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Abstract
The ability of Variational Autoencoders to learn disentangled representations has made them ap-
pealing for practical applications. However, their mean representations, which are generally used
for downstream tasks, have recently been shown to be more correlated than their sampled coun-
terpart, on which disentanglement is usually measured. In this paper, we refine this observation
through the lens of selective posterior collapse, which states that only a subset of the learned repre-
sentations, the active variables, is encoding useful information while the rest (the passive variables)
is discarded. We first extend the existing definition to multiple data examples and show that active
variables are equally disentangled in mean and sampled representations. Based on this extension
and the pre-trained models from disentanglement lib, we then isolate the passive variables
and show that they are responsible for the discrepancies between mean and sampled representations.
Specifically, passive variables exhibit high correlation scores with other variables in mean represen-
tations while being fully uncorrelated in sampled ones. We thus conclude that despite what their
higher correlation might suggest, mean representations are still good candidates for downstream
tasks applications. However, it may be beneficial to remove their passive variables, especially when
used with models sensitive to correlated features.
Keywords: Representation learning, Disentangled representations, Deep generative models, Vari-
ational autoencoders, Posterior collapse

1 Introduction

Variational Autoencoders (VAEs) are considered state-of-the-art techniques to learn unsupervised
disentangled representations, that is, representations encoding separately the different factors of
variations (Bengio et al., 2013). Disentangled representations are very attractive in terms of inter-
pretability and fairness (Locatello et al., 2019a), and can be beneficial for downstream tasks such
as abstract reasoning (van Steenkiste et al., 2019).

Over the years, multiple regularisation techniques have been developed to encourage disentan-
glement with a specific focus on enforcing the learned latent factors to be uncorrelated. As we
will discuss in Section 2, while this regularisation is done on the sampled aggregated posterior,
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the learned representation is generally taken to be the mean vector of the posterior distribution.
However, Locatello et al. (2019b) reported an increased total correlation (TC) and averaged mutual
information (MI) over the dimensions of the mean representation compared to the results obtained
on its sampled counterpart. This finding raises questions on whether mean representations would
still benefit from the appealing attributes of disentanglement since sampled representations were
shown to be less correlated, and thus more disentangled.

Another line of research has shown that VAEs are behaving in a polarised regime, also known
as selective posterior collapse (Dai and Wipf, 2018; Rolinek et al., 2019). In this regime, the rel-
evant dimensions of the sampled representations (the active variables) are used by the decoder for
reconstruction while the remaining dimensions (the passive variables) are ‘shut down’ to closely
match the prior. However, the polarised regime has only been studied in the context of single data
examples for sampled representations. Therefore, in Section 3, we extend the existing definition
of the polarised regime to multiple data examples and explore the implications for mean and vari-
ance representations. Assuming that VAEs producing disentangled representations are behaving in
a polarised regime, we show, based on this extended version, that active variables of mean repre-
sentations should not be more correlated than the sampled ones. Thus, we argue that the higher
correlation reported by Locatello et al. (2019b) is due to the impact of the passive variables on
the metrics used. We verify this hypothesis empirically in Section 4, and provide further analytical
justifications in Section 5.

Our contribution is three-fold: (1) we extend the definition of the polarised regime to mean and
variance representations using multiple data examples. (2) we use this extended version to show that
the discrepancies between mean and sampled representations observed by Locatello et al. (2019b)
are mostly due to the impact of the polarised regime, and especially of the passive variables. (3) we
explain why passive variables are leading to higher TC and averaged MI scores. The code of our
experiments is available at https://github.com/bonheml/tc_study.

Notational considerations Throughout this paper, we use the superscript (i) to denote the values
obtained for the ith sample x(i) of the random variable x, and represent the jth dimension of a
vector representation using the subscript j . For example, given a random variable ϵ distributed
according to N (0, I), ϵ(i)j is the jth dimension of the sample of ϵ obtained for x(i). While the mean
and diagonal variance representations are functions of x and the network parameters ϕ, we use
a shortened version when the meaning is clear from the context, such that µ ≜ µ(x;ϕ), and σ ≜
diag[Σ(x;ϕ)]. Similarly, for a specific sample x(i), µ(i) ≜ µ(x(i);ϕ), and σ(i) ≜ diag[Σ(x(i);ϕ)].
We adopt the same notation for the sampled representation, such that z ≜ µ + ϵσ1/2, and z(i) ≜
µ(i) + ϵ(i)(σ(i))1/2.

2 Background

2.1 Variational Autoencoders

Variational Autoencoders (VAEs) (Kingma and Welling, 2014; Rezende and Mohamed, 2015) are
deep probabilistic generative models based on variational inference. The encoder maps some input
x(i) to a latent representation z(i), and the decoder uses these latent variables to generate an output
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x̂(i) similar to x(i). This can be optimised by maximising the evidence lower bound (ELBO):

L(θ,ϕ;x) = Eqϕ(z|x)
[
log pθ(x|z)

]︸ ︷︷ ︸
reconstruction term

−DKL

(
qϕ(z|x) ∥ p(z)

)︸ ︷︷ ︸
regularisation term

. (1)

Generally, qϕ(z|x) and p(z) are modelled as multivariate Gaussian distributions to permit closed
form computation of the regularisation term (Doersch, 2016).

As illustrated in Figure 1, given the mean µ and diagonal covariance σ of a random variable
x, the sampled representation is obtained using the reparameterisation trick (Kingma and Welling,
2014) such that z = µ+σ1/2ϵ where ϵ is a random variable with a Gaussian distribution N (0, I).

Encoder  

     

Decoder  

    

MSE

Reparametrisation
trick

KL divergence computed
analytically

Reconstruction loss
estimated by sampling

Figure 1: Illustration of a VAE during the training process. The distributions are assumed to be
multivariate Gaussian, µ is the mean layer and σ is the variance layer. µ and σ are the parameters
of the posterior over z.

In this paper we are interested in investigating the discrepancies between the mean and sam-
pled representations, that is µ and z respectively. Specifically, our goal is to explain the higher
correlation of mean representations reported by Locatello et al. (2019b). In the following sections,
the representations learned by the mean layer will be referred to as mean representations, and those
learned during the sampling stage as sampled representations, as per Figure 2.

Sampled
representation

Mean
representation

Variance
representation

Figure 2: Mean, variance, and sampled representations of VAEs.
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2.2 Disentangled representation learning with VAEs

While various learning objectives and architectures have been proposed for VAEs, we will focus
on the family of methods increasing the weight on the regularisation term of Equation 1 to produce
disentangled representations, similarly to Locatello et al. (2019b). We refer the reader to Tschannen
et al. (2018) for a broader overview of the existing VAE architectures.

β-VAE Higgins et al. (2017) introduced a new learning objective whose goal was to bias the
encoding-reconstruction trade-off by penalising the regularisation term more strongly. This is for-
mulated as the following learning objective:

Eqϕ(z|x)
[
log pθ(x|z)

]
− βDKL

(
qϕ(z|x) ∥ pθ(z)

)
. (2)

Equation 2 is similar to the original VAE objective seen in Equation 1 with the addition of the
β parameter which, when β > 1, increases the bias on the encoding optimisation. One of the
downsides of penalising the encoding more strongly is that the reconstruction is of lower quality.

Annealed VAE Burgess et al. (2018) provided an analysis of β-VAE disentangled representations
through the lens of information theory, based on the learning objective described by Alemi et al.
(2017). They argue that because β-VAE is increasing the pressure on the encoding capacity of
the network, the optimal way to encode information would be on separate dimensions, leading
to disentanglement. They hypothesise that β-VAE will learn the latent variables having the most
impact on the reconstruction first, then gradually optimise less critical variables. To ease the learning
of these less important latent variables, they propose to gradually increase the encoding capacity
during the training process, relaxing the initial constraint. This leads to the following objective,
where C is a parameter that can be understood as a channel capacity and γ is a hyper-parameter
penalising the divergence, similarly to β in β-VAE:

Eqϕ(z|x)
[
log pθ(x|z)

]
− γ

∣∣DKL

(
qϕ(z|x) ∥ pθ(z)

)
− C

∣∣ . (3)

As the training progresses, the channel capacity C is increased, going from zero to its maximum
channel capacity Cmax. For example, given a maximum channel capacity of 100, during the first
training step, any deviation from the KL divergence will be penalised similarly to β-VAE because
C = 0. After n steps, once the channel capacity will be annealed to its maximum value, the KL
divergence will be penalised only when it is higher than 100. VAEs that use Equation 3 as a learning
objective will be referred to as annealed VAEs in the rest of this paper.

Factor VAE In Factor VAE, Kim and Mnih (2018) addressed disentanglement learning by en-
forcing the independence of the latent factors learned by VAEs. This approach is slightly different
from the β-VAE objective presented in Equation 2 as it takes into account the KL divergence
DKL

(
qϕ(z) ∥ pθ(z)

)
to further decompose the expected value over the data distribution of the

second term of the loss function as:

Epθ(x)

[
DKL

(
qϕ(z|x) ∥ pθ(z)

)]
= Ie(x; z) +DKL

(
qϕ(z) ∥ pθ(z)

)
.

Kim and Mnih (2018) suggested that β-VAE’s lower data generation quality is due to the penal-
isation of Ie(x; z), the mutual information between the observed and latent variables. They argued
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that only the distance between the estimated latent factors and the prior should be penalised to
encourage disentanglement, and they proposed a new objective to this end:

Ep(x)

[
Eqϕ(z|x)

[
log pθ

(
x|z
)]

−DKL

(
qϕ
(
z|x
)
∥ pθ(z)

)]
− γDKL

(
qϕ(z) ∥ pθ(z)

)
. (4)

Here, DKL

(
qϕ(z) ∥ pθ(z)

)
is approximated by penalising the dependencies between the dimen-

sions of qϕ(z):

1

n

n∑
i=1

[
Eqϕ(z|x)

[
log pθ

(
x(i)|z

)]
−DKL

(
qϕ
(
z|x(i)

)
∥ pθ(z)

)]
− γDKL

(
qϕ(z)

∥∥∥∥ d∏
j=1

qϕ(zj)

)
︸ ︷︷ ︸

total correlation

.

(5)
As the computation of the total correlation defined in Equation 5 is intractable, it is estimated

by sampling a batch from qϕ(z) and shuffling the values of each dimension of the latent variables
to obtain the samples for

∏d
j=1 qϕ(zj). A binary classifier is then trained to recognise the samples

belonging to qϕ(z), and the density ratio is computed using the probability pclassif (z) given by the
classifier that the samples belong to qϕ(z):

DKL

(
qϕ(z)

∥∥∥∥ d∏
j=1

qϕ(zj)

)
≈ Eqϕ(z)

[
log

pclassif (z)

1− pclassif (z)

]
.

In Kim and Mnih (2018, Appendix F and I) the authors compared the results obtained with Equa-
tion 5 and Equation 4 (i.e., where pθ(z) is not approximated by

∏d
j=1 qϕ(zj)), but obtained lower

disentanglement with the latter. They concluded that enforcing a factorised qϕ(z) was more benefi-
cial for disentanglement than enforcing qϕ(z) to be as close as possible to N (0, I).

β-TC VAE Similarly to Kim and Mnih (2018), Chen et al. (2018) proposed to optimise Equa-
tion 5. The main difference is that Chen et al. (2018) are approximating the total correlation using
mini-batch weighted sampling. Here, the estimation is computed over a mini-batch of samples
{x(i)}mi=1 as follows:

Eqϕ(z)[log qϕ(z)] ≈
1

m

m∑
i=1

(
log

1

nm

m∑
k=1

qϕ(z
(i)|x(k))

)
, (6)

where m is the number of samples in the mini-batch, and n total number of input examples.
Eqϕ(zj)[log qϕ(zj)] can be computed in a similar way. We refer the reader to Chen et al. (2018,
Appendix C.1) for the detailed derivation of Equation 6.

DIP-VAE Similarly to Kim and Mnih (2018) and Chen et al. (2018), Kumar et al. (2018) proposed
to regularise the distance between qϕ(z) and p(z) using Equation 4. The main difference is that here
DKL

(
qϕ(z) ∥ p(z)

)
is measured by matching the moments of the learned distribution qϕ(z) and its

prior p(z). The second moment of the learned distribution is given by:

Covqϕ(z)[z] = Covp(x) [µ] + Ep(x) [σ] . (7)

Two divergences are then defined. The first, DIP-VAE I, penalises only the first term of Equation 7:

λDKL

(
qϕ(z) ∥ pθ(z)

)
= λod

∑
i ̸=j

(
Covp(x) [µ]

)2
ij
+ λd

∑
i

(
Covp(x) [µ]ii − 1

)2
,
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where λod and λd are the off-diagonal and diagonal regularisation terms, respectively. The second,
DIP-VAE II, penalises both terms of Equation 7:

λDKL

(
qϕ(z) ∥ pθ(z)

)
= λod

∑
i ̸=j

(
Covqϕ(z) [z]

)2
ij
+ λd

∑
i

(
Covqϕ(z) [z]ii − 1

)2
.

Note that because DIP-VAE I directly encourages diagonal covariance matrices in the mean
representation, it will have a low correlation in the mean representation, which, as observed by
Locatello et al. (2019b), mirrors the correlations in the sampled representation. Moreover, the
discrepancies between mean and sampled representations were observed by Locatello et al. (2019b)
in the context of methods which explicitly regularise the disentanglement of z, but not µ. In this
study, we will thus consider DIP-VAE II, which enforces the covariance matrix of the sampled
representation to be diagonal, but not DIP-VAE I as it explicitly regularises µ.

2.3 Benefits of disentanglement on downstream tasks

Disentangled representations have been shown to reduce the sample complexity of abstract reason-
ing tasks (van Steenkiste et al., 2019), improve the fairness of downstream task models (Locatello
et al., 2019a; Creager et al., 2019) and their interpretability (Higgins et al., 2017; Adel et al., 2018).
However, when the mean representations are more correlated than the sampled representations on
which the disentanglement is measured, it will hamper the interpretability of downstream task mod-
els (Alin, 2010; Chan et al., 2022), and reduce their fairness (Locatello et al., 2019a; Träuble et al.,
2021). Moreover, under a certain level of supervision, VAEs can provably provide identifiable rep-
resentations (Khemakhem et al., 2020; Mita et al., 2021), and it is conjectured that under specific
constraints, this is also possible in the unsupervised setting (Reizinger et al., 2022). It is thus im-
portant to investigate the origin of the discrepancies between mean and sampled representations to
determine if one can still benefit from disentanglement when using mean representations on down-
stream tasks.

2.4 Related work

The discrepancy between the total correlation of mean and sampled representations observed by Lo-
catello et al. (2019b) have recently been investigated by Cheng et al. (2021) who provide a theo-
retical justification of the higher total correlation scores of the mean representations. However,
they did not consider the polarised regime which is a necessary condition for VAE to provide good
reconstruction (Dai and Wipf, 2018; Rolinek et al., 2019; Dai et al., 2020). Thus, their work is
complementary to ours in the case where VAEs are not learning in a polarised regime.

3 The polarised regime

The polarised regime, also known as selective posterior collapse, is the ability of VAEs to ‘shut
down’ superfluous dimensions of their sampled latent representations while providing a high pre-
cision on the remaining ones (Rolinek et al., 2019; Dai et al., 2020). As a result, the sampled rep-
resentation can be separated into two subsets of variables, active and passive. The active variables
correspond to the subset of the sampled latent representation that is needed for the reconstruction.
They have a low variance, and are close to the mean variables. The passive variables correspond to
the superfluous dimensions that are discarded by the VAE. They follow a zero-mean unit-variance
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Gaussian distribution to optimally match the prior and are ignored by the decoder, which only uses
the variables that help to reconstruct the input.

The existence of active and passive variables has been shown to be a necessary condition for
the VAEs to provide a good reconstruction (Dai and Wipf, 2018; Dai et al., 2020). However, when
the weight on the regularisation term of the ELBO given in Equation 1 increases, VAEs are pruning
more active variables to minimise the regularisation loss. When this weight becomes too large, the
representations collapse to the prior, containing only passive variables (Lucas et al., 2019a; Dai
et al., 2020).

3.1 The polarised regime for one data example

Based on the definition of Rolinek et al. (2019), we can characterise the active and passive variables
of sampled representations as follows.

Definition 1 (Polarised regime) When a VAE learns in a polarised regime, for a given data ex-
ample x(i) ∈ X , its mean, variance, and sampled representations, µ(i) ≜ µ(x(i);ϕ), σ(i) ≜
diag[Σ(x(i);ϕ)], and z(i) ≜ µ(i) + ϵ(i)(σ(i))1/2, respectively, are composed of a set of passive and
active variables, V(i)

p ∪ V(i)
a such that, for each data example x(i):

(i) |µ(i)
j | ≪ 1, σ(i)

j ≈ 1, and z
(i)
j ≈ ϵ

(i)
j ∀ j ∈ V(i)

p ,

(ii) σ
(i)
j ≪ 1 and z

(i)
j ≈ µ

(i)
j ∀ j ∈ V(i)

a ,

where ϵ(i) ∼ N (0, I), j is the jth variable of a representation, and | · | denotes the absolute value.

The polarised regime can also be seen as a sparsity-inducing mechanism which will prune the
superfluous columns of the weights of the first layer of the decoder (Dai et al., 2017, 2018). As the
corresponding dimensions of the mean and variance representations will not have any influence on
the decoder (i.e., they are passive), they will only be optimised with respect to the KL divergence,
thus becoming close to 0 and 1, respectively.

While Definition 1 provides an overview of the polarised regime for each data example, it is
not readily usable to analyse discrepancies between mean and sampled representations as they are
observed over the whole dataset. We will thus extend the definition of the polarised regime to
multiple data examples in Section 3.2 and show that the discrepancies between mean and sampled
representations can only originate from variables which are not active.

3.2 Generalisation of the polarised regime to multiple data examples

Now we will propose a new generalisation of Definition 1 to multiple data examples, which will
serve as a basis for our analysis in Section 4. Given that a variable can either be active or passive
for a given data example, when considering multiple data examples, three cases arise:

• A variable is passive for all the data examples.

• A variable is active for all the data examples.

• A variable is active for some data examples and passive otherwise.

These three types of variables are formalised in Definition 2 and illustrated in Figure 3.
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Definition 2 (Variable types) When considered over multiple data examples X = {x(i)}ni=1, the
latent representations are composed of a set of passive, active, and mixed variables Vp ∪Va ∪Vm,
which are defined as follows:

(i) Vp ≜
n⋂

i=1
V(i)
p ,

(ii) Va ≜
n⋂

i=1
V(i)
a ,

(iii) Vm ≜
( n⋃

i=1
V(i)
p

)⋂( n⋃
i=1

V(i)
a

)
.

Figure 3: A graphical representation of Definition 2.

Based on Definitions 1 and 2, we will consider the properties of the mean and variance repre-
sentations over multiple data examples in Propositions 3 and 4, then describe their implications for
the sampled representations in Theorem 5.

Proposition 3 (Polarised regime of µ over X) When a VAE learns in a polarised regime, its mean
representation µ ≜ µ(x;ϕ) ≈ µ(X;ϕ) is composed of a set of passive, active and mixed variables
Vp ∪ Va ∪ Vm such that, over X:

(i) |µ̄j | ≪ 1 and V ar(µj) ≪ 1 ∀ j ∈ Vp,

(ii) V ar(µj) > V ar(µk) ∀ j ∈ Va ,∀ k ∈ Vp,

where µ̄j ≜ Ep(x)[µj ], and V ar(·) denotes the variance.

The first point of Proposition 3 indicates that passive variables of mean representations are
almost constant when considered over multiple data examples. Indeed, because they are passive for
each data example, according to (i) of Definition 1 they will consistently take values close to 0.
Thus, they will have a variance and expected value close to 0.

Because active variables of the mean representation encode some information about the input,
their value will vary depending on the input and thus have a higher variance than their passive
counterpart, as stated in (ii) of Proposition 3.

Now, let us analyse the effect of the polarised regime on sampled representations over multiple
data examples.
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Proposition 4 (Polarised regime of σ over X) When a VAE learns in a polarised regime, its vari-
ance representation σ ≜ diag[Σ(x;ϕ)] ≈ diag[Σ(X;ϕ)] is composed of a set of passive, active
and mixed variables Vp ∪ Va ∪ Vm such that, over X:

(i) σ̄j ≈ 1 and V ar(σj) ≪ 1 ∀j ∈ Vp,

(ii) σ̄j ≪ 1 and V ar(σj) ≪ 1 ∀j ∈ Va,

(iii) V ar(σj) < V ar(σk) ∀j /∈ Vm , ∀k ∈ Vm,

where σ̄j ≜ Ep(x)[σj ].

We know from Definition 1 that the variance representation is always close to 1 when the vari-
ables are passive and to 0 when they are active. Thus, variables that are passive (resp. active) over
the whole dataset will be almost constant with an expected value close to 1 (resp. 0), as stated in (i)
and (ii) of Proposition 4.

The variance representations of mixed variables will alternate between 1 and 0, depending on
whether they are passive or active for the considered data examples. Thus, as described in (iii) of
Proposition 4, they will vary more than active and passive variables.

Theorem 5 (Polarised regime of z over X) When a VAE learns in a polarised regime, its sampled
representation z ≜ µ + ϵσ1/2 is composed of a set of passive, active and mixed variables Vp ∪
Va ∪ Vm such that, over X:

(i) p(zj) ≈ p(ϵj) ∀ j ∈ Vp,

(ii) p(zj) ≈ p(µj) ∀ j ∈ Va,

(iii) p(zj) = c p(ϵj) + (1− c) p(µj) ∀ j ∈ Vm,

where 0 < c < 1.

The proof can be found in Appendix A.2.
Given that active variables are the only type of variables with approximately the same distributions
in mean and sampled representations, Corollary 6 immediately follows.

Corollary 6 Any discrepancies between the mean and sampled representations can only come from
the mixed and passive variables.

3.3 Empirical demonstration of polarised regimes

We will now verify that Theorem 5 holds empirically using a β-VAE trained on the dSprites data-
set (Higgins et al., 2017). By comparing the passive variable distribution of mean and sampled
representations provided in Figures 4a and 5a, we can see that both have a mean of zero, and that
the variance of the variable is close to zero in the mean representation, and to one in the sampled
representation, consistently with statement (i) of Theorem 5 and Proposition 3. As described in
statement (ii) of Theorem 5, the active variable of the mean representation observed in Figure 4c
follows a similar distribution as its sampled counterpart in Figure 5c. Figures 4b and 5b show that
mixed variables can also be identified. Their variance in the mean representation is larger than for
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passive variables and increases in the sampled representation. Moreover, we can see a sharp peak
around zero in the mean representation, which is smoothed out in the sampled one. This likely
corresponds to the passive component of the mixed variables, which is close to zero with very low
variance in the mean representation and to N (0, I) in the sampled representation. Overall, these
observations are consistent with a mixture distribution, as per statement (iii) of Theorem 5.

Note that while the distribution of the passive variables of sampled representations is encour-
aged to be Gaussian by the KL divergence term of the ELBO, we can see in Figures 4 and 5 that
the mixed and active variables are not guaranteed to be Gaussian in mean and sampled representa-
tions. Indeed, as they convey some information about the data, their distribution can be arbitrarily
different from the prior and may or may not be Gaussian. The resulting increased KL divergence of
active variables is then compensated by passive variables that match the prior exactly. Moreover,
the distribution of the passive variables of mean representations may also not be Gaussian as it is
only optimised to have low variance.

0.02 0.01 0.00 0.01 0.02 0.03
0

250

500

750

1000

1250

1500

1750

(a) Passive variable

3 2 1 0 1 2 3
0

500

1000

1500

2000

2500

(b) Mixed variable

3 2 1 0 1 2 3
0

200

400

600

800

1000

1200

(c) Active variable

Figure 4: Empirical distributions of the 2nd, 4th, and 10th latent dimensions of the mean representa-
tions of a β-VAE trained on dSprites with β = 8, which illustrate the typical appearance of passive,
mixed, and active variables. The histograms are computed using 10000 input examples.
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Figure 5: Empirical distributions of the 2nd, 4th, and 10th latent dimensions of the sampled repre-
sentations of a β-VAE trained on dSprites with β = 8, which illustrate the typical appearance of
passive, mixed, and active variables. The histograms are computed using 10000 input examples.

These observations also provide empirical evidence of Corollary 6, that only the active vari-
ables are similar in mean and sampled representations. When the regularisation strength increases,
the sampled and mean representations will contain more passive and mixed variables, hence the
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higher the regularisation weight, the greater the difference between the mean and sampled rep-
resentations. This is the main insight that will allow us to explain the discrepancies between the
correlation scores of the mean and sampled representations observed by Locatello et al. (2019b).

4 Assessing the impact of mixed and passive variables on the differences between
mean and sampled representations

In Theorem 5 and Section 3 we have seen that while active variables are equivalent in mean and
sampled representations, it is not the case for mixed and passive variables. As the number of non-
active variables increases with the regularisation strength, we hypothesise that they may be the
source of the stronger correlation of mean representations observed by Locatello et al. (2019b).

To verify this hypothesis, we investigate if active variables alone are equivalently correlated in
mean and sampled representations and how passive variables would impact the different metrics
used. To do so, we divide our experiment into four steps:

(i) Using Proposition 4, identify the type of variable (active, mixed or passive) stored at each
index of the representations considered.

(ii) Based on Proposition 3 and Theorem 5, provide a theoretical explanation of the the discrep-
ancies between the averaged Mutual Information (MI) and total correlation (TC) scores of
mean and sampled representations for passive variables components.

(iii) Verify that the correlation of mean representations increases with the number of passive and
mixed variables. This will allow us to explore how the number of passive variables evolves
with stronger regularisation and whether this number can explain the discrepancies in total
correlation and averaged mutual information that were reported by Locatello et al. (2019b).

(iv) Empirically verify the results of step (ii) by comparing the impact of passive and mixed vari-
ables on averaged mutual information and total correlation scores for mean and sampled rep-
resentations. By separately comparing the scores of every combination of variable type, we
can further attribute the discrepancies to a specific type of variable, or a combination of vari-
ables.

These steps are implemented in Sections 4.1, 4.2, 4.3 and 4.4, respectively.

Empirical setup We based our implementation on disentanglement lib (Locatello et al.,
2019b), using the same datasets as the authors: dSprites (Higgins et al., 2017), smallNorb (LeCun
et al., 2004), cars3D (Reed et al., 2015), and the alternative versions of dSprites (Locatello et al.,
2019b) color-dSprites, Scream-dSprites and Noisy-dSprites. We relied on the 9000 pre-trained
models released by Locatello et al. (2019b), corresponding to the 5 VAE architectures described in
Section 2, over the 6 datasets mentioned above, with 6 different regularisation strengths for each
method and 50 seeds per (dataset, method, regularisation) triplet.

4.1 Identifying variable types

Using Proposition 4 and defining a threshold α ≥ 0, one can easily classify the type of variables
stored at each index j ∈ d based on the variance representations:

• Passive variable: σ̄j = 1± α and V ar(σj) = 0± α,
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• Active variable: σ̄j = 0± α and V ar(σj) = 0± α,

• Mixed variable: any variable not classified as active or passive.

In all our experiments, α is set to 0.1. As stated above, any variable that does not satisfy both
conditions required for active or passive variables becomes a mixed variable.

Note that the indexes obtained with this method are used in the same way to identify the variable
types of mean and sampled representations. For example, if our procedure determines that index
j = 1 of the variance representation corresponds to a passive variable, the variable at index j = 1
of the mean and sampled representations will be considered as passive.

Sanity check To verify that our thresholds are valid and that the variable types have been mapped
correctly, we compare the scores of a classifier trained on the whole representations with those of
classifiers trained on every combination of variable types. Similarly to Locatello et al. (2019b), the
classification models are logistic regressions (LRs) that predict the labels of the dataset from which
the representation was learned.

We trained the LRs for 300000 steps on 10000 data examples for each variable combination
and computed the average accuracy over 5000 test examples. The LRs are cross-validated with 10
different regularisation strengths and 5 folds.

If our procedure to identify active, mixed and passive variables is correct, we should expect the
following. Active variables should contribute the most to the predictions and give results close to
those obtained by the full representation. Mixed variables should contribute less and have a much
lower score but together with the active representation, they should provide the same score as the
full representation. Passive variables should not contribute at all and ought to provide results close
to a random classifier.
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(a) Mean representation
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(b) Sampled representation

Figure 6: Average test accuracy of a logistic regression trained on the mean and sampled represen-
tations learned by a β-VAE trained on dSprites. Each figure shows the results obtained using the
full representations and combinations of different variable types. This is also compared to a random
classifier picking uniformly from the possible labels.

In Figure 6b, we can see that the results obtained for β-VAE trained on dSprites using sampled
representations are exactly as expected. The passive variables gave equivalent results to a random
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classifier, while mixed variables performed slightly better, which indicates that we correctly iden-
tify them. The score obtained with active and mixed representations is the same as the full score
in sampled representations, while active variables alone or with passive variables performed a bit
worse, which confirms that mixed and active variables have also been identified correctly.

Interestingly, the results obtained for mean representations in Figure 6a show that passive vari-
ables are becoming more informative as the regularisation strength increases. While the score ob-
tained with active variables is still closer to the full representation score, we can see that in opposi-
tion to sampled representations, passive and active variables perform better than mixed and active
variables. Thus, despite being close to zero and having a very low variance, passive variables of
the mean representation seem to capture some information about the data. Note that this result
does not indicate a problem in the detection of the passive variables: if we had incorrectly identified
any active or mixed variables as passive, they would still convey some information in the sampled
representation. As seen in Figure 6b, it is not the case here as their performance is equivalent to the
performance of a random classifier.

As discussed in Section 3, we can also see in Figure 7 that, as expected, the number of passive
and mixed variables increases with the regularisation strength. The number of passive variables at
the lowest regularisation strength is generally close to zero for all datasets and all models, except
annealed-VAE, whose special case will be discussed in Appendix B.
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(a) β-TC VAE trained on smallNorb.

1.0 2.0 5.0 10.0 20.0 50.0
Lambda od

0

2

4

6

8

10

Nu
m

be
r o

f v
ar

ia
bl

es
 (a

ve
ra

ge
d)

Active variables
Mixed variables
Passive variables

(b) DIP-VAE II trained on dSprites.

Figure 7: Number of passive, mixed and active variables with increased regularisation strength
averaged over 50 runs for each regularisation value.

To summarise, given that the behaviour of the passive and active variables observed in Figures 6
and 7 is consistent with the findings of Rolinek et al. (2019) and Dai et al. (2020) regarding the
polarised regime, we assume that our method to determine the type of variables is valid, and our
thresholds properly set. We can thus proceed to the next steps of our experiment.

4.2 Metrics used to assess mean and sampled representations

To be consistent with the existing literature (Locatello et al., 2019b), we compared the mean and
sampled representations using total correlation and averaged mutual information scores. We also
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used effective rank (Roy and Vetterli, 2007) as a complementary measure. Those metrics are mea-
suring slightly different things and have different limitations that we will detail below.

4.2.1 TOTAL CORRELATION

The total correlation (Watanabe, 1960) is a measure of the amount of information shared between
multiple latent variables. It is measured as the KL divergence between the joint distribution and the
product of its marginal distributions. More formally, given a latent representation r = r(x;ϕ):

TC(r) = DKL

(
p(r)

∥∥∥ d∏
j=1

p(rj)

)
. (8)

In their experiment, Locatello et al. (2019b) assumed that r (either the mean or sampled representa-
tion) was multivariate Gaussian with a mean of zero. Thus, given the mean r̄ and covariance Cov[r]
of r, Equation 8 takes the following form:

TC(r) = DKL

(
N (r̄,Cov[r])

∥∥∥ d∏
j=1

N (r̄j ,Cov[r]jj)

)
, (9)

which simplifies to

TC(r) =
1

2

( d∑
j=1

(log Cov[r]jj)− log det(Cov[r])

)
. (10)

The transition from Equation 9 to Equation 10 can be found in Appendix A.1. From Equation 10,
we then obtain Theorem 7, as proved in Appendix A.3.

Theorem 7 (Impact of passive variables on TC(z)) The total correlation of sampled representa-
tions is not modified by passive variables.

Limitations According to Theorem 5, while the passive variables of the sampled representations
follow standard Gaussian distributions, other variables of mean and sampled representations, espe-
cially mixed variables, may not be Gaussian. Moreover, the distributions of the latent variables may
not be jointly Gaussian. As such, TC may provide inaccurate results. For this reason, it is important
to use complementary metrics.

4.2.2 AVERAGED MUTUAL INFORMATION

Mutual information is a measure of the information shared by two latent variables (Cover, 1999).
Similarly to TC, which is a generalisation of mutual information to the multivariate case, it is mea-
sured as the KL divergence between the joint distribution and the product of its marginal distribu-
tions. That is, given two latent factors r1 and r2:

MI(r1, r2) = DKL

(
q(r1, r2) ∥ q(r1)q(r2)

)
. (11)

In their experiment, Locatello et al. (2019b) calculated the mutual information over discretised
values using:

MI(r1, r2) =

|U |∑
i=1

|V |∑
j=1

|Ui ∩ Vj |
n

log
n|Ui ∩ Vj |
|Ui||Vj |

, (12)
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where U and V are the bins of r1 and r2 respectively, n is the number of samples, and | · | denotes
the cardinality. They then used the averaged mutual information over all the latent factors:

MIavg(r) =
1

k2 − k

k∑
i=1

∑
j ̸=i

MI(ri, rj), (13)

where k is the dimensionality of the latent representation r. Theorem 8 follows, as proved in Ap-
pendix A.4.

Theorem 8 (Impact of passive variables on MIavg(z)) The averaged mutual information of sam-
pled representations decreases with the number of passive variables.

Limitations As it is using discretised values, averaged MI does not have the downside of TC
regarding the Gaussian assumption. However, because MI is averaged, it may diminish the strong
relationships between two variables if the other MI scores are close to zero, as seen in Theorem 8.

4.2.3 EFFECTIVE RANK

The effective rank of a matrix (Roy and Vetterli, 2007) is a real-valued generalisation of the integer-
valued rank of a matrix. More formally, let us consider a matrix A ∈ Rm×n. Its singular value
decomposition is A = USV T where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and
S ∈ Rm×n is a rectangular diagonal matrix containing the l singular values s1 ⩾ s2 ⩾ · · · ⩾ sl ⩾ 0
where l = min(m,n). The singular value distribution is given by:

pk =
sk∑l
i=1 si

for k = 1, 2, · · · , l.

The effective rank is then defined as:

erank(A) = exp
(
H(p1, p2, · · · , pl)

)
,

where H(p1, p2, · · · , pl) is the spectral entropy (Campbell, 1960; Yang et al., 2005):

H(p1, p2, · · · , pl) = −
l∑

k=1

pk log pk.

The effective rank is generally more informative than the rank as it can take all possible values
in the interval [1, l], whereas the rank is limited to integer values in the set {1, 2, ..., l}. Consider,
for example, a Gaussian distribution of dimension two whose variables are highly correlated. The
first singular value will dominate while the second will be close to zero. As both singular values are
higher than zero, the matrix rank will be two. However, because the second singular value is very
low, its effective rank will be only slightly above one. Overall, the effective rank tells us more about
the data than the integer-valued rank.

Limitations While the effective rank does not have the weaknesses of TC regarding the Gaussian
assumption nor averaged MI regarding the dilution of a strong relationship when dimensionality is
high, it would not make sense to measure it separately for each type of variables as the significance
of the dimensions would be relative to the subset considered. Thus, effective rank is only included
in Section 4.3, where we use it to analyse all variables jointly.
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4.3 Preliminary observations

As we have established in Section 3, the active variables of mean and sampled representations
should be similarly correlated. Hence, while Locatello et al. (2019b) concluded that uncorrelated
sampled representations did not guarantee uncorrelated mean representations, we argue that active
variables, which encode the most information, should have similar correlation in mean and sampled
representations. We thus suggest that the increased correlation of mean representations may be due
to mixed and passive variables. If the passive variables are, as hypothesised, responsible for the
higher correlation of mean representations, one should expect the effective rank to be close to the
total number of latent variables minus the passive ones.

Our preliminary observations are consistent with this hypothesis. Specifically, in sampled rep-
resentations, Figures 8a and 8b show that TC does not change when we increased the number of
passive variables and MI decreases, as described in Theorems 7 and 8. Moreover, Figure 8a shows
that the discrepancies between the total correlation scores of the mean and sampled representations
are increasing with the number of passive variables, and we can observe the same trend for mutual
information in Figure 8b. The effective rank of mean representations is, as shown in Figure 8c, close
to the total number of latent variables minus the passive ones. One can also notice that in sampled
representations, the effective rank is close to the total number of variables as the passive variables
are replaced by uncorrelated samples from N (0, 1), and those uncorrelated variables cannot reduce
the effective rank any more. Interestingly, in addition to showing an increased correlation of pas-
sive variables, the effective rank is also providing further confirmation that passive variables are
correctly identified in Proposition 4 and Section 4.1.
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Figure 8: Relationship between the number of passive variables and the total correlation, mutual
information, and effective rank scores of mean and sampled representations. Figures (a), (b) and
(c) use the representations learned by β-TC VAE trained on smallNorb, DIP-VAE II trained on
Cars3D, and β-TC VAE trained on colour dSprites, respectively. Lines indicate the metric scores of
the representation and the bars the average number of passive variables.

4.4 Impact of passive and mixed variables on averaged mutual information and total
correlation

To further validate our hypothesis that only mixed and passive variables are responsible for the
increased correlation of mean representations, we will compare TC and averaged MI scores with
and without mixed and passive variables. Thus, we will be able to determine whether we can have
an increased correlation between any dimensions of the mean representations, as initially inferred
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by Locatello et al. (2019b), or only between a specific subset corresponding to mixed and passive
variables.

As we have mapped each index of the mean and sampled representation to a specific variable
type in Section 4.1, we can now assess the impact of mixed and passive variables on TC and aver-
aged MI by comparing the scores with and without them. We first calculate TC and averaged MI
using the full representation and compare these scores with those obtained without passive variables
and with only active variables.
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(a) Full representation
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(b) Mixed and active variables
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(c) Active variables

Figure 9: Comparison of the averaged mutual information scores of the mean and sampled represen-
tations of DIP-VAE II trained on dSprites. In Figure (a), the number of passive variables increases
with λ leading to lower averaged MI scores for sampled representations. The mean and sampled
representation scores become more similar once passive variables are removed in Figures (b) and
(c).
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(b) Mixed and active variables
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Figure 10: Comparison of the total correlation scores of the mean and sampled representations of
β-TC VAE trained on noisy dSprites. In Figure (a), the number of passive variables increases with
β leading to lower TC scores for sampled representations. The mean and sampled representation
scores become more similar once passive variables are removed in Figures (b) and (c).
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Mutual information and total correlation of mean representations In Figures 9a and 10a, we
can see that the mixed and passive variables are raising the TC and averaged MI scores of the
mean representations (the dashed orange curves). Indeed, when these variables are removed, the
TC and averaged MI scores of the mean and sampled representations are quite similar, as observed
in Figures 9b and 9c, and Figures 10b and 10c. While the mixed variables impact the score to a small
extent, the passive variables lead to a dramatic score increase, especially for TC. These observations,
thus, show that active variables are as disentangled in mean as in sampled representations, and
passive variables of the mean representations should have strong correlations with other variables.
We, therefore, examine the correlation of passive variables in Section 5 to better understand with
which type of variable they are correlated and how this correlation emerges. Even before we present
this analysis, we should recall that passive variables of the mean representations performed better
on downstream tasks than their sampled counterpart, as observed in Section 4.1. Thus, to convey
useful information, the passive variables have to be correlated with known informative variables. As
a result, one should expect the passive variables in the mean representations to be correlated with
active ones. This is the subject of our investigation in Section 5.

5 Where does the correlation of passive variables in the mean representation come
from?

As the passive variables of mean representations lead to higher TC and averaged MI scores, they
should exhibit some correlation with other variables. This can be seen empirically in Figure 11
where the correlation between each latent variable of a β-VAE trained with β = 16 on colour
dSprites shows that, indeed, the passive variables tend to have strong correlation scores with one or
more variables, which is generally not the case for other variable types. This result should not be
surprising as VAEs optimise passive variables to be close to zero with low variance, but not to be
uncorrelated. However, one can ponder on the origin of these correlations. Are they present from the
beginning of the learning process and lead these variables to become passive, or are the correlations
the consequence of the variables being passive?

To gain some insights into this question, we trained a β-VAE with β = 8 on dSprites for 300K
steps and saved a snapshot of the model parameters every 1000 steps and observed the evolution of
the latent representations. Using the same technique as in Section 4, after the model has been trained
(i.e. after 300K training steps), we determined that the variables 1, 4, and 6 were passive, the vari-
ables 0, 3 and 8 mixed, and the remaining ones active. In Figure 12, we can see that the correlation
score of the passive variables is more often above 0.2 than the scores of the active variables across
the 300 snapshots recorded during the training process. This highlights the important correlation
scores of the passive variables in most of the training steps. Figure 13 shows that the correlation be-
tween passive variables and other variables varies significantly during the training process and can
be relatively high, while the correlation scores of active variables remain very low. These high cor-
relations are consistent with the observations of Section 4.1 where the logistic regression had better
accuracy with passive variables than with mixed ones. While a more in-depth study of the learning
dynamics of VAEs would be needed to provide a complete explanation of this phenomenon, the
frequent changes of the correlation scores makes it likely to be an inherent property of the neural
network training process.
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Figure 13: The correlation scores of the active variable at index 2 of the mean representation with
all the other variables during the 300K training steps of a β-VAE with β = 8 trained on dSprites.
We can see an increased correlation with all the passive variables (indexes 1, 4, and 6).

6 Conclusion

In their study, Locatello et al. (2019b) have reported that mean representations seemed to be more
correlated than sampled ones in a large number of experiments. They concluded that enforcing
uncorrelated sampled representations may not be sufficient to obtain uncorrelated mean representa-
tions. By extending the definition of the polarised regime to mean representations, we have shown
that while aiming to optimise uncorrelated sampled representations is not sufficient to guarantee
completely uncorrelated mean representations, it is sufficient to obtain uncorrelated active variables
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in mean representations. We thus hypothesised that the increasing discrepancies between the two
representations should only be attributed to a subset of variables: the passive ones. This hypothesis
was consistent across different levels of regularisation and has been further confirmed by empiri-
cal observations showing an increased correlation of passive variables. By considering the latent
representations over the whole dataset, we have also introduced mixed variables, a type of variable
that can either be active or passive depending on the input example provided. Our empirical results
confirmed the existence and importance of such variables.

Should we use mean representations for downstream tasks? One of the concerns that was
raised by the findings of Locatello et al. (2019b) was that mean representations, which are gener-
ally used for downstream tasks, would not benefit from the disentanglement that was exhibited by
sampled representations. However, we showed that active variables, the relevant part of the repre-
sentations, are quite similar in both representations. Thus, we can expect mean representations to
be as useful as sampled ones for downstream tasks. We established that the passive variables of
mean representations are near zero with low variance and seem to have an arbitrary high correla-
tion with other variables. Thus, one may want to remove them, especially when feeding the mean
representations into algorithms that are sensitive to near-zero or highly correlated features.

Generalisation of our results to other types of VAEs Because our paper explains the reason
of the discrepancies between the mean and sampled representations observed by Locatello et al.
(2019b), we chose to remain as close as possible to their experimental protocol, and used the same
models to obtain consistent results. However, the authors proved that unsupervised disentanglement
learning was not possible without further inductive biases. Thus one should keep in mind that
disentangled representations obtained from the models used in this paper can only be selected post-
hoc based on disentanglement metrics, which may not always be practical for downstream task
applications. Despite this, as described in Section 3, our explanation mainly relies on the polarised
regime, which has been shown to occur in any well-behaved VAE as long as their prior and posterior
distributions are Gaussian with diagonal covariances (Dai and Wipf, 2018; Rolinek et al., 2019; Dai
et al., 2020; Bonheme and Grzes, 2023). This makes our findings to readily applicable to identifiable
VAEs which can directly provide disentangled representations (Khemakhem et al., 2020; Mita et al.,
2021).

Other applications of this study While our main focus was to explain the higher correlation
observed in mean representations by Locatello et al. (2019b), our new definitions of the polarised
regime may also be useful to monitor the number of passive variables and prevent posterior collapse
due to over-regularisation (Lucas et al., 2019b; Dai et al., 2020).

Future work The surprising behaviour of annealed VAEs discussed in Appendix B and the corre-
lation of passive variables reported in Section 5 show that we could gain a deeper understanding of
the representations learned by VAEs by studying their learning dynamics more in depth. While this
was not the topic of this paper, we plan to address it in our future work. Indeed, we believe that this
could give more insight into how VAEs learn and how we can improve the learned representations.

Acknowledgments and Disclosure of Funding

20



BE MORE ACTIVE!

We thank our action editor and reviewers for their detailed and constructive feedback, which helped
us improve the quality of the present paper.

21



BONHEME AND GRZES

Appendix A. Derivations and proofs

A.1 Details of the simplification of Equation 9 to Equation 10

Equation 9 has the following form

TC(r) = DKL

(
N (r̄,Cov[r])

∥∥∥∥ d∏
j=1

N (r̄j ,Cov[r]jj)

)
.

We assume that all the distribution have a mean of zero. Thus,

TC(r) = DKL

(
N (0,Cov[r])

∥∥∥∥ d∏
j=1

N (0,Cov[r]jj)

)
.

Moreover, the second term of the KL divergence represents the case where r is composed of j
independent and normally distributed random variables. We can thus reexpress it as a multivariate
Gaussian distribution with diagonal covariance,

TC(r) = DKL

(
N (0,Cov[r])

∥∥ N (0, diag[Var(r)])
)
.

Now, let us define Σ ≜ Cov[r] and Σ̄ ≜ diag[Var(r)]. Using the analytical solution of the KL
divergence between two multivariate Gaussian distributions, we have:

TC(r) =
1

2

(
log

det(Σ̄)

det(Σ)
+ Tr(Σ̄−1Σ)− n

)
.

Because Σ and Σ̄ have the same diagonal values, Σ̄−1Σ = I and Tr(Σ̄−1Σ) = n. Thus,

TC(r) =
1

2

(
log det(Σ̄)− log det(Σ)

)
.

As Σ̄ is diagonal, this further simplifies to

TC(r) =
1

2

(
log

d∏
j=1

Σ̄jj − log det(Σ)

)
,

=
1

2

( d∑
j=1

log Σ̄jj − log det(Σ)

)
,

=
1

2

( d∑
j=1

log Var(rj)− log det(Cov[r])

)
,

as expected.

A.2 Proof of Theorem 5

Proof Let zj be the sampled representation variable at index j. There are three cases:
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(i) If j ∈ Vp, then, from statement (i) of Proposition 3, µj is almost constant with a value close
to 0. Thus, zj ≈ ϵjσ

1/2
j . Using statement (i) of Proposition 4, we also know that σj is almost

constant with a value close to 1, thus σ1/2
j ≈ 1 and zj ≈ ϵj . It follows that p(zj) ≈ p(ϵj),

which proves statement (i).

(ii) If j ∈ Va, then, from statement (ii) of Proposition 4, σj is almost constant with a value close
to 0. Thus, zj ≈ µj . It follows that p(zj) ≈ p(µj), which proves statement (ii).

(iii) If j ∈ Vm, then from statement (iii) of Definition 2 we know that zj is composed of a subset
of active components and a subset of passive components. Thus, zj is distributed according
to a mixture distribution. Using step (i) and (ii) of the proof, we know that p(zj) ≈ p(ϵj) for
passive variables and p(zj) ≈ p(µj) for active variables. It follows that for mixed variables
p(zj) = c p(ϵj) + (1− c) p(µj) where 0 < c < 1. This concludes the proof.

A.3 Proof of Theorem 7

Proof Let us consider a sampled representation z with n latent variables having a covariance matrix
Cov[z] ∈ Rn×n. Now, let us create a second sampled representation ẑ by concatenating the latent
variables of z with m passive variables. The resulting covariance matrix Cov[ẑ] can be partitioned
as

Cov[ẑ] =

[
Cov[z] 0n,m
0m,n Im,m

]
.

From this, we can immediately see that

n+m∑
i=1

(log Cov[ẑ]ii) =

n∑
i=1

(log Cov[z]ii) +

m∑
i=1

(log Iii)

=

n∑
i=1

(log Cov[z]ii).

(14)

Moreover, as Cov[z] is invertible, using Schur’s identity (Brualdi and Schneider, 1983):

det(Cov[ẑ]) = det(Cov[z]) det(I − 0m,nCov[z]
−10n,m)

= det(Cov[z]) det(I)

= det(Cov[z]).

Thus,
log det(Cov[ẑ]) = log det(Cov[z]). (15)

Recall from Equation 10 that

TC(ẑ) =
1

2

(
n+m∑
i=1

(log Cov[ẑ]ii)− log det(Cov[ẑ])

)
. (16)
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Using the result of Equation 14, we can replace the first term of Equation 16, so that

TC(ẑ) =
1

2

(
n∑

i=1

(log Cov[z]ii)− log det(Cov[ẑ])

)
. (17)

Finally, we can replace the second term of Equation 17 using Equation 15 to obtain

TC(ẑ) =
1

2

(
n∑

i=1

(log Cov[z]ii)− log det(Cov[z])

)
,

= TC(z),

as required.

A.4 Proof of Theorem 8

Proof Let us consider a sampled representation z ∈ R2 composed of two active variables z1 and
z2 such that MI(z1, z2) = c with c > 0. As MI is symmetric, we have MIavg(z) =

1
22c = c.

Now, let us consider a sampled representation ẑ ∈ Rn composed of the two actives variables of z
and n− 2 additional passive variables {zj}nj=3.
Because passive variables do not contain any information about the input, the mutual information
between an active variable i and a passive variable j will be zero (i.e., MI(zi, zj) = 0). Passive
variables are also independent and normally distributed, hence the mutual information between two
different passive variables i and j will also be zero. We thus have

MIavg(ẑ) =
1

n2 − n

∑
i∈Va

∑
j∈Va
i ̸=j

MI(zi, zj) + 2
∑
i∈Va

∑
j∈Vp

MI(zi, zj) +
∑
i∈Vp

∑
j∈Vp

i ̸=j

MI(zi, zj)

 ,

=
1

n2 − n
2c < MIavg(z),

as required.

Appendix B. The curious case of Annealed VAE

In opposition to the other models that we studied in this paper, annealed VAE surprisingly exhibits
a high number of passive variables regardless of the regularisation strength on most datasets, which
can be seen in Figure 14. Note that in contrast to the remaining architectures that we study, a higher
value of the hyperparameter C means that the regularisation strength decreases, whereas higher β
in β-VAEs implies stronger regularisation. As Burgess et al. (2018) originally argued that a higher
channel capacity, C, should help the model to learn more latent factors as the training progresses,
one would assume that the number of active variables should increase with a higher value of C, but
it is generally not the case in Figure 14.
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(b) Scream dSprites
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(c) Cars3D

Figure 14: Number of passive, mixed and active variables of annealed VAE trained on dSprites,
scream dSprites and cars3D with decreased regularisation strength. The results are averaged over
50 runs for each regularisation value.

Given the near constant number of passive variables observed across all the bars in Figure 14,
one could expect similarly constant TC and averaged MI scores. However, we can see in Figures 15
and 16 that the TC and averaged MI generally decrease with higher regularisation strengths. More-
over, Figure 18 shows that removing the passive variables effectively reduces the overall TC and av-
eraged MI scores, suggesting that a higher channel capacity, C, (i.e., a lower regularisation strength
at the end of training) may encourage the passive variables of mean representations to be more cor-
related. This is further confirmed in Figure 17, where we can see that the effective rank obtained
with a higher channel capacity and less passive variables is close to the one obtained with a lower
channel capacity and more passive variables. For example, in cars3D, the effective rank of the mean
representation for a channel capacity of 25 and 4 passive variables is the same as the one obtained
for a channel capacity of 100 and 3 passive variables. In conclusion, despite their near-constant
number of passive variables, annealed VAE’s results are consistent with our other findings: the pas-
sive variables of the mean representations are still responsible for the higher TC and averaged MI
scores, but their correlation seems to increase with the channel capacity, C.
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Figure 15: Comparison of the total correlation and averaged mutual information with the number of
passive variables of mean and sampled representations of annealed VAE trained on dSprites. Figure
(a) is the total correlation and Figure (b) the averaged mutual information. The lines indicate the
metric scores of the two representations, and the bars the average number of passive variables.
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Figure 16: Comparison of the total correlation and averaged mutual information with the number of
passive variables of mean and sampled representations of annealed VAE trained on Cars3D. Figure
(a) is the total correlation and Figure (b) the averaged mutual information. The lines indicate the
metric scores of the two representations, and the bars the average number of passive variables.
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Figure 17: Comparison of the effective rank with the number of passive variables of mean and
sampled representations of annealed VAE trained on dSprites and Cars3D. The lines indicate the
metric scores of the two representations, and the bars the average number of passive variables.
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Figure 18: Comparison of the total correlation and averaged mutual information scores of the mean
representation of annealed VAE trained on scream dSprites. Figures (a) and (b) are the results of the
total correlation and averaged mutual information score using the full representation, and figures (c)
and (d) are the results using active variables only.
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