spatial differencing and ( i i ) a sample selection

wo-step estimation procedure. 
We consider B = 

[
( �W ) ′ �W 

]−1 
and � = V ar[( �W ) ′ �η] such that the conditional variance–

ovariance matrix of ˆ θ is 

V ar( ̂  θ) = B �B 

′ . 

Note that 

� = ( �W ) ′ V ar( �η)( �W ) . 

This means that we need a consistent estimator of V ar( �η) to compute correct standard error
or ˆ θ . 
14 The proof of asymptotic behaviour uses the pairwise dif ference. Ho we ver, the result and the proof strategy are 
imilar for all the differences proposed in this paper. 

The Author(s) 2023. 
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Let us consider that V ar( �η) = V 1 + V 2 with 

V 1 = �V ar( e) � 

′ 

= 

1 

s 
�R� 

′ , 

where R a diagonal matrix of dimension N f (total number of observations), with d ij = ρ2 −
ρ2 λ( z ′ ij β)[ z ′ ij β + λ( z ′ ij β)] as the diagonal elements. 

V 2 = 

ρ2 

s 
�V ar 

[
λ( z ′ ˆ β) − λ( z ′ β) 

]
� 

′ 

= 

ρ2 

s 
�Dz V βz ′ D� 

′ , 

where D is the square, diagonal matrix of dimension N f with λ( z ′ ij β)[ z ′ ij β + λ( z ′ ij β)] as the
diagonal elements; z is the data matrix of selection equation; and V β is the v ariance–cov ariance
estimate from the probit estimation of the selection equation. 

THEOREM 2.3. We consider the sample selection model presented in ( 2.2 ). Under Assumptions
I1 to I3, E1 and, E2. The variance–covariance estimator of the ˆ θ is given by 

V t wost ep = B( �W ) ′ [ ̂  V 1 + 

ˆ V 2 ]( �W ) B 

′ , (2.11) 

where ˆ V 1 = 

1 
˜ s � ̂

 R � 

′ and 

ˆ V 2 = 

ˆ ρ2 

˜ s � ̂

 D z ̂  V βz ′ ˆ D � 

′ with all unknown parameters replaced by their
consistent estimates using the sample of selected individuals ( N ). Moreover, this is a consistent
estimator of the asymptotic variance of V ar( ̂  θ) . 

Proof of Theorem 2.3: In the Appendix. �

3. MONTE CARLO SIMULATION 

In this section, we present the results of Monte Carlo simulations to (a) describe the behaviour
of the estimator proposed in this paper and (b) offer empirical guidance for applied research.
Regarding the latter, we will pay close attention to the implication of Assumption E1(ii) according
to which it is important to have a large number of locations relative to the number of individuals
in the sites. Monte Carlo experiments will offer empirical guidance as to when the number of
locations is large enough. 

The data is obtained using the following data-generating process. We assume that there are
J = 20 , 30 , 100 nono v erlapping locations, and each location is divided into s = 2 , 4 , 8 sites.
There are n j = 2 , 5 , 8 , 10 indi viduals sharing the same site. The latent v ariables are y ∗1 ij = z ij β +
θijs + θj + ε 1 ij and y ∗2 ij = x ij δ + γijs + γj + ε 2 ij , where θija = 10 

−5 j × s and γijs = 5 j × s is
the site-specific effect, while θj = 10 

−5 j and γj = 10 j are the location effects; for all i and
j , x ij ∼ N (0 , 1) , z ij ∼ U (0 , 1) each drawn independently; δ = 1 , β = 0 . 2 . The error terms in
both equations for all i and j are generated as follows: ε 1 ij ∼ N (0 , 1) , ε 2 ij = ρε 1 ij + v ij where
v ij ∼ N (0 , 1) is independent of ε 1 ij and ρ = 0 . 7 . The results presented in Table 1 is for the
parameter δ. 
© The Author(s) 2023. 
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Table 1. Simulation results for site-specific spatial difference estimator of δ. 

No. of locations No. of sites Site size Mean bias Co v erage rate 

20 2 2 0 .009 93 .90 
5 −0 .011 98 .34 
8 0 .031 99 .33 
10 −0 .019 97 .92 

4 2 0 .007 92 .30 
5 −0 .009 98 .05 
8 −0 .078 97 .06 
10 0 .094 97 .53 

8 3 0 .000 88 .70 
5 −0 .007 97 .89 
8 −0 .024 99 .37 
10 0 .010 100 .00 

30 2 2 0 .016 93 .60 
5 −0 .004 97 .90 
8 0 .060 100 .00 
10 −0 .014 98 .31 

4 2 −0 .003 90 .60 
5 0 .025 97 .34 
8 0 .019 98 .64 
10 0 .067 97 .35 

8 2 0 .008 87 .70 
5 0 .006 96 .50 
8 −0 .015 98 .83 
10 −0 .004 100 .00 

100 2 2 −0 .002 87 .70 
5 −0 .008 97 .59 
8 −0 .010 98 .86 
10 −0 .039 100 .00 

4 2 0 .001 86 .20 
5 0 .008 95 .50 
8 0 .006 98 .99 
10 0 .073 99 .11 

8 2 0 .002 85 .90 
5 −0 .001 94 .60 
8 0 .006 99 .17 
10 0 .001 99 .46 
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We summarise the main results of the simulations in the points below, but, in general, the
site-specific spatial difference’ estimator has the smallest mean bias and delivers a coverage rate
elow 95%. 15 
15 There is room for impro v ement concerning our inference strategy. Cluster robust inference is part of a large and 
rowing literature and our work gives some insight as to how differencing can be used in cross-sectional data. Future 
ork will investigate the importance of heteroscedasticity, and small sample procedures such as bootstrap will be used to 

mpro v e inference. 

The Author(s) 2023. 
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(a) The mean bias of the estimator increases with the number of individuals in the sites and
decreases with the number of locations. For example, in a sample of 400 individuals which
are spread across 100 locations with 2 sites and 2 individuals in each site, the mean bias
is −0.002. Ho we ver, with 600 indi viduals spread across 30 locations with 4 sites and 5
individuals in each site, the mean bias is 0.025. This result is in line with our asymptotic
deri v ations. 

(b) For a fixed number of locations, the bias increases with the number of individuals in sites.
The empirical consequence of these results is that our estimator should be applied when
the population size at the site level is small. 

(c) The co v erage rate of the estimator using the v ariance–cov ariance estimator in ( 2.11 ) and
the normal asymptotic distribution suggests good co v erage. Ho we v er, the y are larger than
95% in cases where the number of individuals in the sites is large (8 individuals in the
sublocation). 

4. EMPIRICAL ILLUSTRATION 

In this section, we illustrate the importance of the spatial differencing methodology proposed
in this paper with an empirical example. In particular, we estimate a sample selection model of
female wages using a 1% sample from the 1940 population census of the United States (Ruggles
et al., 2021 ). 16 This census provides information about employment status, nominal wages,
educational attainment, and numerous demographic and socio-economic characteristics such as
age, marital status, number of children, number of children less than five years old, and industry
in which individuals are employed. In addition, it provides detailed geographic information about
an individual’s location: state, county, and town/city. We estimate a sample selection model as
specified in ( 2.2 ). The outcome variable is log wage of female i residing in a county j and a
town/city α. 17 Explanatory variables include potential experience, potential experience squared,
marital status, number of children, education attainment, and industry dummy variables. Potential
experience is defined as (age–years of schooling–6). 18 The selection equation determines whether
a female works or not and in addition to the variables in the outcome equation, it also includes
the number of children less than five years old. Education attainment is measured by the number
of school years. 

Female wages can be influenced by the unobserved characteristics of area-specific labour
markets. As seen in ( 2.1 ), there can be location-specific effects γj and unobserved site-specific
effects γjα , and not controlling for them could bias the results. One solution would be to include
geographical dummy variables: county fixed effects to control for γj and town fixed effects to
control for γjα . While they will control for county- and town-specific unobserved effects, there
is a conceptual drawback to expect that they will fully control for γjα . 19 
16 Source: IPUMS dataset version 3. 
17 In 1940, most of the towns and cities resided within a county and had not yet developed into the metropolitan areas 

we know today, a development which happened after World War II. 
18 We follow Heckman et al. ( 2006 ) by using this formula to approximate the number of years of experience. 
19 There is also a practical drawback: including county and town/city fixed effects means including 86 county and 469 

town dummies which greatly diminishes the degrees of freedom and might also cause incidental variable problems when 
estimating probit-selection equations. Our empirical application has a large number of observations because we use a 
sample from a full count US population census. Ho we ver , we can en vision empirical applications in which the inclusion 
of a large number of geographical fixed effects would be infeasible due to a small number of observations. 

© The Author(s) 2023. 
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Table 2. Female wage equation US 1940 census. 
OLS Heckman two-step Heckman two-step Spatial differencing 

Main Selection Main Selection 
(1) (2) (3) (4) (5) (6) 

Potential experience 0 .0231 *** 0 .0627 *** 0 .0135 *** 0 .0600 *** 0 .0135 *** 0 .0847 *** 

[0 .005] [0 .001] [0 .001] [0 .001] [0 .001] [0 .0007] 
(Potential experience) 2 − 0 .0007 *** − 0 .0010 *** − 0 .0004 *** − 0 .0009 *** − 0 .0004 *** − 0 .0025 

[0 .000] [0 .000] [0 .000] [0 .000] [0 .000] [0 .0025] 
Number of children − 0 .2197 *** − 0 .1267 *** − 0 .1203 *** − 0 .1012 *** − 0 .1208 *** − 0 .6820 *** 

[0 .013] [0 .008] [0 .006] [0 .007] [0 .007] [0 .0001] 
Number of years of education 0 .0139 ** 0 .0726 *** 0 .0025 0 .0729 *** 0 .0011 0 .0170 *** 

[0 .006] [0 .002] [0 .002] [0 .002] [0 .002] [0 .007] 
Married (dummy variable) − 0 .4319 *** − 0 .0570 *** − 0 .0917 *** − 0 .0500 *** − 0 .0977 *** − 0 .8033 *** 

[0 .052] [0 .009] [0 .014] [0 .009] [0 .014] [0 .0012] 
Number of children age five and less −0.1291 *** − 0 .1354 *** 

[0.020] [0.020] 
Inverse Mill’s ratio 0 .4970 *** 0.1903 ** 4.6460 *** 

[0 .110] [0 .089] [0 .0106] 
Town fixed effects Yes No No Yes Yes No 
Observations 144,079 144,079 144,079 144,079 

Notes: This table presents the results of estimating a wage equation where the dependent variable is the log of female wage. Data source: 1% 

sample from 1940 US census, IPUMS 2021. Robust standard errors are in brackets. *** p < 0 . 01 , ** p < 0 . 05 . 
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County fixed effect will control for any homogeneous effects operating within the county.
t will, ho we ver, fail to suf ficiently control for an y heterogeneous unobserv ed effects operating
n the county . Similarly , to wn/city fixed ef fects will suf fice only if we assume that site-specific
ffects are confined to the towns’/cities’ administrative borders. Indeed, there is no a priori reason
o expect that local labour markets are spatially delineated only by the town/city, or county
dministrative boundaries. Furthermore, an area fixed effect approach, in general, depends on
n arbitrary specification of a comparison group. All this means that county and town fixed
ffects can create a measurement error problem and lead to inconsistent parameters estimates.
herefore, we estimate ( 2.2 ) with the spatial differencing estimator developed in this paper where

he spatial differencing is between a woman and the average of her neighbours. We chose a
eighbourhood of a 15 mile radius. Historical circumstances of the United States in 1940 justifies
his choice. Labour markets at that time were being gradually e xtended be yond the city limits
Lewis, 2002 ; Miller, 2018 ). Howev er, the y were still more local than today, very heterogeneous,
nd commuting was limited to small distances since suburbanisation and car ownership surged
nly from the 1950s (Jackson, 1987 ; Harris and Lewis, 2001 ). 

The estimation results are presented in Table 2 . Column (1) presents OLS estimates, columns
2)–(5) the estimates using the Heckman two-step estimator, and column (6) the estimates using
patial differencing and the estimator proposed in this paper. We have estimated two versions of
eckman’s two-step estimator: one without town fixed effects, in columns (2) and (3), and the
ther with town fixed effects, in columns (4) and (5). Standard errors for OLS and Heckman’s
wo-step estimator are clustered at to wn/city le vel. Standard errors of the proposed estimator are
alculated using ( 2.11 ). 

We see that in all specifications the estimated coefficients are statistically significant at a
% level. 20 As for the coefficient signs, we see a quadratic potential experience profile which
uggests a diminishing marginal returns to experience. Being married and having children lowered
 omen’s w ages, while education attainment, as measured by the number of school years, increased
20 The only exception is in column (1) where ‘Number of years of education’ is significant at a 5% level. 

The Author(s) 2023. 
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it. When we compare OLS estimates with the estimates using the Heckman two-step estimator,
the estimated coefficients differ in magnitude. 

When we compare the estimates between the Heckman two-step estimator with and without
to wn/city fixed ef fects, respecti vely, we see that they are very similar and that the differences are
largely confined to the second decimal place. This suggests that town/city fixed effects have very
limited effects on the estimated parameters. 

As discussed earlier, we are concerned that the unobserved site-specific effects are not fully
controlled for. Therefore, in column (6) we have used spatial differencing and the estimator
proposed in Section 2.6 . The returns to potential experience increased when compared with
the estimates of OLS and the Heckman two-step estimator, respectively. Returns to education
increased when compared with OLS estimates and decreased relative to the estimates of the
Heckman two-step estimator. The effects of marital status and the number of children increased
in absolute terms and indicate a large ne gativ e effect of being married and having children,
respectively. This finding is consistent with historical evidence which shows that being married
and having children at that time posed some limitations to women’s wage prospects (Kessler-
Harris, 1982 ; Goldin, 2021 ). Overall, the change in the magnitude of the estimated coefficients
suggests that the sample selection estimator without spatial differencing biases the estimates. 

5. CONCLUSION 

This paper has investigated a sample selection model with unobserved effect at a very fine
location level. It proposes spatial differencing as an alternative identification strategy. We discuss
the assumptions under which the parameters of the model are identified. The estimation of
the parameters is done using a two-step estimation procedure. The spatial differencing and the
two-step procedure lead to a no v el estimator with properties that are also rele v ant for spatial
differencing in linear models. To understand the behaviour of the new estimator, we derive
an asymptotic distribution of the estimator using a theory for a large number of clusters. The
deri v ation re veals two important implications for its empirical implementation: (i) the number
of clusters needs to be large for inference to be based on a normal distribution. (ii) Each cluster
should have a bounded number of individuals. 

Monte Carlo experiments show that accounting for site-specific heterogeneity is crucial for
identification. In particular, the estimator performs better with the increasing number of locations
and fe wer indi viduals in sites (thus, in location). The co v erage rate of the test based on the corrected
standard error has an empirical co v erage around the theoretical one. We illustrate the importance
of spatial differencing with an empirical example in which we estimate a sample selection model
of female wages. The results confirm that not controlling for site-specific unobserved effects
biases the results of the standard Heckman sample selection estimator. 
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APPENDIX 

Proof of Theorem 2.2: The proof is written conditional on the set of number of individuals in the locations.
Thus, when E( N j ) is used, it can be considered as a constant. 

The substitution of the true value of �y 2 in ( 2.10 ) yields the following equality 

ˆ θ = θ + [( �W ) ′ �W ] −1 [( �W ) ′ �η] . 

Let us assume that y 2 ij = x ′ ij δ + γjα + γj + ρλ( z ′ ij β + θjαk 
+ θj ) + e ij with E( e ij | ξij ) = 0 . Thus,

�y 2 ij = �x ′ ij δ + ρ�λ( z ′ ij β + θjα + θj ) + �e ij . Under the identification Assumptions I1 to I3 have 

�y 2 ij = �x ′ ij δ + ρ�λ
(
z ′ ij β

) + �e ij . 

The second step regression equation is equi v alent to 

�y 2 ij = �x ′ ij δ + ρ ˜ � λ
(
z ′ ij β

) + � 

[
ρ

(
λ

(
z ′ ij β

) − λ
(
z ′ ij ̂  β

)) + e ij 
]
, 

ˆ β is estimated by maximum likelihood probit in the first step with v ariance–cov ariance matrix V β . For
all i, j conditional on z ij , we have the follo wing. Gi ven that λ( . ) is twice differentiable, the continuous
mapping theorem implies that λ( z ′ ij β) − λ( z ′ ij ̂  β) goes to zero in probability and is asymptotically normal.
© The Author(s) 2023. 
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f we assume that N f is the full sample while N is the selected sample.We assume that N/N f → s. We,
herefore, have √ 

N f 

(
λ

(
z ′ ij β

) − λ
(
z ′ ij ̂  β

)) → 

d N 

(
0 , �ij 

)
, (A.1)

here �ij = [ λ′ ( z ′ ij β)] 2 z ′ ij V βz ij . 

We are interested in the limiting distribution of 
√ 

N ( ̂ θ − θ ) . 

√ 

N ( ̂ θ − θ ) = N [( �W ) ′ �W ] −1 1 √ 

N 

[( �W ) ′ �η] 

= 

[ ∑ N 

i= 1 ( �W i ) ′ �W i 

N 

] −1 
1 √ 

N 

N ∑ 

i= 1 
( �W i ) 

′ �ηi . 

While W i are i.i.d., �W i are not independent because an individual is allowed to appear in many pairs. The
ependence structure is driven by the operator � . If � is such that each individual appears only in one pair,
hen the classical central limit theorem (CLT) and law of large number (LLN) could be applied. Ho we ver,
f individuals are allowed to appear in several pairs, then we need to apply CLT and LLN accounting for
orrelation. ∑ N 

i= 1 ( �W i ) ′ �W i 

N 

= 

∑ J 

j= 1 
∑ N j 

k= 1 ( �W kj ) ′ �W kj 

N 

= 

1 

J 

J ∑ 

j= 1 

1 

E( N j ) 

N j ∑ 

k= 1 
( �W kj ) 

′ �W kj + o p (1) . 

Let us consider Y j = 

1 
E( N j ) 

∑ N j 

k= 1 ( �W kj ) ′ �W kj , these variables are i.i.d., moreo v er, note that by
ssumption E1(ii) we can apply the law of large N/J = ( N 1 + N 2 + .... + N J ) /J converges to E( N j ) as
 goes to ∞ . 

Under the assumption that all second moments of the variables in W exist (Assumption E2), H J =
1 
J 

∑ J 

j= 1 
1 

E( N j ) 

∑ N j 

k= 1 Y j is a matrix. 
Thus, the law of large number applies to H J if and only if it applies to all is elements. 
Let a j be a typical element of the matrix 1 

E( N j ) 

∑ N j 

k= 1 Y j . Let t and m be two variables from the set of
ariables forming W . For example, we can consider t = x 1 the first column of the random variable x. 

If t �= m then, 

E| a j | ≤ 1 

E( N j ) 

N j ∑ 

k= 1 
E| �t kj �m kj | (A.2)

= 

1 

E( N j ) 

N j ∑ 

k= 1 
E| ( t kj − t ij )( m kj − m ij ) | (A.3)

≤ 4 

E( N j ) 

N j ∑ 

k= 1 
E| t kj m kj | (A.4)

≤ 4 

E( N j ) 

N j ∑ 

k= 1 

√ 

E ( | t kj | 2 ) E ( | m kj | 2 ) (A.5)

≤ M 0 (A.6)

ith M 0 a constant. 
The Author(s) 2023. 
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The result is obtained by using successively the triangular inequality, the identical distribution of variable
in W , the Cauchy–Schwarz’s inequality and the existence of moment up to its fourth (which means that the
second moment exists). 

If t = m we have, 

E| a j | ≤ 1 

E( N j ) 

N j ∑ 

k= 1 
E| �t kj �t kj | (A.7) 

= 

1 

E( N j ) 

N j ∑ 

k= 1 
E| (t kj − t ij 

)2 | (A.8) 

≤ 2 

E( N j ) 

N j ∑ 

k= 1 
E| t kj t ij | + E 

(
t 2 kj 

)
(A.9) 

≤ 1 

E( N j ) 

N j ∑ 

k= 1 

(
E| t kj | 

)2 + E 

(
t 2 kj 

)
(A.10) 

≤ M 0 . (A.11) 

Thus, the LLN implies that 

∑ N 

i= 1 ( �W i ) ′ �W i 

N 

→ 

p E(( �W ij ) 
′ �W ij ) = C 

−1 , 

as J, N go to ∞ . 

We can also show that 

1 √ 

N 

N ∑ 

i= 1 
( �W i ) 

′ �ηi = 

ρ√ 

N 

N ∑ 

i= 1 
( �W i ) 

′ � 

(
λ

(
z ′ ij β

) − λ
(
z ′ ij ̂  β

))

+ 

1 √ 

N 

N ∑ 

i= 1 
( �W i ) 

′ �e ij . 

We consider � j = 

∑ N j 

k= 1 ( �W kj ) ′ � ( λ( z ′ kj β) − λ( z ′ kj ̂  β)) , and E j = 

∑ N j 

k= 1 ( �W kj ) ′ �e kj . Conditional on ˆ β,
� j , and E j are i.i.d. random variables. We assume that the number of individuals in a group is i.i.d. with
finite mean E( N j ) . 

Given all locations are assumed to be disjointed, 

1 √ 

N 

N ∑ 

i= 1 
( �W i ) 

′ �ηi = 

ρ√ 

N 

J ∑ 

j= 1 
� j + 

1 √ 

N 

J ∑ 

j= 1 
E j . 
© The Author(s) 2023. 
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We have E( E j ) = 0 for each j. Moreover, 

V ar 
(
E j 

) = E 

⎡ 

⎣ 

N j ∑ 

k= 1 

(
�W kj 

)′ 
�e kj 

⎛ 

⎝ 

N j ∑ 

k= 1 

(
�W kj 

)′ 
�e kj 

⎞ 

⎠ 

′ ⎤ 

⎦ 

= E 

⎡ 

⎣ 

N j ∑ 

k= 1 

(
�W kj 

)′ 
�e kj �e kj 

(
�W kj 

)⎤ 

⎦ 

= E 

(
N j 

)
E 

[ (
�W kj 

)′ 
�e kj �e kj 

(
�W kj 

)] 
. 

nder Assumption E2, V ar( E j ) is finite, because all variables have up to the fourth moments. Indeed, if
e consider a typical element of E[( �W kj ) ′ �e kj �e kj ( �W kj )] , formed by the variables t and m , 

E[( t kj − t ij )( m kj − m ij ) �e kj ( �W kj )] ≤ 4 E[ t kj m kj ( �e kj ) 
2 ] 

≤ 4 E| t kj m kj �e 2 kj | 

≤ 4 4 
√ 

E ( | t kj | 4 ) E [( �e kj ) 2 ] E ( | m kj | 4 ) E [( �e kj ) 2 ] 

≤ M 0 . 

It should be noted that E[( �e kj ) 2 ] = 2 E( e 2 kj ) < ∞ . 

Similarly, we can show that E( � j ) = O p (1 / 
√ 

N ) because we assume that ˆ β is an 
√ 

N − consistent
stimator of β. Thus we have, 

V ar 
(
� j 

) = E 

⎡ 

⎣ 

⎛ 

⎝ 

N j ∑ 

k= 1 

(
�W kj 

)′ 
� 

(
λ

(
z ′ kj β

) − λ
(
z ′ kj ̂  β

))⎞ 

⎠ 

⎛ 

⎝ 

N j ∑ 

k= 1 

(
�W kj 

)′ 
� 

(
λ

(
z ′ kj β

) − λ
(
z ′ kj ̂  β

))⎞ 

⎠ 

′ ⎤ 

⎦ + O p ( 1 /N ) 

= E 

⎡ 

⎣ 

N j ∑ 

k= 1 

(
�W kj 

)′ 
� 

(
λ

(
z ′ kj β

) − λ
(
z ′ kj ̂  β

)) (
�W kj 

)′ 
� 

(
λ

(
z ′ kj β

) − λ
(
z ′ kj ̂  β

))′ 
⎤ 

⎦ + O p ( 1 /N ) 

= E 

(
N j 

)
E 

((
�W kj 

)′ 
� 

(
λ

(
z ′ kj β

) − λ
(
z ′ kj ̂  β

))
� 

(
λ

(
z ′ kj β

) − λ
(
z ′ kj ̂  β

)) (
�W kj 

)) + O p ( 1 /N ) 

= E 

(
N j 

)
E 

[ (
�W kj 

)′ 
�kj 

(
�W kj 

)] + O p ( 1 /N ) . (A.12)

We need to show that E[( �W kj ) ′ �kj ( �W kj )] , with �kj = [ λ′ ( z ′ kj β)] 2 z ′ kj V βz kj is finite. 
A typical element of this matrix is given by, E[( t kj − t ij ) �kj ( m kj − m ij )] . We can show the following

sing Cauchy–Schwarz’s inequality. 

E[( t kj − t ij ) �kj ( m kj − m ij )] ≤ 4 E[ t kj m kj �kj ] (A.13)

≤ 4 E[ | t kj m kj �kj | ] 

≤ 4 
4 

√ 

E 

(| t kj | 4 ) (
E 

([
λ′ (z ′ kj β)]2 

z ′ kj V βz kj 

))2 
E 

(| m kj | 4 
)
. (A.14)

It remains to be pro v en that E([ λ′ ( z ′ kj β)] 2 z ′ kj V βz kj ) < ∞ . The application of the Cauchy–Schwarz’s
nequality implies, 
The Author(s) 2023. 
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E 

([
λ′ (z ′ kj β)]2 

z ′ kj V βz kj 
) ≤

√ 

E 

[
λ′ (z ′ kj β)]4 

E 

[(
z ′ kj V βz kj 

)2 ] (A.15) 

≤
√ 

E 

[(
z ′ kj V βz kj 

)2 ]
< ∞ . (A.16) 

This follows from noting that | λ′ ( . ) | ≤ 1 and the elements of z have up to their fourth moments. 
The moment of a typical element E[( t kj − t ij ) �kj ( m kj − m ij )] < ∞ . This pro v es that the variance is

finite. 
It is important to notice that conditional W , 

∑ N 

i= 1 ( �W i ) ′ � ( λ( z ′ ij β) − λ( z ′ ij ̂  β)) and 
∑ N 

i= 1 ( �W i ) ′ �e ij are
independent random variables. Therefore, 

1 √ 

N 

N ∑ 

i= 1 
( �W i ) 

′ �ηi → 

d N (0 , �) , (A.17) 

where � = 

ρ2 

s 
E[( �W ij ) ′ �ij �W ij ] + 

1 
s 
E[( �W ij ) ′ �e ij �e ij ( �W ij )] . 

√ 

N ( ̂ θ − θ ) → 

d N (0 , � ) , (A.18) 

with � = C �C 

′ . This proofs the asymptotic normality of our two-step estimator. 
We have proven that under Assumptions I1, I2, I3, E1, and E2, 

∑ N 

i= 1 ( �W i ) ′ �W i 

N 

→ 

p E(( �W 1 ) 
′ �W 1 ) = C 

−1 . 

Using similar arguments we can show that 

∑ N 

i= 1 ( �W i ) ′ �ηi 

N 

→ 

p E(( �W 1 ) 
′ �η) = 0 . 

Which means that ˆ θ is a consistent estimator of θ. We have proven the estimator is both consistent and
asymptotically normal. This ends the proof of Theorem 2.2. �

Proof of Theorem 2.3: The v ariance–cov ariance estimator of the ˆ θ is given by 

V t wost ep = B( �W ) ′ [ ̂  V 1 + 

ˆ V 2 ]( �W ) B 

′ , (A.19) 

where ˆ V 1 = 

1 
˜ s � ̂

 R � 

′ and ˆ V 2 = 

ˆ ρ2 

˜ s � ̂

 D z ̂  V βz ′ ˆ D � 

′ with all unknown parameters replaced by their estimates.
Let us show that this is a consistent estimator of the asymptotic variance of V ar( ̂ θ) . 

V t wost ep = N × B( �W ) ′ 
[ 

ˆ V 1 

N 

2 
+ 

ˆ V 2 

N 

2 

] 

( �W ) N × B 

′ . (A.20) 

We have shown that under Assumptions I1, I2, I3, E1, and E2, 

N × B = 

[ ∑ N 

i= 1 ( �W i ) ′ �W i 

N 

] −1 

→ 

p [ E(( �W 1 ) 
′ �W 1 )] 

−1 = C. 
© The Author(s) 2023. 
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( �W ) ′ 
[ 

1 
˜ s � ̂

 R � 

′ 

N 

2 
+ 

ˆ ρ2 

˜ s � ̂

 D z ̂  V βz ′ ˆ D � 

′ 

N 

2 

] 

( �W ) 

= ( �W ) ′ 
[ 

� ̂

 R � 

′ 

˜ s N 

2 
+ 

ˆ ρ2 � ̂

 D z ̂  V βz ′ ˆ D � 

′ 

˜ s N 

2 

] 

( �W ) 

( �W ) ′ 
[ 

� ̂

 R � 

′ 

˜ s N 

2 
+ 

ˆ ρ2 � ̂

 D z ̂  V βz ′ ˆ D � 

′ 

˜ s N 

2 

] 

( �W ) 

= ( �W ) ′ � 

[ 

ˆ R 

˜ s N 

2 
+ 

ˆ ρ2 ˆ D z ̂  V βz ′ ˆ D 

˜ s N 

2 

] 

� 

′ ( �W ) 

= ( �W ) ′ � 

[ 

ˆ ρ2 I − ˆ ρ2 ˆ D 

˜ s N 

2 
+ 

ˆ ρ2 ˆ D z ̂  V βz ′ ˆ D 

˜ s N 

2 

] 

� 

′ ( �W ) 

= 

1 

N 

( �W ) ′ � 

[
I − ρ2 D 

˜ s N 

+ 

ρ2 Dz V βz ′ D 

˜ s N 

]
� 

′ ( �W ) + o p (1) 

= 

1 

N 

( �W ) ′ � 

[
I − ρ2 D 

˜ s N 

+ 

ρ2 Dz V βz ′ D 

˜ s N 

]
� 

′ ( �W ) + o p (1) . 

ote also that, as N goes to ∞ , N 

(
1 
N 

( �W ) ′ � 

[
I−ρ2 D 

˜ s N + 

ρ2 Dz V β z ′ D 

˜ s N 

]
� 

′ ( �W ) + o p (1) 

)
goes to � in proba-

ility. 
This implies that NV twostep converges to the asymptotic variance of ˆ θ . This ends the proof of

heorem 2.3. �
The Author(s) 2023. 

The Author(s) 2023. Published by Oxford University Press on behalf of Royal Economic Society. This is an Open Access article 
istributed under the terms of the Creative Commons Attribution License ( https://cr eativecommons.or g/licenses/by/4.0/), which permits 
nrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

/7453676 by The Tem
plem

an Library user on 23 February 2024

https://creativecommons.org/licenses/by/4.0/

