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ABSTRACT
Throughout its history, Operational Research has evolved to include methods, models and
algorithms that have been applied to a wide range of contexts. This encyclopedic article
consists of two main sections: methods and applications. The first summarises the up-to-
date knowledge and provides an overview of the state-of-the-art methods and key develop-
ments in the various subdomains of the field. The second offers a wide-ranging list of areas
where Operational Research has been applied. The article is meant to be read in a nonlinear
fashion and used as a point of reference by a diverse pool of readers: academics, research-
ers, students, and practitioners. The entries within the methods and applications sections are
presented in alphabetical order.
The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely
hope that advances in OR will play a role towards minimising the pain and suffering caused
by this and future catastrophes.
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Operations research is neither a method nor a
technique; it is or is becoming a science and as
such is defined by a combination of the phenomena
it studies.

Ackoff (1956)

1. Introduction1

The year 2024 marks the 75th anniversary of the
Journal of the Operational Research Society, formerly
known as Operational Research Quarterly. It is the
oldest Operational Research (OR) journal worldwide.
On this occasion, my colleague Fotios Petropoulos
from University of Bath proposed to the editors of
the journal to edit an encyclopedic article on the state
of the art in OR. Together, we identified the main
methodological and application areas to be covered,
based on topics included in the major OR journals
and conferences. We also identified potential authors
who responded enthusiastically and whom we thank
wholeheartedly for their contributions.

Modern OR originated in the United Kingdom
during World War II as a need to support the oper-
ations of early radar-detecting systems and was later
applied to other operations (McCloskey, 1987).
However, one could argue that it precedes this
period in history since it is partly rooted in several
mathematical fields such as probability theory and
statistics, calculus, and linear algebra, developed
much earlier. For example, the Fourier-Motzkin elim-
ination method (Fourier, 1826a, 1826b) constitutes
the main basis of linear programming. Queueing

theory, which plays a central role in telecommunica-
tions and computing, already existed as a distinct
field of study since the early 20th century (Erlang,
1909), and other concepts, such as the economic
order quantity (Harris, 1913) were developed more
than one century ago. Interestingly, while many
recent advances in OR are rooted in theoretical or
algorithmic concepts, we are now witnessing a return
to the practical roots of OR through the development
of new disciplines such as business analytics.

After the war ended, several industrial applications
of OR arose, particularly in the manufacturing and
mining sectors which were then going through a
renaissance. The transportation sector is without doubt
the field that has most benefited from OR, mostly since
the 1960s. The aviation, rail, and e-commerce industries
could simply not operate at their current scale without
the support of massive data analysis and sophisticated
optimisation techniques. The application of OR to
maritime transportation is more recent, but it is fast
gaining in importance. Other areas that are less visible,
such as telecommunications, also deeply depend on
OR. The success of OR in these fields is partly
explained by their network structures which make
them amenable to systematic analysis and treatment
through mathematical optimisation techniques. In the
same vein, OR also plays a major role in various
branches of logistics and project management, such as
facility location, forecasting, inventory planning, sched-
uling, and supply chain management.

The public sector and service industries also bene-
fit greatly from OR. Healthcare is the first area that

2 F. PETROPOULOS ET AL.



comes to mind because of its very large scale and
complexity. Decision making in healthcare is more
decentralised than in transportation and manufactur-
ing, for example, and the human issues involved in
this sector add a layer of complexity. OR methodolo-
gies have also been applied to diverse areas such as
education, sports management, natural resources,
environment and sustainability, political districting,
safety and security, energy, finance and insurance,
revenue management, auctions and bidding, and dis-
aster relief, most of which are covered in this article.

Among OR methodologies, mathematical pro-
gramming occupies a central place. The simplex
method for linear programming, conceived by
Dantzig in 1947 but apparently first published later
(Dantzig, 1951), is arguably the single most signifi-
cant development in this area. Over time, linear pro-
gramming has branched out into several fields such
as nonlinear programming, mixed integer program-
ming, network optimisation, combinatorial optimisa-
tion, and stochastic programming. The techniques
most frequently employed for the exact solution of
mathematical programs are based on branch-and-
bound, branch-and-cut, branch-and-price (column
generation), and dynamic programming. Game the-
ory and data envelopment analysis are firmly rooted
in mathematical programming. Control theory is also
part of continuous mathematical optimisation and
relies heavily on differential equations.

Complexity theory is fundamental in optimisa-
tion. Most problems arising in combinatorial opti-
misation are NP-hard and typically require the
application of heuristics for their solution. Much
progress has been made in the past 40 years or so
in the development of metaheuristics based on local
search, genetic search, and various hybridisation
schemes. Many problems in fields such as vehicle
routing, location analysis, cutting and packing, set
covering, and set partitioning can now be solved to
near optimality for realistic sizes by means of mod-
ern heuristics. A recent trend is the use of open-
source software which not only helps disseminate
research results, but also contributes to ensuring
their accuracy, reproducibility and adoption.

Several modelling paradigms such as systems
thinking and systems dynamics approach problems
from a high-level perspective, examining the inter-
relationships between multiple elements. Complex
systems can often be analysed through simulation,
which is also commonly used to assess the perform-
ance of heuristics. Decision analysis provides a use-
ful framework for structuring and solving complex
problems involving soft and hard criteria, behav-
ioural OR, stochasticity, and dynamism. Recently,
issues related to ethics and fairness have come to
play an increasing role in decision making.

Because the various topics of this review paper
are listed in alphabetical order, the subsection on
“Artificial intelligence, machine learning and data sci-
ence” comes first, but this topic constitutes one of
the latest developments in the field. It holds great
potential for the future and is likely to reshape parts
of the OR discipline. Already, machine learning-based
heuristics are competitive for the solution of some
hard problems.

This paper begins with a quote from Russell L.
Ackoff who has been a pioneer of OR. In 1979, he
published in this journal two articles (Ackoff, 1979a,
1979b) that presented a rather pessimistic view of
our discipline. The author complained about the
lack of communications between academics and
practitioners, and about the fact that some OR cur-
ricula in universities did not sufficiently prepare stu-
dents for practice, which is still true to some extent.
One of his two articles is entitled “The Future of
Operational Research is Past”, which may be per-
ceived as an overreaction to this diagnosis. In my
view, the present article provides clear evidence to
the contrary. Soon after the publication of the two
Ackoff papers, we witnessed the development of
micro-computing, the Internet and the World Wide
Web. It has become much easier for researchers in
our community to access information, software and
computing facilities, and for practitioners to access
and use our research results. We are now fortunate
to have access to sophisticated open-source software,
data bases, bibliographic sources, editing and visual-
isation tools, and communication facilities. Our field
is richer than it has ever been, both in terms of the-
ory and applications. It is constantly evolving in
interaction with other disciplines, and it is clearly
alive and well and has a promising future.

2. Methods

2.1. Artificial intelligence, machine learning, and
data science2

Machine learning (ML) comprises techniques for
modelling predictive tasks, i.e., tasks that involve the
prediction of an unknown quantity from other
observed quantities. Ideas of learning in an artificial
system and the term machine learning were first
discussed in the 1950s (Samuel, 1959) and their
development and popularity have seen enormous
growth over the last two decades in part due to the
availability of large-scale datasets and increased
computational resources to model them.

Mitchell (1997) provides this concrete definition of
machine learning “A computer program is said to learn
from experience E with respect to some class of tasks
T, and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience
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E”. The program is a model or a function and its
experience E is the type of data it has access to. There
are three types of experiences supervised, unsupervised,
and reinforcement learning. The performance measure
(P) allows for model evaluation and comparison includ-
ing model selection.

Supervised learning is an experience where a
model aims at predicting one or more unobserved
target (dependent) variables given observed ibackpr-
out (independent) variables. In other words, a super-
vised model is a function that map inputs to outputs.
The process of solving a supervised problem involves
first learning a model, that is adjusting its parameters
using a training dataset with both input and target
variables. The training set is drawn IID (independ-
ently and identically distributed) from an underlying
distribution over inputs and targets. Once trained,
the model can provide target predictions for new
unseen samples from the same distribution. The
most common tasks in supervised learning are
regression (real dependent variable) and classification
(categorical dependent variable). Evaluating a super-
vised system is usually performed using held-out data
referred to as the test data while held-out validation
data is used for model development and selection
using procedures such as k-fold cross-validation.

Supervised models can be dichotomised into linear
and nonlinear models. Linear models perform a linear
mapping from inputs to outputs (e.g., linear regression).
Machine learning mostly investigates nonlinear super-
vised models including deep neural network (DNN)
models (Goodfellow et al., 2016). DNNs are composed
of a succession of parametrised nonlinear transforma-
tions called layers and each layer contains a set of
transformations called neurons. Layers successively
transform an input datum into a target. The parameters
of the layers are adjusted to iteratively obtain better
predictions using a procedure called backpropagation, a
form of gradient descent (Goodfellow et al., 2016, §6.5).
DNNs are state-of-the-art methods for many large-scale
non-structured datasets across domains (see also §3.19).
DNNs can be adapted to different sizes of inputs and
targets as well as variable types. They can also be speci-
alised for specific types of data. Recurrent neural net-
works (RNNs) are auto-regressive models for sequential
data (Rumelhart et al., 1986). The sequential data are
tokenised and an RNN transforms each token sequen-
tially along with a transformation of the previous
tokens. Convolutional neural networks (CNNs) are spe-
cialised networks for modelling data that is arranged
on a grid (e.g., an image Lecun, 1989). Their layers
contain a convolution operation between an input and
a parameterised filter followed by a nonlinear trans-
formation, and a pooling operation. Each layer proc-
esses data locally and so requires fewer parameters
compared to vanilla DNNs. As a result, CNNs can

model higher-dimensional data. Graphical neural net-
works (GNNs) are specialised architectures for model-
ling graph data (e.g., a social network; Scarselli et al.,
2009). In GNNs, the data are transformed by following
the topology of the graph. Last, attention layers dynam-
ically combine their inputs (tokens) based on their val-
ues. Transformer models use successions of attention
and feed-forward layers to model sequential input and
output data (Vaswani et al., 2017). Transformers are
more efficient to train than RNNs and can be trained
on internet-scale data given enormous computational
power. The availability of such broad datasets especially
in the text and image domains has given rise to a class
of very-large-scale models (also referred to as founda-
tion models) that display an ability to adapt to and
obtain high performance across a diversity of down-
stream supervised tasks (Bommasani et al., 2021)

Last, attention is a mechanism that considers data
to be unordered and uses transformations dynamic-
ally. Transformers are models based on attention.
They provide more efficient training than RNNs for
very large-scale datasets (Vaswani et al., 2017).

Neural networks currently outperform other meth-
ods when learning from unstructured data (e.g.,
images and text). For tabular data, data that is natur-
ally encoded in a table and that has heterogeneous
features (Grinsztajn et al., 2022), best-performing
methods use ideas first proposed in tree-based classi-
fiers, bagging, and boosting. They include random
forests (Breiman, 2001), XGBoost (Chen & Guestrin,
2016) which both scale to large-scale datasets as well
as kernel methods including support vector machines
(SVMs see, e.g., Schlkopf et al., 2018) and probabilis-
tic Gaussian Processes (GPs see, e.g., Rasmussen &
Williams, 2005). These methods are used across
regression and classification tasks.

In unsupervised learning, the second type of
experience, the data consist of independent variables
(features or covariates) alone. The aim of unsuper-
vised learning is to model the structure of the data
to better understand their properties. As a result,
evaluating an unsupervised model is often task and
application-dependant (Murphy, 2022, §1.3.4). The
prototypical unsupervised-learning task is clustering.
It involves learning a function that groups similar
data together according to a similarity measure and
desiderata often expressed as an objective function.
Several standard algorithms divided into hierarchical
and non-hierarchical methods exist. The former
uses the similarity between all pairs of data and
finds a hierarchy of clustering solutions with a dif-
ferent number of clusters using either a bottom-up
or top-down approach. Agglomerative clustering is a
standard hierarchical approach. Non-hierarchical
methods tend to be more computationally efficient
in terms of dataset size. For example, K-means
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clustering is a well-known non-hierarchical method
that finds a single solution using K clusters
(MacQueen, 1967). Other unsupervised learning
tasks include dimensionality reduction for example
for visualisation or to prepare data for further ana-
lysis. Density modelling is another unsupervised task
where a probabilistic model learns to assign a prob-
ability to each datum (Murphy, 2022, §1.3).
Probabilistic models can be used to learn the hidden
structure in large quantities of data (e.g., Hoffman
et al., 2013). Further, probabilistic models are also
used to generate high-dimensional data (e.g., images
of human faces or English text) with high fidelity
(Karras et al., 2021) and often referred in this context
as generative models. Large Language Models are
examples of such generative models (Bommasani
et al., 2021).

Reinforcement learning (RL) is the third type of
experience. RL models collect their own data by exe-
cuting actions in their environment to maximise
their reward. RL is a sequential decision-making
task and is formalised using Markov decision proc-
esses (MDPs) (Sutton & Barto, 2018, §3.8). An
MDP encodes a set of states, available actions, dis-
tribution over next states given current states and
action, a reward function, and a discount factor.
Partially observable MDPs (or POMDPs) extend the
formalism to environments where the exact current
state is unknown (Kaelbling et al., 1998). In RL, an
agent’s objective is to learn a policy, a distribution
over actions for each state in an environment. Tasks
are defined by rewards attached to different states.
Exact and approximate methods exist for solving RL
problems. Whereas exact solutions are appropriate
for smaller tabular problems only, deep neural net-
works are widely used for solving larger-scale prob-
lems that require approximate solutions yielding a
set of techniques known as deep reinforcement
learning (Mnih et al., 2015). An RL agent can also
learn to imitate an expert either by learning a map-
ping from states/observations to actions as in super-
vised learning (a technique known as imitation
learning; for a survey, see Hussein et al., 2017) or
by trying to learn the expert’s reward function
(inverse reinforcement learning Russell, 1998).

In addition to learning models for solving predic-
tion tasks using one of the three experiences above,
machine learning also studies methods for enabling
the reuse of information learned from one or mul-
tiple datasets and environments to other similar
ones. Representation learning studies how to learn
such reusable information and it can use both
supervised and unsupervised experiences (Murphy,
2023, §32). When using a deep learning model, a
representation is obtained after one or more layer
transformations of the data. Representation learning

is used in a variety of situations including for trans-
fer learning tasks, where a trained model is reused
to solve a different supervised task (for a survey, see
Zhuang et al., 2021).

In the last decade, machine learning models have
achieved high performance on a variety of tasks
including perceptual ones (e.g., recognising objects
in images and words from speech) as well as natural
language processing ones thereby becoming a core
component of artificial intelligence (AI) methods.
The goal of AI methods is to develop intelligent sys-
tems. Some of these advances shine a bright light on
the ethical aspects of machine learning techniques
and are active areas of study (see, e.g., Dignum, 2019;
Barocas et al., 2019). Another area of active study is
explainability (Phillips et al., 2021). Some of the most
effective ML tools make predictions and recommen-
dations that are hard to explain to users (for example
when neural networks are employed). Clearly, lack of
explainability slows down ML use in those contexts
where decisions made due to those predictions and
recommendations are life changing and involve a
human in the loop, healthcare (applying a treatment),
finance (refusing a mortgage), or justice (granting
parole) to mention a few. So, explainability is cur-
rently one of the most crucial challenges for ML and
AI and, at the same time, a tremendous opportunity
for their wider applicability.

Further, advances in machine learning alongside
statistics, data management, and data processing, as
well as the wider availability of datasets from a var-
iety of domains have led to the popularisation and
development of data science (DS), a discipline
whose goal is to extract insights and knowledge
from these data. DS uses statistics and machine-
learning techniques for inference and prediction,
but it also aims at enabling and systematising the
analysis of large quantities of data. As such, it
includes components of data management, visualisa-
tion, as well as the design of (efficient) data process-
ing algorithms (Grus, 2019).

2.1.1. Resources
Murphy (2022) provides a thorough introduction to
the field following a probabilistic approach and its
sequel (Murphy, 2023) introduces advanced topics.
Goodfellow et al. (2016) provide a self-contained
introduction to the field of deep learning (the field
evolves rapidly and more advanced topics are cov-
ered through recent papers and in Murphy, 2023).
Open-source software packages in Python and other
languages are essential. They include data-wrangling
libraries such as pandas (McKinney, 2010) and plot-
ting ones such as matplotlib (Hunter, 2007). The
library scikit-learn (Pedregosa et al., 2011) in
Python offers an extensive API that includes data
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processing, a toolbox of standard supervised and
unsupervised models, and evaluation routines. For
deep learning, PyToch (Paszke et al., 2019) and
TensorFlow (Abadi et al., 2015) are the standard.

2.1.2. Learning for combinatorial optimisation
The impressive success of machine learning in the
last decade made it natural to explore its use in
many scientific disciplines, such as drug discovery
and material sciences. Combinatorial optimisation
(CO; §2.4) is no exception to this trend and we
have witnessed an intense exploration (or, better,
revival) of the use of machine learning for CO. Two
lines of work have strongly emerged. On the one
side, ML has been used to learn crucial decisions
within CO algorithms and solvers. This includes
imitating an algorithmic expert that is computation-
ally expensive like in the case of strong branching
for branch and bound, the single application that
has attracted the largest amount of interest (Lodi &
Zarpellon, 2017; Gasse et al., 2019). The interested
reader is referred to two recent surveys (Bengio
et al., 2021; Cappart et al., 2021), the latter high-
lighting the relevance of GNNs for effective CO rep-
resentation. On the other side, ML has been used
end to end, i.e., for solving CO problems directly or
leveraging ML to devise hybrid methods for CO.
The area is surveyed in Kotary et al. (2021).

2.2. Behavioural OR3

Behavioural OR (BOR) is concerned with the study
of human behaviour in OR-supported settings.
Specifically, BOR examines how the behaviour of
individuals affects, or is affected by, an OR-sup-
ported intervention4. The individuals of interest are
those who, acting in isolation or as part of a team,
design, implement and engage with OR in practice.
These individuals include OR practitioners playing
specific intervention roles (e.g., modellers, facilita-
tors, consultants), and other individuals with vary-
ing interests and stakes in the intervention (e.g.,
users, clients, domain experts, sponsors).

A concern with the behavioural aspects of the
OR profession can be traced back to past debates in
the 1960s, 1970s and 1980s (Churchman, 1970;
Dutton & Walton, 1964; Jackson et al., 1989).
Although these debates dwindled down in subse-
quent years, the emergence of BOR as a field of
study represents a return to these earlier concerns
(Franco & H€am€al€ainen, 2016; H€am€al€ainen et al.,
2013). What motivates this resurgence is the recog-
nition that the successful deployment of OR in prac-
tice relies heavily on our understanding of human
behaviour. For example, overconfidence, competing
interests, and the willingness to expend effort in

searching, sharing, and processing information are
three behavioural issues that can negatively affect
the success of OR activities. Attention to behav-
ioural issues has been central in disciplines such as
economics, psychology and sociology for decades,
and BOR studies draw heavily from these reference
disciplines (Franco et al., 2021).

It is important to distinguish between the specific
focus of BOR and the broader focus of behavioural
modelling. The creation of models that capture
human behaviour has a long tradition within OR,
but it is not necessarily concerned with the study of
human behaviour in OR-supported settings. For
example, in the last 20 years operational researchers
have produced an increasing number of robust ana-
lytical models that describe behaviour in, and pre-
dict its impact on, operations management settings
(Cui & Wu, 2018; Donohue et al., 2020; Loch &
Wu, 2007). Operational researchers also have pro-
duced simulation models that capture human behav-
iour within a system with different levels of
complexity. For example, systems dynamics models
incorporate high-level variables representing average
behaviour (Morecroft, 2015; Sterman, 2000, §2.22),
and discrete event simulation models capture
human processes controlled by simple behavioural
rules (Brailsford & Schmidt, 2003; Robinson, 2014,
§2.19). More complex agent-based simulation mod-
els represent behaviour as emergent from the inter-
actions of agents with particular behavioural
attributes (Sonnessa et al., 2017; Utomo et al., 2018,
§2.19). Overall, behavioural modelling within the
OR field is concerned with examining human
behaviour in a system of interest in order to
improve that system5. In contrast, BOR takes an
OR-supported intervention as the core system of
interest where human behaviour is examined. The
ultimate goal of BOR is to generate an improved
understanding of the behavioural dimension of OR
practice, and use this understanding to design and
implement better OR-supported interventions.

Another important distinction worth stating is
that between BOR and Soft OR. At first glance, this
distinction may seem unnecessary as BOR is a field
of study within OR, while Soft OR refers to a spe-
cific family of problem structuring approaches
(§2.20). Soft OR approaches have been developed to
help groups reach agreements on problem structure
and, often, appropriate responses to a problem of
concern (Franco & Rouwette, 2022; Rosenhead &
Mingers, 2001). However, while Soft OR interven-
tion design and implementation typically require the
consideration of behavioural issues, this is not the
same as choosing human behaviour in a Soft OR
intervention context as the unit of analysis. Of
course, a study with such a focus would certainly
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fall within the BOR remit (e.g., Tavella et al., 2021).
But note that BOR is also concerned with the study
of human behaviour in other OR-supported settings,
such as those involving the use of ‘hard’ and
‘mixed-method’ OR approaches.

Studies of behaviour in OR-supported settings
assume implicitly or explicitly that human behaviour
is either influenced by cognitive and external fac-
tors, or is in itself an influencing factor (Franco
et al., 2021). In the first case, observed individual
and collective action is taken to be guided by cogni-
tive structures (e.g., personality traits, cognitive
styles) manifested during OR-related activity –
behaviour is influenced. In contrast, the second case
assumes that individuals and collectives are respon-
sible for determining how OR-related activity will
unfold – behaviour is influencing. This raises the
practical possibility that the same OR methodology,
technique, or model could be used in distinctive
ways by various individuals or groups according to
their cognitive orientations, goals and interests
(Franco, 2013). Whilst behaviour in practice is likely
to lie somewhere between the influenced and influ-
encing assumptions, BOR studies tend to fore-
ground one of the extremes as the focus, while
backgrounding the other.

BOR studies can adopt three different research
methodologies to examine behaviour: variance, pro-
cess, and modelling. A variance methodology uses
variables that represent the important aspects or
attributes of the OR-supported activity being exam-
ined. Variance explanations of behavioural-related
phenomena take the form of causal statements cap-
tured in a theoretically-informed research model
that incorporates these variables (e.g., A causes B,
which causes C). The research model is then tested
with data generated by the activity, and the research
findings are assessed in terms of their generality
(Poole, 2004). Adopting a variance research method-
ology typically requires the implementation of
experimental, quasi-experimental, or survey research
designs6. This involves careful selection of inde-
pendent variables, which might be either manipu-
lated or left untreated, and of dependent variables
that act as surrogates for specific behaviours. Once
information about all variables is collected, data is
quantitatively analysed using a wide range of vari-
ance-based methods (e.g., analysis of variance,
regression, structural equation modelling).

Behavioural studies that use a variance research
methodology can produce a good picture of the gen-
erative mechanisms underpinning behavioural proc-
esses if they test hypotheses about those
mechanisms. For example, variance studies in BOR
have examined the impact of individual differences
in cognitive motivation and cognitive style on the

conduct of OR-supported activity (Fasolo & Bana e
Costa, 2014; Franco et al., 2016b; Lu et al., 2001).
There is also a long tradition of testing the behav-
ioural effects of reconfiguring different aspects of
OR-supported activity such as varying model or
information displays (Bell & O’Keefe, 1995;
Gettinger et al., 2013), and preference elicitation
procedures (Cavallo et al., 2019; H€am€al€ainen &
Lahtinen, 2016; P€oyh€onen et al., 2001; von Nitzsch
& Weber, 1993).

A process methodology is used to examine OR-
supported activity as a series of events that bring
about or lead to some behaviour-related outcome.
Specifically, it considers as the unit of analysis an
evolving individual or group whose behaviour is led
by, or leading, the occurrence of events (Poole,
2004). Process explanations take the form of theor-
etical narratives that account for how event dynam-
ics lead to a final outcome (Poole, 2007). These
narratives are often derived from observation, but it
is also possible to use an established narrative (e.g.,
a theory) to guide observation that further specifies
the narrative.

Diverse and eclectic research designs are used to
implement a process research methodology. Central
to these designs is the task of identifying or recon-
structing the process through the analysis of events
taking place over time. For example, there is an
important stream of BOR studies that examines the
process of building models by experts and novices
(Tako, 2015; Tako & Robinson, 2010; Waisel et al.,
2008; Willemain, 1995; Willemain & Powell, 2007).
There is also an increasing interest to use process
methodologies to take a closer look at actual behav-
iour in OR-supported settings both, before, during
and after OR-related activity is undertaken (Franco
& Greiffenhagen, 2018; K€aki et al., 2019; Velez-
Castiblanco et al., 2016; White et al., 2016).

The variance and process approaches may seem
opposite to each other, but instead they should be
seen as complementary (Franco et al., 2021; Van de
Ven & Poole, 2005). BOR studies using a variance
research methodology can explore and test the mech-
anisms that drive process explanations of behaviour,
while BOR studies adopting a process research meth-
odology can explore and test the narratives that
ground variance explanations of behaviour. One way
of combining a variance and process approach within
a single BOR study is by adopting modelling as a
research methodology. A modelling approach would
create models that capture the mechanisms that gen-
erate a process of interest such as, for example, trust
on an OR-derived solution, and the model can be
run to generate the characteristics of that process.
Model parameters and structure can then be varied
systematically to enable variance-based comparisons
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of trust levels. Furthermore, the trajectory of trust
levels over time can be used to gain insights into the
nature of the trust development process. As already
mentioned, there is a long behavioural modelling
tradition within OR but, as far as we know, its poten-
tial as a research methodology tool to specifically
examine behaviour in OR-supported settings is yet to
be realised.

In sum, the variance, process and modelling meth-
odologies offer rich possibilities for the study of
human behaviour in OR-supported settings. Which is
best for a particular study will depend on the types
of question being addressed by BOR researchers,
their assumptions about human behaviour, and the
data they have access to. Ultimately, a thorough
understanding of behaviour in OR-supported settings
is likely to require all three research methodologies.

For a detailed review of BOR studies the reader is
referred to Franco et al. (2021). A review of behav-
ioural studies in the context of OR in health has been
written by Kunc et al. (2020). There are also two col-
lections edited by Kunc et al. (2016) and White et al.
(2020). The European Journal of Operational Research
published a feature cluster on BOR edited by Franco
and H€am€al€ainen (2016a). Finally, BOR-related news
and events can be found on the sites of the European
Working Group on Behavioural OR7, and the UK
BOR Special Interest Group8.

2.3. Business analytics9

Business Analytics has its origins in practice, rather
than theory, as illustrated by some of the earliest
publications on the subject (e.g., Kohavi et al.,
2002). Senior executives began to realise the impor-
tance of analytics in the first decade of the new mil-
lennium because of the ready availability of large
amounts of data, the maturity of business perform-
ance management, the emergence of self-service
analytics and business intelligence, and the declining
cost of computing power, data storage and band-
width (Acito & Khatri, 2014).

Davenport and Harris (2007) gave examples of
companies becoming ‘analytical competitors’ by
using analytics to support distinctive organisational
capabilities. To achieve this level of maturity, it was
argued that analytics needs to become a strategic
competency. In the 1990s, Fildes and Ranyard
(1997) reported on the closure or dispersal of
Operational Research groups. Davenport et al.
(2010) reflected a reversal of that trend, by focusing
on how analytical talent can be organised as an
internal resource. They suggested that there are four
categories of people to be considered when finding,
developing and managing analysts: champions, pro-
fessionals, semi-professionals and amateurs. In

2012/13, the Institute for Management Science and
Operations Research (INFORMS) introduced the
Certified Analytics Professional program and exam-
ination. This covers the broad spectrum of skills
required of analytics professionals, including busi-
ness problem framing, analytics problem framing,
data (handling), methodology selection, model
building, deployment and lifecycle management
(INFORMS, 2022).

The development of talent is just one of the pre-
requisites for Business Analytics to create value.
Vidgen et al. (2017) recommended ‘coevolutionary
change’, aligning their analytics strategy with their
strategies for Information and Communications
Technology, human resources and the whole busi-
ness. This helps to ensure that the necessary data
assets are available, the right culture is developed to
build data and analytics skills, and that there is align-
ment with the business strategy for value creation.
Hindle and Vidgen (2018) proposed a Business
Analytics Methodology based on four activities,
namely problem situation structuring, business model
mapping, business analytics leverage and analytics
implementation. They advocated a soft OR approach,
Soft Systems Methodology (Checkland & Poulter,
2006), to support structuring and mapping activities.

Many definitions of Business Analytics have been
proposed; for a review of early definitions, see
Holsapple et al. (2014). According to Davenport
(2013), “By analytics we mean the extensive use of
data, statistical and quantitative analysis, explana-
tory and predictive models, and fact-based manage-
ment to drive decisions and actions” (p. 7).
Mortenson et al. (2015) suggested that analytics is at
the intersection of quantitative methods, technolo-
gies and decision making. Rose (2016) considered
analytics as the union of Data Science (which is
data centric) and Operational Research (which is
problem centric). Power et al. (2018) proposed the
following definition: “Business Analytics is a system-
atic thinking process that applies qualitative, quanti-
tative and statistical computational tools and
methods to analyse data, gain insights, inform and
support decision-making”. Delen and Ram (2018)
pointed out that, although analytics includes ana-
lysis, it also involves synthesis and subsequent
implementation. These broad perspectives, empha-
sising synthesis as well as analysis, and qualitative as
well as quantitative approaches, are consistent with
earlier writings on the use of a broad range of
methods in Management Science (e.g., Mingers &
Brocklesby, 1997; Pidd, 2009).

Business Analytics can be viewed from different
orientations. From a methodological viewpoint, the
subject covers descriptive, predictive and prescrip-
tive methods (Lustig et al., 2010). These three
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categories are sometimes extended to four, with a
distinction being drawn between ‘descriptive’ and
’diagnostic’ analytics, following the Gartner analytics
ascendancy model (Maoz, 2013). Lepenioti et al.
(2020) argue that it is preferable to maintain the
threefold categorisation to ensure consistency, with
each category addressing both ‘What?’ and ‘Why’
questions. (Descriptive: ‘What happened?’, ‘Why did
it happen?’; Predictive: ‘What will happen?’, ‘Why
will it happen?’; Prescriptive: ‘What should I do to
make it happen?’, ‘Why should I make it happen?’).
For detailed literature reviews on descriptive, pre-
dictive and prescriptive analytics, the reader is
directed to Duan and Xiong (2015), Lu et al. (2017),
and Lepenioti et al. (2020), respectively.

From a technological viewpoint, Business
Analytics is facilitated by the integration of transac-
tional data with big data streaming from social
media platforms and the Internet of Things into a
unified analytics system (Shi & Wang, 2018). These
authors suggest that this integration can be achieved
in two stages, starting with integration of traditional
Enterprise Resource Planning (ERP) and big data,
and proceeding to integration of big-data ERP with
Business Analytics. Ruivo et al. (2020) reported that
analytics ranked second in extended ERP capabilities
(behind collaboration) according to the views of 20
experts engaged in a Delphi study. Romero and
Abad (2022) suggested that cloud-based big data
analytics software will not provide competitive
advantage to firms that have not installed a large
ERP system, although it will ensure that they do not
lag further behind their sector-leading competitors.

From an ethical viewpoint, Business Analytics
faces a number of challenges. Davenport et al. (2010)
recognised that issues of data privacy can be difficult
to address, especially if an organisation operates in a
wide range of territories or industries. Ram Mohan
Rao et al. (2018) summarised major privacy threats
in data analytics, namely surveillance, disclosure, dis-
crimination, and personal embarrassment and abuse,
and reviewed privacy preservation methods, including
randomisation and cryptographic techniques. A fur-
ther ethical issue is that AI algorithms are likely to
replicate and reinforce existing social biases (O’Neil,
2016). Such algorithmic bias is said to occur when
the outputs of an algorithm benefit or disadvantage
certain individuals or groups more than others with-
out a justified reason. Kordzadeh and Ghasemaghaei
(2022) reviewed the literature on algorithmic bias
and showed that most studies had examined the issue
from a conceptual standpoint, with only a limited
number of empirical studies. Similarly, Vidgen et al.
(2020) reviewed papers on ethics in Business
Analytics and found that most were at the level of
guiding principles and frameworks, with little of

direct applicability for the practitioner. Their case
study demonstrated how ethical principles (utility,
rights, justice, common good and virtue) can be
embedded in analytics development. For further dis-
cussions on ethics and OR, the reader is referred to
Ormerod and Ulrich (2013), Le Menestrel and Van
Wassenhove (2004), and Mingers (2011a) but
also §3.8.

Analytics maturity models have been developed to
describe, explain and evaluate the development of ana-
lytics in an organisation. Kr�ol and Zdonek (2020)
reviewed 11 maturity models and assessed them in
terms of the number of assessment dimensions, scoring
mechanism, number of maturity levels, and the public
availability of the methodology. They found that the
most common assessment dimensions were technical
infrastructure, analytics culture and human resources,
including staff’s analytics competencies. Lismont et al.
(2017) undertook a survey of companies, based on the
DELTA maturity model (Davenport et al., 2010) of
data, enterprise, leadership, targets and analysts. They
identified four analytics maturity levels from their sur-
vey. The most advanced companies tended to use a
wider variety of analytics techniques and applications,
to organise analytics more holistically, and to have a
more mature data governance policy.

A crucial empirical question is whether Business
Analytics adds value to an organisation. An early
study on the effect of Business Analytics on supply
chain performance was conducted by Trkman et al.
(2010). They examined over 300 companies, show-
ing a statistically significant relationship between
self-assessed analytical capabilities and performance.
Oesterreich et al. (2022) conducted a meta-analysis
of 125 firm-level studies, spanning ten years of
research in 26 countries. They found evidence of
Business Analytics having a positive impact on oper-
ational, financial and market performance. They
also found that human resources, management
capabilities and organisational culture were major
determinants of value creation, whereas techno-
logical factors were less important.

2.4. Combinatorial optimisation10

A Combinatorial Optimisation (CO) problem con-
sists of searching for the optimal element in a finite
collection of elements. More formally, given a set of
elements and a family of its subsets, each defining a
feasible solution and having an associated value, a
CO problem is to find a subset having the min-
imum (or, alternatively, the maximum) value. The
subsets may be proper, like, e.g., in the knapsack
problem, or represented by permutations, like, e.g.,
in the assignment problem (see below). Typically,
the feasible solutions are not explicitly listed, but are
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described in a concise manner (like a set of equal-
ities and inequalities, or a graph structure) and their
number is huge, so scanning all feasible solutions to
select the optimal one is intractable. A CO problem
can usually be modelled as an Integer Program (IP,
see also §2.15) with linear or nonlinear objective
function and constraints, in which the variables can
take a finite number of integer values.

Consider for example the problem of assigning n
tasks to n agents, by knowing the time that each
agent needs to complete each task, with the objective
of finding a solution that minimises the overall time
needed to complete all tasks (Assignment Problem,
AP). The solution could obviously be found by enu-
merating all permutations of the integers 1, 2:::, n
and selecting the best one. However, this number is
so huge that such approach is ruled out even for
small-size problem instances: for n¼ 30, we have
n! ffi 2:6 � 1030, and the fastest supercomputer on
hearth would need millions of years to scan all solu-
tions. The challenge is thus to find more efficient
methods. For example, one of the most famous CO
algorithms (the Hungarian algorithm) can solve
assignment problem instances with millions of varia-
bles in few seconds on a standard PC.

The algorithm mentioned above can be imple-
mented so as to solve any AP instance in a time of
order n3, i.e., in a time bounded by a polynomial
function of the input size. Unfortunately, only for
relatively few CO problems we know algorithms with
such property, while for most of them (NP-hard
problems) the best known algorithms can take, in the
worst case, a time that grows exponentially in the
size of the instance. In addition, Complexity theory
(see also §2.5) suggests that the existence of polyno-
mial-time algorithms for such problems is unlikely.
On the other hand, CO problems arise in many
industrial sectors (manufacturing, crew scheduling,
telecommunication, distribution, to mention a few)
and hence there is the prominent and practical need
to obtain good quality solutions, especially to large-
size instances, in reasonable times.

2.4.1. Origins
Many problems arising on graphs and networks (see
§2.12) belong to CO (the AP discussed above can be
described as that of finding a minimum weight per-
fect matching in a bipartite graph), and hence the
origins of CO date back to the eighteen century. In
the following, we narrow our focus to modern CO
(see Schrijver, 2005). Its roots can be found in the
first decades of the past century, when Central
European mathematicians developed seminal studies
on matching problems (K€onig, 1916), paths Menger
(1927), and Shortest Spanning Trees (SST) (Jarn�ık,
1930; Borůvka, 1926, results independently

rediscovered by Prim, 1957 and Kruskal, 1957). The
Fifties produced major results on the AP (Kuhn,
1955; 1956, on the basis of the results by K€onig,
1916 and Egerv�ary, 1931, also see Martello, 2010),
the Travelling Salesman Problem (Dantzig et al.,
1954), and Network Flows (Ford & Fulkerson, 1962),
as well as fundamental studies on basic methodolo-
gies: dynamic programming (DP; Bellman, 1957, see
§2.9), cutting planes (Gomory, 1958, see §2.15), and
branch-and-bound (Land & Doig, 1960).

2.4.2. Problems and complexity
The most important CO problems, for which we
know there are polynomial algorithms, are the basic
graph-theory problems mentioned in the previous
section. Other important problems, which are rele-
vant both from the theoretical point of view and
from that of real-world applications, are instead
NP-hard. The main NP-hard CO problems arise
in the following areas.

Scheduling. Given a set of tasks which must be
processed on a set of processors, a scheduling prob-
lem asks to find a processing schedule that satisfies
prescribed conditions and minimises (or maximises)
an objective function, frequently related to the time
needed to complete all tasks. This huge area, that
includes literally hundreds of problems and variants
(mostly NP-hard), is also discussed in §3.27.

Travelling Salesman Problem (TSP). Given a
weighted (directed or undirected) graph, the prob-
lem is to find a circuit that visits each vertex exactly
once (Hamiltonian tour) and has minimum total
weight. This is one of the most intensively studied
problems of CO, and is treated in detail in §2.12.

Vehicle Routing Problems (VRP). A VRP is a gen-
eralisation of the TSP which consists of finding a set
of routes for a fleet of vehicles, based at one or
more depots, to deliver goods to a given set of cus-
tomers by satisfying a set of conditions and mini-
mising the overall transportation cost.

Facility Location. These problems require to find the
best placement of facilities on the basis of geographical
demands, installation costs, and transportation costs, so
as to satisfy a set of conditions and to minimise the
total cost (see §3.13 for a detailed treatment).

Steiner Trees. Given a weighted graph and a subset
S of vertices, it is requested to find an SST connect-
ing all vertices in S (possibly containing additional
vertices). These problems, which generalise both the
shortest path problem and the SST, are treated in
detail in §2.12.

Set Covering. Given a set of elements and a col-
lection of its subsets, each having a cost, we want to
find the least cost sub-collection whose union
includes (covers) all the elements.
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Maximum Clique (MC). A clique is a complete
subgraph of a graph (i.e., it is defined by a subset of
vertices all adjacent to each other). Given a graph,
the MC problem is to find a clique of maximum
cardinality (or, if the graph is weighted, a clique of
maximum weight). We refer the reader to §2.12 for
a detailed analysis.

Cutting and Packing (C&P). Given a set of
“small” items, and a set of “large” containers, a
problem in this area asks for an optimal arrange-
ment of the items into the containers. Items and
containers can be in one dimension (Knapsack
Problems (KP), Bin Packing problems) or in more -
usually two or three – dimensions (C&P). See §3.3
for more details.

Quadratic Variants of CO problems. A currently
hot research area concerns CO problems whose
“normal” linear objective function is replaced by a
quadratic one. This greatly increases difficulty: in
most cases problems which, in their linear formula-
tion, can be solved in polynomial time (e.g., the AP)
or in pseudo-polynomial time (e.g., the KP) become
strongly NP-hard.

2.4.3. Exact methods for NP-hard problems
For heuristic and approximation algorithms, we
refer the reader to §2.13 and §2.5. With the excep-
tion of DP methods (§2.9), most exact algorithms
for NP-hard CO problems, as well as most com-
monly used ILP solvers, are based on implicit enu-
meration. In the worst case, they can require the
evaluation of all feasible solutions, and hence com-
puting times growing exponentially with the prob-
lem size. The most common methods can be
classified as

� Branch-and-Bound (B&B);
� Branch-and-Cut (B&C);
� Branch-and-Price (B&P).

We will describe B&B, the other methods (and
their combinations, as B&C-and-Price) being its
extensions described in §2.15.

We consider a maximisation CO problem having
an IP model with inequality constraints of ‘�’ type.
For a problem P, having feasible solution set F(P),
z(P) denotes its optimal solution value, and ub(P)
an upper bound on z(P). The main ingredients of
B&B are branching scheme and upper bound
computation.

Branching scheme. The solution is obtained as
follows:

i. subdivide P into m subproblems, each having
the same objective function as P and a feasible
solution set contained in F(P), such that the

union of their feasible solution sets is F(P). The
optimal solution of P is thus given by the opti-
mal solution of the subproblem having the
maximum objective function value;

ii. iteratively, if a subproblem cannot be immedi-
ately solved, subdivide it into additional
subproblems.

The resulting method can be represented through a
branch-decision tree, where the root node corresponds
to P and each node corresponds to a subproblem.

A node of the tree can be eliminated if the feas-
ible solution set of the corresponding subproblem is
empty, or its upper bound is not greater than the
value of the best feasible solution to P found so far.

Upper bound computation. A valid upper bound
ub(P) can be computed as the optimal solution value
of a Relaxation of the IP model of P, defined by:

i. a feasible solutions set containing F(P);
ii. an objective function whose value is not smaller

than that of P for any solution in F(P).

A relaxation is “good” if the resulting upper
bound ub(P) is “close” to z(P) (i.e., if the gap
between the two values, zðPÞ � ubðPÞ, is “small”),
and the relaxed problem is “easy” to solve, i.e., its
optimal solution can be obtained with a computa-
tional effort much smaller than that required to
solve P.

2.4.4. Relaxations
The most common relaxation methods are:

� Constraint elimination: a subset of constraints is
removed from the IP model of P, so that the
resulting problem is easy to to solve. The most
widely used case is the linear relaxation;

� Linear relaxation: when the model is an Integer
Linear Problem (ILP), removing the constraints
that impose integrality of the variables leads to a
Linear Program (LP), which is polynomially solv-
able, commonly used in ILP solvers (see §2.15);

� Surrogate relaxation: a subset R of inequality
constraints is replaced by a single surrogate
inequality, so that the corresponding relaxed
problem is easy to solve. The surrogate inequality
is obtained by multiplying both sides of each
inequality of R by a non-negative constant, and
summing, respectively, the left-hand and right-
hand sides of the resulting inequalities;

� Lagrangian relaxation: a subset K of inequality
constraints is removed from the model and
“embedded”, in a Lagrangian fashion, into the
objective function. For each inequality of K, the
difference between left-hand and right-hand sides
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(slack) multiplied by a non-negative constant is
added to the objective function.

The relaxations can be strengthened by adding
one or more valid inequalities (cuts) to the IP model
of P, such that they are redundant for the IP model,
but can become active when the IP model is relaxed
(see §2.15).

2.4.5. Further readings
We refer the reader to the following selection of
references for more details on the topics covered in
this section. Well known, pre-1990 books are those
by Garfinkel and Nemhauser (1972, IP), Christofides
(1975, algorithmic graph theory), Garey and Johnson
(1979, complexity), Burkard and Derigs (1980, AP),
Lawler et al. (1985, TSP), and the CO specific vol-
umes by Lawler (1976), Christofides et al. (1979),
Papadimitriou and Steiglitz (1982), Martello et al.
(1987), and Nemhauser and Wolsey (1988). We list
more recent contributions in the order in which the
topics were introduced:

� CO: Cook et al. (1998), Schrijver (2003);
� AP: Burkard et al. (2012) for linear and quadratic

AP, Cela (2013) for quadratic AP;
� Network Flows: Ahuja et al. (1993);
� Scheduling: Bła_zewicz et al. (2001, 2007), Pinedo

(2012);
� TSP: Gutin and Punnen (2006), Applegate, et al.

(2007), Cook (2011);
� VRP: Golden et al. (2008), Toth and Vigo (2014);
� Facility Location: Mirchandani and Francis

(1990), Laporte et al. (2015);
� Steiner trees: Hwang et al. (1992), Pr€omel and

Steger (2012). Also see the recent survey by
Ljubi�c (2021);

� Cutting and packing: Martello and Toth (1990),
Kellerer et al. (2004). Also see the recent survey
by Cacchiani et al. (2022a, 2022b).

2.5. Computational complexity11

Operational Research develops models and solution
methods for problems arising from practical deci-
sion making scenarios. Often, these solution meth-
ods are algorithms. The difficulty of a problem can
be assessed empirically by evaluating the running
times of corresponding algorithms, which requires
careful implementations and meaningful test data.
Moreover, this can be time-consuming and yields
insights that depend on the skills of the programmer
and are limited to the available test instances.
Computational complexity represents an alternative
approach that allows for a more general assessment

of a problem’s difficulty that is independent of spe-
cific problem instances or solution algorithms.

2.5.1. Problem encoding and running times of
algorithms
In complexity theory, the running time of an algo-
rithm is expressed in terms of the size of the input,
i.e., the amount of data necessary to encode an
instance of the problem. Since computers store data
in the form of binary digits (bits), the standard bin-
ary encoding represents all data of a problem
instance in the form of binary numbers. The num-
ber of required bits (the encoding length) of an inte-
ger is roughly given by the binary logarithm of its
absolute value. As an example, consider the binary
encoding of instances of the well-known 0-1 knap-
sack problem (KP). An instance of KP consists of n
items – each with a non-negative, integer weight
and profit – and a positive, integer knapsack cap-
acity c. We can assume that all n item weights are
bounded by the capacity c and denote the value of the
largest item profit by pmax: Then, the encoding length
of a KP instance is bounded by ðnþ 1Þ � log 2ðcÞ þ
n � log 2ðpmaxÞ � ð2nþ 1Þ� log 2ðmaxfc, pmaxgÞ:

Rational numbers can be straightforwardly repre-
sented by their (integer) numerator and denomin-
ator, but their presence in the input might already
influence a problem’s computational complexity
(Wojtczak, 2018). Irrational numbers cannot be
encoded in binary without rounding them appropri-
ately, which means that a different kind of complex-
ity theory is required when general real numbers are
part of the input (see Blum et al., 1998, for details).
Hence, the following exposition is restricted to the
case of integer inputs, where the encoding length of
an instance can be bounded by the number of inte-
gers needed to represent it multiplied with the bin-
ary logarithm of the largest among their absolute
values (see the bound for KP instances provided
above as an example).

To allow universal running time analyses of algo-
rithms that are independent of specific computer
architectures, asymptotic running time bounds
described using the so-called O-notation (Cormen
et al., 2009) are used. Informally, every polynomial
in n with largest exponent k is in OðnkÞ: All terms
with exponents smaller than k and the constant
coefficient of nk are ignored. One is then often
interested in polynomial-time algorithms whose run-
ning time is in OðjIjkÞ for some constant k, where
jIj denotes the encoding length of instance I. A less
preferred outcome would be a pseudopolynomial-
time algorithm, where the running time is only
required to be polynomial in the number of integers
in the input and the largest among their absolute
values (or, equivalently, in the exponentially larger
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encoding length of the input when using unary
encoding, where the encoding length of an integer is
roughly its absolute value).

2.5.2. The complexity classes P and NP
Most application scenarios encountered in
Operational Research finally lead to an optimisation
problem (often a combinatorial problem – see §2.4),
where a feasible solution is sought that minimises or
maximises a given objective function. Every opti-
misation problem immediately yields an associated
decision problem, asking a yes-no question. For
example, a minimisation problem consisting of a set
X of feasible solutions and an objective function f
can be written as minff ðxÞ : x 2 Xg: For a given
target value v, the associated decision problem then
asks: Does there exist a feasible solution x 2 X such
that f ðxÞ � v? Solving an optimisation problem to
optimality trivially answers the associated decision
problem for any given v. On the other hand, every
algorithm for the decision problem can be used to
solve the underlying optimisation problem. Given
upper and lower bounds, the optimal solution value
can be identified in polynomial time by performing
binary search between these bounds using the deci-
sion problem to answer the query in every iteration
of the binary search (assuming that the range of
objective function values and the encoding lengths
of the bounds are polynomially bounded).

Motivated by the above, the computational com-
plexity of an optimisation problem follows from the
complexity of its associated decision problem. Here,
the most relevant complexity classes in Operational
Research are probably P and NP, which are often
used to draw the line between “easy” and “hard”
problems in this context. Formally, the class P
(“polynomial”) consists of all decision problems for
which a polynomial-time solution algorithm exists
on a deterministic Turing machine (or, equivalently,
in any other “reasonable” deterministic model of
computation), while the class NP (“nondeterministic
polynomial”) consists of all decision problems for
which the same holds on a nondeterministic Turing
machine. Equivalently, NP is the class of all decision
problems such that, for any yes instance I, there
exists a certificate with encoding length polynomial
in jIj and a deterministic algorithm that, given the
certificate, can verify in polynomial time that the
instance is indeed a yes instance. Since the most nat-
ural certificate is often a (sufficiently good) solution
of the problem, NP can informally be defined as the
class of decision problems for which solutions can be
verified in polynomial time. For example, when con-
sidering the travelling salesman problem (TSP) on a
given edge-weighted graph, the associated decision
problem asks whether or not there exists a tour

(Hamiltonian cycle) of at most a given length v.
While no polynomial-time algorithm for this decision
problem is known to date, the problem can easily be
seen to be in NP since the natural certificate to pro-
vide for a yes instance is simply a tour with length at
most v, whose feasibility and length can be easily
verified in polynomial time.

Observe that these definitions directly imply that
P � NP: Most researchers believe that P(NP or,
equivalently, that there are problems in NP that do
not admit polynomial-time solution algorithms.
However, formally proving that P 6¼ NP (or that
P ¼ NP) is still one of the most famous open
problems in theoretical computer science to date.

This so-called P versus NP problem can be
equivalently expressed using the well-known notion
of NP-completeness (see, e.g., Garey & Johnson,
1979). Intuitively, NP-complete problems are the
hardest problems in NP in the sense that, if one of
these problems admits a polynomial-time solution
algorithm, then so does every problem in NP (and,
thus, we would obtain P ¼ NP). A decision prob-
lem (not necessarily in NP) with this property is
also called NP-hard. This means that a problem is
NP-complete if and only if it is both NP-hard and
contained in NP: The first problem shown to be
NP-complete in Cook’s famous theorem (Cook,
1971) is the (Boolean) satisfiability problem (SAT).
Shortly after, Karp (1972a) gave a list of 21 funda-
mental problems that are NP-complete. While
Cook’s proof that SAT is NP-complete required
considerable effort, proving that further problems
are NP-complete became significantly easier with
this knowledge and hundreds – if not thousands –
of problems were shown to be NP-complete.

A decision problem is NP-complete if and only if
(1) it is contained in NP and (2) some NP-complete
problem (and, therefore, all problems in NP) can be
reduced to it via a polynomial-time reduction. Such a
polynomial-time reduction works as follows: For any
instance of the known NP-complete problem (e.g.,
SAT or TSP), one has to construct an instance of the
investigated problem in polynomial time such that the
two instances are equivalent, i.e., the constructed
instance is a yes instance if and only if the given
instance is a yes instance. Note that the requirement
that the instance must be constructed in polynomial
time (and, therefore, have encoding length polynomial
in the encoding length of the original instance) is cru-
cial. A common error in reductions is that the encod-
ing length of the constructed instance depends
polynomially on the size of numerical values in the
given instance (instead of their encoding length).

The importance of the encoding can be illustrated
by the 0-1 knapsack problem (KP), which is
NP-hard if binary encoding is used, but can be
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solved in polynomial time (via dynamic program-
ming) if unary encoding is used (so NP-hardness
of the unary-encoded version would imply that
P ¼ NP). Problems like this, i.e., problems whose
binary-encoded version is NP-hard, but whose
unary-encoded version can be solved in polynomial
time, are called weakly NP-hard, while problems
(such as SAT) that remain NP-hard also under
unary encoding are called strongly NP-hard. The
existence of a pseudopolynomial-time algorithm is
possible for weakly NP-hard problems, but not for
strongly NP-hard problems (unless P ¼ NP).

2.5.3. Approximation algorithms
While some realistic-size instances of NP-hard
problems might still be solvable in reasonable time,
this is not the case for all instances. In general, one
can deal with NP-hardness by relaxing the require-
ment of finding an optimal solution and instead set-
tling for a “good-enough” solution. This leads
to heuristics, whose aim is producing good-enough
solutions in reasonable time (see §2.13 for details)
and approximation algorithms (Vazirani, 2001;
Williamson & Shmoys, 2011; Ausiello et al., 1999).
Given a 	 1, an a-approximation algorithm for an
optimisation problem is a polynomial-time algo-
rithm that, for each instance of the problem, produ-
ces a solution whose objective value is at most a
factor a worse than the optimal objective value. The
factor a, which can be a constant or a function of
the instance size, is then called the approximation
ratio or performance guarantee of the approximation
algorithm. While it is standard to use a 	 1 for
minimisation problems, there is no clear consensus
in the literature as to whether a 	 1 or a � 1 should
be used for maximisation problems. For example,
the simple extended greedy algorithm for the knap-
sack problem produces a solution with at least half
of the optimal objective value on each instance, i.e.,
it is a 1/2- or a 2-approximation algorithm.

While inapproximability results can be shown for
some NP-hard problems (see Hochbaum, 1997, ch.
10), others allow for approximation algorithms with
approximation ratios arbitrarily close to one, i.e., they
admit a polynomial-time approximation scheme
(PTAS). A PTAS is a family of algorithms that con-
tains a ð1þ eÞ-approximation algorithm for every e >
0: If the running time is additionally polynomial in
1=e, the PTAS is called a fully polynomial-time
approximation scheme (FPTAS). If all objective func-
tion values are integers, every FPTAS can be turned
into a pseudopolynomial-time exact algorithm, so
strongly NP-hard problems do not admit an FPTAS
(unless P ¼ NP). Conversely, pseudopolynomial-time
algorithms, in particular dynamic programming

algorithms, often serve as a starting point for design-
ing an FPTAS (Woeginger, 2000; Pruhs & Woeginger,
2007).

2.5.4. Further complexity classes
Theoretical computer science developed a wide
range of complexity classes far beyond the P vs.
NP dichotomy. Considering algorithms requiring
polynomial space, i.e., for which the encoding length
of the data stored at any time during the algorithm’s
execution is polynomial in the encoding length of
the input (but no bound on the running time is
required), gives rise to the class PSPACE. It is
widely believed that NP(PSPACE, but even
whether P 6¼ PSPACE holds is not known.

In the theoretical analysis of bilevel optimisation
problems (see, e.g., Labb�e & Violin, 2016) the com-
plexity class Rp

2 plays an important role (see
Woeginger, 2021). Here, a yes instance I is character-
ised by the existence of a certificate of encoding
length polynomial in jIj, such that a certain polyno-
mial-time-verifiable property holds true for all ele-
ments of a given set Y: As an example, consider the
2-quantified (Boolean) satisfiability problem. Here, an
instance consists of two sets X and Y of Boolean vari-
ables and a Boolean formula over X [ Y: The ques-
tion then is whether there exists a truth assignment
of the variables in X such that the formula evaluates
to true for all possible truth assignments of the varia-
bles in Y. This definition immediately sets the stage
for a bilevel problem, where the decision x of the
upper level (the leader) should guarantee a certain
outcome for every possible decision y at the lower level
(the follower). It is widely believed that NP(Rp

2

although Rp
2-hardness does not rule out the existence

of a PTAS (Caprara et al., 2014). Under this assump-
tion, Rp

2-hardness does, however, rule out the exist-
ence of a compact ILP-formulation, which can be a
valuable finding for bilevel optimisation problems.

For some NP-hard problems, one can construct
algorithms with running time Oðf ðkÞ � polyðjIjÞÞ for
an arbitrary computable function f, where the par-
ameter k describes a property of the instance I. Such
problems are called fixed-parameter tractable. For
example, the satisfiability problem SAT is fixed-par-
ameter tractable with respect to the parameter k
that represents the tree-width of the primal graph of
the SAT instance. In this graph, the vertices are the
variables and two vertices are joined by an edge if
the associated variables occur together in at least
one clause, see Szeider (2003). This parametric point
of view is captured in the W-hierarchy of complex-
ity classes – see Niedermeier (2006) and the seminal
book by Downey and Fellows (1999).
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2.6. Control theory12

Control theory deals with designing a control signal
so that the state or output variables of the system
meet certain criteria. It is a broad umbrella term
that covers a variety of theories and techniques.
Control theory has been widely applied in the stud-
ies of economics (Tustin, 1953; Grubbstr€om, 1967),
operations management (Simon, 1952; Vassian,
1955, also see (Sarimveis et al., 2008) for a recent
review), and finance (Sethi & Thompson, 1970).
Here, we do not intend to provide an exhaustive or
comprehensive review. Instead, we try to structurally
organise the concepts and techniques commonly
applied in operations research, which means that
technical details will be omitted. We direct inter-
ested readers to a number of textbooks in the refer-
ence list, and an excellent review by Åstr€om and
Kumar (2014) for those interested in the develop-
ment of control theory.

The major distinction between control theory and
other optimisation theories is that the control vari-
able to be designed is normally a time-varying,
dynamic function. The control signal can either be
dependent on the state variables (which is referred to
as feedback control or closed-loop control) or inde-
pendent (feedforward control or open-loop control).
The design of control signals and control policies
(defined as the function between the state of the sys-
tem and the control, also known as “control laws” or
“decision rules”) is based on the structure of the sys-
tem to be controlled (sometimes called the “plant” in
the control engineering literature). Thus, the type of
the dynamical system often define the type of control
problem. In continuous systems, the time variable is
defined on the real axis, suitable to describe continu-
ous processes such as fluid processing and finance. In
discrete systems, time is defined as integers, suitable
in cases such as production and inventory control,
where the production quantity is released every day.
Linear systems are comprised of linear (or affine)
state equations, while nonlinear systems contain non-
linear elements. Nonlinear systems are more difficult
to analyse and control, and may lead to complex sys-
tem behaviours such as bifurcation, chaos and fractals
(Strogatz, 2018). But there are linearisation strategies
which approximate the nonlinear system locally as
linear systems (Slotine et al., 1991). Based on whether
random input is present, the dynamical system can
be categorised into deterministic and stochastic.

There are two fundamental methods in the ana-
lysis of the system and control. The first relies on
time-frequency transformations (Laplace transform
for continuous systems and z-transform for discrete
systems). A transfer function in the frequency
domain can be used to represent and analyse the
system (Towill, 1970). This method saves

computational effort; however, it can only deal with
linear system models and each transfer function
only describes the relation between a single input
and a single output (SISO). The second method dir-
ectly tackles the state equations in the time domain
and describes the movement of system state in the
state space. It is suitable for nonlinear systems and
multi-input-multi-output (MIMO) systems. With
the advancement of computing technology, the com-
putational burden faced by the time-based method
becomes less significant. The literature refers to the
frequency-based method as classic control theory
(Ogata et al., 2010) and the time-based method as
modern control theory.

The system under the effect of the control policy
must be examined with respect to its properties and
dynamic performance. Stability is a property of the
dynamical system, that the system can return to its
steady state after receiving a finite external disturb-
ance. Stability is a fundamental precondition that
almost all control designs must meet, with few excep-
tions such as clocks and metronomes, where a peri-
odic or cyclic response is desired. The stability
criterion is straightforward to derive for linear sys-
tems, where both frequency-based (e.g., Routh-
Hurwitz stabibility criteria and Jury’s inners approach,
Jury & Paynter, 1975) and time-based (e.g., the eigen-
value approach) methods exist. However, stability
analysis for nonlinear systems is more challenging
(Bacciotti & Rosier, 2005). Other important properties
of the control system include controllability, defined
as the ability to move the system to preferred state
using only the control signal; and observability,
defined as the ability to infer the system state using
the observable output signals (Gilbert, 1963).

In addition to these intrinsic properties, the system
can also be evaluated by the system’s response to
some characteristic input functions. The step function
(sometimes referred to as the Heaviside function)
takes the value of zero before the reference time
point, and one thereafter. The impulse function (the
Dirac d function) takes the value of infinity at the
reference time point and zero otherwise. These two
input functions usually represent an abrupt change in
the external environment. The sinusoidal function can
be used to describe the periodic and seasonal exter-
nalities. The Bode plot describes the amplitude and
phase shift between the sinusoidal input and output.
For stochastic environments, the white noise is used
to mimic random disturbances. It is a random signal
that follows an identical and independent Gaussian
distribution and has a constant power spectrum. The
noise bandwidth of the system determines the ratio
between output and input variances when the input
is iid. The value of the noice bandwidth can be
derived from either the transfer function or the state
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space representation. This concept is used in analy-
sing the amplification phenomena in supply chains
(see §3.24).

In practise, the system state and even the system
structure may be unknown. Therefore, statistical
techniques, known as state estimation and system
identification, have been developed. State estimation
uses observable output data to estimate the unob-
servable system states. A popular technique for this
purpose is the Kalman filter (Kalman, 1960), essen-
tially an adaptive estimator that can be applied not
only in linear, time-invariant cases (LTI, where the
system is linear and does not change over time), but
also non-linear and time-variant cases. For example,
it has been applied to estimate the demand process
from the observed sales data (Aviv, 2003). System
identification attempts to “guess” the structure of
the system from the input and output.

Along with the development of control theory,
various control strategies have been proposed. They
are designed to fit the structure of the system, the
objective of the control, and most importantly, to
offer a paradigm to design the control policy. In what
follows, we provide a brief summary of control strat-
egies. Linear control strategies can be represented lin-
early (in the form of transfer function). They offer
great analytical tractability and satisfactory perform-
ance, especially when the open-loop system is also lin-
ear. Two widely adopted policies in this family are
proportional-integral-derivative (PID) control and
full-state feedback (FSF) control. In PID control, an
error signal between the output and the reference
input (e.g., a Heaviside function) is computed. The
control signal is a linear combination of the error, the
integral, and the derivative of the error. These three
components can appear separately. The proportional
control has been applied in mechanical and manager-
ial mechanisms such as the centrifugal governor and
production planning (Chen & Disney, 2007). The
full-state feedback control defines the control signal as
a linear combination of the full system state vector,
where the coefficient vector (the “gain”) shares the
same dimensionality as the state vector. By tuning the
gain, the poles of the closed-loop system (the eigen-
value of the transition matrix or the roots of the char-
acteristic equation) will change their position in the
complex plane, adjusting the system performance.
The full-state feedback policy can also be applied in
production and inventory control (Gaalman, 2006).

In contrast to the linear strategies, the nonlinear
control strategies are defined as policies where the
control signal cannot be represented by a linear
function of the system state (Slotine et al., 1991).
These policies are primarily used when the open
loop system is also nonlinear. One such policy is
sliding mode control, where the control signal is a

switching function of the state, dependent on some
switching rules. The system is then maintained near
a hypersurface of the state space (sliding), where the
dynamic behaviour of the system is desired. It
should be ensured that the hypersurface is reachable
from any initial state and that the system state can
be maintained on the hypersurface by the policy. In
practise, bang-bang control is adopted frequently as
a special case of sliding mode control, where the
control signal can take only two possible values. The
rocket engines and domestic thermostats are exam-
ples of such (with on and off states).

Optimal control aims at finding the control signal
or control policy that allows an objective function to
reach its extreme point (Sethi & Thompson, 2009;
Bertsekas, 2012a). The objective function could be
dependent on the state, output and/or control. Many
control policies mentioned above, e.g., full-state feed-
back control and sliding mode control, have been
proved to be the optimal control of some control
problems. Optimal control in the special sense is
based on Pontryagin’s Maximum (or equivalently
Minimum) Principle and mainly deals with the
design of the open-loop control signal. When
equipped with the Hamilton-Jacobi-Bellman (HJB)
theory, it can be used to design optimal feedback
control policies. Optimal control is closely connected
with dynamic programming, which will be reviewed
in §[dynamic programming]. The optimal control
technique has been widely applied in operations
management (e.g., Kumar & Swaminathan, 2003).

When random external disturbances are present,
the stochastic control techniques are necessary
(Åstr€om, 2012). In these situations, objective func-
tions are usually statistical functions of the state or
the output, such as the absolute mean or variance.
The most well-studied stochastic control problem is
the Linear Quadratic Gaussian (LQG) problem,
where the system is linear, the objective function is
of quadratic form, and the noise signal follows a
Gaussian distribution. The optimal control policy in
this case is a linear one. Many supply chain manage-
ment problems can be modelled in LQG form (Lee
et al., 1997). For more complex problems involving
nonlinearity or an unspecified system structure, the
model predictive control (MPC) approach can be used
(Camacho & Bordons, 2013). This approach trans-
forms the infinite-horizon problem into a finite-hori-
zon problem by focusing only on T periods in the
future, deriving the control signal for these T periods,
and adopting the most recent control. In the next
period, the prediction is updated, and this process is
repeated. MPC is not an optimal control method due
to the finite-horizon approximation, yet it works very
well in practise (Doganis et al., 2008). To deal with
parametrical uncertainties in the disturbance, robust
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control provides guaranteed performance (Zhou &
Doyle, 1998). The well-known H1 control (H infin-
ity) is one of such examples. It minimises the largest
singular value of the transition matrix function,
which in SISO systems equates to the peak value of
the frequency response curve. This minimax strategy
ensures that any frequency component in the input
will not be amplified too much. Finally, if the system
parameters vary over time, adaptive control allows
the control policy to update according to the esti-
mated parameters (Åstr€om & Wittenmark, 2013).
The difference between adaptive and robust control
is that the policy is dynamic in the former and static
in the latter.

Recent development of control theory can be
seen in the controlling of complex, large scale and
network system; the use of artificial intelligence in
control engineering; and the application of control
theory in areas of physics, biology and economics.

2.7. Data envelopment analysis13

Data Envelopment Analysis (DEA) is a non-para-
metric frontier analysis methodology mainly used to
assess the relative efficiency of a set of homogeneous
operating units (termed Decision Making Units,
DMUs). DMUs are assumed to consume inputs (i.e.,
resources) to produce outputs (e.g., goods and serv-
ices). The production function that indicates the
amount of outputs that can be produced from a
given input vector is unknown. DEA does not make
any assumption about the functional form of that
dependency. Instead, DEA uses the observed data to
infer the Production Possibility Set (PPS), also called
the DEA technology, which contains all the operat-
ing points that are deemed feasible. This is achieved
on the basis of a few assumptions (like envelopment
of the observations, free disposability of inputs and
outputs, convexity and returns to scale) and invok-
ing the Minimum Extrapolation Principle. The
resulting PPS contains all linear combinations of the
observations along with all the operating points that
they dominate. This leads to Linear Programming
models whose main decision variables are the inten-
sity variables used to compute the target operating
point (projection). This target operating point must
dominate the DMU being projected and represents
maximal improvements (i.e., input reduction and
output increase) with respect to the latter. Hence,
the computed target belongs to the efficient frontier
(which is the non-dominated subset of the PPS) and
the efficiency score is a decreasing function of the
distance from the DMU to the computed efficient
target. There are different ways of measuring this
distance, which, ultimately, depends on the potential
input and output improvements (i.e., slacks)

computed by DEA. Before diving into the DEA
methodology note that, as Cook et al. (2014) point
out, although DEA has a strong link with produc-
tion theory in economics, it is often used to bench-
mark the performance of manufacturing and service
operations. In such benchmarking exercises, the effi-
cient DMUs, as defined by DEA, may not necessar-
ily form a “production frontier”, but rather a “best-
practice frontier”. Thus, the purpose of the perform-
ance measurement exercise affects the classification
of the different variables considered into inputs or
outputs.

2.7.1. Efficiency assessment and target setting
DEA models
The seminal DEA models by Charnes et al. (1978)
and Banker et al. (1984) were oriented (i.e., gave
priority to reducing the inputs or to increasing the
outputs) and looked for a uniform (i.e., radial)
improvement in all the input or output dimensions.
The projection can also be estimated using a given
direction, giving rise to Directional Distance
Function (DDF) DEA models (Wang et al., 2019a).
However, most DEA approaches are non-radial and
non-oriented (e.g., Fukuyama & Weber, 2009).
Actually, because DEA aims at simultaneously
improving inputs and outputs, it is inherently a
multiobjective optimisation approach. Hence, taking
into account the preferences of a decision maker,
any Pareto optimal point can be selected as efficient
target (Soltani & Lozano, 2020).

Most DEA models compute targets that can be
sometimes far away from the observed DMU. This
increases the difficult and effort required to achieve
the target. Hence, DEA models that compute closest
efficient targets have been developed (Aparicio
et al., 2007). An alternative is to compute stepwise
efficiency improvement approaches that may even-
tually achieve ambitious efficient targets but after
several gradual improvement steps (Lozano & Villa,
2005).

DEA models for handling non-discretionary vari-
ables (Banker & Morey, 1986), undesirable outputs
(Kuosmanen, 2005), integer variables (Kazemi Matin
& Kuosmanen, 2009), ratio variables (Olesen et al.,
2022), negative data (Sharp et al., 2007), and fuzzy
data (Arana-Jim�enez et al., 2022) have also been
proposed. Each of the above “complications”
requires specific adaptations of the methodology
and being capable of taking them into account is a
proof of the power and flexibility of DEA.

The DEA models based on the PPS concept are
labelled as envelopment formulations. There are also
dual multiplier formulations in which the decision
variables are not the intensity variables used to com-
pute the target inputs and outputs but the
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corresponding input and output shadow prices.
Multiplier formulations let each DMU choose these
input and output weights so that its efficiency is
maximised. This freedom often leads to DMUs
choosing idiosyncratic or unreasonable weights.
Imposing Assurance Regions (AR) and other types
of weight restrictions has been proposed (Allen
et al., 1997) as well as measuring the efficiency of
the DMUs as the average of the cross-efficiency
scores computed with the input and output weights
chosen by the different DMUs (Doyle & Green,
1994; Chen & Wang, 2022). Another alternative that
has been proposed is using a Common Set of
Weights (CSW) instead of letting each DMU choose
its own (Salahi et al., 2021).

In addition to computing efficiency scores, DEA
can be used to rank the DMU. The problem here is
that in conventional DEA all the DMUs labelled as
efficient are tied and cannot be ranked. In addition
to the CSW or cross-efficiency approaches men-
tioned above, there are other DEA-based full rank-
ing methods, like the super-efficiency approach
(Tone, 2002). Alternatively, instead of fully ranking
the DMUs, ranking intervals and dominance rela-
tions can be established (Salo & Punkka, 2011).

2.7.2. Dynamic and network DEA models
DEA views DMUs as input-output black boxes.
However, it is often the case that DMUs have an
internal structure with different stages or processes
(sometimes labelled subDMUs). Many different
Network DEA (NDEA) models have been developed
to address these scenarios (Tone & Tsutsui,, 2009).
The key features of NDEA models are that each pro-
cess has its own technology and that, except in the
case of parallel processes, there exist intermediate prod-
uct flows between the processes. Some NDEA models
can compute an efficiency score for each process and
relate the overall efficiency score to the scores of the
individual processes (Kao, 2016). It must be noted that
the NDEA configuration most studied and most com-
monly used in practice involves two stages in series
(see, e.g., Cook, et al., 2010; Halkos et al., 2014).

Multi-period and dynamic scenarios can be mod-
elled in a manner similar to NDEA simply by con-
sidering each time period as a subDMU. The
difference between multi-period approaches (Kao &
Liu, 2014) and Dynamic DEA (Tone & Tsutsui,
2010) is that in the latter there are flows between
consecutive periods (i.e., carryovers). Dynamic
NDEA (DNDEA) models, in which there are carry-
overs between periods as well as intermediate prod-
uct flows between the processes, have also been
developed (Tone & Tsutsui, 2014).

2.7.3. Centralised DEA models
DEA generally projects each DMU separately onto
the efficient frontier. There are situations in which
the DMUs belong to the same organisation and
there is a Central Decision Maker (CDM) that is
interested in the overall system performance and
therefore in projecting all the DMUs simultaneously.
This type of Centralised DEA (CDEA) models are
commonly used for resource allocation (Lozano &
Villa, 2004) and for centralised production planning
(Lozano, 2014). Also, an approach to measure the
centralised efficiency of the individual DMUs in
CDEA scenarios has been proposed (Davtalab-
Olyaie et al., 2023).

DEA models for allocating a fixed input or com-
mon revenue (Li et al., 2021) or for fixed-sum-out-
puts (FSO; Zhu et al., 2017) also share with CDEA
the need to project all the DMUs simultaneously to
take into account their interrelationships. These
models, same as CDEA, can use an envelopment or
a multiplier formulation. While the key feature of
the former is that all DMUs are projected simultan-
eously, that of the latter is that, same as in CSW, a
single set of input and output weights is considered.

2.7.4. DEA and total factor productivity (TFP)
growth
DEA can be used to compute the Malmquist
Productivity Index (MPI) by projecting the DMU in
two consecutive periods onto the efficient frontier of
each period and computing the geometric mean of the
change in the corresponding radial efficiency scores
between the two periods (F€are et al., 1992). The
Malmquist-Luenberger Productivity Indicator (MLPI)
is analogous but it employs the arithmetic average and
an additive decomposition of DDF efficiency scores
(Chambers et al., 1996). In both cases, the TFP growth
of each DMU can be decomposed into an efficiency
change and a technological change component. Other
alternative decompositions of the MPI and MLPI have
been developed (Epure et al., 2011).

Other approaches compute a global MPI (Pastor
& Lovell, 2005; Kao & Liu, 2014). These have the
circularity property, missing in the adjacent-periods
MPI. Changes in prices can be also incorporated to
compute and decompose a global cost MPI (Tohidi
et al., 2012). MPI variants that take into account the
projections of all the observations or of different
groups of observations as well as approaches to
compute and decompose the aggregate productivity
growth index of a whole industry and input-specific
productivity growth indexes have also been pro-
posed (Aparicio et al., 2017; Kapelko et al., 2015).
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2.7.5. Metafrontier analysis
In scenarios where the DMUs are heterogeneous and
belong to different groups, not necessarily disjoint,
the DMUs can be projected onto its group frontier as
well as onto the metafrontier that results from envel-
oping all the group frontiers. Measuring the differ-
ence between the corresponding efficiency scores can
be used to estimate the distance between both fron-
tiers and hence the corresponding technology gap of
each group. Although the group technologies are
generally convex, the metatechnology is generally
non-convex (Afsharian & Podinovski, 2018).

The metafrontier approach can be used in
DNDEA (See et al., 2021) and CDEA (Gan & Lee,
2022) contexts. Also, using metafrontier concepts
with each group of observations corresponding to a
different time period, meta-MPI and meta-MLPI
can be computed and appropriately decomposed
(Portela & Thanassoulis, 2010).

2.7.6. Other DEA approaches
There are other interesting DEA approaches that
have not been covered above, like congestion (Ren
et al., 2021), window analysis (Peykani et al., 2021),
etc. Moreover, the field, although mature, is still
expanding, with promising new developments, like
Efficiency Analysis Trees (EAT) (Esteve et al., 2020),
Support Vector Frontiers (SVF) (Valero-Carreras
et al., 2022), or big data DEA (Dellnitz, 2022). This is
not to mention the large and increasing number of
DEA applications (see §3.6, §3.7, and §3.19). For fur-
ther learning on DEA the interested reader is referred
to existing textbooks (Cooper et al., 2007), handbooks
(Cooper, et al., 2011; Cook & Zhu, 2014; Zhu, 2015)
and review papers (Kao, 2014; Contreras, 2020;
Peykani, et al., 2020).

2.8. Decision analysis14

The term decision analysis was introduced by
Howard (1966) as “a logical procedure for the bal-
ancing of the factors that influence a decision”,
pointing out that “the procedure incorporates
uncertainties, values and preferences in a basic
structure that models the decision”. According to
Keeney (1982) decision analysis is a “formalisation
of common sense for decision problems which are
too complex for informal use of common sense”
and, in more technical form “a philosophy, articu-
lated by a set of logical axioms, and a methodology
and collection of procedures, based upon those axi-
oms, for responsibly analysing the complexities
inherent in decision problems”. In a slighty differ-
ent perspective, Roy (1993) proposed the concept
of decision aiding as “the activity of one who, in
ways we call scientific, helps to obtain elements of

answers to questions asked by actors involved in a
decision-making process, elements helping to clarify
this decision in order to provide actors with the
most favourable conditions possible for that type of
behaviour which will increase coherence between
the evolution of the process, on the one hand, and
the goals and/or systems of values within which
these actors operate on the other”.

For Howard (1966) “the essence of the procedure
is the construction of a structural model of the deci-
sion in a form suitable for computation and manip-
ulation”. For Keeney (1982) “the foundations of
decision analysis are provided by a set of axioms
… which provide principles for analysing decision
problems”. Moreover, “the philosophical implica-
tions of the axioms are that all decisions require
subjective judgements and that the likelihoods of
various consequences and their desirability should
be separately estimated using probabilities and util-
ities, respectively”. In this perspective, the key com-
ponents of a decision problem are the set of
alternatives to be taken into consideration; the set of
consequences describing outcomes of alternatives,
possibly in terms of a plurality of attributes or crite-
ria; if the consequences are uncertain, the beliefs
about their possible realisations expressed in terms
of a probability distribution; the preferences of the
decision maker. The objective of the decision ana-
lysis is to construct a value function representing
the preferences of the decision maker by assigning
each alternative an evaluation of its desirability. In
case of uncertainty of the consequences, the value
function is expressed in terms of expected value
with respect to the probability of the consequences.
The basic methodology to induce the value function
is based on the pioneering work of von Neumann
and Morgenstern (1944) that showed that a small
set of axioms imply that the “utility” of an outcome
x is defined as the probability of getting the most-
preferred outcome and otherwise the least-preferred
outcome that would be indifferent to receiving out-
come x with certainty. For Roy (1993), the decision
aiding procedure should be developed in a construct-
ive approach in which “concepts, models, procedures
and results are here seen as suitable tools for devel-
oping convictions and allowing them to evolve, as
well as for communicating with reference to the bases
of these convictions”. In this perspective the “object
is not to know or to approximate the best possible
decision but to develop a corpus of conditions and
means on which we can base our decisions in favour
of what we believe to be most suitable”.

Decision Analysis is mainly based on concepts
and tools related to the subjective probability of
Ramsey (1931) and de Finetti (1937), the theory of
expected utility of von Neumann and Morgenstern
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(1944) and subjective expected utility of Savage
(1954), the Multiple Attribute Utility Theory
(MAUT) of Keeney and Raiffa (1976) and the
psychology of judgement and decision-making of
Tversky and Kahneman (1974). The general idea is
to try to evaluate each alternative by assigning a
value based on the utilities of the outcomes obtained
in each state of the nature multiplied by their proba-
bilities. Delayed consequences may be discounted
according to the time at which they are obtained.
Each outcome may be evaluated by considering value
trade-offs among multiple attributes. Decision ana-
lysis techniques include Utility Function Elicitation
techniques, Probability Elicitation protocols, Net
Present Value, Decision Trees, Influence Diagrams,
and Monte Carlo simulation-based decision analysis
(Clemen, 1996); Value-Focused Thinking (Keeney,
1996a); Portfolio Decision Analysis (Salo et al., 2011),
Bayesian Networks (Pearl, 1988), and multi-stage
decision optimization techniques such as dynamic
rogramming and reinforcement learning.

Considering the distinction between normative,
descriptive and prescriptive approaches (Bell et al.,
1988), the general perspective of the decision ana-
lysis is prescriptive rather than normative or
descriptive (Edwards et al., 2007). Descriptive ana-
lysis concerns the representation and prediction of
observed decisions and normative analysis concerns
the decisions that ideally coherent and rational
individuals should take. Instead, prescriptive ana-
lysis tries to propose methods and techniques that
will help real people make better decisions with
lower regret and greater coherence of values and
behaviors. In this context, decision analysis takes a
prescriptive approach that, focusing on the few
basic axioms underlying subjective expected utility,
adopts “pragmatically” the aspiration to the ration-
ality of the normative approach, trying to correct
all the heuristics and biases discovered and investi-
gated by descriptive analysis (Tversky & Kahneman,
1974). The decision aiding approach (Roy, 1993)
takes a different perspective that, criticising the
idea that there is an objectively optimal decision
to be discovered or at least approximated, aims to
provide a recommendation consisting in a set of
convictions constructed in the course of a decision
process based on multiple interactions between
the analyst and the decision maker. The decision
aiding approach leads directly to a multi-criteria
perspective (Belton & Stewart, 2002; Greco et al.,
2016) taking explicitly into consideration the mul-
tiple attributes or criteria (e.g., related to finance,
resources, time, and environmental impacts) to be
considered in the decision problem at hand. This
avoids the risk of a fictitious, not reasoned and
arbitrary conversion of evaluations on different

criteria to a common unit, facilitating the discus-
sion on the respective role of each criterion (Roy,
2005, 1996). To compare alternatives in a multi-
criteria decision procedure four main approaches
can be adopted:

� aggregating criteria assigning a single value to
each alternative: this is the case of above men-
tioned MAUT, as well as of some of the most
well known multicriteria methods such as
SMART (Edwards & Barron, 1994), and UTA
(Jacquet-Lagreze & Siskos, 1982); a specific men-
tion deserves in this context the AHP approach
(Saaty, 1977), that is probably the most adopted
(although controversial; see, e.g., Dyer, 1990) mul-
ticriteria method. It is based on the comparison
of “importance” of criteria and of evaluation of
alternatives with respect to considered criteria by
means of a nine point qualitative scale; another
specific class in this family are the distance-based
methods which, following the main principle of
TOPSIS (Hwang & Yoon, 1981), the first and
most famous of these methods, evaluate each
alternative on the basis of their distance from the
positive ideal solution and the negative ideal solu-
tion (the fictitious alternatives that have the best
and the worst evaluation on each criterion,
respectively); two other well-known methods in
this class are VIKOR (Opricovic & Tzeng, 2004)
and TODIM (Gomes & Lima, 1991).

� aggregating criteria by means of one or more
synthesising preference relations: the most well
known methods based on this approach are the
ELECTRE methods (Figueira et al., 2013, 2016),
that build a crisp or valued preference relation
called outranking for which an alternative a is at
least as good as another alternative b if a a is not
worse than b for a majority of important criteria
(concordance) and there is no criterion for which
the advantage of b over a is so large that it pre-
vents the possibility to declare a at least as good
as b (non-discordance);

� aggregating criteria through “if . . . , then . . .” deci-
sion rules (Greco et al., 2001): the alternatives
obtain an overall evaluation by matching decision
rules with a syntax “if the alternative is at least at
level lj1 on criterion gj1 and . . . at least at level ljr
on criterion gjr , then the alternative is globally at
least at level ltot ”, such as “if the student has an
evaluation at least good on mathematics and at
least medium on literature, then the student is glo-
bally at least medium”; these rules are induced
from a set of examples of decisions supplied by the
decision maker. The advantage of this approach is
its explainability due to the fact that the decision
rules are expressed in natural language;
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� aggregating criteria through an interactive multi-
objective optimisation (Branke et al., 2008): with
this approach one can handle decision problems
in which a set of objectives have to be optimised
under given constraints (see Sawaragi et al., 1985;
Steuer, 1985; Miettinen, 1999; Ehrgott, 2005). In
this context, the concept of Pareto efficient solu-
tion is fundamental: it is a solution for which one
cannot improve one objective without deteriorat-
ing some others. Several algorithms have been
proposed for Pareto set generation and among
them let us remember the weighted sum method,
the lexicographic method, the achievement secu-
larising function, the epsilon constraint method
(for surveys see Marler & Arora, 2004, or
Chapters 18 and 19 in Greco et al., 2016). Dealing
with a multiobjective optimisation problem, it is
important to discover the set of Pareto efficient sol-
utions most preferred by the decision maker.
Recently, beyond many exact methods, some heur-
istic methods have been proposed for these prob-
lems, such as some hybridisation between
evolutionary multiobjective optimisation algorithms
aiming to approximate the whole set of Pareto effi-
cient solutions (Deb, 2001) and some multicriteria
preference elicitation methods to guide the opti-
misation algorithm toward the most interesting set
of Pareto efficient solutions (see, e.g., Phelps &
K€oksalan, 2003; Branke et al., 2016).

2.9. Dynamic programming15

Dynamic programming (DP) was the brainchild of
Richard Bellman (Bellman, 1953), who wrote “DP is a
mathematical theory devoted to the study of multistage
processes”. Indeed, in the seven decades since his sem-
inal work, the uses of DP have grown substantially
thanks to its algorithmic nature in solving sequential
decision-making problems, where the preceding actions
and their realisation (in terms of consequences) will
impact on the course of futures. Examples of such
problems include multiperiod inventory management,
or asset allocation (portfolio management) over a given
time horizon. The central idea of DP is to break down
the original multistage problem into a number of tail
sub-problems by stages. For each stage, the tail sub-
problem is a truncated version of the original problem
starting from this stage. These tail sub-problems are
then recursively solved one by one from the last stage
backwards to the first one, at which point the original
problem is solved. The solution of such a procedure is
guaranteed to be optimal when the problem concerned
satisfies a sufficient condition, i.e., the Principle of
Optimality (Bellman, 1953; Puterman, 2014), which
states “an optimal policy has the property that whatever
the initial state and initial decision are, the remaining

decisions must constitute an optimal policy with regard
to the state resulting from the first decision” (Bellman,
1953). Throughout this section, we focus our attention
on discrete time systems. For continuous time dynamic
systems, the readers are referred to the Hamilton-
Jacobi-Bellman equations in optimal control (see, for
example, Bertsekas, 2012a).

In particular, for a finite time horizon problem, the
decisions are made over a number of stages or decision
epochs, denoted by t ¼ 0, :::,T � 1: At each decision
epoch, after observing the current system state xt (com-
prised of one or more information variables that char-
acterise how the system progresses), an action at is
taken that leads to an immediate reward (cost) of
rtðxt , at ,wtÞ, where wt is the random disturbance at
time t with a known probability distribution. The sys-
tem then evolves to state xtþ1 at the next decision
epoch, following the transition function xtþ1 ¼
ftðxt , at ,wtÞ with the transition probability
ptðxtþ1jxt , at ,wtÞ: After the last decision is made at
epoch T – 1, the system evolves to xT in the terminal
stage with the salvage value rTðxTÞ: The objective of
the problem is to find a policy p, or a sequence of
actions ða0, a1, :::, aT�1Þ prescribed by at ¼ pðxtÞ, that
maximises (minimises) the total expected reward (cost)
across the entire time horizon. Note that for the
expected total reward optimisation criterion (or additive
reward functions) the Principle of Optimality is always
satisfied (Puterman, 2014). To avoid the technical
subtleties, in what follows we focus on discrete state
space S and action space A, and assume the random
disturbance at an epoch is independent of those in the
previous epochs. Define the dimension of the state
space S as the number of the information variables in
the state. The mathematically inclined readers are
referred to Puterman (2014) for discussions on more
general situations. Before proceeding, it is worth men-
tioning that when the random disturbance wt takes
only a single value, the problem reduces to a determin-
istic problem. Perhaps the two most well known deter-
ministic sequential decision-making problems solvable
by DP are the Shortest Path problem (Dreyfus, 1969)
and the Knapsack problem (Kellerer et al., 2004).

Under the Principle of Optimality, the above-
mentioned problem can be solved by backward
induction. Denote by VtðxtÞ the value function, or
the optimal expected value-to-go from state xt at
epoch t until the end of the time horizon. The value
function (for maximisation problems) satisfies the
following optimality equations (or Bellman
Equations, see e.g., Puterman, 2014),

VtðxtÞ ¼ max
at2A

E rtðxt , at ,wtÞ þ Vtþ1ðftðxt , at ,wtÞÞ
� �

, 8xt
2 S, t ¼ 0, :::,T � 1,

(1)

with the boundary condition VTðxTÞ ¼ rTðxTÞ: By
recursively solving the optimality equations from the
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last stage backwards to time zero, we obtain the opti-
mal value functions and, at the same time, an optimal
policy. For this method to work, however, at each
stage one has to solve the value function for all states
before proceeding to the previous stage. For problems
with high dimensional state variables, the solution via
this method is simply not practical due to the prohibi-
tive amount of computational time and memory
required. The recent development on DP research has
been essentially trying to overcome this so called curse
of dimensionality (Powell, 2011), which is discussed in
the last paragraph of this section.

Many sequential decision-making problems in
practice do not have a natural termination stage,
leading to a rich body of literature studying infinite
horizon problems, for which the total expected
reward becomes unbounded as the time horizon
tends to infinity. To this end, two alternative criteria
have been widely used in the literature (Puterman,
2014; Bertsekas, 2012a). The first one applies a dis-
count factor between 0 and 1, say b, to the future
reward, which can be understood as the depreci-
ation of monetary values over time. The total dis-
counted reward is well defined as it is bounded by
the sum of a decreasing infinite geometric sequence.
In situations where discounting is not appropriate, a
meaningful criterion is to consider the long run
average reward, or the reward rate per stage.
Assuming a stationary system (in which the transi-
tion function/probability, the reward function, and
random disturbance do not change over time), the
Bellman Equations for the total discounted reward
criterion take the following form:

VðxÞ ¼ max
a2A

E rðx, a,wÞ þ bVðf ðx, a,wÞÞ� �
, 8x 2 S,

(2)

where the value function V(x) is the optimal dis-
counted value-to-go from state x over an infinite
time horizon. Note that there are no more boundary
conditions. There is no more dependency on time
either under the assumption of stationary systems,
which is often satisfied in practice (Bertsekas, 2012a).
When such an assumption is not satisfied, a periodic
or cyclic DP can be developed (Li et al., 2022a). For
brevity we do not include the Bellman equations for
the long run average reward criterion but direct the
readers to Bertsekas (2012a) and Puterman (2014).

There are mainly three solution algorithms
(Tijms, 1994; Puterman, 2014) for infinite horizon
problems. The most widely used and understood
algorithm is value iteration, or successive approxi-
mations as it was called in the early days. Starting
from an arbitrary bounded value function vector
(e.g., V0ðxÞ ¼ 0, 8x 2 S), this method iteratively
updates value functions via the recursive equation
below until the successive gaps between iterations

kþ 1 and k are within a predefined threshold.

Vkþ1ðxÞ ¼ max
a2A

E rðx, a,wÞ þ bVkðf ðx, a,wÞÞ
� �

,

8x 2 S:
(3)

An alternative algorithm is policy iteration, which
starts with an arbitrary policy and then iteratively
improves it until no further improvements are pos-
sible. Each iteration includes two steps: firstly the
expected value-to-go under the current policy is
evaluated via a system of equations similar to (2)
but for the actions prescribed by the policy; after
that a policy improvement step is undertaken to
find an improved action for each state that leads to
a better value-to-go (Puterman, 2014). In the last
algorithm, the system of Bellman Equation (2) are
reformulated into a vary large scale linear program,
which has one decision variable for each state and
one constraint for each state-action pair. Regardless
of the solution algorithms, just as in finite horizon
problems, the curse of dimensionality remains the
biggest hurdle for the implementation of DP.

Various approximation methods have been pro-
posed to improve the scalability of DP, leading to an
important and thriving research field called
Approximate Dynamic Programming (ADP).
According to Bertsekas (2012a), most of the ADP
approaches fall into either the value space or policy
space. We concentrate on the approaches in the value
space (see also §2.21) while we direct readers to
Bertsekas (2012a) for the policy space counterparts.
The basic idea of the value space approaches is to
develop efficient methods to approximate the value
functions or the expected value-to-go for a given pol-
icy. The most studied methods approximate the value
functions via a linear or nonlinear combination of a
set of handcrafted feature vectors (functions of the
state) weighted by a set of parameters, which are cali-
brated by a suitable method (Bertsekas, 2012b; Ding
et al., 2008). Feature vectors are not always available,
in which case Neural Networks have been used to
construct feature vectors automatically (Powell, 2011;
Bertsekas, 2012a; He et al., 2018). Decomposition is
also a popular method, which decomposes the ori-
ginal problem into a number of sub-problems each
of which has a much smaller state space and can be
solved efficiently by the exact algorithms mentioned
above. The assembly of the value functions of these
sub-problems provides an approximation to the ori-
ginal value functions (Kunnumkal & Topaloglu,
2010; Li & Pang, 2017). A distinct decomposition
approach is Whittle’s Restless Bandit framework
(Whittle, 1988; Glazebrook et al., 2014; Li et al.,
2020), which decomposes the original problem via
Lagrangian relaxation, calculates a state dependent
index value for each sub-problem and uses these
index values directly to derive policies for the original
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problem. Another method in the value space approxi-
mates the value functions of a specific policy via
Monte Carlo simulation (Chang et al., 2007;
Bertsekas, 2012b), which are then used to find an
improved policy. An alternative method is called Q-
Learning (Sutton & Barto, 2018), which approximates
the Q-factor for each state-action pair. The Q-factor
for (x, a) is the expected value-to-go by taking action
a at state x and then following either a given policy
or the optimal policy thereafter. Due to the large
number of combinations of state-action pairs, Q-
Learning is more suitable for problems with a small
state space (Bertsekas, 2012b). For an in-depth
account on ADP we refer to two seminal books of
Powell (2011) and Bertsekas (2012b).

2.10. Forecasting16

Forecasting is concerned with the prediction of
unknown/future values of one or multiple variables
of interest. If the values of these variables are col-
lected over time, especially/in particular at regular
intervals, the corresponding problem is referred to as
time-series forecasting. The outputs of forecasting
models include point estimates as well as expressions
of uncertainty of such estimates in terms of probabil-
istic forecasts, prediction intervals, or path forecasts.
Forecasting is applied in a wide range of applications.
In this subsection, we offer an overview of established
forecasting approaches that are useful in social set-
tings (Makridakis et al., 2020a), such as forecasts pro-
duced to support decision making in operations and
supply chain management (§3.12; §3.24, finance
(§3.9), energy (§3.19), and other domains.

Exponential smoothing is one of the most popular
families of models for univariate time-series forecast-
ing. The underlying principle of exponential smooth-
ing models is that, at every step, the forecast is
updated such that the most recent information is
taken into account by exponentially discounting
information from previous periods. The estimates for
the exponential smoothing parameters are based on
in-sample fits. The first and simplest exponential
smoothing method, simple (or single) exponential
smoothing, was developed by Brown (1956). This
method was able to handle level-only data (no trend
nor seasonal patterns). Soon after, it was extended to
handle trended and seasonal data (Holt, 2004;
Winters, 1960). Forty years later, Hyndman et al.
(2002) introduced a fully fledged family of exponen-
tial smoothing models that are represented in a state-
space framework. Usually, three states are considered:
level, trend, and seasonality. The way that these three
states interact to produce the final forecast deter-
mines the types of trend and seasonality (such as
additive or multiplicative). Exponential smoothing

models are fast to compute and perform well in a
wide range of data (Makridakis et al., 2020b), render-
ing them ideal benchmarks for forecasting applica-
tions. Detailed reviews of exponential smoothing
models are offered by Gardner (2006) and Hyndman
et al. (2008).

Autoregressive integrated moving average (ARIMA)
is another very popular family of univariate forecast-
ing models (for a seminal work on ARIMA, see Box
& Jenkins, 1976). In ARIMA, the data are first ren-
dered stationary through transformations and differ-
encing. The stationary data are then fitted in linear
regression models (see also the next paragraph on
regression models) in which the predictors are either
past values of the data (autoregressive terms) or past
errors (moving average terms). ARIMA models are
theoretically appealing as they can depict a wide
range of data generation processes. While manually
identifying an optimal ARIMA model can be some-
times challenging, nowadays automated approaches
exist (see, for example, Hyndman & Khandakar,
2008; Franses et al., 2014)

When the variable of interest is known to be
affected by other factors (also called “exogenous vari-
ables”), then causal modelling can be applied. In its
simplest form, causal models can be linear or nonlin-
ear regression models that regress the values of the
dependent variable on the values of the independent
variable(s). Apart from the ordinary least squares
regression models, other types of regression models
exist, such as the ordinal, logistic, Poisson, negative
binomial regression models as well as the Generalised
Linear Models (GLMs). The dependent variable (vari-
able of interest) is usually continuous, however spe-
cific regression models exist for ordinal or binary
dependent variables, such as the ordinal logistic
regression model.” But of course there are also
regression approaches for count data, like Poisson
regression or negative binomial regression (Hilbe’s
textbook of the same name is my go-to reference on
this), or more generally Generalized Linear Models
(GLMs). I would assume these to be more relevant to
OR than binary or ordinal logistic regressions.

A common rule for using regression models for
forecasting purposes is that the values of the inde-
pendent variables are either known or can be pre-
dicted, as is very common in energy forecasting; see
Weron (2014) and §3.19. Transformations of the
dependent or independent variables are sometimes
necessary so that assumptions regarding normality
of errors and constancy of the error variance are
satisfied (Lago et al., 2021). Another common issue
in regression models is that of multicollinearity
between independent variables. Linear regression
models can also be used to produce time-series fore-
casts when no exogenous variables are available. In
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these cases, we can construct predictors for trend
and seasonality and use these predictors as inde-
pendent variables to model the time-series patterns.
Finally, it is also worth mentioning that ARIMA
models can be extended to ARIMAX models that
can include the effects of exogenous variables, just
like autoregressive (AR) models can be extended
to ARX.

Instead of forecasting each time series separately,
several approaches exist in order to forecast time
series data as a collection. Multivariate models (also
known as structural models) are designed to model
cross-sectional data, producing forecasts for many
variables of interest at the same time. Such forecasts
take into account interactions between all series. A
common example is the vector autoregressive
(VAR) models (Sims, 1980; Hasbrouck, 1995).
Another very popular cross-sectional approach is
hierarchical forecasting (Athanasopoulos et al.,
2020). Hierarchical forecasting deals with time-series
data that are naturally arranged in hierarchical
structures (for example, product or geographical
hierarchies). Forecasts for each node of the hier-
archy are first produced independently using stand-
ard univariate forecasting approaches (such as
exponential smoothing or ARIMA); then, forecasts
across the hierarchy are reconciled to achieve coher-
ency (Wickramasuriya et al., 2019; Hollyman et al.,
2021). Hierarchical forecasts offer better accuracy
and are directly relevant for decision makers at mul-
tiple levels of an organisation. A different form of
forecasting using multiple series, which is widely
applied in machine-learning methods, is called
cross-learning. This approach implies learning (usu-
ally through features; Montero-Manso et al., 2020;
Wang et al., 2022c) from other series to be able to
predict the variable of interest. Compared to other
cross-sectional approaches, cross-learning requires
access to a set of “reference” data which, though, do
not have to be concurrent to the target data.

Given the plethora of available modelling options,
we need ways to help us decide on the best approach
for the target data. Two popular approaches for model
selection are information criteria and cross-validation.
Information criteria select the best model amongst a
pool of candidate models based on how well the in-
sample forecasts fit the actual data (model fit), penal-
ising at the same time for model complexity (Occam’s
razor). Information criteria are fast to compute and
widely applied, mostly due to their implementations
in open-source forecasting packages (Hyndman &
Khandakar, 2008). Cross-validation is based on the
comparison of the out-of-sample performance
between different models. To achieve this, the avail-
able data are split into “training” and “validation”
data. The validation follows a rolling-origin process,

where the forecasts of the candidate models are com-
pared for multiple forecast origins (Tashman, 2000;
Bergmeir & Ben�ıtez, 2012). A more recent approach
to forecast selection is based on the concept of repre-
sentativeness (Petropoulos & Siemsen, 2022). Out-of-
sample forecasts with higher representativeness to the
past data patterns are preferred to ones with lower
representativeness. Regardless of how one selects
between forecasts and models, the values of the selec-
tion criteria can also be used to combine forecasts
(Kolassa, 2011). In fact, multiple studies have shown
that combining forecasts, using equal or unequal
weights, can significantly boost the forecasting per-
formance of individual models (Bates & Granger,
1969; Nowotarski et al., 2016; Wang et al., 2022d).
Claeskens et al. (2016) offer a possible explanation on
why the performance of forecast combinations is bet-
ter than that of the individual forecasts.

Apart from statistical, algorithmic and computa-
tional approaches, the forecasting process can also be
infused by judgement (see, also, §2.2 and §2.20). It is
not unusual for forecasts to be directly produced in a
judgemental way, without the support of any system-
atic approaches. Research suggests that such forecasts
suffer from several biases (Lawrence et al., 2006).
However, managers may sometimes have a unique
appreciation of the situation, one that the hard data
cannot communicate through models. In such cases,
systematic approaches to elicit expert knowledge
include the Delphi method (Rowe & Wright, 1999),
structured analogies (Green & Armstrong, 2007), pre-
diction markets (Wolfers & Zitzewitz, 2004), and
interaction groups (Van de Ven & Delbeco, 1971); see
also Graefe and Armstrong (2011) and Nikolopoulos
et al. (2015) for a comparison between these
approaches. Apart from producing forecasts directly,
judgement may also be used to adjust the formal/stat-
istical forecasts. Judgemental interventions and their
efficacy have been well-studied in the literature (see,
for example: Fildes et al., 2009; Petropoulos et al.,
2016; Fildes et al., 2019). The main takeaways are: (i)
negative adjustments are generally more beneficial
than positive ones; (ii) larger adjustments should be
preferred to smaller ones; and (iii) the use of feedback
and support will limit and improve the role of such
judgemental adjustments. Finally, managerial judge-
ment may be applied in other stages of the forecasting
process, such as judgementally selecting between statis-
tical models (Petropoulos et al., 2018; De Baets &
Harvey, 2020) or setting their (hyper)parameters.

Forecasts produced in previous periods need to
be evaluated once the corresponding actual values
become available. Through feedback, forecast evalu-
ation allows analysts to improve the forecasting pro-
cess and, thus, forecasting performance. The main
rule of forecast evaluation is that performance
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should be measured on data that were not used to
fit the models or produce the forecasts. Solely meas-
uring the in-sample performance will inevitably lead
to over-fitting and the use of complex forecasting
models. There exist a wide array of evaluation met-
rics. Some of them are suitable for measuring the
accuracy or bias of the point forecasts, while others
focus on how well the uncertainty around the fore-
casts is estimated. In the former category, popular
metrics are the mean absolute error (MAE), the root
mean squared error (RMSE), the mean absolute per-
centage error (MAPE, which is very popular in
practice) and the mean absolute scaled error
(MASE, which is theoretically more elegant and
popular in academia). It should be noted that
Kolassa (2020) showed that different error metrics
are minimised by different (point) forecasts and that
it makes little sense to evaluate one point forecast
using multiple KPIs. For detailed overviews of fore-
casting metrics for point forecasts and their proper
use, the reader is referred to Hyndman and Koehler
(2006), Davydenko and Fildes (2013), and
Koutsandreas et al. (2022). In the latter category, a
popular metric is the interval score (IS), which is a
proper scoring rule and considers both the calibra-
tion and the sharpness of the prediction intervals, as
well as the pinball score, the continuous ranked
probability score (CRPS), and the energy score.
Gneiting and Raftery (2007) offer a review of
(strictly) proper scoring rules. Finally, we should
mention that nowadays it is common to go beyond
strict forecasting performance and measure the per-
formance of the forecasts on the utility (Hong et al.,
2020; Yardley & Petropoulos, 2021).

For a detailed encyclopedic overview of the fore-
casting field, both in terms of theory and practice, we
refer the reader to the work of Petropoulos et al.
(2022); a live version of this encyclopedia is available
at https://forecasting-encyclopedia.com. Hyndman
and Athanasopoulos (2021) and Ord et al. (2017)
have written comprehensive textbooks on forecasting
and its applications. Notable open-source packages
with implementations of the most popular forecasting
models include the forecast (Hyndman et al.,
2022) and smooth (Svetunkov, 2022) packages for R
statistical software.

2.11. Game theory17

Game theory is a branch of mathematics that studies
strategic interactions between decision makers, called
players. Strategic interactions means that a player’s
payoff depends not only on her own decision (action
or choice), but also on the decisions made by the
other players. The book by von Neumann and
Morgenstern (1944) is often considered the starting

date of game theory, though some of its roots can be
traced back to much earlier. Games can be classified
along a series of features. In a static game, each
player acts only once, whereas in a dynamic game,
interactions are repeated over time. In a one-person
game, the decision maker plays against a nonstrategic
(or dummy) player, often referred to as “nature”,
whose action is the outcome of a probabilistic event
with a fixed (known) distribution. Two-player games
focus on one-on-one interactions. Duopolistic com-
petition and management-union negotiations are sit-
uations that can be modelled as two-person games.
Extending the model to n > 2 players is conceptu-
ally easy but may be computationally challenging
because each player needs to determine all the pos-
sible sequences of actions and reactions for all play-
ers. When the number of interacting players is very
large, e.g., an economy with many small agents, the
analysis shifts from individual-level decisions to
understanding the group’s behavioural dynamics. An
illustration of this is traffic congestion: when an agent
attempts to minimise her travel time on a route from
A to B, her travel speed depends on the traffic dens-
ity on that route. What matters is the number of
drivers, not their identity. Population and evolution-
ary games (Hofbauer & Sigmund, 1998; Cressman,
2003; Sandholm, 2010) and mean-field games,
(Huang et al., 2003, 2006, 2007; Lasry & Lions,
2006a, 2006b, 2007; Gomes & Sa�ude, 2014) are
branches of game theory that study situations with
large numbers of players.

A game can be defined in three forms, namely, in
strategic, extensive, or in coalitional form. To for-
mulate a one-shot game in strategic form, we have
to specify (i) the set of players and, for each player,
(ii) the set of actions, and (iii) a payoff function
measuring the desirability of the game’s possible
outcomes, which depends on the actions chosen by
all players. The set of actions can be finite, e.g., to
bid on a contract or not, or continuous, e.g., the
amount bid. If the players intervene more than once
in the game, then we should additionally define (iv)
the order of play, (v) the information acquired by
the players over time (stages), and (vi) whether or
not nature is involved in the game.

In a one-shot game, an action (move) and a strategy
mean the same thing. In games where players inter-
vene more than once, the two concepts no longer coin-
cide. A strategy is then a decision rule that associates a
player’s action with the information available to her at
the time she selects her move. So an action, e.g.,
spending advertising dollars, is a result of the strategy.
The word strategy comes from Greek (strategia) and
has a military sense. An army general’s main task is to
design a plan that takes into account (adapts to) all
possible contingencies. This is precisely the meaning of
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strategy in game theory. Whether in war, business or
politics, it is never wise to allow yourself to be sur-
prised by the enemy. This does not imply that a win-
ning strategy always exists. Sometimes we must be
content with a draw or even a reasonable loss.

One-shot games are a useful representation of
strategic interactions when the past and the future
are irrelevant to the analysis. However, if today’s
decisions also affect future outcomes and are
dependent on past moves, then a dynamic game is
needed. In a repeated game, the agents play the
same game in each round, that is, the set of actions
and the payoff structures are the same in all stages
(Mertens et al., 2015). The number of stages can be
finite or infinite, and this distinction matters in
terms of achievable outcomes. In a stochastic game,
the transition between states depends on the players’
actions (Shapley, 1953; Mertens & Neyman, 1981;
Ja�skiewicz & Nowak, 2018a, 2018b). In a multistage
game, the players share the control of a discrete-
time dynamic system (state equations) observed
over stages (Başar & Olsder, 1999; Engwerda, 2005;
Krawczyk & Petkov, 2018). Their choice of control
levels, e.g., investments in production capacity or
advertising, affects the evolution of the state varia-
bles (e.g., production capacity, reputation of the
firm), as well as current payoffs. Differential games
are continuous-time counterparts of multistage
games (Isaacs, 1975; Başar et al., 2018).

Information plays an important role in any deci-
sion process. In a game, the information structure
refers to what the players know about the game and
its history when they choose an action. A player has
complete information if she knows who the players
are, which set of actions is available to each one,
what each player’s information structure is, and
what the players’ possible outcomes can be.
Otherwise, the player has incomplete information. If,
for instance, competing firms do not know their
rivals’ production costs, then the game is an incom-
plete-information game. The game can also have
perfect or imperfect information. Roughly speaking,
in a game of perfect information, each player knows
the other players’ moves when she chooses her own
action, as in, e.g., chess or a manufacturer-retailer
game where the upstream player first announces a
product’s wholesale price, and then the downstream
player reacts by selecting the retail price. The arche-
type of an imperfect-information game is the pris-
oner’s dilemma, where (in the original story) the
players have to simultaneously choose between con-
fessing or denying a crime. A Cournot oligopoly,
where each firm chooses its own production level
without knowing its competitors’ choices, is another
instance of an imperfect-information game.

The outcome of a game depends on the players’
behaviour. In a noncooperative game, e.g., R&D
competition to develop a vaccine, each player opti-
mises her own payoff, whereas in a cooperative
game, the players seek a collectively optimal solu-
tion. For instance, the members of a supply chain
could agree to coordinate their strategies to maxi-
mise the chain’s total profit. The fundamental solu-
tion concept in a noncooperative game is the Nash
equilibrium (Nash, 1950b, 1951). Let I ¼ 1, :::, nf g
be the set of players, Si the set of strategies of player
i 2 I, and let her payoff function be given by
giðs1, :::, snÞ :

Q
i2I Si ! R, where s ¼ ðs1, :::, snÞ:

Assuming the players are maximisers, the strategy pro-
file sN ¼ ðsN1 , :::, sNn Þ is a Nash equilibrium if
giðsN1 , :::, sNn Þ 	 giðsN1 , :::sNi�1, si, s

N
iþ1:::, s

N
n Þ for all si 2 Si

and all i 2 I: At an equilibrium, no player has an
interest in deviating unilaterally to any other admissible
strategy. Put differently, if all other players stick to
their equilibrium values, then player i does not regret
implementing her equilibrium value too, which is
obtained by best-replying to the choice of the others.
That is, sNi ¼ argmaxsi2SigiðsN1 , :::sNi�1, si, s

N
iþ1:::, s

N
n Þ: A

Nash equilibrium does not always exist, and there may
be multiple equilibria, raising the question of which
one to select (Selten, 1975). Existence and uniqueness
conditions for Nash equilibrium typically rely on fixed-
point theorems. If the game is one of incomplete infor-
mation, then the solution concept is a Bayesian Nash
equilibrium (Harsanyi, 1967, 1968a, 1968b). Another
noncooperative equilibrium solution concept, which
predates the Nash equilibrium, is the Stackelberg equi-
librium, introduced in a two-player framework by von
Stackelberg (1934). There is a hierarchy in decision-
making between the two players: the leader first
announces her action, and next the follower makes a
decision that takes the leader’s action as given. Before
announcing her action, the leader would of course
anticipate the follower’s response and selects the action
that gives her the most favourable outcome. The
framework has been extended to several followers and
leaders (Sherali, 1984).

In a cooperative game, the players coordinate their
strategies in view of optimising a collective outcome,
e.g., a weighted sum of their payoffs, and must agree
on how to share the dividend of their cooperation
(Moulin, 1988; Owen, 1995). Different solution con-
cepts have been proposed, each based on some desir-
able properties, typically stated as axioms, such as
fairness, uniqueness of allocation, and stability of
cooperation. The most-used solutions in applications
are the core (Gillies, 1953), and the Shapley value
(Shapley, 1953). In any solution, the set of acceptable
allocations only includes those that are individually
rational. Individual rationality means that a player
will agree to cooperate only if she can get a better
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outcome in the cooperative agreement than she
would by acting alone. In a dynamic cooperative
game, the agreement must specify, at the outset, the
decisions that must be implemented by each player
throughout the planning horizon. One concern in
such games is the durability of the agreement over
time. Clearly, it is rational for a player to leave the
agreement at an intermediate time if she can achieve
a better outcome. The literature on dynamic games
has followed two streams in its quest to sustain
cooperation over time, namely, building cooperative
equilibria or defining time-consistent solutions.
Through the implementation of some (punishing)
strategies, the first stream seeks to make the coopera-
tive solution an equilibrium of an associated nonco-
operative game. If this is achieved, then the result
will be at once collectively optimal and stable, as no
player will find it optimal to deviate unilaterally from
the equilibrium. See Osborne and Rubinstein (1994)
for repeated games, Dutta (1995) and Parilina and
Zaccour (2015) for different types of stochastic
games; and Haurie and Tolwinski (1985), Tolwinski
and Leitmann (1986), and Haurie and Pohjola (1987)
for multistage and differential games. The second
stream looks for time-consistent solutions, which are
achieved by allocating the cooperative payoffs over
time in such a way that, along the cooperative state
trajectory, no player will find it optimal to switch to
her noncooperative strategies. The idea was initiated
in Petrosjan (1977) and has since been further devel-
oped (see Yeung & Petrosyan, 2018; Petrosyan &
Zaccour, 2018).

Game theory has found applications in biology,
economics, engineering, management, Operational
Research, and political and social sciences.

2.12. Graphs and networks18

Graphs and networks are used to represent interac-
tions, connections or relationships between objects.
In network optimisation problems, numerical attrib-
utes representing features such as costs, weights or
capacities are assigned to objects (also called verti-
ces) or to connections between them. If connections
are directed, we refer to them as arcs, otherwise we
call them edges. Given an input graph with n verti-
ces and m arcs (or edges), the goal is to find a sub-
graph that exhibits desired properties (described by
a given set of constraints) and that optimises the
given objective function (usually measured as the
sum of edge or vertex “weights” of the solution’s
subgraph). In the following, we focus on some of
the most fundamental and most studied problems in
network optimisation.

The shortest path problem in arc-weighted graphs,
for example, seeks to find a least costly path from

the given source vertex s to the given target t. When
the arc costs are non-negative, one can use the algo-
rithm of Dijkstra (1959), the efficient implementa-
tion of which uses Fibonacci heaps and runs in
Oðmþ n log nÞ time. For graphs with possible nega-
tive arc costs, in OðmnÞ time the Bellman-Ford
algorithm either finds the shortest path from s to all
other vertices, or it proves that such a path does not
exist due to the presence of a negative cost cycle
reachable from s. The shortest path algorithms are
explained in many textbooks, see e.g., Cormen, et al.
(2022); Kleinberg and Tardos (2006); Schrijver
(2003); Williamson (2019).

In the maximum flow problem (MF), in a given
network with arc capacities, we want to send as
much flow as possible from the given source s to the
given sink t without violating the arc capacities. The
problem was motivated by the conflict between East
and West during the Cold War (Schrijver, 2002).
Ford and Fulkerson (1957) develop the first exact
algorithm that searches for augmenting paths in the
residual network. Their fundamental result, known as
the max-flow/min-cut theorem states that the max-
imum flow passing from the source to the sink is
equal to the total capacity of the arcs in a minimum
cut, i.e., the network that indicates how much more
flow is allowed in each arc., which is a subset of arcs
of the smallest total capacity, the removal of which
disconnects the source from the sink. The same result
using the duality theory of LPs is given in Dantzig
and Fulkerson (1955). The famous results from graph
theory such as Menger’s theorem, K€onig-Egev�ary the-
orem, or Hall’s theorem, follow from the max-flow/-
min-cut theorem (Ford & Fulkerson, 1962). The
method of Ford and Fulkerson (1957) is pseudo-
polynomial when arc capacities are integral, however
it may fail to find the optimal solution and need not
terminate if some of the arc capacities are irrational
(Ford & Fulkerson, 1962). An algorithm that over-
comes this issue was independently discovered in the
1970s by Edmonds and Karp (1972) and Dinic
(1970), see also Dinitz (2006). Augmenting the flow
along shortest paths (that is, along the paths with
fewest edges) guarantees a polynomial-time complex-
ity. Instead of augmenting the flow along a single
augmenting path as in Edmonds and Karp (1972),
the algorithm of Dinic (1970) finds all shortest aug-
menting paths in a single phase. Another stream of
MF algorithms exploits the preflow idea of Karzanov
(1974) in which the vertices are overloaded with the
excess flow (i.e., more incoming flow than the out-
going flow is allowed). Subsequent improvements are
obtained in the following years. An important break-
through is achieved by Goldberg & Tarjan with the
introduction of push-relabel algorithms (Goldberg &
Tarjan, 1988). A pseudoflow algorithm for the
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maximum flow is introduced by Hochbaum (2008)
and it is later improved in Hochbaum and Orlin
(2013). The recent implementation by Goldberg et al.
(2015) is competitive with the Boykov and
Kolmogorov (2004) method and the pseudoflow
approach. Further historical details and a more com-
plete list of references can be found in Ahuja, et al.
(1993); Dinitz (2006); Goldberg and Tarjan (2014);
Williamson (2019). Currently, the best strongly poly-
nomial bounds are obtained by Orlin (2013) and
King et al. (1994). However, new and improved MF
algorithms continue to be discovered. The most
recent trends use the idea of electrical flows for
obtaining faster (exact or approximate) algorithms,
see, e.g., Chapter 8 of Williamson (2019).

In the minimum cost flow problem (MCF), for
each arc of the graph, a cost is incurred per unit of
flow that traverses it. The goal is to send units of a
good that reside at one or more supply vertices to
some other demand vertices, without violating the
given arc capacities at minimum possible cost.
Edmonds and Karp (1972) introduce the scaling
technique for the MCF. The technique is later
improved by Orlin (1993). The algorithms of Vygen
(2002) and Orlin (1993) have the best-known
strongly polynomial complexity bounds for the
MCF. Kov�acs (2015) provides a comprehensive lit-
erature overview and gives an experimental evalu-
ation of MCF algorithms based on network-simplex,
scaling or cycle-cancelling techniques. The MCF is
treated in detail in many textbooks, Ahuja et al
(1993); Korte and Vygen (2008); Williamson (2019).
One of the important results is the integrality of
flow property: if all demands/supplies and arc
capacities are integers, then there exists an optimal
MCF solution with integer flow on each arc. The
result follows from the totally unimodular property
of the constraint matrix when the MCF is modelled
as a linear program.

In the minimum cut problem (MC), one searches
for a proper subset of vertices S of a given arc-
capacitated graph, such that the total capacity of
arcs leaving S is minimised. For directed graphs, the
algorithm of Hao and Orlin (1994) is based on MF
calculations between chosen pairs/subsets of vertices
and exploits the push-relabel ideas. For undirected
graphs, the Gomory–Hu tree, which is a weighted
tree that represents the minimum s-t cuts for every
s-t pair in the graph, is introduced in Gomory and
Hu (1961). This tree is constructed after n – 1 MF
computations, and a simpler procedure has been
later given by Gusfield (1990). The algorithm of
Padberg and Rinaldi (1990a) improves the ideas of
Gomory and Hu (1961) and is widely used within
branch-and-cut schemes for solving the travelling
salesperson problem (TSP) and related problems.

The maximum adjacency ordering together with
Fibonacci heaps is used in Nagamochi et al. (1994).
Randomised approaches can be found in Karger and
Stein (1996); Karger (2000). The method of Karger
(2000) is de-randomised by Li (2021). Practical per-
formance of some of these algorithms is evaluated
in Chekuri et al. (1997); J€unger et al. (2000). For
additional and more recent references, see the book
by Williamson (2019).

The problems mentioned so far all belong to the
class P, however most of the network optimisation
problems that are relevant for practical applications
are NP-hard. We highlight two of them that serve
as drivers for discovering new algorithms and meth-
odologies that can be easily adapted to other diffi-
cult optimisation problems.

Given an undirected graph with non-negative
edge costs, the Steiner tree problem in graphs (STP)
asks for finding a subtree that interconnects a given
set of vertices (referred to as terminals) at minimum
cost. Two special cases can be solved in polynomial
time: when all vertices are terminals (the minimum
spanning tree problem), or when there are only two
terminals (the shortest path problem). In general,
however, the decision version of the STP is
NP-complete (Karp, 1972b). Older surveys covering
developments of first MIP formulations, Lagrangian
relaxations, branch-and-bound methods and heuris-
tics can be found in Maculan (1987); Winter (1987).
The research on the STP was marked by polyhedral
studies in the 1990s (Goemans, 1994; Chopra & Rao,
1994). Exact solution methods for the STP are based
on a sophisticated combination of: reduction techni-
ques (Gamrath et al., 2017; Rehfeldt & Koch, 2021),
dual and primal heuristics (Pajor et al., 2018)
embedded within branch-and-cut or branch-and-
bound frameworks, see (Polzin, 2003; Vahdati
Daneshmand, 2003; Polzin & Vahdati Daneshmand,
2009; Gamrath et al., 2017; Fischetti et al., 2017a).
Currently best approximation ratio for the STP is
1.39 (Goemans et al., 2012). A comprehensive survey
of the results obtained in the last three decades is
given by Ljubi�c (2021). State-of-the-art computational
techniques for the STP are due to Rehfeldt (2021).

The Travelling salesperson problem (TSP) aims at
finding the answer to the following question: If a
travelling salesperson wishes to visit all n cities from
a given list exactly once, and then return to the
home city, what is the cheapest route they need to
take? For the history of the problem, see Applegate
et al. (2011) and the book by Cook (2011). Since
1954, when Dantzig et al. (1954) found a provably
optimal solution for a 49-city problem instance,
many important improvements in the development
of exact methods have been achieved19. Facet-defin-
ing inequalities are investigated in Padberg and
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Rinaldi (1990b); J€unger et al. (1995). MIP formula-
tions, including the famous subtour-elimination con-
straints model by Dantzig et al. (1954), are
compared in Padberg and Sung (1991). Branch-and-
cut methods are developed in Applegate et al.
(2011); J€unger et al. (1995); Padberg and Rinaldi
(1991). For the most recent overview on approxima-
tion algorithms for the TSP see Traub (2020).
Helsgaun (2000)20 provides an efficient implementa-
tion of the k-opt heuristic of Lin and Kernighan
(1973). Cook et al. (2021) extend the algorithm of
Helsgaun (2000) to deal with additional constraints
in routing applications and win the Amazon Last
Mile Routing Challenge in 2021. The TSP solver
Concorde21 (Applegate et al., 2011) incorporates
best algorithmic ideas from the past 60 years of
research on the topic. By combining techniques of
Helsgaun (2000) and Applegate et al. (2011), instan-
ces with millions of vertices can be solved to within
1% of optimality, see e.g., TSP solutions on graphs
with up to 1.33 billion of vertices22.

2.13. Heuristics23

Etymologically meaning to find/discover, heuristics
make use of previous experience and intuition to
solve a problem. A heuristic algorithm is designed to
solve a problem in a shorter time than exact meth-
ods, by using different techniques ranging from sim-
ple greedy rules to complex structures, which could
be dependent on the problem characteristics; however
it does not guarantee to find the optimal solution
(§2.4; §2.9). Heuristics have been used in the oper-
ational research area extensively with respect to the
applications (see, for example, §3.12, §3.14, §3.15,
and §3.32). In this subsection, we review the methods
employed in the development of heuristics.

Classifications and strategies provided in the lit-
erature guide us for the methods employed in heu-
ristics. Below we provide a thorough classification
and explain briefly the basic methods used under
each class.

Induction, being the simplest method to be
applied with an analogy to the mathematical induc-
tion, is to solve the original complex problem by
extending the results and insights obtained from
small and simpler versions of the problem (Silver
et al., 1980; Silver, 2004; Laguna & Mart�ı 2013).

Restriction methods primarily focus on explicitly
eliminating some parts of the solution space so that
the problem will be solved given a restricted set of
solutions (Silver et al., 1980; Zanakis et al., 1989;
Silver, 2004; Laguna & Mart�ı 2013). One way of
doing this is to identify common attributes of the
optimal solution and search among the solutions hav-
ing these attributes only (Glover, 1977). Another

restriction can be applied by eliminating infeasible
solutions considering a combination of decision vari-
ables which dictates incompatible values. Beam
Search (Morton & Pentico, 1993) is a good example
of this class of heuristics which works with a trun-
cated tree structure using strategies similar to a
branch-and-bound algorithm (§2.4). The trimming of
the tree is utilised by a parameter called beam width
to indicate how many nodes to have at every level of
the tree.

Heuristics using decomposition/partitioning
method employ different approaches to divide the
problem into smaller and tractable parts, solve these
parts separately and combine their solutions to give
the solution to the original problem (Foulds, 1983;
Zanakis et al., 1989; Silver, 2004; Laguna & Mart�ı
2013). The methods used to divide and then combine
the solutions are usually dictated by the nature of the
problem. For example, Hierarchical Planning pro-
posed by Hax and Meal (1973) considers the organ-
isational level breakdown and the output of one
decomposed problem becomes the input for the
other. Rolling horizon also falls under this category
(Stadtler, 2003). A problem with a sequence of deci-
sions that span a long planning horizon is solved by
dividing the planning horizon into smaller planning
intervals. The problem with these small planning
intervals is solved continually by fixing the decisions
for the first time period and moving into the next
time period to solve the next problem. Another
approach takes the characteristics of the input data
into account and divides the problem such that each
part includes only tractable amount of data. For
example, data showing clusters of geographically close
customers is suitable for this type of partitioning.
The decomposed problems are solved independently,
and their solutions are combined with a certain rule.
Divide and Conquer algorithm heuristically clusters
vertices on a given graph, generates a smaller graph
for each cluster and solves the original problem for
each cluster independently (Akhmedov et al., 2016).
Decomposition can be made based on an element of
the problem, for example solving a logistics problem
after dividing it into parts per vehicle. Other decom-
position approaches benefit from the structure of the
mathematical model developed for the problem.
Examples of this sort are Lagrangian Relaxation
(Fisher, 1981), in which complicating constraints are
lifted to the objective function with a penalty, and
Benders Decomposition (Benders, 1962; Rahmaniani
et al., 2017), in which once complicating variables are
fixed, the remaining problem can be divided into
problems to be solved independently.

Approximation methods focus on the mathemat-
ical models and utilise different strategies to make
the problem tractable which results in a reduced
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size of the problem (Silver et al., 1980; Silver, 2004).
One strategy widely used is the aggregation over
variables or stages. Another common strategy is to
modify the variables, the objective function or the
constraints of the mathematical model in different
ways, such as converting discrete variables into con-
tinuous variables, using a linear objective function
instead of the non-linear objective function,, linear-
ising nonlinear constraints, and either eliminating
or weakening some of the constraints (Glover,
1977). Kernel Search (Angelelli et al., 2010), which
combines relaxation with decomposition over the
decision variables, demonstrates that a heuristic may
use more than one class of methods in its design.

Constructive heuristics start from an empty solu-
tion and build a complete solution by adding an
element of the problem following a rule at every
step, such as the nearest neighbour algorithm
(Bellmore & Nemhauser, 1968) for the travelling
salesman problem. Usually constructive heuristics
are of greedy nature by making the decision for
local optimum in every step. These algorithms can
be enhanced by adding a look-ahead mechanism
that is by estimating the future effects of a decision
rather than just the current effect to avoid pitfalls of
being greedy.

Improvement heuristics start with a complete solu-
tion and improve it by modifying one or more ele-
ments of the solution in every iteration until a
predetermined stopping condition is achieved.
Improvement heuristics in their simplest form utilise
a local search which is defined over a neighbourhood
structure to express how the moves are performed
from one iteration to the next. k-opt is an example
of this sort which replaces k elements of a solution
with another set of k elements in every step if it is
beneficial (Lin & Kernighan, 1973). The parameter k
determines the size of the local search and implicitly
applies the restriction method discussed above. A
neighbourhood is defined by a set of solutions which
are reachable form the current solution. A local
search is performed by moving from the current
solution to another solution in the neighbourhood of
it (next solution). Selection of the next solution is
done by accepting either the one among random
choices that improves the objective function value
first (random descent if it is a minimisation problem)
or the one resulting in the best objective function,
i.e., the local optimum, with respect to that neigh-
bourhood (steepest descent for a minimisation prob-
lem). This simple structure focuses on the local
information (exploitation of the accumulated search
experience) and is known as intensification (Glover,
1990). While it will be useful if the structure of the
problem is appropriate, it may result in not good
enough solutions otherwise. Hence, the improvement

heuristic will benefit if it can explore other parts of
the solution space, which is known as diversification
(Glover, 1990). Two immediate strategies to be
employed are either to start the search from different
initial solutions and choose among the final solutions
obtained (multi-start algorithms) or to allow moving
to worse solutions if this direction will provide a bet-
ter path for the future selections (hill-climbing strat-
egy for a minimisation problem).

Even though metaheuristics (Glover, 1986) are
improvement methods, since they advance notably,
considering them as a separate class is worthwhile.
Metaheuristics utilise a local search together with
intensification and diversification mechanisms and aim
at eliminating the problem-dependent and domain-spe-
cific nature of other heuristics. Simulated Annealing
(Kirkpatrick et al., 1983) is one of the most popular
metaheuristics which uses a single solution in its local
search with a random descent and utilises hill-climbing
strategy for diversification. Tabu Search (Glover, 1986)
is an example of deterministic metaheuristic working
with a single solution throughout the search. It expli-
citly uses history of search in both intensification and
diversification mechanisms. Genetic Algorithm
(Holland, 1975) is another popular metaheuristic com-
prising of random components for intensification and
diversification but working with a set of solutions dur-
ing the search. Variable Neighbourhood Search
(Hansen & Mladenovi�c 1999) is an excellent example
of a design in which diversification is provided by sys-
tematically changing neighbourhood structures.

Matheuristics are heuristic approaches that exploit
exact approaches (and their complementary strengths)
without guaranteeing to find the optimal solutions.
While matheuristics are designed with different strat-
egies, we summarise the most widely used three
strategies.

Those matheuristics which are originally exact
approaches yet are implemented heuristically are
overlapping with what is described under restriction
and decomposition/partitioning methods in this sub-
section. Apart from those overlapping works, in the
context of dynamic programming, the corridor
method constructs neighbourhoods as corridors
around the state trajectory of the incumbent solu-
tion (Sniedovich & Viß 2006). Defined (preferably
large) neighbourhoods can be searched with exact
approaches. Dynasearch algorithm uses dynamic
programming to search an exponential size neigh-
bourhood stemming from compound moves in
polynomial time (Congram et al., 2002).

Another group of matheuristics benefits from mul-
tiple exact models collectively within a heuristic
mechanism. Tarhan and O�guz (2022) decompose the
scheduling planning horizon into a set of buckets,
solve a time-indexed model to generate a restricted

30 F. PETROPOULOS ET AL.



model for each bucket and solve the restricted models
sequentially to construct a complete feasible solution.
Della Croce et al. (2014) solve a restricted time-
indexed model and a model with positional variables
iteratively to search the neighbourhood of the incum-
bent solution. Solyalı and S€ural (2022) propose a
matheuristic algorithm by sequentially solving differ-
ent mixed integer linear programs.

Third strategy is to incorporate exact models into
different components of the heuristics. This
approach may have several variations. First version
includes those matheuristics having a constant inter-
action between heuristics and mathematical pro-
gramming models. Manerba and Mansini (2014) use
the Variable Neighbourhood Search to decide which
variables to fix in their fix-and-optimise algorithm.
Archetti et al. (2015) use different integer program-
ming models in both the intensification and the
diversification phases of their Tabu Search algorithm
to improve the objective function value and/or
restore feasibility. Adouani et al. (2022) apply exact
and heuristic approaches respectively to change the
value of so-called upper and lower level variables in
the neighbourhood search. Other variations include
matheuristics that sequentially call heuristics and the
models; e.g., exact approaches following heuristics
for post-optimisation (Pillac et al., 2013), exact
approaches generating the initial solutions from
heuristics (Macrina et al., 2019), exact approaches
supporting heuristics at their both beginning and
end to provide an initial solution and to improve
the final solution, respectively (Archetti et al., 2017).

We refer the reader for a detailed overview of
heuristics to the works of M€uller-Merbach (1981)
and Silver (2004), of metaheuristics to the work of
Blum and Roli (2003), and of matheuristics to the
work of Boschetti and Maniezzo (2022). The most
recent book by Mart�ı et al. (2018) on heuristics is
another invaluable resource. Finally, the progress of
metaheuristics is discussed by Swan et al. (2022).
This work provides a critical analysis of the current
state of metaheuristics by focusing on cultural and
technical barriers.

For the future studies in the area of heuristics,
new techniques and powerful mechanisms could be
derived from practical problems to address complex
systems of today’s world. Another contribution can
be to explore and integrate applications of artificial
intelligence to deal with large scale data.
Matheuristics are especially often applied for
single-objective problems and accordingly, their
implementation for multi-objective optimisation is a
promising future research direction. For practical
purposes, such as to be used within commercial
solvers, it is also worthwhile to develop generic
matheuristic frameworks that can address specific

classes of optimisation problems. Parallel computing
(i.e., parallel solution of mathematical models) and
integration with machine learning (to, for example,
manage the interaction with mathematical models
and heuristics) are some other invaluable research
directions for matheuristics.

2.14. Linear programming24

Linear programming (LP) offers a framework for
modelling the problem of extremising a linear eco-
nomic function under a set of linear inequality con-
straints. Solving such models can be approached
algebraically as well as geometrically: finding an
extreme point of a polyhedron at which a given eco-
nomic function is maximised or minimised. Since
its inception in 1947 by Dantzig, the simplex
method has been the standard algorithm for solving
linear programs. A precursor, unbeknownst then to
Dantzig, was a set of ideas exposed by Fourier in
1826 and 1827, and partly rediscovered by Motzkin
in 1936, hence the now famous Fourier-Motzkin
elimination method (Dantzig, 1963, p. 84–85;
Schrijver, 1998, p. 155–157) that solves a set of lin-
ear inequalities by sequentially eliminating variables,
at the cost though of exponentially increasing the
number of constraints.

But since the 1930s, several researchers had been
making a headway. Working independently from
one another, they had grappled with specific prob-
lems: balancing the distribution of revenue (output)
with the distribution of outlays (input) in the eco-
nomic activity of a whole country (Leontief, 1936);
general economic equilibrium (von Neumann,
1945); production planning (Kantorovich, 1960);
transportation planning (Hitchcock, 1941;
Kantorovitch, 1958; Koopmans, 1949); deployment
planning and logistics (Dantzig, 1991). Dantzig
(1982) said he had been “fascinated” by Leontief’s
interindustry input-output model and wanted to
generalise it by considering many alternative activ-
ities. He also credits von Neumann with the duality
theory of linear programming, which parallels the
work the latter did with Morgenstern on the theory
of games.

A linear program can always be expressed (in
standard form) as fminimise cx, subject to
Ax ¼ b, x 	 0g, where x is an n-vector of decision
variables, A is an m by n constraint matrix that
somehow weighs the variables, b is an m-vector that
puts limits on the possible values of x, and cx is an
economic function, called the objective function,
that measures the quality of a given solution x. It is
customary to assume, without loss of generality, that
matrix A is of rank m and that m is smaller than n
(see, e.g., Papadimitriou & Steiglitz, 1982). Since
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minðcxÞ ¼ �maxð�cxÞ, one can minimise a “cost”
as well maximise a “profit”. Linear programs come
in pairs: fminimise cx, subject to Ax ¼ b, x 	 0g
and fmaximise yb, subject to yA � cg. The former
is called the primal, the latter is the dual. The dual-
ity theorem of linear programming has been proved
to be equivalent to Farkas’s lemma that was pub-
lished in 1902 (see, e.g., Dantzig, 1963). This implies
that finding an optimal solution to a linear program
is equivalent to finding a feasible solution to a sys-
tem made of the primal and dual constraints with
the additional inequality cx � yb:

With the introduction of duality, we now have
three algorithms for solving LPs: the (primal) sim-
plex method that maintains (primal) feasibility
throughout and tries to achieve optimality; the dual
simplex method that maintains dual feasibility and
moves toward primal feasibility; and the primal-dual
algorithm that starts with a feasible solution to the
dual and keeps improving it by solving an associated
restricted primal. The primal-dual algorithm is the
favoured simplex tool for solving most network flow
problems, for instance, the famous algorithm of
Ford and Fulkerson (1962) for maximum flow. The
dual simplex method together with column gener-
ation may come in handy when the number of con-
straints is huge in comparison with the number of
variables (Desaulniers et al., 2006).

A set of linear inequalities defines a convex poly-
hedron P. Therefore, since the objective function is
linear, there are only three possibilities: no feasible
solution (if and only if P is empty); exactly one opti-
mal solution, located at some extreme point of P;
infinitely many optimal solutions, located at the
points of a face of P of dimension 1 or more,
including its extreme points. The simplex method
moves sequentially along the edges of P from one
extreme point to another. Algebraically, it moves
from one set of m linearly independent columns,
called a basis, to another. Each basis induces a basic
solution defined by setting to zero all the n – m var-
iables that do not correspond to its columns. A
basic solution is feasible if all its components are
non-negative. The move from one basis to another
goes as follows: one column is dropped and replaced
by a new one. This exchange, called a pivot, follows
a set of rules for choosing the column that enters
the basis and the one that exits. It is such that, bar-
ring degeneracy, the objective function decreases
strictly in value at each pivot.

Degeneracy is rooted in the fact that an extreme
point of P may correspond to several bases. The
algebraic expression of this defectiveness is a basic
feasible solution with more than n – m zero compo-
nents. This occurs when the number of hyperplanes
intersecting at an extreme point is greater than the

minimum necessary to define it. (Think of the tip of
a pyramid that has a square base.) Pivoting in the
presence of degeneracy may cause the simplex
method to cycle. Several schemes have been devised
to avoid cycling by carefully choosing the entering
and leaving columns. Bland’s rule, considered as
both simple and elegant, has been widely adopted
(Bland, 1977). As for finding an initial solution, if
the problem is feasible, this can be done by intro-
ducing artificial non-negative variables that one
then tries to drive down to zero.

Evidence shows that the simplex method is very
fast in practice (see Shamir, 1987), but Klee and
Minty (1972) designed an LP for which it must visit
each one of the 2n or so extreme points, which
proved that it is not “good” in the sense of
Edmonds (1965b). A “good algorithm” having been
defined as one for which the worst-case complexity
is polynomial with respect to the dimension of any
instance, an important open question became “Is LP
in P?”. Khachiyan answered by the affirmative in
1979 when he adapted to the specific case of linear
programming a known approach in convex opti-
misation that had been contributed to by several
Soviet mathematicians (see G�acs & Lov�asz, 1981;
Bland et al., 1981; Chv�atal, 1983). The argument
goes as follows: given an LP, start with an ellipsoid
that is big enough to contain the set S of feasible
solutions if it is not empty. At each iteration, check
whether the centre of the ellipsoid is a solution. If it
is not, there is a hyperplane H separating it from S.
Cut the ellipsoid in half by the hyperplane parallel
to H that goes through the centre. Then determine
the smallest ellipsoid that contains the half-ellipsoid
where one is trying to locate S, and repeat. Stop
either with a solution (located at a centre) or with
an ellipsoid that is too small to contain S. This is an
important theoretical result (see Gr€otschel et al.,
1981), but with very little practical use as far as
solving actual LPs goes.

The same cannot be said, however, of the interior
point algorithm introduced by Karmarkar (1984), in
which the moves happen strictly inside the set of
feasible solutions instead of taking place on the
envelope. Indeed, Karmarkar’s algorithm is polyno-
mial and often competitive with the simplex
method. It assumes a canonical form for linear pro-
gramming in which the variables are constrained to
Ax ¼ 0, x 	 0 and x 2 S ¼ x : x1 þ x2 þ :::þ xn ¼ 1;
it further assumes, without loss of generality, that
the point e=n ¼ ð1=n, 1=n, :::, 1=nÞ is feasible and
that the minimum value of the objective function cx
is zero. As it seeks to stay away from the envelope
of the solution polyhedron, the algorithm builds a
sequence of strictly feasible solutions, i.e., that have
strictly positive components, and makes a repetitive
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use of e / n. The gist of the algorithm is the follow-
ing: given a strictly feasible solution xk , one can
define a simple bijective scaling function f that maps
S onto itself so that xk is mapped onto e / n, away
from the envelope, and so that f has the following
property: if, for any variable x, f(x) is strictly feasible
in the “new” space, then so too is x in the initial
space. In the “new” space, the gradient of the trans-
formed objective function is projected on the null
space of the transformed matrix A augmented of a
row of 1s, to account for S. If p denotes that projec-
tion, one then moves in the direction of – p, i.e., in
the direction of the steepest descent, while feasibility
is maintained. The algorithm stops at a point ykþ1

before reaching the envelope of the feasible region.
That point is transformed to xkþ1 by f�1, and this is
repeated with a new scaling bijection (see Strang,
1987; Goldfarb & Todd, 1989; Fang & Puthenpura,
1993; Winston & Venkataramanan, 2003). Important
links between Karmarkar’s algorithm and the ellipsoid
method have been pointed out (Todd, 1988; Ye,
1987).

Integer Linear Programming (ILP), i.e., linear
programs in which the variables are restricted to
being integer-valued, is arguably the most challeng-
ing and beautiful expression of LP. Unfortunately,
whereas LP is in P, ILP is not, unless P ¼ NP
(Karp, 1972a). However, there are classes of LPs for
which, if there exists a solution at all, an integer
solution is guaranteed without having to make it a
requirement. This is the case, e.g., of most network
flow models. And there are classes of ILPs for which
any extreme point of the polyhedron of integer solu-
tions can be obtained by “shaving off” non-integer
extreme points of the outer polyhedron of real-val-
ued solutions with hyperplanes the number of which
is bounded by a polynomial in the dimension of the
instance (Edmonds, 1965a, 1965b; Gr€otschel et al.,
1981, 1988; Cook et al., 1998). Furthermore, tackling
NP-complete problems has benefited greatly from
this approach (see, e.g., Dantzig et al., 1954;
Applegate et al., 2007).

2.15. Integer programming25

Mixed-integer programming (MIP) is an NP-hard
generalisation of linear programming (LP; §2.14), in
which some or all of the variables are required to
take whole-number values. Way back in the late
1950s, it was already realised that a wide variety of
important practical problems could be modelled as
MIPs (Dantzig, 1960; Markowitz & Manne, 1957).
Of course, at the time, there were no good algo-
rithms, or indeed computers, to enable one to solve
MIPs from real-life applications. Since then, how-
ever, dramatic progress has been made in theory,

algorithms and software. Indeed, it is now possible
to solve many real-life MIPs to proven optimality
(or at least near-optimality) on a laptop. In this sub-
section, we review the main developments in this
area. For more details, we refer the reader to the
textbooks by Chen et al. (2011) and Conforti et al.
(2014).

In 1958, Gomory (1958) developed the first
finitely-convergent exact algorithm for pure IPs
(i.e., MIPs in which all variables are restricted to
whole-number values). His method was based on
cutting planes, i.e., additional linear constraints
which cut off fractional LP solutions. Shortly after,
Land and Doig (1960) invented the branch-and-
bound method, in which a sequence of LP relaxa-
tions is embedded within a tree structure. A few
years later, Balas (1965) devised a simpler branch-
and-bound algorithm, for pure 0-1 LPs, which did
not rely on LPs at all.

In the 1960s and 1970s, researchers invested con-
siderable effort into deriving “deep” cutting planes.
This led to the discovery of Gomory mixed-integer
cuts (Gomory, 1960), corner polyhedra (Gomory,
1969), intersection cuts (Balas, 1971), Chv�atal-
Gomory cuts (Chv�atal, 1973), disjunctive cuts (Balas,
1979; Owen, 1973), and cuts derived from a study of
the so-called knapsack polytope (Balas, 1975; Wolsey,
1975). These topics are still being studied to this day
(see, e.g., Conforti et al., 2014; Cornu�ejols, 2008).

In 1980, Balas and Martin (1980) developed a
general-purpose heuristic for 0-1 LPs, called “pivot-
and-complement”. This initiated a line of work on
so-called “primal heuristics”, which also continues
to this day. We will mention this again below.

A major step forward occurred in 1983, with the
publication of an award-winning paper by Crowder
et al. (1983). Basically, they did the following before
running branch-and-bound: (i) “pre-process” the
formulation in order to make the LP relaxation
stronger, (ii) automatically generate knapsack cuts
to further improve the relaxation, (iii) run a simple
primal heuristic in order to obtain a feasible integer
solution early on, and (iv) permanently fix some
variables to 0 or 1 based on reduced-cost arguments.
In this way, they were able to solve ten real-life 0-1
LPs that had previously been regarded as unsolvable.
The largest of these instances had 2756 variables
and 756 constraints, a phenomenal achievement at
the time. The approach of Crowder et al. (1983) is
now called “cut-and-branch”.

Around the same time, there were several major
theoretical advances, such as the proof of the
“polynomial equivalence of separation and opti-
misation” (Gr€otschel et al., 1981) and the develop-
ment of a polynomial-time algorithm for pure IPs
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with a fixed number of variables (Lenstra, 1983).
For details, we recommend Schrijver (1986).

Coming back to a more practical perspective, sev-
eral improvements were made to the basic cut-and-
branch scheme in the 1980s and 1990s. For brevity,
we just mention some highlights. Several authors
proposed more powerful pre-processing procedures
(e.g., Dietrich et al., 1993; Hoffman & Padberg,
1991; Savelsbergh, 1994). Gu et al. (1998) developed
more effective algorithms for generating knapsack
cuts. Researchers also began to study cutting planes
for mixed 0-1 LPs (e.g., Padberg et al., 1984; Van
Roy & Wolsey, 1986), which eventually led to effect-
ive cut-and-branch algorithms for such problems
(e.g., Van Roy & Wolsey, 1987).

The next milestone was the invention of branch-
and-cut by Padberg and Rinaldi (1987). In branch-
and-cut, one has the option of generating cutting
planes at any node of the branch-and-bound tree,
rather than only at the root node (as in cut-and-
branch). Although this is a fairly simple idea,
Padberg and Rinaldi added several ingredients to
turn it into a highly effective tool. For example, (i)
care is taken to ensure that cutting planes generated
at one node of the tree remain valid at all other
nodes, (ii) whenever a cutting plane is generated, it
is stored in a so-called “cut pool”, (iii) when visiting
a new node of the tree, one can check the cut pool
to see if it contains any useful cuts, (iv) one uses a
heuristic rule to decide when to stop cutting and
start branching at any given node.

Several developments in the 1990s are also worth
mentioning. First, there were some interesting works
on methods to construct “hierarchies” of relaxations
for 0-1 and mixed 0-1 LPs (e.g., Balas et al., 1993;
Lov�asz & Schrijver, 1991; Sherali & Adams, 1990).
The method in Balas et al. (1993), called lift-and-
project, turned out to be useful when embedded
within a branch-and-cut algorithm for mixed 0-1
LPs (Balas et al., 1996a). Shortly after that, Balas
et al. (1996b) obtained good results using Gomory
mixed-integer cuts instead. This last result was a big
surprise: up to then, researchers had thought that
Gomory cuts were of theoretical interest only.

By the end of the 1990s, researchers were rou-
tinely solving real-life MIPs with thousands of varia-
bles and hundreds of constraints to proven
optimality. Of course, MIP in general is NP-hard,
so one could not expect to solve all instances so
quickly. Indeed, Cornu�ejols and Dawande (1999)
found a family of 0-1 LPs, called “market split”
problems, which proved to be especially challenging
for branch-and-cut. This led to the development of
a new class of specific algorithms called basis reduc-
tion methods, see, e.g., Aardal et al. (2000).

In the period 2000-2010, there was a flurry of
impressive works concerned with primal heuristics
for MIP. For brevity, we mention just a few exam-
ples. Fischetti and Lodi (2003) devised a method
called local branching, which is essentially a form of
neighbourhood search in which the neighbourhoods
– being of exponential size – are searched by solving
auxiliary MIPs. Shortly after, Danna et al. (2005)
presented relaxation-induced neighbourhood search
or RINS, which solves a series of small MIPs to
search for integer solutions that are “close” to the
solution of the LP relaxation. Both local branching
and RINS are improving heuristics, i.e., the neigh-
bourhoods are defined with respect to a reference
feasible solution to be improved. Remarkably, they
solve auxiliary MIPs by simply calling a MIP solver
in a black-box fashion (with work limits), thus wit-
nessing the maturity of the field. In the same year
of RINS, Fischetti et al. (2005) introduced the feasi-
bility pump, which is highly effective for MIPs
where even finding a feasible solution is challenging.

The development of the branch-and-cut technol-
ogy has been so impressive that many of the above-
mentioned developments have been incorporated in
software packages. This includes major commercial
packages, such as CPLEX, Gurobi and FICO

Xpress, and non-commercial ones that are free to
academics, such as SCIP. We remark that this con-
tinual development in algorithms and software has
been greatly enhanced by the creation and constant
maintenance of MIPLIB, a library of MIP instances
on which all new methods are now routinely tested
(see Bixby et al., 1992; Gleixner et al., 2021).

We end this section by briefly mentioning three
other areas of constant development. First, there has
been great progress on decomposition approaches to
MIPs that have special structure, with branch-and-
price being a particularly effective method (e.g.,
Desaulniers et al., 2006). Second, there is also by
now a substantial literature on stochastic MIPs (e.g.,
K€uç€ukyavuz & Sen, 2017). Third, considerable effort
has been made to extend the MIP algorithmic tech-
nology to cope with nonlinearities, leading to the
blossoming field of mixed-integer nonlinear pro-
gramming or MINLP (e.g., Lee & Leyffer, 2012).
Particularly effective algorithms and software pack-
ages are now available for convex MINLP (e.g.,
Kronqvist et al., 2019), and one of its important spe-
cial cases, mixed-integer second order cone pro-
gramming (e.g., Benson & Sa�glam, 2013).

2.16. Nonlinear programming26

Nonlinear programming is a generalisation of linear
programming (§2.14), in which the objective func-
tion or the constraints can be given by general
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nonlinear functions. Mathematically, a nonlinear
programming problem is represented as

ðPÞ minff ðxÞ : x 2 Sg:
Here, S ¼ fx 2 R

n : giðxÞ � 0, i ¼ 1, :::,mg
denotes the feasible region, where, gi : R

n ! R, i ¼
1, :::,m, and f : Rn ! R denotes the objective
function.

In comparison with linear programming, nonlin-
ear programming problems have much more expres-
sive power. As such, nonlinear programming
problems naturally arise in almost every setting,
ranging from investment planning to machine learn-
ing; from engineering to medicine; and from energy
to sustainability (§3.14; §3.5; §3.19; §3.9;
§3.11; §3.13).

In this subsection, we will give a brief overview
of theory and algorithms. While we will not cover
the modelling aspect, we will mention some classes
of optimisation problems with desirable properties,
which should imply that using an optimisation
model from such classes would significantly increase
the likelihood of solving it.

The difficulty of the generic optimization prob-
lem (P) is largely determined by the properties of
the objective function f : Rn ! R and of the func-
tions gi, i ¼ 1, :::,m that define the feasible region
S � R

n: Generally speaking, increasingly more
restrictive assumptions on f and on gi, i ¼ 1, :::,m
give rise to increasingly more structured optimisa-
tion problems with stronger and more desirable
properties. For instance, the special case in which
each of f and gi, i ¼ 1, :::,m is a linear function,
referred to as linear programming (§2.14), is argu-
ably the most structured class of optimization prob-
lems with very appealing theoretical properties,
which lay the groundwork for several effective solu-
tion methods such as the simplex method (see, e.g.,
Dantzig, 1990) and interior-point methods
(Karmarkar, 1984; Wright, 1997; Ye, 1997). In con-
trast, general nonlinear programming problems usu-
ally enjoy fewer desirable properties.

The class of convex optimisation problems is com-
prised of optimisation problems in which each of f :
R

n ! R and gi, i ¼ 1, :::,m is a convex function,
which implies that S � R

n is a convex set, and
includes linear programming as a special case. Any
optimisation problem that does not belong to this
class is a nonconvex optimisation problem. On the
other hand, (P) is called an unconstrained optimisa-
tion problem if S ¼ R

n, and a constrained optimisa-
tion problem otherwise.

A useful notion in nonlinear programming is
that of local optimality. A point x̂ 2 R

n is said to be
a local minimiser of (P) if there exists an open ball
B 
 R

n of positive radius centred at x̂ such that x̂

is a minimiser of f over the potentially smaller feas-
ible region B \ S: In contrast, x̂ is a global minim-
iser of (P) if x̂ is a minimiser of f over the entire
feasible region S: Note that a global minimiser is
also a local minimiser.

We next briefly give an overview of optimality
conditions for each aforementioned class of opti-
misation problems. We start with unconstrained
optimisation problems in the one-dimensional set-
ting (i.e., n¼ 1). If x̂ 2 R is a local minimiser of
(P), then f should be neither decreasing nor increas-
ing at x̂: Assuming that f is a continuously differen-
tiable function, we therefore obtain f 0ðx̂Þ ¼ 0: This
geometric interpretation carries over to the higher-
dimensional setting (i.e., n 	 2) by simply viewing a
mutivariate function as a collection of one-dimen-
sional functions along feasible directions at each x̂ 2
R

n, i.e., directions along which one can move start-
ing from x̂ 2 R

n and still remain in the feasible
region. In the unconstrained case, every direction
d 2 R

n is a feasible direction at every x 2 R
n: Using

the result from the one-dimensional case, if x̂ 2 R
n

is a local minimiser of (P), then the partial deriva-
tives of f with respect to each variable should be
zero, or equivalently, that rf ðx̂Þ ¼ 0 2 R

n, where
rf : Rn ! R

n is the gradient of f. Such a point is
called a stationary point.

For the special case of convex unconstrained
optimisation problems, the convexity of the object-
ive function f : Rn ! R implies that the aforemen-
tioned necessary conditions are also sufficient, i.e., a
point is a local minimiser if and only if it is a sta-
tionary point. Furthermore, for convex functions,
every local minimiser is, in fact, a global minimiser.
Therefore, we obtain the equivalence between global
minimisers and stationary points. On the other
hand, for a nonconvex optimisation problem, there
may be stationary points that may not correspond
to a local minimiser of (P) (e.g., if f ðxÞ ¼ x3, then
x̂ ¼ 0 is a stationary point but not a local minim-
iser). As illustrated by this example, the complete
characterisation of global optimality does not carry
over from convex optimisation to nonconvex opti-
misation, even in the unconstrained setting.

For constrained optimisation problems, we first
consider the convex optimisation case. By the con-
vexity of the feasible region S � R

n, for any x̂ 2 S,
the set of all feasible directions is given by ~x � x̂ 2
R

n, where ~x 2 S: Arguing similarly to the uncon-
strained case and using the convexity of f, a point
x̂ 2 S is a global minimiser of (P) if and only if f
does not decrease along any feasible direction, i.e., if
and only if rf ðx̂ÞTð~x � x̂Þ 	 0 for all ~x 2 S:
Therefore, as in the unconstrained case, we once
again have the equivalence between local and global
minimisers.
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Next, consider a nonconvex constrained opti-
misation problem. If the feasible region S � R

n is a
convex set but f is a nonconvex function, a similar
argument as in the convex case gives rise to the fol-
lowing necessary condition: If x̂ 2 S is a local min-
imiser of (P), then rf ðx̂ÞTð~x � x̂Þ 	 0 for all ~x 2 S:
As in the unconstrained case, simple examples show
that this condition is no longer sufficient for local
optimality. If, on the other hand, S � R

n is a non-
convex set, then we instead rely on a more general
notion of tangent directions to the feasible region S
at x̂: Therefore, if x̂ 2 S is a local minimiser, then
rf ðx̂ÞTd 	 0 for every tangent direction d 2 R

n to
the feasible region S at x̂: In general, the set of such
tangent directions may not be easy to characterise.
Under certain additional assumptions about the
geometry of the feasible region S � R

n, referred to
as constraint qualifications (Bazaraa et al., 2005,
Chapter 5), explicit necessary optimality conditions
can be derived.

Having reviewed optimality conditions, we finally
give a brief overview of methods for solving opti-
misation problems. Nonlinear optimisation algo-
rithms are generally iterative in nature, i.e., they
generate a sequence of points xk 2 R

n, k ¼ 1, 2, :::
that satisfies certain properties. For instance, the
sequence may either converge to a local or global
minimiser of an optimisation problem, or may sim-
ply have a limit point that satisfies the necessary
conditions for local optimality. As illustrated by the
discussion on optimality conditions, one can estab-
lish considerably weaker properties for nonconvex
optimisation problems in comparison with convex
optimisation problems. In fact, most classes of non-
convex optimisation problems are provably difficult
in a formal complexity sense, even when restricted
to minimising a quadratic function over a polyhe-
dron (Murty & Kabadi, 1987; Pardalos & Vavasis,
1991). As such, it would not be reasonable to expect
an algorithm to solve every optimisation problem to
global optimality in a reasonable amount of time.

Therefore, different performance metrics are
employed for assessing algorithms for different
classes of optimisation problems. While, for convex
optimisation problems, one usually expects a “good”
algorithm to compute a global optimal solution, an
algorithm for a nonconvex optimisation problem
could be deemed “effective” if it always converges to
a local (rather than a global) optimal solution.

In the unconstrained case, given an iterate xk 2
R

n, the main idea is to identify a feasible direction
d 2 R

n along which the objective function will
decrease. Such a direction d 2 R

n, called a descent
direction, would necessarily satisfy rf ðxkÞTd < 0:
Then, a step size in this direction is determined
according to certain criteria that would guarantee a

decrease in the objective function. Therefore, this
family if algorithms is referred to as gradient descent
methods and includes steepest descent as a special
case (i.e., the case where d ¼ �rf ðxkÞ). Under mild
assumptions, this class of algorithms converges to a
stationary point of f. Recall that such a point is a glo-
bal minimiser if f is a convex function. Other meth-
ods in this class are Newton methods, conjugate
gradient methods, and quasi-Newton methods, each
of which generates iterates that converge to a station-
ary point under appropriate assumptions.

Considering the constrained case, while general
convex optimisation problems do not retain all desir-
able properties of the simpler class of linear program-
ming problems, they still have a sufficiently rich
structure that pave the way for provably efficient
solution algorithms. In fact, every convex optimisa-
tion problem, in theory, can be solved to global opti-
mality by the ellipsoid method (Yudin &
Nemirovskii, 1976; Shor, 1977) or by interior-point
methods in polynomial time (Nesterov &
Nemirovskii, 1994). Furthermore, a variety of highly
effective commercial and non-commercial solvers are
available for solving several classes of convex opti-
misation problems such as linear programming,
second-order cone programming, and semidefinite
programming that frequently arises in applications
(see, e.g., https://neos-server.org/neos/solvers/index.
html).

For the nonconvex constrained case, one
approach is based on approximating a constrained
optimisation problem by a sequence of uncon-
strained optimisation problems by either using a
penalty function, based on penalising violation of
constraints (penalty methods), or using a barrier
function, based on preventing the violation of con-
straints by keeping the iterates strictly in the relative
interior of the feasible region S � R

n (barrier meth-
ods). Other methods include Augmented Lagrangian
methods, based on combining Lagrangian relaxation
with penalty methods, and Sequential Quadratic
Programming methods, based on approximating the
optimisation problem by a quadratic programming
problem.

Finally, various real-life applications in machine
learning and data science give rise to very large-
scale problems that are beyond the capability of cur-
rent solvers and computing platforms. For such
problems, there exist a variety of heuristic optimisa-
tion methods that can be employed to find a good
solution in a reasonable amount of time (§2.13).
However, in contrast with exact methods, such
methods usually do not provide any guarantees on
the quality of the solution.

Nonlinear optimisation is a very active area of
research. The reader is referred to excellent
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textbooks for further information (e.g., Fiacco &
McCormick, 1968; Mangasarian, 1994; Bazaraa
et al., 2005; Nocedal & Wright, 2006; Bertsekas,
2016; Luenberger & Ye, 2016).

2.17. Queueing27

Queueing systems arise in many real life applica-
tions including production, service systems, finance,
logistics and transportation. As mentioned in
Stidham (2002), many queueing models have been
studied even before the introduction of Operational
Research in the 1950s. We provide a brief overview
of methodologies used in queueing systems analysis.
We start with exact methods and then continue
with approximations and asymptotic analysis.

The classical analysis of queueing systems
involved modelling the single stage Markovian
queues as birth-death processes and computing their
steady state performances using Markov chain the-
ory. These earlier theoretical contributions were ini-
tially summarised in Feller’s two volume books
Feller (1957a, 1957b), then in classical textbooks
such as Cooper (1972), Gross and Harris (1974) and
Kleinrock’s two volumes Kleinrock (1975a, 1975b),
and more recently in Gautam (2012), Harchol-Balter
(2013), and many other books. Tak�acs (1962)
focused on using transforms and generating func-
tions for steady state and transient behaviour of
queueing systems. In the early days, transforms and
generating functions were considered to be exact
expressions but one had to invert these generating
functions in order to obtain the actual performance
measures which is in general difficult. Marcel Neuts
was the first one who approached this inversion
problem algorithmically. In his 1981 book, Neuts
(1981) focused on queues that generalise the G/M/1
structure, whereas in his second book, Neuts (1989)
generalised the structure of the M/G/1 queue. The
main idea in these books is to approximate the non-
exponential distributions with a phase type distribu-
tion (convolution and mixture of exponentials)
which yields a continuous time Markov chain model
for the original system that could be analysed, at
least numerically. This line of research resulted in
many contributions on the so-called matrix-geomet-
ric methods (see also Latouche & Ramaswami,
1999). Arguably the most well known result in
queueing theory is Little’s law (L ¼ kW or its gener-
alisation H ¼ kG) which provides a relationship
between the mean steady state number of customers
and the mean sojourn time in a system. For a thor-
ough survey of the Little’s result and its extensions,
the reader is referred to Whitt (1991). There are
numerous proofs of Little’s law but El-Taha and
Stidham (1999) provide an elegant sample path

proof. On the other hand, Bertsimas and Nakazato
(1995) relate the steady-state distribution of the
number in the system (or in the queue) to the
steady state distribution of the time spent in the sys-
tem (or in the queue) in a queueing system under
FIFO (First In First Out).

While there has been a lot of interest in station-
ary queues, Massey’s, 1981 dissertation Massey
(1981) drew attention to the analysis of non-station-
ary queues (i.e., queues with time dependent arrival
and service processes). Massey’s dissertation started
with the analysis of M(t)/M(t)/1 queue and then
extended to other non-stationary Markovian sys-
tems. Many subsequent papers, such as Massey and
Whitt (1998), focused on queueing models with
time-dependent arrival rates, especially infinite-ser-
ver “offered-load” models which describe the load
that would be on the system if there were no limit
to the available resources. The main idea of these
papers is to provide algorithms (approximations) to
solve the Poisson equation. On the other hand,
Bertsimas and Mourtzinou (1997) derived a set of
transient distributional laws that relate the number
of customers in the system (queue) at time t to the
system (waiting) time of a customer that arrived to
the system (queue) at time t.

Networks of queues have been of interest to
researchers since 1950s. Jackson (1957) was the first
one to observe that joint steady state distribution of
the number of customers at the nodes of a network
of Markovian queues with single server (at each
node) is the product of individual distribution of
M/M/1 queues. Jackson (1963) generalised this
result to networks of queues with multiple servers at
the nodes. Gordon and Newell (1967) discovered
that the stationary distribution again has a product
form in closed Markovian networks but in this case
a normalisation constant is required. Baskett et al.
(1975) proved that the product form is insensitive
to the service time distribution if the service discip-
line satisfies certain assumptions. This and other
insensitivity results in networks were also consid-
ered by Kelly (1979) and Serfozo (1999) which also
has results on other networks such as those with
blocking and rerouting. Daduna (2001) focused on
obtaining explicit expressions for the steady behav-
iour of discrete time queueing networks and gave a
moderately positive answer to the question of
whether there can be a product form calculus in dis-
crete time. In recent years, a number of models
involving different compatibilities between jobs and
servers in queueing systems, or between agents and
resources in matching systems, have been studied,
and, under Markovian assumptions and appropriate
stability conditions, the stationary distributions were
again shown to have product forms (see Gardner &
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Righter, 2020, and the references therein). Baccelli
et al. (1992) modelled a class of networks using the
so-called (max,þ) linear systems. In their pioneering
work, using (max,þ) algebra techniques, Baccelli
and Schmidt (1996) derived Taylor series expansions
for the mean waiting times in Poisson driven queue-
ing networks that belong to the class of (max,þ) lin-
ear systems. Even though these expansions are
sometimes referred to as light traffic approxima-
tions, in some cases all coefficients of the series
expansion can be computed yielding an exact expres-
sion. These results were generalised to transient per-
formance measures by Baccelli et al. (1997) and joint
characteristics by Ayhan and Baccelli (2001).

Exact analysis of general queueing systems is
often challenging, making the characterisation of
performance measures difficult. Thus, asymptotic
analyses are commonly carried out via various
approximation methods. We next provide an over-
view of such methods.

Many of the earlier works on the asymptotic ana-
lysis of queueing systems focused on heavy traffic
and many server approximations for single stage
queues. In his pioneering work, Kingman (1961,
1962, 1965) have asymptotically characterised the
waiting time distribution for the single server queue
with general interarrival and service time distribu-
tions under heavy traffic conditions (i.e., when the
traffic intensity q ! 1). Several others have devel-
oped heavy traffic approximations for the G/G/s
queue, where a sequence of systems with fixed num-
ber of servers and traffic intensities fqng approach-
ing one are considered (see, for example,
K€ollerstr€om, 1974). In these approximations, the
sequence of normalised (i.e., scaled) queue length
processes converge to a reflected Brownian motion
with negative drift (see Whitt, 2002), and the associ-
ated sequence of scaled stationary queue-length dis-
tributions (i.e., the stationary distribution of the
limiting diffusion process) converges to an exponen-
tial distribution. We refer the reader to Harrison
(1985) for a detailed technical treatment of heavy
traffic limits and diffusion approximations.
Asymptotic analysis was also considered for multi-
class and multi-stage queueing networks. Defining
the stability region of these networks using fluid
limit analysis was considered in Chen (1995); Dai
(1995); Dai and Meyn (1995). Many of the works
that considered heavy traffic analysis of multi-class
queueing networks focus on achieving the so-called
state space collapse. Bramson (1998) demonstrated
the state space collapse for first-in first-out queueing
networks of Kelly type and head-of-the-line propor-
tional processor sharing queueing networks. His
framework has been used to prove state space

collapse results in several other works including
Stolyar (2004) and Mandelbaum and Stolyar (2004).
For a more comprehensive review of heavy traffic
analysis of multi-class queueing networks, we refer
the reader to Chen and Yao (2001).

Many-server approximations were also considered
for asymptotic analyses of queueing systems. In
these approximations, the traffic intensity can be
kept constant while letting the arrival rate and the
number of servers go to infinity. Iglehart (1965)
showed that the resulting sequence of normalised
queue length processes converges to an Ornstein-
Uhlenbeck process in the many server setting when
the service time distributions are exponential. Later
on, Whitt (1982) generalised this result for systems
with non-exponential service times. For a more
comprehensive overview of results in this area, see
Whitt (2002). In their seminal work, Halfin and
Whitt (1981) defined the so called Halfin-Whitt
regime for the GI/M/s queue where the traffic inten-
sities converge to one from below, the number of
servers and arrival rates tend to infinity, but steady-
state probability that all servers are busy remains
fixed. They showed that under the appropriate scal-
ing, the queue length processes converge to a diffu-
sion process. In the past decades, many other
asymptotic results have been obtained for many ser-
ver queues in the Halfin-Whitt regime. Reed (2009)
studied the G/GI/s queue and obtained fluid and
diffusion limit results for the queue length process.
We refer the reader to van Leeuwaarden et al.
(2019) for a further review of the various asymptotic
results obtained in the Halfin-Whitt regime.

Although heavy traffic approximations for queues
have been popular in recent decades, light traffic (as
the traffic intensity q ! 0) and interpolation approx-
imations have also been developed. Bloomfield and
Cox (1972) developed light traffic approximations for
a single server queue. Burman and Smith (1983)
developed approximations for the expected delay in
M/G/s queue both for heavy and light traffic, and
showed that as traffic intensity goes to zero, probabil-
ity of delay depends only on mean service time dis-
tributions. Daley and Rolski (1992) used light traffic
approximations to study the limiting properties of
the waiting time in many-server queues. Light traffic
approximations have also been used to study the lim-
iting processes in queueing networks (see, for
example, Simon, 1992).

As mentioned earlier, approximation methods were
commonly used in the asymptotic analysis of time-
varying (i.e., non-stationary) queues. Mandelbaum
et al. (1999) developed a fluid approximation for the
queue length process in time-varying multiserver queue
with abandonments and retrials. Pang and Whitt
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(2010) have developed heavy traffic approximations for
infinite server queues with time-varying arrivals. The
reader is referred to Whitt (2018) for a recent review
of the literature on non-stationary queues.

Due to the interest in communication/telecommu-
nication systems, in late 1990s and early 2000s, there
was a lot of research on queues with heavy tailed
interarrival and/or service times. Intuitively, heavy
tailed distributions decay slower than an exponential
distribution (see Resnick, 2007, for a thorough discus-
sion). Boxma and Cohen (2000) provided an overview
of results for single service queues with heavy tailed
interarrival and/or service time distributions. Baccelli
et al. (1999) and Ayhan et al. (2004) showed that the
asymptotics of response time was dominated by the
station with the heavy tailed service time in a class of
open and closed networks, respectively. Foss and
Korshunov (2012) developed upper and lower bounds
on the tail distribution of the stationary waiting time
in the GI/GI/s queue with heavy tailed service times.

2.18. Risk analysis28

Risk analysis is a discipline that seeks to inform
people about what might happen and how to reduce
the probability and severity of undesired outcomes.
It draws on decision analysis, game theory, and
other areas of Operational Research but is distin-
guished from them by the questions it asks, the
frameworks it provides for answering them, and the
uses to which its answers are put (Aven, 2020;
Greenberg et al., 2020). Where decision analysis
focuses on principles for identifying logically coher-
ent choices that make preferred outcomes more
likely based on a decision maker’s beliefs and value
trade-offs, risk analysis seeks to inform analytic-
deliberative decision-making by multiple stakehold-
ers—possibly with conflicting worldviews, values,
and beliefs—for managing critically important mat-
ters ranging from the safe operation of nuclear
power plants to priority-setting for public and occu-
pational health and safety measures.

Risk analysis is often subdivided into risk percep-
tion, risk assessment, risk communication, risk man-
agement, and risk governance and policy-making
(Greenberg & Cox, 2021). The following sections
describe these components.

2.18.1. Risk perception
Public concerns and political appetite to address
them are shaped by perceived risks, whether or not
they are accurate. Several frameworks have been
developed to help understand the technical, psycho-
logical, and social drivers of risk perceptions
(Siegrist & �Arvai, 2020). The psychometric paradigm
(Slovic, 2000) explains many aspects of risk

perceptions in terms of a few underlying factors
such as as dread risk (associated with a lack of con-
trol, dreaded consequences, catastrophic potential,
inequity in the distribution of risks, risks increasing
over time, and fatal consequences) and unknown
risk (associated with unobservability, novelty,
unknown exposure, being unknown to science, and
delayed consequences). The cognitive heuristics and
biases literature positions risk perceptions within a
“dual process” framework in which rapid emotional
evaluations (“System 1”) can be modified by slower,
more effortful cognition (“System 2”) (Kahneman,
2011; Skagerlund et al., 2020). The cultural theory of
risk (Douglas & Wildavsky, 1983; McEvoy et al.,
2017; Bi et al., 2021) posits that individual percep-
tions of risk are shaped by social and ideological
processes that emphasise or suppress perceptions of
risks depending on the respondent’s values and pre-
ferred form of social order. The social amplification
of risk framework (SARF) (Kasperson et al., 2022)
describes the social amplification or attenuation of
perceived risks as risk information is communicated
among people with different worldviews.

Major lessons from the study of risk perception are
that experts and members of the public often view
risks quite differently; that experts often focus on the
probability and consequence severity dimensions of
risk while members of the public consider many other
aspects; that most people tend to overestimate the fre-
quencies of rare but vivid events (e.g., terrorist attacks,
murders) and underestimate the frequencies of com-
mon but familiar ones (e.g., car accidents, heart attack
fatalities); and that risk perceptions of both experts
and lay people are predictably shaped and distorted by
cognitive heuristics and biases and are amplified or
attenuated by media reports and other communica-
tions in ways that reflect the recipients’ worldviews.
System 1 tends to be innumerate, responding emo-
tionally to possibilities and categories of harm while
underweighting or ignoring relevant frequencies and
magnitudes. System 2 often fails to sufficiently adjust
or correct the promptings of System 1 leading to deci-
sions with predictable regrets. These findings help to
explain why expert and actuarial assessments of risk
often differ from lay perceptions of risk. In a demo-
cratic society, perceptions affect decisions. A major
challenge for risk analysis is to assess and communi-
cate risks to help inform and improve collective deci-
sions in ways that understand and respect the realities
of risk perception.

2.18.2. Risk assessment
Risk assessment addresses how large and uncertain
risks are. It begins with qualitative questions about
what might go wrong and proceeds to quantitative
assessments of how likely adverse events are to
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occur and what their possible consequences and
their probabilities would be (Kaplan & Garrick,
1981). Probabilistic risk assessment (PRA) and
quantitative risk assessment (QRA) methods apply
probability models and statistical methods to data
and modelling assumptions to quantify or bound
the predicted frequencies and severities of losses and
to estimate how their joint probability distribution
would be changed by different risk management
policies or interventions. Quantitative measures of
risk can be derived from the full probability distri-
bution or stochastic process descriptions of uncer-
tain outcomes (Smidts, 1997), including dynamic
coherent risk measures used in financial risk ana-
lysis (Bielecki et al., 2017). Stochastic process models
of the occurrence frequencies of adverse events
(such as accidents at power plants or tornadoes in
cities) and the probability distribution of losses for
each event can also be used to estimate entire
cumulative probability distributions for losses over a
stated time interval for different scenarios or sets of
assumptions (Kaplan & Garrick, 1981, see also §2.10
and §3.19).

In the past decade, PRA techniques such as
causal Bayesian networks (BNs), dynamic Bayesian
networks (DBNs), and related probabilistic graphical
models have increasingly been used to predict the
probabilistic effects caused by interventions in
engineering systems (Ruiz-Tagle et al., 2022) and
public health applications (Butcher et al., 2021).
They have largely supplanted older and less general
PRA techniques such as fault tree analysis and
Markov decision processes (Hanea et al., 2022; Cox
et al., 2018). Together with discrete-event stochastic
simulation models and continuous (systems dynam-
ics) simulation, they provide constructive methods
to predict how risk management interventions
would change the probabilities of outcomes over
time. This information can be used for simulation-
optimisation of risk management decisions (Better
and Glover, 2011).

PRA techniques have been extended to address
adversarial risks in which intelligent adaptive adver-
saries rather than chance events threaten the safety
and values that a risk manager seeks to protect
(Banks et al., 2022); and unknown risks (or risks
under radical uncertainty, sometimes called
Knightian uncertainty by economists), in which rele-
vant probabilities are unknown, e.g., by using uncer-
tainty sets that replace precise probability
distributions by (usually convex) sets of possible
probability distributions or by scenarios of possibil-
ities that are not necessarily exhaustive (Gilboa
et al., 2017). Recent artificial intelligence and
machine learning (AI/ML) methods are now being
applied to natural hazards and disasters (Guikema,

2020), cybersecurity (Nifakos et al., 2021), power
markets (Marcjasz et al., 2022), and financial port-
folio risk management problems where new, chang-
ing, and unknown conditions make it necessary to
learn effective risk prediction and management deci-
sion rules from data and experience without the
guidance of well-validated PRA models (Cox, 2020).

2.18.3. Risk management, governance, communi-
cation, and risk-cost-benefit analysis
Given public perceptions and technical estimates of
risks, what should be done about them? Who
should decide, and how? Managing risks to human
health, safety, or the environment often involves
“wicked” decision problems and “deep” uncertain-
ties, meaning that there are no clear, widely agreed-
to definitions of the decision problem and solutions
to it (Lempert & Turner, 2021). Although multiob-
jective and risk-sensitive or risk-constrained opti-
misation problems can be formulated for some risk
management problems, such as routing hazardous
cargo, for many wicked risk management problems,
relevant decision variables, constraints, possible out-
comes, and objective functions may be unknown or
not widely agreed to. Risk management in such
challenging cases usually involves issues of causation
(what can be done and how much difference in out-
come probabilities would different feasible choices
make?), collective choice (how should the disparate
perceptions and preferences of individuals be
resolved or aggregated for purposes of collective
decision-making?) and risk governance (who should
be responsible for making, implementing, obeying,
enforcing, and revising risk management decisions;
how should stakeholders participate in risk manage-
ment decisions; what institutions and processes
should guide, restrain, and integrate collective risk
management; and how should conflicts be resolved
and collective decisions be made at individual,
organisational, community, local, national, and
international levels?) (Klinke & Renn, 2021).

The most immediate decisions for risk managers
responding to potential or actual crises are often
about risk communication. For example, if a pan-
demic or natural disaster such as a tsunami, vol-
canic eruption or hurricane, seems possible but not
necessarily imminent or certain, then what should
scientists and government officials tell policy-makers
and the public about the uncertain risks? Who
should say what to whom, and how soon? Different
risk communication goals such as informing and
empowering individual and community decisions,
persuading individuals to change their behaviours,
instructing citizens what to do, and informing or
shaping policy deliberations and decisions, require
different communication approaches. Risk
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communication frameworks for addressing these
challenges overlap with risk perception frameworks
but also emphasise the roles of trust in information
sources and of outrage in mobilising public engage-
ment and changing behaviours (Malecki et al.,
2020).

Risk-cost-benefit analysis provides a simple-sound-
ing approach to collective risk management: take risk
management actions to maximise expected social util-
ity or net societal benefits (expressed as expected net
present value, possibly with a risk-adjusted discount
rate; Eliashberg & Winkler, 1981; Hammond, 1992).
However, mathematical impossibility theorems have
shown that when different people have sufficiently
different beliefs and preferences, there may be no
coherent way to aggregate them to make collective
decisions that respect normative principles such as
Pareto efficiency (Nehring, 2007). Trade-offs between
measures of accuracy and fairness have recently been
identified for machine-learning algorithms used in
risk assessment in areas such as mortgage lending
and criminal justice (Corbett-Davies et al., 2017).
Societal risk management is now often viewed less as
a top-down or centralised decision and control pro-
cess in which experts provide estimated probabilities
and social utilities or net benefits to use in risk-cost-
benefit or social utility maximisation calculations
than as a participatory democratic deliberative pro-
cess (Rad & Roy, 2021). Experts in risk analysis can
provide useful technical information in this process
but should not dominate it (Pellizzoni & Ungaro,
2000; Greenberg & Cox, 2021; Klinke & Renn, 2021).

Risk analysis poses intellectual, technical, and
practical implementation challenges that are likely
to engage and challenge Operational Research and
risk analysis professionals for the foreseeable future.
A more detailed review of the accomplishments,
current state, and remaining challenges for much of
the field of risk analysis can be found in the 40th

Anniversary Special Issue of Risk Analysis
(Greenberg et al., 2020), in specialised books such as
Aven (2015), and in online resources29.

2.19. Simulation30

A simulation aims to reproduce the important
behaviour of a real system. Our focus here is on the
use of computer simulation models within oper-
ational research (OR), whilst acknowledging that the
field is much wider and ranges from computer
models of sub-atomic particles to simulations
involving real human actors, particularly prevalent
in medicine and health sciences. Three main fla-
vours of simulation are used in this context: discrete
event simulation, agent-based modelling and system
dynamics. After discussing the uses of simulation,

we continue this subsection by introducing these
three main flavours before going on to discuss four
important areas in simulation research: conceptual
modelling, input modelling and parameterisation,
simulation optimisation, and finally the newer area
of data-driven simulation, linking to Industry 4.0
and digital twins. A selection of open source tools
for simulation are given in §3.18.

A simulation model, built on a computer, has a
number of potential functions. Principally it is used
for experimentation because testing out new settings
or ways of working on a simulation results in fewer
negative implications than experimenting with the
real system. This can allow simulation to be used
for optimisation of complex stochastic systems and
there has been considerable research in this area in
recent years, as we discuss below. Simulation can
also be used for predicting future behaviour, and
the COVID-19 pandemic showcased the predictive
power of simulation modelling in a very high-profile
situation (e.g., the agent-based model used to advise
the UK government and described in Ferguson
et al., 2020). The process of building a simulation
model results in a better understanding of the real
system because of the need to identify and model
the important relationships between different enti-
ties. Running the model can also help with estimat-
ing the sensitivity of model outputs to system
parameters. Another use of simulation models is for
training. Within the OR context, this most often
takes the form of strategic game-playing (e.g., the
beer game developed by MIT and described in
Sterman, 1989) to practice decision-making under
different scenarios in a safe environment.

Discrete event simulation (DES) is typically used
to model systems in which entities move through a
set of activities. Where these activities require
resources, entities will queue until the resource
becomes available. Such simulations are described as
discrete event because the system state only varies at
discrete time points, known as events. For example,
a DES model might be used to describe a manufac-
turing line and in this case the events could include
an item starting or finishing processing by a
machine on the line. Usually in DES, the simulation
clock will jump from one event to the next rather
than moving in equal time steps.

System dynamics (SD; §2.22) was first developed
in the 1950s by Jay Forrester to help with the
understanding of industrial problems. SD models
deal with stocks and flows, where the dynamics are
dictated by a set of connected differential equations.
Describing a system using an SD model can help
with detecting feedback loops and delay effects and
SD modelling is useful for strategic decision-
making.
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Agent based modelling (ABM) describes the
behaviour of individual entities or agents within a
population. As Macal (2016) states, one of the key
differences between ABM and both DES and SD is
that it takes an agent perspective of a system. Each
agent in the simulation will follow its own set of
rules dictating its behaviour and how it interacts
with the environment and other agents. Agent
behaviour is typically stochastic, allowing natural
variability to be included in the model. An ABM
can be used as a bottom up approach to determine
emergent behaviour where individual actions lead to
a system level response.

Regardless of the simulation modelling technique,
the first part of any simulation project is to gain an
understanding of the system being modelled, the
objectives of the work, and the key components that
should be included, referred to as conceptual model-
ling. There is some discussion of the exact definition
of conceptual modelling in Robinson (2008) but
some key points are made to support the process.
First, the conceptual model can be thought of as
separate from the final computer model that is built
and serves as an abstraction of the real system that
describes what is going to be modelled and gives an
indication of how that might be done. Second, the
development of the conceptual model requires input
from the modeller and the system owners. Third, a
conceptual model does not remain constant through
a simulation project but is revisited and adapted as
the project continues. Recent research in conceptual
modelling is reviewed by Robinson (2020) and has
focused on designing modelling frameworks. The
work described tends to be related to DES models
but the core principles can also apply to the build-
ing of both ABS and SD models.

Like any other model, the utility of a simulation
is very much dependent on its inputs: the garbage-
in-garbage-out principle holds true here. Setting up
the probability distributions used for inputs of a sto-
chastic simulation model or parameterisation of a
deterministic simulation model is referred to as
input modelling and is typically achieved through fit-
ting statistical models to available data and eliciting
expert opinion. When estimating the inputs for a
simulation model from data there is some uncer-
tainty in their true values. With a different set of
data, the estimates of the inputs would likely be dif-
ferent. Any uncertainties setting the model inputs
will propagate through to the model outputs, result-
ing in input uncertainty. This is influenced both by
the accuracy of the estimates of the inputs and the
sensitivity of the model output to that particular dis-
tribution or parameter. Corlu et al. (2020) provide a
review of the current state of the art in input uncer-
tainty research for simulation, while Song et al.

(2014) provide practical suggestions on how to esti-
mate the impact of unput uncertainty on the output
results.

Often simulation models are used to experiment
with different system set-ups. Simulation optimisa-
tion, sometimes referred to as optimisation via simu-
lation describes the use of a simulation model to
find the optimal value for one or more decision var-
iables. Typically it is used in the design of stochastic
systems that are too complex to be effectively
described by an analytical model. Practical examples
of problems that can be solved using simulation
optimisation include finding the optimal number
and configuration of beds in a hospital ward; deter-
mining the appropriate number of repair staff on a
production line; choosing between a selection of dif-
ferent configurations for a system.

The problem can be represented mathematically
as

mingðxÞ, x 2 H,

where the function we are optimising gðxÞ is gener-
ally the expected value of the output of a stochastic
simulation model, gðxÞ ¼ E½Yðx, nÞ�; x is a vector of
decision variables; H denotes the feasible region for
x; and n indicates the randomness inherent in the
model. The majority of research in simulation opti-
misation aims to improve the efficiency of the opti-
misation algorithms by reducing the number of
simulation replications needed to estimate the opti-
mal values of x. Where a complex and slow-running
simulation model is used to generate the Yðx, nÞ this
efficiency is particularly important. Hong and
Nelson (2009) classify simulation optimisation prob-
lems into three categories:

1. Small number of solutions: H contains only a
small number of solutions and the decision
variable x might define a particular system con-
figuration. In this case the problem is one of
ranking and selection.

2. Decision variables are continuous: H is a con-
vex subset of the set of d-dimensional real num-
bers and the problem is continuous optimisation
via simulation.

3. Decision variables x are discrete and ordered:
H is a subset of the set of d-dimensional inte-
gers and the problem is discrete optimisation via
simulation.

A set of algorithms exists for solving each cat-
egory of problem. There has also been significant
work on multi-objective optimisation via simulation;
for example, see Hunter et al. (2019) for a detailed
description of the problem and different solution
approaches.
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In recent years, sensing has become more wide-
spread and the transfer of data from physical sys-
tems to control systems is now happening in close
to real time. This has allowed modellers to design
simulation models that are automatically fed data
from the real system allowing them to either predict
the future (e.g., prediction of emergency depart-
ments crowding Hoot et al., 2008) or to use the
simulation models to optimise system parameters as
part of a dynamic control process. Such models are
sometimes referred to as a digital twin or symbiotic
simulation (see Onggo, 2019, for a definition). Xu
et al. (2016) describe how simulation can be incor-
porated into the Industry 4.0 framework using the
example of a semiconductor fab operation. The use
of simulation in dynamic control is still in its
infancy and requires fast and reliable simulation
optimisation algorithms as well as mechanisms for
enabling the simulation model to evolve based on
new input data. Industry 5.0 is intended to comple-
ment Industry 4.0 by putting societal goals at the
heart of industrial decision-making31. This is a
potential growth area for simulation optimisation,
particularly multi-objective simulation optimisation
(e.g., see Hunter et al., 2019) which enables solu-
tions to be found that support several competing
objectives.

Being a huge topic with many different facets,
there is no single article that provides an overview
of simulation but there are several excellent text-
books covering simulation techniques including Law
(2015) and Banks et al. (2004). The archive of the
Winter Simulation Conference32 is also an extensive
resource in understanding the state-of-the-art in the
field and its tutorial papers provide more basic
tuition in the effective implementation of simula-
tion. Recently, the history track at the conference
has also provided an overview of the evolution of
the simulation field.

2.20. Soft OR33 and problem structuring
methods34

Problem Structuring Methods (PSMs) are concerned
with addressing problem formulation in OR.
Following definitions of Mingers and Rosenhead
(2004) and Rosenhead (1996) they consist of a set of
rigorous but not mathematical methods based on
qualitative, diagrammatic modelling. They allow for
a range of distinctive stakeholder views of a problem
to be expressed, explored and accommodated. They
encourage active participation of stakeholders in the
modelling process, through facilitated workshops
and the cognitive accessibility of the modelling
approach. PSMs afford negotiating a joint agenda
and ownership of actions. The aim is for

exploration, learning and commitment from stake-
holders, rather than optimisation or prediction.
PSMs thus are vital and constitute a significant
developmental direction for OR. See Smith and
Shaw (2019) and Franco and Rouwette (2022) for
recent reviews.

Understanding the contribution of PSMs to OR
requires some knowledge of their evolution. We
characterise the development of the field into three
phases: (i) origins, (ii) growth (only noted here
through the increased publication rate of PSM
related articles), and (iii) maturity, covering the dif-
fusion of PSMs to fields outside of OR, and re-inte-
gration of problem structuring into mainstream OR.
Looking at the last first, we see PSMs at an impor-
tant turning point, as recent work by Dyson et al.
(2021) specifically identify the centrality of problem
structuring in the origins of OR and lead us towards
the important question of why PSMs are not seen as
an essential element of every OR engagement.

The origins of PSMs as a set of formal methods
in OR arose as a consequence of the broad critique
of the process of OR in the 1970-80s; the label itself
was pioneered by Woolley and Pidd (1981). Ackoff
became a trenchant critic of the sole pursuit of
objectivity and optimisation in OR describing it as
an “opt-out” (Ackoff, 1977) and set out an agenda
for reconceptualising OR practice (Ackoff, 1979a).
Dando and Bennett (1981) described the situation
as a “Kuhnian crisis in management science”. In
Rosenhead’s “Rational Analysis for a Problematic
World: Problem Structuring Methods for Complexity,
Uncertainty and Conflict” their prescription in OR
engagements was associated with dealing with prob-
lem contexts identified variously as wicked, messy,
or swampy (Rosenhead, 1989, pp. 3-11). These can
be summarised as problem situations that are not
well-defined, involving many interested parties with
different perspectives (worldviews), where there is
difficulty agreeing objectives and the meaning of
success, and that require creating agreement
amongst the parties involved for actions to be taken.
The implication of the dichotomous framing of
problem contexts – i.e., wicked/tame, swamp/high
ground, hard/soft, tactical/strategic – was to set out
a clear critique for the whole field of OR and to
suggest that to retain its relevance in dealing with
the messiness of real-world problems PSMs were
required to bring some rigour – and indeed a
reminder of the importance – to the process of
problem formulation. Importantly, the pioneers of
PSMs were concerned that traditional (i.e., ‘Hard
OR’) processes for problem formulation were practi-
tioner-free (Checkland, 1983; Rosenhead, 1986).

The main PSMs set out by Rosenhead (1989)
were Strategic Options Development and Analysis
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(SODA; Eden, 1989), arising from cognitive map-
ping; Soft Systems Methodology (SSM; Checkland,
1989), emerging from the failure of Hard Systems
Thinking approaches (e.g., Systems Engineering,
RAND-style Systems Analysis) when applied to
messy problems; and the Strategic Choice Approach
(SCA; Friend, 1989), arising from planning. In add-
ition, Robustness Analysis, Metagame Analysis, and
Hypergame Analysis were also included. However,
setting the boundary of PSMs has always been an
open question (Mingers, 2011b). In the main, the
core methods (SODA, SSM, SCA) are seen as exem-
plary and provide sufficient coherence for OR schol-
ars and practitioners to be provided with a clear
view of a common theme.

The methodology of PSMs has long been associ-
ated with contextual matters through Systems
Thinking (§2.23 Checkland, 1983; Mingers & White,
2010), Community OR (Johnson et al., 2018; Jones
& Eden, 1981; Parry & Mingers, 1991), and large
group processes (Shaw et al., 2004; White, 2002).
Methodological individualism has been addressed
through Behavioural OR (§2.2; Franco &
H€am€al€ainen, 2016; White, 2016). There has also
been long-standing relevance to Multi-Criteria
Decision Analysis (MCDA; Marttunen et al., 2017),
value-focused thinking (Keeney, 1996b), policy ana-
lysis (Eden & Ackermann, 2004), and strategy mak-
ing (Ackermann & Eden, 2011; Dyson, 2000).
Bridging between PSMs and other techniques in OR
has been developed as multimethodology (Mingers
& Brocklesby, 1997); for example, integration with
Simulation (§2.19; Kotiadis & Mingers, 2006; Tako
& Kotiadis, 2015). Some approaches to using the
Viable Systems Model (VSM), System Dynamics
(§2.22), and Decision Analysis (§2.8) would also be
considered as PSMs too (Rosenhead & Mingers,
2001, pp. 267-288), e.g., VSM (Lowe et al., 2020)
and System Dynamics (Lane & Oliva, 1998). We
also see developments in Group Model Building
(GMB) from the System Dynamics community mak-
ing a significant contribution to PSMs (Andersen
et al., 2007). In their growth and mature phase,
applications of SSM, SCA, and SODA have extended
the reach of PSMs into, e.g., project management
(Franco et al., 2004) and environment, sustainability,
and energy policy, e.g., SCA (Fregonara et al., 2013),
SODA (Hjortsø 2004), SSM (Pahl-Wostl, 2007), and
the Drivers, Pressures, State, Impact and Response
framework (DPSIR Bell, 2012).

The state of the art and research agenda for
PSMs has been the subject of periodic reflection
e.g., reviews by Rosenhead (1996) and Mingers and
Rosenhead (2004). A Special Issue of JORS in 2006
questioned where PSMs were heading (Rosenhead,
2006) – variously argued as a “grassroots revolution”

(Westcombe et al., 2006), an appeal to common
principles (Eden & Ackermann, 2006), and observa-
tions that “form and content have evolved through
interaction between the ideas and their practical
use” (Checkland, 2006). A more recent viewpoint
debate “whither PSMs” again questioned their direc-
tion of travel Harwood (2019); Lowe and Yearworth
(2019).

The qualitative nature of PSM methods raises
questions about evaluating both effectiveness and
value. Midgley et al. (2013), White (2006), and
Franco and Rouwette (2022) have addressed the
question of effectiveness, and whilst White goes
some way towards defining the value of PSMs it is
important to note the reservations expressed by
Checkland and Scholes (1990, p. 299) – that meas-
uring value in a unique problem context, the ‘messy’
realm of PSMs, is unlikely to be meaningful. Tully
et al. (2019) examine this conundrum in depth from
the perspective of a consulting business and make
some practical suggestions for its resolution.

Theory provides an important basis for PSM
development. The range of PSM practice reported
has been explained by the constitutive rules that
underpin specific methods. First articulated by
Checkland (1981, pp. 252-254), constitutive rules are
generative of method rather than prescriptive and
account for the range of practices that emerge, even
when adopting a specific methodology such as SSM
i.e., adaptation is always necessary to address the
specifics of the application context. The idea was
developed further by Jackson (2003, pp. 307-311)
and then by Yearworth and White (2014) into a
generic constitutive definition for PSMs. Another
significant development has been a focus on PSMs
as practice and drawing on practice theories. These
theories provide a means of understanding OR prac-
tices by “zooming-in” to the detailed, fine-grained,
scale and by “zooming-out”, looking at how specific
practices affect the broader context (Ormerod et al.,
2023). Together these theoretical strands provide
sufficient basis on the one hand, to liberate PSMs
from the pigeon-hole of the dichotomous framing
of their origins, and on the other, to address OR
practice as a whole and to see problem structuring
as a normal, indeed necessary, part of every OR
intervention. For instance, Actor Network Theory
(ANT) provides a lens to look at the processes of
problematisation (i.e., problem formulation) in OR
practice (White, 2009). Callon (1981) draws specific
attention to the “abundance of problematisations”
facing expert practitioners – that there is no single
specific way of problematising. Strands of ANT
focus on the performative idiom; (Ormerod, 2014a)
draws attention to the “mangle of practice” and the
need for more informative case studies of OR
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practice. Other theoretical underpinnings are rele-
vant to PSM developments e.g., PSMs as technology
(Keys, 1998), Critical Realism (Mingers, 2000),
Activity Theory (White et al., 2016), and the specific
role of models as boundary objects (Franco, 2013)
in facilitated workshops (Franco & Montibeller,
2010).

From a practitioner point of view, the recent
report “Reinvigorating Soft OR for Practitioners” by
Ranyard et al. (2021) to the Heads of OR and
Analytics Forum (HORAF) and the inclusion of the
knowledge requirement “How to select and apply, a
range of problem structuring methods to understand
complex problems” in the Operational Research
Specialist Degree Apprenticeship specification by the
Institute for Apprenticeships and Technical
Education (2021) are a welcome development.

In conclusion, for PSMs we see a return to the
roots of OR as a discipline – encompassing both
practice and academic scholarship – through the
centrality of problem formulation to the process of
OR (Churchman et al., 1957, p. 13) and a reminder
that the seeds of problem structuring can be seen in
the work of the ‘founders’ of OR as uncovered by
Dyson et al. (2021). We have identified a number of
research gaps that indicate future research directions
for the development of PSMs. In the area of the
impact of new digital technologies, Yearworth and
White (2019) propose greater use of online “same
time/different places” problem structuring work-
shops in order to meet the requirements for fast
meeting setup times, reducing carbon emissions,
enabling the scale-up to large group participation,
and supporting new post-pandemic working pat-
terns. The need to address complex policy issues in
the context of wicked problems is highlighted by
Howick et al. (2017) and Ferretti et al. (2019), who
argue for a re-invigorated engagement for PSM
practice in policy analysis. Finally, Ormerod
(2014b), Ranyard et al. (2015) and Ormerod et al.
(2023) remind us that we need to see a renewed
practitioner-led orientation for OR scholarship that
grounds future development in solid empirical
work.

2.21. Stochastic models35

Many decision problems involve uncertainty, e.g.,
network design with disruption risk, portfolio selec-
tion with uncertain return, resource planning with
unknown resource availability, crop planting with
uncertain yield, inventory control with varying
demand, and project scheduling with random task
duration, etc. While the effect of uncertain parame-
ters on the optimal solution and objective value can
be studied through the well-known sensitivity

analysis, or what-if analysis, in a deterministic opti-
misation approach, such post-optimality analysis
does not prescribe solutions under uncertainty a pri-
ori. This subsection provides an overview of a suite
of optimisation models and methods that seek to
obtain optimal or near-optimal solutions for the
class of decision problems where some parameters
are stochastic with known probability distribution36.

Originated in the seminal work of Dantzig
(1955), stochastic programming is one of the earliest
and most prominent approaches to deal with opti-
misation problems with stochastic parameters. The
basic stochastic programming model has a two-stage
framework, called two-stage stochastic programming
with recourse (2S-SPR; Birge & Louveaux, 2011). In
the first stage, the here-and-now decision is made.
Then in the second stage, the recourse decision is
prescribed for each scenario of stochastic parameters
after their realisation. The objective function mini-
mises the total cost as the summation of the first-
stage cost and the expected second-stage cost given
the probability distribution of the stochastic parame-
ters. It is often insightful to compute the value of
stochastic solution (VSS; Birge, 1982) as the differ-
ence between the optimal objective function value of
the deterministic counterpart (by substituting the
stochastic parameters with their point estimates)
and that of the stochastic programming model. We
refer to Birge and Louveaux (2011) and Shapiro
et al. (2021) for a systematic and updated treatment
on the modelling and theory of stochastic program-
ming, and to Wallace and Ziemba (2005) for a col-
lection of applications of stochastic programming.
Recent applications include disaster relief manage-
ment (Grass & Fischer, 2016), transit network
design (Zhao et al., 2017), portfolio selection
(Masmoudi & Abdelaziz, 2018), treatment plant
placement in drinking water systems
(Schwetschenau et al., 2019), process systems (Li &
Grossmann, 2021), multi-product aggregate plan-
ning (G�omez-Rocha & Hern�andez-Gress, 2022), and
resource allocation for infrastructure planning
(Zhang & Alipour, 2022), among others.

A stochastic programming model may also
include a constraint that is satisfied with a probabil-
ity. This model is is known as the chance con-
strained programming model introduced by
Charnes et al. (1958). The probabilistic constraint
can often be transformed into a deterministic con-
straint given the known probability distribution of a
stochastic parameter. Detailed coverage on the
chance constrained programming models and meth-
ods is available in Pr�ekopa (2013). Notable applica-
tions include farm management (Moghaddam &
DePuy, 2011), broadband wireless network design
(Claßen et al., 2014), supply chain network design
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(Shaw et al., 2016), equity trading server allocation
(Sun & Hassanlou, 2019), and power system plan-
ning (Geng & Xie, 2019), among others.

A stochastic programming model can be formu-
lated as a deterministic mathematical programming
model by associating its decision variables with the
scenarios of stochastic parameters, an approach
often referred to as deterministic equivalent formu-
lation (DEF). Solving a stochastic programming
model via its DEF can be computationally challeng-
ing as the size of DEF grows rapidly with the num-
ber of scenarios of stochastic parameters. Thus
custom designed algorithms are often needed to
obtain quality solutions for medium- and large-size
stochastic programming models. Assuming the set
of random parameters has finite support, the DEF
of a 2S-SPR has a block structure with L-shape,
which motivates the well-known L-shape method
(Van Slyke & Wets, 1969) based on Benders decom-
position (Benders, 1962). For problems with a large
number of random scenarios, it can be computa-
tionally intractable for the exact decomposition
method to obtain an optimal solution. One may
resort to various sampling-based methods to obtain
approximate solutions. The stochastic decomposition
method proposed by Dantzig and Infanger (1991)
and Higle and Sen (1991) employs Monte Carlo
simulation and importance sampling to compute
sampling cuts instead of generating the exact cuts in
the L-shape method. The other successful approach
is sample average approximation (SAA; Kleywegt
et al., 2002; Shapiro, 2003), which approximates the
second-stage objective function by an expected value
function corresponding to a set of scenarios of the
random parameters. Numerical experiments and
results of the SAA method on various benchmark
instances are available in Linderoth et al. (2006).

Another well-known stochastic modelling and
solution approach is the integrated simulation-opti-
misation (Fu et al., 2005), especially used for solving
problems involving discrete decision variables,
widely encountered in applications in management
science, operations and supply chain management.
A typical integrated simulation-optimisation frame-
work consists of two inter-related components:
search and sampling. The search component deals
with the solution space, often combinatorial in
nature with large size, for which various metaheuris-
tics (Glover & Kochenberger, 2003) can be applied.
These include local search based metaheuristics such
as simulated annealing (Kirkpatrick et al., 1983),
tabu search (Glover & Laguna, 1997) and scatter
search (Glover, 1998), as well as population-based
metaheuristics, e.g., genetic algorithm (Holland,
1975). The sampling component evaluates a candi-
date solution via simulation, e.g., Monte Carlo or

discrete event simulation. Thus an integrated simu-
lation-optimisation approach can be viewed as an
augmented deterministic metaheuristic that employs
simulation to evaluate/estimate solutions in an
uncertain environment. Recent applications include
maritime logistics (Zhou et al., 2021), pooled ride-
hailing operators (Bischoff et al., 2018), and staffing
for service operations (Solomon et al., 2022).

Many real-world applications need decisions to
be made sequentially under uncertainty, e.g., pro-
duction planning, inventory control, resource alloca-
tion, and project scheduling, etc. One approach to
this type of applications is the multi-stage stochastic
programming (Birge & Louveaux, 2011), which is a
generalisation of the 2S-SPR. In a typical multi-stage
stochastic programming framework, a decision is
made in a stage, based on the observed realisation of
random parameters and the decisions made in the
previous stage, to minimise the total expected future
cost. The random parameters are assumed to evolve
according to some known stochastic process. We
refer to Zhang (2023) for an updated and compre-
hensive treatment on various stochastic processes. A
nested decomposition as a generalisation of the L-
shape method can be applied to obtain exact solu-
tions to a multi-stage stochastic programming model
(Birge, 1985). Conceptually, it applies Benders
decomposition or the L-shape method recursively to
a series of nested two-stage subproblems. Although
theoretically sound, it can be computationally chal-
lenging to handle reasonably large instances as the
number of scenarios grows exponentially with the
number of stages and random parameters. Thus one
often resorts to various approximation algorithms for
obtaining quality solutions efficiently, including value
function approximation, constraint relaxation, scen-
ario reduction, and Monte Carlo methods, among
others (Birge & Louveaux, 2011).

An alternative approach to sequential decision
making under uncertainty is stochastic dynamic pro-
gramming (Ross, 1983) or as a Markov decision
processes (MDP; Puterman, 2014). See §2.9 for more
details.

There are two general approaches for solving an
MDP model: open-loop and closed-loop (Bertsekas,
2012a). An open-loop approach obtains a solution to
all the decision variables upfront, which is static in
nature without updating during execution of the
sequential decision-making process. The integrated
simulation-optimisation approach introduced above is
a successful way to obtain an open-loop policy, e.g.,
using genetic algorithms (Ballest�ın, 2007b), tabu
search (Tsai & D. Gemmill, 1998), or the greedy
randomised adaptive search procedure (GRASP;
Ballest�ın & Leus, 2009) with simulation for the
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Stochastic Resource-Constrained Project Scheduling
Problem (SRCPSP).

Instead of optimising the entire problem upfront,
a closed-loop approach seeks to obtain an optimal
decision rule (policy) to map the state at a stage to a
decision, given the information available to the deci-
sion-maker at the current stage. A closed-loop pol-
icy is dynamic and adaptive in nature, thus is more
flexible than an open-loop policy (Dreyfus & Law,
1977; Bertsekas, 2012a). Although theoretically
attractive, to obtain an optimal closed-loop policy
through the well-known Bellman equation in recur-
sive way (Bellman, 1957) is computationally intract-
able due to the curse-of-dimensionalities of MDP in
state space, solution space of decision variables, and
sample space of random parameters.

Recent advances advocate the design and imple-
mentation of approximate dynamic programming
(ADP) for solving large-scale MDPs. ADP has its
roots in neural dynamic programming (NDP;
Bertsekas & Tsitsiklis, 1996) and reinforcement
learning (RL; Sutton & Barto, 2018). Its key idea is
to replace the exact cost-to-go function with some
sort of approximation. We refer to Si et al. (2004)
and Powell (2011) for comprehensive coverage on
ADP and its applications. There are two approxima-
tion paradigms for the design of an ADP algorithm.
The value function approximation approach works
directly on the cost-to-go function to replace it with
an alternative functional form that is computation-
ally tractable. Using sample path simulation, a for-
ward iteration procedure can be implemented to
solve a deterministic sub-problem with the approxi-
mated objective function subject to the set of con-
straints corresponding to the state of the current
stage (Powell, 2011). This approach has been suc-
cessfully applied to the multicommodity network
flow problem (Topaloglu & Powell, 2006), dynamic
fleet management (Sim~ao et al., 2009), and dynamic
resource planning (Solomon et al., 2019).

While the value function approximation approach
works well for problems with structures amenable to
efficient mathematical programming methods such
as linear programming or network optimisation,
many combinatorial optimisation problems are
NP-hard themselves, and can be computationally
demanding for mathematical programming to han-
dle. We refer to §2.5 for a review on the topic of
computational complexity and NP-hardness. This
calls for an alternative approximation paradigm
known as the rollout policy (Bertsekas et al., 1997).
A rollout policy estimates the cost-to-go function
using some heuristic via simulation, which can be
either an efficient problem-specific heuristic or a
custom-designed metaheuristic for the problem at
hand. It can be viewed as a look-ahead policy that

estimates the cost of a decision-state pair under
uncertainty about the future, which can be in con-
trast to the lookup table approach in RL (Sutton &
Barto, 2018) where the cost of a decision-state pair
is learned through simulation in a look-back fash-
ion. A hybrid look-ahead and look-back ADP algo-
rithm has been developed by Li and Womer (2015)
to take advantage of the complementary strengths of
the pure rollout approach and the lookup table
approach alone. Successful applications of rollout
policy have been reported for stochastic vehicle
routing (Secomandi, 2001; Goodson et al., 2013),
SRCPSP with stochastic activity durations (Li &
Womer, 2015), RCPSP with multiple-overlapping
modes (Chu et al., 2019), ride-hailing system plan-
ning (Al-Kanj et al., 2020), and attended home
delivery (Koch & Klein, 2020).

All the aforementioned models and methods
assume that the probability distribution of random
parameters is known or can be properly estimated.
This assumption may not hold in some situations
where there is lack of knowledge about the uncer-
tain parameters, or error in measurement or imple-
mentation. Optimisation with uncertain parameters
without probability distribution calls for the robust
optimisation (RO) approach. Although the origin of
RO can be dated back to the 1970s (Soyster, 1973),
RO has been growing as an active research field
since the last two decades. In an RO model, one
assumes that uncertain parameters are within a
user-specified uncertainty set. A robust feasible solu-
tion satisfies the set of uncertain constraints for all
realisations of the uncertain parameters in the
uncertainty set. One main technique to solve an RO
model is the robust reformulation approach to
obtain a computationally tractable robust counter-
part (RC) with a finite number of deterministic con-
straints (Bertsimas et al., 2011a). When choosing the
type of uncertainty set for the model, one often
needs to trade-off between robustness against real-
isations of the uncertain parameters and computa-
tional tractability, i.e., size of the uncertainty set
(Gorissen et al., 2015). We refer to Ben-Tal and
Nemirovski (2002) and Ben-Tal et al. (2009) for sys-
tematic treatment on robust optimisation. RO has
been applied in various fields including finance
(Georgantas et al., 2021), energy and utility (Sun &
Conejo, 2021), supply chain (Ben-Tal et al., 2005;
Pishvaee et al., 2011), healthcare (Meng et al., 2015),
and marketing (Wang & Curry, 2012).

2.22. System dynamics37

System Dynamics (SD), founded by Forrester (1961),
is a “rigorous method for qualitative description,
exploration and analysis of complex systems in terms
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of their processes, information, organisational bounda-
ries and strategies; which facilitates quantitative simu-
lation modelling and analysis for the design of system
structure and control” (Wolstenholme, 1990). SD
modelling involves (as extracted from the System
Dynamics Society website - www.systemdynamics.org):

� “Defining problems dynamically, in terms of
graphs over time.

� Striving for an endogenous, behavioural view of
the significant dynamics of a system, a focus
inward on the characteristics of a system that
themselves generate or exacerbate the perceived
problem.

� Thinking of all concepts in the real system as
continuous quantities interconnected in loops of
information feedback and circular causality.

� Identifying independent stocks or accumulations
(levels) in the system and their inflows and out-
flows (rates).

� Formulating a behavioural model capable of
reproducing, by itself, the dynamic problem of
concern. The model is usually a computer simu-
lation model expressed in nonlinear equations or
can be left without quantities as a diagram cap-
turing the stock-and-flow/causal feedback struc-
ture of the system.

� Deriving understandings and applicable policy
insights from the resulting model.

� Implementing changes resulting from model-
based understandings and insights.”

SD can be employed for both qualitative and
quantitative modelling. On the one hand, tools and
methods employed for qualitative SD modelling are
also considered Soft Operational Research or
Problem Structuring methods. On the other hand,
quantitative SD modelling shares many aspects of
traditional simulation methods or Hard Operational
Research. Using SD quantitatively implies the devel-
opment of a 5-steps process (Sterman, 2000) that

starts with a dynamic hypothesis about a structure
responsible for the performance over time observed
in the system followed by the model formulation,
testing and experimentation. The next section dis-
cusses both approaches in detail.

One interesting characteristic of SD models is the
spectrum of model fidelity they cover (Morecroft,
2012). Figure 1 illustrates a spectrum of model fidel-
ity and realism. Models range in size from large and
detailed to small and metaphorical. On the left-hand
side are analogue, high-fidelity models epitomised
by aircraft flight simulators used to train pilots and
to rehearse crisis scenarios. They are constructed
with realistic detail and accurate scaling to provide a
vivid and lifelike experience of flying the aircraft
they represent. People typically expect business and
social models to be similarly realistic; the more real-
istic the better. Realistic high-fidelity models are dis-
cussed later in this subsection. But very often
smaller models are extremely useful, particularly
when their purpose is to aid communication and to
build shared understanding of contentious problem
situations in business and society. As Figure 1 sug-
gests, the spectrum of useful models can include
illustrative models (of limited detail yet plausible
scaling) or even tiny metaphorical models (of min-
imal detail yet transferable insight).

At the other end of the spectrum, on the far right,
is a low fidelity Romeo and Juliet simulator
(Morecroft, 2010). This particular simulation model
contains just four main concepts: Romeo’s love for
Juliet, Juliet’s love for Romeo and the corresponding
rates of change of their love. It is used as a meta-
phorical model or transitional object to help under-
graduates and high school students to better
understand something complex and abstract – differ-
ential equations or even Shakespeare’s play. Clearly, a
simulator cannot possibly replicate Shakespeare’s
play, but it can encourage students to study the play
more closely than they otherwise would. It is this
metaphorical property of small models – to attract

Figure 1. Modelling and realism: a spectrum of model fidelity. Adapted from Morecroft (2015), Chapter 10.
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people’s attention, to encourage them to reflect and
debate – that often underpins their value to model
users. Sometimes metaphorical models enable client
engagement. One could say that ‘small is beautiful’ in
the world of policy and strategy modelling. Over the
years SD studies have included models and simula-
tors that cover the entire range. See Kunc (2017b) for
a sample of papers published in the Journal of the
Operational Research Society and Kunc et al. (2018)
for a study on published SD models.

2.22.1. Qualitative system dynamics
The main objective of qualitative SD involves dis-
covering the structure, in terms of feedback loops,
driving the dynamic behaviour of key variables, usu-
ally with clients through facilitated workshops. The
main tool employed in qualitative SD modelling is
causal loop diagram (CLD). The steps for develop-
ing a CLD are (based on Kunc, 2017a):

1. Understanding the direction of causality
between two variables. Interestingly, it is a
source of important discussion among partici-
pants in facilitated qualitative SD modelling.

2. Defining polarities involves identifying the rela-
tionships between two variables as either posi-
tive (same sense of direction of change) or
negative (opposite sense of direction of change).

3. Identifying feedback processes responsible for
the dynamic behaviour of variables. They ori-
ginate from connecting variables in a circular
chain of cause-and-effect. There are two types
of feedback process: reinforcing and balancing.

Finally, Table 1 shows description of the model-
ling process

2.22.2. Quantitative system dynamics
Quantitative System Dynamics characterises the sys-
tem behaviour using a set of accumulation processes
linked through feedback processes. The structure of
the model is represented through stocks and flows
diagrams. The numerical results, which are deter-
ministic and continuous, aim to replicate past sys-
tem behaviour through calibration and testing
processes before the model is used to test interven-
tions in the system. Table 2 presents a summary of
the modelling process.

2.22.3. Application areas
a. Behavioural modelling: There are three main

areas of application. Firstly, research in decision
making under dynamic complexity focused
on identifying and documenting systematic mis-
perceptions of feedback in decision making
processes across multiple industries and envir-
onmental conditions using SD models (Gary
et al., 2008; Atkinson & Gary, 2016). Secondly,
experimental studies explore decision making
and performance using management flight sim-
ulators or microworlds based on SD models
(Gary et al., 2008; Sterman, 2014). Thirdly, indi-
vidual experimental work using SD models
examines how differences in mental model
accuracy and decision rules lead to differences
in the performance (Torres et al., 2017).
Recently, scholars have advocated for a practice
of behavioural system dynamics (Lane &
Rouwette, 2023).

b. Group model building: There is a wide body of
research on model conceptualisation in groups;
see Rouwette et al. (2010), where the outcome is
either qualitative or quantitative SD models.
Researchers have assessed the effects on commu-
nication, learning, consensus and commitment

Table 1. Qualitative SD modelling process based on Kunc (2017a).
Modelling process Qualitative SD

Objective Understand the feedback structure of the system.
Inputs Text data obtained through facilitated face-to-face meetings, interview or the interpretation of causal mechanism in

reports and from theories.
Process The modelling process implies the construction of CLD to represent individual and/or group-level interpretations of

causal links. Facilitation processes are critical to uncover the causal links.
Outputs There are three main outputs: learning about the structure of the system, changes in participants perspectives, and

agreement on future policies.

Table 2. Quantitative SD modelling process based on Kunc (2017a).
Modelling process Quantitative SD

Objective Test a hypothesis about the structure driving the reference mode of a variable.
Inputs Text data obtained through facilitated face-to-face meetings, interview or the interpretation of causal mechanism in

reports and from theories to determine the structure. Numerical data for the model can come from three sources:
judgement from experts or managers, numerical data sets and facilitation processes for nonlinear functions.

Process After defining the boundary of the model, a stock and flow diagram is developed to represent the structure of the
system. Equations are formulated for each variable and parameters entered. Testing of the structure and outputs
are performed to confirm the model structure replicates the behaviour observed in the key variables.

Outputs There are three outputs: time series showing performance over time; performance over time of policies or
interventions in the system; and learning about the dynamic behaviour of the system.
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in the behaviour of groups, as well as measuring
the changes in mental models and understanding
the impact of group model building in terms of
persuasion and attitudes (Rouwette, 2016).

c. Multi-scale high-fidelity systems modelling: SD
modellers are embracing new approaches to
improve the scale and fidelity of their models to
move from aggregate conceptual models into
realistic detailed models supported with specific
data. There are multiple considerations to
develop high-fidelity models (Sterman, 2018).
Firstly, these models represent heterogeneous
actors in the system, which involves disaggre-
gating single stocks into multiple stocks reflect-
ing their differences across dimensions (e.g.,
age). While this solution increases granularity
in the model, it also implies increasing compu-
tational burden and long simulation times, which
can limit the ability to perform sensitivity ana-
lysis, change structure and test interventions by
stakeholders. Secondly, high-fidelity models
reflect business and social processes in detail fit-
ting the data. Therefore, models may move from
the traditional representation of time, continu-
ous, to discrete; from state continuous variables
or discrete variables; and include uncertainty
using stochastic variables. Consequently, SD
models can employ ordinary differential equa-
tions, stochastic differential equations, discrete
event simulations, agent-based models and
dynamic network models. Thirdly, multiscale
modelling involves integrating models working
at different temporal scales (e.g., fast and slow
dynamics). Fourthly, since SD models tend to
employ qualitative data (e.g., decision making
rules), modellers should identify and mitigate
biases in sample selection and data elicitation to
collect robust qualitative data. Fifthly, quantita-
tive data should have a clear purpose in terms of
the model, so specific data related to the prob-
lem the model is solving has to be collected
rather than accepting only available numerical
data. Sixthly, high-fidelity models should con-
sider parameter estimation and model analysis
extremely necessary to replicate historical data.

d. SD and Artificial Intelligence (AI): Since abun-
dant information is available in different forms
(images, text, and numbers), there is a need for
technologies that not only predict data but also
learn from the environment such as AI
(Baryannis et al., 2019). AI can be used for cog-
nitive thinking, learning from behaviour, recall-
ing, and drawing inferences (Min, 2010). SD
models use inferences of the casual structure in
system to predict future trends or test interven-
tions (e.g., new policies). SD can combine with

AI to generate AI-driven simulations based on
machine-learned and mathematical rules to make
more accurate models (Li et al., 2022b). Another
use is the employment of AI methods to interpret
the results of simulations, especially feedback
loop dominance in complex SD models.

2.22.4. Future of system dynamics research
The future of SD may be driven by developments in
several on different areas. Firstly, SD can be used as
a problem structuring or systems thinking method
(in terms of qualitative SD) so improvements in
terms of facilitation will be critical. Secondly, when
SD is an aggregated simple model that helps model-
ler and client to learn about dynamic complexity,
improvements in terms of impact on behaviour
from using the model (Kunc et al., 2020) will be
expected. Thirdly, SD can be high fidelity systems
models using all the toolkit available in terms of
simulation methods and AI. The next section on
systems thinking (§2.23) looks at other systems
methodologies for different purposes.

2.23. Systems thinking38

‘Systems thinking’ involves us viewing complex
problem situations and possible human responses to
them using systems theories, methodologies, meth-
ods and concepts. We will start this section by pre-
senting a contemporary understanding of what a
‘system’ is. An explanation of how systems thinkers
use this understanding to support action to address
or prevent complex problems will then follow.
Subsequently, we will review 70þ years of systems
thinking to show how we got to this contemporary
understanding via three ‘waves’ of methodological
development.

2.23.1. What is a system?
A system is made up of a set of interrelated parts,
with emergent properties (Emmeche et al., 1997). An
emergent property is a feature that cannot be traced
back to any single part of the system, so can only be
understood as arising from the whole (all the parts
and interrelations together). Systems have bounda-
ries: we can say what is inside and outside the sys-
tem (Ulrich, 1994), although some interactions may
cross these boundaries (von Bertalanffy, 1968).
However, systems are always seen from the perspec-
tive of an observer/participant (Churchman, 1979;
Cabrera et al., 2015). Indeed, there can be multiple
perspectives on the boundaries of the system, what
interrelationships (within the system and with its
environment) need to be considered, what emergent
properties matter, and what other perspectives
should be heard.
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2.23.2. What is systems thinking?
Based on the above understanding of systems, we
can now explain systems thinking. It is taking a sys-
tems approach to rethinking the taken-for-granted
assumptions of decision makers, OR practitioners
and stakeholders on what perspectives, boundaries,
interrelationships and/or emergent properties matter
in a given situation, and what the implications are
for action. Many systems thinkers use the adjective
‘critical-systemic’: thinking is systemic because of the
use of the above systems concepts, but it is also crit-
ical because it involves rethinking options for
understanding and action in relation to the deploy-
ment of these concepts (Ulrich, 1994; Gregory et al.,
2020).

2.23.3. Three waves of systems methodology
Since the 1950s, there have been three ‘waves’ (or
successive paradigms) of systems methodology,
although the second and third waves didn’t fully
replace their predecessors: some groups of practi-
tioners stuck with earlier ideas. The first wave
was typified by early work in systems engineering
(e.g., Hall, 1962; Jenkins, 1969), systems analysis
(e.g., Miser & Quade, 1985, 1988), system dynamics
(e.g., Forrester, 1961, see also §2.22), and organisa-
tional cybernetics (e.g., Beer, 1966, 1981). The first
wave emphasised quantitative computer modelling
by experts serving clients. These experts explained
emergent properties of systems by understanding
interrelatedness, and then deployed these explana-
tions to make recommendations to clients on the
possible consequences of strategic and tactical
decisions.

In terms of the definition of a system presented
earlier, systems were seen as real-world entities; the
emphases were on interrelationships and emergent
properties; boundaries were relevant because model-
ling had to account for all the parts and interrela-
tionships in a system that are needed to understand
given emergent properties; but multiple perspectives
were often bypassed, rather than listened to, in the
interests of objectivity or impartiality.

Almost all the first-wave methodologies regarded
models as representations of reality, with people
often being viewed as deterministic parts of systems
being modelled rather than self-conscious actors
who can change their purposes (Ackoff, 1979a).
Indeed, stakeholder purposes can differ significantly
from those of the systems modeller and his/her cli-
ent, and ignoring this can create conflict that under-
mines an OR project (Checkland, 1985). Some
critics (e.g., Hoos, 1972; Lee, 1973) argued that mas-
sive investments in large-scale modelling were
wasted because systems practitioners tried to be
comprehensive (e.g., modelling all interacting

problems at the city scale), yet they didn’t suffi-
ciently account for the actual questions that decision
makers wanted to address—more modest modelling
for specific purposes would have been better.
Worse, the typical response to project failures was
to say that the models were not comprehensive
enough, so the ideal of comprehensiveness remained
unquestioned (Lilienfeld, 1978).

These criticisms led to a second wave of systems
methodologies focused on stakeholder participation,
qualitative modelling and dialogue for collaborative
learning. The idea of producing expert recommen-
dations was replaced by a facilitation role for the
practitioner, so multiple stakeholders could develop
and integrate their ideas into proposals for change.
Modelling shifted from a focus on real-world sys-
tems to understanding stakeholder perspectives,
which could help people develop better mutual
understanding and agree broadly-acceptable ways
forward. Second-wave methodologies included soft
systems methodology (Checkland, 1981), strategic
assumption surfacing and testing (Mason & Mitroff,
1981), interactive planning (Ackoff, 1981) and inter-
active management (Warfield, 1994). Several earlier,
first-wave methodologies were transformed in the
second wave to become more participative, most
notably system dynamics (e.g., Vennix & Vennix,
1996) and organisational cybernetics (e.g., Espejo &
Harnden, 1989).

It was during the second wave that the definition
of a system was expanded to recognise that all sys-
tems are understood from a perspective. Boundaries
were no longer considered the real-world edges of
systems, but instead marked what people include in
or exclude from their deliberations (Churchman,
1970). There was a shift away from seeing systems
as real-world entities to viewing them as useful ways
of thinking to structure interpretations, either of the
world or of prospective actions to change that world
(Checkland, 1981).

However, this second wave came to be critiqued
by a third wave of systems thinkers. Two issues came
to the fore. First, a bitterly-entrenched paradigm war
between first- and second-wave systems thinkers was
sparked by the emergence of the second wave
(Jackson & Keys, 1984). In response, there were
many third-wave proposals for methodological plural-
ism: drawing creatively from both first- and second-
wave methodologies, and reinterpreting methods
through new frameworks or guidelines for choice.
The idea was to refuse the forced choice between
first- and second-wave thinking, and embrace the
best of both. This gave us a more flexible and
responsive practice than either of the previous two
waves could deliver (e.g., Jackson, 1991; Mingers &
Gill, 1997). Much of the work on methodological
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pluralism was developed under the banner of ‘critical
systems thinking’ (Flood & Jackson, 1991b; Flood &
Romm, 1996; Jackson, 2019).

The second issue identified in the third wave was
that earlier approaches were relatively naïve with
respect to power relations. The first-wave assumption
that the practitioner and/or client knows best could
result in the coercive imposition of ‘solutions’ and/or
a lack of stakeholder buy-in, which would frustrate
implementation of recommendations for change (e.g.,
Jackson, 1991; Rosenhead & Mingers, 2001). Also,
there was a second-wave, practice-limiting belief that
stakeholder participation in dialogue, in and of itself,
allows the better argument to prevail. This overly
minimises problems of bias, coercion, groupthink,
deceit, ideological framing and disempowerment
(Mingers, 1980, 1984; Jackson, 1982).

A seminal, third-wave response to the power
issue was Ulrich’s (1987; 1994) critical systems heu-
ristics. Ulrich’s central idea is being critical of the
boundary judgements made by decision makers,
including the OR practitioner him/herself. Nobody
can have a comprehensive viewpoint, so boundaries
are inevitably set with reference to the purposes and
values of decision makers. However, too often,
boundary judgements are taken for granted, so deci-
sion makers (often unknowingly) foist their norma-
tive assumptions on those affected by their
decisions, and the latter’s voices are not heard.
Ulrich encourages those involved in and affected by
an OR project to reach agreement in dialogue on
the key assumptions upon which that project should
be based. However, when dialogue is avoided by
decision makers, those affected by their ideas have
the right to make a ‘polemical’ case to embarrass
the decision makers into accepting discussion. The
key principle is preventing powerful stakeholders
(decision makers and ‘experts’, including the OR
practitioner) from simply taking their boundaries
and values for granted and imposing them on
others.

Following Ulrich (1994), Midgley et al. (1998)
then reviewed all the second- and third-wave work
on boundaries, and proposed a broader theory and
practice of boundary critique. This encourages the
practitioner to explore different possible boundaries,
purposes and values in an OR project, and also to
uncover conflicts (Midgley & Pinz�on, 2011) and
processes of marginalisation (Midgley, 1992).
Midgley et al. (1998) argue that boundary critique is
necessary in all projects dealing with complex issues,
as there are likely to be initially-hidden elements of
the situation that need to be accounted for. Indeed,
even deciding whether a problem situation should
be viewed as complex or not requires some up-front
boundary critique.

In terms of the definition of a system given ear-
lier and its implications for systems thinking, this
work deepened our understanding of boundaries:
taken-for-granted boundaries can reflect the struc-
tural entrenchment of power relations in our organ-
isations, institutions and wider society (Jackson,
1985), which can cause major socio-political and
environmental issues (Midgley, 1994). Therefore,
third-wave systems thinkers started talking about
evolving stakeholder perspectives and structural
relationships: doing either without the other can
result in systemic resistance to change (Gregory,
2000). However, the starting point for intervention
(following an initial boundary critique) is usually
stakeholder perspectives because it is the stakehold-
ers themselves who can then turn their attention to
structural reform (Boyd et al., 2007). Here we see the
co-existence of both the first-wave understanding of
real-world systems and the second-wave emphasis on
stakeholder perspectives. Methodological pluralism
makes perfect sense in this context, as some
approaches are particularly useful for evolving stake-
holder perspectives (e.g., Checkland, 1981), and
others support intervention in organisational and
institutional structures (e.g., Beer, 1981). Both can be
integrated into an OR project design (e.g., Sydelko
et al., 2021, 2023).

Eventually, research on methodological pluralism
and boundary critique was integrated into a new
‘systemic intervention’ approach by Midgley (2000).
He recognised that boundary critique could support
deep diagnoses of problem contexts, and these diag-
noses could then inform the design of OR projects,
drawing creatively upon methods from both previ-
ous waves of systems thinking and from other tradi-
tions. This work unified the different strands of
third-wave methodology.

Recently, however, there have been discussions
about whether a fourth wave is forming. Current
research foci include whether a universal theory of
systems thinking is possible and necessary (Cabrera
et al., 2023); how to construct a simple narrative of
systems thinking to effectively communicate our
work (Midgley & Rajagopalan, 2021); how arts-
based methods can enhance practice (Rajagopalan,
2020); and what we can learn from neuroscience to
inform methodological development (Lilley et al.,
2022). It remains to be seen whether addressing
these issues will extend the third wave or launch a
fourth wave of systems thinking.

2.24. Visualisation39

Visualisation, the graphic (and often interactive) dis-
play of quantitative or qualitative information, has
established itself not only as a powerful working
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modality for many management and engineering
contexts (Basole et al., 2022; Lindner et al., 2022),
but also as a research field (and research method) in
its own right (Eppler & Burkhard, 2008). In this
subsection we briefly review the visualisation field,
its relevance for Operational Research (including its
benefits and caveats), its various types and applica-
tion contexts, its theoretical perspectives and
approaches, as well as its likely future evolution.

Why care about the graphic representation of
information, especially for Operational Research?
The short answer that research has provided over
the last decades to this question is that it provides
numerous cognitive, emotional, and social benefits
and thus improves our individual and collective
ability to make use of information. These benefits
include a quicker comprehension of information
(Kress & Van Leeuwen, 2006), the detection of
important patterns (Bendoly & Clark, 2016), the
ability to better discuss information (Bendoly &
Clark, 2016; Meyer et al., 2018), or the greater recall
of information (Paivio, 1990; Childers & Houston,
1984).

The visual representation of information is not,
however, without risks or potential disadvantages
(see Bresciani & Eppler, 2015; Basole et al., 2022).
Visualisations can be misleading, manipulating,
oversimplified, biased, or simply confusing or over-
whelming. If, for example, the y-axis of a line chart
has been cropped, a small improvement may be
mistakenly interpreted as a substantial one. The cor-
rect interpretation of information may also require
what is often referred to as visual literacy (including
data and information literacy, see Locoro et al.,
2021) on behalf of the viewers. A diagram is some-
times worth ten thousand words (Larkin & Simon,
1987), but at times it requires that many words of
explanation to properly understand it.

To avoid such risks, professionals need to choose
the right visualisation format for the task at hand
and use it diligently and in line with existing guide-
lines (such as those made popular by Tufte, 2001)
and our perceptual preferences (Ware, 2020). There
is research on both of these questions, i.e., on the
available types of visualisation (Shneiderman, 1996;
Chi, 2000) and on their proper use (see for example
Ware, 2020).

In terms of segmenting the different kinds of
graphic representations for operations management
contexts, one can, at the highest level, differentiate
between quantitative and qualitative information
visualisation. This distinction is based on the type of
information that is represented: in the case of num-
bers or data this is referred to as quantitative visual-
isation. Typical examples of this genre of
visualisation are business intelligence dashboards or

simple overhead slides with bar and pie charts. Pie
charts, however, are perceptually problematic, as we
cannot visually distinguish pie section sizes accur-
ately, let alone compare them in different pie charts.
In the case of concepts, arguments, ideas, or issues
this is often labelled as qualitative visualisation.
Argument mapping (Bresciani & Eppler, 2018) is
one approach within this group that is already used
in different management contexts. Whereas quanti-
tative visualisation is mostly software-based, qualita-
tive visualisation can be done on paper, walls,
flipcharts, and other physical media.

There are, of course, also instances of mixed visu-
alisations that combine quantitative information and
qualitative insights in a single image (see Eppler &
Kernbach, 2016, for such combined representations).
An example of such a hybrid visualisation would be
a business intelligence dashboard (consisting of
charts) that reveals conceptual diagrams through
mouse-over comments (or vice versa).

The aforementioned distinctions are part of one
tradition of visualisation research, namely the classi-
ficatory or taxonomic approach (see, for example,
Shneiderman, 1996). This research stream or visual-
isation perspective aims at providing a systematic
and comprehensive overview on all forms of infor-
mation visualisation that are useful for the engineer-
ing or management sector.

Another theoretical framing of the visualisation
field comes from the literature on graphic represen-
tations as boundary objects that span professional
frontiers and connect expertise across disciplines –
through the help of joint visual displays (Black &
Andersen, 2012). This stream of literature empha-
sises the dual nature of visualisations to be simul-
taneously fixed and fluid, clear and open to multiple
interpretations or functions (for example the blue-
print chart of a building or the Gantt chart for a
project).

A third influential approach to make sense of the
use and impact of visualisation in workplace settings
is the cognitive or collaborative dimensions
approach (Green et al., 2006; Bresciani & Eppler,
2018). This theoretical lens sheds light on the differ-
ent qualities of graphic representation that make
them more or less suited to be collaboration cata-
lysts—for example based on their (procedural or
representational) clarity, unevenness or facilitated
insight.

A similar theoretical perspective is the affordance
approach (Meyer et al., 2018), that highlights the
different cognitive ‘invitations’ or incentives that vis-
ualisations can provide, such as their attention grab-
bing effect, their interpretive flexibility or their story
telling potential.
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Another influential research stream focuses not
on how images are best designed for their applica-
tion contexts, but on how they are appropriated and
interpreted. Many researchers with this research
stream employ a semiotic approach to the study of
visualisation based on the seminal work by Kress
and Van Leeuwen (2006). This approach is also
informed by (research-based) insights into our per-
ception of visual information, but additionally
enriched by the conventions and (cultural) tradi-
tions that govern our interpretation processes of
graphic symbols.

There are of course many other research streams
discussing the design and use of visualisation in
management or engineering contexts. While some
of them focus on particular visualisation formats,
such as diagrams, maps, 3D models, or sketches,
others focus on certain application contexts, such as
(big data) analytics, creativity and innovation, pro-
duction simulation, or planning. This brings us to
the actual application contexts of visualisation.

When are the visualisation formats and perspec-
tives described above mostly used? Typical applica-
tion contexts for information visualisation are
strategising (Eppler & Platts, 2009) and planning
sessions of managers and experts (for example with
the help of Gantt charts or technology roadmaps
(Blackwell et al., 2008), risk analysis (Eppler &
Aeschimann, 2009), ideation and problem solving
workshops (using mind mapping, argument map-
ping, or simple sketching) in product development
and business model innovation contexts (using can-
vases and other visual framerworks), training and
development (including knowledge transfer and
retention), as well as for performance management,
simulations and forecasting or scenario workshops.
Last but not least, visual methods are also used as
research tools in their own right (Comi et al., 2014)
to enable better access to practitioners’ expectations,
experiences, or priorities (Bell & Davison, 2013).

Many new application contexts are currently
emerging within the realm of Operational Research
and management, including new forms of visualisa-
tion. These novel forms include trainings and simula-
tions in three dimensional immersive settings such as
the Metaverse or augmented reality visualisations for
simulations or assisted on-site decision making or
operations. Another fascinating recent phenomenon
consists of images created by artificial intelligence
based on user instructions (such as DALL-E or similar
systems). Such artificially created, at times photo-real-
istic images, can help (for example) in the ideation,
service innovation, or product development context.
The rise of artificial intelligence also impacts the inter-
pretation of information visualisation: A case in point
are data visualisation packages (such as Tableau or

PowerBI) that (through AI) already assist the user in
the exploration and interpretation of the provided
data charts and suggest areas for deeper analysis. The
visualisation field is thus a highly dynamic area with
great promise, both in terms of its methodological rep-
ertoire as well as its application scope.

3. Applications

3.1. Auctions and bidding40

The 2020 Nobel Prize in Economics was awarded to
Paul Milgrom and Robert Wilson for their improve-
ments to auction theory and inventions of new auc-
tion formats. Their theoretical discoveries have
improved auctions in practice and benefited sellers,
buyers and taxpayers around the world (RSAS
2020).

An auction is usually a process of selling and/or
buying goods or services that are up for bids. A bid
is a competitive offer of a price and/or quantity tag
for a good or service. Auction is a particular way to
determine prices and allocation of goods or services.

Auctions have been used since antiquity for the
sale of a variety of objects. Today, both the range
and the value of objects sold by auction have grown
to staggering proportions (Krishna, 2010). The con-
texts within which auctions are applied include art
objects, antiques, rare collectibles, expensive wines,
numerous kinds of commodities, livestock, radio
spectrum, used cars, real estate, online advertising,
vacation packages, wholesale electricity and emission
trading, and many more.

In the basic economic model, the price of a good
or service is obtained when the supply and demand
meet and it is normally an equilibrium value after
adjustments over time. However, in some situations
such adjustments cannot be made to reach an equi-
librium. As Haeringer (2018) points out, auctions
are commonly used when (a) sellers and/or buyers
have little knowledge of what would be the “right”
price (e.g., a tract of land with an unknown amount
of oil underground); (b) the supply is scarce (e.g.,
an art painting); (c) the quantity or quality of the
good changes very frequently (e.g., electricity or
fish); and (d) transaction frequency is low (e.g.,
radio spectrum).

Bidders behave strategically. Based on the avail-
able information, what they know themselves and
what they believe other bidders to know, it is diffi-
cult to analyse the outcomes of different bidding
rules. This is where auction theory comes in, which
is closely linked to many other domains of oper-
ational research, such as game theory (§2.11),
behavioural OR (§2.2), combinatorial optimisation
(§2.4), computational complexity (§2.5), linear pro-
gramming (§2.14) and integer programming (§2.15).
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3.1.1. Key concepts and results
As detailed by Haeringer (2018), an auction consists
of the following component rules: (a) bidding for-
mat (e.g., a price, a price and a quantity, a quantity
only, or a list of items if more than one item are for
sale); (b) bidding process (e.g., auction stopping cri-
teria and information for bidders); and (c) price and
allocation (i.e., auction winner(s) and the final
price(s)).

In studying auctions, it is important to bear in
mind the underlying model of valuation, the values
attached to the objects by individual buyers and/or
sellers. If the value, though unknown at the time of
bidding, of an object is the same for all bidders,
then the evaluation is of a common value. More
generally, in situations of private values, the value of
an object varies from one bidder to another. These
values can be independent or interdependent.

If there is only one item to be sold, we have the
most basic auction. Some common forms of such
simple auctions are well known. In an open-outcry
auction, an auctioneer takes bids from the partici-
pants and at some point of time a winner is
declared, who will then pay for the item at some
price related to the bids. If all bids follow the
dynamics of ascending prices and the winner is the
highest bidder, who pays his bidding price, then we
have an English auction. In the case of private val-
ues, the English auction is strategically equivalent to
the second-price sealed-bid auction (Krishna, 2010),
in which bidders submit written bids without know-
ledge of other bids. The highest bidder wins but
pays the price that is the second highest in the auc-
tion. On the other hand, if the auctioneer in an
open-outcry auction begins with a high asking price
(in the case of selling) and lowers it until some par-
ticipant accepts the price (or until it reaches a pre-
determined reserve price), then we have a Dutch
auction. This type of open-outcry descending-price
auction is most commonly used for goods that are
required to be sold quickly such as flowers, or fresh
produce (Mishra & Parkes, 2009), as it has the
advantage of speed since a sale never requires more
than one bid. The Dutch auction is strategically
equivalent to the first-price sealed-bid auction
(Krishna, 2010), which is the same as the second-
price sealed-bid auction except that the winner pays
his bidding price.

If there are multiple homogeneous (resp., hetero-
geneous) items to be sold, we have a multiunit
(resp. combinatorial) auction.

One of the most important results in auction the-
ory is the revenue equivalence theorem (Heydenreich
et al., 2009; Nisan, 2007), which in its simple form
states that when bidders’ valuations are private and
uniformly distributed, the expected revenue of the

seller is the same in the English (or second-price)
and Dutch (or first-price) auctions.

In a forward auction, a number of buyers com-
pete to obtain goods or services from one seller
(e.g., spectrum auction). In contrast, in a reverse
auction, a number of sellers compete to obtain busi-
ness from one buyer (e.g., electricity capacity mar-
ket). In a double auction, there are multiple sellers
and multiple buyers (e.g., wholesale electricity mar-
ket). Potential buyers submit their bid prices and
potential sellers submit their ask prices to the mar-
ket institution, which then chooses the price that
clears the market. At this price p, all the sellers who
asked no more than p sell and all buyers who bid at
least p buy.

The main issues that guide auction theory involve
a comparison of the performance of different auc-
tion formats. Naturally revenue is by far the most
common yardstick from the seller’s perspective.
However, if the auction concerns the sale of a pub-
licly held asset to the private sector, such as the case
of spectrum auction, efficiency may be more impor-
tant – the object ends up in the hands of whoever
values it most ex post, or in the more general case
of multiple items, the sum of realised values for all
participants is maximised. Besides, simplicity and
susceptibility to collusion among bidders are among
other criteria for the choice of an auction format
(Krishna, 2010).

3.1.2. Some best practices
One of the most important applications of auction
theory is the implementation of spectrum auctions
to allocate licenses to mobile phone carriers, who
act as buyers in the forward auction. One of the
auction formats introduced by Milgrom (1987) and
Wilson (1998) was first used in 1994 by the US
authorities to sell radio frequencies. This practice
has since spread globally and led to great benefit to
society.

There can be many ways for allocating licences in
general. In addition to an auction, it can proceed
either with a lottery in which any interested party
would just have to sign up possibly with an entry
fee, or with a beauty contest in which all those
wishing to obtain a licence are required to present a
case and the final winners would be selected by a
committee. Haeringer (2018) provides a detailed
argument why a lottery or a beauty contest is
inappropriate in the case of radio frequencies and
why an auction offers a more attractive solution.
There are a number of issues in selling licences of
spectrum, such as those concerning collusion,
demand reduction and lack of entry. Of particular
relevance for common-value auctions is the so-
called winner’s curse – the winner pays too much
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and loses out. Haeringer (2018) discusses how a
suitable format of an auction can be used to address
these issues.

A wholesale electricity market exists when com-
peting generators offer their electricity output to
retailers. Double auctions are normally used for
such a market (Mayer & Tr€uck, 2018). By its nature
electricity is difficult to store and has to be available
on demand. Consequently, unlike other products, it
is not possible, under normal operating conditions,
to keep it in stock, ration it or have customers
queue for it, so the supply should match the
demand very closely at any time despite the con-
tinuous variations of both (Weron, 2014, §3.19).
The supply uncertainty becomes particularly rele-
vant with an increased use of green energy (such as
solar, tidal, wind energy).

The electricity capacity market becomes necessary
to build and maintain electricity capacity that may
be called upon in time of need to maintain the grid
balance. In the UK’s system for purchasing Short
Term Operating Reserve (STOR) for electricity sup-
ply (National Grid ESO 2022), the National Grid
maintains a reserve generation ability in case of sud-
den demand or supply variations. Part of the operat-
ing reserve is made up by contracts through
auctions. In this market, the bids come as electricity
capacity, so the National Grid determines the right
amount of capacity to reserve from a competitive
tender. Tenders are assessed on the basis of avail-
ability prices and utilisation prices together with a
consideration of response times and geographical
locations. In this reverse auction, the National Grid
acts as the buyer, while individual electricity opera-
tors act as sellers. Extensive studies on such auctions
can be found in Chao and Wilson (2002) and
Schummer and Vohra (2003). More recently,
Anderson et al. (2017, 2022) investigate the problem
under more general settings. They show that a nat-
ural equilibrium is not only efficient but also opti-
mal for individual bidders.

The Internet is a new exciting venue for auctions
and eBay is certainly the most well-known auction
place on the Internet. Auctions on eBay face new
challenges due to the nature of the Internet, where
an auction can take days or even weeks and poten-
tial buyers can bid whenever they want. In response,
eBay uses proxy bidding wherein a computer pro-
gramme is used to bid on behalf of the bidder, who
enters an auction effectively with a maximum bid.
The computer programme raises rival bids by the
minimum increment set beforehand as long as it is
below the maximum bid. It is easy to see that such
an auction is effectively a second-price auction in
which the amount entered by the bidder serves as
the bidding amount. Ariely and Simonson (2003)

propose an analytical framework for studying bid-
ding behaviour in online auctions. Chothani et al.
(2015) provide an overview of online auctions.
Hickman (2010) analyses significant differences
between electronic auctions and non-electronic
auctions.

3.1.3. Closing remarks
There are many excellent surveys of auction theory
and applications. Milgrom (1985) and McAfee and
McMillan (1987) provide a cogent account of the
theory of single-object auctions and explain many
extensions and applications of the theory. Milgrom
(2004) provides a comprehensive introduction to
modern auction theory and its important new appli-
cations. Samuelson (2014) examines the use of auc-
tions, paying equal attention to theory and practice.
Haeringer (2018) and Kagel (2020) give respectively
an overview of empirical and experimental studies
on auctions. Cassady (1967) provides a colourful
and insightful overview of real-world auction
institutions.

3.2. Community operational research41

Community Operational Research (COR) reflects
the aspirations of OR’s early theorists and practi-
tioners of “science helping society” (Cook,
1973/1984, p.36). There is a long tradition of COR
practice that includes Ackoff’s, 1970 engagement
with members of the Mantua ghetto in Philadelphia,
Cook’s projects with inner-city community organisa-
tions (Cook, 1973; Luck, 1984), Beer’s work with the
Allende Government in Chile (Beer, 1981), and
numerous projects undertaken from the University
of Bath (Jones & Eden, 1981; Sims & Smithin,
1982). See Jackson (2004) and Rosenhead (1993) for
a discussion of such work. Although these early
examples of COR are significant, they were far from
the norm as a focus on “science helping the estab-
lishment” predominated (Cook, 1973, 1984, p.36).
In recognition of this, Rosenhead (1986) posed the
question of “who O.R. worked for (“custom”)”
(p.335) in his inaugural address as President of the
UK’s Operational Research Society. Rosenhead
answered his own question in stating that the cus-
tomers were, in the main, “big business, public util-
ities, the military and central government
departments, with a thin scatter of local govern-
ments and health and other public authorities”
(p.336) to the neglect of other groups “located out-
side the power structure” (p.337). Rosenhead (1986)
not only discussed the custom of OR, but also
tackled the related issue of practice in asserting that
“The evolved forms of tools reflect the circumstan-
ces of their use” (p.338). Hence, mainstream OR’s
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focus on quantification and modelling reflected its
customers’ privileging of technical matters over dia-
logue between stakeholders and issues of emancipa-
tion (Rosenhead, 1993, drawing on Habermas,
1972), and involved the use of OR methods “beyond
the comprehension of most people” (Rosenhead,
1986, p.339), effectively masking the social and
value-laden nature of much decision making. In
contrast, concerns for better mutual understanding
in society and freedom from oppressive power rela-
tionships inspired the call for a more transparent
OR to support “a more lively, complex and elabor-
ate social process of decision-making” (Rosenhead,
1986, p.339).

Such was the impact of Rosenhead’s inaugural
speech and his efforts within the OR Society that
engagement with non-traditional clients quickly
became legitimised and formalised through the
founding of a research centre, the Community
Operational Research Unit, located at Northern
College, which later moved to its present location at
the University of Lincoln, UK. In the 1980s, the OR
Society also provided support for the Centre for
Community OR at the University of Hull (later to
be merged into the Centre for Systems Studies), and
the Community OR Network of around 300 OR
practitioners. The universities of Lincoln and Hull
continue to actively practice and promote COR.
More recently, in 2011, the OR Society created a
Pro Bono OR scheme that connects volunteer ana-
lysts with good causes42,43.

Given the multi-faceted and often complex nature
of COR projects, there appears to be no one par-
ticular OR approach that has emerged as dominant.
There are, though, three streams of complementary,
sometimes overlapping, approaches that have proven
useful in multiple reported cases of COR:

1. Problem Structuring Methods (PSMs) are a col-
lection of approaches that offer decision support
by “way of representing the situation (that is, a
model or models) that will enable participants
to clarify their predicament, converge on a
potentially actionable mutual problem or issue
within it, and agree commitments that will at
least partially resolve it” (Mingers & Rosenhead,
2004, p.531). The modelling effort may involve
clarification of normative agendas through dia-
logue, as PSMs are largely founded on interpre-
tivist or social constructivist epistemologies
(Jackson, 2006). For more on PSMs see §2.20.

2. Critical Systems Thinking (CST) and Critical
Systems Practice (CSP) focus on the distinction
of a broad range of problem contexts and the
development of systems-based methods appro-
priate to those contexts (Flood & Jackson,

1991a, 1991b; Mingers & Brocklesby, 1997).
Having a broad range of systems methodologies
to draw on is necessary but not sufficient for
good practice. Consequently, Jackson (2000)
encapsulated the notion of good practice in his
statement of three commitments of CSP: critical
awareness, relating to critique of the different
systems methodologies, and social awareness of
the societal and organisational context;
improvement, referring to the achievement of
something beneficial, reflecting a cautious
approach to the aspiration of universal liber-
ation; and pluralism, the need to work with
multiple paradigms without recourse to some
unifying metatheory. For more on systems
thinking, see §2.23.

3. Systemic Intervention (SI) developed out of
CST and took as its two primary concerns crit-
ical reflection on boundaries of inclusion and
exclusion (Churchman, 1970; Ulrich, 1983,
1987; Midgley, 2000) and methodological plur-
alism. Midgley (2000) defines SI thus: “If inter-
vention is purposeful action by an agent to
create change, then systemic intervention is
purposeful action by an agent to create change
in relation to reflection on boundaries” (p.129).
He shows how exploring boundaries informs
the methodological design of a project, with the
meaningful engagement of communities built
in. For more on SI see section §2.23.

These three streams of approaches have much in
common with action research (AR; Levin, 1994;
Midgley, 2000; Mingers & Rosenhead, 2004) and,
perhaps not surprisingly, AR has been a focus of a
lot of COR work. Indeed, the Community
Operational Research Unit explicitly articulated a
working philosophy of AR following the traditions
established in Latin America and Scandinavia
(Thunhurst, 1992). Over the years, a considerable
and diverse body of COR work has amassed, with
some contemporary and notable examples including
conference papers (e.g., Wong & Hiew, 2020), case-
based research papers (e.g., Rosenhead & White,
1996; Deutsch et al., 2022; Paucar-Caceres et al.,
2022; Pinzon-Salcedo & Torres-Cuello, 2022;
Chowdhury et al., 2023), journal special issues (e.g.,
Johnson et al., 2018), project reports (e.g., Stephens
et al., 2018) and edited books (e.g., Bowen, 1995;
Ritchie et al., 1994; Midgley & Ochoa-Arias, 2004;
Johnson, 2012a).

What counts as COR is not a simple matter
though, and there have been several papers over the
years that have critically discussed this (see for
example the different understandings reflected in
Midgley et al., 2018, and White, 2018). Importantly,
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Johnson and Smilowitz (2012) suggest that some
examples of COR might be more appropriately
classed as capacity-building instead of “applications
based on analytic models intended to provide spe-
cific policy and operational guidance to decision-
makers in a way that extends existing theory and
methods” (p.39). While some COR might indeed be
classed as capacity building (for example, Boyd
et al., 2007, are explicit that capacity building was
part of their project), it is important not to confuse
such interventions with those that are based on the
use of models of a qualitative rather than quantita-
tive nature. Indeed, the commitment to knowledge
being embedded within the client organisation
(Klein et al., 2007), handing over tools and techni-
ques (Gregory & Jackson, 1992a, 1992b; Boyd et al.,
2007; Gregory & Ronan, 2015) and self-organised
learning (Herron & Mendiwelso-Bendek, 2018) serve
to bring about capability-building alongside model
building and the use of analytical approaches at the
local level, which does not rule out modelling and
data analysis. The needs and skills of citizens and
associated groups have moved on since the 1980s,
such that the tools of OR (data and models) are not
so incomprehensible as they might previously have
been regarded, and are familiar to most if not all
citizens (Caulkins et al., 2008). Indeed, Hindle and
Vidgen’s (2018) work with the Trussell Trust on
mapping food bank data demonstrates that charities
can make good use of big data and data
visualisation.

Although there are examples of COR projects being
undertaken world-wide, sustained organised support
has been most evident in the UK and US. Johnson
(2012a, 2012b) brought renewed interest to the field in
the US with his promotion of a stream of activity that
goes by the title of Community-Based Operations
Research (CBOR). Johnson and Smilowitz (2012) define
CBOR as “a subfield of public-sector OR… that
emphasizes most strongly the needs and concerns of
disadvantaged human stakeholders in well-defined
neighborhoods. Within these neighborhoods, localized
characteristics vary over space and exert a strong influ-
ence over relevant analytic models and policy or oper-
ational prescriptions” (p.38). Complementary to the
remit of CBOR is the Institute for Operations Research
and the Management Sciences (INFORMS) Pro Bono
AnalyticsVR initiative44.

Whilst COR, CBOR and pro-bono OR may be
said to have a related remit, it is worth mentioning
a key difference, “COR takes as its remit to work
with (i.e., to take as its clients) disadvantaged com-
munity groups themselves” (Rosenhead, 2013,
p.610), whereas CBOR and pro-bono OR are more
focused on making OR and analytics available to
third sector and public organisations. This

distinction is not undisputed (Midgley et al., 2018),
but the important thing is that such efforts, geared
to meaningful community engagement, have not
only enabled community access to OR, but have
also provided a strong impetus for its theoretical
and methodological development in a way that hon-
ours the legacy of OR’s early founders.

As we have an increasing number of ways to con-
nect with others and form communities, it would be
easy to assume that, going forwards, COR merely
needs to develop new forms of practice to support
communities in these different realms. But, in a
VUCA (volatile, uncertain, complex and ambiguous)
world (Bennis & Nanus, 1985), we must be alert to
the need to challenge simple assumptions. Rather,
there is a good argument for a critical turn in COR
involving the explicit examination of underpinning
values and ethics (C�ordoba & Midgley, 2006;
Jackson, 2006). Midgley and Ochoa-Arias (2004)
have already claimed that “if practitioners do not
reflect on the different visions that it is possible to
promote, then there is a danger that they will
default to the understanding of community that is
implicit in the liberal/capitalist tradition” (p.259).
This brings with it missed opportunities to pursue
more challenging and empowering practices that
enable political activism and give some of the most
marginalised people in our society a meaningful
voice in OR projects. Much of COR has arguably
been quite tame, doing good in local communities
without challenging the political status quo (Wong
& Mingers, 1994), but in an era of climate change,
biodiversity loss, rising nationalism, insecure
employment, mass migration, and increasing wealth
inequality, a new, more critical agenda for COR is
urgently needed.

3.3. Cutting and packing45

Cutting and packing (C&P) problems are geometric
assignment problems, in which small items are
assigned to large objects such that a given objective
function is optimised and two basic geometric feasi-
bility conditions hold, specifically containment and
non-overlap. They appear in a wide range of set-
tings, but are most commonly investigated for appli-
cations in manufacturing and transportation. For
example, cutting pattern pieces from material or
packing boxes into containers. These are combina-
torial optimisation problems and NP-hard.
Depending on the size or geometry of the problem,
there exists strong formulations that can be solved
using exact methods. However, there remains many
open problems that have instances that cannot be
solved to optimality, or computational times are
impractical for applications in practice. Moreover,
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there are problems where bounds are weak and only
toy instances can be solved to optimality. As a
result, heuristics remain an important tool in C&P.

Given the wide variety of C&P problems,
Dyckhoff (1990) and later W€ascher et al. (2007)
defined a typology of problems using the following
dimensions:

3.3.1. Objective function
� Output maximisation: packing the greatest value

of items in a given fixed dimension finite num-
ber of large object(s).

� Input minimisation: pack all items using the
minimal number of fixed dimension objects or
the minimum size large object with at least one
unconstrained dimension.

3.3.2. Assortment of small items (items to be
packed)
� All items are identical.
� Weakly heterogeneous: few item types given the

total number of items.
� Strongly heterogeneous: many item types that are

unique or have few copies.

3.3.3. Assortment of large items
� Single large object: fixed dimension for output

maximisation, open dimension(s) for input
minimisation.

� Multiple large objects: fixed dimension, either
identical or heterogeneous.
These distinctions lead to named problem types,

e.g., bin packing problems (BPP) are input mini-
misation problems, with strongly heterogeneous
small items and multiple large objects, while a knap-
sack problem (KP) shares the same characteristics
but is an output maximisation problem. Note that
problem names and their definitions are not univer-
sally accepted or consistently used, so researchers
should check the articulated problem definition in
the paper when selecting literature.

The following focuses on two-dimensional (2D)
and three-dimensional packing (3D) as these include
the unique challenges of the geometric constraints
associated with C&P problems. One-dimensional
(1D) problems remain interesting and challenging
(see Martinovic et al., 2018; Munien & Ezugwu,
2021). For an introduction to C&P, see Scheithauer
(2017).

3.3.4. Geometry
Handling the geometric characteristic of C&P prob-
lems adds significantly to the computational burden
and the number of variables needed in a model.
These increase with the spatial dimensions and with
the irregularity of the shape of the small items. For

1D problems, the geometric constraints of overlap
and containment are trivial. Regular shapes (rectan-
gles, boxes, circles, spheres) add complexity through
additional item location variables x, y (and z) co-
ordinates, and dimensions: length, width (and
depth). However, the common characteristics of the
shape mean these are straightforward to model.
Pairwise constraints between items and between
each item and the boundary of the large object
ensure feasibility.

In the case of irregular shaped items, accurate
non-overlap constraints cannot be reduced to com-
paring a set of common dimensions. While the item
location is still determined by a defined origin, the
arbitrary nature of the shape significantly increase
the complexity of assessing geometric feasibility. At
a basic level, it requires testing for edge intersections
between items and containment of one item inside
another. Methods to reduce the complexity include
the nofit polygon, raster method and phi-functions
in 2D and voxels and phi-functions in 3D. Bennell
and Oliveira (2008) provide a tutorial in geometric
methods for 2D nesting problems. Lamas-Fernandez
et al. (2022) describe approaches for modelling 3D
geometry. Developing solution methods for irregular
packing problems requires a comprehensive, fast
and robust geometry library.

3.3.5. Constraints
There exists a wide range of practical constraints
arising from the applications. These may relate to
the material being cut having defects or quality vari-
ability, the cutting tool requiring space between
items or constraints on the types of cut. There may
be sequencing constraints or assignment constraints
that include precedence or prevent/require the pack-
ing of items together. In 2D rectangle C&P, a com-
mon requirement is guillotine cuts where all cuts
must be orthogonal and span the entire width or
breadth of the rectangular material sheet.
Furthermore, the number of alternate cuts (e.g., a
switch from vertical to horizontal cuts) may be
restricted. Applications in 3D container loading pro-
vide a challenging set of constraints on the arrange-
ment of boxes to ensure weight distribution,
horizontal and vertical stability of load and consider
the weight baring strength of the stacked boxes.
Bortfeldt and W€ascher (2013) describe the different
types of constraints and their adoption by
researchers.

3.3.6. Two-dimensional problems
In two dimensions, research has focused on rect-
angle packing problems, and irregular shape packing
problems, often called nesting problems. There is
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also a smaller body of literature on circle packing
(Hifi & M’Hallah, 2009).

Exact solution approaches to the 2D rectangle
packing problem are reviewed by Iori et al. (2021)
and cover the main problem types. The paper evi-
dences the recent advances in exact methods for
these problems while identifying a number of open
problems that remain very challenging. Specifically,
they identify the open-dimension problem, some
specific instances of BPP, and problems with mul-
tiple heterogeneous large objects. Moreover, nesting
problems remain a rich area of research for develop-
ing high fidelity and scalable exact methods.

Heuristics and metaheuristics are a natural choice,
particularly for problems with a large number of
small items. Early research focused on placement
heuristics such as First Fit and Next Fit for BPP
(Coffman Jr. et al., 1980), Bottom Left and Bottom
Left Fill for open dimension problems (Albano &
Sapuppo, 1980; Chazelle, 1983; Burke et al., 2004b).
These place items into the large object in a given
sequence according to the placement rule and observ-
ing any additional placement constraints. A natural
evolution of this approach is to apply a metaheuristic
to re-sequence the packing order to obtain better sol-
utions, of which there are many examples.

The 2D rectangle identical item packing problem
is known as the manufacturer’s pallet loading prob-
lem. Research is mature with exact methods and
heuristics that perform well across benchmark
instances. Silva et al. (2016) comprehensively review
these problems. Fewer papers have looked at the
case where the small item is irregular, for example
cutting metal blanks (e.g., Costa et al., 2009).

Output maximisation problems focus on the 2D
rectangle knapsack problem, with few articles consid-
ering problems with weakly heterogeneous data.
Problems cover guillotine and non-guillotine cutting
and item values may be equivalent to area or have
an assigned value. Furthermore, the constrained
variant places upper and lower bounds on the num-
ber of each item type placed. The guillotine variant
where area and value align has a fast exact method
(Oliveira & Ferreira, 1990). Non-aligned item values
and non-guillotine cutting is still challenging.
Cacchiani et al. (2022b) includes a summary of
2DKP. Packing a single large object is often a com-
ponent of a larger practical problem, where the
decision problem of whether a set of rectangles will
fit into a fixed dimension rectangle, referred to as a
2D orthogonal packing problem, is of interest
(Clautiaux et al., 2007).

Cutting stock problems have been studied for over
60 years with the seminal paper by Gilmore and
Gomory (1965) that described the column gener-
ation approach for 2D rectangle cutting stock

problem with guillotine cuts. Most papers focus on
ILP/MILP approaches. A notable feature of these
problems and how they differ from the BPP, is the
way solutions are constructed arising from the data
instances. Since there are few item types, but many
items of each type, the solutions are composed of
pattern types that are repeated across multiple stock
sheets leaving a residual problem of unmet demand.

Bin packing problems have been extensively
studied and include the guillotine and non-guillotine
variant. Lodi et al. (2014) provide a review of BPPs.
Early heuristic approaches (Berkey & Wang, 1987)
include two-phase algorithms that pack multiple bin
width strips and then solve a 1D BPP where the
item size is the height of the strip, while single-
phase algorithms pack directly into the bins either
using a level packing approach or a placement heur-
istic such as bottom-left. Increasingly, researchers
are focusing on exact methods; see for example
Pisinger and Sigurd (2007) who use branch and
price for variable size and fixed size bins. There are
very few examples of bin packing with irregular
shapes, where one example is glass cutting (Bennell
et al., 2018).

The open dimension problem variant is often
called the strip packing problem. This can be for-
mulated as a linear mixed integer programme,
although practical size problems are still very chal-
lenging. Martello et al. (2003) develop bounds by
relaxing the problem so it can be solved as a one
dimensional BPP. Placement heuristics (bottom left
and bottom left fill) based on sequencing of items
within a (meta)heuristic framework are widely used.
Hopper and Turton (2001) undertook an extensive
analysis of this type of approach.

Nesting problems, where the small items are
irregular, are commonly formulated as open dimen-
sion problems. Solution approaches are dominated
by the use of heuristics and metaheuristics. Bennell
and Oliveira (2009) provide a review of these meth-
odologies including using exact models to improve
local optima. This approach is also used by Stoyan
et al. (2016) who use phi-functions, which allow
orientation as a decision variable. In the last decade,
researchers have developed formulations that can be
solved to a global optimum for small problems.
Toledo et al. (2013) approximates the items and the
packing area to a discrete set of points allowing the
problem to be solved as a MIP model. Alvarez-
Valdes et al. (2013) used the nofit polygon to define
a finite set of convex spaces and used binary varia-
bles to activate constraints.

3.3.7. Three dimensional problems
These problems are solved across the range of prob-
lem types, largely considering single container

60 F. PETROPOULOS ET AL.



output maximisation, multi-container input mini-
misation and the open dimension problem. For
packing boxes, the mix of constraints addressed
across the literature is inconsistent and frequently
not congruent with industry standards. Solutions to
the problem focus on building walls, layers or blocks
of identical boxes. See Zhao et al. (2016) for a com-
parative review of algorithms including exact meth-
ods. Recent papers are now looking at the
additional constraints arising from a vehicle, such as
axle load and stability under breaking and acceler-
ation (see Ali et al., 2022). 3D packing of irregular
shapes is an open problem that had increasing rele-
vance in areas such as additive manufacturing.
Efficient handling of the geometry is a significant
factor in the solution approach along with the level
of fidelity required for the application.

3.3.8. Data
Across all problem types there are standard data
sets and data generators that provide a useful means
to test the effectiveness of solution approaches.
Many of these are listed on the EURO Special
Interest Group on Cutting and Packing (ESICUP)
website46.

3.4. Disaster relief and humanitarian logistics47

Humanitarian logistics (HL) is one of the key appli-
cation areas that Operational Research (OR) has
been offering solutions to improve the welfare of
the society under difficult circumstances.
Humanitarian logistics problems are highly relevant
in today’s world due to various challenges including
but not limited to, climate change and its conse-
quences (increases in extreme weather events such
as heatwaves, floods), natural disasters (e.g., earth-
quakes, tsunamis), man-made conflicts (e.g., Syria
and Ukraine crises) and health-related catastrophic
events (e.g., pandemics). Humanitarian logistics
operations involve complex systems with multiple
stakeholders such as victims, planners, public/private
service providers, volunteers, general public and
media, each with their own preferences and prior-
ities; and the inherently challenging decisions of
scarce resource allocation have to be made over a
long time span, under high uncertainty. We use
humanitarian logistics as an umbrella term, which
covers relief logistics, disaster logistics, and develop-
ment logistics. The humanitarian literature uses all
these terms interchangeably. Actually, disaster logis-
tics and relief logistics should refer to the cases
where a disaster is/was/is expected to be in action
whereas development logistics refers to cases which
aim to improve daily life.

In relief logistics, the operations require advanced
planning, hence the authorities are constantly facing
challenges in the four main stages of: mitigation,
preparedness, response, and recovery (Altay and
Green III 2006; Çelik et al., 2012; Kara & Savaşer,
2017). In Table 3, we list some of the most fre-
quently considered problems, categorised based on
the phase that they arise. As seen in the table, miti-
gation and preparedness phases mostly consist of
activities related to planning, which involves net-
work design, location, allocation and routing opera-
tions as well as provisioning processes that include
inventory and other supply chain-related decisions
(see, e.g., Balcik & Beamon, 2008; Rawls & Turnquist,
2010, for applications in location and prepositioning,
respectively).

Response activities occur after the crisis or the
disaster hits. In this phase, the aim is providing a
rapid response, prioritising the survival needs. This,
however, does not preclude considering efficiency
in these operations as the system requires scarce
resource allocation such as personnel, equipment
and supplies across demand points, invoking a need
for good decision support mechanisms. In line with
this need, a large body of work is devoted to the
application problems arising in this phase. Finally,
recovery phase focuses mainly on debris manage-
ment and infrastructure repair and restoration. Most
of the mentioned operations involve additional deci-
sions regarding workforce planning and scheduling
and require structured methods for data manage-
ment, information sharing and coordination, which
are key for effective response (Altay & Labonte,
2014). Some of these models require quantification
of human suffering due to lack of services or goods
and the deprivation cost can be used for this pur-
pose, as discussed in detail in Holgu�ın-Veras et al.
(2013).

Not all humanitarian operations are triggered by
challenges stemming from a single well-defined event.
There are crises that can not be attributed to a single
cause e.g., famine in under-developed countries.
There are well-established efforts in the development
logistics literature to alleviate the effects of such cri-
ses. Some examples are global health projects for
increasing access to health coverage and fighting dis-
eases that occur in low and middle-income countries
on a wide-scale, such as malaria and AIDS, through
distribution of effective tools and/or medication.
Vaccine development and distribution to poorer
regions as well as distribution of other basic needs to
the deprived populations: food aid distribution
(Rancourt et al., 2015; Mahmoudi et al., 2022), clean
water network design and distribution (Laporte et al.,
2022), energy, education and hygiene provision are
also widely considered. A recent trend is utilising
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cash and voucher distribution whenever possible,
since it is a method that respects human dignity,
avoids complications of relief item logistics and sup-
ports the local market (Karsu et al., 2019).

The recent COVID-19 pandemic has also moti-
vated a wide range of HL applications such as per-
sonnel protective equipment allocation and
distribution, frontline workforce planning and sys-
tem design for testing, tracing and vaccination
(Farahani et al., 2023).

The HL literature also integrates newer technolo-
gies to the delivery systems: There has been recent
attempts to use drones in the last mile distribution
as they constitute a convenient tool to reach remote
areas in short time (examples include delivery of
blood samples, vaccines and food aid; see also
Gentili et al., 2022; Ghelichi et al., 2021; Alfandari
et al., 2022).

OR offers decision support for humanitarian set-
tings based on a wide range of quantitative and
qualitative tools. Mathematical modelling and opti-
misation is used in almost all problems arising in
HL to make the related location, allocation, routing
and network design decisions. The models are
shaped by the priorities in the phase and constraints
imposed by the physical infrastructure, resource

availability as well as the social, economic and cul-
tural environment. As the underlying technical
problems are difficult to solve, various mathheuristic
and metaheuristic approaches are employed. There
is also an increasing trend in using system dynamics
(Besiou & Van Wassenhove, 2021) and empirical
analysis (Pedraza-Martinez & Van Wassenhove,
2016).

There is no one-size-fits-all methodology but
some key properties require specific methods to be
used. In most relief logistics problems the environ-
ment is highly stochastic, calling for applications of
forecasting and stochastic programming. The uncer-
tain factors include but are not limited to the num-
ber of affected individuals, the extent of the effect,
types of needs, and usability status of the infrastruc-
ture and other resources. Multiple stakeholders and
conflicting criteria are involved, requiring multicrite-
ria decision making (Ferrer et al., 2018) approaches.
Unlike commercial logistics systems, fairness is a
key concern in humanitarian settings. Fairness or
equity, however, is hard-to-quantify and is context
dependent: a rule that is considered fair under some
circumstances may not be deemed so in others. The
policy makers may want to prioritise beneficiaries
based on attributes such as socio-economic status

Table 3. Problems in relief logistics.
Phase Main problems considered Main decisions involved Main concerns

Preparedness and mitigation Infrastructure and network structuring Network design Connectivity
(mainly for strengthening purposes)

Risk assessment Prioritization Data preparation
(of roads, buildings, arcs) for further analysis

Evacuation planning Location of gathering points Traffic
Allocation of evacuees Accessibility
Routing Evacuation Time

Behavioral factors
Shelter location (and allocation) Selecting among potential locations Ensuring accesibility

Shelter utilization
Infrastructure (Risk)
Behavioral factors

Prepositioning Locating point of distributions Budget
Provisioning (of supplies) Accessibility
Related supply chain decisions Fairness
(supplier selection, allocation and routing) Speed

Efficiency
Supply chain (procurement) planning Contract design Quality

Efficiency
Response Damage assessment Demand assessment Speed

Infrastructure assessment Accuracy
Search and rescue operations Team formation and allocation Speed

Fairness
Capacity

Evacuation Location Speed
Allocation Risk
Routing

Shelter management Location Physical environment
Allocation Risk
Related supply chain decisions Accessibility
(distribution, routing) Fairness

Utilization
Donation management/ Allocation Fairness
Resource allocation Routing Efficiency

Inventory Management
Recovery Debris management Network design

Prioritization and scheduling
(deciding which nodes/arcs to clean first)
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and hence ensure vertical equity or may consider
them indistinguishable and seek horizontal equity
(Karsu & Morton, 2015).

HL has been receiving attention with an increas-
ing rate, which led to many review studies that the
interested reader can refer to: see, e.g., Luis et al.
(2012); Çelik (2016); Aringhieri et al. (2017); Besiou
et al. (2018); Baxter et al. (2020); D€onmez et al.
(2021). See also Kunz et al. (2017) for a discussion
on how to make humanitarian research more
impactful for humanitarian organisations and
beneficiaries.

Next we categorise the future of the humanitarian
applications to motivate and direct new researchers:

� OR is responsive to the difficulties the world is
facing and humanitarian challenges are no excep-
tion to this. The recent COVID-19 pandemic has
shown that relief logistics can be applied in
health-related crisis management to provide
quick, effective, efficient and fair responses to
health care problems. WHO “urges countries to
build a fairer, healthier world post-COVID-19”
and this is doable with good humanitarian prac-
tices relying on OR. The recent efforts in design-
ing fair and efficient systems using OR would
contribute in addressing inequities in health and
welfare, which have been exacerbated by the pan-
demics. We believe that there is still room for
improvement in adopting a holistic approach
and conducting multidisciplinary work when
designing such systems. One example is the vac-
cine implementation and roll-out problem: con-
ceptualising this problem as a sole logistics
problem may not be the best practice as the suc-
cess of any design highly depends on human
behaviour. People have different views, risk atti-
tudes and preferences over available options,
which affects how any proposed policy will per-
form. Incorporating such behavioural factors is
an important yet scarcely studied issue.

� The underlying technical problems in the HL
domain are hard to solve due to uncertainty in
various parts of the system, lack of (reliable) data
and multiple criteria that are involved. Moreover,
a significant portion of these problems are com-
binatorial optimisation problems, i.e., they
require choosing from a prohibitively large set of
solutions that are implicitly defined by con-
straints of the system. Therefore advances in OR
methodology to obtain better, quicker solutions
to optimisation problems, and in data analytics
on handling big data such as the one obtained
through geographic information systems (GIS),
would pave the way for quicker and better
response. Effective data analysis would especially

help when learning from past practice. Indeed,
lessons learned from humanitarian supply chain
practice can also be used in managing supply
chain disruptions in other sectors, as discussed
in (Kov�acs & Falagara Sigala, 2021).

� UN’s Sustainable Development Goals emphasise
the global challenges faced including poverty,
inequality, climate change, environmental deg-
radation, peace and justice (SDG 2022). As stated
in (Street et al., 2016), “Increases in extreme wea-
ther events and climate change can compound
risks of international food shocks, water insecur-
ity, conflict and other humanitarian emergencies
and crises. Difficulty of access to critical resour-
ces such water and food may trigger migrations
or exacerbate conflict risks.” All these areas are,
by definition, related to humanitarian operations,
hence humanitarian logistics has a lot to offer in
these domains.

� The Turkey/Syria earthquakes in February 2023
have clearly demonstrated the importance of
effective coordination and strategic planning.
Thus, we would like to emphasise the need for
collaborative research that brings field expertise
(of e.g,. municipalities, NGOs and volunteers)
and academic know-how together.

3.5. E-commerce48

3.5.1. What is E-commerce about?
E-commerce deals with the transactions of goods
and services through online communications (com-
puters, tablets, smartphones, etc.). Both business-to-
business (B2B) and business-to-consumer (B2C)
realisations are observed in practice. In B2B, compa-
nies operate their supply chains through online net-
works. In B2C, products and services are sold
directly to consumers. E-commerce sales steadily
increased for years and amounted to $5,211 billion
worldwide in 2021, with the pandemic being a
major contributor.49,50

E-fulfilment describes all fulfilment activities for
e-commerce. All necessary steps for a customer to
receive an order after placing are thus referred to as
the e-fulfilment process. Due to the nature of the e-
commerce domain, these e-fulfilment activities often
occur in a city context (Savelsbergh & Van
Woensel, 2016). E-fulfilment processes are planning
intensive, and creating a profitable business in this
environment is challenging. Customer service
expectations are high, however, and the customer is
more and more in the lead on how and where their
orders need to be delivered (the “logsumer” takes an
active role in time, price, quality, and sustainability
decisions of logistic services DHL, 2013).
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The e-fulfilment process can be divided into three
steps, namely (i) order acceptance, (ii) order assem-
bly, and (iii) order delivery (Campbell &
Savelsbergh, 2005). For most online companies,
these steps take place separately, one after the other.
However, new on-demand companies have consid-
erably shortened lead times and perform these steps
simultaneously (Waßmuth et al., 2022).

During order acceptance, customer requests arrive
on a retailer’s website and ask for service. As fulfil-
ment capacities are limited (for example, delivery
capacities), the retailer wants to accept the most
profitable subset of all customer requests. However,
customer requests arrive one at a time. Thus, the
retailer does not know the total delivery costs until
all customers are accepted and the final delivery
route is planned. In addition, when a request is
accepted, the retailer does not know whether
requests with higher revenues will arrive afterward
for which capacity should have been reserved. To
estimate costs, vehicle routing methods are adapted
for usage as customer acceptance mechanisms (e.g.,
Ehmke & Campbell, 2014; K€ohler & Haferkamp,
2019)). Revenue management methods are used to
allocate capacities to high revenue requests (e.g.,
Cleophas & Ehmke, 2014; Klein et al., 2019)).
However, since decisions in the online environment
must be made instantly, the use of complex and,
thus, computationally intensive solution methods is
limited.

The warehouse picking and consolidating ordered
goods are summarised under order assembly. Before
this, the retailer must decide on the location and
design of the warehouses. Choosing the location is
closely linked to the fulfilment capacity of the
retailer and must be well-planned. The design of
the warehouse determines the efficiency of picking
the ordered items. Finding efficient picking strat-
egies to reduce retailer costs is studied in, for
example, Schiffer et al. (2022). Lastly, the retailer
must determine the optimal stock level of items.
Given the short lead times in e-commerce, this task
must be completed before customer requests arrive.
The task is closely linked to the research field of
inventory management, where techniques such as
forecasting (Ulrich et al., 2021) or artificial intelli-
gence (Albayrak €Unal et al., 2023) are commonly
used to address this challenge effectively.

For order delivery, routes are planned for all
accepted orders. For e-commerce, the last-mile
delivery is usually towards the customer’s location,
i.e., the consumer’s home or company site (Agatz
et al., 2008), leading to a magnitude of fragmented
delivery locations with small drop sizes. Significant
challenges arise from how these last-mile deliveries
(routes) are designed. Delivery route planning is

closely related to the established field of vehicle
routing, and approaches are being adapted for use
in e-fulfilment (e.g., Emeç et al., 2016). Two-echelon
routing systems are often considered to maintain
economies of scale and satisfy the emission zone
requirements in the cities (Sluijk et al., 2022a,
2022b)). In most cases, delivery is made by conven-
tional delivery vehicles. However, individual retailers
are also starting to bring orders to customers in the
city centre using bikes. We also see drones (e.g.,
Ulmer & Thomas, 2018; Dayarian & Savelsbergh,
2020)) and robots (e.g., Simoni et al., 2020).

3.5.2. E-fulfilment challenges
E-fulfilment processes present several challenges. For
unattended deliveries, delivery is possible without the
customer being present. Pick-up point delivery
enhances the efficiency of the delivery operations via
consolidation opportunities. Consumers can also find
it a more convenient delivery option than waiting for
the delivery at home. There is a need for incentive
mechanisms to increase the attractiveness of pick-up
points (e.g., reduced delivery price). Galiullina et al.
(2022) study this problem as a trade-off between
routing cost savings gained from steering the cus-
tomer demand and the investments required to influ-
ence customer behaviour. Another challenge is to
find the optimal locations for pick-up points, such
that delivery costs are minimised and customers still
have convenient access, which is, for example, con-
sidered in Lin et al. (2020b) and Wang et al. (2020).
The customer must accept the delivery herself for
attended deliveries, e.g., to prevent grocery spoiling.
To avoid delivery failures, the customer and the
retailer usually agree on a delivery time window.

Customers expect short time windows, which
increase the retailer’s delivery costs (K€ohler et al.,
2020). As the time windows assignment to orders is
crucial for the retailer’s profitability, several
approaches consider balancing demand along the
offered time windows. One possibility is to withhold
specific time windows from customers and only offer
a subset of beneficial time windows. Campbell and
Savelsbergh (2005) and Cleophas and Ehmke (2014)
consider routing costs and customer value and only
offer time windows to customers that are expected to
maximise the profit. Another possibility is to assign
prices to time windows to nudge customers to spe-
cific time window options (Campbell & Savelsbergh,
2006; Yang et al., 2016; Klein et al., 2019). Some
approaches consider adapting the time window
design to increase routing flexibility. K€ohler et al.
(2020) only offer short time windows to customers
when it does not impact the routing costs too much,
and Strauss et al. (2021) hand out time window
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bundles to customers that are only narrowed down
to one option once more customers requests are
known.

Recently, many online retailers began offering on-
demand deliveries, so customers can receive their
orders the same day (some grocery stores promise
delivery times within a few minutes51). Shortening
lead times poses another challenge as there is almost
no time for planning or consolidation of orders avail-
able. The approach presented by Klapp et al. (2020)
hence supports retailers in deciding which customers
can be promised an immediate delivery and which
can only be served from the next delivery day. Ulmer
and Thomas (2018) investigate how the number of
same-day deliveries can be increased if delivery is not
only done by vehicles but additionally by drones. In
Banerjee et al. (2022), the authors examine how
retailers must allocate their delivery capacity to cover
same-day delivery needs per service area.

For delivery in an urban context, high demand in
densely populated areas often goes hand in hand
with high traffic and unreliable travel times, and
vice versa. Ehmke and Campbell (2014) therefore
create acceptance mechanisms that present the cus-
tomer with a time window offer that is as reliable as
possible so that the customer does not notice an
unforeseen change in travel times. K€ohler and
Haferkamp (2019) test the suitability of customer
acceptance mechanisms for more and less densely
populated areas to derive how well different routing
mechanisms approximate delivery times.

Another ongoing challenge is the increasing preva-
lence of customers being granted the option to return
ordered items free of charge by many companies. As a
result, the e-fulfillment process expands beyond the
three steps outlined earlier to include the management
of returns. Despite the typically high return rates that
result in substantial additional costs for retailers, offer-
ing a return option is still profitable due to the subse-
quent improvement in customer satisfaction and
retention (Rintam€aki et al., 2021). The management of
returns can be perceived as reverse order delivery,
leading to routing challenges related to those presented
earlier. To mitigate costs, several studies, such as
Mahar and Wright (2017) and Yan et al. (2022b),
explore the implementation of in-store returns.

3.5.3. Operational research challenges: Time, tim-
ing, and data
The time dimension involves all dimensions to how
key elements are (conceptually) modelled with
regards to the time (e.g., travel times or handling
times). Identifying the time features in modelling
and solution methodologies are essential qualifiers
for realistic model representations.

The timing dimension involves all actions at a
particular point or in a period when something hap-
pens (e.g., a new order arrives). Timing considers
synchronisation issues where, for example, vehicles
need to meet at a certain point in time and geo-
graphical location. Drexl (2012) presents a survey of
vehicle routing problems with multiple synchronisa-
tion constraints. Synchronisation requirements
between the vehicles relate to spatial, temporal, and
load aspects. Synchronisation is a challenge, for
example, in heterogeneous fleets (Ulmer & Thomas,
2018) or, in the case of battery-powered vehicles
that must be charged in time.

� Offline means that we do the planning and
scheduling before the execution, often assigned
to tactical planning. Data is estimated (forecast)
based on past observations, and the operations
are planned based on that. For example, Agatz
et al. (2011) use expected demand to decide
which time windows should be offered within
different parts of the delivery area. Lang et al.
(2021a) propose a preparation offline phase that
serves as input to speed up decisions during later
online customer acceptance. The data considered
could be either time-independent (i.e., independ-
ent of time) or time-dependent (i.e., the data has
a time-stamp). For example, travel times can be
modelled time-independent (i.e., constant speed)
or time-dependent (e.g., Spliet et al., 2018).

� Online refers to the optimisation in real-time,
where revealing new data and planning and
scheduling operations happen simultaneously.
The terms “dynamic” or “operational planning”
is also often used. As time is critical in online
planning, methods are always limited by their
solution time. Instead of finding a routing solu-
tion, delivery costs are approximated (e.g., Yang
& Strauss, 2017; Lebedev et al., 2021) or a simple
routing heuristic is applied (e.g., Mackert, 2019;
Klein et al., 2018)). Alternatively, customer
choice is estimated simply (e.g., Campbell &
Savelsbergh, 2006) instead of complex and time-
consuming customer choice modelling. van der
Hagen et al. (2022) uses a machine learning
approach to fasten up feasibility checks of time
windows offered during order acceptance.

The data dimension refers to how the data and
observations are modelled. The data can be handled
deterministic or stochastic, or we observe the realised
data. Most models assume deterministic data and build
their solution approach around this notion. More and
more researchers, however, recognise the challenge of
adequately representing reality in their models. Yang
et al. (2016) use booking data of an online grocer to
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estimate realistic customer behaviour. K€ohler et al.
(2022) investigate how to accept high revenue requests
by applying a sampling procedure with booking data
from an e-grocer in Germany.

3.5.4. Relevant literature
Agatz et al. (2013) provide the first overview of how
retailers can manage e-fulfilment processes. A recent
review on e-fulfilment for attended home deliveries
can be found in Waßmuth et al. (2022). We refer
the reader to Fleckenstein et al. (2022) and Snoeck
et al. (2020) for a focus on routing and revenue
management methods in e-fulfilment, respectively.

3.6. Education52

Education spans activity from kindergarten, through
primary and secondary schooling, to higher educa-
tion. The earlier years of education are often com-
pulsory reflecting the premise that an educated
workforce is crucial to economic performance. The
extent to which education is publicly funded varies
from one level of education to another, as well as
from one country to another depending on the local
view concerning the social return on investment.
Public funding for education alongside the role edu-
cation and training play in the performance of an
economy therefore make education a prime context
for application of operational research (OR) tools.
This section provides a brief overview of some of
the main areas.

Many OR methods can be useful to the policy
maker for macro-planning and financial allocation
purposes. Forecasting student numbers can be done
using Markov chain models (Nicholls, 2009;
Brezav�s�cek et al., 2017) or machine learning (ML)
and artificial intelligence (AI) (Yan & Wang, 2021)
– the importance of AI applications to education
will be further expanded later. Allocation of finances
is typically supported by multi-objective decision
analysis (Cobacho et al., 2010).

One important aspect of resource allocation
relates to the efficient use of resources. Availability
of published education data in many countries pro-
vides an opportunity to examine the “black box” of
education production. Consequently, there is a
long-standing literature surrounding efficiency
in education, typically a not-for-profit context
where conventional measures of performance are
inappropriate.

Early studies of efficiency in higher education
applied deterministic ordinary least squares methods
to university-level data to examine efficiency in the
production of specific outputs (Jauch & Glueck,
1975; Johnes & Taylor, 1990) while schools adopted
multilevel modelling methods to derive performance

insights from pupil-level as opposed to school-level
data (Woodhouse & Goldstein, 1988). But the
multi-product nature of production in education
establishments means that looking at inputs separ-
ately provides only a partial picture. The tools of
multiple-criteria decision analysis such as principle
components, he analytic hierarchy process and co-
plot have therefore been adopted to examine and
visualise the many dimensions more easily (Johnes,
1996; Paucar-Caceres & Thorpe, 2005; Mar-
Molinero & Mingers, 2007).

Two frontier estimation approaches to analysing
efficiency, both of which derive from Farrell (1957),
have evolved to address various shortcomings of
early approaches. The non-parametric data envelop-
ment analysis (DEA) easily handles the multi-input
multi-output nature of production observed in edu-
cation and provides easily-interpreted measures of
efficiency (Charnes et al., 1978). DEA shows each
observation in its best possible light (in efficiency
terms) by computing a distinct set of input and out-
put weights. This permits the derivation of bench-
mark observations for each inefficient institution,
i.e., the establishment(s) the observation should be
looking to emulate to become more efficient. Non-
parametric frontier estimation techniques have been
applied in the context of education at all levels, pro-
viding management information at the institution
level, and policy insights at the macro-level
(Thanassoulis et al., 2011; Portela et al., 2012;
Burney et al., 2013).

Network DEA provides a more forensic examin-
ation of the “black box” (F€are & Grosskopf, 2000)
by breaking down the production process into its
component parts, and overall efficiency can be
decomposed into efficiency in each of the stages
(Wang et al., 2019b; Lee & Johnes, 2022).

When longitudinal data are available, DEA can
be used to analyse changes in efficiency using the
Malmquist (1953) productivity index which decom-
poses productivity change into efficiency and
technological change components Wolszczak-
Derlacz (2018). The method can be used to make
comparisons between groups rather than (or as well
as) between time periods (Aparicio et al., 2017).

The deterministic non-parametric nature of DEA
has been addressed in numerous extensions includ-
ing by introducing bootstrapping and significance
tests (Johnes, 2006; Essid et al., 2010; Papadimitriou
& Johnes, 2019). Second stage analyses which exam-
ine the determinants of efficiency also abound
(Haug & Blackburn, 2017). This approach is only
valid if the hypothesis of separability holds i.e., the
variables used in the second stage should only influ-
ence the efficiency scores and not the determination
of the efficiency frontier (Simar & Wilson, 2011).
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The development of separability tests (Daraio et al.,
2018) and the robust conditional estimation
approach address these issues (Daraio & Simar,
2007); their application in education provide more
robust and insightful results (L�opez-Torres et al.,
2021).

Stochastic frontier analysis (SFA) provides both
parameter estimates (with significance tests) and
efficiency estimates which allow for stochastic errors
(Aigner et al., 1977; Meeusen & van den Broeck,
1977; Jondrow et al., 1982). Compared to DEA it is
more difficult to model multi-input, multi-output
production; most SFA applications in education
therefore focus on cost efficiency (Agasisti, 2016), or
a single output model (Kirjavainen, 2012), although
there are some exceptions (Abbott & Doucouliagos,
2009; Johnes, 2014). The parameter estimates have
made SFA popular in the cost function context as
scope and scale economies can be estimated and
these have useful policy implications (Johnes et al.,
2005; Johnes & Johnes, 2013).

In its basic form, SFA parameter estimates apply
to every observation in the dataset. Extensions of
the technique include latent class SFA and random
parameters SFA which allow the parameters to vary
by specific groups (latent class) or by each observa-
tion (random parameter). These approaches benefit
from the advantages of DEA and SFA although are
computationally demanding but have been applied
in education to interesting effect (Johnes &
Schwarzenberger, 2011; Johnes & Johnes, 2016).

The interested reader is referred to comprehen-
sive reviews of the relevant literature (Kao, 2014;
Thanassoulis et al., 2016; De Witte & L�opez-Torres,
2017; Johnes, 2022).

All these OR methods can be applied in the con-
texts of macro- and micro-level planning and
budget allocation. One area at the micro-level for
which OR techniques are useful is timetabling.
Timetabling of examinations and/or teaching is
most complex at secondary and tertiary levels and
can be viewed as a scheduling problem whereby
resources, limited in supply, are allocated to a con-
strained number of times and locations, with the
allocation satisfying stated objectives. Timetabling
differs from scheduling in that the resources (staff
members) are typically specified in advance rather
than being a part of the allocation problem; and
while scheduling aims to minimise costs, the object-
ive of timetabling is to realise desirable objectives
(e.g., no clashes) as closely as possible (Petrovic &
Burke, 2004). Timetablers face both hard and soft
constraints in constructing the timetable (Asmuni
et al., 2009) and this is therefore a problem which
lends itself to solution by various possible OR

techniques in the field of combinatorial optimisa-
tion. The main approaches are briefly summarised
below.

Mathematical programming (particularly integer
linear programming) is commonly used in timeta-
bling (Cataldo et al., 2017) but often leads to com-
putationally demanding problems. Heuristics (see
below) are introduced for increased efficiency
(Dimopoulou & Miliotis, 2001). Case-based reason-
ing approaches use a past solution (stored in the
case base) as the starting point for a new timetable
and use similarity measures to identify the optimal
solutions (Burke et al., 2006). These approaches are
often problem-specific making them non-transfer-
able. Their computational demands can be
addressed by using heuristics (Petrovic et al., 2007).
The multi-criteria approach assumes that there are
solutions to the timetabling problem satisfying the
hard constraints and then the quality of these solu-
tions is assessed on the basis of how well each one
satisfies the soft constraints (Burke & Petrovic,
2002). As with other methods it is often combined
with heuristics.

Heuristics are an increasingly common method
for application to timetabling either on their own or
in combination with other methods. Low level con-
struction heuristics include largest degree, largest
weighted degree, largest colour degree, largest enrol-
ment, saturation degree and random. Extensions
include meta-heuristics which work in the search
space guiding neighbourhood moves to a solution
(Qu et al., 2015); fuzzy heuristics which can find a
best approach in the initial timetable construction
phase (Asmuni et al., 2009); and hyper-heuristics
which find or generate appropriate heuristics to
solve complex search problems as encountered in
timetabling (Qu et al., 2015). Given their focus,
hyper-heuristics have the potential to provide more
generalised solutions to timetabling problems than
other approaches (see Pillay, 2016, for a review).

The interested reader is referred to reviews of
educational timetabling approaches (Oude Vrielink
et al., 2019; Tan et al., 2021).

Finally, an emerging area of interest is the appli-
cation of AI and ML to education. AI and ML are,
as already highlighted, useful for forecasting as they
can analyse rich data on, for example, student num-
bers, retention, achievement, teaching and quality to
derive better predictions and/or understanding of
the challenges (Alyahyan & D€usteg€or, 2020; Bates
et al., 2020; Teng et al., 2022). They can also be
used in the teaching and learning process itself by
personalising each student’s experience for example
through use of chatbots, by creating exercises for
students which address their weaknesses, and by
reviewing assessments highlighting strengths and
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weaknesses (Teng et al., 2022). In the growing dis-
tance learning education arena where it is more dif-
ficult to manage participants who have more
freedom to learn when they want and may encoun-
ter more distractions, AI can be used to support
teachers in gauging student engagement. Thus AI
algorithms can be used to develop an online educa-
tion classroom management system (Wang, 2021).
AI and ML have much to offer in education but
their potential across all disciplines has yet to be
properly explored (Bates et al., 2020). See Zawacki-
Richter et al. (2019) for further literature.

3.7. Environment53

Environmental problems are at the centre of societal
concerns, and of many research activities, also in
Operational Research (OR). It is impossible to com-
prehensively present this literature. Instead, we first
introduce characteristics of environmental problems,
then present some insights from specific OR fields,
mainly citing review articles. Thereafter, we discuss
Decision Analysis (§2.8) methods applied to environ-
mental problems.

Environmental problems are usually multi-faceted
and complex (French & Geldermann, 2005; Gregory
et al., 2012; Reichert et al., 2015). Since 50 years,
such public policy issues are known as “wicked
problems” (Rittel & Webber, 1973). In many envir-
onmental cases, uncertainties are high. It may be
difficult to establish scientific knowledge and
adequately model environmental systems. They usu-
ally span all sustainability dimensions, which
requires making trade-offs between achieving envir-
onmental, economic, and societal objectives. Various
decision-makers and stakeholders with different
world-views are affected, sparking conflicts of inter-
est. Any action may have irreversible or far-reaching
consequences over long time horizons. Additionally
to the temporal dimension, spatial considerations
over varying geographic regions may be important.
As wicked problems are typically unique, we might
need to find new solutions in each case. OR meth-
ods can be highly suitable to disentangle and struc-
ture complex environmental problems, and can
certainly contribute to problem solving. Below, we
present some viewpoints.

Soft OR methodologies, and problem structuring
methods (PSMs; see also §2.20) have been developed
to tackle complex real-world problems in interaction
with stakeholders (Rosenhead & Mingers, 2001;
Smith & Shaw, 2019). However, most (review)
articles are not specific to environmental problems.
Using an applied example, White and Lee (2009)
explored the potential of soft OR for a city develop-
ment case. Marttunen et al. (2017) reviewed the

combination of PSMs with Multi-Criteria Decision
Analysis (MCDA) methods. More complex PSMs
seem to be under-utilised, suggesting that their ben-
efits cannot sufficiently inform real-world issues,
including environmental decision-making. Similarly,
French (2022) argued that literature of quantitative
and qualitative OR approaches has developed in
silos, and that an intertwined, cyclic understanding
of soft and hard OR methods is needed to address
complex problems. This author was also concerned
that behavioural issues are less well understood in
qualitative compared to quantitative model building.
Related to problem structuring, stakeholder analysis
and participation is central to environmental prob-
lems. Such research is recently gaining increased
interest by OR (de Gooyert et al., 2017; Gregory
et al., 2020; Hermans & Thissen, 2009). Behavioural
OR (BOR; §2.2) is also gaining momentum (Franco
et al., 2021). BOR strongly focuses on interventions,
and could increase the understanding of societal
and psychological issues in environmental problems.
However, to date an environmental perspective is
rarely taken. One exception is a conceptual paper
about behavioural issues in environmental modelling
(H€am€al€ainen, 2015). A meta-analysis of 61 environ-
mental and energy cases analysed patterns and
biases that may occur in the problem structuring
phase of decision-making (Marttunen et al., 2018).

Sustainable supply chains (see also §3.24) have
been recently reviewed by Barbosa-P�ovoa et al.
(2018). These authors took a multi-stakeholder per-
spective along the supply chain to achieve sustain-
ability goals. They found a predominance of
optimisation methods applied to strategic decision
levels. Most of the 220 reviewed articles focused on
economic and environmental aspects, leaving behind
the social aspects. Similarly, another review focused
on combinatorial optimisation (§2.4), integrating
reverse logistics (see also §3.14) and waste manage-
ment (Van Engeland et al., 2020). Among other
aspects, the authors emphasised the importance of
environmental, social and performance indicators,
and stakeholder integration, when dealing with
flows of waste products. Taking a life-cycle perspec-
tive, usually addressed with life cycle sustainability
assessment (LCSA), Thies et al. (2019) reviewed
advanced OR methods for sustainability assessment
of products. While most articles used ecological indi-
cators, the integration of economic and social indi-
cators is emerging. They concluded that improved
systematic procedures for uncertainty treatment are
needed, and better integration of qualitative social
indicators as well as spatially explicit data.

Other authors reviewed specific OR methods. For
instance, Zhou et al. (2018) reviewed Data
Envelopment Analysis (DEA; §2.7) for sustainability
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assessments. Again, economic and environmental
measures were well included, but the literature
lacked social measures such as customer satisfaction.
New DEA methods should be developed that
include social network relationships. Mathematical
programming and optimisation methods to support
biodiversity protection were reviewed by Billionnet
(2013). Some of these difficult combinatorial opti-
misation problems were well solved, but further
research is needed to satisfactorily address real-
world biodiversity issues. For conservation manage-
ment, spatial aspects are central, for example
creating biological corridors in the landscape to
increase biodiversity. Future research should include
the temporal dimension and needs of practitioners.
Robust optimisation (§2.21) could be a research
avenue to handle uncertainty. A review of invasive
species also took a mathematical perspective
(B€uy€uktahtakın & Haight, 2018). Among other con-
clusions, research should develop more realistic
models to capture spatial and temporal dynamics of
invasive species, improve uncertainty treatment and
coordination among stakeholders, and include holis-
tic approaches for addressing trade-offs between
conservation management and costs of such
programs.

Multi-criteria decision analysis (MCDA; §2.8)
provides a rich literature addressing environmental
decision problems. French and Geldermann (2005)
discussed properties of wicked environmental prob-
lems from a conceptual point of view (introduced
above), and implications for decision support.
Cinelli et al. (2014) analysed MCDA methods for
sustainability assessments. They voiced some con-
cern that choosing the MCDA methods is rather
based on preferences, not analytic considerations.
Indeed, text-mining of 3,000 articles provided little
evidence that particular environmental application
fields used certain methods more frequently, pos-
sibly because researchers are unaware of specific
method merits (Cegan et al., 2017). To overcome
this, Cinelli et al. (2014) classified five MCDA meth-
ods using ten criteria important for sustainability
assessments, e.g., uncertainty management and test-
ing robustness of results, software, and user-friendli-
ness. We know of two general articles for
systematically choosing a suitable MCDA method
(Cinelli et al., 2020; Roy & Słowi�nski, 2013). Several
articles reviewed decision support systems (DSS) to
identify features and best practices for supporting
environmental problems (Mustajoki & Marttunen,
2017; Walling & Vaneeckhaute, 2020). Moreover,
there are many reviews of MCDA applied to a spe-
cific environmental field, but only few were pub-
lished in OR journals (e.g., Colapinto et al., 2020;
Kandakoglu et al., 2019). There is a pronounced

increase of articles applying MCDA in all environ-
mental areas (e.g., water, air, energy, natural resour-
ces, and waste management; Cegan et al., 2017;
Huang et al., 2011). Below, we introduce some
important findings from decision analysis.

Some authors defined frameworks for environ-
mental assessments taking a method perspective.
Gregory et al. (2012) proposed structured decision
making (SDM) to tackle real-world environmental
decision problems. Based on multi-attribute value
theory (MAVT), SDM can be applied without much
(mathematical) formalisation. This textbook dis-
cusses many practical environmental issues, high-
lighting solutions from international decision cases.
Reichert et al. (2015) proposed a framework for
environmental decisions that emphasises uncertainty
of scientific knowledge and societal preferences.
They argued that theoretical requirements are best
met by combining multi-attribute utility theory
(MAUT) with scenario planning and probability the-
ory, illustrated with a river management case.
Scenario planning has been advocated by various
authors for tackling wicked problems (Wright et al.,
2019). The combination of scenario planning with
MCDA has been reviewed by Stewart et al. (2013),
and applied to e.g., nuclear remediation manage-
ment (Geldermann et al., 2009), coastal engineering
under climate change (Karvetski et al., 2011), or
water infrastructure planning (Scholten et al., 2015).
Scenario analysis has also been combined with prob-
abilistic statements and mathematical optimisation
for risk assessment (see also §2.18) of nuclear waste
repositories (Salo et al., 2022). A climate policy
review illustrates the importance of integrating vari-
ous OR methods to effectively support decision-
making (Doukas & Nikas, 2020). The currently
predominant evaluation of policy strategies with cli-
mate-economy or integrated assessment models
(IAMs) fails to incorporate all relevant uncertainties
and stakeholders, and sufficiently address system
complexity. These authors proposed integrated
approaches, including participatory stakeholder
processes with fuzzy cognitive maps, combined with
MCDA and portfolio analysis (PA). PA is especially
useful as meta-analysis, and has been reviewed by
Liesi€o et al. (2021). A PA-framework for environ-
mental decision-making has been proposed by
Lahtinen et al. (2017).

To address spatial aspects of environmental prob-
lems, geographic information systems (GIS) are often
combined with MCDA, sometimes also developing
DSSs (Keenan & Jankowski, 2019). Risk analysis
(§2.18) and OR research increasingly focuses on
spatial planning (Ferretti & Montibeller, 2019;
Malczewski & Jankowski, 2020). One example is the
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axiomatic foundation of spatial multi-attribute value
functions (Harju et al., 2019; Keller & Simon, 2019).

Many reviews found that stakeholder integration
throughout the decision-making process was insuffi-
ciently considered, e.g., in flood risk management
(de Brito & Evers, 2016) or nature conservation
(Esmail & Geneletti, 2018). This reflects generally
found deficits in problem structuring (§2.20), for
instance insufficient consideration of social objec-
tives (Kandakoglu et al., 2019), or systematic under-
estimation of the importance of economic objectives
(Marttunen et al., 2018; Walling & Vaneeckhaute,
2020). Moreover, there is a tendency to choose too
many objectives in environmental cases (Diaz-
Balteiro et al., 2017), potentially inducing biases in
later stages of MCDA (Marttunen et al., 2019).

Many reviews emphasised the importance of
uncertainty analyses in environmental decisions, but
this is strongly ignored in practice. One review found
that only 19% of 271 articles included uncertainty
analysis, 17% using fuzzy techniques to capture
imprecise numbers (Diaz-Balteiro et al., 2017). In
another review, 34% of 343 articles dealt with the
imprecision of predictions, 70% using fuzzy sets, and
20% stochastic modelling (Kandakoglu et al., 2019). In
both reviews, only 20%–30% of the articles per-
formed sensitivity analysis. Additionally, only 5% of
343 reviewed papers included temporal aspects of the
environmental decision (Kandakoglu et al., 2019).

As conclusion, OR researchers are widely engaging
in environmental problems. Environmental problems
are intriguingly complex, thus offering opportunities
for inspiring research. Although our evaluation is
neither comprehensive nor systematic, some general
research needs appear across all OR fields. Many
articles emphasised the importance of better integrat-
ing practitioners and stakeholders in environmental
problems, and of better considering societal objec-
tives. Various fields require improved methods to
address the complexities of environmental problems,
including appropriately dealing with many types of
uncertainties, time, and space. Combining soft with
hard OR, improving problem structuring, and inte-
grating questions from behavioural OR will increase
the chances of finding sustainable solutions for our
worlds’ environmental problems. This can also spark
cross-disciplinary research over different fields of OR.

3.8. Ethics and fairness54

There is substantial literature on the ethical practice
of operational research, surveyed in Brans and Gallo
(2007), Ormerod and Ulrich (2013), Tsoukias
(2021), and Bellenguez et al. (2023). While this is a
vitally important discussion, it is useful to consider
how the science of operational research can

contribute to ethics, as well as how ethics can con-
tribute to the practice of operational research. It has
accomplished this primarily through the develop-
ment of modelling techniques and algorithms that
embody ethical concepts, notably distributive justice.

An operational research model that aims simply
to minimise total cost or maximise total benefit may
unfairly distribute costs or benefits across stakehold-
ers. This concern arises in a number of application
areas, including healthcare (§3.11), disaster relief
(§3.4), facility location (§3.13), task assignment, tele-
communications (§3.26), and machine learning
(§2.1). It poses the problem of finding a suitable
formulation of equity or fairness that can be incor-
porated into a mathematical model.

For example, if donated organs are allocated in
the most economically efficient fashion, patients
with certain medical conditions may wait far longer
for a transplant than other patients (McElfresh &
Dickerson, 2018). If earthquake shelters are located
so as to minimise average distance from residents,
persons living in less densely populated areas may
have much further to travel (Mostajabdaveh et al.,
2019). If a machine learning algorithm awards mort-
gage loans so as to maximise expected earnings,
members of a minority group may find themselves
unable to obtain loans even when they are
financially responsible (Saxena et al., 2020). If traffic
signals at intersections are timed to maximise traffic
throughput, motorists on side streets may have to
wait forever for a green light (Chen et al., 2013).

We provide here a brief overview of mathemat-
ical formulations of fairness that have been pro-
posed for OR and AI models. Comprehensive
treatments can be found in Karsu and Morton
(2015) and Chen and Hooker (2022b). In addition,
Ogryczak et al. (2014) review formulations devel-
oped for telecommunications and facility location,
two major users of fairness models. Recent years
have seen an enormous surge of interest in fairness
criteria for machine learning, many of which are
surveyed in Mehrabi et al. (2022).

We suppose that the model into which one
wishes to incorporate fairness allocates utilities to a
collection of stakeholders, and we are concerned
about the fairness of this allocation. Utility could
take the form of wealth, resources, negative cost,
health outcomes, or some other type of benefit.
Stakeholders can be individuals, organisations,
demographic groups, geographic regions, or
other entities for which distributive justice is a
concern.

Fairness models can be divided into three broad
categories. Inequality measures are normally used to
constrain the degree of inequality in solutions
obtained by maximising total benefit or minimising
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total cost. Some of these focus on inequalities across
individuals, and others on inequalities across groups.
Various statistics for measuring the former are dis-
cussed in Cowell (2000) and Jenkins and Van Kerm
(2011). Perhaps the best known is the Gini coeffi-
cient, widely used to measure income or wealth
inequality (Gini, 1912; Yitzhaki & Schechtman,
2013). The Hoover index (Hoover, 1936) is propor-
tional to the relative mean deviation of utilities and
represents the fraction of total utility that must be
redistributed to achieve perfect equality. Both the
Gini coefficient and the Hoover index can be given
linear formulations (§2.14) in an optimisation model
by means of linear-fractional programming
(Charnes & Cooper, 1962). Jain’s index (Jain et al.,
1984), well known in telecommunications, is a
strictly monotone function of the coefficient of
variation.

Inequality between groups, generally referred to
as group disparity, is by far the most discussed type
of inequality metric in the machine learning field
(§2.1; Verma & Rubin, 2018; Mehrabi et al., 2022).
It assesses whether AI-based decisions (e.g., mort-
gage loan awards, job interviews, parole, college
admission) are biased against a designated group,
perhaps defined by race, ethnic background, or gen-
der. Fairness implementations in machine learning
typically strive to minimise loss (due to defaults on
loans, etc.) while placing a bound on some measure
of resulting group disparities. The best known meas-
ures are demographic parity (Dwork et al., 2012),
equalised odds (Hardt et al., 2016), and predictive
rate parity (Dieterich et al., 2016; Chouldechova,
2017), and counterfactural fairness (Kusner et al.,
2017; Russell et al., 2017). The first two have mixed
integer/linear programming (MILP) formulations
(§2.15), and the third a mixed integer/nonlinear for-
mulation. Weaknesses of group parity measures
include a lack of consensus on which one is suitable
for a given application (Castelnovo et al., 2022), as
well as on which groups should be monitored for
bias.

A second category of models is concerned with
fairness for the disadvantaged. They strive for equal-
ity, but with greater emphasis on the lower end of
the distribution. The maximin criterion, based on
the famous difference principle of John Rawls, maxi-
mises the welfare of the worst-off individual or
social class (Rawls, 1971). It is defended with a
social contract argument that has been intensely dis-
cussed in the philosophical literature (as surveyed in
Freeman, 2003; Richardson & Weithman, 1999). A
more sophisticated form of the principle is lexico-
graphic maximisation (leximax), which maximises
the worst-off, then the second worst-off, and so
forth. The McLoone index compares the total utility

of stakeholders at or below the median utility to the
utility they would enjoy of all were brought up to
the median. It is based on a concern that no one be
disadvantaged but tolerates inequality in the top half
of the distribution. It has been used to assess the
allocation of public services, particularly education
(Verstegen, 1996) and can be given an MILP formu-
lation (Chen & Hooker, 2022b).

Criteria that balance efficiency and fairness can be
placed in three categories: convex combinations of
efficiency and fairness, criteria from classical social
choice theory, and threshold criteria. Convex combi-
nations provide the simplest approach, as for
example a combination of total utility and a fairness
measure (e.g., Mostajabdaveh et al., 2019). Other
formulations are given by Yager (1997), Ogryczak
and �Sliwi�nski (2003), and Rea et al. (2021). Convex
combinations and other weighted averages pose the
general problem of justifying a choice of weights,
particularly when utility and equity are measured in
different units, although Argyris et al. (2022) pro-
pose a means of avoiding this issue.

The task of balancing fairness and efficiency gave
rise to one of the oldest research streams in social
choice theory, beginning with the Nash bargaining
solution, also known as proportional fairness (Nash,
1950a). Proportional fairness has seen application in
such engineering contexts as telecommunication and
traffic signal timing (Mazumdar et al., 1991; Kelly
et al., 1998) and elsewhere. Nash gave an axiomatic
argument for the criterion, while Harsanyi (1977),
Rubinstein (1982), and Binmore et al. (1986) have
shown that it is the outcome of certain bargaining
procedures. Alpha fairness generalises proportional
fairness by introducing a parameter a that governs
the importance of fairness, where a ¼ 0 corresponds
to a purely utilitarian criterion, a ¼ 1 to propor-
tional fairness, and a ¼ 1 to the maximin criterion
(Mo & Walrand, 2000; Verloop et al., 2010). Alpha
fairness has been derived from a set of axioms (Lan
et al., 2010; Lan & Chiang, 2011), including an
“axiom of partition” that is largely responsible for
the result. It provides an objective function to be
maximised that is nonlinear but concave (§2.16).
Another criterion, Kalai-Smorodinsky bargaining,
likewise has an axiomatic defence (Kalai &
Smorodinsky, 1975) and addresses what one might
see as a weakness in Nash bargaining, namely that it
can result in reduced utility for some stakeholders
when the feasible set is enlarged. The Kalai-
Smorodinsky criterion can be viewed as a kind of
normalised maximin, as it calls for allocating to
each stakeholder the largest possible fraction of his
or her potential utility (ignoring other stakeholders)
on the condition that this fraction be the same for
everyone. This criterion has received support from
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Thompson (1994) as well as the “contractarian” eth-
ical philosophy of Gauthier (1983) and has been rec-
ommended for wage negotiations and similar
applications (Alexander, 1992).

Threshold criteria are of two types. One, based on
an efficiency threshold, imposes a maximin objective
until the efficiency cost becomes unacceptably great,
at which point some stakeholders are switched to a
utilitarian criterion. The other, based on an equity
threshold, imposes a utilitarian criterion until
inequity becomes unacceptably great, at which point
a maximin criterion is introduced. Originally pro-
posed for two stakeholders (Williams & Cookson,
2000), the threshold criteria have been extended to
n persons, using an MILP formulation for the for-
mer (Hooker & Williams, 2012) and a linear pro-
gramming model for the latter (Elçi et al., 2022). A
parameter D regulates the equity/efficiency trade-off
in both models, in that stakeholders with utility
within D of the worst-off are given special priority.
Thus, the parameter D may be interpretable in a
practical situation in a way that a in the alpha fair-
ness criterion is not. Both threshold criteria inherit
a weakness of the maximin criterion, namely that
they may be insensitive to the equity position of dis-
advantaged stakeholders other than the very worst-
off. This has been addressed for the efficiency
threshold by combining a utilitarian criterion with a
leximax rather than a maximin criterion. McElfresh
and Dickerson (2018) accomplish this by assuming
there is a pre-existing priority ordering of stakehold-
ers. Chen and Hooker (2022a) avoid this assump-
tion by giving greater priority to stakeholders with
utilities closer to the lowest, and by solving a
sequence of MILP models to balance the leximax
element with total utility.

Fairness modelling is a relatively recent research
program in operational research that may forge new
connections with other fields. Much as interactions
between OR and economics, management, and
engineering have been mutually beneficial on both a
theoretical and practical level, collaboration with
ethicists on the precise formulation of fairness con-
cepts may bring similar benefits to both ethical phil-
osophy and operational research.

3.9. Finance55

The use of mathematical models and numerical algo-
rithms to solve an extensive range of problems in
finance is widespread, by both researchers and practi-
tioners. In this subsection, we offer an overview of
some established models and discuss a selection of
the corresponding OR approaches and techniques.

3.9.1. Resource allocation models
As in any other industry, the optimal allocation of
resources to activities is a central problem in
finance. Prototype models include short-term cash
flow management (a linear program), portfolio dedi-
cation and immunisation (linear programs), capital
budgeting (knapsack problem), asset/liability man-
agement (stochastic program with recourse), and
portfolio selection (quadratic program).

The portfolio selection model introduced in
Markowitz (1952) and discussed in Markowitz and
Todd (2000) is one of the best known optimisation
models in finance. This mean-variance model con-
sists of determining the composition of a portfolio
of risky assets – a vector of weights – where the
performance (to be maximised) is measured by
the expected portfolio return, a linear function of
the assets’ weights, while the risk (to be minimised)
is measured by the variance of the portfolio return,
a quadratic function of the weight vector. The
resulting optimisation problem gives rise to a con-
vex quadratic program. This model and its analytical
properties led to a formalisation of diversification as
a strategy to mitigate risk and to important develop-
ments in financial theory.

While the Markowitz model represents a consid-
erable simplification of the portfolio management
problem, mean-variance optimisation models are
still very much applied in practice. Straightforward
variations of the Markowitz model can account for
various constraints on the asset weights (e.g.,
bounds, minimum participation, regulatory or oper-
ational restrictions, logical constraints, etc.), yielding
mixed integer quadratic programs.

Mean-variance models rely on sets of parameters
describing the expected returns and their correlation
matrix in the universe of the set of considered
assets. Various forecasting approaches (§2.10) have
been proposed to obtain estimates of these parame-
ters, often relying on some assumptions about the
correlation structure. One important issue related to
the use of mean-variance optimisation models is the
sensitivity of their solutions to the estimated param-
eter values (Michaud, 1989), specifically when the
feasible region is relatively unconstrained. Robust
optimisation (see also §2.21) is increasingly used to
limit the estimation risk of mean-variance portfolio
solutions (Ismail & Pham, 2019; Yin et al., 2021;
Blanchet et al., 2022).

Another related limitation of mean-variance
models is the fact that they are static models, that
is, expectations and correlations of asset returns are
assumed to be known and constant over the plan-
ning horizon. In practice, estimations are updated
periodically to reflect changes in data, and portfolios
are rebalanced to the optimal composition
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corresponding to the new set of estimates. Small
perturbations in the values of the input parameters
may lead to significant changes in the composition
of the portfolio from one period to the next (for
instance, when groups of assets have similar charac-
teristics). When the costs associated with changing
the composition of the portfolio are significant, a
static model may be far from optimal. The portfolio
selection problem can be readily extended to a
multi-period context, allowing to account for trans-
action costs and/or to use a dynamic model of the
evolution of asset prices over time (Li & Ng, 2000).
Dynamic models can also account for additional
frictions, such as taxes on capital gains or losses
(Dammon et al., 2001). The resulting dynamic port-
folio selection problem may be a large-scale stochas-
tic dynamic program (§2.9; §2.21). Moreover, risk
measures based on portfolio variance are not addi-
tively separable, precluding the efficient use of
dynamic programming. Steinbach (2001) proposes
a solution approach based on scenario
decomposition.

3.9.2. Risk management
While, in OR, the classical way to deal with deci-
sions under risk is utility theory, finance models
usually take a different approach by directly measur-
ing and/or pricing risk. Various measures, such as
variance, semi-variance, Value at Risk (VaR) or
Conditional value at risk (CVaR) have been pro-
posed to characterise risk56. VaR is effectively con-
cerned with computing quantiles of the predictive
distrubution (see also §2.10 and §3.19). In the fol-
lowing paragraphs, we present two contrasting fami-
lies of approaches to financial risk management.

Diversification and hedging approaches are closely
related to the resource allocation models presented
above. They consist in setting up and managing
portfolios of securities with desirable properties.
Diversification is effective in reducing risk that is
uncorrelated across securities, while hedging is used
to reduce systematic risk, for instance by holding
securities exposed to the same risk factors to elimin-
ate uncertainty, or by buying insurance in the form
of derivative contracts. In general, hedging positions
must be continuously adjusted to account for the
time evolution of risk factors and security prices. In
addition, investment portfolios are often required to
satisfy institutional or regulatory constraints. Risk
mitigation portfolio planning problems give rise to
dynamic stochastic mathematical programs. In
recent years, CVaR has become prominent for
measuring portfolio risk; CVaR is well-suited to
measure down-side risk in skewed distribution and,
as shown in Artzner et al. (1999), it has the desir-
able properties of a coherent risk measure.

Moreover, the use of CVaR in optimisation models
gives rise to convex or linear programs, allowing to
efficiently solve the large-scale problems encoun-
tered in practice (Rockafellar et al., 2000; Andersson
et al., 2001; Rockafellar & Uryasev, 2002).

Risk pricing approaches rather seek to evaluate
the consequence of unpredictable events and are
notably used for the management of credit and
counterparty risk, that is, the risk that the issuer of
a security (for instance, a corporate bond) will not
be able to meet its future obligations. A variety of
models have been proposed to evaluate the VaR of
debt instruments, mainly for the purpose of assess-
ing regulatory requirements ensuring that financial
institutions put aside sufficient capital to sustain
eventual losses. Crouhy et al. (2000) presents a
review of methodologies currently proposed by the
industry to evaluate the probability and consequen-
ces of default events. Most approaches used in the
industry to price credit and counterparty risk are
based on probabilistic models or Monte-Carlo simu-
lation (§2.19) and, as such, cannot account for stra-
tegic behaviour by the debtor or the lender (Breton
& Marzouk, 2018).

3.9.3. Asset pricing
Most asset pricing models are founded on an
absence of arbitrage assumption, which is usually
motivated by the efficiency of markets. Under this
assumption, the value of a financial asset is equal to
the expected value of its future payoffs, under a
suitable probability measure. One specific applica-
tion is the valuation and replication of contingent
claims, such as financial options. The contribution
of OR to this area lies in the development and
implementation of efficient numerical pricing meth-
ods for complex financial securities.

Starting from the binomial tree model of Cox
et al. (1979), numerical methods for option pricing
include Monte-Carlo (§2.19) and quasi-Monte-Carlo
approaches (Acworth et al., 1998; L’Ecuyer, 2009);
dynamic programming (§2.9) and approximate
dynamic programming models accounting for opti-
mal exercise strategies (Ben-Ameur et al., 2002;
Longstaff & Schwartz, 2001); and robust control
models (§2.21) accounting for transaction costs and
model uncertainty (Davis et al., 1993; Bernhard,
2005; Bandi & Bertsimas, 2014). Numerical algo-
rithms developed for option pricing have also been
applied to the valuation of numerous instruments,
including corporate bonds, credit derivatives, con-
tracts, and, under the designation of real options,
managerial flexibility (Trigeorgis, 1996; Schwartz &
Trigeorgis, 2004; Dixit & Pindyck, 2009).

In the context of algorithmic trading, asset pricing
algorithms have been revisited using artificial
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intelligence approaches, for instance by using
machine learning to identify factor models or
reinforcement learning to compute optimal exercise
strategies (Dixon et al., 2020; Gu et al., 2020), or by
augmenting the set of covariates with textual data
(Algaba et al., 2020).

3.9.4. Strategic interactions
Decisions made by investors, firms, financial institu-
tions, and regulators have a direct impact on asset
values, returns and risk. Players in the financial sec-
tor have competing interests and interact strategic-
ally over time, and these interactions are recognised
in many game-theoretic models of investment and
corporate finance (§2.11). Important issues include
market impact and market manipulation, option
games, strategic exercise of real options, agency con-
flicts, corporate investment, dividend and capital
structure policies, financial distress, and mergers
and acquisitions.

Optimal execution refers to the determination of
a trading strategy minimising the expected cost of
trading a given volume over a fixed period, account-
ing for the impact of the trades on the price of the
security. This problem is addressed in Bertsimas and
Lo (1998), using a stochastic dynamic program min-
imising the execution costs, and in Almgren and
Chriss (2001), where a combination of volatility risk
and transaction costs is minimised. Optimal execu-
tion and market impact are particularly significant
issues in the context of algorithmic trading and
have been addressed by the recently developed
mean-field game theory, acknowledging the fact that
price is impacted by the trades of many atomic
players (Firoozi & Caines, 2017; Cardaliaguet &
Lehalle, 2018; Huang et al., 2019).

Option games appear in asset pricing models
when a security gives interacting optional rights to
more than one holder, that is, when the exercise of
an optional right by one holder modifies those of
the others. Examples include callable, putable and
convertible bonds, warrants, and, especially, instru-
ments subject to credit or counterparty risk. In gen-
eral, the pricing of such financial instruments
corresponds to the solution of a non-zero-sum sto-
chastic game where players use feedback strategies
(Ben-Ameur et al., 2007).

Financial distress models are used to price cor-
porate debt, according to various assumptions about
strategic default, debt service and bankruptcy proce-
dures (Fan & Sundaresan, 2000; Broadie et al., 2007;
Annabi et al., 2012).

Finally, a large literature in corporate finance
uses game-theoretic models to deal with financial
decisions made by firms, such as the choice between
debt and equity when financing operations, the

amount of dividends paid out to shareholders,
and decisions about whether to invest in risky
projects.

3.9.5. Further readings
The recognition of finance as an thriving applica-
tion area for OR methods developed about thirty
years ago (see, for instance, Dahl et al., 1993a,
1993b, for an introduction to optimisation prob-
lems underlying risk management strategies and
instruments). A review of practical applications of
OR methods in finance appeared in Board et al.
(2003). For a comprehensive textbook covering
optimisation models in finance, we refer the
reader to Cornuejols and T€ut€unc€u (2006). A uni-
fied framework for asset pricing can be found in
Cochrane (2009) and a review of applications of
dynamic games in finance in Breton (2018).
Recent discussions about the interface of opera-
tions, risk management and finance as a promis-
ing research area are presented in Wang et al.
(2021) and Babich et al. (2021).

3.10. Government and public sector57

This subsection will present some OR applications
within the UK’s government operational research
service (GORS). GORS represents over 26 depart-
ments and agencies across Great Britain and
Northern Ireland with analysts working in multi-
disciplinary teams to find workable solutions to real
life problems. The outbreak of the Coronavirus pan-
demic in 2020 introduced a new global backdrop
and we were faced with the challenge of producing
appropriate analysis to answers questions during an
ever-changing landscape where time was of the
essence. This led to collaborations across a wide
range of departments across the nations.

A few examples of where this collaborative
approach was adopted successfully are highlighted
by the work carried out by the Department for
Transport (DfT) and the Office for National
Statistics (ONS). The ONS worked with other gov-
ernment departments such as Department of Health
and Social Care (DHSC) and schools across the UK
to monitor infection rates. They also applied their
expertise in artificial intelligence (AI) in the form of
semantic maps to gather insight into the pandemic.
Additionally, the DfT along with other government
departments used agent based modelling and dis-
crete event simulation to unpick the issues around
border disruptions and international travel.
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3.10.1. Coronavirus (COVID-19) infection survey
and schools infection survey
The Office for National Statistics (ONS) played a
vital role during the pandemic in monitoring infec-
tion rates. The Coronavirus (COVID-19) infection
survey estimates how many people across England,
Wales, Northern Ireland, and Scotland would have
tested positive for a COVID-19 infection, regardless
of whether they report experiencing symptoms. This
study was a collaboration with academic partners
and funded by Department of Health and Social
Care. This major study involved asking people up
and down the country to provide nose and throat
swabs on a regular basis. These are analysed to see
if they have contracted COVID-19. In addition,
some adults are also asked to provide blood samples
to determine what proportion of the population has
antibodies to COVID-19. Further details of the
methodology can be found in Office for National
Statistics (2022a).

Estimates of the total national proportion of the
population testing positive for COVID-19 are
weighted to be representative of the population that
live in private-residential households in terms of age
(grouped), sex and region. The analysis for the
infection study is complex, the model generates esti-
mated daily rates of people testing positive for
COVID-19 controlling for age, sex, and region. This
technique is known as dynamic Bayesian multi-level
regression post-stratification (MRP). Details about
the methodology are also provided by Pouwels et al.
(2021).

Estimates from the ONS survey are published
weekly, a critical element was how best to commu-
nicate the uncertainty, for dissemination estimates
were translated into, for example, 1 in 50 people,
with appropriate visuals including the ONS insights
tool (Office for National Statistics, 2022b). A com-
plementary piece of work was monitoring transmis-
sion and antibody levels within schools, enabling
the government to accurately assess the risk of dif-
ferent policy options.

The Schools Infection Survey (SIS) was a longitu-
dinal study which collected data through polymerase
chain reaction (PCR) tests, antibody tests and ques-
tionnaires. As well as monitoring transmission
within a school environment, this data was used to
assess the wider impacts of the pandemic and repeat
lockdowns on our children and young people,
including long covid, mental health and physical
activity levels. Further detail can be seen in Office
for National Statistics (2022c) and Hargreaves et al.
(2022).

The Daily Contact Testing (DCT) trial was a
blind medical trial which compared infection rates
across two groups subject to different policies: the

control group where children were in “bubbles”,
and after one child testing positive the entire bubble
would be sent home from school, and the interven-
tion group where after a child tested positive, close
contacts would then test daily and were allowed to
remain in school as long as their results were nega-
tive. The study was a success and led to a policy
change that resulted in schools being kept open for
longer. Further detail can be seen in Young et al.
(2021).

3.10.2. Semantic maps and their use for under-
standing regional disparities
Semantic Maps are a type of knowledge graph,
championed in the world of robotics and Artificial
Intelligence as a way to provide infrastructure to
exploit all kinds of potentially even crowdsourced
data and information in such a way as to provide
dynamic, online, interactive visualisations that sup-
port the controlled and secure use of live data. The
can be geospatial in nature, but they can also reflect
connections through semantic relationships. These
maps populated with data would provide users with
many different ways to consume the underlying
data and help inspire citizens about the potential
power of data to drive understanding and generate
insights.

During the development of the Levelling Up
White Paper the evidence base needed to be devel-
oped across government in order to define the key
metrics and measures to focus policies in areas that
would drive change. The white paper itself was
delivered by the Levelling Up Taskforce in the
Cabinet Office, however, ONS worked with the geo-
spatial commission in convening a group of chief
analysts from all departments on a regular basis.
ONS and the Levelling Up Taskforce used the group
to commission and collate existing evidence and
then worked with officials in His Majesty’s Treasury
(HMT) to develop a systems thinking model from
that evidence. This systems mapping was the basis
of the theory of change that underpins the white
paper. Subsequently, the metrics and missions were
developed and refined with this group in recogni-
tion of the fact that there needs to be a focus across
the system to reduce disparities that are often larger
within areas such as local authorities or regions
than they are between them.

ONS took this and developed a semantic map
that identifies potential data sources for various
aspects of the knowledge graph, using this to both
prioritise filling evidence gaps where data and evi-
dence do not currently exist and developing an inte-
grated data asset for Levelling Up. This data is in
the process of being acquired and engineered to be
able to be easily linked through a set of linking
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‘spines’ referred to as the reference management
database. This engineering and architecture is key
for supporting the sharing of information in a way
that ensures privacy. It is intended that in future
this asset will be made available across government
and in a secure integrated data service.

3.10.3. Agent based modelling
The COVID-19 pandemic presented challenges for
the international travel community. Government
officials in transport and health needed to model
the preventative effect of the various policy options
including testing and isolation on importation of
infections from international travel.

The approach chosen in the Department for
Transport to support this fast-moving policy area
was agent based modelling which built upon the
more scientific epidemiological modelling under-
taken by colleagues in Health and academia. This
allowed for the incorporation of the various differ-
ing parameters of international travellers including,
where they were coming from and their risk of
being infected and infectious, the uncertainty over
incubation and infectious periods, and their likely
behavioural response to various isolation and testing
regulations.

Whilst not designed to be a scientific forecast,
the modelling allowed the cross-government com-
munity to estimate the relative effectiveness of pol-
icy options. This work supported policy making
during a highly uncertain and changing environ-
ment when Government had to balance risk with
the wider impacts on the aviation sector and the
second order impacts on the economy.

3.10.4. Discrete event simulation
As part of the EU Exit preparations, it was impor-
tant for both the Department for Transport, the
Home office and regional resilience teams to under-
stand the impact of the expected border disruption
at UK ports for roll-on roll-off freight traffic travel-
ling to EU Member States. As the issue was around
changes to the time taken and resource available to
carry out additional border processes, the natural
choice was discrete event simulation. Analysts in
government developed a detailed model of the Short
Strait crossings (Port of Dover and the Channel
Tunnel to France accounting for 84% of accompa-
nied heavy goods vehicles travelling to continental
Europe in 2019; Department for Transport, 2022).
Regional models were developed to cover other
ports. These allowed government officials to under-
stand the likely queues and flow of vehicles and to
understand the impact of changes to the system,
which was vital to supporting contingency planning.

3.10.5. Statistical analysis and forecasting
The COVID-19 lockdowns of 2020 accelerated the
uptake of new and novel data sources for under-
standing mobility. Government analysts rapidly
ingested new data sources such as that provided by
Google mobility as open source data as well as pro-
curing in additional anonymised and aggregated
mobile network operator data. By analysing these
new data sets alongside traditional demographic and
geographic data sets it was possible to generate
insights into the changes in mobility being seen
across the country as a result of the various national
and regional restrictions. Regression analysis was
undertaken to produce a predictive model. It was
then possible to forecast the impact of later changes
to restrictions on population mobility.

3.10.6. Net zero – system thinking
In 2020 the UK Prime Minister’s Council for
Science and Technology advised on the following: ‘a
whole systems approach can provide the framework
that government requires to lead change across pub-
lic and private sectors and … enables decision mak-
ers to understand the complex challenges posed by
the net-zero target and devise solutions and innova-
tions that are more likely to succeed’ (Council for
Science & Technology, 2020). The Prime minister
agreed.

As transport represents a huge portion of the
challenge, ORs have run participatory systems map-
ping workshops in the Department for Transport
with modal subject matter experts to identify the
key causes and effects in the Transport Net Zero
system. This aims to enable those working on
Transport policy to explore the evidence, gain new
insights and visibility of interdependencies within
the system, and to understand the likely wider
impact of their policy choices.

3.10.7. Conclusions
All these examples help to illustrate the breadth of
analysis undertaken across central government dur-
ing the global pandemic to tackle real life issues;
and the ranges of techniques we have as OR analysts
to find workable solutions in an ever changing
world.

3.11. Healthcare58

Why is the organisation and delivery of health and
care services so difficult to manage, plan for and
improve? Difficulties and delays in accessing care
services, cancellations and increasing costs have a
negative impact on all of us: patients, carers, and
care professionals. Despite the attention and resour-
ces invested in addressing these problems, many
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health systems face increasing pressure to improve
the effectiveness and efficiency of their operations.
Part of the problem is the complexity inherent in
the organisation of care services and our limited
understanding of how changes will affect their deliv-
ery. Another problem is the intrinsic uncertainty
and variability in many aspects of care service deliv-
ery. Add the multifaceted dynamics arising in this
very complex socio-technical system involving pro-
fessionals, patients and existing and new technolo-
gies, against a background of increased demand and
budgetary constraints, and it is no surprise the effort
to improve healthcare has been termed ‘rocket sci-
ence’ (Berwick, 2005).

Operational research has a long established his-
tory in this area with the first application (schedul-
ing outpatient hospital appointments) reported in
the early 1950s (Bailey, 1952). Since then, there has
been a proliferation of OR applications reported in
the literature (Katsaliaki et al., 2010), and evidence
of use to support policy making and care delivery
(Royston, 2009). This is not a surprise given the
importance of healthcare in our lives and that many
of the problems faced by those managing and deliv-
ering care services are amenable to the methods and
ethos of OR (Utley et al., 2022). In the short review
that follows, which is by no means exhaustive and
draws primarily (but not exclusively) from the UK
academic community and the National Health
Service (NHS), I have attempted to give examples of
review and individual studies grouped in a few
broad areas of healthcare.

3.11.1. Applications to hospital settings
Hospital care has been the setting of a large number
of OR studies (Jun et al., 1999). Hospitals typically
survive reorganisations and funding cuts (unlike
management, policy and other statutory bodies),
and are large enough to be able to engage meaning-
fully in research projects (unlike, for example, many
primary care practices). Some (mainly teaching)
hospitals host large biomedical research centres,
with many of the professionals working in them
active researchers.

A specific area that has attracted the attention of
operational researchers is the Emergency
Department (ED). A recent review article identified
21 studies that used a computer simulation method
to capture patient progression through the ED of an
established UK NHS hospital, mainly focusing on
service redesign (Mohiuddin et al., 2017). Individual
studies have addressed the micro (single hospital)
level (Baboolal et al., 2012), as well as the meso-level
of emergency and on-demand healthcare within a
region (Brailsford et al., 2004). The study by Lane
et al. (2000) used System Dynamics to model the

interaction of demand patterns and resources
deployed in ED and other parts of the hospital to
examine the link between emergency and elective
operations in hospitals.

Another hospital area that has been the focal
point of OR is peri-operative care. Sobolev et al.
(2011) in their systematic review identified 34 stud-
ies modelling the flow of surgical patients. Various
forms of optimisation have also been applied to sur-
gical scheduling problems including operating room
(Fairley et al., 2019), staffing (Bandi & Gupta, 2020)
and nurse rostering (Xiang et al., 2015) among
others. Cardoen et al. (2010) identified almost 250
papers, with the rate of published studies accelerat-
ing at around the start of the new millennium (simi-
lar trends have been observed across many
disciplines). The review revealed that most of the
research was directed towards the planning and
scheduling of elective patients in highly stylised
scenarios – although many operational challenges
are triggered by factors such as the arrival of non-
elective (emergency) patients. More recently, the
problems tackled have become more realistic to
include considerations of downstream resource
availability such as critical care and general ward
beds (F€ugener et al., 2014), and scheduling elective
operations in such a way that randomly arriving
emergency patients can be accommodated without
excessive delays (Jung et al., 2019).

An area OR has demonstrably made a beneficial
impact is the organisation of acute stroke services.
Several studies have attempted to address the rate
and speed with which patients with suspected acute
ischemic stroke go through the initial diagnostic
steps and receive treatment (Meretoja et al., 2014).
Monks et al. (2012) made a number of recommen-
dations for improving treatment rates in a rural hos-
pital. In a follow-up study that evaluated the results
of their recommendations, mean door-to-needle
times (a key performance metric with direct impact
on patient survival and recovery) fell from 100min
to 55min while thrombolysis rates increased to
14.5% (Monks et al., 2015). More recently, the focus
has shifted to supporting decision around the cen-
tralisation of regional acute stroke services (Wood &
Murch, 2020; Wood et al., 2022), as well as the sup-
porting the introduction of endovascular thrombec-
tomy, a new and very effective treatment for
ischemic stroke (Maas et al., 2022).

3.11.2. Applications to non-acute hospital care
settings
Much of healthcare is delivered outside of large hos-
pital facilities. Primary care, home and community
care, social care are significant components of the
healthcare ecosystem. Primary care, whether provided

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 77



by physicians, nurse practitioners or pharmacists, is
typically concerned with providing a first contact and
principal point of continuing care and/or coordinat-
ing other specialist care. There are early examples of
theoretical work to assist primary care planning by
estimating the coverage achieved by staff and facili-
ties, using antenatal care as an example (Kemball-
Cook & Vaughan, 1983). More recently in the area
of maternity care provided in community as well as
hospital facilities, Erdo�gan et al. (2019) developed
and empirically tested an open source facility location
solver to assist with a decision on the number and
location of regional maternity facilities.

Home-based care has attracted considerable
attention from operational researchers (Grieco et al.,
2021). This review identified studies proposing
models and solution methods for operational deci-
sions on staff rostering, the allocation of staff to
patient visits, the scheduling of visits and the rout-
ing of staff. An example of impactful OR project is
the Swedish study by Eveborn et al. (2009), where a
set of algorithms and accompanying software tool
were developed to provide solutions to staff-to-
patient allocations, staff scheduling and staff routing
problems. Having deployed the tool to more than
200 units/organisations, operational efficiency was
increased by up to 15%, resulting in annual savings
of 20-30 million euros. More recently, modelling
work has supported the effort to address the timely
discharging of hospital patients by using a combin-
ation of home-based and bedded ‘step-down’ com-
munity care (Harper et al., 2021).

Mental health, one of the leading causes of dis-
ease burden internationally, has also received the
attention of operational researchers (Long &
Meadows, 2018). Specific areas of application varied
from psychiatric ICUs (Moss et al., 2022) to system
design (Smits, 2010) and planning (Vasilakis et al.,
2013), medical decision making (Afzali et al., 2012),
and epidemiology (Ciampi et al., 2011).

3.11.3. Public health, health system preparedness
and resilience, and pandemic response
Public health, the science and practice of helping
people stay healthy and protecting them from
threats to their health, is another area of OR appli-
cations. The review article by Fone et al. (2003),
identified OR studies of infection and communic-
able disease, screening, and several epidemiological
and health policy studies. Microsimulation, a type
of simulation which models individual life trajecto-
ries through a number of healthy and disease
states, has found wide applicability in the area of
public health (Krijkamp et al., 2018), such as fore-
casting the long-term care needs of the older popu-
lation in England (Kingston et al., 2018a).

Multicriteria decision analysis (MCDA) methods
have also been used extensively to address ques-
tions of health policy or health technology assess-
ment (Glaize et al., 2019).

An area that has seen increased attention over
the last two decades is that of emergency prepared-
ness and health system resilience (Tippong et al.,
2022). Emergency preparedness studies include a
study of red blood cell provision following mass cas-
ualty events (Glasgow et al., 2018). Examples of
health system resilience studies include the paper by
Crowe et al. (2014), which examined the feasibility
of using modelling to assess the capacity of a care
system to continue operating in the face of major
disruption.

The COVID-19 pandemic not only gave rise to a
large number of modelling studies, it also raised the
profile of mathematical modelling with the general
public and policy makers. Pagel and Yates (2022), in
their excellent article on the role of modelling in the
pandemic response, discussed the early lessons
learnt from this experience including the poor
understanding of policy makers and the public of
key concepts such as exponential growth. They
argue that infection disease modelling, which gener-
ated much of the evidence used to support decisions
of pandemic response (Brooks-Pollock et al., 2021),
is intrinsically difficult given the complex relation-
ships between the model parameters, and the
difficulties associated with quantifying these
parameters.

The possible benefits of modelling in addressing
the challenges presented by the pandemic were out-
lined by Currie et al. (2020). Indeed, several studies
emerged early in the pandemic including, for
example, an attempt to forecast the number of
infected and recovered cases used univariate time
series models (Petropoulos & Makridakis, 2020).
Wood et al. (2020) published one of the first OR
studies that examined the likely impact of increases
in critical care capacity as a means to reduce the
COVID-19 death toll. In a follow-up study, the
sophistication of the model was increased to cap-
ture notions of triaging access of patients to critical
care beds during periods of intense demand (Wood
et al., 2021b). The operation of large vaccination
centres was also the topic of several modelling
studies, both theoretical (Franco et al., 2022) and
empirical (Wood et al., 2021a; Valladares et al.,
2022).

3.11.4. Concluding remarks
Despite the large body of literature, the role and
impact of OR on improving care systems is less
clear. Hospitals have “largely failed to use one of the
most potent methods currently available for
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improving the performance of complex organ-
isations” (Buhaug, 2002) and “staff may be largely
unaware of the potential applications and benefits of
OR” (Utley et al., 2022). A systematic review found
that only half of the included studies reported mod-
els that were constructed to address the needs of
policy-makers, and only a quarter reported some
involvement of stakeholders (Sobolev et al., 2011).
Recent positive developments include the introduc-
tion of guidelines to improve the reporting of OR
studies (e.g., Monks et al., 2019), studies that recog-
nise the importance of behavioural factors in
attempts to influence practice and decision making
with OR (Crowe & Utley, 2022) and attempts to
systematically generate evidence on the value and
impact of OR on patient and system outcomes
(Monks et al., 2015; Soorapanth et al., 2022). The
research agenda should continue to evolve with the
aim of addressing the challenges around engage-
ment, implementation and evidencing the impact of
OR applied to healthcare problems.

3.12. Inventory59

Inventories are the materials, parts, and finished
goods held by an organisation for future use or sale.
Not having enough inventory is costly. Shortages of
materials and parts cause interruptions in produc-
tion processes, delays in product delivery, and stock-
outs of finished goods. On the other hand, carrying
inventory is costly, too, involving the cost of capital
due to tied-up capital, storage cost, insurance, taxes,
and spoilage and obsolescence costs.

Inventory theory studies analytical models and
solution techniques to help organisations meet the
service requirement most cost-effectively or minim-
ise the total expected costs of ordering, inventory-
holding, and shortage. It does so by quantifying the
tradeoffs driven by economies of scale, lead time
(the time it takes to receive the ordered quantity
after placing an order), and supply and demand
uncertainties. It prescribes effective inventory-con-
trol policies that govern when to order an item
(called reorder point) and how much to order (called
order quantity).

Inventory models distinguish from each other
along several features: single or multiple planning
periods, discrete- or continuous-time inventory
monitoring, single- or multi-product, single- or
multi-stage (or location), demand nature (determin-
istic or stochastic, stationary or nonstationary, dis-
tribution known or unknown), product perishability,
lost sales or backlogging when shortages occur,
deterministic or stochastic lead time, supply system
(single- or dual-source, exogenous or endogenous, a
finite or infinite capacity), and cost structure (with

or without a fixed ordering cost, etc.). The following
research-based textbooks and handbooks offer more
detailed coverage and references: Arrow et al.
(1958), Axs€ater (2006), de Kok and Graves (2003),
Graves et al. (1993b), Hadley and Within (1963),
Nahmias (2011), Porteus (2002), Silver et al. (1988),
Simchi-Levi et al. (2014), Snyder and Shen (2019),
Song (2023), and Zipkin (2000).

One class of models focuses on characterising the
optimal inventory-control policy under a given sup-
ply and demand environment and cost structure. A
common approach is formulating a multi-period
inventory decision problem as a dynamic program
and transforming the original formulation into a
simpler one through state reduction. Next, identify
the structural properties of the single-period cost
function to determine the optimal policy form for a
single-period problem. Then, show that these prop-
erties are preserved by the (Bellman) optimality
equation, so the policy form is optimal for each
period. The optimal policy parameters may not be
easy to compute; hence some works develop effi-
cient algorithms to calculate the optimal policy
parameters.

Another class of models focuses on developing
efficient performance evaluation tools for a given
type of inventory policy that is either commonly
used in practice or of simple structure and easy to
implement. This is particularly important for systems
where state reduction is not viable and the dimension
of the system state grows exponentially in the num-
ber of periods (the so-called curse of dimensionality),
so the optimal policy has no simple form. Typically,
this type of work analyses a continuous-review sys-
tem in which demand follows a stochastic process
and derives steady-state performance measures of any
given policy, such as average inventory, average back-
orders, and stockout rate, as well as the long-run
average cost. Then, optimisation tools can be devel-
oped to find the optimal policy parameters that min-
imise the long-run average cost.

The third class of models conducts asymptotic
analysis to establish asymptotic optimality of some
simple-structured policies for less tractable inventory
systems with unknown and complex optimal
policies.

The following are several classic models where
the optimal policies are shown to have simple
forms. Unless otherwise stated, the models assume a
single stage, a single source, and a single nonperish-
able product.

The EOQ (Economic Order Quantity) Model was
first developed by Harris (1913) (see the reprint
Harris, 1990) and popularised by Wilson (1934). It
concerns the balancing of holding and ordering
costs due to economies of scale in procurement or
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production. It is a continuous-review model over an
infinite planning horizon, assuming the annual
demand for the stocked item is a constant k: There
is a fixed procurement cost k independent of the
order size, accounting for administrative, material
handling, and transportation-related costs. The
annual per-unit inventory-holding cost is h. The
optimal order quantity (EOQ) that minimises the
annual order and holding costs equals

ffiffiffiffiffiffiffiffiffiffiffiffi
2kk=h

p
,

which is insensitive to small perturbations of the
model parameters. Variations of this model can
accommodate finite production rate, planned back-
logs, random yield, a quantity discount, and time-
varying demand (also known as the dynamic lot
sizing problem; see Wagner & Whitin, 1958; Silver
& Meal, 1973). It also forms the basis for the devel-
opment of efficient multi-item joint replenishment
policies and multiechelon coordinated replenish-
ment policies such as the power-of-two policies; see
Roundy (1985), Roundy (1986). For major develop-
ments and references, see Axs€ater (2006), Muckstadt
and Roundy (1993), Silver et al. (1988), Simchi-Levi
et al. (2014), and Zipkin (2000).

The Newsvendor Model, which originated from
Edgeworth (1888) in a banking application, was for-
malised by Arrow et al. (1951) in the general inven-
tory context. It optimises the tradeoff between too
much and too little inventory caused by demand
uncertainty for a seasonal product. It is a single-
period model with only one ordering opportunity
before the selling season, assuming an estimated
demand distribution. The fixed order cost is negli-
gible. After the ordered quantity arrives, the selling
season begins, and demand realises. At the end of
the season, there will be either unsold units (over-
age) or unmet demand (underage). The unit overage
cost (o) ¼ purchasing cost less - salvage value, while
the unit underage cost (u) is the lost profit. The
optimal newsvendor order quantity equals to the
fractile of the demand distribution at the critical
ratio u=ðuþ oÞ: The model can be generalised in
many ways, including random yield, different cost
structures, pricing, and distribution-free bounds
(Gallego & Moon, 1993; Petruzzi & Dada, 1999;
Porteus, 1990; Qin et al., 2011) and multi-location
with risk-pooling effect (Bimpikis & Markakis, 2016;
Eppen, 1979).

Dynamic Backlogging Models. The most tractable
and developed setting for multi-period models with
stochastic demand and a constant lead time is full
backlogging. When stockouts are rare, this model is
a reasonable approximation for the lost-sales system.
An important concept (due to state reduction) is
inventory position, which is the sum of the on-hand
inventory plus total pipeline inventory minus

backorders. This is the total system inventory avail-
able to satisfy future demand if we do not order
again.

Assume demand is independent over time. A
base-stock policy is optimal if the order cost is linear
(no fixed order cost). Each period has a target
inventory position called the base-stock level. If the
inventory position before ordering is below this
level, order up to this level; otherwise, do not order.
If the demand is stationary, the myopic base-stock
level that minimises a single-period expected cost is
optimal. The base-stock level has the same form as
the newsvendor quantity, with the holding cost as
the overage cost, the backorder cost as the underage
cost, and the demand during a lead time replacing
the single-period demand. For nonstationary
demand, as long as the myopic base-stock levels are
nondecreasing in time, the myopic base-stock level
is still optimal. See Veinott Jr (1965) and Porteus
(1990).

When the order cost is linear plus a fixed cost k,
the optimal policy is an (s, S) policy. In each period,
if the inventory position before ordering is below a
threshold s, order up to S; otherwise, do not order.
The key enabler of this result is that the single-
period cost is k-convex, a property discovered by
Scarf (1960a). When the demand is stationary, the
policy is also stationary. In a continuous-review sys-
tem with Poisson demand, the optimal policy is an
(r, q) policy: When the inventory position reaches r,
order q units. It is equivalent to the (s, S) policy
with r ¼ s and q ¼ S� s: A simple yet effective
heuristic policy is to use the optimal base-stock level
to approximate r, and use the EOQ formula to
approximate q; see Zheng (1992) and Axs€ater
(1996).

These policy structures have been extended to
more complex models, such as Markov modulated
demand (Iglehart & Karlin, 1960; Song & Zipkin,
1993; Sethi & Cheng, 1997), exogenous and sequen-
tial stochastic lead times (Kaplan, 1970; Nahmias,
1979; Ehrhardt, 1984; Song, 1994; Song & Zipkin,
1996), capacity constraints (Federgruen & Zipkin,
1986a, 1986b), unknown demand distribution (Scarf,
1959, 1960b; Azoury, 1985), and a dual-source prob-
lem where the lead times of the two sources differ
by one period (Fukuda, 1964) or the lead times are
stochastic and endogenous (Song et al., 2017). See
Veinott Jr (1966), Perera and Sethi (2022b), Perera
and Sethi (2022a), Porteus (1990), and Zipkin
(2000) for more detail.

Multiechelon (or multi-stage) inventory systems
are common in supply chains where the stages are
interrelated, such as production facilities, ware-
houses, and retail locations. The literature focuses
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on understanding three basic system structures: ser-
ies, assembly, and distribution systems.

In a series system with N stages and backlogging,
random customer demand arises at stage 1, stage 1
orders from stage 2, and so on, and stage N orders
from an outside supplier with ample supply. There is a
constant transportation time between two consecutive
stages. Define the echelon inventory of each stage to be
the inventory at the stage plus all downstream invento-
ries (including those in transit). Assuming no fixed
order costs, Clark and Scarf (1960) establish that an
echelon base-stock policy is optimal for all stages. That
is, we can treat each echelon as a single location and
order the echelon inventory position up to a target
base-stock level. Axs€ater and Rosling (1993) show that
for any echelon base-stock policy, there is an equivalent
local base-stock policy; therefore, the implementation of
the optimal policy is simple. Federgruen and Zipkin
(1984b) find that the optimal echelon base-stock policy
for the infinite horizon problem can be efficiently
obtained. Rosling (1989) proves that under certain mild
conditions, an assembly system can be transformed
into an equivalent series system, so the Clark-Scarf
result applies. Chen and Zheng (1994) further stream-
line the proofs of these results. Shang and Song (2003)
construct effective single-stage newsvendor solutions to
approximate the optimal echelon base-stock levels.
Chen and Song (2001) show that a state-dependent
echelon base-stock policy is optimal for Markov-modu-
lated demand. See Axs€ater (1993), Axs€ater (2003),
Axs€ater (2006), Angelus (2023), Federgruen (1993),
Kapu�sci�nski and Parker (2023), and Shang et al. (2023)
for more developments, including batch ordering, cap-
acity limits, distribution systems, transshipment, and
expediting.

Many other features are much less tractable, such
as lost-sales systems (Bijvank et al., 2023), censored
demand data, perishable products (Li & Yu, 2023),
general dual-sourcing systems (Xin & Van
Mieghem, 2023), distribution systems, and assem-
ble-to-order systems (Atan et al., 2017; Song &
Zipkin, 2003; DeValve et al., 2023). Nonetheless, sig-
nificant progress has been made in recent years on
structural properties of the optimal policy, asymp-
totic optimal policies, and effective heuristics, thanks
to more analytical tools such as discrete convexity,
asymptotic analysis, and machine learning algo-
rithms. See Chao et al. (2023), Cheung and Simchi-
Levi (2023), Shi (2023), and other chapters in Song
(2023).

3.13. Location60

In the domain of operations research, location prob-
lems are concerned with determining the location of
a facility or multiple facilities to optimise one or

more objective functions under constraints. Location
problems seek answers to questions such as how
many facilities should be located, where should each
facility location be, how large should each facility
be, and how should the demand for the facilities’
services be allocated to these facilities (Daskin,
1995). An example of a facility to be located is a
factory, distribution centre, warehouse, cross-dock,
or hub, where demand can be for raw materials,
components, products, passengers, data, etc.

Location decisions arise in a variety of public and
private sector decision-making problems. Some
examples from different sectors include locating
landfills where demand is for disposal of household
waste (Erkut & Neuman, 1989), ambulances where
demand is for transporting emergency patients to
hospitals (Brotcorne et al., 2003), warehouses where
demand is for storing products arriving from facto-
ries (Aghezzaf, 2005), schools where demand is for
students (Haase & M€uller, 2013), regenerators in
optical networks where demand is for data (Yıldız
& Karaşan, 2017), shelter sites where demand is for
refugees (Bayram & Yaman, 2018), and charging
stations where demand is for electric vehicles that
need to charge (Kınay et al., 2021). More applica-
tions of location problems from practice can be
found in Eiselt and Marianov (2015).

Location decisions refer to the placement of a
facility considering its interactions with demand
points (e.g., customers, suppliers, retailers, house-
holds) and possibly with other facilities to be
located. It includes selecting the location and deter-
mining how this location supports meeting a deci-
sion-maker or organisation’s objective. It is
important to note that facility location decisions are
different from facility design decisions. Facility
design decisions usually consist of facility layout and
material handling systems design. The layout entails
all equipment, machinery, and furnishing within the
building, whereas material handling systems com-
prise the mechanism needed to satisfy the required
facility interactions. Facilities planning and design
are extensively discussed in Tompkins et al. (2010).

Several factors influence facility location deci-
sions, the most prominent ones being transportation
costs and the availability of the transportation infra-
structure. Among other important factors are the
availabilities and costs of land, market, labour, mate-
rials, equipment, energy, government incentives, and
competitors as well as geographical factors and wea-
ther conditions. Distance is usually considered to be
one of the most important criteria in facility loca-
tion models. Several distance metrics can be used in
location models such as Euclidean (straight-line),
rectilinear (Manhattan), Cheybyshev (Tchebychev),
and network distance. Network distance is the
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distance that is calculated on an existing transporta-
tion network, for example, through using Google or
Bing maps.

An important criterion to be considered in loca-
tion problems is how demands are to be satisfied by
the facilities to be located. In some applications, the
whole demand of each customer must be satisfied
from a single facility (“non-divisible” demand)
which is referred to as a single source or single allo-
cation. Single allocation location problems are also
referred to as location-allocation problems as each
demand point is allocated to a single facility. On the
other hand, in multiple source/allocation problems,
the demand of a single customer can be served from
several facilities.

Location decisions are usually classified according
to their decision space. In continuous or planar loca-
tion problems, the facilities can be located anywhere
in the decision space. The search is for the optimal
coordinates; i.e, latitude and longitude. In discrete
location problems, a finite set of potential facility
locations is provided, possibly determined through a
pre-selection process. In network location problems,
on the other hand, there is a given network and the
facilities are to be located on this network. In net-
work location problems, facilities can further be
restricted to be placed only on the vertices or nodes
of this network and not on the edges or arcs,
referred to as vertex- or node-restricted location
problems.

Continuous location problems focus on minimis-
ing some function related to the distance between
the facilities to be located and the existing facilities
or demand points, such as suppliers and customers,
where minisum (minimising the total weighted dis-
tance) and minimax (minimising the maximum or
worst weighted distance) are among the most com-
monly employed objectives. Special cases of continu-
ous single-facility location problems with commonly
used distance metrics (e.g., rectilinear and
Euclidean) are well-studied and polynomial time
solution algorithms exist (Francis et al., 2004). In
the case of multi-facility continuous location prob-
lems, the facilities to be located can be homoge-
neous or non-homogeneous; in the latter, there are
different types (e.g., a factory and a warehouse) or
sizes of facilities to locate.

One of the most studied discrete location prob-
lems is the p-median problem. The goal is to pick a
subset p of (homogeneous) facilities to open from
among a given set of potential locations that minim-
ise the total transportation cost of satisfying each
demand point from the (nearest) facility it takes ser-
vice from. There is a well-known node optimality
theorem by Hakimi (1965) for the p-median prob-
lem on networks that proves that at least one

optimal solution to the p-median problem consists
of locating the facilities only on the nodes of the
network (even though a facility is allowed to be
located anywhere on the network including any
point on an edge between the nodes). Possible appli-
cations of the p-median problem are clustering,
transit network timetabling and scheduling, place-
ment of cache proxies in a computer network,
diversity management, cell formation and much
more (Mar�ın & Pelegr�ın, 2019).

An important related problem is the uncapaci-
tated facility location problem (UFLP) which is also
referred to as the simple plant location problem.
Unlike the p-median problem, in UFLP, the number
of facilities to be located is no longer known and
determined by optimising an objective function that
considers the trade-off between the fixed costs of
locating facilities and the transportation costs.
Numerous extensions of UFLP with uncertainty,
multiple commodities (e.g., products or services),
multi-period planning horizon, multiple objectives,
and network design decisions have been studied
with applications in several domains such as supply
chain and distribution systems design.

A nice structure of p-median and UFLP is that
since the facilities to be located are assumed to have
enough capacity (e.g., space or labour hour), all
demands of each customer can be served from a
single facility with minimum allocation costs. This
is no longer the case for capacitated versions of the
facility location problems, where single- and mul-
tiple-allocation versions are both extensively studied.
For multiple allocation capacitated (fixed-charge)
facility location problems, when the set of open
facilities is given, the resulting subproblem of find-
ing the best allocations is a transportation problem.
In the single allocation case, on the other hand,
when the set of open facilities is pre-determined the
resulting allocation subproblem is a generalised
assignment problem (Fern�andez & Landete, 2019).

When the worst-case is more important than the
average, it might be better to consider the furthest
or most disadvantaged demand point to ensure
equity in servicing the demand. Accordingly, the p-
centre problem aims to locate p facilities such that
the maximum distance (or travel time/cost) from a
demand point to its nearest facility is minimised
(minmax). The p-centre problem can be used to
locate public schools and various emergency service
facilities such as police stations, hospitals, and fire
stations. Different variations of this problem have
been studied such as the capacitated, conditional,
continuous, fault-tolerant, and probabilistic p-centre
problems (Çalık et al., 2019).

In covering location problems, the aim is to
locate facilities so as to cover demand. Typically, a
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demand point is considered to be covered if it is
within a certain distance or travel time of a facility.
Unlike in the previous models, the demand points
are not assigned to facilities in covering location
problems. The two most common covering location
problems are set covering and maximal covering
location problems. In the set covering location prob-
lem, the aim is to minimise the total cost of locating
facilities to cover all demand points, whereas, in the
maximal covering location problem, the aim is to
maximise the total demand covered subject to a
budget constraint or a constraint on the total num-
ber of facilities to locate. Continuous variants of
these covering location problems are also studied
(Plastria, 2002). Several different versions of cover-
ing location problems have been studied in the lit-
erature, including, but not limited to weighted,
redundant, hierarchical, backup covering problems
with applications in emergency services, crew sched-
uling, mail advertising, archaeology, metallurgy, and
nature reserve selections (Garc�ıa & Mar�ın, 2019).

In general, facility location problems consider
and model only a single echelon; i.e., either the
flows of commodities (e.g., products, customers)
coming into or out from the facilities to be located
are negligible, for instance, when one of those trans-
portation costs is borne by another decision-maker
and somehow not related to the current decision-
making problem. An example would be a manufac-
turing company determining the location of its new
factory for delivering products to its customers with
minimum total cost, where the company is not dir-
ectly involved in the delivery of raw materials from
their suppliers to the factory. When the flow of
commodities coming into the facilities to be located
as well as the flow going out of those facilities are
simultaneously considered in the models, these loca-
tion problems are referred to as two-echelon location
problems. For example, while locating a distribution
centre, the transportation cost of products from the
factory to this distribution centre as well as the
transportation costs from the distribution centre to
the retailers may need to be considered in the
model. Sometimes there are facilities to be located
at several echelons where flows of commodities in
and out of all those facilities need to be considered.
These multi-echelon types of location problems are
encountered for several applications of supply chain
network design (Melo et al., 2009). Another related
category is when there is a hierarchical network
structure among the facilities to be located, referred
to as hierarchical facility location problems (Şahin &
S€ural, 2007). An example of a hierarchical location
problem is designing a postal delivery network
where the locations of the sorting centres as well the

locations of the post offices that are to be allocated
to those sorting centres need to be determined.

There might also be interactions among the facili-
ties to be located. This is the case, for example, for
hub location problems where the demand is defined
between pairs of demand points (origin-destination
pairs) as opposed to having the demand of an indi-
vidual point. In that case, to satisfy the demand
from an origin to a destination point, flow can be
transported between the facilities to be located en
route to the destination, where those facilities can
act as switching, transshipment, sorting, connection,
consolidation, or break-bulk points. Hub location
models have several applications in passenger and
freight airlines, express shipment, postal delivery,
trucking, public transit, and telecommunication net-
work design (Alumur et al., 2021).

Location problems have been a testbed for many
algorithmic and methodological advances in opera-
tions research. Most discrete location problems
commonly belong to a class of NP-hard decision
problems (§2.5) and they can usually be formulated
with mixed-integer programming (MIP) models (see
§2.15). In addition to using commercial MIP solvers,
several exact and (meta)heuristic algorithms (§2.13)
have been developed and tested on benchmark
instances from the literature. Some of those bench-
mark instances can be obtained from Beasley
(1990), Posta et al. (2014), and Fischetti et al.
(2017b).

Location science is a very broad field of research
that encompasses geography, continuous and dis-
crete optimisation (§2.4), graph theory (§2.12),
logistics (§3.14), and supply chain management
(§3.24). This section only highlights the basic and
most well-known location models. For a more
detailed overview of the field of location science, we
refer the reader to several books written in this field,
such as Drezner and Hamacher (2004), Eiselt and
Marianov (2011), and Laporte et al. (2015).

3.14. Logistics61

Logistics refers to the organisation and implementa-
tion of the processes related to the procurement,
transport and maintenance of materials, personnel
and facilities. The application of operational
research to logistics dates back to 1930 (Schrijver,
2002), where Tolstoı (1930) solved to optimality the
problem of transporting salt, cement, and other
cargo on the railway network of the Soviet Union.
In general, the objective of logistics management
can be summed up as “getting the right thing/people
to the right place at the right time in the right
quantity at the right cost”. For materials, logistics
operations require the co-ordination of forecasting,
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purchasing, inventory control, warehousing, distri-
bution, transportation, delivery and installation.
Logistics management of personnel involves, in add-
ition, skills matching, capabilities training, labour
rules and worker preferences. At a strategic level,
logistics involves the design of the transport net-
work and facilities. In this subsection, we discuss
several major domains of logistics applications,
namely, military, inventory, time-sensitive, reverse
and humanitarian logistics. We also mention some
new technologies for emerging logistics applications.

3.14.1. Military logistics
Logistics play an important role in military opera-
tions. Indeed, the word “logistics” itself is derived
from the position Mar�echal des logis created in the
French army in the 17th century, whose responsibil-
ities of establishing camps and arranging transport/-
supplies were referred as “la logistique” (de Jomini,
1862). Many historians credited logistics as the suc-
cess factor in wars from ancient to modern times.
During World War II, the need for large-scale logis-
tics planning accelerated the development of oper-
ational research. The ability to sustain the convoy of
supply ships was a major factor in the Battle of the
Atlantic (Kirby, 2003). The 1948-1949 Berlin Airlift,
where over 2.3 million tons of goods were flown to
besieged West Berlin, is well-known as the first use
of logistics as a military and political strategy (Tine,
2005).

The North Atlantic Treaty Organisation defines
logistics as the science of planning and carrying out
the movement and maintenance of forces, and cov-
ers acquisition, transport, maintenance and evacu-
ation of materiel, personnel and facilities, and
provision of services and medical support.
Operational research methodologies are extensively
used (Scala and Howard II, 2020). Reliability and
operability of the supply lines are a major concern
in military logistics (McConnell et al., 2021), and
simulation is much utilised. Cioppa et al. (2004)
review agent-based simulation for military applica-
tions. Emerging technologies – such as additive
manufacturing (den Boer et al., 2020) and
unmanned transport (Jotrao & Batta, 2021) – have
also sparked research in smart military logistics
(Sch€utz & Stanley-Lockman, 2017). The reader is
also referred to §3.16.

3.14.2. Inventory logistics
In modern logistics, most activities are related to
products and goods, where their availability to cus-
tomers or users is a key concern. Inventory, thus,
plays an important role in this respect. A classic
problem related to inventory logistics is the inven-
tory-routing problem (IRP), introduced by Bell et al.

(1983) for the distribution of industrial gases. Since
then, various IRP applications have been studied,
including those related to automobile components
(Blumenfeld et al., 1985), groceries (Gaur & Fisher,
2004), cement (Christiansen et al., 2011). Typically,
IRP arises in vendor-managed inventory systems as
the supplier monitors the inventory and makes
replenishment decisions for its retailers (Archetti
et al., 2007). Because inventory can be carried from
one period to the next, IRP considers joint decisions
of inventory and routing across multiple periods
and aims to minimise the total transportation and
inventory holding costs over the planning horizon,
subject to all demands being satisfied. Speranza and
Ukovich (1994) extended the IRP to settings with
multiple products. When demands are uncertain,
IRP becomes stochastic IRP (Federgruen & Zipkin,
1984a; Trudeau & Dror, 1992), where the objective
function includes additional shortage cost. Coelho
et al. (2014) investigated the stochastic dynamic IRP
where decisions are made as customers’ demand
become realised. Inventory logistics is even more
timely today due to e-commerce (Archetti &
Bertazzi, 2021). The main challenge of these inven-
tory logistics problems is due to the computational
complexity of solving multiple NP-hard problems
simultaneously. The reader is also referred to §3.12.

3.14.3. Time-sensitive logistics
The quality and functionality of items, in storage or
transit, deteriorate over time. For items such as
fresh vegetables, the value degrades continuously.
Other perishables, such as blood, have fixed life-
times and cannot be used beyond expiry. Logistics
management of time-sensitive goods must consider
production, distribution and transport jointly.
Federgruen et al. (1986) was one of the first papers
to consider jointly inventory allocation and trans-
portation for fixed-lifetime perishables with prob-
abilistic demand. Since then, there has been much
research exploring additional issues, such as freight
consolidation (Hu et al., 2018), storage/transport
capacities (Crama et al., 2022) and environmental
concerns (Govindan et al., 2014). Shaabani (2022)
gives a comprehensive literature review.

For continually decaying food items, delivery
costs must be traded off with freshness-upon-arrival
which may lead to lost sales or revenue (Mirzaei &
Seifi, 2015). The overall network design – especially
decisions on where along the supply chain process-
ing occurs – is important, since deterioration rates
differ for unprocessed vs. finished/packaged goods,
and for items in transport vs. in storage (de Keizer
et al., 2017).

An important category of perishable goods is
blood. Integer-programming models were developed
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by Hemmelmayr et al. (2009) for collection and dis-
tribution of blood products to Austrian hospitals,
and by Ara�ujo et al. (2020) for blood delivery in
south Portugal. Pirab�an et al. (2019) survey research
on blood supply chain management.

3.14.4. Reverse logistics
Due to increased sustainability awareness and legis-
lation, reducing the environmental impact of pro-
duction and distribution has become important.
Twenty years ago, Beamon (1999) advocated that
supply chains must be extended from one-way to a
closed loop, where used products and materials are
recovered for re-use, recycle or re-manufacture.
Reverse logistics, thus, refer to the material flow
from the point of consumption back upstream for
regenerating value (Rogers & Tibben-Lembke,
2001). Compared to a forward supply chain, reverse
logistics processes are more complicated. Firstly, the
source, quality and quantity of recoverable used pro-
ducts/materials from end-users are highly unpredict-
able. There is an added decision-stage for
inspection, evaluation and sorting of the collected
materials, and streaming them into various proc-
esses (re-use, re-manufacture, disassembly, disposal,
etc.). These re-purposing processes may be expen-
sive, so trade-offs must be made between recovery
cost and salvage value.

Re-manufacturing, where items are repaired to
serviceable (like-new) condition, is an important
aspect of reverse logistics. Simpson (1978) was the
first to address a multi-period repairable inventory
problem with random demand and returns supply;
using dynamic programming, he found the optimal
policy structure which specified the repair, purchase
and scrap levels for each period. Later, the model
was extended to consider side-sales (Calmon &
Graves, 2017) and warranty demands (Lin et al.,
2020a). Nowadays, the concept of reverse logistics is
broadened holistically to closed-loop supply chains
and the circular economy (Santibanez Gonzalez
et al., 2019). See Van Engeland et al. (2020) for a
recent review.

3.14.5. Humanitarian logistics
When disasters strike, speedy evacuation and
prompt delivery of resources to affected areas are
critical. From some sparse early studies (Sherali
et al., 1991), humanitarian logistics research grew
rapidly since 2000. The research stream yielded
insights that have changed how humanitarian agen-
cies plan and manage disaster relief. A key concept
is inventory pre-positioning where depots are set up
already stocked with supplies in anticipation of dis-
aster occurrences, instead of scrambling for procure-
ment in the aftermath. Duran et al. (2011)

developed a facility-location and supply pre-posi-
tioning plan for CARE. See also Rawls and
Turnquist (2011). Many of the models used are
large-scale mixed-integer-programming models.

Humanitarian logistics involve multiple objec-
tives: costs, response urgency and fairness are all
important. Huang et al. (2012) considered equity in
last-mile distribution; Sheu (2014) incorporated per-
ceptions of people awaiting rescue. Other research-
ers considered decision under uncertainty: Mete and
Zabinsky (2010) developed a stochastic model for
location and delivery of medical supplies. Yet other
research took an interdiction approach and antici-
pated post-disaster deployment (O’Hanley &
Church, 2011; Irohara et al., 2013). Recent techno-
logical advances have stimulated new research and
practices. Maharjan et al. (2020) investigated pre-
positioning of mobile logistics/ telecommunications
hubs for Nepal. See Behl and Dutta (2019) for a sur-
vey. The reader is also referred to §3.4.

3.14.6. Emerging technologies
As technologies advance, the role of logistics has
become more important in the Industry 4.0 era
(Tang & Veelenturf, 2019). Tracking and locating
technologies (RFID, GPS, IoT, etc.) enable organisa-
tions and companies to acquire information in real
time. Powerful computing facilities can perform
analytics of massive volumes of historical data to
support near real-time solutions for large-scale
problems – essential for city logistics involving
thousands of orders to fulfil within a day, or even
an hour. Exciting emerging applications include
TSP/VRP for routing of drones (Masmoudi et al.,
2022) and/or autonomous vehicles (Reed et al.,
2022), risk analysis powered by block-chain technol-
ogy (Choi et al., 2019), flow-based optimisation for
crowd-sourcing logistics (Sampaio et al., 2020) and
cargo hitching (Fatnassi et al., 2015), demand-driven
optimisation for car/bike sharing systems (Wang
et al., 2022e), and queuing and simulation for
robotic warehouses (Fragapane et al., 2021).

These more complex and larger-scale problems
with tighter response times require new solution
methodologies. Most of these new approaches are
combinations of operational research and data sci-
ence techniques, for example, robust optimisation
(Zhang et al., 2021), reinforcement learning (Yan
et al., 2022c) and other machine learning-based
optimisation approaches (Bengio et al., 2021).

3.15. Manufacturing62

Manufacturing is the production process from mate-
rials to goods. Such goods can be finished goods
sold to end consumers or components sold to other
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manufacturers for the production of other more
complex products. Manufacturing has gone through
several different phases (Industry 2.0 to 4.0) in the
twentieth and twenty-first centuries. Here we offer
an overview of important manufacturing topics in
different time periods.

In Industry 2.0 (from the end of nineteenth cen-
tury to the 1980s), demand was relatively stable.
Important manufacturing systems include the
Toyota production system (TPS) and cellular manu-
facturing. The aim of these systems is to increase
productivity with lower production cost, which fits
the needs of a stable market during this time
period.

Taichi Ohno published Toyota Seisan Hoshiki
describing the TPS in 1978. TPS is an integrated
production system that can supply products to meet
both requirements of product volumes and product
varieties. Research and practical papers, reports, and
books were published in various media to describe
TPS. The underlying management principles and
theoretical mechanisms of TPS are well-known. A
TPS is an integrated production system that gener-
ates products to satisfy requirements of volumes and
varieties simultaneously with minimum resource
waste. A large number of TPS enablers have been
reported and include just-in-time material system
(JIT-MS), seven wastes, heijunka, multi-skilled
workers, quick set-up and changeover, and keiretsu.
Excellent analysis and review papers on the TPS are
de Treville and Antonakis (2006), Hines et al.
(2004), and Narasimhan et al. (2006).

Cellular manufacturing (CM) uses group technol-
ogy to efficiently produce a high variety of parts.
Cells are converted from job shops with functional
layouts to improve efficiency (Yin & Yasuda, 2006).
A cell consists of a machine group and a part fam-
ily. The first step in CM system design is cell forma-
tion. Part families and machine groups are
identified to form manufacturing cells such that the
intercell movements of parts are minimised. Parts in
the same family have similar machining sequences.
Machines in a cell are arranged to follow this
sequence. In this way, parts flow from machine to
machine in their processing sequence, resulting in
an efficient machining flow that is similar to an
assembly line. For each part family, the volume of
any particular part type may not be high enough to
utilise a dedicated cell. The total volume of all part
types in a part family should be high enough to util-
ise a machine cell well. CM attempts to flexibly
accommodate high variety and simultaneously effi-
ciently take advantage of flow lines (Celikbilek &
S€uer, 2015).

In Industry 3.0 (from the 1980s to today),
demand is relatively volatile because of technological

innovations, higher product variety, and shorter
product life cycles. The important manufacturing
topics include flexible manufacturing systems
(FMSs) and seru production system. The theme of
these topics is to meet the increased demand for
high variety and short delivery time. Product life
cycles decreased during this time period, which
drives manufacturers to focus on responsiveness and
delivery time. Short changeover time between differ-
ent product types is useful.

An FMS is an integrated, computer-controlled
manufacturing system of automated material han-
dling and computer numerically controlled machine
tools that can simultaneously process medium-sized
volumes of a variety of part types. A fully automated
FMS can attain the efficiency of well-balanced,
machine-paced transfer lines, while utilising the
flexibility that job shops have to simultaneously
machine multiple part types (Stecke & Solberg,
1981; Stecke, 1983; Browne et al., 1984).

A seru production system is an assembly system
that has been adopted by many Japanese electronics
companies. Yin et al. (2008) is the first English lan-
guage paper on seru production. They describe and
analyse the success of seru production systems in
Canon and other Japanese companies. It is more
flexible than TPS, which cannot achieve the required
responsiveness in this innovative time period. A
seru production system consists of one or more
serus. Serus within a seru system are quickly recon-
figurable, i.e., they can be constructed, modified,
dismantled, and reconstructed frequently in a short
time. There are three types of serus, called divisional
serus, rotating serus, and yatais. They represent the
evolutionary development of serus. A divisional seru
is a short, often U-shaped, assembly line staffed
with several partially cross-trained workers. Tasks
within a divisional seru are divided into different
sections. One worker is in charge of each section. A
rotating seru is often arranged in a U-shaped short
line with several workers. Each worker performs all
required tasks from start to finish without interrup-
tion. Tasks are performed on fixed stations, so
workers walk from station to station. A worker fol-
lows the worker ahead of her or him, and is also
followed by the worker behind her or him. A seru
with only one worker is called a yatai. An important
performance of the seru production system is that it
can quickly respond to product varieties with fluctu-
ated volumes. By applying seru, delivery time is
reduced. Variety and volume are easily handled.

The TPS-based assembly line became inefficient
because of an inability to change very frequently to
produce small-volume demands. The typical seru cre-
ation process in Sony and Canon can be summarised
as follows (Yin et al., 2017). Assembly lines were
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dismantled and replaced with divisional seru systems
through resource co-location and removal/replacement,
cross training, and autonomy. The technique of kara-
kuri (involves procedures to discover and appropriate
the useful functions of expensive equipment into inex-
pensive self-made equipment) is applied to replace
expensive dedicated equipment by inexpensive self-
made and/or general-purpose equipment that can be
duplicated and redeployed as needed by serus. As
cross-training progresses, divisional serus evolve into
rotating serus and yatais.

More details about the underlying management
and control principles of seru can be found in
Stecke et al. (2012), Yin et al. (2008), Yin et al.
(2017), and Liu et al. (2014). Roth et al. (2016)
reviews the last 25 years of OM research and pro-
vides eight promising research directions, one of
which is seru production systems.

Today, manufacturing has entered a new age
(Industry 4.0) because of the emergence of disrup-
tive technological innovations. Examples of impor-
tant manufacturing topics include smart
manufacturing, mass-customisation, sustainable
manufacturing, and additive layer manufacturing.
Strozzi et al. (2017) examines the evolution, trends,
and emerging topics of a smart factory and provides
topics for future research. Hughes et al. (2022) pro-
vides a review for manufacturing in the Industry
4.0 era.

Smart manufacturing refers to flexible and adapt-
able manufacturing processes through integrated
systems and using advanced technologies such as
sensors, IoT, cloud computing, big data, artificial
intelligence, automation, robots, cyber-physical sys-
tems, and additive layer manufacturing. Some
detailed discussions can be found in Ivanov et al.
(2016), Kersten et al. (2017), Liao et al. (2017),
Theorin et al. (2017), Thoben et al. (2017), and
Hughes et al. (2022).

One important benefit of smart manufacturing is
that it aids the capability of mass customisation and
short lead time to quickly meet changing demands.
Zawadzki and _Zywicki (2016) suggested smart prod-
uct design and production control for efficient oper-
ations in a smart factory to enable mass
customisation. Brettel et al. (2014) show that self-
improving smart manufacturing systems can utilise
data and quickly react (e.g., reconfigure) to person-
alised customer orders, which helps realise mass
customisation. Some efficient mathematical models
that use big data to manage and control manufac-
turing processes can be applied in smart factories
(Ivanov et al., 2016, 2017).

Sustainable manufacturing aims to minimise
negative environmental impacts while conserving
energy and natural resources. Sustainable

manufacturing also enhances employee, community,
and product safety. The emergence of blockchain
technology and its potential disruption within the
manufacturing and supply chain industries present
opportunities for greater levels of sustainability in
Industry 4.0. The immutability and smart contract
capability of blockchain technology allow the prov-
enance and integrity of products to be monitored
more effectively. These factors contribute to reduc-
ing verification costs and the provision of real-time
status information on the quality of materials
throughout the supply chain (Ko et al., 2018). The
disintermediation attributes of blockchain can dir-
ectly contribute to manufacturing sustainability by
effectively reducing complexity, and improving effi-
ciency with less waste via the streamlining of the
supply chain (Hughes et al., 2019).

Additive layer manufacturing may generate a dis-
ruptive and revolutionary impact on manufacturing
(Garrett, 2014). It enables a manufacturer to further
increase responsiveness by reducing lead time and
increasing customisation levels. Long et al. (2017)
provide a definition, characteristics, and mainstream
technologies of 3D printing. Dong et al. (2016) com-
pared the optimal assortment strategies under trad-
itional flexible technology and 3D printing to find
that 3D printing may allow a larger set of product
assortment. Song and Zhang (2020) and Ivan and
Yin (2017) examined the use of 3D printing on a
logistics system for spare parts inventory design. 3D
printing tends to be slower than other manufactur-
ing methods, which currently limits its use in
practice.

For a detailed encyclopedic overview of the man-
ufacturing field, both in terms of theory and prac-
tice, see Yin et al. (2017). They discuss and compare
production systems from Industry 2.0 to Industry
4.0. The demand dimensions of each industry era
are analysed and provided as the driving force for
the changes in the production systems over time.

3.16. Military and homeland security63

The birth of OR is related to the use of optimisation
modelling for military operations and resource plan-
ning during the Second World War. The early linear
programming (§2.14) problems ranged from the
efficient use of weapon systems to logistics and
strategy planning. Today, the arena of defence has
expanded extensively with new areas including
information and cyber warfare. The need to counter
terrorism has created the field of homeland security.
OR has a role in all these emerging topics. One can
say that all OR methods are applied in military and
homeland security problems.
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Optimisation methods are used in a wide range
of defence and security applications. For instance,
assigning weapons to targets (Kline et al., 2019)
using integer programming (§2.15; §2.4) has been
addressed with a variety of optimisation algorithms.
Other integer programming studies include, for
example scheduling of training for military person-
nel (Fauske & Hoff, 2016) as well as military work-
force and capital planning (Brown et al., 2004).
Mixed integer linear programming is utilised in
diverse applications such as path planning of
unmanned ground and areal vehicles including
drones, mission planning, acquisition decisions of
military systems as well as load planning in trans-
portation. Optimisation of vehicles’ routes is also
carried out by solving network optimisation prob-
lems (§2.12) with shortest path algorithms (Royset
et al., 2009). Network optimisation is also used, e.g.,
in developing military countermeasures. Examples
of bilevel and robust optimisation (§2.21) formula-
tions cover positioning of defensive missile intercep-
tors (Brown et al., 2005) and design of a supply
chain for medical countermeasures against bioat-
tacks (Simchi-Levi et al., 2019). Multiobjective opti-
misation has been applied, for example in
optimising boat resources of coast guard (Wagner &
Radovilsky, 2012) and planning of airstrikes against
terrorist organisations (Dillenburger et al., 2019).
Inherent structures of specific military optimisation
problems have motivated the development of new
solution techniques (Boginski et al., 2015) including,
for example, metaheuristics (§2.13). Such techniques
are used, e.g., for solving nonlinear military opti-
misation tasks (§2.16) such as design of projectiles.

Game theoretic modelling (§2.11) is used in
many defence studies. Information related topics
include misinformation in warfare (Chang et al.,
2022) and public warnings against terrorist attacks
(Bakshi & Pinker, 2018). Examples of game theor-
etic strategy design problems cover the optimal use
of missiles and the validation of combat simulations
(Poropudas & Virtanen, 2010). Designing security
and counter strategies against enemies, terrorists
and adversarial countries naturally lead to the use of
game models. Interdiction network game models
arise in security applications (Holzmann & Smith,
2021), and they are used, e.g., in route planning
through a minefield.

Military simulation models (§2.19) are classified
into constructive, virtual and live simulations (Tolk,
2012). Constructive simulations do not involve real-
time human participation. They are based on well-
known modelling methodologies such as Monte
Carlo, discrete event and agent-based simulations.
Applications of constructive models cover, e.g., the
development and use of weapons, sensor and

communications systems, planning of operations
and campaigns, improving maintenance processes of
military systems, and evaluating effects of fire. In
addition, cyber-defence analyses have been con-
ducted (Damodaran & Wagner, 2020). Constructive
simulations have also been used in simulation-opti-
misation studies such as scheduling maintenance
activities of aircraft, military workforce planning,
and aircraft fleet management (Mattila & Virtanen,
2014; Jnitova et al., 2017).

The complexity of modelling human behaviour
generates a major challenge for constructive simula-
tion. This issue is avoided in virtual simulations, i.e.,
simulators in which real people operate simulated
systems and in live simulations where real people
operate real systems with simulated weapon effects.
These practices are typically used, e.g., in military
exercises and training of personnel. An emerging
trend is to combine live, virtual and constructive
simulations into a single simulation activity
(Mansikka et al., 2021b). Applications of this simu-
lation type vary from training to testing large-scale
systems and mission rehearsals (Hodson & Hill,
2014). In a combined simulation, new ways to meas-
ure performance are introduced (Mansikka et al.,
2021a) by complementing traditional measures such
as loss exchange or kill ratio by human measures
such as participants’ situation awareness, mental
workload and normative performance (Mansikka
et al., 2019).

Features of virtual simulation can be recognised
in wargaming (Turnitsa et al., 2021) that has been
used for military training and educating since the
early 19th century. Other wargaming areas are, for
example, examination of warfighting tactics as well
as evaluation of military operations and scenarios.
Nowadays, wargames are also applied in studies of
international relations and security as well as in
analyses of government policy, international trade,
and supply-chain mechanics (Reddie et al., 2018).
The implementations of wargames range from man-
ual tabletop map exercises to computer-supported
setups in which different OR and artificial intelli-
gence techniques are utilised (Davis & Bracken,
2022).

Dynamic phenomena regarding military and
defence are often represented with differential or
difference equations. Examples of these models are
Lanchester attrition equations that describe the evo-
lution of strengths of opposing forces in gunfire
combat (e.g., Jaiswal, 2012). There are also several
modifications of these equations aiming to model,
e.g., asymmetrical combat, tactical restrictions and
even morale issues. Another example of simple
combat models is the salvo model that represents
naval combat of warships involving missiles
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(Hughes, 1995). Optimal control (see also §2.6) has
been utilised, for example in planning optimal paths
of military vehicles as well as in guidance systems of
unmanned aerial vehicles, drones and missiles
(Karelahti et al., 2007). For a recent overview, see
for example Israr et al. (2022). Another type of opti-
mal control application is the assignment of resour-
ces to counter-terror policies and measures (Seidl
et al., 2016). Markov decision processes and
approximate dynamic programming (§2.9) have
recently emerged as important techniques for analy-
sing dynamic military decision-making problems
related to, e.g., missile defence interceptors and mili-
tary medical evacuation (Jenkins et al., 2021).

The need for multicriteria evaluation is common
in military decision-making. Example applications of
multi-criteria decision analysis (MCDA; see also
§2.8) are acquisition of military systems and equip-
ment procurement, military unit realignments and
base closures, locating military bases, and assess-
ment of future military concepts and technologies
(Ewing et al., 2006; Geis et al., 2011; Harju et al.,
2019). Public procurement even for the military is
regulated in many countries, and directives require
it to consider multiple criteria (Lehtonen &
Virtanen, 2022). It is interesting to notice that the
recent acquisition decision of a 5th generation multi-
role fighter aircraft in Finland was, indeed, sup-
ported by MCDA (Ker€anen, 2018). MCDA
weighting methods have also been used to create
measures of mental workload in military tasks
(Virtanen et al., 2022). In portfolio decision analysis
problems, the goal is to find the best set of compo-
nents, e.g., in weapons systems or in force mix for
reconnaissance, with respect to multiple criteria
(Burk & Parnell, 2011). The evaluation of the effect-
iveness of military systems calls also for the use of
cost-benefit analysis (§2.18; Melese et al., 2015).
Data envelopment analysis (§2.7) is a multicriteria
approach helping to seek efficiency also in military
problems such as personnel planning.

MCDA studies in homeland security is a broad
area ranging from the design of countermeasure
portfolios to threat analysis and cyber-security
(Wright et al., 2006). The questions of interest
include, e.g., identification of terrorists’ goals and
preferences, estimation of attacks’ consequences, and
comparison of countermeasure actions (Abbas et al.,
2017). Cost-benefit models are also relevant in ter-
rorism research (Hausken, 2018).

Today, we are witnessing the vast growth of the
use of machine learning and artificial intelligence
(§2.1) in military and security problems (Dasgupta
et al., 2022; Gal�an et al., 2022). Such problem areas
are, e.g., wargaming and simulation, command and
control of autonomous unmanned vehicles including

drones, air surveillance, and cyber-security only to
mention a few. Data analytics (see also §2.3) is nat-
urally also used in military OR (Hill, 2020), e.g., for
supporting logistics planning. Considering uncer-
tainty is essential, e.g., in intelligence analysis and
risk analysis related to terrorism (see also §2.18) .
Adversarial risk analysis (Rios Insua et al., 2021)
uses Bayesian approaches (see also §2.18) for taking
into account information, beliefs and goals of adver-
saries. A similar approach is also applied in the
modelling of pilot decision-making in air combat
with influence diagrams (Virtanen et al., 2004).
Markov models and Bayesian networks are used to
evaluate risks and conduct time dependent probabil-
istic reasoning related to military missions
(Poropudas & Virtanen, 2011). Kaplan (2010) stud-
ies the infiltration and interdiction of terror plots
using queueing theory (§2.17).

In the future, combat models need to include
socio-cultural and behavioural factors (Numrich &
Picucci, 2012). We are also likely to see an increase
in the modelling of individual and group behaviour
as well as the consideration of behavioural issues in
military and homeland security contexts.
Behavioural game theory can give insights into mili-
tary strategy and conflict situations. Behavioural OR
(§2.2), which studies the impacts of the human
modeller and model users including cognitive biases
in decision support, is likely to receive increasing
attention in military applications as well.

For further readings, we refer to the military OR
textbooks by Fox and Burks (2019) and Jaiswal
(2012). The recently edited volume by Scala and
Howard II (2020) describes various OR methods
and how to apply them in military problems. Abbas
et al. (2017) and Herrmann (2012) focus on home-
land security modelling.

3.17. Natural resources64

Climate change and natural resource management
require different quantitative and qualitative models
that support public policy (Ackermann & Howick,
2022). One of the early papers on the use of model-
ling for natural resource utilisation describes a
resource analysis simulation procedure to assess the
environmental impact of human activities (Bryant,
1978). The procedure comprises a structural model
to express the complex network of interacting
human activity systems and a parametric model to
determine the scale of the activity being modelled.

An integrated decision support system for water
distribution and management was built to generate
alternative water allocation and agricultural produc-
tion scenarios for a semi-arid region (Datta, 1995).
The model considers ground and surface water
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sources as the supply. The water demand is a com-
bination of the need for drinking, irrigation, house-
hold and public utility, natural vegetation, industrial
use, and ecological balance. The decision support
tool visualises water allocation to competing crops
under a range of simulation scenarios, providing a
wider set of options to the department taking deci-
sions how water is distributed.

A web-based decision support system developed
for the US Fish and Wildlife Service and the US
Geological Survey initiative facilitates cross-organisa-
tional data sharing and performs analyses to
improve conservation delivery (Hunt et al., 2016).
Situation-specific management actions such as con-
trolled burn or prescribed graze required by this
decision support tool improves ecological outcomes
of other conservation efforts. Buffelgrass is an inva-
sive species that causes significant damage to the
native desert ecosystem. A multi-period multi-
objective integer programming model was proposed
to find optimal treatment strategies to control the
buffelgrass population in the Arizona desert
(B€uy€uktahtakin et al., 2014). The multiple objectives
minimise damage to threatened resources: a native
cactus species (saguaros), buildings, and vegetation
subject to budget and labour constraints. The results
show the necessity of cooperation between different
interest groups to establish reasonable treatment
strategies and the need for a policy change because
current resources cannot stop an ecological disaster
in the future.

A mixed-integer programming model is devel-
oped to evaluate fishery management policies over
an infinite horizon by incorporating steady state lev-
els of variables into a multi-period analysis frame-
work (Glen, 1997). This model is intended to be
used annually with updated stock estimates to set a
dynamic total allowable catch per year depending
on the stock estimates over several years. Statistical
and fuzzy multiple criteria analysis establishes which
materials contribute the most to the presence and
the abundance of species in artificial reef structures
(Shipley et al., 2018). Managers of fisheries can use
this model to screen different species without loss of
rigour and validity of results. Multiple-criteria ana-
lysis is used in conjunction with integer program-
ming to assist complex management plans in
ecology and natural resources (�Alvarez-Miranda
et al., 2020). A case study on the Mitchell River
catchment (Australia) shows the trade-offs between
ecological, spatial, and cost criteria, enabling deci-
sion-makers to explore and analyse a broad range of
conservation plans. The use of catastrophe theory in
management of natural resource systems are
described with cases on forestry and fishery man-
agement (Wright, 1983). Catastrophe theory applies

the mathematical theory of structural stability to
practical systems. It allows modelling of ecosystems
with low and high levels of predator and prey popu-
lations. It helps model a catastrophic jump from
one level to the other, supporting decision making
for management of natural resources.

As a natural resource, wind provides clean,
renewable, and sustainable energy. A multi-objective
model minimises cost and idle time under reliability
thresholds, maintenance priority, and opportunism
(Ma et al., 2022). Reliability thresholds trigger main-
tenance activity. Maintenance priority indicates
which maintenance tasks need to be performed
under limited maintenance resources. Opportunistic
approach indicates whether additional maintenance
should be performed when a maintenance team is
already out to service several turbines. The proposed
multi-objective optimisation model is tested using a
stochastic simulation model of a wind farm and con-
firmed to keep the wind system at a higher perform-
ance level with lower cost and higher availability.

Natural resource exploration is frequently subject to
real options analysis (Nishihara, 2012; Martzoukos,
2009). A stochastic mixed integer nonlinear programme
is proposed to incorporate geological and market
uncertainty into mineral value chain optimisation
(Zhang & Dimitrakopoulos, 2018). Simulation of mine
deposits and commodity market informs the profitabil-
ity of strategic and tactical plans. A range of real
options applied to natural resource management
include investments in infrastructure, use of land, and
management of natural resources (Trigeorgis &
Tsekrekos, 2018). Firms require high output price levels
to invest in environmental technologies, because they
would not want to commit to an investment that could
turn out to be unprofitable in the event of a price fall
(Cortazar et al., 1998).

Several papers are published on the use of oper-
ational research for natural resource management.
Typical operational research problems and actors in
agricultural supply chains informs strategic investment
and operations management under increased pressure
on natural resources (Pl�a et al., 2014). The contribution
of operational research applications to agricultural value
chain sustainability and resilience call for applications
of complex systems methods such as agent-based mod-
elling, systems modelling, and network analysis
(Higgins et al., 2010). A review of environmental man-
agement and sustainability papers in major manage-
ment science/operational research and systems journals
revealed dominance of hard optimisation methods
(Paucar-Caceres & Espinosa, 2011).

The environment-development problem concerns
reconciling industrial development and environmen-
tal protection. A methodological framework is
proposed to model the environmental impact of

90 F. PETROPOULOS ET AL.



development under uncertainty arising from the
degree of unpredictability arising from decision
makers and environmental processes (Dzidonu &
Foster, 1993). Natural resource development con-
tracts depend on the bargaining power of trans-
national corporations and host country governments
(Anandalingam, 1987). Contracts that stipulate shar-
ing of the net income from resource development
between the developing corporation and the govern-
ment show that government would receiver higher
income if many corporations are involved and if the
government agrees to contribute to production
costs. A review of Operational Research in mine
planning reports optimisation and simulation
applied to surface and underground mine planning
problems, including mine design, long- and short-
term production scheduling, and equipment selec-
tion (Newman et al., 2010). The operational research
on mining is evolving to solve larger and more
detailed and realistic models.

A series of cases studies from Asia, Africa, and
Latin America presents principles and applications of
an integrated approach to natural resources manage-
ment, including the complexity of systems and redi-
recting research towards participatory approaches,
multi-scale analysis, and tools for systems analysis,
information management, and impact assessment
(Campbell & Sayer, 2003). A specialised book on the
Baltic region presents scientific research on activities
depleting natural resources, emissions from energy
use, pollution, and strategies for environmental
management (Fenger et al., 1991). Stochastic Models
and Option Values: Applications to Resources,
Environment and Investment Problems presents a
collection of research papers on the use of control
theoretic methods to address problems that arise in
natural resource development (Lund & Oksendal,
1991). Strategic Planning in Energy and Natural
Resources contain innovative and methodologically
rigorous operational research applications (Lev et al.,
1987). The Handbook of Operations Research in
Natural Resources collate research papers that
address optimal allocation of scarce resources in agri-
culture, fisheries, forestry, mining, and water resour-
ces (Weintraub et al., 2007). Operations Research
and Environmental Management organises its con-
tent by regional and global policies (Carraro &
Haurie, 1996). Models help local and regional author-
ities optimise their energy distribution and minimise
natural resource waste.

3.18. Open-source software for OR65

Commercial solvers for solving Operational
Research (OR) problems have been used for several
decades and have provided both practitioners and

academics with access to the state-of-the-art OR
techniques. Mathematical programming solvers IBM
ILOG CPLEX (IBM 2022), Gurobi (Gurobi, 2022),
BARON (Sahinidis, 1996), and discrete event simu-
lation software Arena (Rockwell Automation, 2022)
and Simul8 (Simul8 Corporation, 2022) are among
the best-known examples. There also exists ad-hoc
software for particular problems raising in manufac-
turing (e.g., AIMMS; AIMMS, 2022), healthcare
(e.g., SimCAD Pro Health; CreateASoft Inc., 2022),
and logistics (e.g., AnyLogistix The AnyLogic
Company, 2022). The strength of commercial soft-
ware is primarily based on the fact that they provide
users with a simple interface to declare a problem,
utilise state-of-the-art solution algorithms, and visu-
alise the result with minimal effort.

These software do not only solve problems but
also provide modelling, debugging, and scenario ana-
lysis to improve the solution process (Dagkakis &
Heavey, 2016). However, the lack of access to the
source code and knowledge of how these tools work
internally inhibit users from customisation. It is diffi-
cult to contribute to the development of commercial
software as it is a black-box to the end-user. The
high licence costs of those software has been one of
the most prominent factors blocking many compa-
nies, especially small and medium enterprises, from
integrating them into their tactical and operational
planning (Linderoth & Ralphs, 2005). Dagkakis and
Heavey (2016) argued that the lack of reusability and
modularity have been the additional factors impeding
the use of commercial OR software.

Open-source software, on the other hand, enable
users to solve OR problems without a significant
initial investment. Although using open-source soft-
ware does not require licensing fees, the effort to
deploy it may require a significant amount of effort
and time. Nevertheless, the opportunity to access
the core components of a solver (or simulator) and
ease of development has driven the OR community
to shift from a strict, slow-pace black-box software
development to modular, flexible, and quick open-
source software development.

In this section, we discuss open-source OR soft-
ware, categorising them into two main groups: (i)
open-source solvers and (ii) open-source simulators.
The former category covers the software focusing on
solving mathematical programming problems. The
latter includes software for simulating a real-world
environment and helping decision makers to under-
stand and analyse the system without consuming
physical resources. Note that we neither provide the
specific features of such software nor the character-
istics in terms of programming languages, etc.
Interested readers are referred to the comprehensive
reviews in Linderoth and Ralphs (2005) and
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Dagkakis and Heavey (2016) for some of the soft-
ware we mention below.

3.18.1. Open-source solvers
A solver can be defined as a set of computationally
efficient analytical tools that can find optimal (or
near-optimal) solutions to a mathematical program-
ming model. In 2000, a public initiative was built by
the IBM Research Division (Pulleyblank et al., 2000)
to promote and support community-driven develop-
ment of open-source solvers that utilise the state-of-
the-art research in OR. Subsequently, a public
project called COIN-OR (COIN-OR Foundation, Inc.
2022) has been initiated to host a range of open-
source solvers with an open-source interface that ena-
bles contributors, users, and developers to implement
their own algorithms. The repository has been
expanded to provide different open-source solvers for
different programming problems such as CLP (Forest
et al., 2022) and HiGHS (Huangfu & Hall, 2018) for
linear programming (LP); ABACUS (J€unger &
Thienel, 2000), BCP (Lad‘anyi, 2004), CBC (Forrest
et al., 2022), Pyomo (Bynum et al., 2021), and
SYMPHONY (Ralphs & Guzelsoy, 2005) for mixed
integer linear programming (MILP); Bonmin
(Bonami et al., 2005), Couenne (Belotti et al., 2009),
DisCO (Bulut et al., 2019), Ipopt (W€achter & Biegler,
2006), and SHOT (Lundell et al., 2022) for linear and
mixed integer nonlinear programming (MINLP); SMI
(King, 2022) and Pyomo (Bynum et al., 2021) for
Stochastic Programming (SP). COIN-OR also
includes several other projects that would help users
to improve their experience with modelling like PuLP
(Mitchell et al., 2022) and visualising such as GiMPy
(Ralphs et al., 2022).

SCIP Optimization Suite (Bestuzheva et al., 2021)
can be used as a framework for mixed-integer linear or
nonlinear programming as well as a standalone solver
for such problems. A recent initiative commenced by
the introduction of Julia language (Bezanson et al.,
2017), which is a high-level, high-performance dynamic
language for technical computing, is JuMP (Dunning
et al., 2017) which helps users to solve a variety of
problem classes including linear, mixed-integer linear,
and nonlinear programming. It allows developers to
use its framework and introduce new open-source
solvers for particular problem classes.

We would like to also mention GLPK (Makhorin,
2020), which is the default linear programming
solver behind some of the aforementioned mixed
integer linear programming solvers. GLPK can also
be used as a standalone linear programming solver.
Finally, a suite of open-source solvers has been
developed by Google (Google, 2022) to tackle inte-
ger programming and constraint programming
problems. The OR-Tools provide a modelling

interface and allow users to select different commer-
cial or open-source solvers to generate solutions.

3.18.2. Open-source simulation software
Simulation software can be categorised into three
based on the methods that they use to define the
system and its resources. We should note that we
cover the software that has been applied particularly
in OR domains. We opt to omit open-source soft-
ware that focus on specific domains, e.g.,
OMNetþþ (Andras, 2010) for communication net-
works, for the sake of brevity. We refer interested
readers to the works of (Dagkakis & Heavey, 2016)
and (Lang et al., 2021b) and references therein for a
broader review. An experimental comparison of
some of the software presented here can be found
in Kristiansen et al. (2022).

The first method, Discrete Event Simulation
(DES), is based on the processes of a system. In DES,
the processes are defined as hosts of resources that
run different operations on entities. For instance, one
can define a part to be manufactured as an entity
and create a manufacturing process with three
machines to shape the part. DES software can be
used to model and visualise complex queuing systems
in order to help decision makers better understand
the interactions between entities and processes.

JaamSim (JaamSim Development Team, 2016) is
one of the most popular open-source DES with its
user-friendly interface, easy-to-use drag and drop
facilities, and continuous maintenance support.
JaamSim provides a standalone executable which
allows users to start using the software without tech-
nical knowledge on installations. Another DES
framework is SimPy (Scherfke, 2021) which is based
on standard Python functions. Its simple structure
enables users to quickly obtain results for their
simulation problems. SimPy has also initiated two
other DESs, SimSharp (Beham, 2020) and SimJulia
(Lauwens, 2021), which are the implementations of
SimPy on C# and Julia languages, respectively. The
last DES we would like to mention is Facsimile
(Facsimile Simulation Library, 2021) which uses
Scala as its basis scripting language. The main pur-
pose of Facsimile, is to provide a high-quality dis-
crete-event simulation library that can be used for
industrial projects.

The second method, known as System Dynamics
(SD), is based on representing a system as a causal
loop diagram to define interactions between differ-
ent components of a system. Some of the open-
source SD software are PySD (Martin-Martinez
et al., 2022), InsightMaker (InsightMaker, 2016),
SysDyn (Simantics System Dynamics, 2017), and
OpenModelica (Fritzson et al., 2020). PySD can con-
vert the well-known commercial SD software
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Vensim (Ventana Systems Inc. 2022) input and
allow user to configure. SysDyn uses the
OpenModelica environment for simulation but pro-
vides an alternative built-in environment to speed
up the simulation process. All these software have
their own visualisation and reporting tools.

The third method is called Agent Based
Simulation (ABS) and focuses on the autonomous
individuals, i.e., agents, in a system. Each agent in
ABS has its own characteristics and its way to inter-
act with the other agents and the surrounding envir-
onment can differ. One of the open-source ABS
software is Gama (Taillandier et al., 2019), which
provides users a modelling language, a cross-plat-
form to reproduce simulations, as well as a visual-
isation tool. InsightMaker (InsightMaker, 2016) is
another open-source ABS software that allows users
to create their own model on a web-based interface.
Lastly, NetLogo (Wilensky, 1999) provides a model-
ling environment together with different applica-
tions to interact with other scripting languages.

We would like to complete this section with a
brief summary of the application areas of both solv-
ers and simulation software. Table 4 provides exam-
ples of areas on which the OR software can be used.

3.18.3. Discussion
For the sake of completeness, we should also men-
tion that there are also several ad-hoc software that
address specific OR problems. For instance,
OptaPlanner (Red Hat, 2022) can solve staff roster-
ing, scheduling, timetabling, and Vehicle Routing
Problems (VRPs). Another example is VRP
Spreadsheet Solver (Erdo�gan, 2017), which is an
Excel-based solver. Although these software provide
easy and fast access to solutions, the lack of general-
isation to more complex OR problems and limited
development opportunities can be seen as barriers
to widespread impact.

As a final discussion point, we would like to list
some of the essential features of an open-source OR
software. First and foremost is the performance of
the software. A user would expect a comparable
level of performance from an open-source software
with respect to commercial software. Secondly, the
scalability of a solver, i.e., its performance when the
problem size increases, is one of the factors desired
by practitioners. Finding an optimal solution to a

VRP instance with 20 customers does not guarantee
that a VRP solver will achieve the same performance
when the number of customers increases to 2000.
Thirdly, technical support for a software has a cru-
cial role in attracting users. Continuous develop-
ment, documentation, and clear descriptions to
change requests are some of the aspects that an
open-source software should address to improve its
maintainability. Finally, integration with existing
libraries would help an open-source software widen
its community and attract more developers to
contribute.

3.19. Power markets and systems66

The energy industry relies on forecasts (§2.10) and
decision support tools (§2.8) for operations and
planning. While long-term demand forecasts – with
lead times measured in months, quarters or years –
have been used for planning purposes for over a
century, contemporary energy forecasting literature
focuses more on the short- (minutes, hours) and
mid-term (days, weeks) horizons (Hong et al.,
2020). Since the late 1990s, the workhorse of power
trading and a typically used reference point for
long-term contracts is the day-ahead market (Mayer
& Tr€uck, 2018), where prices for all load periods of
the next day are determined at the same time dur-
ing a uniform-price auction (Weron, 2014, see also
§3.1). No wonder, the majority of studies focus on
predicting intermittent generation from renewable
energy sources (RES), electric load (or demand) and
prices for the 24 hours of the next day (Maciejowska
et al., 2021). Two classes of approaches dominate:
regression-based models and artificial neural net-
works (ANN; Lago et al., 2021, see also §2.1).

Regression and ANN models of the 1990s and
2000s were built on expert knowledge, often inde-
pendently for each hour of the day. Their inputs
included past values of (depending on the context)
RES generation, loads or prices from the last few
days, day-ahead forecasts of exogenous variables
(e.g., temperatures for load, load for prices) and a
seasonal component captured by sinusoidal func-
tions or weekday dummies (Hong, 2014; Weron,
2014). Their sub-optimal performance could be
readily improved by combining forecasts across dif-
ferent models (Bordignon et al., 2013), calibration

Table 4. Application areas of solvers and simulation software.
Subject Methodology Application areas

Solver LP Transportation, agriculture, manufacturing
MILP Logistics, healthcare, network design, pooling, disaster response
MINLP Scheduling, telecommunication, energy systems, layout design, network design, portfolio optimization, water systems
SP Supply chain planning, production planning, process control and optimisation

Simulation DES Manufacturing, network design, healthcare operations, financial systems, inventory management
SD Telecommunication, macro- and micro-economics, social systems, ecological systems
ABS Stock markets, robotics, epidemiology, game theory, evacuation planning
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sets (Nowotarski et al., 2016) or calibration windows
(Hubicka et al., 2019). Interestingly, combining is
not only a remedy for time-varying point forecasting
performance. Together with quantile regression it
provides a simple, yet powerful tool for probabilistic
predictions – Quantile Regression Averaging (QRA;
Nowotarski & Weron, 2018). During the Global
Energy Forecasting Competition 2014, teams using
variants of QRA were ranked 1st and 2nd in the
price track (Gaillard et al., 2016; Maciejowska &
Nowotarski, 2016). QRA can be also used to con-
struct dynamic strategies aiming at finding the opti-
mal trade-off between risk and return when trading
the intraday and day-ahead markets (Janczura &
W�ojcik, 2022).

With the advent of easily accessible computa-
tional power, the models became more complex and
expert knowledge was no longer enough to handle
them. A major breakthrough came with the intro-
duction of regularisation methods to energy fore-
casting in the 2010s. Although regularisation is a
much older concept, its use in load (Chae et al.,
2016; Ziel & Liu, 2016), price (Uniejewski et al.,
2016; Ziel, 2016; Ziel & Weron, 2018), wind
(Messner & Pinson, 2019) and solar forecasting
(Yang, 2018) began only recently. Ridge regression
has not seen many applications in energy forecast-
ing, however, the least absolute shrinkage and selec-
tion operator (LASSO) and elastic nets (Hastie et al.,
2015) have been shown to yield extremely competi-
tive predictive models. LASSO-estimated autoregres-
sive (LEAR) models often have hundreds of inputs,
e.g., spanning all hours of the past week, but LASSO
can shrink redundant coefficients to zero and, thus,
perform variable selection. Despite their ability to
handle only linear relationships between variables,
LEAR models tend to be only slightly inferior to the
much more complex and much harder to estimate
deep ANNs (Lago et al., 2021).

The availability of high-performance GPUs and
advances in optimisation algorithms made it pos-
sible to efficiently train ANNs with hundreds of
inputs and outputs, multiple hidden layers and
recurrent connections (§2.1). This led to a wave of
deep learning and hybrid energy forecasting models
in the late 2010s (Gao et al., 2019; Wang et al.,
2017). A prominent, yet relatively parsimonious
example is the deep neural network (DNN) model
proposed for price forecasting (Lago et al., 2018). It
uses a feedforward architecture with two hidden
layers, 24 outputs (one for each hour of the next
day) and ca. 250 inputs: past prices from the previ-
ous week, day-ahead forecasts of fundamental varia-
bles (demand, RES generation) and weekday
dummies. To decrease the computational burden, its
hyperparameters (number of neurons per layer,

activation functions, optimisation algorithm, etc.)
and inputs (treated as binary hyperparameters –
either selected or discarded) are jointly optimised
once every few weeks, while the weights are recali-
brated every day to account for the most recent
market data. Despite this simplification, daily recali-
bration of the DNN model is two orders of magni-
tude slower than of the LEAR model with the same
inputs (minutes vs. seconds on a quadcore i7 CPU;
see Lago et al., 2021).

The increased complexity of deep ANNs is a
major obstacle in understanding the underlying
processes. Partial remedy provide recently proposed
architectures like the neural basis expansion analysis
for interpretable time series forecasting (NBEATS;
Oreshkin et al., 2021; Olivares et al., 2023), which
project the time series onto basis functions in the
fundamental blocks of the network structure. The
final forecasts can be decomposed into interpretable
components returned by groups of blocks (called
stacks). Separate stacks can account for the trend,
seasonality and exogenous variables. Another recent
innovation in energy forecasting is a distributional
ANN (Mashlakov et al., 2021). It only requires a
small change in the architecture – instead of the 24
hourly forecasts, the network can return the param-
eter sets of 24 probability distributions (e.g., the
mean and standard deviation for the Gaussian). The
benefits are clear. The downside, however, is that
the distribution itself has to be estimated (it is a
hyperparameter). Somewhat surprisingly, distribu-
tional ANNs not only can yield more accurate prob-
abilistic predictions, but also better point forecasts
(Marcjasz et al., 2022).

For horizons beyond the next 48 hours other
approaches have been proposed (Weron, 2014), not
necessarily forecasting per se. Structural models
define the functional relationships between physical
(weather, generation, consumption, etc.) and eco-
nomic (bidding, trading) variables that set the price,
then utilise – typically – parsimonious statistical or
machine learning techniques to provide the stochas-
tic inputs. Due to the nature of fundamental data,
often of weekly or monthly granularity, such models
are more suitable for medium-term risk manage-
ment, portfolio optimisation and derivatives pricing
(Kiesel & Kusterman, 2016), than for short-term
forecasting (Mahler et al., 2022). In the class of
multi-agent approaches, Ventosa et al. (2005) iden-
tify three trends: equilibrium, simulation and opti-
misation models. The former (Nash-Cournot
framework, supply function equilibrium, strategic
production-cost models) have seen limited applica-
tion in oligopoly markets (Ruibal & Mazumdar,
2008). Agent-based simulations are used when the
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problem is too complex to be addressed within an
equilibrium framework (Fraunholz et al., 2021).

Optimisation models address profit maximisation
from the point of view of a firm competing in the
market. One of the simplest settings is that of the
price clearing process being exogenous to electricity
generation optimisation – as the price is fixed, the
market revenue is a linear function of the production
and linear programming (§2.14) or mixed integer lin-
ear programming (MILP) can be employed (Ventosa
et al., 2005). On the other hand, Virtual Power Plant
(VPP) operations constitute a more complex problem
of decision-making under uncertainty. A VPP is a
cluster of dispersed generating units (e.g., intermit-
tent rooftop solar panels on residential houses), flex-
ible loads and battery storage that operates as a
single entity. Robust optimisation and stochastic pro-
gramming can be used to derive the optimal VPP
trading strategy (Morales et al., 2014).

To support broader regulatory decisions at the
firm or country level, frontier analysis methods are
employed. Such methods aim to estimate the efficient
frontier of the evaluated production units, to measure
their relative efficiency (against the frontier) and to
provide targets that can support policymakers. The
benchmarking nature of these methods has estab-
lished them as a flexible and multifaceted decision-
making tool. In particular, Data Envelopment
Analysis (DEA, §2.7) has been employed in a wide
spectrum of energy applications. Early DEA studies
relied only on a few factors (labour, fuel, capital, elec-
tricity production) to assess the technical efficiency of
electric utilities (F€are et al., 1983). Later studies took
into account sustainable practices by including envir-
onmental variables. Such factors are commonly
treated as undesirable outputs that arise as by-prod-
ucts of the production process (F€are et al., 1996) or
as non-controllable variables, which reflect external
factors that the unit under evaluation cannot control
(Hattori et al., 2005). When price information is
available, DEA allocation models can be used to
evaluate revenue, cost and profit efficiency. Ederer
(2015) argued that sophisticated cost efficiency assess-
ment methods should be employed to evaluate RES,
and relied on DEA models to assess the capital and
the operating cost efficiency of offshore wind farms.
Notably, DEA is often combined with multi-criteria
decision-making techniques to incorporate decision
maker’s preferences into the assessment (Lee et al.,
2011; Wang et al., 2022a) and econometric techni-
ques to study causal effects (Shah et al., 2022).

For a review and outlook into the future of energy
(load, price, wind, solar) forecasting see Hong et al.
(2020). Hong and Fan (2016) offer a tutorial review on
probabilistic load forecasting. The standard reference
for electricity price forecasting is Weron (2014). Lago

et al. (2021) offer a more recent viewpoint focusing on
deep learning and hybrid models. They also provide a
set of guidelines/best practices and make freely available
the epftoolbox with Python codes for two highly com-
petitive benchmark models (LEAR, DNN). Two thor-
ough treatments of probabilistic price forecasting are
Nowotarski and Weron (2018) and Ziel and Steinert
(2018). Sweeney et al. (2020) present a brief overview
of the state-of-the-art in RES forecasting, whereas Yang
et al. (2022) jointly discuss atmospheric science and
power system engineering in the context of solar fore-
casting. Finally, for detailed literature reviews on energy
related applications of DEA see Mardani et al. (2017),
Sueyoshi et al. (2017) and Yu and He (2020).

3.20. Project management67

Operational Research methods play a fundamental
role in managing a portfolio of projects, in project
selection and in the management of each individual
project. Project portfolio management is concerned
with the optimal mix and prioritisation of proposed
projects in order to maximise the organisation’s
overall goals (Levine, 2005). At the strategic level,
project selection deals with the selection of and
resource allocation among a group of projects
(Kavadias & Loch, 2004). Static models rely on
mathematical programming, scoring and sorting,
financial modelling, graphical and charting techni-
ques. Dynamic models for selecting projects from a
stream of arrivals may rely on queueing theory
(§2.17), simulation (§2.19), decision theory (§2.8)
and stochastic dynamic programming (§2.9; §2.21).

At the tactical and operational levels, project
management (Meredith & Mantel, 2003) basically
involves the planning, scheduling and control of
project activities to achieve performance, cost and
time objectives for a given scope of work, while
using resources efficiently and effectively. The scope
of a project is the magnitude of the work that must
be performed to make sure that the product or
items to be provided (the project result or the pro-
ject deliverables) meet the requirements or accept-
ance criteria agreed upon at the onset of a project.
Once the project is properly defined in terms of its
scope and objectives, the planning phase may start
through the identification of the project activities,
the estimation of time and resources, the identifica-
tion of relationships and dependencies between the
activities and the identification of the schedule con-
straints. The activities can be graphically portrayed
in the form of a project network showing the neces-
sary interdependencies of the activities. Based on
the type and quantities of resources required, cost
estimates can be made. Project scheduling
(Demeulemeester & Herroelen, 2002) then involves
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the construction of a project base plan which speci-
fies for each activity the precedence and resource
feasible start and completion dates, the amounts of
the various resource types that will be needed dur-
ing each time period, and as a result the budget.
Once a baseline schedule has been established, it
must be implemented. This involves performing the
work according to the plan and controlling the
work by monitoring the progress and taking neces-
sary corrective action when the project is on its way
to run behind schedule, to overrun the budget, or to
violate the original technical specifications.

3.20.1. Construction of the project network
A project network is a graph consisting of a set of
nodes and a set of arcs. In the activity-on-arc repre-
sentation (AoA), the nodes represent the events and
the arcs represent the activities. AoA networks form
the basis of the Project Evaluation and Review
Technique (PERT; Malcolm et al., 1959) and the
Critical Path Method (CPM; Kelley, 1961). The pre-
cedence relationship used is the finish-start relation-
ship with a zero time lag: an activity can start as
soon as all its predecessor activities have finished. In
the mostly used activity-on-node representation
(AoN) the nodes represent the activities and the
arcs denote the precedence relations. The AoN rep-
resentation allows for the specification of generalised
precedence relations of four types: start-start, start-
finish, finish-start and finish-finish with minimal
and/or maximal time lags. A minimal time lag
specifies that an activity can only start (finish) when
its predecessor activity has already started (finished)
for a certain time period, whereas a maximal time
lag specifies that an activity should be started (fin-
ished) at the latest a number of time periods beyond
the start (finish) of another activity.

3.20.2. Temporal analysis for deterministic uncon-
strained project scheduling
In this case, a single deterministic duration estimate
is used for the activities. Basically, the temporal ana-
lysis then involves the computation of the activity
start times under the objective of minimising the
project duration. In the presence of strict finish-start
precedence relations, this can be achieved by simple
forward and backward pass calculations. Generalised
precedence relations with maximal time lags call for
the use of graph algorithms for computing the lon-
gest path (critical path) in networks.

The temporal analysis may also be performed
under the objective of maximising the net present
value of the project. The deterministic max-npv
problem can be formulated as a nonlinear problem.
An efficient recursive solution procedure has been
developed for AoN networks and has been extended

to deal with the case of time-dependent cash flows
(Vanhoucke et al., 2001b).

Another non-regular performance measure is the
minimisation of the weighted earliness-tardiness
penalty costs of the project activities, where activ-
ities have an individual due date with associated
unit earliness and unit tardiness penalty costs. The
problem can be solved by an exact recursive search
procedure (Vanhoucke et al., 2001c).

3.20.3. The deterministic resource-constrained pro-
ject scheduling problem
Project activities require resources for their execution.
Renewable resources (e.g., manpower, machines) are
available on a per-period basis. Their introduction
into the analysis complicates matters considerably.
Computing a precedence- and resource-feasible deter-
ministic schedule that minimises the project duration,
the resource-constrained project scheduling problem
(RCPSP) is NP-hard in the strong sense (§2.5). Both
exact and suboptimal procedures have been presented
in the literature.

Many mathematical programming formulations
(§2.15), either binary or mixed integer linear pro-
grams, have been developed (Demassey, 2008). The
RCPSP may also be solved through constraint-based
scheduling (Laborie & Nuijten, 2008). Also a num-
ber of branch-and-bound algorithms have been pre-
sented for optimally solving the RCPSP (Brucker
et al., 1998; Demeulemeester & Herroelen, 1992).

Heuristic procedures broadly fall into two catego-
ries: constructive heuristics and improvement heuris-
tics. Constructive heuristics start from an empty
schedule and add activities one by one until a feasible
schedule is obtained. Activities are ranked by priority
rules which determine the order in which the activ-
ities are added to the schedule. Improvement heuris-
tics start from a feasible schedule that was obtained
using a constructive heuristic. Operations are then
performed on a schedule which transforms a solution
into an improved one. These operations are repeated
until a locally optimal solution is obtained.

Project scheduling metaheuristics come in a wide
variety and broadly include tabu search (Baar et al.,
1999), simulated annealing (Bouleimen & Lecocq,
2003), genetic algorithms (Hartmann, 2002), ant col-
ony optimisation (Merkle et al., 2002), scatter search
and electromagnetic approaches (Debels et al.,
2006).

3.20.4. Resource problem variants and
generalisations
Branch-and-bound may be used for solving the RCPSP
with generalised precedence relations (Demeulemeester
& Herroelen, 1997; De Reyck & Herroelen, 1998),
when activities may be preempted (Demeulemeester &
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Herroelen, 1996), when the problem has to be solved
under the objective of maximising the net present
value (Vanhoucke et al., 2001b) or with the earliness-
tardiness objective (Vanhoucke et al., 2001a).

The resource levelling problem aims at complet-
ing the project within its deadline with a resource
usage that is leveled as much as possible over the
entire project duration. Exact solution procedures
based on integer or dynamic programming and
branch-and-bound as well as heuristic procedures
have been developed (Neumann & Zimmermann,
2000). The resource availability cost problem, that
consists of scheduling the project activities such that
the total cost of acquiring the necessary resources is
minimised, assuming that a resource is assigned to
the project for the total project duration, can be
solved optimally (Demeulemeester, 1995). The
resource renting problem (N€ubel, 2001) which
assumes that resources can be added or removed
from the resource pool over the project life, can be
solved optimally using branch-and-bound or heuris-
tically using genetic algorithms and scatter search
(Ballest�ın, 2007a; Kerkhove et al., 2017).

The multi-mode RCPSP assumes limited avail-
ability of renewable and nonrenewable (e.g., money)
resource types and assumes that a project activity
may be executed in multiple modes, where an activ-
ity mode corresponds to the assignment of a mode-
specific number of units of a (non)renewable
resource type to the activity with correspondingly
resulting activity duration. The project decisions
then involve the decisions to start and perform the
activities in a specific mode in order to minimise
the project duration. Branch-and-bound (Hartmann
& Drexl, 1998), branch-and-cut, local search (De
Reyck & Herroelen, 1999) and genetic algorithms
(Hartmann, 2001) are available.

For projects with a flexible project structure,
where activities to be performed are not known in
advance, decisions for the implementation of
optional activities can be made using genetic algo-
rithms and tabu search (Kellenbrink & Helber,
2015; Servranckx & Vanhoucke, 2019a, 2019b).

3.20.5. Dealing with uncertainty
Risk analysis involves the identification of the quali-
tative and quantitative assessment of the risk factors
for the project through the estimation of the prob-
ability of the risk factors (activity duration, cost and
resource requirement increases, start time delays) as
well as their potential impact. The impact of each
risk is best assessed individually and mapped to the
duration of a project activity (Creemers et al., 2014).
Risk responses may then involve risk avoidance by
performing an alternative approach without the risk,
taking actions to reduce the risk, and risk impact

reduction by switching to a different execution
mode, adding additional resources, etc.

Stochastic scheduling does not generate a baseline
schedule before the start of the project, but deals
with time uncertainty by viewing the scheduling
problem as a multi-stage decision process where
scheduling policies are used to decide at each of the
stages which occur serially through time at random
decision points, which activities selected from the
set of precedence and resource feasible activities
have to be started under the objective of minimising
the expected project duration (Demeulemeester &
Herroelen, 2011).

Proactive project scheduling generates a robust
baseline schedule through solving the RCPSP and
subsequently tries to protect it as well as possible
against time and resource disruptions that may
occur during project execution. This protection can
be achieved by deciding on a clever way to transfer
the renewable resources between the activities (Leus
& Herroelen, 2004). Both branch-and-bound and
heuristics are available for the minimisation of the
weighted sum of the difference between the planned
and the realised activity start times (Van de Vonder
et al., 2008; Lambrechts et al., 2008). Another way
involves the insertion of time buffers that should
prevent the propagation of distortions throughout
the schedule. The critical chain methodology
(Goldratt, 1997; Herroelen & Leus, 2001; Newbold,
1998) defines the critical chain as that set of tasks
which determines the overall project duration.
Protection is then realised through the insertion of
feeding buffers and resource buffers in combination
with a project buffer at the end of the critical chain.

When during the actual execution of the project
disruptions occur that cause deviations from the
protected baseline schedule or even render this
schedule infeasible, reactive scheduling procedures
may be deployed.

For reviews and comprehensive textbooks on
project management and scheduling we refer the
reader to Demeulemeester and Herroelen (2002),
Demeulemeester and Herroelen (2011), Hartmann
and Briskorn (2010), Herroelen (2007), Herroelen
and Leus (2005), Meredith and Mantel (2003),
Neumann et al. (2003), Shtub et al. (2004), and
Vanhoucke (2018).

3.21. Revenue management68

The discipline of revenue management (RM) deals,
in the widest sense, with demand management deci-
sions to improve overall revenue or profit. Demand
management decisions aim at influencing demand,
such as pricing and availability control. Occasionally,
demand management decisions can also take
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different forms like ranking lists (e.g., when showing
customers of a meal delivery platform a rank order
of restaurants that offer home delivery) or green van
icons to denote which time slots for grocery home
delivery are more environment-friendly (because
there is a delivery planned to take place already any-
way). RM is about IT-supported decision-making,
mostly on the operational level, in contrast to stra-
tegic pricing theory encountered in the marketing
domain.

Such decision support systems, referred to as RM
systems, have been first developed in the airline
industry in the 1970s when deregulation introduced
competition in the US airline market. They were so
successful that the practice of RM soon spread to
other industry domains, particularly to those that sell
services or perishable goods (perishability creates
pressure to sell within a limited selling horizon).
Examples include restaurant tables, hotel rooms, ren-
tal cars, or airline seats, among many other applica-
tions. In these industries, the supply is usually fairly
inflexible, fixed costs are high and variable costs are
relatively low (which also makes revenue maximisa-
tion mostly equivalent to profit maximisation, hence
the name revenue management).

In this section, we first outline recent research
trends on demand models (and their estimation)
that are required to provide an input to the RM
optimisation system. Then, we present recent
research on efficient optimisation of demand man-
agement decisions. Finally, we outline further read-
ing suggestions including some current popular
application areas. We mostly use the passenger air-
line industry throughout this subsection to illustrate
developments in the field of RM.

3.21.1. Modelling demand
In order to make good demand management deci-
sions, we first need to have a model of demand to
describe the response to specific RM actions (such
as pricing or changing the availability of products or
services). The first demand models used in RM
assumed that demand for a given product is inde-
pendent of what else is offered. These so-called
‘independent demand models’ are relatively easy to
estimate. However, this independence assumption
usually only holds in applications where rate fences
(such as advance purchase requirements) strongly
limit customers’ abilities to substitute a product
with one another.

One way to relax the – often unrealistic – inde-
pendent demand assumption is by considering that
the customer looks at all alternatives available and
chooses one. The requires modelling of customers’
choice behaviour; the seminal paper by Talluri and
Van Ryzin (2004a) introduced discrete choice

modelling to the domain of revenue management.
In choice-based RM, demand for a product is
assumed to depend on the available purchase alter-
natives and their attributes. These models tend to be
more accurate in predicting demand if the inde-
pendent demand assumption is not met, at the cost
of being more difficult to estimate and implement
(Klein et al., 2020). Much research has been carried
out on choice-based RM since 2005; for a recent
review, see Strauss et al. (2018).

Among the most recent trends – building on the
aforementioned choice-based RM literature with
fixed choice model parameters – is a stream of work
on personalisation and choice model parameter
learning. For example, Cheung and Simchi-Levi
(2017) solve an online personalised assortment opti-
misation problem formulated as a multi-armed ban-
dit problem. Demand learning models balance the
trade-off between gathering new samples (and
thereby learning more about the true customer
behaviour) and applying the RM decision that,
based on the current belief of customer behaviour,
looks to be the best. In the short term, this means
that we occasionally make decisions that seem not
very promising, yet that will gain us insights into
customer behaviour (for instance, by offering price
points that were never offered before). For our air-
line example, a potential application is the ongoing
learning of model parameters governing the choice
of ancillary products (like seat upgrades, extra lug-
gage, etc.). Models like the one by Agrawal et al.
(2019) can be used for this purpose.

Demand models in RM may be biased if they are
estimated on constrained data, meaning that the
sales data does not necessarily reflect the actual
demand. For example, if a flight is fully booked, we
observe no further sales transactions for that flight.
Yet demand may well exceed flight capacity and, as
such, should be estimated somehow. Methods to
statistically unconstrained demand data are reviewed
in Guo et al. (2012).

Another dimension of demand modelling is rep-
resented by strategic versus myopic customer behav-
iour. One of the earliest papers on this topic is the
work by Su (2007). He considers customers who
may delay their purchase when they expect lower-
priced offers in the future. With RM mostly focus-
ing on myopic customers (meaning customers who
do not anticipate future developments in their pur-
chase decision), the behaviour of strategic customers
leads to inefficiency. Su (2007) proposes an inter-
temporal pricing component to adjust the offering
based on the market composition between these
customer types, and more work has built on this
since.
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3.21.2. Optimisation advances
A central element of an RM system is the decision
of what to offer whenever a customer arrives.
Decision policies (essentially a mapping from the
state space of available information to the action
space) are used to determine which products are
made available (i.e., availability control), or at which
price (i.e., dynamic pricing) – and sometimes, a
combination of both. Using dynamic prices to man-
age demand can be very similar to availability con-
trol: when there are products defined with identical
features but different price tags such that there is a
discrete set of prices to choose from for a product,
it can be considered a special instance of the afore-
mentioned availability control (Strauss et al., 2018).
This can be observed in airline’s implementations of
differently priced booking classes for the same seat
such that a customer can only purchase that seat for
the fare of the booking class made available to
them. The groundbreaking papers by Gallego and
van Ryzin (1994, 1997) also featured a dynamic
pricing concept for a single-commodity and a net-
work-level problem, respectively. Both papers also
considered the effect of significant cancellations and
no-shows (meaning bookings that are not actually
being used in the end). In that context, it can be
valuable to accept more reservations than physical
capacity would allow. This practice is called over-
booking and is widespread in many industries where
the risk of having to reject a customer with a valid
reservation is not overly costly (with examples such
as Simon, 1968, showing it being applied already
before RM but now usually integrated into systems
to manage demand for available capacity). For an
overview of recent contributions on this matter, see
Klein et al. (2020).

Decision policies in RM are trading off the
immediate reward of having a customer buy a prod-
uct versus the so-called opportunity cost associated
with this purchase, stemming from having to com-
mit some resources to a given sale. For example, a
resource might be a flight with a specific seat cap-
acity. Selling a ticket for a seat on this flight requires
us to commit a seat to this customer, which other-
wise might have still gotten sold in the future at a
potentially larger fare. Therefore, by having a cus-
tomer buy the product, we incur the cost of losing
the opportunity to sell the associated resource units
in the future. This value (or at least an approxima-
tion thereof) is sometimes used as a revenue thresh-
old defining which products shall be shown as
available; such special versions of availability control
are known as bid price policies, with the bid price
being this threshold, and only products with reve-
nues that exceed the bid price being shown.

There are two major challenges in deriving opti-
mal decision policies: first, we need to somehow
obtain the opportunity costs involved with having a
customer book a particular product at a given point
in time; second, we need to solve the resulting opti-
misation problem to give us the actual decision to
be implemented.

The latter decision problem, given opportunity
cost, may be as simple as a comparison of two num-
bers (traditionally used in independent-demand set-
tings), but can be non-trivial in the presence of
sophisticated models of customer behaviour
(dependent demand settings). Much research over
the past few years has been devoted to studying
properties of choice models that can be exploited to
efficiently solve – or at least closely approximate –
the online RM decision problem. This work is fur-
ther motivated by the need to solve these RM deci-
sion problems quickly to ensure an acceptable user
experience. Within availability control, assortment
optimisation under various choice models has
received particularly much attention because this
problem becomes NP-hard for many customer
choice models unless a certain structure can be
exploited; for a review, see Strauss et al. (2018).

The other challenge in deriving optimal decision
policies is the computation of opportunity costs.
This is usually the more difficult task for real appli-
cations because the opportunity costs depend on
time, the current state (of inventories), and future
demand and actions. Dynamic programming (DP;
§2.9) is usually being applied to solve or at least
characterise the optimal decision policy over a given
booking horizon.

However, obtaining opportunity costs using DP
is often only possible when dealing with problems
that have a single resource (like optimising for a
single flight only, for example in Wollmer, 1992).
When there are products that use more than one
resource (like a itinerary of multiple flights connect-
ing in a hub), then we speak of network RM prob-
lems. These require much more effort to solve (so
as to get opportunity cost estimates for our decision
policy) due to the fact that decisions on one product
may affect many others that are using the same
resource. Therefore, to reach at least an approximate
solution for a network RM problem, one usually
needs to resort to deterministic linear programming
(Liu & van Ryzin, 2008, §2.14) or approximate
dynamic programming (Gallego & Topalo�glu, 2019,
describe how approximate dynamic programming
can be used in RM). In practical applications, the
network-level optimisation problem is often decom-
posed into a collection of single-resource problems
such as in Kemmer et al. (2012) who were moti-
vated by methods deployed by Lufthansa Systems in
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their RM optimisation module. In older RM sys-
tems, booking control was typically implemented
using versions of the so-called Expected Marginal
Seat Revenue (EMSR) heuristics (Belobaba, 1987a),
which are in turn rooted in the work of Littlewood
(2005), originally written in 1972.

Once a decision policy has been obtained (by first
obtaining opportunity costs and then solving the corre-
sponding decision problem), we then need to evaluate
the decision policy using simulation or even in real-
world trials. Bertsimas and De Boer (2005) give an
overview of different decision rules for airline RM that
are evaluated with a simulation study. Further details
on simulation techniques can be found in §2.19. An
example of testing a dynamic pricing policy in live tri-
als is the work by Fisher et al. (2018).

3.21.3. Further reading
RM is also applied in retailing, both for e-commerce
and offline shopping. Agatz et al. (2013) provide a
practical overview of ways online retailers imple-
ment RM in their business. But there are also retail
RM applications outside of online shopping. For
example, Caro and Gallien (2012) describe how
brick-and-mortar fashion stores optimise their price
markdowns during season clearing sales.

In particular, linking RM to general transportation
problems has received significant attention over recent
years. An overview of advances in that field is given by
Fleckenstein et al. (2022). Applications thereof can be
seen here especially in business models with delivery
constraints, such as same-day deliveries (Ulmer, 2020)
or for attended home delivery (AHD) which is com-
mon for online grocery shopping. Customers’ desire for
short and guaranteed time windows in AHD leads to
less than optimal routings. Yang et al. (2016) show
how RM can be used to steer demand for delivery time
slots towards a routing solution closer to the optimum,
thereby increasing overall profit for businesses shipping
goods that require AHD. Another example of applying
RM ideas to new transportation problems is the work
by K€unnen and Strauss (2022). They analyse how an
air traffic network manager could reduce overall delays
for all airspace users (i.e., airlines) by offering dynamic-
ally priced flight trajectories.

For more detailed readings about the develop-
ment of the RM domain, the techniques being used,
and more applications, we refer the reader to the
books by Talluri and Van Ryzin (2004b) and
Gallego and Topalo�glu (2019).

3.22. Service industries69

Service industry from the perspective of operations:
Service industry is a concept from economics origin-
ally defined by what it is not. It is not a

manufacturing industry that produces tangible
goods (cars, clothes, equipment), but industry that
provides intangible outputs, such as hospitality,
healthcare, and education. In service research, serv-
ices are also defined by additional characteristics. In
addition to intangibility, the so-called IHIP charac-
teristics, recognises heterogeneity, inseparability, and
perishability as the defining characteristics of service
industries.

In Operations and Operational Research, service
industry is approached not from its characteristics
but operationally to support actionable insights
(Burger et al., 2019). For Operational Research
applications, service industry can be approached
through the FTU-framework, defining services as a
particular type of transformation (Figure 2). Service
industries are distinguished from goods industries
through the direct provision and integrative decision
making. In services the decision making of custom-
ers and providing companies is intertwined, while in
goods industries customer and providers make
autonomous decisions. In service industries the
value is directly provided to the customer, while in
goods industries indirectly through the product.

However, operational reality is not this clear-cut.
In manufacturing industries, through servitisation
(Kohtam€aki et al., 2018), some companies seek to
make their products more like services to differenti-
ate their offering, and directly create value to their
customers. In service industries, managers seek to
make services more like goods, to be able to run
service facilities more like factories and improve
productivity (Levitt, 1972; Schmenner, 2004). OR
methods that were initially developed in manufac-
turing industries (e.g., forecasting, queuing, schedul-
ing, simulation), are increasingly applied in service
industries to make service facilities operate more
like factories (cf. Eveborn et al., 2009). For servitisa-
tion, OR presents a more limited range of methods.
Methods supporting the servitisation of products are
for example, value constellation modelling
(Holmstr€om et al., 2010; Brax & Visintin, 2017),
and ecosystem modelling to support innovation and
new business model design in an open environment
(Talmar et al., 2020).

The challenge in service industries is that service
systems tend to be open, problems wicked, and opti-
mising solutions difficult to develop and apply.
Value provision often requires interaction with cus-
tomers (customisation) limiting the situations where
facilities can be organised for flow and efficiency as
service factories. Also, servitisation of products
occurs in an open systems environment, requiring
responsiveness to influences and disturbances from
the outside, as will be seen for our application

100 F. PETROPOULOS ET AL.



examples from industrial services and home
healthcare.

Service industry applications: In the following we
will present two examples on the use of OR meth-
ods for creative insight and novel solutions in ser-
vice provision. The examples are homecare of
elderly patients (Groop et al., 2017), and line main-
tenance of commercial aircraft (€Ohman et al., 2021).
In the first example systems thinking, in the form of
soft OM methods from Theory of Constraints
(Davies et al., 2005), is used in combination with
design science research (implementation and evalu-
ation). In the second example design and simulation
are used in combination, uncovering an unexpected
new way of simultaneously improving resilience and
reducing costs in a commercial airline.

Homecare of elderly patients (Groop et al., 2017):
Nurses, team leaders, and healthcare management
had distinct and diverging views on what is the
problem with the homecare operations. Strongly
held and divergent views are an indication of a pos-
sibly wicked problem (Sydelko et al., 2021). The
divergent views in the case were uncovered through
engagement (following actors in their work) and
interviewing, with the purpose of articulating what
different stakeholders identified as undesirable
effects (UDE) of the current solution. UDE is think-
ing tools terminology from Theory of Constraints
(Dettmer, 1997). These UDEs of the current oper-
ation were pruned for overlaps and narrowed down
to a list of seven (including the seeming contradic-
tion between low utilisation of full-time employed
nurses, stressed-out nurses, and chronic under-staff-
ing requiring frequent use of temporary staff).
Using effect-cause logic, the interconnections
between effects, and mechanisms behind the effects
were specified and then evaluated by all stakeholder
groups in joint workshops. In this case, the first
effect-cause analysis pointed towards a core prob-
lem, a contradiction, which when addressed, would

improve efficiency. The needed change was in the
way the nurse visits are scheduled to improve effect-
iveness. Instead of scheduling nearby patients after
each other to save travelling time, the home care
organisation should focus on only scheduling nurses
for time-critical visits (visits that must be performed
at a specific time) at the peak-demand in the morn-
ing. This way the time of full-time nurses will be
more effectively used.

However, when implemented, the scheduling
change had next to no effect. With the initial solu-
tion a failure, the evaluation of the implemented
change pointed to issues with the problem framing.
Going back, considering the stated problems
(UDEs) and initial solution, the field researchers
found that they had missed an important undesir-
able effect originating from the way the organisation
operated. In the mapping nobody had raised as a
problem that full-time nurses, when not busy, do
not help-out in other teams. When nurses stay
within their teams, work is evenly divided between
everybody in the team, which is not a problem for
nurses, nor for team leaders. Instead, when there is
need for more nurses, outside temporary nurses are
called in, and they move between teams if needed,
but not the full-time employed nurses.

Management, for whom the low utilisation of
full-time employed nurses is a cost issue (with pay-
ment of salaries both for idling full-time nurses and
busy temporary nurses), were not aware of how
nurses staying with their team was a mechanism
behind the low utilisation. Nor had the researchers
working in the field realised this before failing with
the first solution design. Re-framing the problem
once more, another solution changing the schedul-
ing for employed nurses was proposed. Instead of
dividing work equally between all nurses in their
teams, the team leaders should seek to schedule
work so that one, or even two nurses in their teams

Figure 2. An actionable framework for service industries: facilities-transformation-usage (adapted from Moeller, 2010)
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have no work, and can be made available to help-
out in other teams.

Line-maintenance of commercial aircraft (€Ohman
et al., 2021): The second example illustrates the use
of simulation in problem reframing and finding a
new type of solution. The service operations are line-
maintenance of aircraft in an airline. Initially the
problem was framed by management as improving
departure reliability without increasing the number of
maintenance technicians. The intended solution was
introducing lean in the turn-around of aircraft.

However, in line maintenance there are no mater-
ial and time buffers for which lean approaches have
been so impactful in manufacturing. The minimum
frequency and content of maintenance tasks are regu-
lated. Departures are delayed by technical problems
that add unplanned tasks, which need to be carried
out. Here, lean principles can increase productivity
but not reduce the unplanned tasks. To reduce the
delays caused by unplanned tasks a resource buffer of
maintenance technicians appears necessary.

In this example, the same method of engagement
was applied as in the homecare example. Observing
and interviewing different actors involved, field
researchers sought to articulate a set of undesirable
effects of the current way of operating. However, no
agreement on a core problem to address could here
be reached. Instead, problem framing ended with a
question and a puzzling response that pointed in a
new direction. Line-maintenance scheduling
assumed that maximising the interval for planned
tasks is optimal, also when there are unplanned
tasks and constrained resources. Engaging and inter-
viewing maintenance planners for both long-haul
and short-haul fleets and operations, production,
and resource planning, field researchers began to
gain an in-depth understanding of the airline main-
tenance planning function. Heuristics and principles
related to dealing with over-maintenance not visible
in the operational documentation were encountered.

To explore the implications, the researchers first
modelled the relationship between over-maintenance
and planned workload variance in a deterministic set-
ting, focusing solely on scheduled maintenance. The
model indicated a promising relationship: an increase
of one percent in the total planned workload (over-
maintenance) could result in up to a six percent
reduction in workload variance. Next, simulation of
the airline operation and maintenance included the
unplanned events according to their historical distri-
bution. The simulation surprisingly indicated that
increasing over-maintenance could reduce over-all
costs and improve departure reliability, if combined
with a re-scheduling solution for maintenance task.
Re-scheduling introduces a new type of time buffer, a
frontlog of planned maintenance tasks that can be

postponed to allow technicians to address unplanned
tasks without disruptions to departure schedule.

Summary and conclusion: In service industry
applications problem framing methods are particu-
larly important. The openness of service operations
and wicked problems often require the Operational
Researcher in service industry applications to go out-
side their comfort zone regarding methods (Mingers,
2011b, 2015) to search for actionable insight (Burger
et al., 2019). In the examples provided, a combin-
ation of approaches, tools, and methods were contin-
gently employed in the search for a good problem
framing as the basis for an effective solution design.
For the application of OR methods in service indus-
tries, the homecare example illustrates the use of a
soft OR method in framing the problem (from the
practice of Theory of Constraints, Davies et al.,
2005), the use of scheduling from hard OR as a solu-
tion component, and implementation as a method of
design science for evaluation and redesign
(Holmstr€om et al., 2009; Sein et al., 2011). The
second example illustrates the use of simulation as a
method of explorative design. In the empirical
grounding of the simulation model we encountered
the good problem, which is the key to success in
simulation projects (Law, 2003). Through simulation
we developed and explored the effect of the dynamic
re-scheduling and buffer management approach, with
surprising outcomes. Before the simulation study
nobody knew about the opportunity to both improve
departure reliability and reduce costs.

The example multi-method approach combined
soft OR, simulation, and systems thinking for fram-
ing the problem. As in cross-agency problem solving
in government and public administration, service
industry problem solving benefits from mapping dif-
ferent actor perspectives, as the purposes, perspectives
and values of the service supply chain actors can eas-
ily be in conflict (Sydelko et al., 2021). However, in
addition to methods for actionable insight, methods
for turning insights into solution proposals are also
needed. For proposing and developing a solution
design, the two examples relied on explorative design
science (Holmstr€om et al., 2009), relying on OR
methods in evaluation when implementation is pos-
sible, and simulation for substituting implementation.
In the search of effective solution designs, OR meth-
ods such as scheduling, and forecasting were applied
as potential solution components in both examples.

3.23. Sports70

Moneyball (Lewis, 2003) told the story of how the
Oakland Athletics Major League Baseball team was
able to leverage an inefficiency in the labour market
for baseball players, and perform above expectations
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(given the team’s salary spend). Its impact on how
quantitative analysis is viewed within sport and
wider society is unprecedented. We have moved
from an age when society tended to undervalue
quantitative skills to a post-Moneyball era where
analytics is generally accepted as being “cool”. Told
in both a best-selling book (Lewis, 2003), and a
Hollywood movie of the same name, Moneyball has
driven a rapid expansion of interest in the field of
sports analytics. For an analysis of Moneyball, see,
for example, Hakes and Sauer (2006).

The history of quantitative analysis in sports
dates back to centuries before the Moneyball story,
and to the conception of probability itself. The con-
cepts of chance are as old as the first dice games,
but they did not evolve into the mathematical prin-
ciples of probability until the 17th century when
Pascal and Fermat exchanged ideas in a series of let-
ters during 1654. The letters were written in
response to the following problem: two players, A
and B, each stake 32 pistoles on a first-to-three-point
game. When A has 2 points and B has 1 point, the
game is interrupted and cannot continue. How
should the stakes of 64 pistoles be fairly distributed?
Fast forward three centuries and the similarities of
this problem with the problem encountered in lim-
ited-overs cricket, when a match is cut short because
of rain, are uncanny. Indeed, the solution offered by
Duckworth and Lewis (1998) is one of the great suc-
cess stories of OR in sport, or arguably OR in any
field. That sports fans routinely use the names of a
statistician, and an operational researcher should be
the source of great pride to the OR community.

The field of sports analytics now boasts specialist
journals, regular special issues in top-rated main-
stream journals, large departments in sports teams,
and many stories of success and over-achievement
in professional sport.

3.23.1. What is ‘sports analytics’?
Analytics is largely an umbrella term for data sci-
ence, statistics, operational research, and nowadays,
machine learning. A simple definition of sports ana-
lytics is the use of analytics to gain a competitive
edge in sport. A wider definition would be the use of
analytics to improve decision making in sport.

Research has been published on the use of ana-
lytics in almost all popular sports including: football,
tennis, cricket, golf, American football, baseball,
motor sport, martial arts, and many more. Rather
than review the field by sport, it is more logical to
consider the field by task. The following is not a
comprehensive list of such tasks, but provides an
overview of the more common objectives of sports
analytics.

3.23.2. Ranking and rating
Ranking of competitors is, to a large extent, the
entire purpose of organised sport, and rating is a
popular area of research. There are several families
of models used to rate competitors. Paired compari-
sons models are used when two competitors play in
each contest. For example, Elo ratings were first
developed for use in chess, but have since been used
by, for example, Hvattum and Arntzen (2010) for
forecasting football results. Glickman (2001) pre-
sented a more general Elo model based on a
Bayesian updating system and applied it to the
problem of dynamic ratings of chess players.
Another paired comparisons model is the Bradley-
Terry model and this was used in McHale and
Morton (2011) to forecast the results of tennis
matches. Multiple comparisons models are used
when several competitors play in each contest and
Baker and McHale (2015) use a time-varying mul-
tiple comparisons model to rate golfers from differ-
ent eras. Langville and Meyer (2013) provide an
excellent overview of rankings models.

Rating individuals in team sports is a somewhat
more complex task than the examples given above,
especially when the individuals have different objec-
tives, as is the case in football for example, where
some players are mainly responsible for defending,
whilst others are mainly responsible for attacking.
Basketball, ice-hockey and football all fall into this
category. In such circumstances plus-minus ratings
are useful. At its most basic level, a player’s plus-
minus rating is a comparison of a team’s perform-
ances with and without the player. Rosenbaum
(2004) presented a method for calculating plus-
minus player ratings in basketball, before extensions
were added by Macdonald (2012) and Kharrat et al.
(2020) to account for the intricacies of ice-hockey
and football, respectively.

The availability of more granular data, such as
event data (detailing each and every event in a
game, e.g., the timing, coordinates and players
involved in a pass) and player tracking data (the
coordinates of all players on the field of play
recorded at several times per second), has enabled
more advanced measures of player performance to
be calculated. One such measure is that of expected
value of possession (EVP) for valuing individual
actions in team sports. The concept of EVP was first
presented in Cervone et al. (2016) and asks the
question “what is the probability of the objective
happening before an action, compared to the prob-
ability after an action?”. The objective may be to
score a goal in football. If an action is a good one –
the probability of a goal should increase, whilst if it
is a bad one, the probability of a goal will likely
decrease. The change in the probability of the
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objective occurring is then the value of the action.
Recent applications of deep reinforcement learning
have seen EVP calculated for football (e.g., Liu
et al., 2020; Fern�andez et al., 2021). Indeed, it is
likely that the EVP concept will be used in many
sports in the future.

Akhtar et al. (2015) uses the change in probabil-
ity of a team winning a Test match to rate crick-
eters. The idea is similar to the EVP idea proposed
by Cervone et al. (2016), but uses multinomial
regression to calculate probabilities of a team win-
ning/drawing/losing the match, before and after
each ball of the match.

The idea of monitoring the change in an
expected value is also used in golf’s ‘strokes gained’
metric (Broadie, 2012). Strokes gained measures
how good an individual shot is, and by aggregating
over many shots, one can identify how good a
player is overall, or how good certain areas (e.g.,
putting and driving) of a player’s game are.

3.23.3. Decision making
A core tenet of sports analytics is that it should
drive improvement, indeed improving decision mak-
ing is central to the OR paradigm. There are many
papers looking to use analytics to improve decision
making in a sports context.

Perhaps the costliest consequences of decision
making in sport concern the recruitment of athletes.
Indeed, the Moneyball premise is built on the idea
of avoiding overpaying for talent.

Football clubs exchange huge sums of money to
acquire the services of players. These transfer fees
were studied in Coates and Parshakov (2022) who
consider the issue of the wisdom of the crowd in
estimating the fees. McHale and Holmes (2022) use
machine learning techniques to model transfer fees
as a function of performance metrics and contract
status, amongst other things.

In lucrative team sports such as American foot-
ball, football and basketball, recruitment of young
talent with high potential is of potentially great
value, but it appears a relatively little researched
area. In one of only a handful of papers on this
issue, Craig and Winchester (2021) present a model
to predict the potential of college quarterbacks to
one day play in the NFL.

In addition to making good decisions around
player recruitment, sports teams must make good
decisions about their coaches. Peeters et al. (2020)
consider the impact of coaches on the performance
of Major League Baseball teams, whilst
Muehlheusser et al. (2018) rate coaches in German
football. Identifying good coaches is just one dimen-
sion of decision-making surrounding running a
sports team, and it is often the case that team

owners are faced with the decision of whether or
not to fire a coach. The impact of managerial dis-
missals has been the focus of attention in the eco-
nomics literature. In football, Tena and Forrest
(2007) measure the consequences of mid-season
managerial dismissals on a team’s performance and
find that there is a short-term improvement in
results, but only in home matches.

The final area of decision making we note is that
of team selection. In cricket the ordering of the bat-
ting line-up was considered in Perera et al. (2016),
whilst Watson et al. (2021) use machine learning to
optimise team selection in rugby union. Cao et al.
(2022) look at optimising team selection in soccer.

3.23.4. Other areas of sports analytics
Sport has attracted the attention of quantitative ana-
lysis in numerous other areas, though some do not
have the objective of improving performance and/or
decision making. For example, OR has been used to
inform scheduling of tournaments (see also §3.27).

The popularity of sports betting means forecast-
ing results has received a great deal of attention in
the literature. As the sport with the largest global
betting market, football has attracted the most atten-
tion in the forecasting literature. A notable contri-
bution was that of Dixon and Coles (1997), whose
Poisson model has been used as the basis of subse-
quent work for over two decades. More recently,
machine learning techniques have begun to outper-
form Poisson-type models. See Dubitzky et al.
(2019) for details of the results of the ‘Soccer
Prediction Challenge’.

Tournament design has been the subject of
research in, for example, Scarf et al. (2009). The
idea is that tournaments should maintain excite-
ment. On a similar theme, Friesl et al. (2017) and
Scarf et al. (2019) looked at the rules of ice-hockey
and rugby and considered how they might be
adjusted to increase excitement. By lowering scoring
rates, the outcome of a game is more uncertain, and
according to the uncertainty of outcome hypothesis
this is what drives interest. However, there is con-
flicting evidence on the uncertainty of outcome
hypothesis (see, for example, Forrest & Simmons,
2002). Understanding what drives the interest of
fans was the subject of Buraimo et al. (2020) who
looked at how suspense, surprise and shock during
a match drives in-match television viewing figures.

To find more articles on sports analytics, the
interested reader has several options including spe-
cialist journals (the Journal of Quantitative Analysis
in Sports, the Journal of Sports Economics, and the
Journal of Sports Analytics), and discipline journals
such as the European Journal of Operational
Research, the Journals of the Royal Statistical Society,
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the Journal of the Operational Research Society, and
the International Journal of Forecasting, together
with a plethora of blogs and websites all focused on
sports analytics.

3.24. Supply chain management71

The field of supply chain management (SCM) is
concerned with the information, material, and cash
flows within and between supply chain members.
Materials generally flow down a supply chain (like
water in a river); information and money flow up
the supply chain. The way we design, source, pro-
duce, move, store, schedule, communicate, collabor-
ate, and compete are important factors in SCM.

3.24.1. Lean production
SCM is built on the foundations of good industrial
engineering. The pioneering industrial engineers
Frank and Lilian Gilbreth provided us with time
and motion studies (Gilbreth, 1911), human factors,
and scientific management. During the 1920s scien-
tific management techniques were imported into
Japan’s Imperial Navy’s shipyards and factories to
improve efficiency and quality. Initially, some table
top management games learnt from the Gilbreths in
the United States were taken to the Kure Navel
Arsenal (a navel shipyard) in 1923 (Robinson &
Robinson, 1994). The table top management games
were used demonstrate the efficient flow, and organ-
isation, of work. Robinson and Robinson (1994)
claims these table top games facilitated Japan in
general, and Toyota in particular, to become highly
efficient at producing high quality, low cost, reliable
products. The Toyota Production System (TPS)
became the world standard in the highly efficient
lean production technique (Ohno, 1988). Western
companies soon sought to emulate the success of
TPS (Womack et al., 1990), hunting high and low
for the seven lean wastes (Hines & Rich, 1997).
Holweg (2007) provides an excellent summary of
the genealogy of lean production.

3.24.2. Value stream mapping
One of the best ways to document and understand a
supply chain is to draw a value stream map (VSM;
Rother & Shook, 1999). VSMs detail how the mater-
ial flow is controlled by the information flow and
decision-making activities. Key is to determine the
point in the material flow where the customer order
directly regulates the production cadence. This point
is known as the pacemaker process or the customer
order decoupling point (CODP; Olhager, 2010).
The pacemaker is often the process that separates
the work that is pulled through the system by a

Kanban system, and the work that flows out to the
customer in a first-in-first-out (FIFO) queue.

3.24.3. Agile and leagile supply chains
Lean supply chains are characterised by just-in-time
inventories and high capacity utilisation. But not all
supply chains should be lean. Some supply chains
need to be responsive, with extra inventory and
spare capacity held in reserve so the system can
quickly respond to unexpected demand (Fisher,
1997). This has become known as agile production.
The lean and agile paradigms can integrated in
together in a concept known as leagility (Naylor
et al., 1999). In leagile supply chains, the material
flow is set up to follow lean principles upstream
from the CODP; downstream from the CODP, agile
principles are followed.

3.24.4. Bullwhip and supply chain dynamics
The bullwhip effect is one of the biggest areas of
SCM research. The moniker, coined by Lee et al.
(1997), refers to the tendency of the slowly changing
consumer demand (the bullwhip handle) to create
wildly fluctuating fast moving demand at the raw
material processors (the bullwhip popper). This
variance amplification effect is caused by the deci-
sion-making activities (Forrester, 1958). The seminal
paper by Lee et al. (1997) highlights four causes of
the bullwhip effect: demand signal processing, order
batching, shortage gaming, and price fluctuations.

Demand signal processing has been the most studied
cause of the bullwhip effect. Demand signal processing
refers to the activity of forecasting the demand over the
lead time (and review period), so that one may deter-
mine production and/or replenishment order quantities
to maintain finished goods inventory and raw material
levels close to a target. Setting target inventory levels is
a problem similar to the newsvendor problem
(Churchman et al., 1957). As orders eventually turn
into the inventory here is a feedback loop in the deci-
sion; there is also a work-in-progress feedback loop in
the system (Sterman, 2000). Both these feedback loops
contain delays. This creates a complex system whose
dynamics are in part driven by the external demand,
but are mostly an internally generated effect caused by
the fundamental structure of the supply chain
(Sterman, 2000).

Control engineers have developed a large toolkit
to understand and manipulate the dynamics of feed-
back systems. Towill (1982) and John et al. (1994)
studied the dynamics of continuous time replenish-
ment rules with the Laplace transform.
Dejonckheere et al. (2003) studied discrete time
replenishment rules via the z-transform and the
Fourier transform. They showed the order-up-to
replenishment policy with moving average and
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exponential smoothing forecasts, for all lead-times
and all possible demand patterns, always created
bullwhip.

Michna et al. (2020) studied stochastic lead times,
revealing the forecasting of lead times is an impor-
tant cause of the bullwhip effect. Gaalman et al.
(2022) explores the interaction between the lead
time and bullwhip under general order auto-regres-
sive moving average demand. They reveal the inter-
action between demand, lead times, and bullwhip is
complex and subtle; bullwhip does not always
increase in the lead time. Wang and Disney (2016)
provides a recent review of the bullwhip effect, its
causes, solution approaches, and thoughts on future
research directions.

3.24.5. Location and localisation
The number, and location, of distribution centres
(DC) is an important problem in distribution net-
work design. Too few DCs result in longer travel
distances (and times) to customers; too many result
in high amounts of distribution inventory. The
square root law for inventory (Maister, 1976) shows
the amount of inventory in a distribution network
falls by 1=

ffiffiffi
n

p
when n DC’s are consolidated into a

single DC. The transportation costs involved in
delivering customer demand from n DCs can be
accurately modelled using transportation planning
software (Hammant et al., 1999). This software typ-
ically includes: road maps, speed limits, tolls, con-
gestion, as well as various methods for modelling
transport costs.

Postponement can also reduce inventory in supply
chains. Postponement involves delaying final assem-
bly until demand reveals itself; products are then
quickly customised to meet the consumer’s desires.
For example, HP build generic printers in Mexico
to ship to Europe. Upon arrival, they are assigned
to a country and the correct power pack is
“assembled” into the product (Feitzinger & Lee,
1997). With postponement HP holds less generic
inventory to buffer the shipping lead time compared
to the amount of country specific inventory it would
need if the power packs were assembled in Mexico.

Another important SCM decision is where to
produce? Should you produce locally where perhaps
labour cost is high, or should you outsource, or off-
shore, to a low labour cost country? Sometimes,
offshore production is supplemented with a local
factory or a near-shored supplier in a dual sourcing
arrangement (Allon & Van Mieghem, 2010). A tail-
ored base surge policy sends constant orders to the
offshore supplier with the long lead time, while the
near-shore supplier flexes production quantities with
a short lead time. A small local SpeedFactory may
be able to correct for the forecast errors and gain

enough of an inventory advantage to offset the
increased local labour costs (Boute et al., 2022).

3.24.6. Information flows in supply chains
Changing the information used in replenishment
decisions can improve the dynamics of supply
chains. The sharing of demand information with
upstream suppliers is often referred to as the infor-
mation sharing (Lee et al., 2000), or information
enrichment strategy (Dejonckheere et al., 2004).
Knowing the end consumer demand allows
upstream members to base their demand forecasts
on the real demand information, removing one of
the potential causes of the bullwhip effect. Indeed,
information sharing allows for a linear, rather than
a geometrically, increasing bullwhip effect as orders
go echelon-to-echelon up the supply chain (Chen
et al., 2000). Kaipia et al. (2017) considers the prac-
ticalities of implementing the information sharing
strategy.

Sharing both demand and inventory information
with your supplier can enable the vendor managed
inventory (VMI) strategy (Dong & Xu, 2002). In the
VMI strategy, the consumer demand and down-
stream inventory information is used by the supplier
(the vendor) to make replenishment decisions on
behalf of his customer. This allows two supply chain
echelons to behave dynamically as one echelon,
removing a bullwhip generating decision from the
supply chain (Holweg et al., 2005).

3.24.7. Coordinating supply chain contracts
Supply chains often consist of many different organ-
isations, each operating to maximise their own
profit. Due to the double marginalisation problem, if
each player acts solely in their own interests, the
supply chain will not be able to reach the first best
solution; money will be left on the table. Sometimes,
the first best solution can be reached by a central-
ised decision-maker coordinating the supply chain;
at other times the altruistic behaviour of one supply
chain member, in return for a transfer payment, can
coordinate.

There are many different types of contracts
(Cachon & Lariviere, 2005): revenue sharing, buy-
back, price-discount, quantity-flexibility, sales-rebate,
franchise, and quantity discount contracts to name
just a few. All have their strengths and weakness
and are applicable in different settings. Many con-
tracts are based on newsvendor principles (Lariviere,
2016). Another important concept in contract
design is the idea of Pareto improving contracts,
where no player is worse off than the (locally opti-
mised) base case, but at least one other player is bet-
ter off. Other contracts allow for the arbitrary
allocation of profits between players, and for the
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delegation of decision-making activities to others
(Chintapalli et al., 2017).

3.24.8. Emerging topics in the field of supply
chain management
Emerging topics in the SCM field include:

� The distributed ledger technology behind block
chains (Babich & Hilary, 2020) and cryptocurren-
cies (Choi, 2020) can be used to create a perman-
ent record of provenance and ownership.
Ensuring your cotton has not been produced by
slaves, your diamonds are not conflict, and chil-
dren did not mine your Lithium is vital now as
UK Directors can face prison time under the
Proceeds of Crime Act for crimes committed in
their supply chains.

� Opaque pricing is a technique used to sell last
minute travel industry inventory (e.g., hotel
rooms) at discounted prices. The traveller books
a room without knowing the exact hotel brand.
Cost sensitive travellers are happy because they
get a bargain. The hotel is happy because they
get extra income without damaging their brand.
Opaque pricing can be used for products as well;
for example, a red pen sells for $10, and a blue
pen sells for $10, but if you don’t care which col-
our you have, a red-or-blue pen is offered at the
opaque price of $8. The vendor is able to use the
customer’s lack of preference to reduce inventory
requirements (Ren & Huang, 2022).

� Quantum computing allows one to solve
NP-hard problems (such as the travelling sales-
man problem) to optimality instantaneously,
rather than waiting for months with regular
computers (Srinivasan et al., 2018). This technol-
ogy has the potential to make supply chains
more efficient.

3.25. Sustainability72

In this subsection, we focus on the area of sustain-
able operations from the perspective of closed-loop
supply chains (CLSC). We consider literature that
focuses on product-, module/part-, and material-
level recovery and reuse activities. These activities
provide economic and environmental benefits.
CLSC entail transportation and acquisition of used
products; sorting, grading and disposition for differ-
ent recovery methods; disassembly and reassembly
(i.e., remanufacturing operations); and marketing of
remanufactured products. Guide and Van
Wassenhove (2003) and Ferguson and Souza (2010)
provide comprehensive overviews of the strategic,
tactical, and operational aspects of CLSC.

The supply side in CLSC differs from traditional
supply chains in the following ways. The quantity of
used products being returned is uncertain; the tim-
ing of when they are returned is uncertain; and the
condition (quality) in which they are returned is
also uncertain. These differences lead to uncertain
recovery rates and processing times, uncertain cost
of recovery, and imperfect matching between supply
of used products and demand for remanufactured
products, and hence the subsequent demand for
new parts needed to make the remanufactured (fin-
ished) product. Below, we provide a brief overview
of some of the methods used to optimise the differ-
ent activities in CLSC, while managing these
uncertainties.

The reverse logistics (RL) network (see also §3.14)
handles the collection of used products from end-
users, and their transportation between collection
points, consolidation centres, testing, sorting, and
grading facilities, and recovery (e.g., remanufactur-
ing, reuse, recycling) facilities and landfill locations.
Stylised and game-theoretic models are developed to
determine the optimal collection strategy for pro-
ducers (if they choose to, or are required to collect
used products). The collection strategy includes
decisions on whether producers should collect dir-
ectly from end-users, or use the retail network as
collection points, or use third-party collectors (e.g.,
Savaskan & Van Wassenhove, 2006). In further ana-
lysis of the collection strategy, the continuous
approximation method is used to determine whether
the producer (or business) should offer to pick-up,
or have end-users drop-off the used product (e.g.,
Fleischmann, 2003).

Several quantitative models are developed to
determine the optimal RL network design. An
extensive discussion of these models and solution
approaches can be found in Akçalı et al. (2009).
Linear programming, mixed-integer linear program-
ming (MILP), and stochastic programming are
widely used to determine optimal network struc-
tures. Fleischmann et al. (2004) provide and excel-
lent overview of MILP and stochastic programming
models for facility location and network design for
dedicated reverse, and integrated (forward and
reverse) logistics networks. Mixed-integer nonlinear
programming models are also sometimes used to
determine the optimal RL network structure (e.g.,
de Figueiredo & Mayerle, 2008). In addition to opti-
mal network design, vehicle routing models (§3.32)
are used to determine optimal collection and pick-
up routes. These vehicle routing problems are often
NP-hard, and are based on location of demand:
node, arc, and general. The models are extended to
include vehicle routing with backhaul, routing with
simultaneous delivery and pick-up, and routing with
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partially mixed deliveries and pick-ups (see Beullens
et al., 2004, and references therein).

One way of managing the supply uncertainty in
CLSC is to forecast the return of used products.
Different methods are used to compute the product
return probability. These include modelling returns
as a function of past sales (via a known delay distri-
bution), regression models (Samorani et al., 2019),
simulation models, and queueing models (e.g.,
Toktay et al., 2000)

Buyers of used products (i.e., producers or their
contract-remanufacturers, and third-party remanu-
facturers) actively manage the supply uncertainty
(timing, quantity, and quality) by using incentive
mechanisms such as quality-based pricing, trade-ins,
and buybacks. Buyers acquire used products either
in sorted (i.e., known quality-levels) or unsorted
(i.e., unknown quality-levels) form. Lot-sizing mod-
els are developed to determine the optimal acquisi-
tion quantity when the used products are available
in unsorted form (e.g., Galbreth & Blackburn, 2006);
and when they are available in sorted (continuous
or discrete quality-levels) form (e.g., Mutha et al.,
2016). The acquisition process has also been ana-
lysed in the context of buyer-supplier contracts. The
objective of these analyses is to determine the opti-
mal contract structure with known or unknown
quality levels, e.g., quality-dependant acquisition
costs and quantities (Mutha et al., 2019), and coord-
ination mechanisms (Debo et al., 2004; Vedantam &
Iyer, 2021; Li et al., 2023). Several models are also
developed to determine the optimal acquisition cost
for used products and selling price for remanufac-
tured products for an exogenous set of discrete
quality-levels of used products (e.g., Guide et al.,
2003).

Testing, sorting, and grading of the acquired used
products are important activities in product recov-
ery operations. Hahler and Fleischmann (2017) pro-
vide a detailed description of these operations for
used consumer electronics. Sorting defective, and
economically and technically infeasible-to-remanu-
facture units from the acquired quantity streamlines
the subsequent operations (e.g., transportation, dis-
assembly, and reassembly). Knowing the quality of
the incoming units before scheduling recovery oper-
ations significantly improves the performance of the
system. The benefit of yield information (i.e., infor-
mation on the quality distribution of the incoming
units) has been analysed using lot-sizing models and
simulation models (e.g., Ketzenberg et al., 2003).
Several models are developed to optimise the differ-
ent decisions in the grading process, e.g., the opti-
mal number of grades (e.g., Ferguson et al., 2009),
the resulting optimal grade-wise remanufacturing
cost and selling price (e.g., Mutha & Bansal, 2023),

and the optimal location and timing of the sorting
and grading process, for example at the point of col-
lection/return or at the disassembly stage (e.g.,
Guide et al., 2006; Zikopoulos & Tagaras, 2008).

The disposition of sorted and graded used prod-
ucts typically involve a problem of optimal assign-
ment of the economically and technically
recoverable units to different recovery options, e.g.,
product-level recovery (i.e., remanufacturing); mod-
ule/part-level recovery (i.e., reuse for making rema-
nufactured and new products, or for spares); and
the non-recoverable products for material-level
recovery (i.e., recycling). The assignment decisions
are usually based on considerations of supply (yield
information, processing times, and costs) and
demand (revenue, opportunity cost, and inventory
cost). Optimal control models (e.g., Inderfurth et al.,
2001) and revenue management-based models (e.g.,
Pinçe et al., 2016; Calmon & Graves, 2017; Calmon
et al., 2021) are widely used to determine optimal
disposition decisions. Depending on the type of the
product, single-period models (for products with
short lifecycles, e.g., cellphones) and multiperiod
models (for products with long lifecycles, e.g.,
engines) are used in the disposition analyses. For
example, €Ozdemir-Akyıldırım et al. (2014) formu-
late the optimisation problem as a multiperiod
Markov decision process (MDP) and provide a lin-
ear-programming model for solving the determinis-
tic approximation of the MDP model.

Within the production planning and control lit-
erature in CLSC, a relatively small part has focused
on disassembly planning and sequencing, and
material requirement planning (MRP). Inderfurth
et al. (2004) provide an extensive overview of the
various optimisation models developed to optimise
these elements, including shop floor control rules,
in remanufacturing-only and hybrid (joint manufac-
turing and remanufacturing) systems. Disassembly
sequencing is mainly analysed using direct graphs
(see Lambert, 2003, and §2.12), and MRP decisions
are analysed from an inventory control perspective
(e.g., Inderfurth & Jensen, 1999; Ferrer & Whybark,
2001). A significant part of the literature on CLSC
has focused on inventory management. Optimal
inventory control policies are derived using peri-
odic-review models (e.g., Teunter et al., 2004; Zhou
et al., 2011) and continuous-review models (e.g., van
der Laan et al., 1999; Toktay et al., 2000; Jia et al.,
2016). The single-period newsvendor-like models
are largely analysed as acquisition lot-sizing models
(discussed in the preceding paragraphs).

The research on market (selling)-related aspects
of CLSC is focused around understanding the profit
and pricing implications due to the co-existence of
new and remanufactured products in the (same)
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market, and on understanding the customers of
remanufactured products. Optimisation models are
developed to determine the pricing and profitability
of remanufactured products (e.g., Ovchinnikov,
2011; Abbey et al., 2015). Game-theoretic models
are developed to determine optimal market-seg-
ments (based on pricing) for new and remanufac-
tured products (e.g., Debo et al., 2005; Atasu et al.,
2008). The market for- and customers of- remanu-
factured products are mostly analysed using empir-
ical methods, e.g., using sales data from websites
selling used and remanufactured products, usually
accompanied by customer surveys (e.g., Guide & Li,
2010; Subramanian & Subramanyam, 2012).
Behavioural experiments are used to understand
consumer perceptions (e.g., quality, functionality),
their acceptance (and rejection), and willingness to
pay for remanufactured products (e.g., Abbey et al.,
2017, and references therein).

3.26. Telecommunications73

Operational Research plays a key role in the design
and management of telecommunication networks. A
large variety of applications of both exact methods
and heuristics can be found in the literature. We
focus here on the applications for wired networks.

3.26.1. Topological network design
The earliest works on telecommunication networks
focused on wired fixed line telephony. For the long-
term planning of these networks, clients’ demands
are not known in advance, or with a lot of uncer-
tainty. This often gives rise to two-stage approaches
where only the fixed cost of opening links are con-
sidered first, and the decisions on routing and cap-
acity allocation taken in a second (later) stage. This
approach is relevant when the fixed costs are very
high compared to routing and capacity costs, and/or
when topological decisions do not affect capacity
decisions too much . For example, digging a trench
to install fiber optic cables is very costly, while
increasing capacity can be done by adding or
upgrading equipment into nodes, which is relatively
simple and cheap. The objective is to build a net-
work at minimum cost, considering only the fixed
cost associated with opening a link, ignoring cap-
acity and routing costs.

Two main issues appear in the planning process
of such networks: economy and survivability.
Economy refers to the construction cost, while sur-
vivability refers to the restoration of services in the
event of equipment failure. A network is called a
tree if it is connected (i.e., there exists a path
between all pairs of nodes), and removing any link
disconnects at least one pair of nodes. Trees satisfy

the primary goal of minimising the total cost while
connecting all nodes. The minimum cost spanning
tree problem therefore received a lot of attention,
see e.g., Magnanti and Wolsey (1995).

However, only one node or edge breakdown
causes a tree network to become disconnected and
therefore to fail in its main objective of enabling
communication between all pairs of nodes. This
means that some survivability constraints have to be
considered while building the network. Usually,
these constraints come in the form with k-connect-
ivity requirements, i.e., the ability to restore network
service in the event of a failure of at most k – 1
components of the network. In their earliest
work on the subject, Gr€otschel and Monma (1990)
introduced a general model for survivability
requirements, and studied the polytope associated
with an integer programming formulation of the
problem.

The minimum-cost two-connected spanning net-
work problem, that consists in finding a network
with minimal total cost for which two node-disjoint
paths are available between every pair of nodes, was
studied extensively, starting with the work of
Monma and Shallcross (1989). Such networks have
been found to provide a sufficient level of surviv-
ability in most cases, but it turns out that the opti-
mal solution of this problem is often very sparse. In
such a topology, primary routing paths and re-rout-
ing paths in case of failure might become very long,
introducing large delays in the network.

Two kinds of solutions have been proposed to
remedy this problem: The first one imposes a con-
straint on the length of the paths (in terms of num-
ber of links crossed), the so-called hop-constrained
models. The second approach consists of imposing
that each edge belongs to at least one cycle (or ring)
whose length is bounded by a given constant.

Hop-constraints were first considered by
Balakrishnan and Altinkemer (1992) in order to
generate alternative solutions for a network design
problem. Later on, Gouveia (1998) presented a lay-
ered network flow reformulation that has since been
used in many network design applications involving
hops-constraints.

The second approach to avoid long re-routing
paths in case of failure is based on the technology
of self-healing rings. These are cycles in the network
equipped in such a way that any link failure in the
ring is automatically detected and the traffic
rerouted by the alternative path in the cycle. Many
problems involve setting a bound on the length of
the ring including each edge. Network design prob-
lems with bounded rings were first studied in Fortz
et al. (2000).
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3.26.2. Location problems
Location problems play a central role in telecommu-
nications network design. We focus here on prob-
lems arising in wired (optical) telecommunications
networks. These problems are mostly concerned
with decisions related to the placement of specific
equipments into nodes of the network, and are
closely related to hub location problems (Alumur &
Kara, 2008).

The Concentrator Location Problem is probably
the most basic application of equipment placement.
The problem consists of determining the number
and location of concentrators that are used to aggre-
gate end-user demands before sending them on the
backbone network. The allocation of end-users
demands to the concentrators has also to be deter-
mined such that the capacities of the concentrators
are not exceeded. This problem has received much
attention in the literature, starting with the work of
Pirkul (1987).

Another classical problem arises with the replace-
ment of an old technology by a new one, e.g., when
telecommunications companies replace outdated
copper twisted cable connections by fiber optic con-
nections. The Connected Facility Location Problem
(ConFL) aims at optimising the building cost for
networks involving the two technologies, which is
modeled as tree-star networks: the core network,
made of fiber optic connections, has a tree topology
and interconnects multiplexers that switch traffic
between fiber optic and copper connections. Each
multiplexer is the centre of a star-network of copper
connections to the customers. Early work on ConFL
concentrated on approximation algorithms, such as
the primal-dual procedures proposed by Swamy and
Kumar (2004). The currently best-known constant
approximation ratio is given by the 4-approximation
algorithm of Eisenbrand et al. (2010). Heuristic
approaches have been proposed by Ljubi�c
(2007) and Bardossy and Raghavan (2010). Different
Mixed Integer Programming models for
ConFL were proposed by Gollowitzer and Ljubi�c
(2011).

In addition to these long-term design problems,
operational short-term decisions are related to the
routing of demands in the network, with a focus on
avoiding congestion. Most networks nowadays oper-
ate the Internet Protocol. The internet is a collection
of inter-connected networks called autonomous sys-
tems, that operates under a hierarchy of layers. An
Autonomous System (AS) is defined as a set of
routers under a single technical administration, such
as an internet service provider or a country. As
of July 2022, over 100, 000 ASes were
registered74, connecting over 5 billion internet users
worldwide75.

3.26.3. Traffic engineering
Traffic engineering (TE) addresses the problem of
efficiently allocating resources in the network so
that user constraints are met. Several criteria can be
used to measure the effectiveness of a routing con-
figuration. The selection of the objective function
may drastically change the quality of the resulting
routing. This distinction has been illustrated in
Pi�oro and Medhi (2004). Balon et al. (2006) discuss
various TE objective functions and evaluate how
well these objective functions meet TE
requirements.

The internet routing protocols can be clustered
into two main groups: inter-domain and intra-
domain. While inter-domain are used to route traf-
fic between ASes, Interior Gateway Protocols (IGPs)
handle the routing within ASes. As inter-domain
protocols are mostly governed by administrative and
political considerations, there is not much room for
Operational Research techniques to be applied for
performing TE. On the other hand, the optimisation
of IGPs have received a lot of attention. The most
popular IGPs are based on shortest path routing:
shortest paths are calculated using a link metric sys-
tem, which corresponds to the set of link weights or
link metrics that belong to the same AS. The net-
work operator controls the routing of the traffic
indirectly by setting the link metrics. This gives rise
to very challenging optimisation that have mostly
been tackled heuristically by many authors, starting
with the seminal work of Fortz and Thorup (2000).
Some exact models have also been proposed, e.g., by
Pi�oro et al. (2000).

Recently, Filsfils et al. (2015) proposed Segment
Routing (SR), a new routing protocol developed to
address known limitations of traditional routing
protocols in IP networks. SR offers the possibility to
deviate from the shortest path by using detours in
the form of nodes or links respectively called node
segments and adjacency segments. Optimisation of
SR is a very active field of research and has been
already addressed in Bhatia et al. (2015); Hartert
et al. (2015); Jadin et al. (2019).

3.26.4. Further readings
For surveys on survivable network design, we refer
the reader to Christofides and Whitlock (1981);
Kerivin and Mahjoub (2005); Fortz and Labb�e
(2006); Fortz (2021). Location problems in telecom-
munications are surveyed in Skorin-Kapov et al.
(2006); Fortz (2015) and a unified view on location
and network design problems was proposed by
Contreras and Fern�andez (2012). For a detailed sur-
vey on the Concentrator Location Problem, see
Chapter 2 in Yaman (2005). Traffic engineering
with shortest paths routing protocols is covered in
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the surveys of Bley et al. (2009); Fortz (2011); Altın
et al. (2013).

3.27. Timetabling76

Timetabling represents a particular subgroup of
scheduling problems, namely the set of problems for
which activities must be assigned to resources
within a set of fixed timeslots. Nevertheless, the two
disciplines, scheduling and timetabling, are tightly
related and benefit from mutual advancements in
both modelling and method development.

Practical timetabling problems appear in many
sectors, for example, in education, healthcare, sports
and public transportation. They have been drawing
academic attention for a few decades, partly because
they are easy to grasp but challenging to solve. The
timetabling community gathered at its first inter-
national conference in Edinburgh in 1995, one year
before the Association of European Operational
Research Societies (EURO) established a EURO
Working Group on the Practice and Theory of
Automated Timetabling (EWG PATAT 1996). Ever
since the third conference, which took place in
2000, the timetabling community has gathered
every two years77 to share ideas on both theoretical
and practical aspects of timetabling.

This subsection provides a brief overview of time-
tabling history, while highlighting what makes time-
tabling problems computationally challenging, which
initiatives have boosted timetabling research and
how state-of-the-art knowledge, models and algo-
rithms can be applied in practice. We restrict the
discussion to timetabling problems involving human
resources, such as students, teachers, healthcare
workers and sports teams.

3.27.1. Problem definition
Let us consider a set of timeslots T ¼ f1, :::, jTjg, a
set of activities A ¼ f1, :::, jAjg and a set of resour-
ces R ¼ f1, :::, jRjg: A timetabling problem then
consists in assigning (all) the activities in A to
resources in R and timeslots in T in such a way that
a set of constraints is met. Constraints may apply to
resources, timeslots and activities. They usually
restrict the number of assignments to certain
resources within subsets of T.

Constraints are usually divided into two catego-
ries: hard constraints, which must be strictly satis-
fied, and soft constraints, for which violations may
be tolerated but should be avoided if possible.
Weights may be set on the soft constraints, denoting
their relative importance. A common timetabling
objective is to minimise the weighted sum of soft
constraint violations. This objective sometimes has
to be combined with other timetabling objectives,

for example, to minimise the cost associated with
the employed resources.

3.27.2. Educational timetabling
Educational timetabling problems can be split into
three major groups: university examination timeta-
bling, university course timetabling and high-school
timetabling. In examination timetabling, the task is
to assign examinations in A to a limited number of
timeslots in T and rooms in R such that no student
has more than one exam at a time. Each student’s
exams should be spread out in time as much as pos-
sible. Additional constraints may include precedence
constraints between exams, special room require-
ments, and limited room capacities. Course timeta-
bling involves the assignment of course sections
(lectures, tutorials, lab sessions, seminars) to specific
days of the week and times of the day. Real-world
problems may require sectioning, when students
have to be split into separate subgroups for different
sections. Typically, the objective is to minimise the
number of students’ conflicts. High-school timeta-
bling assumes that students are split into classes and
each class has to take a set of resources. Given a set
of timeslots, each activity (involving both a student
group and a teacher) must be assigned to a timeslot
so that no teacher and no student group are partici-
pating in more than one activity at a time. Most
practical problems have additional constraints; for
example, teachers may have limited availability and
some activities may require more than one timeslot.
In general, educational timetabling problems are
NP-hard (de Werra et al., 2002). Additionally, the
constraints often pose a feasibility challenge.

The educational timetabling community made a
considerable effort to create rich sets of benchmark
instances to be used for comparing methods. The
first set of examination timetabling instances was
defined by Carter et al. (1996). Four competitions
on educational timetabling, entitled ITC-2002
(McCollum, 2002), ITC-2007 (McCollum et al.,
2007), ITC-2011 (Post et al., 2016) and ITC-2019
(M€uller et al., 2018), further advanced the develop-
ment of timetabling algorithms. Post et al. (2012)
developed a general format and benchmark instan-
ces for high-school timetabling, which were
extended later by Post et al. (2014). Ceschia et al.
(2022) published a review of educational timeta-
bling, presenting detailed characteristics of all
benchmark instances and state-of-the-art results.
OPTHUB

78 provides a common platform for storing
problem instances and solutions to selected opti-
misation problems, including educational
timetabling.
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3.27.3. Personnel timetabling
Personnel timetabling, also referred to as employee
timetabling or rostering, concerns the construction
of a timetable for personnel in R in such a way as
to satisfy coverage constraints throughout a time
horizon (Ernst et al., 2004). The timeslots in T often
represent shifts, which correspond to tasks or duties
in A. Some activities may require certain skills, and
hence can only be conducted by a subset of R.
Many work-rest-related objectives are formulated in
terms of time-related constraints, restricting, for
example, the number of hours worked, the number
of weekends worked, the number of consecutive
night shifts (Burke et al., 2004a). Additionally, per-
sonnel rostering problems typically consider per-
sonal preferences as regards working time or days
off. Whereas the problem is generally considered
NP-hard, Smet et al. (2016) showed that some per-
sonnel rostering problems are polynomially solvable,
provided they do not contain a particular class of
constraints. De Causmaecker and Vanden Berghe
(2011) developed a categorisation of personnel ros-
tering problems, based on the characterisation of
resources, objectives and constraints. Kingston et al.
(2018b) complemented this work by providing a
unified notation for nurse rostering problems.

The Practice and Theory of Automated
Timetabling (PATAT) community organised two
International Nurse Rostering Competitions, entitled
INRC I and INRC II. The problem definition of
INRC I (Haspeslagh et al., 2014) was based on the
instances collected by Burke and Curtois (2014).
INRC II (Ceschia et al., 2019) incorporated real-
world constraints concerning subsequent rostering
horizons. The competition datasets have been col-
lected and published79.

Apart from the constraints and objective func-
tions considered in the two INRCs, some sectors
expect their personnel rosters to be cyclic (Musliu,
2006; Rocha et al., 2013). Recent trends also include
objectives related to fairness (Gross et al., 2019) and
well-being (Petrovic et al., 2020). Objective priorities
set by the users may lead to unwanted solutions. To
address this issue, B€oðvarsd�ottir et al. (2021) devel-
oped an approach to automatically set acceptable
weights which avoid conflicting objectives from
leading to poor solutions.

3.27.4. Sports timetabling
Sports timetabling problems often address tourna-
ment or competition scheduling. They require
assigning sports activities in A, represented by pairs
of teams in R, to timeslots in T in such a way that
each team meets all the other teams. Constraints
depend on the competition’s rules, which may differ
in different parts of the world (Ribeiro, 2012;

Dur�an, 2021). Specific sports timetabling constraints
prescribe that teams must not meet the same
opponent within consecutive timeslots, or that the
number of consecutive home or away games is
restricted. The travelling tournament problem
(TTP), introduced by Easton et al. (2001), is an aca-
demic adaptation of the Major League Baseball com-
petition in the United States. The objective of the
TTP is to minimise the sum of travelling distances
for each team. Travelling umpire scheduling (Trick
et al., 2012) is subject to similar constraints, but it
assumes that the tournament is fixed and that each
game is assigned an umpire.

Rasmussen and Trick (2008) provided a review
on round robin sports timetabling, where each team
plays against each other team twice, once at home
and once away. Drexl and Knust’s (2007) review
focused on graph-theoretical approaches to sports
timetabling. Briskorn et al. (2010) investigated the
complexity of several variants of the round-robin
tournament problem, and similarly, de Oliveira
et al. (2015) studied the complexity of travelling
umpire scheduling problems. The characteristic
sports timetabling constraints, which forbid the
assignment of activities to subsets of T, can be chal-
lenging in terms of feasibility.

Trick (2001) and Toffolo et al. (2015) boosted
sports timetabling research by publishing challeng-
ing benchmark instances and monitoring best
known and/or optimal results. Van Bulck et al.
(2021) organised the first international sports time-
tabling competition, for which the instances are
available at the website of STT (2021).

3.27.5. Timetabling and related problems
Academic timetabling problems are often considered
in isolation from other problems. However, many
real-world situations face timetabling entangled with
other optimisation problems. Solutions for one of
them have an impact on the solution for the other
problems. For example, the staffing problem is con-
cerned with optimising a group of human resources
and their characteristics such as skills and contracts
in an organisation, across a relatively large time
horizon. From a staffing perspective, the personnel
structure should adequately cover the organisation’s
anticipated workload while respecting the available
budget. On the other hand, from a rostering per-
spective, the personnel structure should enable com-
puting good quality rosters across many subsequent
rostering periods (Komarudin et al., 2020).
Similarly, task scheduling usually assumes personnel
rosters are fixed, but both problems can also be
addressed in an integrated manner (Paul & Knust,
2015). The workforce routing and scheduling prob-
lem is related to vehicle routing. Apart from
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scheduling a fleet of vehicles to serve a set of cus-
tomers, timetabling issues, such as temporal con-
straints, contracts and skills are also imposed on the
problem (Castillo-Salazar et al., 2016). Some produc-
tion scheduling and inventory problems are subject
to additional timetabling restrictions which apply to
their employees (Sartori et al., 2021).

3.27.6. Where do we stand and what is the future
Academic timetabling has made good progress and
instances, models and algorithms have been shared
and published. For example, the heuristic search
strategies Step Counting Hill-climbing (Bykov &
Petrovic, 2016) and Late Acceptance Hill-climbing
(Burke & Bykov, 2008) were initially developed for
solving timetabling problems. Due to their simplicity
and effectiveness, they continue to be used in a
much wider application domain by many computa-
tional experts.

So long as some instances remain unsolved, or
solutions for instances have not been proven opti-
mal, algorithm development remains open for
improvement. Future challenges may also apply to
new combinatorial optimisation problems encom-
passing a timetabling component. They may not
necessarily map to any of the three timetabling cate-
gories detailed in this chapter. However, they may
gain importance due to either increased practical
need or academic initiatives, such as the publication
of benchmarks or the organisation of competitions.

Apart from these future computational chal-
lenges, timetabling research should also focus on
how to address human resources’ considerations.
Besides the traditional work-rest constraints and
objectives, academia should also reconcile personnel
well-being with their perception of fair workload
within a team and with their level of autonomy in
determining their personal timetables. Research
should also focus on how to address the increasing
personnel resignation in human-centric working
environments such as education and healthcare.
Robust timetabling, for example, has a lot of poten-
tial and at the same time induces scientifically inter-
esting modelling questions.

3.28. Transportation: Rail80

The transportation of goods and passengers by rail
has played an important role in the evolution of
industrialised societies, contributing to their devel-
opment and prosperity. Rail freight transport still
holds critical importance in supporting the eco-
nomic growth of many countries around the world
due to its contribution to guaranteeing an efficient
flow of goods internally and across borders.
Furthermore, rail transportation is also essential for

the movement of people, being the preferred trans-
portation mode for commuters in many large urban
areas. This preponderant role also affects the
internal mobility of cities. First, a differentiation
must be made between freight and passenger trans-
port. Freight trains are longer and heavier than pas-
senger trains, and can often have multiple
propulsion units. Compared to that, passenger trains
are much lighter and have more horsepower per
tonne. There are also important planning and oper-
ational differences, whereas passengers decide freely
where they will travel, each load of freight must be
managed and routed from a specific origin to its
destination. These differences originate very differ-
ent problems in both areas. Even in passenger trans-
portation, different problems arise depending on the
type of service; long- and medium-distance, com-
muter rail, urban rapid transit, and scenic and sight-
seeing train transportation; see, for instance,
Caprara et al. (2007).

Despite all these differences, a set of common
hierarchical stages can be highlighted in the process
of planning and operating a rail transportation sys-
tem (Bussieck et al., 1997): network design and/or
line planning, timetabling, platforming, rolling stock
circulation, shunting, and crew planning.

At a strategic level, the problems are character-
ised by long planning horizons and typically involve
resource acquisition. This level includes network
design and line planning problems. The first refers
to the construction or modification of existing rail-
way infrastructure and mainly concerns urban rapid
transit systems. For a railway company or agency,
the line planning problem consists of defining a set
of lines and determining their frequencies, and it is
usually the first stage in planning medium and
long-distance passenger rail networks.

Bussieck et al. (2004) considered the design of
line plans in public transport with the objective of
minimising the total cost. Goossens et al. (2006)
presented several models for solving line planning
problems in which lines can have different halting
patterns. Laporte et al. (2007) proposed a first rail-
way rapid transit network design model to maximise
the expected trip coverage. Guti�errez-Jarpa et al.
(2013) presented a model to minimise travel cost
while maximising the captured demand. See also
Laporte and Pascoal (2015) for an extension where
the idea consists of first building a set of segments
within broad corridors connecting some vertex sets
to later assemble the segments into lines.

A different set of works pays attention to the for-
mulation of network design models from scratch.
Starting from an underlying network, these models
construct lines by joining edges, incorporating topo-
logical constraints to guarantee connectivity between
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consecutive edges of each line. This approach gives
rise to complex models which are quite difficult to
solve using exact procedures; see, for instance, the
work by Szeto and Jiang (2014), or the recent works
by Canca et al. (2017) and Canca et al. (2019) which
concern the design of a railway rapid transit
network.

For a comprehensive review of the different
methodologies used in practice to solve this prob-
lem, the readers can consult the review of Guihaire
and Hao (2008). More recent reviews of Sch€obel
(2012) and Ibarra-Rojas et al. (2015) present a sys-
tematic classification of problem variants, consid-
ered objectives and solving methodologies.

At the tactical level, the next stage in planning a
railway system consists of several problems, starting
with scheduling and timetabling, followed by rolling
stock planning, crew rostering, and crew scheduling.
The timetabling problem concerns the determin-
ation of the arrival and departure times of trains to
stations. When overtaking and overlapping are
allowed, the timetabling problem becomes a train
scheduling problem. Timetables can be cyclic, regu-
lar, hybrid, and demand-driven. Concerning the
design of cyclic timetables, Caprara et al. (2002)
proposed a graph-theoretic formulation for the train
timetabling problem using a directed multigraph in
which nodes correspond to departures and arrivals
at a certain station at a given time instant. Liebchen
and M€ohring (2002) used a Periodic Event
Scheduling problem (PESP) with several add-ons
concerning problem reduction and strengthening.
Chierici et al. (2004) extended the classical timeta-
bling model to take into account the reciprocal
influence between the quality of a timetable and the
transport demand captured by the railway with
respect to alternative means of transport. Cacchiani
et al. (2008b) proposed heuristic and exact algo-
rithms for the (periodic and non-periodic) train
timetabling problem on a corridor.

Regular timetables have been commonly used in the
case of railway rapid transit systems, especially at rela-
tively short time planning horizons where demand can
be considered approximately constant. Canca et al.
(2016) proposed a sequential optimisation approach to
determine the best regular timetable for a railway rapid
transit network where lines share tracks. Canca and
Zarzo (2017) incorporated aspects of energy consump-
tion in the design of a two-way rapid rail transit line.
Later, Canca et al. (2018) extended the previous work
to a full network, taking into account transfers between
lines. Robenek et al. (2017) proposed a new type of
timetable combining both the regularity of the cyclic
timetables and the flexibility of the non-cyclic ones.

During recent years, starting from the works of
Canca et al. (2014) and Niu and Zhou (2013) many

researchers have paid attention to the design of
demand-driven timetables (see, for instance, Barrena
et al., 2014a, 2014b). The design of a specific train
timetable can be combined by using different acceler-
ation strategies such as stop-skipping and short-turning.
For example, given predetermined train skip-stop pat-
terns, Niu et al. (2015) proposed a quadratic integer
programming model with linear constraints to syn-
chronise effective passenger loading and train arrival
and departure times at stations. Zhou et al. (2022) pro-
posed a mixed integer linear programming model to
jointly optimise the train timetable and the rolling stock
circulation plan, allowing rolling stock to change its
composition through coupling/decoupling operations at
the terminal stations of a metro line. Yuan et al. (2022)
introduced a new integrated optimisation model for
train timetabling that also considered rolling stock
assignment and incorporated a short turn strategy on a
bidirectional metro line.

Several authors have also proposed methods to
increase the transport capacity of a given timetable (see
Burdett & Kozan, 2009). Cacchiani et al. (2010) studied
the problem of incorporating freight transport trains in
railway networks, where both passenger and freight
trains are running. To finish this description of the OR
contributions for the train timetabling problem, a spe-
cial mention of the work by Kroon et al. (2009) is con-
venient. In this research, the authors generated several
real timetables using Operational Research techniques
for the Dutch railway network.

Rolling stock management is probably the most
complex stage in the classical sequential railway
planning process and plays a key role in the efficient
operation of railway networks. At a tactical level,
the rolling stock circulation plan consists of a set of
interrelated subproblems such as train composition
decisions (coupling and decoupling operations
involving locomotives and carriages), selection of
rest locations, the design of vehicle circulations (spe-
cific paths that vehicles must follow to guarantee an
efficient and safe operation), and the definition of
maintenance policies (Caprara et al., 2007). In a
general rolling stock circulation problem, every train
circulation has a variable length (distance and num-
ber of days) and incorporates information about the
allowed specific rolling stock types, composition,
coupling/decoupling operations, maintenance and
cleaning activities. (Mar�oti & Kroon, 2005, 2007).
Other practical considerations such as rolling stock
availability, depot capacity (Lai et al., 2015), cou-
pling and decoupling activities (Fioole et al., 2006),
turnaround times, maintenance (Mar�oti & Kroon,
2007), and track and platform capacities are simul-
taneously considered depending on the specific
problem. Given the importance of this topic within
the set of planning tasks, other contributions have

114 F. PETROPOULOS ET AL.



been proposed for different problems concerning
rolling stock management, as, for instance, deter-
mining a set of minimum cost equipment cycles
such that the most convenient rolling material is
assigned to each planned trip Cordeau et al. (2000)
or obtaining the optimal circulation of rolling stock
considering order in train compositions (Alfieri
et al., 2006; Peeters & Kroon, 2008). Maintenance
also plays an important role in several rolling stock
management contributions, see, for instance, the
works by Mar�oti and Kroon (2005); Giacco et al.
(2014) and D’Ariano et al. (2019). Robustness is
another topic of interest in the related literature.
Interested readers can consult the works by
Cacchiani et al. (2008a, 2012).

After rolling stock management, the crew scheduling
process determines the set of duties that covers all pro-
grammed services (Caprara et al., 1998). Finally, the
crew is assigned to serve the crew schedule and the
corresponding train services (Huisman et al., 2005).
The rostering process aims at determining an optimal
sequencing of a given set of duties into rosters satisfy-
ing operational constraints deriving from union con-
tract and company regulations (Caprara et al., 2003).

To finish this section, two important problems of
rail freight transportation are briefly commented. The
first concerns the strategic design of freight transport
networks and the second concerns the tactical oper-
ation of marshalling yards. Concerning the design of
service networks, Crainic et al. (1984) analysed the
problems of routing freight traffic, scheduling train
services, and allocating classification activities between
yards on a rail network. Crainic et al. (1990) developed
a model of rail freight transportation adapted for the
strategic planning of freight traffic considering other
transportation modes. Zhu et al. (2014) addressed the
problem of scheduled service network design for freight
rail transportation integrating service selection and
scheduling, car classification and blocking, train
makeup, and shipments routing based on a three-layer
cyclic space-time network representation.

Shunting yards, also known as marshalling or
classification yards, play a key role in rail freight
transport networks, acting as hubs where inbound
trains are first disassembled and the carriages are
then to form new convoys, generating new trains
which transport the load towards the correct desti-
nations. This procedure allows carriages to be sent
through the network according to their destinations
without the need for many connections. Therefore,
time savings in shunting operations (Jaehn et al.,
2015) have a great impact on cost savings in the
movement of freight through the rail network
(Boysen et al., 2012). In passenger transportation,
shunting operations focus on train units that are
not necessary to operate a schedule and must be

parked at shunt yards. Since different types of trains
use the rail infrastructure, the specific type of a unit
restricts the set of shunt tracks where they can be
parked. The aim of this problem is to assign train
locations to the shunt tracks while minimising rout-
ing costs from platforms to the corresponding shunt
tracks (Huisman et al., 2005; Kroon et al., 2008).
For a more detailed description of the optimisation
problems involved in shunting operations, we refer
the reader to the works by Jaehn and Michaelis
(2016) and Ruf and Cordeau (2021).

3.29. Transportation: Maritime81

Maritime transportation carries more than 80% of the
world’s trade and some 70% of the value of that trade
(UNCTAD 2022). The spectrum of Operational
Research (OR) applications in maritime transportation
is broad. Following the classification of Christiansen
et al. (2013), these problems can be broken down into
three levels: strategic, tactical and operational. Some typ-
ical problems in each of these levels will be described
in this section.

It is important to note that, in much of the OR
maritime transportation literature, traditional economic
criteria such as cost minimisation or profit maximisa-
tion are the norm, and environmental criteria (for
instance emissions minimisation) are less frequent.
However, with the quest to decarbonise shipping (IMO
2018), the body of knowledge that includes environ-
mental criteria is growing very fast in recent years.
Sometimes environmental criteria map directly into
economic criteria: if for instance fuel cost is the criter-
ion, and since it is directly proportional to ship emis-
sions, if fuel cost is to be minimised as an objective, so
will emissions, and the solution is win-win. However,
for other objectives this direct relationship may cease to
exist and one would need to look at environmental cri-
teria in their own right.

In conceptual terms, if x is a vector of the deci-
sion variables of the problem at hand, f(x) is the
fuel cost associated with x, c(x) is the cost other
than fuel and m(x) are the associated maritime
emissions (carbon, sulphur, or other), then a generic
optimisation problem is the following:

Minimise aðf ðxÞ þ cðxÞÞ þ bmðxÞ
s:t: x 2 X

where a and b are user-defined weights (both 	 0)
representing the relative importance the decision maker
assigns to cost versus emissions, and X represents the
feasible solution space, usually defined by a set of
constraints.

One can safely say and without loss of generality
that if d(x) is the amount of fuel consumed, p is the
fuel price, and e is the emissions coefficient (kg of
emissions per kg of fuel), then f ðxÞ ¼ pdðxÞ and
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mðxÞ ¼ edðxÞ: Therefore f ðxÞ ¼ kmðxÞ with k ¼ p=e,
as both f(x) and m(x) are proportional to the amount
of fuel consumed d(x). The cases that different fuels are
used onboard the ship, for instance in the main engine
vs the auxiliary engines, or if fuel is switched from high
to low sulphur along the ship’s trip, represent straight-
forward generalisations of the above formulation. Then
the above problem can also be written as

Minimise acðxÞ þ ðakþ bÞmðxÞ
s:t: x 2 X

The following special cases of the above problem
are important:

1. The case a ¼ 0, b > 0, in which the problem is
to minimise emissions.

2. The case a > 0, b ¼ 0, in which the problem is
to minimise total cost.

3. The case c(x) ¼ 0, in which fuel cost is the only
component of the cost.

A solution x� is called win-win if both case (1)
and case (2) have x� as an optimal solution. It is
important to realise that such a solution may not
necessarily exist.

It is also straightforward to see that in case (3),
cost and emissions are minimised at the same time
and we have a win-win solution. It is clear that c(x)
¼ 0 is a sufficient condition for a win-win solution.
But this is not a necessary condition, as it is conceiv-
able to have the same solution being the optimal
solution under two different objective functions. An
interesting question is to what extent policy makers
can introduce either (a) a Market Based Measure
(MBM) such as a fuel tax and/or (b) a set of con-
straints, that would make win-win solutions possible.

Let us now examine some typical OR problems
in the 3-level hierarchy.

Strategic level problems involve planning horizons
of several years (from 1 to 25). Among them, fleet
size and mix problems involve the basic questions,
what is the best mix for a shipping company’s fleet
in the years ahead? How large should these ships be?
How many should they be, and how fast they should
go? See Alvarez et al. (2011), Zeng and Yang (2007)
and Pantuso et al. (2014) for some work in this area.

Network design problems also belong to the stra-
tegic problem category and are special to liner ship-
ping. They involve the design of a liner company’s
network, which comprises the ports it would serve,
the routes it will use, which ports will be chosen as
hub ports, how are the company’s feeder networks
configured, and whether the company will use the
hub-and-spoke concept or direct calls. See Agarwal
and Ergun (2008), Reinhardt and Pisinger (2012),
and Brouer et al. (2014) for more on these problems.

Tactical level problems involve intermediate plan-
ning horizons, from a few days to a year. Among
them, ship routing and scheduling is perhaps the
most important problem class, mainly for tramp
shipping, with works by Christiansen et al. (2013),
Andersson et al. (2011), Fagerholt et al. (2010), and
Lin and Liu (2011). Routing and scheduling of off-
shore supply vessels belongs also to this area
(Halvorsen-Weare & Fagerholt, 2011; Norlund &
Gribkovskaia, 2013). All of these problems call for
the determination of the best set of ship routes
under some predefined criteria.

Fleet deployment is also included in the class of tac-
tical level problems, calling for the allocation of ships
to routes (see Meng & Wang, 2011; Andersson et al.,
2015; Lai et al., 2022, among others). Speed optimisation
problems are also tactical level problems and have
received increased attention in recent years, due to the
pivotal role of ship speed with regard to both economic
and environmental criteria. Due to the fact that fuel
consumption is a nonlinear function of ship speed,
these problems are typically nonlinear. Related formula-
tions attempt to find best vessel speeds along the legs
of the route, according to specific criteria (see Psaraftis
& Kontovas, 2013; Fagerholt & Ronen, 2013; Magirou
et al., 2015). These problems may also involve flexible
frequencies (Giovannini & Psaraftis, 2019).

Speed and route decisions may also be combined
(Psaraftis & Kontovas, 2014; Wen et al., 2017). One of
the perhaps counter-intuitive results of these combined
scenarios is that sailing the minimum distance route at
minimum speed does not necessarily minimise fuel
consumption and hence emissions. This may be so
whenever the minimum distance route involves a heav-
ier load profile for the ship. Depending on ship type,
the difference in fuel consumption between a fully
loaded and a ballast (empty) condition can be up to
40%. A result that is less surprising is that expensive
cargoes sail faster and hence induce more emissions.
This is to be expected if cargo in-transit inventory costs
are taken into account.

Modal split/discrete choice models examine scenarios
in which shippers may choose a transportation mode
that is alternative to the maritime mode as a result of
unfavourable time, cost, or other considerations. As a
result, cargoes from the Far East to Europe may prefer
the rail vs the maritime mode, or cargoes in European
short sea trades may choose the road mode as opposed
to shipping. Such modal shifts may increase the overall
level of CO2 and may warrant mitigation measures by
the shipping lines and the policy makers. Papers that
look into this problem include Psaraftis and Kontovas
(2010) and Zis and Psaraftis (2017, 2019). A multi-
commodity network flow formulation in the context of
China’s Belt and Road initiative is given by Qi et al.
(2022).
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Operational level problems concern problems with
planning horizons from a few hours to a few days.
Among them, a very important class of problems con-
cerns weather routing scenarios. The important differ-
ence vis-�a-vis the ship routing and scheduling problems
described earlier is that weather routing problems are
typically path problems defined as trying to optimise a
ship’s track from a specified origin to a specified destin-
ation, under a prescribed objective and under time
varying and maybe also stochastic weather conditions.
Decision variables include the selection of the ship’s
path and the speeds along the path, and typical objec-
tives include minimum transit time and minimum fuel
consumption. Several constraints such as time windows,
or constraints to accommodate a feasible envelope on
ship motions, vertical and transverse accelerations and
ship loads such as shear forces, bending moments and
torsional moments can be introduced. The influence of
currents, tides, winds and waves, which may be varying
in both time and space should be taken into account.
See Perakis and Papadakis (1989), Lo and McCord
(1998), and Zis et al. (2020) for some references on this
topic.

Disruption management is also another important
operational level problem class and typically refers
to liner shipping. It entails actions that can help the
shipping company manage its recovery from pos-
sible disruptions of its schedule. Such disruptions
may be the result of bad weather, port strikes,
equipment malfunction, or more recently, the
COVID-19 pandemic that caused massive conges-
tion in many ports worldwide or the Ever Given
incident that disrupted traffic in the Suez Canal and
the Far East to Europe route in 2021. See Qi (2015)
and Asghari et al. (2023) for work in this area.

Terminal management, berth allocation, and stowage
planning problems also belong to the class of oper-
ational level problems, as they deal with an important
part of the overall maritime supply chain, that of the
coordination between a ship and a port. See Moccia
et al. (2006), Goodchild and Daganzo (2007), and Zhen
(2015) for some related work.

To conclude, maritime transportation constitutes
an important application area for OR, and the
related problems are interesting and significant,
both from a methodological perspective and from a
business and policy perspective. This is so both for
traditional economic performance criteria and for
environmental criteria, the importance of the latter
getting higher in recent years.

3.30. Transportation: Aviation82

According to the Air Transport Action Group, in
2019, the world’s 1,478 airlines transported 4.5 bil-
lion passengers to 3,780 airports, generating 11.3

million direct jobs. Today’s airlines are sophisticated
businesses making aviation a worldwide economic
engine. Yet, aviation is a competitive industry, vul-
nerable to exogenous shocks, e.g., oil prices, infec-
tious diseases or terrorism. This leads to high costs,
and low profit margins, even in the best of times.
To tackle these challenges, the industry relies heavily
on Operational Research (OR) for decision-making.
Prominent OR application domains within aviation
include revenue management, airline schedule plan-
ning, airline operations recovery, airport flight
scheduling, and air traffic flow management.
Additionally, some recent OR studies focus on mod-
elling delay propagation through aviation networks

3.30.1. Revenue management (RM)
RM is broadly defined as the strategies and tactics
to increase revenues by optimally matching demand
for products/services with the available capacity.
Seat allocation and pricing are the two main deci-
sions to control ticket sales of different fare-classes.
Models using capacity allocation as the control vari-
able are called quantity-based RM models. They
allocate seats to fare-classes with exogenously deter-
mined prices. In contrast, price-based RMs uses
pricing policies to maximise revenues. Early RM
models focused on overbooking – the practice of
selling more tickets than seats to hedge against can-
cellations or no-shows. Though various static and
dynamic models have been presented since the pio-
neering work of Rothstein (1971), airlines mostly
use simpler static policies in practice.

Static and dynamic models have been proposed
for both single-leg and network-wide seat allocation.
Static models optimise seat allocation at a certain
time, typically the beginning of the booking period.
Dynamic models monitor and adjust to the booking
process over time. The earliest static leg-based
approach (Littlewood, 1972) considered two fare-
classes. Brumelle et al. (1990) relaxed the assump-
tion of statistical independence between demands.
For the multi-class problem, Belobaba (1987b) intro-
duced the Expected Marginal Seat Revenue heuristic,
a widely used approach in practice. Many studies
(e.g., Brumelle & McGill, 1993) provided optimality
conditions for static models, while others developed
methods to compute optimal protection levels in the
absence of demand information, using optimality
conditions (Van Ryzin & McGill, 2000) or stochastic
approximations (Kunnumkal & Topaloglu, 2009).
Dynamic formulations allow time-based controls,
but require restrictive demand assumption for tract-
ability, limiting practical impact. Solving network
models exactly is computationally hard.
Accordingly, most studies on network models use
approximations, based on deterministic linear
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programming (Talluri & Van Ryzin, 2004a), rando-
mised linear programming (Talluri & Van Ryzin,
1999) or decomposition into single-resource prob-
lems, as well as solutions using simulation-based
optimisation (Bertsimas & De Boer, 2005). Seat
inventory control usually assumes capacity to be
fixed, an assumption relaxed by B€using et al. (2019)
integrating capacity uncertainty in leg-based RM.
Others integrated inventory control and pricing
(You, 1999).

Simplest deterministic pricing models are price-
sensitive versions of the well-known newsvendor
problem (Gallego & Van Ryzin, 1994). This allows
mathematical derivations of optimal prices. Several
studies, such as, Feng and Gallego (1995), general-
ised this problem to include demand dynamics
and/or multiple products. Stochastic dynamic pro-
gramming is a natural way to tackle dynamic pric-
ing. Dynamic models depict reality more accurately,
but are harder to solve (Gallego & Van Ryzin,
1994). Interestingly, solutions to deterministic mod-
els are usually good approximations for their sto-
chastic counterparts, and are often used in practice.
Traditional RM assumed independent demand,
ignoring product substitutability. With the seminal
paper of Talluri and Van Ryzin (2004a), the RM
field has shifted toward including customer choice
behaviors within pricing and capacity decisions.
§3.21 provides a detailed overview of RM concepts
and trends beyond aviation.

3.30.2. Airline schedule planning (ASP)
ASP is the process of designing airline schedules
maximising profits subject to resource constraints.
Taking demand, airport and aircraft characteristics,
and maintenance and personal requirements as
inputs, ASP outputs selected flight timetables, air-
craft schedules and crew duty plans. Most ASP steps
typically occur before RM actions and thus con-
strain the set of decisions available to RM systems.
Key ASP steps include fleet planning, route plan-
ning, frequency planning, timetable design, fleet
assignment, aircraft routing and crew scheduling.
Fleet planning involves decisions regarding purchas-
ing, selling, and leasing of aircraft fleet, while route
planning selects airport pairs to operate nonstop
flights. Early studies, e.g., Hane et al. (1995),
matched a predetermined set of flights with aircraft
types, developing a fleet assignment model (FAM).
The FAM specifically focuses on fleet assignment,
which is one particular step within the overall ASP
process. The basic FAM, a mixed-integer linear pro-
gram, minimised costs of operating aircraft and pas-
sengers unserved, given passenger demand for
individual flight legs. This leg-based approach

ignores that passengers often fly on multiple flights
in connecting itineraries.

Barnhart et al. (2002) overcame this limitation
via an itinerary-based FAM to explicitly model net-
work effects. Some studies developed tractable solu-
tion approaches. Barnhart et al. (2009) proposed a
subnetwork-based decomposition for capturing
FAM’s revenue implications, an approach recently
extended by Yan et al. (2022a) to solve a FAM
incorporating passenger choice. Others extended
FAM by incorporating incremental timetable design
decisions, e.g., changes to flight timings (Desaulniers
et al., 1997) or selection of optional flights
(Lohatepanont & Barnhart, 2004). Wei et al. (2020)
developed a clean slate heuristic optimising entire
timetables and fleet assignments under choice-based
demand. Frequency planning, which optimises the
number of flights operated during a day or part of a
day, rather than deciding exact timetables, has also
received attention, with an emphasis on capturing
affects of competition from other airline and high-
speed rail operators (e.g., Cadarso et al., 2017).

The last two steps in schedule planning are con-
ceptually similar. Aircraft routing assigns individual
aircraft to flights while ensuring that each aircraft
undergoes periodic maintenance, and crew schedul-
ing assigns crew to operate flights while satisfying a
myriad of crew regulations. Early studies individu-
ally optimised aircraft routing (Gopalan & Talluri,
1998) or crew scheduling (Graves et al., 1993a).
Lavoie et al. (1988) used column generation, an
effective solution approach for both problems, to
crew scheduling, while Cordeau et al. (2001) used
Benders decomposition to jointly solve both
problems.

Good schedules not only minimise planned costs,
but are also robust to disruptions, to keep the actual
costs low. Researchers in early 2000s optimised
robustness proxies, e.g., station purity, short cycles,
crew swapping opportunities, and crew schedule
slack (Schaefer et al., 2005). Later studies directly
minimised total planned and unplanned costs of air-
craft routing (Lan et al., 2006) and crew scheduling
(Yen & Birge, 2006) separately, and also jointly
(Dunbar et al., 2012). Recent studies have used
robust optimisation to solve the aircraft routing
(Yan & Kung, 2018) and crew scheduling (Antunes
et al., 2019) problems.

3.30.3. Airline operations recovery (AOR)
AOR encompasses the actions undertaken to repair
schedules, when disruptive events such as inclement
weather, equipment failures, etc., take place.
Rosenberger et al. (2003) developed a model and a
solution heuristic for repairing aircraft routing,
whereas Lettovskỳ; et al. (2000) tackled crew
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recovery. For the integrated recovery problem,
Petersen et al. (2012) developed a decomposition
strategy, while Maher (2016) used column-and-row-
generation. Recent recovery studies incorporated
other key elements, including flight planning (Marla
et al., 2017) and passenger no-shows (Cadarso &
Vaze, 2022).

3.30.4. Airport flight scheduling (AFS)
Beyond airline decision-making, OR is also used to
improve decision-making of central authorities and
air traffic managers. Research over the past decade
demonstrated the potential for enhancing social wel-
fare by constraining schedules at busy airports via
slot-control mechanisms (Swaroop et al., 2012).
Some studies balanced strategic cost of scheduling
changes against tactical cost of delays, for a single
airport (Jacquillat & Odoni, 2015) or multiple air-
ports (Wang & Jacquillat, 2020). Zografos et al.
(2012) used an integer program for allocating slots
to airlines under administrative controls. Fairbrother
et al. (2020) attempted to balance the often-conflict-
ing goals of efficiency, equity and the incorporation
of airline preferences in optimising slot-scheduling
mechanism.

3.30.5. Air traffic flow management (ATFM)
The tactical side of airport and airspace capacity
management has received considerable OR attention
since the 1990s. ATFM is a broad term used to
define key interventions, such as ground holding of
airplanes, that ensure safe and efficient flight opera-
tions by restricting flow of aircraft into congested
airspaces. Terrab and Odoni (1993) and Vranas
et al. (1994) proposed the single-airport and multi-
airport ground holding problems, respectively. The
latter was extended to include enroute capacities by
Bertsimas and Patterson (1998). Bertsimas et al.
(2011b) additionally incorporated flight rerouting
and solved larger-scale problems. Adoption of the
collaborative decision-making (CDM) paradigm in
practice ushered in a new era of research.
Advocating increased agency to airlines, Vossen and
Ball (2006) provided an integer program for slot
trading mechanism design under CDM. Recent
studies (e.g., Starita et al., 2020) are increasingly
focused on explicit handling of uncertainty on both
demand and capacity side within the ATFM opti-
misation problems.

3.30.6. Modelling delay propagation
Tightly coupled aviation networks make disruption
management particularly challenging. Delays and
disruptions in one part of the network propagate to
other parts, through aircraft, crew and passenger
connections. Recent studies quantified these

propagation effects. First, Pyrgiotis et al. (2013) pro-
posed an analytical queuing and network decompos-
ition model for aircraft-based delay propagation.
Barnhart et al. (2014) presented discrete choice
models for passenger itinerary estimation and a
reaccommodation heuristic for passenger delay
calculations. Wei and Vaze (2018) solved inverse
optimisation for estimating crew itineraries and
crew-based delay propagation. These studies
attempted bridging the gap between sparse and
aggregate public datasets, and the detailed and dis-
aggregated data needs for aviation OR research.

3.30.7. Further reading
Readers interested in aviation OR are referred to the
second edition of the book by Belobaba et al.
(2015). In particular, Chapters 4 and 5 focus on
pricing and RM, Chapters 8 and 10 on schedule
optimisation, robustness and recovery, and Chapter
14 on air traffic management and control. Looking
ahead, it is apparent that OR will keep finding nat-
ural applications within aviation, especially given
the exciting disruptive innovations within urban air
mobility. Rapidly growing fields of passenger air taxi
operations and drone operations for parcel deliveries
are giving rise to new variants of well-known OR
problems, e.g., network design (Wang et al., 2022b),
travelling salesperson (Roberti & Ruthmair, 2021),
vehicle routing (Dayarian et al., 2020), and facility
location (Chen et al., 2022).

3.31. Transportation: Network design83

In a transportation context, the term Network
Design (Magnanti & Wong, 1984) generally refers to
planning the supply side of a transportation system
so that it efficiently satisfies some estimate of
demand within the quality standards of the custom-
ers using the system. The planning decisions typic-
ally prescribe the movements of vehicles, or convoys
(e.g., a railroad train or tug and barges), between
stations/terminals in the network to transport peo-
ple or goods. Network design is typically undertaken
for situations wherein what is transported, be it peo-
ple or goods, is small relative to vehicle capacity.
Thus, one primary measure of efficiency is vehicle
utilisation, with high utilisation achieved through
consolidation. Quality is typically measured based
on on-time delivery.

Network design is relevant to passenger transpor-
tation systems such as urban public-transport
(Mauttone et al., 2021) by bus (Ceder & Wilson,
1986) or light rail (Farahani et al., 2013), as well as
systems providing interurban transport by train
(Hooghiemstra et al., 1999) or airplane (Franke,
2017). It is also relevant to a wide range of goods
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transportation markets, such as parcel and small-
package (Barnhart & Schneur, 1996) and less-than-
truckload freight (Powell & Sheffi, 1989). A network
design case study for a postal carrier can be found
in Winkenbach et al. (2016). Transportation carriers
serving these markets may rely on one or more
modes, including motor carrier (Bakir et al., 2021),
rail (Chouman & Crainic, 2021), ocean
(Christiansen et al., 2020), and inland waterway
(Konings, 2003). The planning of vehicle and goods
movements by each mode and synchronisation of
goods moving from one mode to the next (e.g.,
intermodal) can be assisted by network design
(Arnold et al., 2004).

For different modes the scope of design decisions
prescribed by network design models may be broad-
ened in different ways. For example, modes such as
rail and inland waterway involve multiple layers of
consolidation. For rail (Zhu et al., 2014), goods are
consolidated into rail cars, which are then consoli-
dated into blocks that are transported by the same
locomotive. For motor carriers, vehicles can not yet
move without a driver, whose movements and
schedules are restricted by governmental safety regu-
lations and potentially labour management practices
that dictate the driver return periodically to a spe-
cific physical location in the network (e.g., his/her
domicile). Network design models for motor carriers
may build schedules for drivers that observe safety
regulations (Crainic et al., 2018) as well as deter-
mine how many drivers should be associated with
each physical location (Hewitt et al., 2019).

The network design problem is typically modelled
as a Mixed Integer Program (MIP) formulated on a
directed graph (Crainic et al., 2021a). Nodes in such
a graph model physical locations, potentially at dif-
ferent points in time. Directed edges between such
nodes model transportation that begins in one phys-
ical location and ends at another. Edges may encode
a scheduling dimension, such as when a vehicle
departs from one location and arrives at another,
that depends in part on the travel time required for
the physical move (Erera et al., 2013). Associated
with an edge is a function that maps the amount of
vehicle capacity made available on that edge to cost.
Typically, it is a step function with each step model-
ling an increase in capacity due to dispatching an
extra vehicle. Commodities model people or goods
that are to be transported; associated with each
commodity is an origin node, a destination node,
and a size.

The classical network design problem seeks to
find a path for each commodity that begins at its
origin node, ends at its destination node, and poten-
tially visits one or more intermediate nodes. The
problem evaluates these paths with respect to the

total cost of capacity made available to support
them and seeks to minimise that total cost. Some
network design models (Frangioni & Gendron,
2021) instead minimise costs that are a function of
the amount of goods transported on an edge, as
opposed to the capacity made available to transport
them. Network design is an optimisation problem
that has received significant attention both for its
practical relevance and the computational challenges
(Johnson et al., 1978) associated with solving it.

Most MIP formulations of the network design
problem involve commodity flow variables that
model the transportation of goods within the net-
work and another set of edge-based variables that
model the transportation of vehicles. Typically, com-
modity flow variables are continuous when a ship-
per’s goods can be divided and routed on multiple
paths or binary when they cannot. Commodity flow
variables are typically edge-based, but some models
involve paths from shipment origin to shipment
destination. The use of a path formulation typically
necessitates column generation (Hewitt et al., 2019).
However, unlike the vehicle routing problem,
extended, path-based formulations of the network
design problem do not provide stronger linear relax-
ations than compact, arc-based formulations.
Depending on the context and mode the vehicle
edge variables may either be binary or integer.
Linking constraints are included in the formulation
to ensure sufficient vehicle capacity travels on an
edge to carry the commodities making that trans-
portation move. Typically, much larger cost coeffi-
cients are associated with vehicle edge variables than
commodity flow variables.

The majority of literature on network design
focuses on deterministic models wherein it is pre-
sumed all parameter values (costs, capacities,
demands) are known with certainty. However, given
that network design models are often solved as part
of a tactical planning exercise, uncertainty has been
studied (Hewitt et al., 2021). Much of that work
focuses on uncertainty in commodity sizes and
models such problems as two stage stochastic pro-
grams wherein vehicle movements are planned in
the first stage and commodities are routed in the
second stage given the vehicle movements pre-
scribed in the first. There has been limited work on
robust optimisation models (Koster & Schmidt,
2021) or those that view network design in a
dynamic context (Al Hajj Hassan et al., 2022).

Both exact (Crainic & Gendron, 2021) and heur-
istic (Crainic & Gendreau, 2021) solution methods
for deterministic network design models have been
proposed. One challenge associated with solving
MIP formulations of network design problems is
that the linking constraints often lead to fractional
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vehicle edge variables. Thus, the linear programming
relaxations of network design MIPs often yield weak
bounds on the objective function value of an opti-
mal solution to the MIP. As a result, much of the
literature that focuses on speeding up the solution
of MIP formulations of the network design problem
focuses on strengthening formulations with valid
inequalities (Nemhauser & Wolsey, 1988). Such
inequalities are typically either based on classical
ideas such as flow covers from integer programming
(Gu et al., 1999) or leveraging the network structure
of the problem (Raack et al., 2011). Another
approach taken to solve network design problems is
Benders decomposition (Benders, 2005; Costa,
2005), particularly when second stage variables are
continuous and the optimisation problem resulting
from fixing the network design is a linear program.

Another challenge associated with solving MIP
formulations of the network design problem is due
to the size of the network on which the MIP is for-
mulated when that network encodes time. The clas-
sical approach to representing time in network
design is to formulate a MIP on a network wherein
multiple nodes represent the same physical location,
albeit at different points in time (Crainic et al.,
2016). Similarly, multiple edges represent the same
physical transportation move, albeit at different
departure and arrival times. Such networks are typ-
ically referred to as time-expanded networks and
the overall solution procedure in contexts that
require the modelling of time is to construct such a
network, formulate a MIP on that network, and
then solve that MIP. Boland et al. (2019) study the
impact on solution quality of modelling time at dif-
ferent granularities and observe that the finer the
representation the higher the quality of the resulting
solution. However, such an approach can be compu-
tationally challenging when long planning horizons
must be modelled or fine representations of time
are used, as both cases lead to networks and result-
ing MIPs that are very large. An alternate approach,
called Dynamic Discretisation Discovery (Boland
et al., 2017; Hewitt, 2019) proposed to instead gen-
erate time-expanded networks in a dynamic and
iterative manner.

Heuristic methods for deterministic network
design models can be classified into one of two cate-
gories. The first category focuses on metaheuristics
(Hussain et al., 2019) and neighbourhood structures.
Early heuristics (Powell & Sheffi, 1983) proposed for
network design models searched neighbouring solu-
tions by reducing the capacity on one edge in the
network and, if necessary, increasing the capacity on
another. However, more recent and effective meth-
ods have proposed more complex neighbourhood
structures such as cycles or paths (Ghamlouche

et al., 2003). The second category focuses on what is
generally called matheuristics (Maniezzo et al.,
2021). In these heuristics, a neighbourhood of a
solution is searched by formulating and solving the
MIP of the network design problem, albeit with the
values of subsets of variables fixed to their values in
the solution at hand (Hewitt et al., 2010). This is
repeatedly done and with different mechanisms used
for selecting subsets of variables to fix.

Similarly, both exact and heuristic solution meth-
ods have been proposed for stochastic network
design models that take the form of scenario-based
two stage stochastic programs. The vast majority of
such stochastic programs studied to date involve con-
tinuous commodity flow variables in the second
stage. As a result, the second stage subproblems are
linear programs and the overall stochastic program is
amenable to Benders decomposition (Birge &
Louveaux, 2011). Thus, much of the methodological
work on solving such stochastic programs has
focused on techniques for speeding up or rendering
more impactful different steps in the Benders scheme
(Magnanti & Wong, 1981; Crainic et al., 2021c).
While Progressive Hedging (Rockafellar & Wets,
1991) is an exact method for two stage stochastic
programs with continuous variables in both stages, it
has been used as the basis of heuristic methods for
stochastic network design (Crainic et al., 2011, 2014).

Crainic et al. (2021b) contains deeper dives into
the subjects touched on here as well as discussions
of those not discussed.

3.32. Transportation: Vehicle routing84

The Capacitated Vehicle Routing Problem (CVRP)
was first proposed by Dantzig and Ramser (1959),
and named the Truck Dispatching Problem. The
goal was that of routing a fleet of identical gasoline
delivery trucks from a central depot to service sta-
tions (often referred as ‘customers’). Each truck had
to return to the central depot, after visiting an
ordered subset of the customers. All customers had
to be visited once by a vehicle delivering all their
gasoline requirements in the one delivery. The
objective was the minimisation of the routing costs,
as the sum of the travelling distances of every truck.
The CVRP classical definition is the same as that pro-
posed by Dantzig and Ramser (1959) more than 60
years ago. Introducing a capacitated fleet of vehicles
makes the CVRP for a much harder generalisation of
the Travelling Salesman Problem (Flood, 1956).

The CVRP definition has been enriched over the
decades to take into account all the delivery require-
ments of the customers and of the transportation
providers, as well as the characteristics of the avail-
able fleet of vehicles, and the increasing availability
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of technology (i.e., GIS and real time mapping,
autonomous vehicles, shared mobility systems and
so on). The research literature has flourished with
new variants, as well as more sophisticated and flex-
ible solution approaches. This chapter aims at pro-
viding pointers to key milestones achieved in the
last 60 years of the CVRP literature, identifying the
latest and most successful exact and metaheuristic
algorithms, as well as referencing the most famous
online challenges and standard techniques for
benchmarking CVRP solution algorithms.

The CVRP ‘classical’ variants and solution
approaches are well summarised in Toth and Vigo
(2002). This book provides key references and defini-
tions for critical application features, as for the
CVRP with Time Windows, the CVRP with
Backhauls and the CVRP with Pickup and Delivery,
the CVRP with vehicle/site dependencies, the CVRP
with inventory and the stochastic CVRP. Golden
et al. (2008) extends the definition of the classical
variants to routing problems with heterogenous fleets,
periodic routing problems, split routing problems,
dynamic and online routing problems. Toth and
Vigo (2014) further widen the remit of application of
routing algorithms to maritime applications, disaster
relief distribution problems, and considers up-to-date
objective functions different than minimising the dis-
tance travelled. More recently, fleets of electric
vehicles (Pelletier et al., 2016), problems over time
(Mor & Speranza, 2020), drones (Otto et al., 2018),
cargo boats (Christiansen et al., 2013) and warehouse
pickers (Schiffer et al., 2022) have been embedded in
routing settings. The new dynamic environment
inspired research on stochastic (Gendreau et al.,
2016), dynamic (Soeffker et al., 2022) and time-
dependent (Gendreau et al., 2015) routing problems.

An up-to-date survey on recent trends can be
found in Vidal et al. (2020), in which the CVRP
extensions due to richer objective functions, the
integration with other optimisation problems, and
application-oriented transportation requirements are
surveyed. Partyka and Hall (2014) discuss routing
algorithms from the practitioners’ perspective, and
surveys which are the requirements of a logistics
company when they acquire a routing software.

Next the most successful CVRP solution algo-
rithms are summarised, first discussing exact meth-
ods. Formulations with a polynomial number of
variables and constraints were the first proposed
mathematical models, as for the two-commodity for-
mulation by Laporte (1992) and Baldacci et al.
(2004). They have the advantage of being easy to use
(as they just require encoding in the syntax of the
solver). The disadvantage of them however is their
poor performance due to high dimension of the for-
mulations, and the weakness of the continuous

relaxation. Better results were obtained from formula-
tions with an exponential number of constraints,
such as those in which subtour elimination con-
straints are added dynamically to the formulations in
a branch&cut fashion (Padberg & Rinaldi, 1991). The
CVRPSEP library by Lysgaard et al. (2004) provides
separation procedures for subtour elimination con-
straints, as well as other strengthening additional
inequalities. The most successful exact solution
framework is up-to-date the branch&cut&price
(Desaulniers et al., 2006; Laporte, 2009). This method
is based on the Dantzig-Wolfe decomposition
(Desrosiers & L€ubbecke, 2005). Binary variables
model if a route is used or not in the solution, thus
their corresponding set is exponential in size. As a
consequence, a restricted set of variables is used to
initiate the formulation and only profitable routes are
iteratively generated solving a subproblem, called the
pricing problem. The CVRP pricing problem is a
shortest path with resource constrains, and it is typic-
ally solved through dynamic programming (Irnich &
Desaulniers, 2005). Some of the most relevant mile-
stones in developing branch&cut&price algorithms
for the CVRP are combining branch&cut and col-
umn generation into the first branch&cut&price
(Fukasawa et al., 2006), applying bi-directional search
in the subproblem (Righini & Salani, 2008), introduc-
ing subset row cuts (Jepsen et al., 2008), using ng-
routes to speed up the subproblem solution (Baldacci
et al., 2011), using stabilisation techniques for dual
values (Gschwind & Irnich, 2016; Pessoa et al., 2018),
and proposing primal heuristics based on the
restricted master problem (Sadykov et al., 2019). The
reader might refer to Desaulniers et al. (2002) for
the most widely used acceleration techniques for the
solution of the pricing problem.

Lately, the work of Pessoa et al. (2020) provides
an impressive open-source branch&cut&price algo-
rithm, based on Pecin et al. (2017). This algorithm
provides state-of-the-art exact solutions for the
CVRP and, using a flexible solution representation,
for most of the well known routing variants and
other sequencing problems. The tool incorporates
the algorithmic components previously mentioned,
as well as other recent developments (see for
example, Sadykov et al., 2021), and compares
favourably to other branch&cut&price implementa-
tions. Some of the most powerful exact algorithms
for the CVRP, available in different programming
languages, are publicly available at Sadykov (2022).

Metaheuristics are capable of solving very large
CVRP instances in limited computing time, however
there is no proof of optimality for the solutions found.
They are typically initialised with solutions generated
by constructive heuristics (the Clarke and Wright is a
famous example, Clarke & Wright, 1964).
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Metaheuristics rely heavily on local search procedures
to improve the solution quality and intensify the
search, and on a metaheuristic framework to obtain a
good balance of diversification and intensification
(Gendreau & Potvin, 2010). In chronological order,
popular CVRP frameworks have been the Tabu Search
(Cordeau & Laporte, 2005), the Adaptive Large
Neighbourhood Search (Pisinger & Ropke, 2007), the
Iterated Local Search (Subramanian et al., 2013), and
the Hybrid Genetic algorithm (Vidal, 2022b). The lat-
ter two examples of metaheuristic frameworks are par-
ticularly relevant to the CVRP literature due to their
high performance, their flexibility in solving effectively
many VRP variants, and because their code had been
made publicly available to the research community
(the code presented in Vidal, 2022b is, for example,
available at Vidal, 2022a). Vidal et al. (2013) provide a
very good summary of the features that make a CVRP
metaheuristic successful.

More recently, examples of algorithms producing
very high quality solutions for the CVRP have been:

� Arnold and S€orensen (2019): data mining is used
to identify solution features, and these features are
used to effectively guide the search algorithms;

� Christiaens and Vanden Berghe (2020): SISRs is
a ruin and recreate algorithm based on an
innovative string removal operator;

� Queiroga et al. (2021): POPMUSIC is a matheur-
istic that iteratively solves smaller subproblems by
means of the branch&cut&price by Pessoa et al.
(2020);

� Accorsi and Vigo (2021): FILO is an Iterated
Local Search with acceleration techniques and
annealing-based neighbour acceptance criteria;

� M�aximo and Nascimento (2021): AILS-PR is an
Iterated Local Search metaheuristic hybridised
with Path Relinking; and,

� Cavaliere et al. (2022): a refinement heuristic
using a penalty-based extension of the Lin and
Kerninghan heuristic is combined with a
restricted column generation to iteratively select
meaningful routes.

Clear standards have been set by the CVRP com-
munity around which benchmark instances should be
used for testing the performance of an algorithm, and
which are ways of testing a computer code for a fair
comparison with other previously proposed algorithms.
Uchoa et al. (2017) discuss the most widely used
instances and provides a link to the repository, in
which the input data, as well as the best known solu-
tions, are provided and kept up-to-date by the authors.
A more recent set of instances and best known solu-
tions is available in Queiroga et al. (2022), where the
authors provide data enabling the use of machine

learning approaches to solve the CVRP. Accorsi et al.
(2022) present the standard practices to test CVRP
algorithms: how to determine computing time (typic-
ally on a single thread), common ways of tuning
parameters, and providing best and average solutions
on a specified number of executions, among others.

Finally, another popular and flourishing avenue
for boosting research on the development of effect-
ive solutions approaches for the CVRP and variants
is represented by competitions. Some of the most
famous CVRP and routing challenges are:

� the DIMACS challenge (DIMACS 2021), where
the goal was to promote research on challenging
routing problem variants;

� the Amazon Last Mile Routing Research
Challenge (Amazon last mile routing, 2021),
where a specific problem was tackled, namely,
the challenge of embedding driver knowledge
into route optimisation;

� the recently launched EURO Meets NeurIPS
2022 Vehicle Routing Competition (EURO Meets
NeurIPS 2022 2022), with the goal of developing
and comparing machine learning techniques for
the CVRP.

The Vehicle Routing problem has inspired an
incredible amount of research. This is due to the chal-
lenges it poses when it comes to solving it, to the
many variants related to it and to the relevant prac-
tical applications. Despite the decades of research
efforts and achievements, interest continues to grow
mainly thanks to the emerging topics raised by the
ever changing application environment. This chapter
provides a brief, but hopefully sufficiently comprehen-
sive overview of the techniques, problem variants and
emerging trends which will inspire further research.

4. Conclusions85

This encyclopedic article, dedicated to the 75th anni-
versary of the Journal of the Operational Research
Society, is made up of an Introduction and two dis-
tinct though related sections: Methods and
Applications. The introduction section gives an
interesting overview of OR with an emphasis on its
origin in the UK and highlights the methods and
applications that are covered in this paper. A brief
summary of the two sections is given below.

In the first main section (§2), 24 OR-based meth-
ods are presented by experts in their respective
areas. These methods, which are given in alphabet-
ical order, are concisely described, each starting
with the basics, then moving to advanced and con-
temporary aspects. The authors also pinpoint
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challenging limitations while highlighting promising
research directions.

As OR is rooted in the need to solve decision
problems either through optimisation, statistics,
visualisation and information technology tools, or
through soft system methodologies, we aim to retain
this historical flavor in summarising these methods
by adopting a simple three-group categorisation.

The first category covers optimisation-related
topics and includes 10 out of the 24 subsections. It
ranges from the original optimisation model of lin-
ear programming (LP; §2.14) in the late 1940s to its
various extensions. One is obtained by restricting
the decision variables to discrete elements including
binary ones (§2.15), allowing uncertainty in the
input (§2.21), or relaxing the objective function or
the constraints not to be necessarily linear (§2.16).
An interesting area that had been dormant for more
than 30 years was revived in the late 1970s and early
1980s by studying a special case of fractional LP
which defines relative efficiency and is known as
data envelopment analysis (§2.7). Combinatorial
optimisation (§2.4), a topic that has fascinated and
intrigued many mathematicians of the 18th century,
seeks an optimal subset or values from a large finite
set of elements. These problems can be defined and
solved through graphs and networks (§2.12), some
of which are relatively more difficult than others. To
measure the performance of algorithms in terms of
time and space complexity, computational complex-
ity (§2.5) emerged as a solid foundation for distin-
guishing between classes defined as P and NP and
studying a-approximation algorithms. One method-
ology can be traced back to the Ancient Greek
times, and is based on the ‘find and discover prin-
ciple’, now known as ‘heuristic search’ (§2.13),
which has experienced a phenomenal growth in the
late 1980s and early 1990s. This is a major develop-
ment since these methodologies provide the best
way to reduce not only the risk of getting stuck at
poor local optima, but also have the power to yield
practical solutions for complex discrete and global
optimisation problems that could not have been
solved otherwise. A methodology that is free from
restrictions of linearity and convexity is the study of
multi-stage process, as given in §2.9.

The next category includes statistics and deci-
sion-based tools and also covers 10 of the 24 subsec-
tions. For example, business analytics (§2.3),
decision analysis (§2.8) and visualisation (§2.24),
though they previously existed under different
names, have grown significantly while retaining
their simplicity. Machine learning, including artifi-
cial intelligence (§2.1), which borrowed its principles
from heuristic search and statistics, has taken off
very rapidly in teaching, research and applications.

This is mainly due to computer power, sophisticated
algorithms, freely available computer languages such
as R and Python, and their ability to handle massive
amount of data that are now easily available to the
public. Other older topics, though still relevant and
widely applicable, have also seen a surge in new
developments. These include queueing (§2.17), fore-
casting (§2.10), control theory (§2.6), and game the-
ory (§2.11). Given the uncertainty and risk involved
in many decisions, risk analysis (§2.18) is evolving
fast so as to handle such environments alongside
computer simulation (§2.19), especially discrete
event simulation. The latter, which has a wide spec-
trum of applications in both the private and public
sectors, has recently been enriched by incorporating
multi-objective optimisation within its evaluation
component.

The last category covers the remaining four sub-
sections. Although some of these research areas
existed in other fields such as system engineering in
the 1950s, they have become contemporary OR
topics especially in the UK in the late 1970s. Soft
OR and problem structuring methods (§2.20) ques-
tion the problem definition and aim to involve
stakeholders for a better understanding, with system
thinking (§2.23) analysing the interactions between
people, machines and systems while also questioning
the system boundaries. A related area is system
dynamics (§2.22) where the dynamism is incorpo-
rated throughout and found to suit better applica-
tions with limited but plausible scaling. An
interesting, though relatively recent OR area, but
with a long history rooted in social psychology, is
behavioural OR (§2.2), where people’s behaviour
and culture are incorporated into the decision mak-
ing process. Although the methodologies included
in this category usually do not directly aim to solve
problems, they can be complementary to the harder
OR techniques.

The second section covers applications that have
been, since the very beginning, strongly intercon-
nected with the development of OR methodologies.
This section is very rich in examples coming from
many fields. For the sake of brevity, we will not
refer to each subsection individually but mention
just a few. By reading the section it is evident that,
on the one hand OR provides appropriate modelling
and solution tools to practical problems that arise in
the real world and are nowadays crucial in the
design and management of most systems, from
healthcare and other public services, to transporta-
tion and manufacturing. On the other hand, the
complexity and size of practical problems has always
stimulated the progress of OR towards more effi-
cient and flexible techniques which are capable to
cope with the challenges posed by the applications.
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This mutual and virtuous connection is well
reflected by the richness of the Applications section
of this work. It highlights not only the traditional
areas which saw tremendous research efforts and
successful implementations, as the traditional fields
of transportation, manufacturing, cutting and pack-
ing, and inventory management, but also relatively
new and interesting sectors such as sports and
education.

It is worth noting that in the Applications section
(§3), several dimensions of OR impact in the real
world clearly emerge. The first one is the broad
range of fields to which OR techniques have already
successfully been applied and offer an even larger
potential yet to be exploited. These range from verti-
cal sectors, such as supply chain management, disas-
ter relief and recovery, or military applications,
where a wide array of problems are defined and
solved through appropriate and varied methodolo-
gies, to more horizontal domains which may impact
several vertical sectors, like vehicle routing or facility
location, for which highly specialised methods have
been developed. The second dimension is related to
the great variety of methodologies applied to the
different contexts. These span the whole tool set of
OR, including exact and heuristic methods devel-
oped to solve specific optimisation problems, to
techniques created to handle uncertainty and multi-
criteria and, more recently, integrating artificial
intelligence methods. Indeed, the great improve-
ments achieved in the last decades in integer and
nonlinear programming now allow to effectively
model and solve many problems arising at the oper-
ational and tactical levels, where data are more
available and reliable. The uncertainty in the data
and the modelling typical of strategic decisions are
successfully handled by a variety of methodologies
that have proven to be effective in the solution of
real applications which are well reviewed in this
work. A third very interesting dimension is repre-
sented by the development of new broad research
perspectives which may have a strong impact in all
fields of OR and are deeply motivated by applica-
tions. An excellent example is the inclusion of fair-
ness and ethics in optimisation which, on the one
hand allow for considering important issues favour-
ing the acceptability and usability of the results, and
on the other hand pose new methodological
challenges.

As a general conclusion, thanks to the advances
in computer technology, the availability of massive
amount of live data, and novel developments, in
both optimisation and statistics, effective optimisa-
tion software, powerful machine learning techniques
and visualisation tools now exist to solve problems
that were considered practically unsolvable just a

decade ago. Applications have always been a main
driver for OR development, and the successes
achieved increase the appetite for further
improvements.

In the more classical area of exact and heuristic
techniques, there is clearly a need to improve the
capability of handling efficiently large and very
large-scale instances to cope with more complex
and demanding scenarios. This increase in scale is
not only generated by the need to solve larger
problems, but also to incorporate various steps of
the planning processes into integrated and more
comprehensive methods. A field that still deserves
further research efforts is the consideration of
uncertainty in OR methods. Important methodo-
logical obstacles have yet to be surmounted and
there is clearly a need for the development of sim-
ple and pragmatic methods, possibly resulting from
the integration of artificial intelligence techniques,
which can be applied to the solution of large-scale
problems arising in several important application
domains. However, it is also worth stressing that
these advances, though they are welcome, may suf-
fer from shortcomings, such as the local optimality
trap, biased data, and impractical assumptions.
These hidden aspects could yield poor outcomes
on which academics and practitioners ought to
keep an open eye.
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Akçalı, E., Çetinkaya, S., €Uster, H., 2009. Network design

for reverse and closed-loop supply chains: An anno-
tated bibliography of models and solution approaches.
Networks, 53 (3), 231–248. https://doi.org/10.1002/net.
20267

Akhmedov, M., Kwee, I., Montemanni, R., 2016. A divide
and conquer matheuristic algorithm for the prize-col-
lecting steiner tree problem. Computers & Operations
Research, 70, 18–25. https://doi.org/10.1016/j.cor.2015.
12.015

Akhtar, S., Scarf, P., Rasool, Z., 2015. Rating players in
test match cricket. Journal of the Operational Research
Society, 66 (4), 684–695. https://doi.org/10.1057/jors.
2014.30

Al Hajj Hassan, L., Hewitt, M., Mahmassani, H. S., 2022.
Daily load planning under different autonomous truck
deployment scenarios. Transportation Research Part E:
Logistics and Transportation Review, 166, 102885.
https://doi.org/10.1016/j.tre.2022.102885

Al-Kanj, L., Nascimento, J., Powell, W. B., 2020.
Approximate dynamic programming for planning a
ride-hailing system using autonomous fleets of electric
vehicles. European Journal of Operational Research,
284 (3), 1088–1106. https://doi.org/10.1016/j.ejor.2020.
01.033

Albano, A., Sapuppo, G., 1980. Optimal allocation of two-
dimensional irregular shapes using heuristic search
methods. IEEE Transactions on Systems, Man, and
Cybernetics, 10 (5), 242–248. https://doi.org/10.1109/
TSMC.1980.4308483

Albayrak €Unal, €O., Erkayman, B., Usanmaz, B., 2023.
Applications of artificial intelligence in inventory man-
agement: A systematic review of the literature. Archives
of Computational Methods in Engineering, 30 (4),
2605–2625. https://doi.org/10.1007/s11831-022-09879-5

Alexander, C., 1992. The Kalai–Smorodinsky bargaining
solution in wage negotiations. Journal of the
Operational Research Society, 43, 779–786. https://doi.
org/10.2307/2583096

Alfandari, L., Ljubi�c, I., da Silva, M. D. M., 2022. A tail-
ored benders decomposition approach for last-mile
delivery with autonomous robots. European Journal of
Operational Research, 299 (2), 510–525. https://doi.org/
10.1016/j.ejor.2021.06.048

Alfieri, A., Groot, R., Kroon, L., Schrijver, A., 2006.
Efficient circulation of railway rolling stock.
Transportation Science, 40 (3), 378–391. https://doi.org/
10.1287/trsc.1060.0155

Algaba, A., Ardia, D., Bluteau, K., Borms, S., Boudt, K.,
2020. Econometrics meets sentiment: An overview of
methodology and applications. Journal of Economic
Surveys, 34 (3), 512–547. https://doi.org/10.1111/joes.
12370

Ali, S., Ramos, A. G., Carravilla, M. A., Oliveira, J. F.,
2022. On-line three-dimensional packing problems: A
review of off-line and on-line solution approaches.
Computers & Industrial Engineering, 168, 108122.
https://doi.org/10.1016/j.cie.2022.108122

Allen, R., Athanassopoulos, A., Dyson, R. G.,
Thanassoulis, E., 1997. Weights restrictions and value
judgements in data envelopment analysis: Evolution,
development and future directions. Annals of
Operations Research, 73, 13–34.

Allon, G., Van Mieghem, J. A., 2010. Global dual sourc-
ing: Tailored base-surge allocation to near- and off-
shore production. Management Science, 56 (1), 110–
124. https://doi.org/10.1287/mnsc.1090.1099

Almgren, R., Chriss, N., 2001. Optimal execution of port-
folio transactions. Journal of Risk, 3, 5–40. https://doi.
org/10.21314/JOR.2001.041

Altay, N., Green III, W. G., 2006. OR/MS research in dis-
aster operations management. European Journal of

128 F. PETROPOULOS ET AL.

https://doi.org/10.1007/s11590-019-01503-z
https://doi.org/10.1016/j.ejor.2018.01.013
https://doi.org/10.1016/j.ejor.2018.01.013
https://doi.org/10.2165/11590500-000000000-00000
https://doi.org/10.2165/11590500-000000000-00000
https://doi.org/10.1287/trsc.1070.0205
https://doi.org/10.1287/trsc.1070.0205
https://doi.org/10.1080/02692171.2015.1070130
https://doi.org/10.1080/02692171.2015.1070130
https://doi.org/10.1287/trsc.1100.0346
https://doi.org/10.1057/rpm.2012.51
https://doi.org/10.1057/rpm.2012.51
https://doi.org/10.1016/j.ejor.2007.04.024
https://doi.org/10.1057/palgrave.jors.2601834
https://doi.org/10.1287/opre.2018.1832
https://doi.org/10.1016/0304-4076(77)90052-5
https://doi.org/10.1016/0304-4076(77)90052-5
https://www.aimms.com/
https://doi.org/10.1002/net.20267
https://doi.org/10.1002/net.20267
https://doi.org/10.1016/j.cor.2015.12.015
https://doi.org/10.1016/j.cor.2015.12.015
https://doi.org/10.1057/jors.2014.30
https://doi.org/10.1057/jors.2014.30
https://doi.org/10.1016/j.tre.2022.102885
https://doi.org/10.1016/j.ejor.2020.01.033
https://doi.org/10.1016/j.ejor.2020.01.033
https://doi.org/10.1109/TSMC.1980.4308483
https://doi.org/10.1109/TSMC.1980.4308483
https://doi.org/10.1007/s11831-022-09879-5
https://doi.org/10.2307/2583096
https://doi.org/10.2307/2583096
https://doi.org/10.1016/j.ejor.2021.06.048
https://doi.org/10.1016/j.ejor.2021.06.048
https://doi.org/10.1287/trsc.1060.0155
https://doi.org/10.1287/trsc.1060.0155
https://doi.org/10.1111/joes.12370
https://doi.org/10.1111/joes.12370
https://doi.org/10.1016/j.cie.2022.108122
https://doi.org/10.1287/mnsc.1090.1099
https://doi.org/10.21314/JOR.2001.041
https://doi.org/10.21314/JOR.2001.041


Operational Research, 175 (1), 475–493. https://doi.org/
10.1016/j.ejor.2005.05.016

Altay, N., Labonte, M., 2014. Challenges in humanitarian
information management and exchange: Evidence from
Haiti. Disasters, 38 (s1), S50–S72. https://doi.org/10.
1111/disa.12052

Altın, A., Fortz, B., Thorup, M., €Umit, H., 2013. Intra-
domain traffic engineering with shortest path routing
protocols. Annals of Operations Research, 204 (1), 65–
95. https://doi.org/10.1007/s10479-012-1270-7

Alumur, S., Kara, B. Y., 2008. Network hub location
problems: The state of the art. European Journal of
Operational Research, 190, 1–21. https://doi.org/10.
1016/j.ejor.2007.06.008

Alumur, S. A., Campbell, J. F., Contreras, I., Kara, B. Y.,
Marianov, V., O’Kelly, M. E., 2021. Perspectives on
modeling hub location problems. European Journal of
Operational Research, 291 (1), 1–17. https://doi.org/10.
1016/j.ejor.2020.09.039

Alvarez, J. F., Tsilingiris, P., Engebrethsen, E. S., Kakalis,
N. M. P., 2011. Robust fleet sizing and deployment for
industrial and independent bulk ocean shipping com-
panies. INFOR: Information Systems and Operational
Research, 49 (2), 93–107. https://doi.org/10.3138/infor.
49.2.093

�Alvarez-Miranda, E., Salgado-Rojas, J., Hermoso, V.,
Garcia-Gonzalo, J., Weintraub, A., 2020. An integer
programming method for the design of multi-criteria
multi-action conservation plans. Omega, 92, 102147.
https://doi.org/10.1016/j.omega.2019.102147

Alvarez-Valdes, R., Martinez, A., Tamarit, J. M., 2013. A
branch & bound algorithm for cutting and packing
irregularly shaped pieces. International Journal of
Production Economics, 145 (2), 463–477. https://doi.
org/10.1016/j.ijpe.2013.04.007

Alyahyan, E., D€usteg€or, D., 2020. Predicting academic
success in higher education: Literature review and best
practices. International Journal of Educational
Technology in Higher Education, 17, 3. https://doi.org/
10.1186/s41239-020-0177-7

Amazon Last Mile Routing. 2021. Research challenge.
Retrieved September 14, 2021, from https://routingchal-
lenge.mit.edu/

Anandalingam, G., 1987. Asymmetric players and bar-
gaining for profit shares in natural resource develop-
ment. Management Science, 33 (8), 1048–1057. https://
doi.org/10.1287/mnsc.33.8.1048

Andersen, D. F., Vennix, J. A. M., Richardson, G. P.,
Rouwette, E. A. J. A., 2007. Group model building:
Problem structuring, policy simulation and decision
support. Journal of the Operational Research Society, 58
(5), 691–694. https://doi.org/10.1057/palgrave.jors.
2602339

Anderson, E., Chen, B., Shao, L., 2017. Supplier competi-
tion with option contracts for discrete blocks of cap-
acity. Operations Research, 65 (4), 952–967. https://doi.
org/10.1287/opre.2017.1593

Anderson, E., Chen, B., Shao, L., 2022. Capacity games
with supply function competition. Operations Research,
70 (4), 1969–1983. https://doi.org/10.1287/opre.2021.
2221

Andersson, F., Mausser, H., Rosen, D., Uryasev, S., 2001.
Credit risk optimization with conditional value-at-risk
criterion. Mathematical Programming, 89 (2), 273–291.
https://doi.org/10.1007/PL00011399

Andersson, H., Duesund, J. M., Fagerholt, K., 2011. Ship
routing and scheduling with cargo coupling and

synchronization constraints. Computers & Industrial
Engineering, 61 (4), 1107–1116. https://doi.org/10.1016/
j.cie.2011.07.001

Andersson, H., Fagerholt, K., Hobbesland, K., 2015.
Integrated maritime fleet deployment and speed opti-
mization: Case study from RoRo shipping. Computers
& Operations Research, 55, 233–240. https://doi.org/10.
1016/j.cor.2014.03.017

Andras, V., 2010. Omnetþþ. In Klaus, W., Mesut, G.,
James, G. (Eds.), Modeling and tools for network simu-
lation (pp. 35–59). Springer.

Angelelli, E., Mansini, R., Speranza, M. G., 2010. Kernel
search: A general heuristic for the multi-dimensional
knapsack problem. Computers & Operations Research,
37 (11), 2017–2026. https://doi.org/10.1016/j.cor.2010.
02.002

Angelus, A., 2023. Generalizations of the clark-scarf
model and analysis. In Song, J.-S. (Ed.), Research hand-
book on inventory management. Edward Elgar
Publishing.

Annabi, A., Breton, M., François, P., 2012. Resolution of
financial distress under chapter 11. Journal of Economic
Dynamics and Control, 36 (12), 1867–1887. https://doi.
org/10.1016/j.jedc.2012.06.004

Antunes, D., Vaze, V., Antunes, A. P., 2019. A robust
pairing model for airline crew scheduling.
Transportation Science, 53 (6), 1751–1771. https://doi.
org/10.1287/trsc.2019.0897

Aparicio, J., Crespo-Cebada, E., Pedraja-Chaparro, F.,
Sant�ın, D., 2017. Comparing school ownership per-
formance using a pseudo-panel database: A Malmquist-
type index approach. European Journal of Operational
Research, 256 (2), 533–542. https://doi.org/10.1016/j.
ejor.2016.06.030

Aparicio, J., Ruiz, J. L., Sirvent, I., 2007. Closest targets
and minimum distance to the Pareto-efficient frontier
in DEA. Journal of Productivity Analysis, 28 (3), 209–
218. https://doi.org/10.1007/s11123-007-0039-5

Applegate, D., Bixby, R., Chv�atal, V., Cook, W., 2007. The
traveling salesman problem: A computational study.
Princeton University Press.

Applegate, D. L., Bixby, R. E., Chv�atal, V., Cook, W. J.,
2011. The traveling salesman problem. Princeton
University Press.

Arana-Jim�enez, M., S�anchez-Gil, M. C., Lozano, S.,
Younesi, A., 2022. Efficiency assessment using fuzzy
production possibility set and enhanced Russell Graph
measure. Computational and Applied Mathematics, 41
(2), 79. https://doi.org/10.1007/s40314-022-01780-y

Ara�ujo, A. M., Santos, D., Marques, I., Barbosa-Povoa, A.,
2020. Blood supply chain: A two-stage approach for
tactical and operational planning. OR Spectrum, 43,
1023–1053. https://doi.org/10.1007/s00291-020-00600-1

Archetti, C., Bertazzi, L., 2021. Recent challenges in rout-
ing and inventory routing: E-commerce and last-mile
delivery. Networks, 77 (2), 255–268. https://doi.org/10.
1002/net.21995

Archetti, C., Bertazzi, L., Laporte, G., Speranza, M. G.,
2007. A branch-and-cut algorithm for a vendor-man-
aged inventory-routing problem. Transportation
Science, 41 (3), 382–391. https://doi.org/10.1287/trsc.
1060.0188

Archetti, C., Boland, N., Speranza, M. G., 2017. A math-
euristic for the multivehicle inventory routing problem.
INFORMS Journal on Computing, 29 (3), 377–387.
https://doi.org/10.1287/ijoc.2016.0737

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 129

https://doi.org/10.1016/j.ejor.2005.05.016
https://doi.org/10.1016/j.ejor.2005.05.016
https://doi.org/10.1111/disa.12052
https://doi.org/10.1111/disa.12052
https://doi.org/10.1007/s10479-012-1270-7
https://doi.org/10.1016/j.ejor.2007.06.008
https://doi.org/10.1016/j.ejor.2007.06.008
https://doi.org/10.1016/j.ejor.2020.09.039
https://doi.org/10.1016/j.ejor.2020.09.039
https://doi.org/10.3138/infor.49.2.093
https://doi.org/10.3138/infor.49.2.093
https://doi.org/10.1016/j.omega.2019.102147
https://doi.org/10.1016/j.ijpe.2013.04.007
https://doi.org/10.1016/j.ijpe.2013.04.007
https://doi.org/10.1186/s41239-020-0177-7
https://doi.org/10.1186/s41239-020-0177-7
https://routingchallenge.mit.edu/
https://routingchallenge.mit.edu/
https://doi.org/10.1287/mnsc.33.8.1048
https://doi.org/10.1287/mnsc.33.8.1048
https://doi.org/10.1057/palgrave.jors.2602339
https://doi.org/10.1057/palgrave.jors.2602339
https://doi.org/10.1287/opre.2017.1593
https://doi.org/10.1287/opre.2017.1593
https://doi.org/10.1287/opre.2021.2221
https://doi.org/10.1287/opre.2021.2221
https://doi.org/10.1007/PL00011399
https://doi.org/10.1016/j.cie.2011.07.001
https://doi.org/10.1016/j.cie.2011.07.001
https://doi.org/10.1016/j.cor.2014.03.017
https://doi.org/10.1016/j.cor.2014.03.017
https://doi.org/10.1016/j.cor.2010.02.002
https://doi.org/10.1016/j.cor.2010.02.002
https://doi.org/10.1016/j.jedc.2012.06.004
https://doi.org/10.1016/j.jedc.2012.06.004
https://doi.org/10.1287/trsc.2019.0897
https://doi.org/10.1287/trsc.2019.0897
https://doi.org/10.1016/j.ejor.2016.06.030
https://doi.org/10.1016/j.ejor.2016.06.030
https://doi.org/10.1007/s11123-007-0039-5
https://doi.org/10.1007/s40314-022-01780-y
https://doi.org/10.1007/s00291-020-00600-1
https://doi.org/10.1002/net.21995
https://doi.org/10.1002/net.21995
https://doi.org/10.1287/trsc.1060.0188
https://doi.org/10.1287/trsc.1060.0188
https://doi.org/10.1287/ijoc.2016.0737


Archetti, C., Corber�an, A., Plana, I., Sanchis, J. M.,
Speranza, M. G., 2015. A matheuristic for the team ori-
enteering arc routing problem. European Journal of
Operational Research, 245, 392–401. https://doi.org/10.
1016/j.ejor.2015.03.022

Argyris, N., Karsu, €O., Yavuz, M., 2022. Fair resource
allocation: Using welfare-based dominance constraints.
European Journal of Operational Research, 297 (2),
560–578. https://doi.org/10.1016/j.ejor.2021.05.003

Ariely, D., Simonson, I., 2003. Buying, bidding, playing,
or competing? value assessment and decision dynamics
in online auctions. Journal of consumer psychology: The
official journal of the Society for Consumer Psychology,
13 (1), 113–123. https://doi.org/10.1207/
153276603768344834

Aringhieri, R., Bruni, M. E., Khodaparasti, S., van Essen,
J. T., 2017. Emergency medical services and beyond:
Addressing new challenges through a wide literature
review. Computers & Operations Research, 78, 349–368.
https://doi.org/10.1016/j.cor.2016.09.016

Arnold, F., S€orensen, K., 2019. What makes a VRP solu-
tion good? The generation of problem-specific know-
ledge for heuristics. Computers & Operations Research,
106, 280–288. https://doi.org/10.1016/j.cor.2018.02.007

Arnold, P., Peeters, D., Thomas, I., 2004. Modelling a
rail/road intermodal transportation system.
Transportation Research Part E: Logistics and
Transportation Review, 40 (3), 255–270. https://doi.org/
10.1016/j.tre.2003.08.005

Arrow, K. J., Harris, T., Marschak, J., 1951. Optimal
inventory policy. Econometrica, 19 (3), 250–272.
https://doi.org/10.2307/1906813

Arrow, K. J., Karlin, S., Scarf, H. E., 1958. Studies in the
mathematical theory of inventory and production.
Stanford University Press.

Artzner, P., Delbaen, F., Eber, J.-M., Heath, D., 1999.
Coherent measures of risk. Mathematical Finance, 9
(3), 203–228. https://doi.org/10.1111/1467-9965.00068

Arvan, M., Fahimnia, B., Reisi, M., Siemsen, E., 2019.
Integrating human judgement into quantitative fore-
casting methods: A review. Omega, 86, 237–252.
https://doi.org/10.1016/j.omega.2018.07.012

Asghari, M., Jaber, M. Y., Mirzapour Al-e-hashem,
S. M. J., 2023. Coordinating vessel recovery actions:
Analysis of disruption management in a liner shipping
service. European Journal of Operational Research, 307
(2), 627–644. https://doi.org/10.1016/j.ejor.2022.08.039

Asmuni, H., Burke, E. K., Garibaldi, J. M., McCollum, B.,
Parkes, A. J., 2009. An investigation of fuzzy multiple
heuristic orderings in the construction of university
examination timetables. Computers & Operations
Research, 36 (4), 981–1001. https://doi.org/10.1016/j.
cor.2007.12.007

Åstr€om, K. J., 2012. Introduction to stochastic control the-
ory. Courier Corporation.

Åstr€om, K. J., Kumar, P. R., 2014. Control: A perspective.
Automatica, 50 (1), 3–43. https://doi.org/10.1016/j.auto-
matica.2013.10.012

Åstr€om, K. J., Wittenmark, B., 2013. Adaptive control.
Courier Corporation.

Atan, Z., Ahmadi, T., Stegehuis, C., de Kok, T., Adan, I.,
2017. Assemble-to-order systems: A review. European
Journal of Operational Research, 261 (3), 866–879.
https://doi.org/10.1016/j.ejor.2017.02.029

Atasu, A., Sarvary, M., Van Wassenhove, L. N., 2008.
Remanufacturing as a marketing strategy. Management

Science, 54 (10), 1731–1746. https://doi.org/10.1287/
mnsc.1080.0893

Athanasopoulos, G., Gamakumara, P., Panagiotelis, A.,
Hyndman, R. J., Affan, M., 2020. Hierarchical forecast-
ing. In P. Fuleky (Ed.), Macroeconomic forecasting in
the era of big data: Theory and practice (pp. 689–719).
Springer.

Atkinson, S., Gary, M. S., 2016. Mergers and acquisitions:
Modeling decision making in integration projects. In
M. Kunc, J. Malpass, & L. White (Eds.), Behavioral
operational research: Theory, methodology and practice
(pp. 319–336). Palgrave Macmillan.

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V.,
Marchetti-Spaccamela, A., Protasi, M., 1999.
Complexity and approximation: Combinatorial opti-
mization problems and their approximability properties.
Springer.

Aven, T., 2015. Risk analysis. John Wiley & Sons.
Aven, T., 2020. Three influential risk foundation papers

from the 80s and 90s: Are they still state-of-the-art?
Reliability Engineering & System Safety, 193, 106680.
https://doi.org/10.1016/j.ress.2019.106680

Aviv, Y., 2003. A time-series framework for supply-chain
inventory management. Operations Research, 51 (2),
210–227. https://doi.org/10.1287/opre.51.2.210.12780

Axs€ater, S., 1993. Continuous review policies for multi-
level inventory systems with stochastic demand.
Handbooks in Operations Research and Management
Science, 4, 175–197.

Axs€ater, S., 1996. Using the deterministic EOQ formula
in stochastic inventory control. Management Science,
42 (6), 830–834. https://doi.org/10.1287/mnsc.42.6.830

Axs€ater, S., 2003. Supply chain operations: Serial and dis-
tribution inventory systems. In S. C. Graves, A. G. de
Kok (Eds.), Handbooks in operations research and man-
agement science (Vol. 11., pp. 525–559). Elsevier.

Axs€ater, S., 2006. Inventory control. Springer.
Axs€ater, S., Rosling, K., 1993. Installation vs. echelon

stock policies for multilevel inventory control.
Management Science, 39 (10), 1274–1280. https://doi.
org/10.1287/mnsc.39.10.1274

Ayhan, H., Baccelli, F., 2001. Expansions for joint laplace
transform of stationary waiting times in (max,þ)-linear
systems with poisson input. Queueing Systems, 37 (1),
291–328.

Ayhan, H., Palmowski, Z., Schegel, S., 2004. Cyclic queue-
ing networks with subexponential service trimes.
Journal of Applied Probability, 41 (3), 291–301. https://
doi.org/10.1239/jap/1091543426

Azoury, K. S., 1985. Bayes solution to dynamic inventory
models under unknown demand distribution.
Management Science, 31 (9), 1150–1160. https://doi.
org/10.1287/mnsc.31.9.1150

Baar, T., Brucker, P., Knust, S., 1999. Tabu search algo-
rithms and lower bounds for the resource-constrained
project scheduling problem. In S. Voß, S. Martello,
I. H. Osman., C. Roucairol (Eds.), Meta-heuristics:
Advances and trends in local search paradigms for opti-
mization (pp. 1–18). Springer US.

Babich, V., Birge, J. R., et al., 2021. The interface of
finance, operations, and risk management. Foundations
and TrendsVR in Technology, Information and
Operations Management, 15 (1–2), 1–203. https://doi.
org/10.1561/0200000101

Babich, V., Hilary, G., 2020. OM Forum—Distributed
ledgers and operations: What operations management
researchers should know about blockchain technology.

130 F. PETROPOULOS ET AL.

https://doi.org/10.1016/j.ejor.2015.03.022
https://doi.org/10.1016/j.ejor.2015.03.022
https://doi.org/10.1016/j.ejor.2021.05.003
https://doi.org/10.1207/153276603768344834
https://doi.org/10.1207/153276603768344834
https://doi.org/10.1016/j.cor.2016.09.016
https://doi.org/10.1016/j.cor.2018.02.007
https://doi.org/10.1016/j.tre.2003.08.005
https://doi.org/10.1016/j.tre.2003.08.005
https://doi.org/10.2307/1906813
https://doi.org/10.1111/1467-9965.00068
https://doi.org/10.1016/j.omega.2018.07.012
https://doi.org/10.1016/j.ejor.2022.08.039
https://doi.org/10.1016/j.cor.2007.12.007
https://doi.org/10.1016/j.cor.2007.12.007
https://doi.org/10.1016/j.automatica.2013.10.012
https://doi.org/10.1016/j.automatica.2013.10.012
https://doi.org/10.1016/j.ejor.2017.02.029
https://doi.org/10.1287/mnsc.1080.0893
https://doi.org/10.1287/mnsc.1080.0893
https://doi.org/10.1016/j.ress.2019.106680
https://doi.org/10.1287/opre.51.2.210.12780
https://doi.org/10.1287/mnsc.42.6.830
https://doi.org/10.1287/mnsc.39.10.1274
https://doi.org/10.1287/mnsc.39.10.1274
https://doi.org/10.1239/jap/1091543426
https://doi.org/10.1239/jap/1091543426
https://doi.org/10.1287/mnsc.31.9.1150
https://doi.org/10.1287/mnsc.31.9.1150
https://doi.org/10.1561/0200000101
https://doi.org/10.1561/0200000101


Manufacturing & Service Operations Management, 22
(2), 223–240. https://doi.org/10.1287/msom.2018.0752

Baboolal, K., Griffiths, J. D., Knight, V. A., Nelson, A. V.,
Voake, C., Williams, J. E., 2012. How efficient can an
emergency unit be? A perfect world model. Emergency
Medicine Journal, 29 (12), 972–977. https://doi.org/10.
1136/emermed-2011-200101

Baccelli, F., Cohen, G., Olsder, G. J., Quadrat, J.-P., 1992.
Synchronization and linearity: An algebra for discrete
event systems. John Wiley & Sons Ltd.

Baccelli, F., Hasenfuss, S., Schmidt, V., 1997. Transient
and stationary waiting times in (max,þ)-linear systems
with poisson input. Queueing Systems, 26 (3), 301–342.
https://doi.org/10.1023/A:1019141510202

Baccelli, F., Schlegel, S., Schmidt, V., 1999. Asymptotics
of stochastic networks with subexponential service
times. Queueing Systems, 33, 205–232. https://doi.org/
10.1023/A:1019176129224

Baccelli, F., Schmidt, V., 1996. Taylor series expansions
for poisson-driven ðmax,þÞ-linear systems. The Annals
of Applied Probability, 6 (1), 138–185.

Bacciotti, A., Rosier, L., 2005. Liapunov functions and sta-
bility in control theory. Springer Science & Business
Media.

Başar, T., Haurie, A., Zaccour, G., 2018. Nonzero-sum
differential games. In T. Başar & G. Zaccour (Eds.),
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Zaccour (Eds.), Handbook of dynamic game theory (pp.
1–38). Springer.

Petrovic, S., Burke, E., 2004. University timetabling. In J.
Y.-T. Leung (Ed.), Handbook of scheduling: Algorithms,
models, and performance analysis (p. 45). Chapman
and Hall/CRC.

Petrovic, S., Parkin, J., Wrigley, D., 2020. Personnel
scheduling considering employee well-being: Insights
from case studies. In Proceedings of the 13th
International Conference on the Practice and Theory
of Automated Timetabling - PATAT 2021 (Vol. I, pp.
10–23).

Petrovic, S., Yang, Y., Dror, M., 2007. Case-based
selection of initialisation heuristics for metaheuristic
examination timetabling. Expert Systems with
Applications, 33 (3), 772–785. https://doi.org/10.1016/j.
eswa.2006.06.017

Petruzzi, N. C., Dada, M., 1999. Pricing and the news-
vendor problem: A review with extensions. Operations
Research, 47 (2), 183–194. https://doi.org/10.1287/opre.
47.2.183

Peykani, P., Farzipoor Saen, R., Seyed Esmaeili, F. S.,
Gheidar-Kheljani, J., 2021. Window data envelopment
analysis approach: A review and bibliometric analysis.
Expert Systems, 38 (7), e12721. https://doi.org/10.1111/
exsy.12721

Peykani, P., Mohammadi, E., Saen, R. F., Sadjadi, S. J.,
Rostamy-Malkhalifeh, M., 2020. Data envelopment ana-
lysis and robust optimization: A review. Expert Systems,
37 (4), e12534. https://doi.org/10.1111/exsy.12534

Phelps, S., K€oksalan, M., 2003. An interactive evolutionary
metaheuristic for multiobjective combinatorial opti-
mization. Management Science, 49 (12), 1726–1738.
https://doi.org/10.1287/mnsc.49.12.1726.25117

Phillips, P. J., Hahn, C., Fontana, P., Yates, A., Greene,
K. K., Broniatowski, D., Przybocki, M. A., 2021. Four
principles of explainable artificial intelligence. Retrieved
November 29, 2021, from https://tsapps.nist.gov/publi-
cation/get_pdf.cfm?pub_id=933399

176 F. PETROPOULOS ET AL.

https://doi.org/10.1016/j.cor.2006.03.019
https://doi.org/10.1016/j.cor.2006.03.019
https://doi.org/10.1287/mnsc.2019.3323
https://doi.org/10.1287/trsc.2015.0646
https://doi.org/10.1287/trsc.2015.0646
https://doi.org/10.1016/s0304-3894(00)00226-0
https://doi.org/10.1016/s0304-3894(00)00226-0
https://doi.org/10.1287/trsc.23.4.266
https://doi.org/10.1287/trsc.23.4.266
https://doi.org/10.1080/00949655.2015.1136629
https://doi.org/10.1080/00949655.2015.1136629
https://doi.org/10.1111/poms.13819
https://doi.org/10.1111/poms.13819
https://doi.org/10.1111/poms.13820
https://doi.org/10.1111/poms.13820
https://doi.org/10.1287/ijoc.2017.0784
https://doi.org/10.1007/s10107-020-01523-z
https://doi.org/10.1287/trsc.1120.0414
https://doi.org/10.1016/j.ijforecast.2021.11.001
https://doi.org/10.1016/j.ejor.2015.06.002
https://doi.org/10.1016/j.ejor.2015.06.002
https://doi.org/10.1016/j.jom.2018.05.005
https://doi.org/10.1371/journal.pone.0231236
https://doi.org/10.1287/mnsc.2022.4485
https://doi.org/10.1287/mnsc.2022.4485
https://doi.org/10.1016/j.eswa.2006.06.017
https://doi.org/10.1016/j.eswa.2006.06.017
https://doi.org/10.1287/opre.47.2.183
https://doi.org/10.1287/opre.47.2.183
https://doi.org/10.1111/exsy.12721
https://doi.org/10.1111/exsy.12721
https://doi.org/10.1111/exsy.12534
https://doi.org/10.1287/mnsc.49.12.1726.25117
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933399
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933399


Pidd, M., 2009. Tools for Thinking: modelling in manage-
ment science. Wiley.

Pillac, V., Gu�eret, C., Medaglia, A. L., 2013. A parallel
matheuristic for the technician routing and scheduling
problem. Optimization Letters, 7, 1525–1535. https://
doi.org/10.1007/s11590-012-0567-4

Pillay, N., 2016. A review of hyper-heuristics for educa-
tional timetabling. Annals of Operations Research, 239
(1), 3–38. https://doi.org/10.1007/s10479-014-1688-1
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Appendix A

List of acronyms

1D One-Dimensional
2D Two-Dimensional
2DKP Two-Dimensional Knapsack Problem
2S-SPR Two-Stage Stochastic Programming with

Recourse
3D Three-Dimensional
ABM Agent Based Modelling
ABS Agent Based Simulation
ADP Approximate Dynamic Programming
AFS Airport Flight Scheduling
AHD Attended Home Delivery
AHP Analytic Hierarchy Process
AI Artificial Intelligence
ANN Artificial Neural Network
ANT Actor Network Theory
AoA Activity-on-Arc
AoN Activity-on-Node
AOR Airline Operations Recovery
AP Assignment Problem
ARIMA AutoRegressive Integrated Moving Average

(model)
AR Assurance Region
AR Action Research
ARIMAX AutoRegressive Integrated Moving Average

with eXogenous variables (model)
AS Autonomous System
ASP Airline Schedule Planning
ATFM Air Traffic Flow Management
B2B Business-To-Business
B2C Business-To-Consumer
B&B Branch-and-Bound
B&C Branch-and-Cut
B&P Branch-and-Price
BN Bayesian Network
BOR Behavioural OR
BPP Bin Packing Problem
C&P Cutting and Packing
CBOR Community-Based Operations Research
CDEA Centralised DEA
CDM Central Decision Maker or Collaborative

Decision-Making
CLD Causal Loop Diagram
CLSC Closed-Loop Supply Chains
CM Cellular Manufacturing
CNN Convolutional Neural Network
CO Combinatorial Optimisation
CODP Customer Order decoupling point
ConFL Connected Facility Location Problem
COR Community Operational Research
CPM Critical Path Method
CRPS Continuous Ranked Probability Score
CST Critical Systems Thinking
CSW Common Set of Weights
CVaR Conditional Value at Risk
CVRP Capacitated Vehicle Routing Problem
DBN Dynamic Bayesian Network
DC Distribution Centre
DCT Daily Contact Testing
DDF Directional Distance Function
DEA Data Envelopment Analysis

DEF Deterministic Equivalent Formulation
DES Discrete Event Simulation
DfT Department for Transport
DHSC Department of Health and Social Care
DMU Decision Making Unit
DNDEA Dynamic Network DEA
DNN Deep Neural Network
DP Dynamic Programming
DPSIR Drivers, Pressures, State, Impact and Response
DS Data Science
DSS Decision Support Systems
EAT Efficiency Analysis Trees
ED Emergency Department
EMSR Expected Marginal Seat Revenue
EOQ Economic Order Quantity
ERP Enterprise Resource Planning
ESICUP EURO Special Interest Group on Cutting and

Packing
EURO European Operational Research Societies
EVP Expected Value of Possession
FAM Fleet Assignment Model
FIFO First-In-First-Out
FMS Flexible Manufacturing Systems
FPTAS Fully Polynomial-Time Approximation Scheme
FSF Full-State Feedback
FSO Fixed-sum output
FTU Facilities-Transformation-Usage (framework)
GIS Geographic Information Systems
GLM Generalised Linear Model
GMB Group Model Building
GNN Graphical Neural Network
GORS Government Operational Research Service
GP Gaussian Process
GPS Global Positioning System
GPU Graphics Processing Unit
GRASP Greedy Randomised Adaptive Search Procedure
HJB Hamilton-Jacobi-Bellman
HMT His Majesty’s Treasury
HL Humanitarian Logistics
HORAF Heads of OR and Analytics Forum
IAM Integrated Assessment Model
ICU Intensive Care Unit
IGP Interior Gateway Protocol
IHIP Intangibility, Heterogeneity, Inseparability, and

Perishability
IID Independently and Identically Distributed
INFORMS
Institute for Management Science and
Operations Research
INRC International Nurse Rostering Competition
ILP Integer Linear Problem
ILP Integer Linear Programming
IoT Internet of Things
IP Integer Programming
IRP Inventory-Routing Problem
JIT-MS Just-In-Time Material System
KP Knapsack Problem
LASSO Least Absolute Shrinkage and Selection Operator
LCSA Life Cycle Sustainability Assessment
LEAR LASSO-Estimated AutoRegressive (model)
LP Linear Programming
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LQG Linear Quadratic Gaussian
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MASE Mean Absolute Scaled Error
MAUT Multi-Attribute Utility Theory
MAVT Multi-Attribute Value Theory
MBM Market Based Measure
MC Maximum Clique or Minimum Cut (problem)
MCDA Multi-Criteria Decision Analysis
MCF Minimum Cost Flow (problem)
MDP Markov Decision Process
MF Maximum Flow (problem)
MILP Mixed-Integer Linear Programming
MINLP Mixed-Integer NonLinear Programming
MIMO Multi-Input-Multi-Output
MIP Mixed-Integer Programming
ML Machine Learning
MLPI Malmquist Luenberger Productivity Indicator
MPC Model Predictive Control
MPI Malmquist Productivity Index
MRP Material Requirement Planning
MRP Multi-level Regression Post-stratification
NBEATS Neural Basis Expansion Analysis for interpret-

able Time Series forecasting
NDEA Network DEA
NDP Neural Dynamic Programming
NFL National Football League
NHS National Health Service
NGO Non-Governmental Organisation
OM Operations Management
ONS Office for National Statistics
OR Operational (or Operations) Research
PA Portfolio Analysis
PATAT Practice and Theory of Automated Timetabling
PCR Polymerase Chain Reaction
PERT Project Evaluation and Review Technique
PESP Periodic Event Scheduling Problem
PID Proportional Integral Derivative
POMDP Partially Observable Markov Decision Process
PPS Production Possibility Set
PRA Probabilistic Risk Assessment
PSM Problem Structuring Method
PTAS Polynomial-Time Approximation Scheme
QRA Quantile Regression Averaging or Quantitative

Risk Assessment
R&D Research and Development

RCPSP Resource-Constrained Project Scheduling
Problem

RES Renewable Energy Sources
RFID Radio-Frequency IDentification
RINS Relaxation-Induced Neighbourhood Search
RL Reinforcement Learning or Reverse Logistics
RM Revenue Management
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
SAA Sample Average Approximation
SARF Social Amplification of Risk Framework
SAT SATisfiability (problem)
SCA Strategic Choice Approach
SCM Supply Chain Management
SD Systems Dynamics
SDM Structured Decision Making
SFA Stochastic Frontier Analysis
SI Systemic Intervention
SIS Schools Infection Survey
SISO Single-Input-Single-Output
SODA Strategic Options Development and Analysis
SR Segment Routing
SRCPSP Stochastic Resource-Constrained Project

Scheduling Problem
SSM Soft Systems Methodology
SST Shortest Spanning Trees
STP Steiner Tree Problem (in graphs)
SVF Support Vector Frontiers
SVM Support Vector Machine
TE Traffic Engineering
TFP Total Factor Productivity
TPS Toyota Production System
TSP Travelling Salesman Problem
TTP Travelling Tournament Problem
UDE UnDesirable Effects
UFLP Uncapacitated Facility Location Problem
VaR Value at Risk
VAR Vector AutoRegressive (model)
VMI Vendor Managed Inventory
VPP Virtual Power Plant
VRP Vehicle Routing Problems
VSM Viable Systems Model or Value Stream Map
VSS Value of Stochastic Solution
VUCA Volatile, Uncertain, Complex and Ambiguous
WHO World Health Organisation
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