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Abstract 

Background and objective: A diversified dataset is crucial for training a well-generalized supervised computer vision 

algorithm. However, in the field of microbiology, generation and annotation of a diverse dataset including field-taken images 

are time-consuming, costly, and in some cases impossible. Image to image translation frameworks allow us to diversify the 

dataset by transferring images from one domain to another. However, most existing image translation techniques require a 

paired dataset (original image and its corresponding image in the target domain), which poses a significant challenge in 

collecting such datasets. In addition, the application of these image translation frameworks in microbiology] is rarely discussed . 

In this study, we aim to develop an unpaired GAN-based (Generative Adversarial Network) image to image translation model 

for microbiological images, and study how it can improve generalization ability of object detection models.  

Methods: In this paper, we present an unpaired and unsupervised image translation model to translate laboratory-taken 
microbiological images to field images, building upon the recent advances in GAN networks and Perceptual loss function. 

We propose a novel design for a GAN model, BioGAN, by utilizing Adversarial and Perceptual loss in order to transform 

high level features of laboratory-taken images of Prototheca bovis into field images, while keeping their spatial features. 

Results: We studied the contribution of Adversarial and Perceptual loss in the generation of realistic field images. We used 

the synthetic field images, generated by BioGAN, to train an object-detection framework, and compared the results with those 

of an object-detection framework trained with laboratory images; this resulted in up to 68.1% and 75.3% improvement on F1-

score and mAP, respectively. We also present the results of a qualitative evaluation test, performed by experts, of the similarity 

of BioGAN synthetic images with field images. 

Conclusion: An unpaired image-to-image translation model for transforming the lab-taken microbiological image to field-like 

images is proposed. Synthetically generated images by our model are compared with the generated images by standard multi-

purpose models. Codes are publicly available at https://github.com/Kahroba2000/BioGAN. 

 
Keywords: Image-to-image translation; Computational biology; Image translation; Data augmentation; Computerised biology 

1. Introduction 

Computerized image processing in biological images has drawn the attention of researchers due to its potential 

in various applications, including cell counting [1] and disease diagnosis [2,3]. Most state-of-the-art object 

detection algorithms are built on deep neural networks, which have the challenge of needing a large dataset, often 

also requiring high quality annotations. Furthermore, when it comes to training object detection algorithms, there 

are additional requirements, such as having a diverse dataset that covers a wide range of possible conditions (i.e. 

different brightness, contrast, resolutions, etc.). In microbiology, images collected in the field (i.e. in real growing 

media including water, stool, etc.) have been used in the past to train object detection algorithms, in order to 

analyze biological systems in real conditions; these studies have had varying degrees of success [4,5]. Having a 

diverse dataset including field taken images can lead to a well-generalized object detection model, but as one can 

imagine, collecting a large, diverse dataset can be expensive, tedious, and in some cases impossible. In the context 

of the current study, i.e. parasite detection in the field in low income countries, these algorithms need to perform 

well on images, of vastly varying quality, which are collected using low-cost portable devices (e.g. a smartphone). 

Although bio scientists are increasingly sharing data online (e.g. any bio data archive), most datasets consist of 

laboratory-taken data, due to the inherent challenges of collecting field data. 

Image-to-image translation (I2IT) refers to techniques that map (transform) an input image, 𝑥, to a target output 

image, 𝑦, ( 𝑦 = 𝑓(𝑥)) [6]. Such techniques have been widely implemented to tackle challenges in different 

domains, e.g. translation of aerial images of natural landscape into city-street maps or translation of daytime 

images into nighttime images, or translation of young faces into aged faces [7–9].  
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Prior to the development of GANs (Generative Adversarial Networks) [10], various traditional techniques 

based on machine learning approaches have been developed to tackle different challenges including colorization, 

de-noising, etc. For example, [11] have utilized two different deep convolutional neural networks to extract high-

level, mid-level and global features from a grayscale input image and to colorize it. In this approach, the optimizer 

penalizes the difference between ground truth colorful and input image through backpropagation. However, 

according to [12] and [13], minimizing Euclidean distance between generated synthetic image and ground truth 

(GT) in traditional approaches often leads to blurry images. Fortunately, GANs [10] have revolutionized I2IT, 

because, unlike the traditional approaches which treat pixels independently, GANs aim to find the mapping 

function between input images and output images, instead of minimizing Euclidean distance. This helps to block 

low quality images as they will be easily distinguishable by discriminators as fake images.  

Following the progress of GAN networks, conditional GANs (cGAN) [14] (i.e. adding the condition as an 

input to both generator and discriminator) has gained momentum in the field of image translation too. Conditioned 

generators and discriminators help faster convergence in the training process, and also generate more controllable 

synthetic images [7]. Conditional GAN networks have tackled various challenges including photorealistic image 

generation from semantic segmentation [15], domain transfer in fashion image (e.g. Generation or changing the 

subject’s dress in input image) [16], prediction of lost frames in a video stream (i.e. in order to increase framerate) 

[17], style transferring (e.g. adopting the texture of one image to another) [18], to name a few. Despite the 

impressive success of these studies, requirements of a paired dataset (i.e. input images and their corresponding 

output images) to train the model is a deterring barrier for training and utilizing them. To overcome this, the idea 

of using cycle-consistency loss to train GAN-based image translators with unpaired data has been proposed by 

[7]. Cycle-consistency loss is made of two forward and backward consistency objectives, which aim to reach 

𝐹(𝐺(𝑥)) = 𝑥 in the forward consistency objective, and 𝐺(𝐹(𝑦)) = 𝑦 in the backward consistency objective. The 

cycle-consistency loss approach has led to several new architectures [8,9,15,19–24]. Despite intensive research 

of I2IT in general domains, its application in medical and microbiological images is still in its infancy. For 

instance, Karim et al. [25], developed a cGAN network to minimize the high level features discrepancies between 

CT (Computed Tomography) and MRI (Magnetic Resonance Imaging) images to highlight more meaningful 

features for the clinicians. In another study, [26], has developed a new GAN network (known as MI-GAN) to 

generate synthetic retinal images from random noise vectors in order to enlarge and diversify image datasets. 

Based on the concept of cycle-consistency loss [7], [27] developed an I2IT framework for synthetically generating 

Covid-19 diagnosed chest X-ray images. In this way, the challenges of training deep neural networks with little 

data were overcome. The use of I2IT techniques to deal with lack of data has been applied to other medical 

imaging problems, such as skin lesion detection [28] as well, however, there are only a few studies that have 

applied GAN I2IT to microbiological images.  

Bailo et al., [29], implemented a novel GAN network for red blood cell image augmentation, in which they 

have trained two cascaded generators, where the first one generates random instance masks while the second 

generator translates the instance masks into synthesized blood cells. As another application of I2IT models in 

microscopy images, [30] proposed an I2IT model based on the idea of Cycle-consistency [7], to artificially 

staining histological images, or transforming dead phytoplankton cells to living cells [31]. Our finding shows that 

application of I2IT models in microbiology is still very limited. One such possible application is the translation 

of laboratory-taken to field-taken images. As shown in Fig. 1, the visual characteristics of microbiological images 

(of the Prototheca bovis parasite) taken in the laboratory are significantly different from field images, due to 

different reasons, including different photography conditions, image acquisition devices, and most critically the 

growing media such as water, stool, soil, etc., which can even affect cells’ morphology.  

Considering the significant difference in cell morphology between laboratory-taken and field-taken 

microscopic images (i.e. Fig. 1), the effort to develop object (parasite) detection algorithms for microscopic 

images is hampered by the limited access to field images. So in this paper, we explore whether and how I2IT can 

be a reasonable solution to generate synthetic field-like images using laboratory-taken images. This is especially 

challenging because most of the I2IT models require paired data sets which is almost impossible to generate in 

large numbers for microbiology images. Therefore, we aim to propose a new unpaired GAN-based image-to-

image translation design for microbiological image translation, inspired by previous work including [7] and [32]. 

More specifically, in this study we aim to demonstrate a novel method of using I2IT, which translates laboratory-

taken images into synthetic field images to overcome the challenge of accessing field images to train object 

detection algorithms, which can be useful in parasitic disease detection. 

 



 

 

 
 

 

 

 

Fig. 1. Example images of Prototheca bovis that are taken in the laboratory (A) and field environment (B). Moving from laboratory image to 

field image, both background texture (orange box) and target objects texture (yellow box) change. (Colourful) 

2. Methods 

The backbone of our model is based on a GAN network with a new loss function as shown in Fig. 2. The first 

two subsections present the architecture of our proposed GAN network (2.1) and the loss functions (2.2). 

Subsection 2.3 explains the training procedures and the hyper parameters of our proposed model (BioGAN). 

2.1. Model architecture 

I2ITs can be viewed as a function to map an input image to an output image that carries most or parts of spatial 

features with different appearance. Fortunately, this mapping function is very similar to what has been done in 

GAN [10]. Thus, inspired by [7,32,33], we utilized a GAN network with a generator and discriminator as 

discussed as follows. In our proposed approach, a new sort of Adversarial plus Perceptual loss has been 

implemented to encourage the generator to learn to create more realistic synthetic images from unpaired data. 

Furthermore, the backbone of the script including the generator and discriminator has been adopted from [7] and 

[34]. 

 

 
 

Fig. 2. Overview of the proposed model (Colourful) 

 

Generator: To map two high-resolution images from one domain to another, a variety of transformers based 

on neural networks have been developed. Encoder-decoder architectures [35] and residual networks (Res-Net) 

[36] are two networks widely used in previous studies where the input image should be passed through all layers 

to reach the end layer. Due to the fact that in I2IT a big portion of the low-level structural features are shared 

between input and output images, it would be desirable to directly pass these features to the output to avoid any 

possible distortion. For this purpose, U-Net [37] with skip connections to bypass bottleneck layers is a common 

technique that has been utilized in studies such as [6] and [25].  

 

 

 

 

 

 

Fig. 3. Two different generator architectures: U-Net (A) and  Res-Net (B) 



We implemented two separate generator architectures based on the Res-Net and U-Net. The implemented Res-

Net contains three convolutional layers followed by nine residual blocks, further two convolutional layers and 

another deconvolution layer (see fig. 3.B). Apart from the last convolution layer, all previous Conv/Deconv layers 

are followed by a ReLU (Rectified Linear Unit) activation function and batch normalization (i.e. the last 

convolutional layer is followed by a Tanh activation function). For the U-Net, eight down-sampling, and eight 

up-sampling layers were implemented as shown in Fig. 3.A. 

We compared qualitatively Res-Net against U-Nets by visually evaluating the output images. As shown in Fig. 

4, as expected, the generated synthetic images with U-Net seem to have resembled more precise and sharper 

contents’ objects in comparison with the Res-Net that has passed the input image through all layers. 

 

 
 

Fig. 4. Generated images via Res-Net (A) vs U-Net (B). Due to passing the spatial features through the skipping link in the U-Net, it 

produces sharper content. (Colourful) 

 

Although the U-Net generator has shown more capability in transferring meaningful spatial features (see 

yellow boxes in fig. 4), our observation shows that it fails to translate low frequency background which is very 

common in the laboratory microbiological images (see pixelated background in fig. 4.B). This is due to the 

implementation of U-Net with the kernel size of 4 and stride of 2 on convolutional layers, leading to a 

pixellation in low-frequency background regions as depicted in fig. 5.A. To resolve this issue along with keeping 

the advantage of the U-Net generator over Res-Net, a modified version of the generator with kernel size of 3 and 

stride of 1 was implemented.  Results show that using convoluted kernels with smaller stride gaps leads to a better 

reconstruction as shown in Fig. 5.B. 

 

 

 
 

 

 
 

 

 
Fig. 5. Examples of the U-net generated image with stride of 2 (A) and 1 (B). (Colourful) 

 

Discriminator: Discriminator is a binary classifier that is responsible for differentiating between synthetic 𝑥′, 

and target image, 𝑦. Conventional L2 and L1 loss functions in classical discriminators lead to blurry images, and 

also fail to encourage generating high-frequency crispness [6]. To model the high frequency sections of the input 

image, [6] suggested focusing on the structure of patches in each image, instead of looking at the entire image as 

a whole. Unlike full-image discriminators that pass a fix-sized input image through a fully convolutional network, 

PatchGANs discriminator gets an arbitrary sized input image and encourages the generator to penalize the 

structure at the patch scale. Because of that, PatchGANs discriminator can be understood as another level of 

style/texture loss function on top of the style loss function. Thus following [6,7,18,38], we used a 70 × 70 

PatchGANs to classify synthetic and target (i.e. real field-taken) images. 

2.2. Loss functions 

One of the main objectives in microscopic I2IT is to transfer the texture of the entire input image to the target 

image, similar to what has been done in [32,33,39,40]. Perceptual loss [32,33,39,40] has shown impressive 

success in encouraging convolutional neural networks to transfer high level features of an input image to others. 

However, in the context of parasite segmentation, apart from the image texture, lower level features including the 

appearance of the individual cells in microbiological images are also important. Thus, our model aims to transfer 

the texture of the field-taken images to laboratory-taken images, along with the appearance of the parasites. The 

structural features (i.e. cell’s outline) of the input image should remain constant. In the following two subsections 

two elements of our global loss function will be discussed in detail: Adversarial loss and Perceptual loss. 

 



2.2.1 Adversarial loss 

 

The key loss function of GANs is Adversarial loss, which represents the probability of error of an image, i.e. 

whether it is real or synthetic. However, conditioning adversarial loss function with some extra information (for 

example, the label of the synthetic hand-written digit you want the generator to generate on the MNIST dataset, 

or the conditions you want the synthetic image to meet) helps to minimize the difference between the synthetic 

image generated by the generator and the target image [6] as follows: 

 

         𝐿𝑎𝑑𝑣(𝐺, 𝐷) =  𝔼𝑥,𝑦[𝐿𝑜𝑔𝐷(𝑥,𝑦)] + 𝔼𝑥,𝑧[𝐿𝑜𝑔( 1 − 𝐷(𝑥 , 𝐺(𝑥,𝑧)))]  (1) 

 

, where x, y are input and target images, z represents the conditional variant. The training objective is: 

 
𝑚𝑖𝑛

𝐺

𝑚𝑎𝑥

𝐷
𝐿𝑎𝑑𝑣(𝐺, 𝐷) 

Unlike classical I2IT models which aim to penalize the Euclidean distance between the input and target 

images’ pixels, conditional adversarial loss looks at the similarity of two images from a higher level as a whole. 

However, for faster convergence, and for encouraging the model to generate a less blurry image, a combination 

of the adversarial loss with traditional loss function (including L2 or L1) [6,12], can be used, although paired data 

is required for this objective. Therefore, for faster convergence, and to avoid blurry/low contrast images, we have 

utilized a pre-trained VGG16 network to create style reconstruction and content reconstruction loss [32,33,39] as 

explained in the following subsection (2.2.2). 

 

2.2.2 Perceptual loss 

 

Perceptual loss is another element included into BioGAN loss function. Perceptual loss is a non-adversarial 

loss function, introduced by [32,33,39,40], that measures Perceptual differences between the two images' content 

and style. A perceptual loss function computes the sum of all the squared errors between all pixels within an 

image, unlike a pixel-wise loss, which computes the sum of absolute errors between pixels. In other words, the 

perceptual loss function can be used to analyze two images from a higher level, for example, examining the 

difference in the textures of the images. It is therefore possible to use Perceptual loss to transmit high-level 

features of images to others while maintaining their spatial features, including their main contents. 

In BioGAN due to the absence of paired data, encouraging the generator to generate a decent un-blurred output 

without pixel-wise optimization is challenging. In our work, in order to compensate for the absence of loss in 

pixel level and for faster convergence of the generative G’s loss, we use Perceptual loss [32,33,39,40] to map the 

style of the target image and the content of the input image. Perceptual loss looks at the discrepancy of style and 

content of images from a higher level, which is different from pixel-level loss. To transfer meaningful features 

from the style of the target images 𝑦 to the input image 𝑥, the global Perceptual loss from the combination of 

Style Reconstruction loss and Content Reconstruction loss has been utilized, as they are discussed below. 

 

Style reconstruction loss: Comparing laboratory-taken microscopic images with field-taken images, the 

high-level characteristics (e.g. style/texture) of the images can be significantly different, due to the nature of the 

media that cells have been grown in. To minimize the style discrepancy between the target image and synthesized 

image, we use a pre-trained VGG16 image descriptor, containing five convolutional blocks including two to four 

layers, similarly to [32], which reconstructs the output image’s styles with respect to the target image. The style 

is reconstructed from  a  combination of different layers of convolutional blocks, including ‘Relu1_1’, ‘Relu2_1’, 

‘Relu3_1’, ‘Relu4_1’, and ‘Relu5_1’ as shown in Fig. 6. Each layer has 𝑁𝑙 feature maps (i.e. filters) with size 𝑀𝑙, 

where 𝑀𝑙 is the height of the feature map times the width of the feature map. The correlation between the style of 

the output image and target image is represented by a Gram matric 𝐺𝑗,𝑖
𝑙  which is the inner product between the 

vectorised feature maps 𝑖 and 𝑗, within layer 𝑙, as defined below: 

𝐺𝑗,𝑖
𝑙  = ∑ 𝐹𝑖𝑘

𝑙 𝐹𝑗𝑘.
𝑙

𝑘                                                       (2) 

 
where 𝐹𝑖𝑘

𝑙  is the activation of the 𝑖𝑡ℎ filter at position 𝑗, within layer 𝑙 [32]. Let 𝐺𝑙  𝑎𝑛𝑑 𝐴𝑙 be the output and the 

target images’ style representatives at layer 𝑙, then the contribution of each layer in the style reconstruction is 

computed as below: 

 

      𝐸𝑙 =
1

4𝑁𝑙
2𝑀𝑙

2 ∑ (𝐺𝑗,𝑖
𝑙 −  𝐴𝑗,𝑖

𝑙 )2
𝑖,𝑗                           (3) 



 

and the style reconstruction loss is defined as below: 

 

𝐿𝑠𝑡𝑦𝑙𝑒 = ∑ 𝜆𝑠𝑙𝐸𝑙
𝐿
𝑙=0       (4) 

 

where L is the total number of layers and 𝜆𝑠𝑗 is the weight of contribution of 𝑙𝑡ℎ layer in global loss. As shown in 

Fig. 6, the reconstructed style from high level layers (e.g. starting from Relu1-1 from Fig. 6) results in smaller-

scale structure reconstruction. We have utilized five layers (‘Relu1_1’, ‘Relu2_1’, ‘Relu3_1’, ‘Relu4_1’, and 

‘Relu5_1’) for style reconstruction loss, as they produced the most visually consistent style. 

 

 
 

Fig. 6. Perceptual loss network to measure two elements: style reconstruction and content reconstruction. Style reconstruction, from 

different layers of the pre-trained feature extractor model of VGG16, has been done via a) ‘Relu1_1’ b) ‘Relu1_1’, ‘Relu2_1’ c) ‘Relu1_1’, 

‘Relu2_1’, ‘Relu3_1’  d) ‘Relu1_1’, ‘Relu2_1’, ‘Relu3_1’, ‘Relu4_1’ e) ‘Relu1_1’, ‘Relu2_1’, ‘Relu3_1’, ‘Relu4_1’, and ‘Relu5_1’ layers. 
Style reconstruction from higher level conveys larger-scale style structure. Content reconstruction has been done via f) ‘Relu4_2’. 

(Colourful) 

 

 

Content reconstruction loss: Due to the absence of paired images for pixel reconstruction loss (i.e. 

reconstruction of content at pixel level), and due to the importance of transferring meaningful spatial features 

from the content of the input image to the output image, Content loss aims to minimize the content discrepancies 

between input and synthetic images. Like the style reconstruction, for content reconstruction, the input image and 

the output image’s content are represented by Gram matrices 𝐺𝑙  𝑎𝑛𝑑 𝑃𝑙 , respectively. So, the Content loss is 

represented by Eq. (5) : 

𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 =
𝜆𝑐𝑙

2
∑ (𝐺𝑗,𝑖

𝑙 − 𝑃𝑗,𝑖
𝑙 )2

𝑖,𝑗     (5) 

 
where L is the total number of layers (i.e. in this case one) and 𝜆𝑐𝑙is the weight of the layer contribution. Content 

reconstruction from lower layers of the feature extractor preserves the main content with original properties, while 

deeper reconstruction would slightly disturb the high level features of the contents (i.e. colour, shape, texture, etc.) 

[6,11,41]. In this study, we have reconstructed the content from layer Relu4-2 as [34]. 

2.3.  Training 

To train BioGAN, we have used the collected field images as target images, and laboratory-taken images as 

input ones. BioGAN was trained end-to-end via a min-max optimization task upon the following global loss 

function: 

 

𝐿𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 =  𝜆𝐴𝐿𝐴𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 + 𝜆𝑆𝐿𝑆𝑡𝑦𝑙𝑒 + 𝜆𝐶𝐿𝐶𝑜𝑛𝑡𝑒𝑛𝑡    (6) 

 

All lost elements in Eq. 5 are weighted by 𝜆 in order to tune the influence of each of them on global loss, 

𝐿𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 . The parameters, 𝜆𝐴, 𝜆𝑆, and 𝜆𝐶 , are chosen to be 104, 1.0, and 0.4, respectively, after more than 50 

trials. Table 1 shows the training pipeline of our model. 

 

 



   Table 1. Training pipeline of our model 

 
Require: Unpaired training datasets {(𝒙𝒋, 𝒚𝒋)}𝒋=𝟏

𝑻  

Require: A selected target style image from target images Y 

Require: Training with #𝒆𝒑𝒐𝒄𝒉 = 𝟏𝟎𝟎, 𝝀𝑨 = 𝟏𝟎𝒆𝟑, 𝝀𝑺 = 𝟏. 𝟎 , 𝝀𝑪 = 𝟎. 𝟒 

Require: Pre-trained model of VGG16 
 

1: For n=0, 1, …. #𝒆𝒑𝒐𝒄𝒉 do: 

2:     For m=0,1, T do: 

3:          For k=0, 1, #𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏 do: 

4:               𝑳𝑨𝒅𝒗𝒆𝒓𝒔𝒂𝒓𝒊𝒂𝒍  ← − 𝑳𝒐𝒈(𝑫(𝑮(𝒙𝒎,𝒛), 𝒙𝒎) 

5:               𝑳𝑺𝒕𝒚𝒍𝒆  ←  ∑ 𝝀𝒔𝒍. 𝑬𝒍
𝑳
𝒍=𝟎  

6:               𝑳𝑪𝒐𝒏𝒕𝒆𝒏𝒕  ←  
𝝀𝒄𝒍

𝟐
∑ (𝑮𝒋,𝒊

𝒍 − 𝑷𝒋,𝒊
𝒍 )𝟐

𝒊,𝒋  

7:               𝜽𝑮 ←+ 𝝀𝑨𝑳𝑨𝒅𝒗𝒆𝒓𝒔𝒂𝒓𝒊𝒂𝒍 + 𝝀𝑺𝑳𝑺𝒕𝒚𝒍𝒆 + 𝝀𝑪𝑳𝑪𝒐𝒏𝒕𝒆𝒏𝒕 

8:          End  

9:          𝑳𝑫𝒊𝒔𝒄𝒓𝒊𝒎𝒊𝒏𝒂𝒕𝒐𝒓  ←  𝑳𝒐𝒈(𝑫(𝑮(𝒙𝒎,𝒛), 𝒚𝒎) + 𝑳𝒐𝒈(𝟏 − 𝑫(𝑮(𝒙𝒎,𝒛), 𝒙𝒎) 

10:        𝜽𝑫 ←+ 𝑳𝑫𝒊𝒔𝒄𝒓𝒊𝒎𝒊𝒏𝒂𝒕𝒐𝒓 

11:    End 

12: End 

 

 

Generally, when an image is generated by adapting the content from one image and the style from another, it 

is unusual to generate an image that completely matches both criteria [30]. Therefore, the use of weights (𝜆𝐶 , 𝜆𝑆, 

and 𝜆𝐴) becomes very important to achieve a balance between the required style and content 

reconstruction. According to our observation, the higher the value of 𝜆𝑆 the closer the style of the generated image 

to the reference image, while the higher 𝜆𝐶  the closer the content of the generated image to the input image. Due 

to the fact that adversarial loss weight, 𝜆𝐴, looks at an image from a higher level and compares how similar the 

synthetic images are to the field-taken images, we gave the most weight to adversarial loss weight. Fig. 7 presents 

some synthetic images generated with different combinations of 𝜆 weights. 

 

 
 

Fig. 7. Synthetically generate images with different 𝜆 value combinations. 

BioGAN was trained with 20 laboratory and 20 field images of Prototheca bovis for 100 epochs. Due to the 

memory constraint, all input and output images were set to the fixed size of 1024 × 768 for training. Fig. 8 shows 

samples of synthetic field images generated by BioGAN and two other baselines (see Results section for more 

details). The training time is highly dependent on the image size and the generator architecture. In the case of our 

proposed generator architecture, each iteration of each epoch took around 192 seconds for the U-Net (stride of 1 

on convolutional layers), and 13 seconds for the Res-Net generator on a CUDA enabled NVIDIA GT730 GPU. 

For the testing, the inference time of BioGAN was found to be ~92 seconds. 

3. Results 

In this section we introduce firstly (subsection 3.1) the images we have used to train and evaluate the 

performance of our model. Specifically, to evaluate the fitness of the synthetic images produced by our model, 

we compare the results of our BioGAN algorithm with two other baselines, which have been used for unpaired 

image translation [7], and for transferring images’ styles [32]. Given that the first baseline (CycleGAN) uses 

Cycle-Consistency loss (i.e. Adversarial loss in conjunction with pixel-level loss), and that the second baseline 

(Fast-style-transfer) uses Perceptual loss, while our model uses both, the comparison of the three models can help 

us to discriminate the contribution of each loss in generating microbiology field-like images. We present the 

results of a qualitative comparison in subsection 3.2.1, and the results of a qualitative comparison in section 3.2.2. 



3.1. Data collection and preparation 

We collected a dataset of bright-field microscopic laboratory images of Prototheca bovis, as well as field 

images of the same parasite. As it can be seen in Fig. 8, Prototheca’s visual characteristics change significantly 

when grown in the laboratory or in the field, thus introducing additional challenges for I2IT. Laboratory samples 

are clean parasites that were grown in a laboratory environment, while field samples were produced by growing 

parasites in pig stool. The process of data collection was run and supervised by experienced biologists. In this 

study, 40 laboratory-taken images and 40 field images of Prototheca bovis were captured with a VWR IT 404 

Inverted microscope’s ocular lens (optical magnification of 400X and resolution of 4032 H×3024V). 

 

 

 

 

 

 

 

 
Fig. 8. Example images of Prototheca bovis parasites. Top row: laboratory samples. Bottom row: field samples 

 

In total, 80 images were collected, 40 laboratory images with 1358 parasites, and 40 field images with 2899 

parasites. These images were then annotated in COCO format [42] that enables us to train the object detection 

algorithms as explained in the following subsection, 3.2. 

3.2. Performance evaluation 

Following the training step explained in section 2.3 for our model, we fed 40 laboratory-taken images to the 

model for generating synthetic images. Similar procedures were applied for the two baseline models to generate 

synthetic images. We used both qualitative and quantitative approaches to evaluate the synthetic images generated 

by our model and by the two baselines.  

Qualitative evaluations involve asking human raters to assess the realism of the generated images, [6,7], as 

explained in subsection 3.2.1. Because of the nature of our unpaired I2IT model and the absence of reference 

images, we had to quantify the quality of the synthetic images via a supervised object detection algorithm as 

explained in subsection 3.2.2. 

3.2.1 Qualitative evaluation 

Fig. 9 shows three original laboratory images and the corresponding synthetic images (generated by our model, 

CycleGAN, and Fast Style Transfer), which are supposed to look like target images (field images, one reported 

in Fig. 9 for comparison). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. Example of laboratory-taken images with their corresponding translation under the three models a) CycleGAN b) Fast-Style-Transfer 

c) BioGAN  



Fig. 10 reports close-ups of synthetic images from the three models. Figs. 9 and 10 reveal the difference in the 

background structures of the synthetic images generated by BioGAN, Fast Style Transfer, and CycleGAN, 

respectively: the images generated via the Fast Style Transfer model seem to have a smoother structure with less 

scattered debris when compared with images from the other two models. Still, visual inspection shows that the 

background of CycleGAN and BioGAN synthetic images is more similar to the background of target images. 

Furthermore, the contents’ contrast/gamma of Fast Style Transfer and BioGAN images seem to be more similar 

to the target images, when compared with CycleGAN images; this is arguably due to the application of Perceptual 

loss. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10. A laboratory-taken image translated to a field-like image via three models.  

Some studies, such as [7], used AMT (Amazon Mechanical Turk) for qualitative evaluation, with a public 

participant pool rating the synthetic images. For our study, using a public participant pool would not have been 

achievable because of the need for domain knowledge, due to the nature of parasite images; this motivated the 

use of two experienced biologists for our qualitative evaluation, reported Table 2. 

 
Table 2. Qualitative evaluation of synthetic images from the three models of BioGAN, Fast Style Transfer, and CycleGAN; ratings by two 

expert biologists, from zero to ten, where zero means lowest similarity between synthetic and target image, and ten means highest similarity. 
Means and standard deviations based on ratings of 40 synthetic images. 

 
 CycleGAN Fast Style Transfer BioGAN 

Mean score 7.2 ± 1.9 7.6 ± 1.6 8.3 ± 1.3 

 

    Biologists were shown 40 groups of 3 randomly sorted synthetic images, each image generated by one of the 

three models.  Biologists (raters) were asked to rate the similarity between each image and a target image from 

zero to ten, where zero represents the lowest similarity and ten represents the highest similarity. Table 2 reports 

the means and standard deviations of the ratings for each model. Table 2 seems to suggest that Fast Style Transfer 

and BioGAN score better than CycleGAN. To evaluate whether the biologists rates (on the images that generated 

by BioGAN, CycleGAN, and Fast Style Transfer) are significantly different, a Wilcoxon test was used for the 

following combinations; i.e. BioGAN vs CycleGAN (p <0.001), and BioGAN vs Fast Style Transfer (p <0.001). 

This indicates that the synthetic images generated by BioGAN are rated significantly higher than those generated 

by the two other baselines. 

 Finally, to evaluate the association between the biologists' rates, we applied the Intraclass Correlation (ICC) 

test, using two-way mixed effect, consistency, and multiple raters’ mode [45]. This test yielded a ICC3k value of 

0.63 (p=0.001) for the rates of BioGAN images, which shows a moderate to good agreement between the 

biologists’ rates for the quality of synthetic images generated by BioGAN.  

 

3.2.2 Quantitative evaluation 

To quantify the similarity of the synthetic images generated by BioGAN to the target images as compared to 

the synthetic images generated by the baselines, we used a MRCNN object detection framework, [43]. 

Specifically, we trained four MRCNN frameworks separately on laboratory images and three groups of synthetic 

images generated by the three models, and we tested the four MRCNN frameworks on parasite detection tasks 

with field images. The four MRCNN frameworks were trained with no augmentation and under the same 

conditions, i.e. with the same hyper-parameters and tested on the 40 field images (see section 3.1). The four 

frameworks were trained with two epochs including 500 iterations. For the object detection task Precision, Recall, 

F1-score and mAP per image were used to verify the performance of the three frameworks. They are defined as 

follows: 



 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑝

𝑇𝑝+𝐹𝑝
       (6) 

and 

                      𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑝

𝑇𝑝+𝐹𝑛
                                                    (7) 

 
where Tp is the number of correctly detected (true positive) objects, Fp is the number of wrongly detected (false 

positive) objects, and Fn is the number of missed objects through the detection process (false negative). The higher 

the Precision, the more confident the model is about its detection, and the higher the Recall, the more objects the 

model has correctly detected. Due to the inherent trade-off between Precision and Recall, we calculated the F1-

score which is a metric that measures the balance of Precision and Recall: 

 

          𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
𝑇𝑝

𝑇𝑝+1/2 (𝐹𝑝+𝐹𝑛)
     (8) 

 
The mAP (Mean Average precision) is another important evaluation metric that has been widely used in 

world-class object detection challenges, including Pascal VOC [44] or COCO [42] to evaluate the performance 

of object detection models. We compute the VOC-style mAP, which computes the Precision and Recall for 

different detection thresholds [41] and measures the area under the Precision-Recall curve for each class (in our 

case there is only one class) at a certain IoU level (@IoU=70). As shown in Table. 3, the mAP for BioGAN is 

better than that of two other basslines which shows the better performance of the BioGAN-trained object detection 

framework at different level of detection confidence score. Table 3 also shows, Precision, Recall, F1-score and 

mAP of the four MRCNN frameworks trained separately on the laboratory images and the synthetic images 

generated by the three models (a constant  detection_minimum_confidence parameter of 70% was used; any 

detection with the confidence score above 70% would be considered positive). 

 
Table 3. Quantitative evaluation of the four MRCNN frameworks trained separately on the laboratory-taken 

images and synthetic images generated by the three models. 

 

Metric Laboratory 

images (%) 

CycleGAN synthetic 

images (%) 

FST synthetic 

images (%) 

BioGAN synthetic 

images (%) 

Precision 78.2 76.3 79.9 69.9 

Recall 10.3 9.9 14.4 17.6 

F1-Score 18.2 17.5 24.4 28.1 

𝑚𝐴𝑃 × 100 8.1 7.6 11.5 12.3 

 

Due to many undetected parasites, the Recall values for any framework are low. This is because of the 

significant difference in morphology between parasites grown in the laboratory and in the field. However, the use 

of BioGAN synthetic images results in the highest Recall value (17.6%). On the other hand, the Precision value, 

which represents the number of truly detected parasites, is lowest for BioGAN. F1-scores and mAPs are better 

metrics for the model’s performance as they measure the balance between Precision and Recall. The BioGAN-

trained framework shows an improvement, as compared to the laboratory trained framework, of +54.4% for F1-

score, and +51.8% for mAP, respectively. Fast Style Transfer trained framework shows improvements of +34% 

(F1-score) and +41.9% (mAP), while CycleGAN trained framework shows lower values of F1-score and mAP. A 

significance analysis of F1-scores from BioGAN with the Fast Style Transfer, and CycleGAN was performed 

using a paired-sample Wilcoxon test. These tests yielded values of p<0.002, which demonstrate the significance 

of the BioGAN F1-scores in comparison with that of two other baselines.  

We also tested whether training the frameworks with laboratory-taken images and synthetic images could 

increase the Precision, and consequently F1-score and mAP.  For this purpose, three MRCNN frameworks were 

re-trained with laboratory and synthetic images. The evaluation results are reported in Table 4. 

 
Table 4. Quantitative evaluation of the object detection frameworks, trained on a batch of laboratory and synthetic data. 

 

Metric Laboratory 

images (%) 
CycleGAN synthetic + 

laboratory images (%) 

FST synthetic + 

laboratory images (%) 

BioGAN synthetic + 

laboratory images (%) 

Precision 78.2 80.8 73 72.6 

Recall 10.3 10.6 16.2 19.4 

F1-Score 18.2 18.7 26.5 30.6 

𝑚𝐴𝑃 × 100 8.1 8.6 11.9 14.2 

 

The frameworks trained with CycleGAN+ laboratory data shows an improvement in Precision. The 

BioGAN+ laboratory trained framework has achieved a relative improvement of 68.1% (F1-score) and 75.3% 



(mAP) as compared to laboratory trained framework. The significance of the F1-score for BioGAN+ laboratory-

trained framework when compared with the other baselines (CycleGAN+ and Fast Style Transfer+ laboratory-

trained frameworks) was examined using Wilcoxon tests, with the results indicating the significance of the 

BioGAN+ laboratory-trained framework F1-score (p<0.002). 

4. Discussion 

The collection of field images of parasites, like other biological systems, can be labour-intensive and 

costly.  Although standard translation architectures like [7,19,32] have been implemented in some literature for 

staining or translating microscopy images [25,30,31,45,46], in this study, we developed for the first time a new 

GAN-based model (called BioGAN) to translate laboratory-taken microbiological images into field-like images. 

Due to the nature of microscopic image translation, which is an unpaired image translation problem, we utilized 

a Perceptual loss in conjunction with the Adversarial loss, to compensate for the absence of pixel-level loss in 

unpaired data problems. This paper analyses how Adversarial and Perceptual loss contribute to the generation of 

realistic-looking synthetic images by comparing our BioGAN model with CycleGAN, a model that utilizes 

Adversarial and Cycle-Consistency loss that forms the basis of some other image translation studies [27,28,30,31], 

and with Fast Style Transfer [32], a model that employs Perceptual loss alone. We have shown that Perceptual 

loss is able to transfer a fixed-style texture through the entire image, which helps translate the background of the 

laboratory images into field-like images. We have also shown that the Adversarial loss can encourage the 

generator in the GAN network to create a more realistic cell morphology, which is found in field images (see Fig. 

9). The proposed BioGAN model has shown the ability to transfer from the laboratory images meaningful spatial 

features, such as object’s boundaries, along with meaningful style features (i.e. texture) from the field images. 

Quantitative evaluation has shown that an object detection framework trained on the synthetic images 

generated by BioGAN results in a slight reduction in Precision and in an improved Recall, as compared to a 

framework trained on laboratory images only. An increase in the Recall means there are fewer parasite cells 

missed by the object detector; this can be viewed as evidence that by BioGAN synthetic images are more similar 

to field images when compared with [19,32]. However, a lower Precision means that the framework is detecting 

spurious objects as parasites. BioGAN's synthetic images, also, resulted in an improvement of 54.3% and 51.8%, 

for F1-Score and mAP, respectively, when compared to a framework trained on laboratory images only. This 

improvement increases when the framework is trained on BioGAN synthetic images and laboratory images 

simultaneously.  

4.1. Limitations 

This work shows that BioGAN is able to generate synthetic images which are similar to the field images, 

but important challenges remain. Real field microscopic images often contain random objects (i.e. unprocessed 

foods in stool samples, or contamination in water samples) and debris, which currently cannot be synthesized by 

our image translation model. Our observations indicate that the presence of random objects deteriorates the 

performance of the object detection frameworks, because they can cause false positive detection in some cases. 

In order to have a model that is able to transfer these random objects we might require a more content-aware 

functionalities that can intelligently generate and harmonize the random objects into the synthetic image. We 

believe that this can be an interesting topic of research which can open the application of image translators to 

other biological systems. Another limitation of the current work is the high runtime, which is due to the complexity 

of the network. We acknowledge that the real-time inference for microbiological images may not be a necessity, 

but in the case that practitioners wanted to apply BioGAN on other domains, that may require a faster execution. 

Therefore, it may be important to explore the possibility of further optimizing the network in future.     

5. Conclusion 

In this paper, we present an unpaired, unsupervised model, namely BioGAN, for translation of microbiological 

images, inspired by Cycle-GAN [7] and Fast Style Transfer [32]. By utilizing Adversarial and Perceptual loss, 

the CNN-based generator was able to transfer the visual characteristics of a reference (i.e. field-taken) image to 

the laboratory-taken image. The proposed model was tested on its ability to translate laboratory-taken images 

of Prototheca bovis into field-like images, using experts’ qualitative evaluation and quantitative evaluation by the 

MRCNN object detection framework. When compared to two other baselines, both qualitative and quantitative 

evaluations of the model show promising results in generating realistic field-like images. We have now made the 

BioGAN network publicly available on our GitHub repository, and our future efforts will be directed towards 

investigating the generalizability of BioGAN to translate other medical imaging modalities. 
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