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ABSTRACT
This paper studies the effects of volatility clustering on the joint calibration of VIX and
VXX options. We find that model which incorporates volatility clustering outperforms
other models without this feature in joint calibration of VIX and VXX options both in-
sample and out-of-sample; the superiority of the model with volatility clustering is
statistically significant. Moreover, the information contained in the VXX options is not
fully spanned by the VIX options, as a result, one can achieve better joint pricing perfor-
mance by employing both VIX and VXX derivatives data when calibrating the model,
compared to the case when only VIX data are used in calibration.
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1. Introduction

Volatility exchange traded products (ETP) and related ETP options have made volatility trading more accessi-
ble particularly to non-institutional investors due to their small notional sizes. Among them, the most actively
traded ETP is the VXX, an exchange traded note (ETN) on the short-termVIX futures. The VXX tracks the S&P
500 VIX short-term futures index total return (SPVXSTR) whose value represents the performance of a long
position in the nearest and second nearest maturing VIX futures contracts that are rebalanced daily to achieve
a synthetic 30-day constant maturity. The VXX has flourished since its introduction by Barclays in 2009, this is
mainly because to some extent the VXXmimics themovement of the VIX ,1 thereby providing investors indirect
exposure to the equity market volatility, while also offers some highly profitable trading opportunities (Bondon-
ado,Molnár, and Samdal 2017). VXX is initiallymarked as a diversification tool for equity portfolios, though the
effectiveness of volatility ETPs for diversification has been called into question (Alexander and Korovilas 2013;
Alexander, Korovilas, and Kapraun 2016; Deng, McCann, and Wang 2012; Whaley 2013). VXX options were
subsequently introduced in May 2010 by the Chicago Board Options Exchange (CBOE). Since inception, VXX
options have also grown in popularity among investors. The boom of the trading in VXX and VXX options
therefore calls for a framework of modelling the VXX and pricing VXX options.

Studies on the VXXmodelling and the valuation of VXX options are quite scarce and limited in the literature.
In a stand-alone manner, Bao, Li, and Gong (2012) proposes a logarithmic mean reverting stochastic volatility
model with jumps, default risk and positive volatility skew to model the VXX, and show that these factors con-
stitute a good model for VXX option pricing; Tan et al. (2021) extend Bao, Li, and Gong’s model by adding a
second stochastic volatility factor and by modelling the upward and downward jumps separately, and find that
the additional stochastic volatility factor has significant impact on the VXX option pricing, and the effects of
jumps cannot be eliminated by the additional stochastic volatility factor. Gehricke and Zhang (2020a) studies
the implied volatility curves of the VXX options alone, providing a benchmark for VXX option pricing models.
In relation to the VXX jump structure, based on a stand-alone log stochastic volatility model, Cao et al. (2021)
conduct a comprehensive study on VXX option pricing models under Lévy processes incorporating infinite
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activity jumps with infinite/finite sample paths, and find that infinite activity jump models outperform models
with either no jumps or compound poisson jumps with constant intensity. Note that while stand-alone VXX
models may provide good option pricing performance, these models do not take into account the link between
VIX and VXX, and therefore, the loss in VXX that is driven by the roll yield when the VIX futures is in contango
cannot be predicted in these models. Deviating from the stand-alone approach, Grasselli and Wagalath (2020)
links the VIX and the VXX in a tractable way under an affine stochastic volatility model of the VIX, but their
framework does not allow for an exact pricing formula for the VXX options whose price has to be approxi-
mated; Grasselli, Mazzoran, and Pallavicini (2023) explores the ability of multi-factor stochastic local volatility
models in joint pricing VIX and VXX options, however, the computation of VXX option prices in these models
requiresMonteCarlo simulations. Recently, Lin andZhang (2022) establishes amodel-free analytical framework
of joint modelling the VIX and VXX consistently, and their framework allows for an exact formula to compute
the VXX option prices, and they show that logarithmic stochastic volatility model of the VIX outperforms the
constant volatility model in pricing VIX and VXX options. Additionally, it’s worth mentioning another line of
research focussing on the relationships among the S&P 500, the VIX and the VXX markets within the consis-
tent pricing framework. Eraker andWu (2017) construct an equilibriummodel of the stock price to explain the
negative risk premia for the VXX; Gehricke and Zhang (2018, 2020b) models the VXX based on the assumed
dynamics of the S&P500, establishing the link between the S&P500, the VIX and the VXX. Yoon, Ruan, and
Zhang (2022) studies the relationship between implied volatility smirks of options written on S&P500 and the
VIX and the VXX indices.

The joint pricing and calibration framework of VIX and VXX options are important for several reasons.
First, while the direct modelling approach offers a flexible and more accurate way of incorporating the empir-
ical facts about the VXX market for VXX option pricing, the consistent/joint pricing framework allows one to
establish the link between the VIX and VXX markets, this is because the VXX is a path-dependent products
derived from the VIX futures, there must be a theoretical link between the VIX and VXX and subsequently
a relationship between the options written on them, which makes it possible to model the two options mar-
kets consistently; this was evidenced by the observed high correlation between the VIX and VXX (Alexander,
Kapraun, and Korovilas 2015), and the observed relationship between implied volatility smiles of VIX and
VXX options (Gehricke and Zhang 2020a; Yoon, Ruan, and Zhang 2022). Besides, the joint pricing framework
based on a structural model makes it possible to examine the factors that drive the two markets simultaneously,
enabling one to study the drivers of the two options markets. While Gehricke and Zhang (2020a), Yoon, Ruan,
and Zhang (2022) present the empirical link between implied volatility smiles of VIX and VXX options, no
explanations are provided for the drivers of the two options markets. Although Eraker andWu (2017), Gehricke
and Zhang (2018, 2020b) model the VIX and VXX market in structural models, providing theoretical foun-
dations for observed empirical facts of the two markets, no VXX option pricing formulas are provided. Only
recently, Grasselli and Wagalath (2020), Lin and Zhang (2022) and Grasselli, Mazzoran, and Pallavicini (2023)
examinewhether a stochastic volatilitymodel is sufficient enough to capture the joint dynamics of VIX andVXX
implied volatility smiles. Furthermore, the joint pricing of VIX and VXX options has practical implications as
well. As VXX is highly positively correlated with the VIX, VXX call options provide an alternative way of hedg-
ing against market downturns; although the joint pricing of SPX, VIX and VXX options remains a subject of its
own, the joint pricing of VIX and VXX options are a step forward towards a unified framework for markets for
options written on the equity index, volatility and volatility ETPs; By using VXX options, investors (especially
retail investors) also get the benefit of more cheaply acquiring the underlying to cover their positions in the
options market because of the small notional size in the VXX market. In addition, joint calibration of VIX and
VXX options leads to a larger data sample for the calibration. Lastly, it should be noted that the joint calibration
of the VIX and VXX options are a joint test of model misspecification and how close/integrated the VIX and
VXX markets are.

The challenges in joint pricing of VIX and VXX options lie in ensuring the empirical characteristics from the
data of the VIX and VXX markets. In this aspect, there are several motivations for our paper. First, jumps are
a widely recognised empirical facts of the equity and volatility markets, they are also empirically proven to be
important for the VXX optionsmarket, see papers which employ a direct approach for VXX option pricing (Bao,
Li, and Gong 2012; Cao et al. 2021; Tan et al. 2021); however, the current joint pricing framework does not
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have jumps included: the joint pricing framework for VIX and VXX options markets developed by Grasselli
and Wagalath (2020) and Lin and Zhang (2022) is based on a pure stochastic volatility model. Second, distinct
from the pure stochastic volatility models in Grasselli andWagalath (2020) and Lin and Zhang (2022), Grasselli,
Mazzoran, and Pallavicini (2023) attempts a stochastic local-volatility model to the joint pricing problem, but
their approach does not allow for a full calibration to be carried out, which is less practically relevant. Third,
in addition to jumps, volatility clustering is another empirical characteristics of the volatility market, but the
current joint pricing framework does not allow for volatility clustering in the VIX and VXXmarkets. There is a
consensus that equity market volatility is clustered: early work saw the development of ARCH/GARCHmodels
to capture the observed clustering feature of the equity market volatility (see Poon and Granger 2003, for an
overview). More recently, Du and Luo (2019) show that clustering of extreme price movements and volatility is
important for the valuation of S&P 500 index options; the finding is also supported by Ait-Sahalia, Cacho-Diaz,
and Laeven (2015) who show that equity price jumps are clustered and jumps are contagious across different
markets. Jing, Li, and Ma (2020) show that volatility clustering is an important factor to be taken into account
when pricing VIX options. The clustering of extreme price movements and volatility in aforementioned papers
is modelled through a Hawkes jump intensity process.

In light of the above motivations, in this paper, we study the effects of volatility clustering on the joint pricing
of VIX and VXX options, by extending the current joint pricing framework to include various jump specifica-
tions. Specifically, under the joint pricing framework, our base model for the VIX dynamics is the logarithmic
stochastic volatility model with various jumps, and in particular, we incorporate the volatility clustering feature
into the assumed VIX dynamics by introducing a self-exciting Hawkes jump intensity process; by using the the-
oretical link between the VIX and VXX, the resulting implied VXX dynamics inferred from the VIX is shown to
also have a Hawkes type of jumps; closed-form formulas for VXX option prices are then obtained via the Levy
inversion formula, for both standard-start and forward-start VXX options.

We summarise our contributions to the literature on the pricing of options on VXX or VIX ETPs in general
below:

• First, we extend the joint analytical framework of pricing VIX and VXX options of Grasselli and
Wagalath (2020), Lin and Zhang (2022) and Grasselli, Mazzoran, and Pallavicini (2023) to include various
different jumps, as the current joint framework does not allow for jumps to be included. The resulting VXX
option pricing formula is of closed-form, which makes it easy for computation and implementation.

• Second, to our best knowledge, this is the first paper to employ Hawkes processes to the application of valua-
tion of VXX options (or options on VIX ETPs in general), which enables us to examine the effects of volatility
clustering on the joint pricing of VIX and VXX options, which has never been done in the literature on VXX
option pricing. This paper also contributes to the literature on the applications of Hawkes process in finance.

• Third, this paper is also the first to develop a formula for the VXX forward start options, no prior literature
on VXX option pricing has done so.

• Fourth, differing from numerous prior literature on option pricing, we test the significance of volatility clus-
tering in joint pricing VIX andVXX options via a pairwise t-test, in addition to commonly used performance
criteria based on error statistics.

In addition to the above summary, we also present a comparison of the existing VXX option pricing models
in the literature with the model presented in this paper in Table 1, which further clarify our contributions to the
literature.

Through calibrating themodel to the realmarket data, we find that, first, themodelwith self-excitingHawkes-
type jumps outperformsmodels with other types of jumps or the pure stochastic volatilitymodel of Grasselli and
Wagalath (2020) and Lin and Zhang (2022) in jointly pricing VIX and VXX options both in-sample and out-of-
sample; the superiority of the model with volatility clustering is statistically significant. Second, information in
the VXX options market is not fully spanned by the VIX options market, VXX options market contain valuable
information in addition to those in the VIX options market.

This paper is also related to the literature on the application of the Hawkes process in finance. The Hawkes
process of Hawkes (1971) has been widely used in finance to capture the clustering of financial events. For
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Table 1. Summary of VXX option pricing models in the literature.

Author(year)
Modelling
approach Model

Jumps
included Type of jumps

VXX vanilla option
pricing formula

VXX forward-start
option pricing formula

Bao, Li, and Gong (2012) Direct Logarithmic stochastic volatility model
with jumps and default risk

� Compound Poisson Semi-closed form characteristic
function (CF)

✗

Gehricke and
Zhang (2020a)

Direct Quadratic polynomial functions of the
VXX implied volatility

n/a – Polynomial regressions of implied
volatility

✗

Tan et al. (2021) Direct Two-factor stochastic volatility jump-to-
default model with asymmetric jumps
and default risk

� Compound Poisson Semi-closed form CF ✗

Cao et al. (2021) Direct Lévy jump processes with stochastic
volatility

� Infinite-activity Lévy jumps,
including normal inverse
Gaussian (NIG) and (general)
tempered stable (TS)

Semi-closed form CF ✗

Grasselli and
Wagalath (2020)

Joint/Consistent Logarithmic Ornstein–Uhlenbeck model
with stochastic volatility

✗ – Monte Carlo simulation ✗

Lin and Zhang (2022) Joint/Consistent Logarithmic Ornstein–Uhlenbeck model
with/without stochastic volatility

✗ – Closed-form CF ✗

Grasselli, Mazzoran, and
Pallavicini (2023)

Joint/Consistent Stochastic local-volatility model ✗ – Joint fitting the local-volatility function
to VIX futures curve and the VXX
implied volatility smile involving
Monte Carlo simulation

✗

This paper Joint/Consistent Logarithmic Ornstein–Uhlenbeck
stochastic volatility model with jumps

� Self-exciting Hawkes jumps &
diffusion-driven stochastic
jumps & compound Poisson

Closed-form moment generating
function (MGF)

� (Semi-closed formMGF)

Notes: This table provides a summary of the development of VXX option pricing models in the literature so far, including this paper. ‘Direct’ modelling approach means that the dynamics of the VXX (or
the VXX option implied volatility) is directly modelled by the proposed model, whereas ‘Joint/Consistent’ modelling approach means that only the dynamics of the VIX index (or futures) is modelled
by the proposed model and the dynamics of the VXX and VXX option prices are inferred from the assumed VIX dynamics. The symbol�means Yes, and the symbol ✗ means No, and n/a means Not
applicable.
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example, the Hawkes processes are employed for the pricing of variance swaps (Hong and Jin 2022; Liu
and Zhu 2019), vulnerable options (Ma, Shrestha, and Xu 2017) and basket-spread options (Li, Tang, and
Wang 2022), studying the asset price jump dynamics (Ferriani and Zoi 2022; Yang et al. 2022), modelling
limit order books (Kirchner and Vetter 2022), modelling investor sentiment (Yang et al. 2018; Zhang, Wen,
and Chen 2023), and for portfolio optimisation (Ait-Sahalia and Hurd 2016). See Chen et al. (2022) and
Hawkes (2022) for an overview of Hawkes processes in finance.

The rest of the paper is organised as follows: Section 2 reviews the existing VIX option pricing models in
the literature and provides the specifications of VIX models employed in the paper; Section 3 provides the
closed-form VXX option pricing formula based on the assumed VIX dynamics with jumps, and also provides
the forward start VXX option prices. Data, model calibration and model performance measures are described
in Section 4. Section 5 presents the empirical results. Section 6 concludes the paper.

2. VIXmodels

2.1. Review of VIXmodels

There are extensive studies on the VIX dynamics and VIX option pricing models. The literature can be divided
into two main strands based on the modelling approach: On the one hand, under the consistent pricing
framework, the risk-neutral dynamics of S&P 500 and the VIX are jointly modelled, this approach results in
consistent pricing of derivatives on the two indices, see e.g. Cont and Kokholm (2013), Gatheral, Jusselin, and
Rosenbaum (2020), Guyon (2020), Jeon, Kim, and Huh (2021), Lin and Chang (2009, 2010), Luo, Zhang, and
Zhang (2019), Zhou, Xu, and Rubtsov (2022) in continuous-time settings, and Tong and Huang (2021), Cao
et al. (2020a) and Guo and Liu (2020) in discrete-time settings; these models are often rigid and less flexible
due to that the implied VIX dynamics under these models is usually driven by a single Brownian motion. On
the other hand, stand-alone models where (logarithmic) VIX is directly modelled allows a more flexible way to
incorporate additional factors which are capable of reproducing the empirical features of the VIX and VIX skew,
see e.g. Drimus and Farkas (2013), Goard andMazur (2013), Jing, Li, andMa (2020), Kaeck and Seegeer (2020),
Mencia and Sentana (2013), Park (2016), Romo (2017), Yuan (2022).

The base model that the VIX dynamics is assumed to follow is the Log Ornstein–Uhlenbeck process with
stochastic volatility (LOUSV). This assumption is motivated by the empirical evidence that the LOU specifica-
tion is better at describing the volatility dynamics of a stock index and pricing VIX derivatives than the square
root process (SQR), and that stochastic volatility of the VIX is found to improve the VIX derivatives valua-
tion (Mencia and Sentana 2013). In the next section, specifications of theVIXmodels considered in the paper are
introduced. All the models are based on the LOUSV specification with different jump specifications. It’s worth
noting that for simplicity, some important factors for VIX dynamics and VIX option pricing are omitted in all
the VIX models employed in this paper, including dynamic VIX central tendency (Mencia and Sentana 2013),
co-jumps and time-varying mean of the variance of VIX (Yuan 2022). However, the omission of these factors
should not impact the relative performance of the models. As our focus is primarily on the impact of different
jumps on the VXX option pricing, we keep other factors the same across the models while introducing different
jump specifications.

2.2. Specifications of VIXmodels

In this section, we introduce the specifications of the VIX models.

2.2.1. LOUSVwith Hawkes jumps (SVHJ)
We consider a LOUSV model with jumps whose intensity follows a self-exciting Hawkes process. Jing, Li, and
Ma (2020) find that the Hawkes jump diffusion provides the better VIX derivatives pricing performance than
models with other types of jumps andwithmultiple variance factors. Let vt = ln(VIXt). Themodel specification
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of the LOUSV model with Hawkes jumps under the risk-neutral measure Q is as follows:

dvt = κv(u − vt) dt + √
wt dB

v,Q
t + JQt dNQ

t − λtμJ dt (1)

dwt = κw(w̄ − wt) dt + σw
√
wt dB

w,Q
t (2)

dλt = α(λ∞ − λt) dt + βQdNQ
t (3)

wherewt is the variance of vt . u and w̄ and σw are themean levels of vt andwt , and the volatility ofwt , respectively.
B·,Q
t are the standard Brownian motions; to account for asymmetric volatility, dBv,Qt and dBw,Qt are correlated

with a positive correlation coefficient ρ, which results in an upward VIX skew. The size of VIX jumps JQt is
assumed to follow an exponential distribution with a mean of μJ>0, J

Q
t ∼ exp( 1

μJ
); Park (2016) find no sig-

nificant improving of model performance in pricing VIX futures and options by adding negative jumps, which
justifies the assumption of a positive VIX jump size. NQ

t is a counting process, its jump intensity λt follows a
self-exciting Hawkes process as in Equation (3): the arrival of a VIX jump instantaneously increases the jump
intensity by βQ, then the impact of this jump on the system decays exponentially over time at a rate of α; without
further stimulus, the intensity λt reverts toward its mean level λ∞.

2.2.2. LOUSVwith compound poisson jumps (SVCJ)
We also consider several other models as benchmark models. First, under the risk-neutral measure Q, the loga-
rithmVIX index follows the following LOUSVmodelwith compoundPoisson jumps (Mencia and Sentana 2013;
Park 2016):

dvt = κv(u − vt) dt + √
wt dB

v,Q
t + JQt dNQ

t − λ̄μJ dt (4)

dwt = κw(w̄ − wt) dt + σw
√
wt dB

w,Q
t (5)

While specifications for vt and wt are the same as SVHJ, the jump specification is different here: NQ
t is a count-

ing of compound Poisson process with constant intensity λ̄, where λ̄>0. The SVCJ model nests the LOUSV
model (SV henceforth) by setting λ̄ = μJ = 0, the SVmodel is similar to those pure stochastic volatility models
in Grasselli and Wagalath (2020) and Lin and Zhang (2022).

2.2.3. LOUSVwith stochastic jumps (SVSJ)
In contrary to other VIX models with jumps whose intensity is constant (Mencia and Sentana 2013;
Park 2016), Yuan (2022) proposes a model that incorporates co-jumps in the level and variance of VIX with
stochastic jump intensity, and find that jumps with stochastic jump intensity are essential to capture the
stochastic skew of the VIX option implied volatility smile. Therefore, the second alternative jump specifica-
tion considered is the Poisson jumps with stochastic jump intensity which follows a CIR process. The model
specification of the LOUSV model with stochastic jumps under Q-measure is:

dvt = κv(u − vt) dt + √
wt dB

v,Q
t + JQt dNQ

t − λtμJ dt (6)

dwt = κw(w̄ − wt) dt + σw
√
wt dB

w,Q
t (7)

dλt = κλ(θ − λt) dt + σλ
√
λt dB

λ,Q
t (8)

Different from SVHJ and SVCJ, the jump intensity is an independently evolving stochastic process, where κλ is
the mean reversion rate, θ and σλ are the mean and volatility of the intensity process, respectively.

2.3. VIX option prices

Since the semi-closed form characteristic functions are available for the aforementionedmodels, the VIX option
prices can be computed numerically by using the Lévy inversion formula. Let f (φ; vt ,Xt , t,T) = EQ

t [ eiφvT ] be
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the characteristic function of vT , where Xt is the vector of state variables at time t: Xt = {wt} for SVCJ, Xt =
{wt , λt} for SVSJ and SVHJ. The price of a VIX call option with strike price K at time t that matures at T can be
computed by using the Lévy inversion formula:

C(K, t,T; VIXt) = e−rτ [f (−i; vt ,Xt , t,T)�1 − K�2
]

(9)

where

�j(K, τ ; vt ,Xt ,φ) = 1
2

+ 1
π

∫ ∞

0
�
[
e−iφ log(K)ϕj(φ; vt ,Xt , t,T)

iφ

]
dφ

where τ = T − t, r is the continuous-compounding interest rate, ϕ1(φ; vt ,Xt , t,T) = f (φ − i; vt ,Xt , t,T)/f (−i;
vt ,Xt , t,T), ϕ2(φ; vt ,Xt , t,T) = f (φ; vt ,Xt , t,T); τ = T − t, r is the continuous-compounding interest rate,
ϕ1(φ; vt ,Xt , t,T) = f (φ − i; vt ,Xt , t,T)/f (−i;
vt ,Xt , t,T), � denotes the real part of a complex number. Characteristic functions f (φ; vt ,Xt , τ) for the
aforementioned threemodels are provided in Appendix 1. The above integrals are calculated by using theGauss-
Laguerre quadrature of order 20 for a good precision. VIX put option prices can be then obtained by the put-call
parity.

3. VXX option pricing

In this section, we first obtain the implied VXX dynamics based on the assumed VIX dynamics outlined in
Section 2, we then follow the approach in e.g. Bates (1996), Heston (1993) to obtain the closed-form formula
for VXX vanilla option prices. Second, we also obtain the forward start VXX option prices based on the implied
VXX dynamics. Results of various VXX (vanilla and forward start) option price formulas based on the VIX
dynamics with various jump specifications in this section are new to the literature.

3.1. VXX option prices

Let xt = ln VXXt , and C(K, t,T; VXXt) be the time-t price of a (standard start) VXX call option at time t with
strike price K and maturity date T, thus

C(K, t,T; VXXt) = VXXtP1 − Ke−rτP2 (10)

where

Pj(K, τ ; xt ,Xt ,φ) = 1
2

+ 1
π

∫ ∞

0
�
[
e−iφ lnKψj(iφ; xt ,Xt , t,T)

iφ

]
dφ (11)

where ψj(φ; xt ,Xt , t,T) are moment generating functions (MGFs) underlying Pj(lnK, τ ; xt ,Xt ,φ), for j= 1,2;
and ψ2(φ; xt ,Xt , t,T) = E

Q
t [ eφxT ]. The closed form expressions for the moment generating functions under

the models are presented in following section. The price of a VXX put option is obtained by the put-call parity.

3.2. Implied VXX dynamics and themoment generating function

3.2.1. SVCJ
Let f (φ; vt ,wt , t,T) be the characteristic function of vT under the SVCJmodel in (4)–(5), the VIX futures price at
time t that matures atT under the risk-neutral measureQ can be written as f (φ; vt ,wt , t,T) evaluated at φ = −i:

Ft,T = f (−i; vt ,wt , t,T) = eA(−i,t,T)+avt+B(−i,t,T)wt

where i is the imaginary number, a = e−κv(T−t).A(φ, t,T), andB(φ, t,T) are specified inAppendix A.1. Let kt =
eaJ

Q
t − 1, k̄ = EQ(kt), applying Ito’s lemma to Ft,T , and using the fact that the VIX futures price is a martingale
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under Q, we have the drift term equal to zero, subsequently we obtain

dFt,T
Ft,T

= a
√
wt dB

v,Q
t + B(−i, t,T)σw

√
wt dB

w,Q
t + ktdN

Q
t − k̄λ̄ dt (12)

According to the results in Cao et al. (2021) and Lin and Zhang (2022),

dVXXt

VXXt
= r dt + dFt,T

Ft,T

∣∣∣∣
T=t+τ0

is a martingale during a whole trading day with τ0 = 1/12 (one month). The implied dynamics of VXX with
continuous rolls has the following stochastic differential form:

dVXXt

VXXt
= r dt + σ̃

√
wtdZt + ktdN

Q
t − k̄λ̄ dt (13)

dwt = κw(w̄ − wt) dt + σw
√
wt dB

w,Q
t (14)

where Zt is a Brownian motion,2

σ̃ =
√
a20 + B(−i, τ0)2σ 2

w + 2σwρa0B(−i, τ0) (15)

dZt · dBw,Qt = ρ̃ dt = a0ρ + B(−i, τ0)σw√
a20 + B(−i, τ0)2σ 2

w + 2σwρa0B(−i, τ0)
dt (16)

and a0 = e−κvτ0 , kt = ea0J
Q
t − 1 in (13). The compound Poisson process NQ is compensated so that the VXX

dynamics in (13) is amartingale. A similar relationship between theVXX and theVIXwhen theVIX ismodelled
under a general Lévy jump process can be found in Equation (A.8) of Appendix A in Cao et al. (2021), which
justifies Equations (13)–(14). The implied VXX dynamics preserves the positive skew property as ρ̃>0, which
is desired. The implied model in (13)–(14) is the Bates model of Bates (1996) but with a different jump size
distribution. The MGFs ψj(φ; xt ,wt , t,T) underlying Pj(lnK, τ ; xt ,wt ,φ) in (11) are specified as follows:

ψj(φ; xt ,wt , t,T) = exp(Dj(φ, τ)+ φxt + Ej(φ, τ)wt) (17)

where Dj(φ, τ) and Ej(φ, τ) solves the following system of ODEs (Bates 1996):

∂Dj(φ, τ)
∂τ

= [
r − k̄λ̄

]
φ + κww̄Ej(φ, τ)+ λ̄J̄j

∂Ej(φ, τ)
∂τ

= σ̃ 2(mjφ + 1
2
φ2)+ (ρ̃σ̃ σwφ − κj)Ej(φ, τ)+ 1

2
σ 2
wE(φ, τ)

2

subject to boundary conditions Dj(φ, 0) = Ej(φ, 0) = 0, wherem1 = 1
2 ,m2 = − 1

2 , κ1 = κw − ρ̃σ̃ σw, κ2 = κw,
J̄1 = 1

1−(1+φ)a0μJ
− 1

1−a0μJ
, and J̄2 = 1

1−φa0μJ
− 1. Then we have the closed-form solutions to the systems of

ODEs:

Dj(φ, τ) = (r − k̄λ̄)φτ + λ̄J̄jτ + κww̄
σ 2
w

[
(κj − ρ̃σ̃ σwφ + dj)τ − 2 ln

1 − gjedjτ

1 − gj

]

Ej(φ, τ) = κj − ρ̃σ̃ σwφ + dj
σ 2
w

[
1 − edjτ

1 − gjedjτ

]

gj = κj − ρ̃σ̃ σwφ + dj
κj − ρ̃σ̃ σwφ − dj

dj =
√
(ρ̃σ̃ σwφ − κj)2 − σ̃ 2σ 2

w(2mjφ + φ2) (18)
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3.2.2. SVSJ
Based on the model specification in (6)–(8), we obtain the implied VXX dynamics,

dVXXt

VXXt
= r dt + σ̃

√
wtdZt + C(−i, τ0)σλ

√
λt dB

λ,Q
t + ktdN

Q
t − k̄λt dt (19)

dwt = κw(w̄ − wt) dt + σw
√
wt dB

w,Q
t (20)

dλt = κλ(θ − λt)+ σλ
√
λt dB

λ,Q
t (21)

where kt = ea0J
Q
t − 1, a0 = e−κvτ0 ; σ̃ is specified in (15); dZt dB

w,Q
t = ρ̃ dt, where ρ̃ is in (16). B(φ, t,T) and

C(φ, t,T) are specified in Appendix A.2. The MGFs underlying P1 and P2 in (10) are specified as follows:

ψj(φ; xt ,wt , λt , t,T) = exp(Dj(φ, τ)+ φxt + Ej(φ, τ)wt + Fj(φ, τ)λt) (22)

where Dj(φ, τ), Ej(φ, τ) and Fj(φ, τ) solves the following system of ODEs:

∂Dj(φ, τ)
∂τ

= rφ + κww̄Ej(φ, τ)+ κλθFj(φ, τ)

∂Ej(φ, τ)
∂τ

= σ̃ 2(mjφ + 1
2
φ2)+ (ρ̃σ̃ σwφ − κj)Ej(φ, τ)+ 1

2
σ 2
wEj(φ, τ)

2

∂Fj(φ, τ)
∂τ

= −k̄φ + C(−i, τ0)2σ 2
λ (mjφ + 1

2
φ2)+ [C(−i, τ0)σ 2

λφ − γj]Fj(φ, τ)

+ 1
2
σ 2
λFj(φ, τ)

2 + J̄j

subject to boundary conditions Dj(φ, 0) = Ej(φ, 0) = Fj(φ, 0) = 0, where m1 = 1
2 , m2 = − 1

2 , κ1 = κw −
ρ̃σ̃ σw, κ2 = κw, γ1 = κλ − C(−i, τ0)σ 2

λ , γ2 = κλ, J̄1 = 1
1−(1+φ)a0μJ

− 1
1−a0μJ

, and J̄2 = 1
1−φa0μJ

− 1. Proofs are
provided in the Appendix 2. Solving the above ODEs leads to the following:

Dj(φ, τ) = rφτ + κww̄
σ 2
w

[
(κj − ρ̃σ̃ σwφ + dE,j)τ − 2 ln

1 − gE,j edE,jτ

1 − gE,j

]

× κλθ

σ 2
λ

[
(γj − C(−i, τ0)σ 2

λφ + dF,j)τ − 2 ln
1 − gF,j edF,jτ

1 − gF,j

]

Ej(φ, τ) = κj − ρ̃σ̃ σwφ + dE,j
σ 2
w

[
1 − edE,jτ

1 − gE,j edE,jτ

]

Fj(φ, τ) = γj − C(−i, τ0)σ 2
λφ + dF,j

σ 2
λ

[
1 − edF,jτ

1 − gF,j edF,jτ

]

gE,j = κj − ρ̃σ̃ σwφ + dE,j
κj − ρ̃σ̃ σwφ − dE,j

dE,j =
√
(ρ̃σ̃ σwφ − κj)2 − σ̃ 2σ 2

w(2mjφ + φ2)

gF,j = γj − C(−i, τ0)σ 2
λφ + dF,j

γj − C(−i, τ0)σ 2
λφ − dF,j

dF,j =
√[

C(−i, τ0)σ 2
λφ − γj

]2 − 2σ 2
λ (−k̄φ + J̄j)− C(−i, τ0)2σ 4

λ (2mjφ + φ2) (23)
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3.2.3. SVHJ
Based on the model specification in (1)–(3), the implied VXX dynamics is in the following form:

dVXXt

VXXt
= r dt + σ̃

√
wtdZt + ktdN

Q
t − k̄λt dt (24)

dwt = κw(w̄ − wt) dt + σw
√
wt dB

w,Q
t (25)

dλt = α(λ∞ − λt)+ βQdNQ
t (26)

where kt = ea0J
Q
t +C(−i,τ0)βQ − 1, a0 = e−κvτ0 ; σ̃ is specified in (15); dZt dB

w,Q
t = ρ̃ dt, where ρ̃ is in (16);

B(φ, t,T) and C(φ, t,T) are specified in Appendix A.3. The MGFs underlying P1 and P2 in (10) are specified as
follows:

ψj(φ; xt ,wt , λt , t,T) = exp(Dj(φ, τ)+ φxt + Ej(φ, τ)wt + Fj(φ, τ)λt) (27)

where Dj(φ, τ), Ej(φ, τ) and Fj(φ, τ) solves the following system of ODEs:

∂Dj(φ, τ)
∂τ

= rφ + κww̄Ej(φ, τ)+ αλ∞Fj(φ, τ)

∂Ej(φ, τ)
∂τ

= σ̃ 2(mjφ + 1
2
φ2)+ (ρ̃σ̃ σwφ − κj)Ej(φ, τ)+ 1

2
σ 2
wEj(φ, τ)

2

∂Fj(φ, τ)
∂τ

= −k̄φ − αFj(φ, τ)+ J̄j

subject to boundary conditions Dj(φ, 0) = Ej(φ, 0) = Fj(φ, 0) = 0, where m1 = 1
2 , m2 = − 1

2 , κ1 = κw −
ρ̃σ̃ σw, κ2 = κw, J̄1 = e(1+φ)C(−i,τ0)βQ

1−(1+φ)a0μJ
− eC(−i,τ0)βQ

1−a0μJ
, and J̄2 = eφC(−i,τ0)βQ

1−φa0μJ
− 1. Proofs are similar to those for the

SVSJ model and are therefore omitted in the paper for brevity. We have the following solutions to the above
ODEs:

Dj(φ, τ) = rφτ + κww̄
σ 2
w

[
(κj − ρ̃σ̃ σwφ + dj)τ − 2 ln

1 − gjedjτ

1 − gj

]

+ λ∞(−k̄φ + J̄j)τ + λ∞(−k̄φ + J̄j)
α

(e−ατ − 1)

Ej(φ, τ) = κj − ρ̃σ̃ σwφ + dj
σ 2
w

[
1 − edjτ

1 − gjedjτ

]

Fj(φ, τ) = −k̄φ + J̄j
α

(1 − e−ατ )

gj = κj − ρ̃σ̃ σwφ + dj
κj − ρ̃σ̃ σwφ − dj

dj =
√
(ρ̃σ̃ σwφ − κj)2 − σ̃ 2σ 2

w(2mjφ + φ2) (28)

3.3. Forward start options

One of the most popular exotic options is the forward start options. Investors sometimes may be interested
in European options on the volatility ETP with a strike price that will be determined later. These options are
very sensitive to the volatility of the underlying. As an example, the price of forward start options written on the
VXXunder the SVHJmodel is derived below, similar procedures can be used to obtain forward start VXXoption



THE EUROPEAN JOURNAL OF FINANCE 11

prices under SV, SVCJ and SVSJ models. Let�(φ; x0,w0, λ0, t,T) be the characteristic function associated with
the forward log-return of the VXX under the SVHJ model,

�(φ; x0,w0, λ0, t,T) = EQ[ eiφ(xT−xt)] = EQ[ e−iφxtEQ(eiφxT )] = EQ[ e−iφxtψ2(iφ; xt ,wt , λt , t,T)] (29)

where ψ2(φ; xt ,wt , λt , t,T) is the MGF of xT under SVHJ. Substituting the expression for ψ2(φ; xt ,wt , λt , t,T)
provided in (27)–(28) into the (29),

�(φ; x0,w0, λ0, t,T) = eD2(iφ,τ)EQ[ eE2(iφ,τ)wt+F2(iφ,τ)λt ] (30)

Let �L(g, h; x0,w0, λ0, t) = EQ[ egwt+hλt ] be the joint Laplace transform of wt and λt under the risk-neutral
measure Q, where g = E2(iφ, τ) and h = F2(iφ, τ). Assuming the solution to �L(g, h; x0,w0, λ0, t) has the
following form:

�L(g, h; x0,w0, λ0, t) = eQ(φ,t)+iφx0+R(φ,t)w0+S(φ,t)λ0 (31)

Applying the Feynman–Kac formula, we have

∂�L

∂t
= (r − 1

2
σ̃ 2w − k̄λ)

∂�L

∂x
+ κw(w̄ − w)

∂�L

∂w
+ α(λ∞ − λ)

∂�L

∂λ
+ 1

2
σ̃ 2w

∂2�L

∂x2

+ 1
2
σ 2
ww
∂2�L

∂w2 + ρ̃σ̃ σww
∂2�L

∂x∂w
+ λEQ[ eiφ ln(1+k)+S(φ,t)βQ − 1] (32)

Substituting (31) into (32), we have the following system of ODEs:

∂Q(φ, t)
∂t

= iφr + κww̄R(φ, t)+ αλ∞S(φ, t)

∂R(φ, t)
∂t

= −1
2
iφσ̃ 2 − κwR(φ, t)− 1

2
σ̃ 2φ2 + 1

2
σ 2
wR(φ, t)

2 + iφρ̃σ̃σwR(φ, t)

∂S(φ, t)
∂t

= −iφk̄ − αS(φ, t)+
(
eiφC(−i,τ0)βQ+S(φ,t)βQ

1 − iφa0μJ
− 1

)

subject to boundary conditions Q(φ, 0) = 0, R(φ, 0) = g, S(φ, 0) = h. The forward characteristic function is
then

�(φ; x0,w0, λ0, t,T) = eD2(iφ,τ)+Q(φ,t)+iφx0+R(φ,t)w0+S(φ,t)λ0 (33)

The time-0 price of a forward start VXX call option with strike price K, determination time t and maturity T is

CF(K, t,T; VXX0) = e−rTEQ[(exT−xt − elnK)+] (34)

which can be obtained by using either the Lévy inversion formula like formula (9) or the fast Fourier transform
method (see e.g. Carr and Madan 1999). For example, following Carr and Madan (1999),

CF(K, t,T; VXX0) = e−(rT+u lnK)

π

∫ ∞

0
e−iφ lnK�(φ − i(1 + u); x0,w0, λ0, t,T)

(u + 1 + iφ)(u + iφ)
dφ (35)

where the parameter u is introduced in order to have an integrable function; this method only has one integral
to calculate. The forward start put option price is then obtained by the put-call parity.
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4. Data andmodel calibration

4.1. Data

Data for VIX futures and options and VXX options are end-of-day quotes obtained from the Chicago Board
Options Exchange (CBOE). The sample spans from 10 October 2012 to 10 October 2013. The options data
contain the following information: options types, expiration dates, strike prices, bid and ask prices, implied
volatilities, underlying asset values, trade volume and open interest, and option Greeks calculated by the CBOE
(e.g. delta, vega, etc.). There are two snapshots of the options market in the data, one at 3:45pm E.T. (Eastern
Time), and another at end-of-day at 4pm E.T.. We use the data at 3:45pm for both VIX and VXX options. This
is because, as noted by the CBOE, the snapshot at 3:45pm E.T. is a more accurate representation of the market
liquidity when compared to that at end-of-day.

For VIX options, we use the midpoint of the bid-ask price as the VIX option price; since VXX options are
American style ,3 we obtain the European option prices of VXX options by inserting the quoted implied volatili-
ties into the Black-Scholesmodel.We use the daily treasury bill rates as the risk-free rate which are obtained from
the US treasury. Since the VXX options sample spans between the second and the third VXX reverse split dates,
there is no need to adjust the underlying VXX values. To reduce the computational burden of model calibration,
we use options data only on Wednesdays in the sample as our in-sample and options data on Thursdays (the
next day) as the out-of-sample. This is a common practice in the literature, see e.g. Chernov and Ghysels (2000),
Christoffersen, Heston, and Jacobs (2009), Du and Luo (2019), Eraker (2004), Pan (2002). For model estima-
tion, while some literature only use derivatives with a randomly selected maturity, others use all Wednesday
data. Here we use all futures and options data on Wednesdays for model calibration.

We apply some commonly used data filters to remove illiquid and likely mispriced options from the sample:
(1) Options with bid price smaller than 0.1, and options with zero trade volumes are removed; (2) Only at-
the-money (ATM) and out-of-money (OTM) options are used, the moneyness is defined as the logarithm of
the ratio between the option strike price and the forward price of the underlying; (3) Options with time-to-
maturities smaller than 7 calendar days are removed; and we focus on options with tenor smaller than 1 year.
The resultingWednesday sample consists of 4282 VIX options, 288 VIX futures and 7057 VXX options, and the
Thursday sample consists of 4531 VIX options, 299 VIX futures and 7239 VXX options.

Tables 2 and 3 report the summary statistics for VIX derivatives and VXX options in both the Wednesday
and Thursday samples. First, the average VIX futures price is an increasing function of the time to maturity,
consistent with the fact that VIX futures is usually in contango .4 Second, the number of both OTM VIX calls
and OTM VXX calls is much higher than that of the corresponding OTM puts, implying that investors mostly
buy VIX and VXX options as an insurance against a hike in the market volatility. Third, implied volatility from
VIX and VXX options increases with moneyness, similar to previous findings of positive volatility skews in the
two markets. Fourth, the average implied volatility from VXX options is lower than that from the VIX options,
this is probably due to the fact that the VXX is a mix of the near-the-month and the next-month VIX futures,
and because VIX futures is usually in contango, the VXX declines in value over time, and VXX options are
susceptible to this decrease in value. Lastly, open interest and trade volume in the VXX options market is lower
than those in the VIX options market, implying that the VIX options are more liquid than VXX options.

4.2. Model calibration

4.2.1. Calibration to VIX data
First, the models are calibrated by using the Wednesday VIX futures and options data only subject to the
following loss function (see e.g. Cao et al. 2020a; Zhou, Xu, and Rubtsov 2022)

Lvixall
t (�) = Lvix

t (�)+ LF
t (�)

= 1
Nvix

Nvix∑
i=1

(
Õvix
i − Ovix

i
Ovix
i

)2

+ 1
NF

NF∑
n=1

(
F̃vixn − Fvixn

Fvixn

)2

(36)
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Table 2. Summary statistics for VIX derivatives.

Wednesday Thursday

Time to maturity τ (days) Time to maturity τ (days)

All ≤ 30 30–90 >90 All ≤ 30 30–90 >90

A. Futures contracts
Number of contracts 288 36 108 144 299 36 108 155
Average prices 17.9115 15.9171 17.2598 18.8989 17.9142 15.8172 17.1859 18.9088

B. Number of option contracts
All 4282 455 2014 1813 4531 516 2139 1876
Call 3241 368 1575 1298 3447 426 1679 1342
Put 1041 87 439 515 1084 90 460 534

C. Mean statistics
Average prices 1.0349 0.5385 0.9019 1.3071 0.9820 0.4719 0.8513 1.2714
Average IV 0.8302 1.0905 0.8944 0.6935 0.8437 1.1401 0.9056 0.6917
Average trade volume 4883 17479 5483 1054 4423 15019 4911 951
Average open interests 44845 135983 55170 10503 46516 134491 56711 10695

D. Average prices by moneyness
m ≤ −0.2 0.4849 0.1813 0.3576 0.5654 0.4377 0.1750 0.3058 0.5241
−0.2<m ≤ −0.06 1.1471 0.4566 0.9332 1.5336 1.0988 0.4340 0.8891 1.4917
−0.06<m ≤ 0.06 2.0905 1.0446 1.8744 2.6163 2.0756 0.9971 1.8470 2.6107
0.06<m ≤ 0.2 1.6382 0.7538 1.4982 2.1038 1.6270 0.7225 1.4825 2.0958
0.2<m ≤ 0.4 0.9930 0.4066 0.9144 1.3459 0.9795 0.3810 0.9185 1.3334
0.4<m ≤ 0.6 0.5795 0.2494 0.5058 0.7695 0.5619 0.2042 0.5027 0.7726
m>0.6 0.3141 0.2000 0.2717 0.3612 0.2819 0.1458 0.2391 0.3465

E. Average IV by moneyness
m ≤ −0.2 0.5517 0.7526 0.5926 0.5238 0.5419 0.7598 0.5762 0.5148
−0.2<m ≤ −0.06 0.6377 0.7610 0.6599 0.5854 0.6308 0.7412 0.6500 0.5826
−0.06<m ≤ 0.06 0.7138 0.8530 0.7512 0.6355 0.7116 0.8484 0.7522 0.6327
0.06<m ≤ 0.2 0.8004 1.0121 0.8381 0.6841 0.8038 1.0433 0.8418 0.6799
0.2<m ≤ 0.4 0.9035 1.2014 0.9385 0.7307 0.9141 1.2312 0.9408 0.7346
0.4<m ≤ 0.6 0.9615 1.3238 1.0231 0.7793 0.9857 1.3802 1.0309 0.7820
m>0.6 0.9714 1.4726 1.1088 0.8134 1.0089 1.4562 1.1354 0.8133

Notes: This table reports the summary statistics for VIX futures and options sampled on each Wednesday and Thursday from 10 October 2012 to
10 October 2013. Option moneyness is defined as the logarithm of the ratio between the strike price of the option and the underlying asset
forward price.

where i and n are the option and futures count indices. Nvix and NF are the total numbers of VIX options
and VIX futures on a single day, respectively. Õvix and Ovix are model-implied and market quoted VIX option
prices, respectively; F̃vix and Fvix are model-implied and market quoted VIX futures prices, respectively. This
loss function avoids allocating high weights to options with particular moneyness.

4.2.2. Joint calibration to VIX and VXX data
Second, we calibrate the models to both VIX and VXX data on eachWednesday according to the following loss
function :

Lall
t (�) = Lvix

t (�)+ Lvxx
t (�)+ LF

t (�)

= 1
Nvix

Nvix∑
i=1

(
Õvix
i − Ovix

i
Ovix
i

)2

+ 1
Nvxx

Nvxx∑
j=1

(
Õvxx
j − Ovxx

j

Ovxx
j

)2

+ 1
NF

NF∑
n=1

(
F̃vixn − Fvixn

Fvixn

)2

(37)

where i, j and n are the option and futures count indices. Nvix, Nvxx and NF are the total numbers of VIX and
VXXoptions andVIX futures on a single day, respectively. Õ andO aremodel-implied andmarket quoted option
prices, respectively; F̃vix and Fvix are model-implied and market quoted VIX futures prices, respectively.
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Table 3. Summary statistics for VXX options.

Wednesday Thursday

Time to maturity τ (days) Time to maturity τ (days)

All ≤ 30 30–90 >90 All ≤ 30 30–90 >90

A. Number of option contracts
All 7057 1565 2515 2977 7239 2063 2429 2747
Call 5076 1095 1892 2089 5152 1460 1783 1909
Put 1981 470 623 888 2087 603 646 838

B. Mean statistics
Average prices 1.2791 0.5045 0.9816 1.9377 1.1814 0.4985 0.9732 1.8791
Average IV 0.7510 0.7289 0.7741 0.7432 0.7467 0.7285 0.7650 0.7443
Average trade volume 982 1890 1363 183 924 1936 891 193
Average open interests 5918 8560 6271 4231 5896 7904 5525 4717

C. Average prices by moneyness
m ≤ −0.2 0.8417 0.1477 0.4183 1.0221 0.8266 0.1682 0.4016 1.0149
−0.2<m ≤ −0.06 1.3902 0.3488 1.1319 2.6725 1.2782 0.3434 1.0445 2.6824
−0.06<m ≤ 0.06 2.1572 0.8355 2.3031 4.0753 1.8817 0.8028 2.1505 4.0208
0.06<m ≤ 0.2 1.6282 0.4779 1.6752 3.3564 1.3783 0.4600 1.6063 3.1408
0.2<m ≤ 0.4 1.2389 0.2581 0.8503 2.2495 1.1293 0.2737 0.8523 2.1555
0.4<m ≤ 0.6 0.8550 0.1599 0.3759 1.4336 0.8046 0.1868 0.3791 1.3857
m>0.6 0.5728 – 0.2390 0.7133 0.5453 0.1409 0.2286 0.6856

D. Average IV by moneyness
m ≤ −0.2 0.6218 0.6310 0.5787 0.6387 0.6200 0.6634 0.5754 0.6373
−0.2<m ≤ −0.06 0.6215 0.5787 0.6098 0.6753 0.6149 0.5764 0.6034 0.6753
−0.06<m ≤ 0.06 0.6601 0.6267 0.6703 0.7019 0.6498 0.6174 0.6678 0.7021
0.06<m ≤ 0.2 0.7379 0.7521 0.7306 0.7240 0.7387 0.7512 0.7283 0.7237
0.2<m ≤ 0.4 0.8080 0.9059 0.8038 0.7546 0.8137 0.9031 0.7980 0.7567
0.4<m ≤ 0.6 0.8470 1.0510 0.8882 0.7860 0.8559 1.0486 0.8840 0.7906
m>0.6 0.8858 – 0.9869 0.8432 0.8913 1.1792 0.9888 0.8469

Notes: This table reports the summary statistics for VXX options sampled on each Wednesday and Thursday from 10 October 2012 to 10 October
2013. Option moneyness is defined as the logarithm of the ratio between the strike price of the option and the underlying asset forward price.

The starting values of model parameters for the aforementioned calibrations are taken from those reported
in Yuan (2022) (for SV, SVCJ and SVSJ models) and Jing, Li, and Ma (2020) (for SVHJ model). A combination
of direct search methods (e.g. Nelder–Mead method) and gradient-based methods (e.g. interior-point method)
is used to minimise the objective functions, details can be referred to Lin and Zhang (2022), among others.

4.3. Performancemeasures

Several commonly used performance metrics are calculated to measure the pricing performance of the models
in-sample and out-of-sample. These metrics include the Mean Absolute Error (MAE), the Root Mean Squared
Error (RMSE), and the Mean Absolute Percentage Error (MAPE):

MAE = 1
N

N∑
i=1

|Õi − Oi| (38)

RMSE =
√√√√ 1

N

N∑
i=1
(Õi − Oi)2 (39)

MAPE = 1
N

N∑
i=1

|Õi − Oi|
Oi

(40)
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In addition, to assess the significance of the pricing performance of model i overmodel j, the following t-statistic
of the sample differences in daily mean squared errors (MSE) is computed based on Huang and Wu (2004)

t = MSEi − MSEj
stdev(MSEi − MSEj)

(41)

where the overline denotes the sample average, and stdev denotes the standard error of the sample mean differ-
ence. The standard error is adjusted for serial correlation following Newey andWest (1987), and the optimal lag
number is selected according to Andrews (1991) and an AR(1) specification. A positive value of the t-statistic
that is larger than 1.645 indicates model j significantly outperforms model i at 5% significance level.

5. Results

5.1. Parameter estimates

Table 4 reports the mean and standard errors of the daily parameter estimates over the sample period by cali-
brating the models to the Wednesday data. ‘W /O’ represents the calibration to the VIX data only, whereas ‘W

Table 4. Parameter estimates.

Model Data κv κw κλ σw σλ u w̄ θ α

SV W/O 7.0709 2.8598 – 2.4658 – 2.9003 3.3108 – –
(0.4403) (0.3458) – (0.1130) – (0.0169) (0.2676) – –

W/ 6.6351 8.6334 – 5.9571 – 2.9793 1.8016 – –
(0.2591) (0.3616) – (0.2880) – (0.0085) (0.0656) – –

SVCJ W/O 5.9999 2.3196 – 1.9085 – 2.9393 4.2269 – –
(0.4940) (0.3384) – (0.1466) – (0.0277) (0.4468) – –

W/ 5.4740 9.0294 – 3.7263 – 2.9185 1.4286 – -
(0.1988) (0.7116) – (0.2990) – (0.0076) (0.2067) – –

SVSJ W/O 4.3637 1.1476 7.5923 1.2981 2.7433 2.9674 3.0118 5.7764 –
(0.3852) (0.2939) (0.9521) (0.1060) (0.4524) (0.0216) (0.4194) (0.4998) –

W/ 5.4584 5.4085 11.6185 1.3104 0.9502 2.9108 2.5831 3.8631 –
(0.2301) (0.8019) (1.6160) (0.1229) (0.2561) (0.0097) (0.4165) (0.4444) –

SVHJ W/O 2.7733 3.3138 – 1.3813 – 3.0537 0.7127 – 15.0532
(0.3161) (0.4433) – (0.1767) – (0.0294) (0.0889) – (0.9887)

W/ 4.9385 9.5334 – 4.8374 – 2.8933 0.4833 – 19.1922
(0.1834) (0.4804) – (0.2842) – (0.0109) (0.0374) – (1.5719)

Model Data ρ λ∞ βQ μJ λ̄ w0 λ0 σ̃ ρ̃

SV W/O 0.9203 – – – – 0.9376 – 0.6251 0.9332
(0.0087) – – – – (0.0378) – (0.0209) (0.0074)

W/ 0.6674 – – – – 1.0639 – 0.6240 0.5359
(0.0419) – – – – (0.0400) – (0.0121) (0.0312)

SVCJ W/O 0.7914 – – 0.2761 2.4567 0.5968 – 0.6674 0.8171
(0.0181) – – (0.0181) (0.1921) (0.0522) – (0.0233) (0.0164)

W/ 0.4118 – – 0.3040 2.2978 0.5245 – 0.6637 0.4944
(0.0386) – – (0.0146) (0.1507) (0.0380) – (0.0105) (0.0327)

SVSJ W/O 0.7931 – – 0.1722 – 0.5062 8.0958 0.7437 0.8047
(0.0363) – – (0.0134) – (0.0502) (1.1810) (0.0212) (0.0351)

W/ 0.7704 – – 0.2923 – 0.5680 2.0583 0.6600 0.7895
(0.0414) – – (0.0045) – (0.0311) (0.1249) (0.0132) (0.0383)

SVHJ W/O 0.8190 3.3190 5.8726 0.1535 – 0.1189 15.5097 0.8346 0.8394
(0.0329) (0.5965) (0.5493) (1.7872e-4) – (0.0255) (0.5782) (0.0182) (0.0289)

W/ 0.3801 11.1855 7.2647 0.1605 – 0.5340 7.0667 0.7042 0.4944
(0.0345) (0.9501) (0.7305) (0.0035) – (0.0347) (0.7872) (0.0091) (0.0288)

Notes: This table reports themean parameter estimates. Robust standard errors are reported in parentheses. Models are calibrated to theWednes-
day data sample from 10 October 2012 to 10 October 2013. ‘W /O’ means calibration to the VIX derivatives data only, ‘W /’ means calibration to
both the VIX and VXX data.
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/’ means the calibration to both the VIX and VXX data. The mean reversion parameter of the log VIX κv is the
highest for SV and decreases as jumps are added; κv is lower in models with time-varying jump intensity (SVSJ
and SVHJ) than in the model with constant jump intensity (SVCJ), and is the lowest in the model with Hawkes
jump process (SVHJ). The mean estimate of long termmean u is consistent across the models and data, ranging
from 2.8933 to 3.0537. The mean σw and w̄ decrease as jumps are added to the model. ρ and ρ̃ which represents
the leverage factor in the VIX and VXX are both positive, confirming positive volatility skews in both the VIX

Table 5. Pricing performance: Overall.

VIX futures (Wednesday) VIX futures (Thursday)

Model W/O (In-sample) W/ (In-sample) W/O (Out-of-sample) W/ (Out-of-sample)

MAE SV 0.3164 0.6432 0.3719 0.6681
SVCJ 0.2735 0.5090 0.3550 0.5381
SVSJ 0.2414 0.4581 0.3265 0.4970
SVHJ 0.2018 0.3218 0.3228 0.3715

RMSE SV 0.3907 0.7415 0.4620 0.7815
SVCJ 0.3584 0.6001 0.4498 0.6432
SVSJ 0.3167 0.5499 0.4475 0.6035
SVHJ 0.2738 0.4064 0.4470 0.4680

MAPE (%) SV 1.80 3.67 2.09 3.78
SVCJ 1.55 2.88 1.99 3.03
SVSJ 1.37 2.57 1.83 2.77
SVHJ 1.14 1.79 1.80 2.06

VIX options (Wednesday) VIX options (Thursday)

Model W/O (In-sample) W/ (In-sample) W/O (Out-of-sample) W/ (Out-of-sample)
MAE SV 0.0753 0.1598 0.0993 0.1657

SVCJ 0.0602 0.1261 0.0911 0.1332
SVSJ 0.0560 0.1183 0.0806 0.1273
SVHJ 0.0445 0.0754 0.0792 0.0879

RMSE SV 0.1013 0.2414 0.1382 0.2504
SVCJ 0.0870 0.1878 0.1380 0.2031
SVSJ 0.0809 0.1745 0.1226 0.1920
SVHJ 0.0669 0.1182 0.1196 0.1385

MAPE (%) SV 12.31 15.44 16.55 18.37
SVCJ 8.71 12.00 13.04 14.12
SVSJ 8.53 11.15 12.49 13.70
SVHJ 6.59 7.67 11.74 10.58

VXX options (Wednesday) VXX options (Thursday)

Model W/O (Out-of-sample) W/ (In-sample) W/O (Out-of-sample) W/ (Out-of-sample)

MAE SV 0.3011 0.0980 0.2807 0.1062
SVCJ 0.2743 0.0845 0.2635 0.0921
SVSJ 0.2727 0.0775 0.2533 0.0926
SVHJ 0.2089 0.0426 0.2113 0.0697

RMSE SV 0.4702 0.1537 0.4364 0.1570
SVCJ 0.3867 0.1415 0.3676 0.1403
SVSJ 0.3966 0.1272 0.3612 0.1396
SVHJ 0.3063 0.0622 0.3008 0.1001

MAPE (%) SV 32.86 12.18 33.91 14.64
SVCJ 32.00 8.45 33.86 11.39
SVSJ 32.28 7.60 33.00 11.46
SVHJ 27.47 5.44 30.88 10.23

Notes: This table reports the overall model pricing performance. Models are calibrated to theWednesday data sample from 10 October 2012 to 10
October 2013. Derivative prices are then computed daily by using the calibrated model, the performance metrics, including the Mean Absolute
Error (MAE), the Root Mean Squared Error (RMSE), and the Mean Absolute Percentage Error (MAPE) are calculated as in Equations (38)–(40).
‘W /O’ means calibration to the VIX derivatives data only, ‘W /’ means calibration to both the VIX and VXX data. Numbers in bold indicate the
smallest pricing error.
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and VXX options markets; and the mean estimates of ρ and ρ̃ are the highest in the SV model, and decrease as
jumps are added.

Regarding the jump dynamics, first, themean reversion parameters κλ and α increase when the VXX data are
included in the calibration: mean of κλ increases from 7.5923 to 11.6185, and mean of α increases from 15.0532
to 19.1922. Second, the mean jump size parameter μJ decreases as jump intensity changes from constant to
stochastic and to self-exciting. Third, in the SVHJ model, the jump self-excitation parameter βQ increases from
5.8726 to 7.2647, when the VXX data are included in the calibration. Lastly, in the SVSJ and SVHJ models, the
mean estimate of daily jump intensity λ0 is higher when only VIX data are used in calibration, and the inclusion
of VXX data in the calibration lowers λ0; besides, mean estimate of λ0 is higher in SVHJ model than in SVSJ
model, which can be reconciled with the self-excitation feature of the Hawkes jump process.

5.2. Overall pricing performance

Table 5 reports the overall pricing performance of themodels in-sample and out-of-sample. Model performance
is assessed by employing commonly used performance metrics, including the MAE, RMSE and MAPE. Out-
of-sample pricing is conducted by using the Thursday data sample over the same sample period. Numbers in
bold indicate the smallest pricing error. In terms of VIX derivatives pricing, the SVHJ model outperforms all
other models in-sample and out-of-sample; in general, the pecking order is SVHJ>SVSJ>SVCJ>SV, where >
means outperformance. The superiority of the SVHJmodel in pricingVIXderivatives has also been documented
in Jing, Li, and Ma (2020), and that the model with stochastic jump intensity (SVSJ) outperforms model with
constant jump intensity (SVCJ) and no jumps (SV) is consistent with the findings of Yuan (2022). Besides, the
VIX pricing error becomes larger for all models when VXX data are included in the calibration, implying that
VXX options do not add value to the VIX option pricing. Therefore, it is better to only use VIX data for model
calibration when pricing VIX futures and options.

Turning to the VXX option pricing performance, the pecking order of relative model performance does not
change: SVHJ still outperforms all other models, model with stochastic jump intensity (SVSJ) is better than
model with constant jump intensity (SVCJ), andmodel with constant jump intensity outperformsmodel with no
jumps (SV). When only VIX data is used in calibration, the (out-of-sample) VXX option pricing error is large;
for example, the MAE from SVHJ is 0.2089 for VXX options on Wednesdays, and 0.2113 for Thursday VXX
options, and theMAPE is 27.47% and 30.88%, respectively. However, when both the VIX andVXX data are used
in calibration, theVXXoption pricing error are reduced significantly. For example, the out-of-sampleMAE from
SVHJ for pricing Thursday VXX options changes from 0.2113 to 0.0697, and MAPE changes from 30.88% to

Table 6. Pairwise comparison of option pricing performance.

Data In-sample

W/O SV-SVCJ SV-SVSJ SV-SVHJ SVCJ-SVSJ SVCJ-SVHJ SVSJ-SVHJ

VIX (Wed) 1.5448 2.3297 3.9656 0.6665 2.3191 1.9218

Out-of-sample
VIX (Thurs) 0.1026 1.0813 2.3640 0.8039 1.8594 2.1653
VXX (Wed) 1.3206 1.1766 2.3611 −0.0811 1.4132 1.3126
VXX (Thurs) 1.2161 1.2585 2.0995 0.0976 1.2288 1.0642

W/ In-sample
VIX (Wed) 4.2871 5.1311 9.1296 1.0647 5.9208 4.6286
VXX (Wed) 0.5197 1.1391 3.8396 0.5119 2.9864 3.4960

Out-of-sample
VIX (Thurs) 3.6006 4.2046 7.8460 0.8119 4.8195 3.6766
VXX (Thurs) 0.8310 0.8933 3.1046 0.0196 2.2773 2.4870

Notes: This table reports the pairwise t-statistics of sample differences in daily mean squared pricing errors. The t-statistic is calculated based
on Huang and Wu (2004) as in Equation (41). In the calculation of the t-statistic, the standard error is adjusted for serial correlation follow-
ing Newey and West (1987), and the optimal lag number is selected according to Andrews (1991) and an AR(1) specification. For a pair of
models i–j, a positive value of the t-statistic that is larger than 1.645 indicates model j significantly outperformsmodel i at 5% significance level.
Numbers in bold indicate significance at 5% significance level.
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10.23%. The results imply that the information contained in the VXX options market is not fully spanned by the
VIXoptions data. This is also evident in the literature, for example, Bergomi (2015) argue that the information on
vanillas (VIX) cannot be used to fully recover the information contained in its exotic path-dependent products
(VXX).

Table 6 reports the pairwise t-statistic of model comparisons in terms of option pricing. If the t-statistic for
model pair i−j is positive, model j outperforms model i; and if the t-statistic is larger than 1.6450, it means the
outperformance is significant at 5% significance level, which is shown by numbers in bold in the table. When
models are calibrated to only VIX data, regarding the in-sample performance of pricing VIX options, mod-
els with time-varying jumps (SVSJ, SVHJ) significantly outperform model with no jumps (SV), whereas the
outperformance of SVCJ over SV is insignificant at 5% level; SVHJ also significantly outperforms SVSJ and
SVCJ. Turning to the out-of-sample VXX option pricing, significant advantage of SVHJ is found only over
SV in the two VXX out-of-samples, but the positive sign of the t-statistics also confirms the relative model
performance observed in Table 5. When VXX data are added to the model calibration, SVHJ significantly
outperforms all other models, and SVSJ and SVCJ are significantly superior to SV, in pricing VIX options in-
sample and out-of-sample; In terms of VXX option pricing, SVHJ is found to significantly outperform not only

Table 7. Overall pricing performance: Information criteria.

VIX futures (Wednesday) VIX futures (Thursday)

Model W/O (In-sample) W/ (In-sample) W/O (Out-of-sample) W/ (Out-of-sample)

AIC SV −4.9112 −3.9827 −4.5269 −3.8245
SVCJ −5.0754 −4.3700 −4.5428 −4.1627
SVSJ −5.2648 −4.3434 −4.5605 −4.0916
SVHJ −5.4497 −4.7302 −4.6506 −4.4379

BIC SV −4.8221 −3.8937 −4.3784 −3.7379
SVCJ −4.9609 −4.2555 −4.4491 −4.0523
SVSJ −5.1122 −4.1908 −4.4521 −3.9431
SVHJ −5.2971 −4.5776 −4.5061 −4.2893

VIX options (Wednesday) VIX options (Thursday)

Model W/O (In-sample) W/ (In-sample) W/O (Out-of-sample) W/ (Out-of-sample)
AIC SV −0.5020 −0.6465 0.0297 −0.0962

SVCJ −1.1566 −1.2377 −0.3994 −0.6766
SVSJ −1.0925 −1.3575 −0.3702 −0.6714
SVHJ −1.5932 −1.6712 −0.4736 −0.8277

BIC SV −0.4916 −0.6361 0.0396 −0.0863
SVCJ −1.1432 −1.2243 −0.3867 −0.6638
SVSJ −1.0747 −1.3397 −0.3532 −0.6544
SVHJ −1.5753 −1.6534 −0.4566 −0.8107

VXX options (Wednesday) VXX options (Thursday)

Model W/O (Out-of-sample) W/ (In-sample) W/O (Out-of-sample) W/ (Out-of-sample)

AIC SV 1.4033 −0.5261 1.4950 −0.1549
SVCJ 1.1241 −1.5021 1.2338 −0.7310
SVSJ 1.1661 −1.7221 1.2876 −0.7099
SVHJ 1.0031 −2.1784 1.2002 −0.7977

BIC SV 1.4101 −0.5193 1.5017 −0.1482
SVCJ 1.1329 −1.4933 1.2423 −0.7196
SVSJ 1.1777 −1.7104 1.2990 −0.6985
SVHJ 1.0148 −2.1667 1.2116 −0.7892

Notes: This table reports the information criteria for the pricing models in-sample and out-of-sample by using the parameter estimates in
Table 4. The information criteria include the Akaike information criterion (AIC) and Bayesian information criterion (BIC). Specifically, AIC =
(2k − 2 ln L)/N, and BIC = (k lnN − 2 ln L)/N, where k is the number of model parameters, N is the total number of derivatives contracts, ln L
is the value of the log-likelihood function of model pricing errors. We follow Jiang et al. (2022), Ornthanalai (2014), Wang and Wang (2020) to
compute the log-likelihood functions of futures and options pricing errors, where the pricing error for the ith derivative contract is defined as the
relative pricing error εi = (̃Oi − Oi)/Oi or (̃Fi − Fi)/Fi , where Õ, F̃ are the model-implied price, and O,F are the market quoted price. Numbers
in bold indicate the smallest information criteria.
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Table 8. Option pricing performance by moneyness and time to maturity: Mean absolute error (MAE).

VIX futures (Wednesday) VIX futures (Thursday)

W/O (In-sample) W/ (In-sample) W/O (Out-of-sample) W/ (Out-of-sample)

MAE SV SVCJ SVSJ SVHJ SV SVCJ SVSJ SVHJ SV SVCJ SVSJ SVHJ SV SVCJ SVSJ SVHJ

τ ≤ 30 0.4142 0.3590 0.3688 0.3500 0.5723 0.4618 0.4497 0.3782 0.4525 0.4084 0.4384 0.4340 0.6142 0.5231 0.4978 0.4271
30<τ ≤ 90 0.3894 0.3349 0.2891 0.1931 0.7384 0.5704 0.4835 0.3232 0.4230 0.3951 0.3859 0.3424 0.7758 0.5980 0.5120 0.3520
τ>90 0.2372 0.2062 0.1738 0.1713 0.5896 0.4747 0.4412 0.3066 0.3177 0.3146 0.2591 0.2833 0.6056 0.4998 0.4864 0.3722

VIX options (Wednesday) VIX options (Thursday)

m ≤ −0.2 0.0549 0.0635 0.0533 0.0479 0.0758 0.0600 0.0563 0.0417 0.0679 0.0826 0.0740 0.0785 0.0868 0.0655 0.0662 0.0557
−0.2<m ≤ −0.06 0.0844 0.0815 0.0720 0.0655 0.2517 0.1985 0.1681 0.0977 0.1024 0.1133 0.1132 0.1245 0.2457 0.1891 0.1640 0.1067
−0.06<m ≤ 0.06 0.1471 0.1288 0.1115 0.0900 0.3709 0.2830 0.2558 0.1716 0.1779 0.1691 0.1540 0.1504 0.3822 0.2980 0.2725 0.1870
0.06<m ≤ 0.2 0.0754 0.0617 0.0572 0.0444 0.2162 0.1549 0.1642 0.1158 0.1258 0.1204 0.0973 0.0939 0.2412 0.1883 0.1933 0.1400
0.2<m ≤ 0.4 0.0566 0.0416 0.0391 0.0282 0.1281 0.1041 0.1048 0.0619 0.0907 0.0852 0.0643 0.0620 0.1442 0.1202 0.1230 0.0822
0.4<m ≤ 0.6 0.0633 0.0381 0.0415 0.0268 0.0755 0.0703 0.0632 0.0318 0.0791 0.0568 0.0541 0.0441 0.0840 0.0754 0.0713 0.0423
m>0.6 0.0622 0.0400 0.0418 0.0378 0.0472 0.0426 0.0337 0.0281 0.0668 0.0451 0.0468 0.0503 0.0509 0.0446 0.0386 0.0340
τ ≤ 30 0.1240 0.0829 0.0850 0.0600 0.1121 0.0752 0.0793 0.0689 0.1300 0.0899 0.0884 0.0732 0.1185 0.0879 0.0901 0.0757
30<τ ≤ 90 0.0819 0.0621 0.0593 0.0437 0.1126 0.0939 0.0890 0.0573 0.1015 0.0895 0.0819 0.0770 0.1218 0.1016 0.0970 0.0680
τ>90 0.0557 0.0524 0.0451 0.0414 0.2243 0.1747 0.1606 0.0972 0.0885 0.0932 0.0770 0.0833 0.2288 0.1817 0.1722 0.1138

VXX options (Wednesday) VXX options (Thursday)

W/O (Out-of-sample) W/ (In-sample) W/O (Out-of-sample) W/ (Out-of-sample)

m ≤ −0.2 0.1963 0.1941 0.1932 0.2256 0.0828 0.0765 0.0670 0.0466 0.1997 0.2002 0.1996 0.2264 0.1029 0.0941 0.0912 0.0718
−0.2<m ≤ −0.06 0.2405 0.2340 0.2212 0.2063 0.0887 0.0702 0.0627 0.0430 0.2425 0.2445 0.2196 0.2216 0.1164 0.0941 0.0972 0.0828
−0.06<m ≤ 0.06 0.2805 0.2612 0.2495 0.2356 0.0972 0.0923 0.0830 0.0471 0.2731 0.2605 0.2364 0.2417 0.1199 0.1079 0.1068 0.0897
0.06<m ≤ 0.2 0.2924 0.2714 0.2669 0.2318 0.0985 0.0853 0.0796 0.0432 0.2600 0.2502 0.2454 0.2411 0.1024 0.0907 0.0917 0.0778
0.2<m ≤ 0.4 0.3248 0.3019 0.3040 0.2165 0.1026 0.0850 0.0789 0.0392 0.2990 0.2868 0.2769 0.2112 0.1040 0.0875 0.0890 0.0627
0.4<m ≤ 0.6 0.3358 0.3003 0.3159 0.1800 0.0936 0.0851 0.0783 0.0394 0.2988 0.2775 0.2773 0.1632 0.0848 0.0776 0.0787 0.0491
m>0.6 0.3961 0.3177 0.3142 0.1544 0.1162 0.0918 0.0864 0.0426 0.3751 0.3022 0.2985 0.1514 0.1129 0.0925 0.0922 0.0483
τ ≤ 30 0.1507 0.1483 0.1413 0.1751 0.0543 0.0401 0.0344 0.0232 0.1633 0.1671 0.1479 0.1864 0.0758 0.0648 0.0649 0.0664
30<τ ≤ 90 0.1951 0.2136 0.2074 0.1545 0.0605 0.0409 0.0411 0.0355 0.1984 0.2218 0.2070 0.1682 0.0789 0.0585 0.0646 0.0592
τ>90 0.4697 0.3919 0.3970 0.2726 0.1526 0.1447 0.1310 0.0589 0.4415 0.3727 0.3734 0.2682 0.1530 0.1423 0.1383 0.0815

Notes: This table reports the model pricing performance by the moneyness level and time to maturity. Models are calibrated to the Wednesday data sample from 10 October 2012 to 10 October 2013.
Derivative prices are then computed daily by using the calibrated model, the performance metrics, the Mean Absolute Error (MAE), is calculated as in Equation (38). Option moneyness is defined as
the logarithm of the ratio between the strike price of the option and the underlying asset forward price. ‘W /O’ means calibration to the VIX derivatives data only, ‘W /’ means calibration to both the
VIX and VXX data. Numbers in bold indicate the smallest pricing error.
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S.LUTable 9. Option pricing performance by moneyness and time to maturity: Root mean squared error (RMSE).

VIX futures (Wednesday) VIX futures (Thursday)

W/O (In-sample) W/ (In-sample) W/O (Out-of-sample) W/ (Out-of-sample)

RMSE SV SVCJ SVSJ SVHJ SV SVCJ SVSJ SVHJ SV SVCJ SVSJ SVHJ SV SVCJ SVSJ SVHJ

τ ≤ 30 0.5153 0.4713 0.4544 0.4287 0.6716 0.5831 0.5616 0.4778 0.5363 0.4969 0.5708 0.5570 0.7355 0.6540 0.6158 0.5385
30<τ ≤ 90 0.4527 0.4180 0.3648 0.2824 0.7975 0.6352 0.5527 0.3923 0.5155 0.5009 0.5228 0.4992 0.8460 0.6860 0.5948 0.4348
τ>90 0.2919 0.2654 0.2218 0.2100 0.7141 0.5767 0.5447 0.3972 0.3998 0.3977 0.3467 0.3739 0.7441 0.6089 0.6067 0.4727

VIX options (Wednesday) VIX options (Thursday)

m ≤ −0.2 0.0688 0.0783 0.0649 0.0606 0.1032 0.0823 0.0756 0.0585 0.0893 0.1079 0.0942 0.1041 0.1184 0.0892 0.0901 0.0763
−0.2<m ≤ −0.06 0.1071 0.1074 0.0975 0.0885 0.3170 0.2408 0.2045 0.1306 0.1335 0.1503 0.1609 0.1746 0.3119 0.2325 0.2015 0.1417
−0.06<m ≤ 0.06 0.1819 0.1675 0.1497 0.1280 0.4489 0.3435 0.3109 0.2178 0.2301 0.2312 0.2125 0.2118 0.4620 0.3664 0.3405 0.2457
0.06<m ≤ 0.2 0.0981 0.0811 0.0770 0.0607 0.2860 0.2118 0.2194 0.1554 0.1765 0.1803 0.1364 0.1348 0.3263 0.2653 0.2646 0.1945
0.2<m ≤ 0.4 0.0742 0.0541 0.0530 0.0362 0.1811 0.1529 0.1482 0.0932 0.1230 0.1236 0.0856 0.0877 0.2024 0.1789 0.1734 0.1244
0.4<m ≤ 0.6 0.0810 0.0503 0.0558 0.0344 0.1016 0.0948 0.0841 0.0462 0.0980 0.0779 0.0692 0.0612 0.1100 0.1043 0.0967 0.0597
m>0.6 0.0736 0.0504 0.0530 0.0487 0.0635 0.0586 0.0462 0.0364 0.0800 0.0595 0.0607 0.0780 0.0660 0.0626 0.0539 0.0457
τ ≤ 30 0.1479 0.1152 0.1189 0.0960 0.1568 0.1270 0.1361 0.1122 0.1578 0.1324 0.1379 0.1245 0.1743 0.1442 0.1423 0.1206
30<τ ≤ 90 0.1081 0.0918 0.0869 0.0679 0.1735 0.1426 0.1307 0.0934 0.1415 0.1411 0.1252 0.1247 0.1828 0.1553 0.1473 0.1064
τ>90 0.0760 0.0720 0.0594 0.0561 0.3130 0.2381 0.2197 0.1420 0.1281 0.1358 0.1070 0.1197 0.3239 0.2577 0.2423 0.1714

VXX options (Wednesday) VXX options (Thursday)

W/O (Out-of-sample) W/ (In-sample) W/O (Out-of-sample) W/ (Out-of-sample)

m ≤ −0.2 0.2898 0.2532 0.2611 0.3466 0.1216 0.1052 0.0959 0.0690 0.2992 0.2683 0.2706 0.3503 0.1434 0.1277 0.1335 0.0991
−0.2<m ≤ −0.06 0.3137 0.3045 0.2942 0.3225 0.1246 0.1074 0.0995 0.0610 0.3566 0.3200 0.2924 0.3385 0.1591 0.1436 0.1485 0.1174
−0.06<m ≤ 0.06 0.3991 0.3524 0.3345 0.3546 0.1511 0.1447 0.1338 0.0652 0.3860 0.3459 0.3147 0.3424 0.1690 0.1610 0.1550 0.1267
0.06<m ≤ 0.2 0.4528 0.3691 0.3713 0.3179 0.1539 0.1403 0.1278 0.0608 0.3901 0.3352 0.3320 0.3098 0.1524 0.1342 0.1316 0.1073
0.2<m ≤ 0.4 0.4927 0.4123 0.4270 0.2955 0.1661 0.1492 0.1329 0.0570 0.4562 0.3888 0.3871 0.2829 0.1606 0.1371 0.1308 0.0877
0.4<m ≤ 0.6 0.5476 0.4378 0.4734 0.2725 0.1542 0.1558 0.1301 0.0589 0.4731 0.4034 0.4082 0.2183 0.1348 0.1181 0.1237 0.0714
m>0.6 0.6378 0.4833 0.5023 0.2225 0.1790 0.1593 0.1478 0.0680 0.6235 0.4670 0.4739 0.2450 0.1711 0.1521 0.1555 0.0710
τ ≤ 30 0.1926 0.1904 0.1827 0.2205 0.0677 0.0584 0.0514 0.0295 0.2089 0.2119 0.1860 0.2392 0.1003 0.0978 0.0980 0.0999
30<τ ≤ 90 0.2539 0.2663 0.2644 0.2033 0.0800 0.0561 0.0583 0.0486 0.2630 0.2828 0.2674 0.2190 0.1054 0.0845 0.0945 0.0871
τ>90 0.6709 0.5248 0.5443 0.4024 0.2195 0.2074 0.1847 0.0820 0.6388 0.5016 0.5046 0.3912 0.2182 0.1958 0.1904 0.1106

Notes: This table reports the model pricing performance by the moneyness level and time to maturity. Models are calibrated to the Wednesday data sample from 10 October 2012 to 10 October 2013.
Derivative prices are then computed daily by using the calibratedmodel, the performancemetrics, the RootMean Squared Error (RMSE), is calculated as in Equation (39). Optionmoneyness is defined
as the logarithm of the ratio between the strike price of the option and the underlying asset forward price. ‘W /O’ means calibration to the VIX derivatives data only, ‘W /’ means calibration to both
the VIX and VXX data. Numbers in bold indicate the smallest pricing error.
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Table 10. Option pricing performance by moneyness and time to maturity: Mean absolute percentage error (MAPE).

VIX futures (Wednesday) VIX futures (Thursday)

W/O (In-sample) W/ (In-sample) W/O (Out-of-sample) W/ (Out-of-sample)

MAPE (%) SV SVCJ SVSJ SVHJ SV SVCJ SVSJ SVHJ SV SVCJ SVSJ SVHJ SV SVCJ SVSJ SVHJ

τ ≤ 30 2.61 2.26 2.30 2.17 3.63 2.88 2.80 2.36 2.82 2.56 2.68 2.65 3.84 3.24 3.08 2.63
30<τ ≤ 90 2.26 1.92 1.66 1.10 4.34 3.32 2.81 1.86 2.46 2.28 2.21 1.97 4.55 3.49 2.99 2.04
τ>90 1.26 1.09 0.92 0.90 3.17 2.55 2.32 1.60 1.67 1.66 1.36 1.48 3.24 2.67 2.54 1.94

VIX options (Wednesday) VIX options (Thursday)

m ≤ −0.2 14.94 17.22 14.92 13.63 16.24 12.02 11.73 9.75 20.16 25.10 23.42 24.11 24.30 17.16 17.84 16.51
−0.2<m ≤ −0.06 10.36 9.44 9.38 8.27 22.41 17.86 15.32 10.26 13.29 13.67 15.32 15.35 24.33 18.90 16.88 12.94
−0.06<m ≤ 0.06 8.48 7.42 6.56 5.39 18.91 14.36 12.93 8.94 10.10 9.27 8.80 8.56 19.57 15.20 13.81 9.85
0.06<m ≤ 0.2 5.55 4.55 4.12 3.26 13.22 9.28 9.87 7.12 8.68 8.00 6.67 6.46 14.81 11.41 11.83 8.73
0.2<m ≤ 0.4 9.45 6.08 5.49 3.70 12.69 9.53 9.71 6.02 13.00 10.29 8.18 7.41 14.90 11.62 12.07 8.34
0.4<m ≤ 0.6 16.32 8.62 9.58 5.60 13.93 11.38 10.42 5.73 20.56 12.44 12.30 9.25 16.73 13.05 12.71 8.16
m>0.6 23.22 14.29 15.19 13.18 15.48 13.25 10.68 9.85 29.59 18.80 19.81 20.08 20.81 16.08 14.70 14.79
τ ≤ 30 31.75 18.13 19.29 12.40 22.73 12.64 13.07 12.43 39.25 22.18 23.86 18.15 29.11 18.01 19.04 16.18
30<τ ≤ 90 13.16 8.66 8.78 6.23 12.78 10.50 9.83 6.61 17.20 13.07 12.83 11.59 16.20 12.71 12.30 9.60
τ>90 6.48 6.40 5.56 5.54 16.56 13.50 12.13 7.66 9.57 10.49 8.97 10.15 17.88 14.67 13.84 10.15

VXX options (Wednesday) VXX options (Thursday)

W/O (Out-of-sample) W/ (In-sample) W/O (Out-of-sample) W/ (Out-of-sample)

m ≤ −0.2 35.52 33.07 31.04 33.03 16.31 12.96 10.24 7.55 36.69 33.89 32.01 34.22 20.76 16.91 15.51 13.02
−0.2<m ≤ −0.06 28.28 26.46 25.09 22.52 13.09 6.76 5.80 5.27 31.56 31.50 28.73 28.23 18.93 12.63 13.10 12.40
−0.06<m ≤ 0.06 15.56 14.74 14.30 14.57 5.42 5.16 4.33 3.13 19.00 18.55 16.67 18.75 9.37 8.11 7.96 7.82
0.06<m ≤ 0.2 22.99 23.47 22.75 28.21 8.45 6.36 6.12 4.12 26.15 27.61 28.55 38.26 11.18 9.92 9.97 11.30
0.2<m ≤ 0.4 31.04 32.96 35.01 30.59 12.09 7.06 6.54 4.44 32.72 35.44 34.30 32.80 13.75 10.12 10.41 9.08
0.4<m ≤ 0.6 38.72 41.79 44.78 30.13 12.81 9.15 8.55 6.16 38.52 42.71 42.95 30.37 13.79 10.70 10.84 8.86
m>0.6 65.63 55.45 55.10 32.83 20.85 14.70 13.68 9.32 65.45 55.93 55.60 33.95 21.44 16.00 16.75 11.26
τ ≤ 30 37.18 37.33 37.63 46.72 16.93 9.17 7.82 6.45 40.55 42.34 39.92 50.83 21.25 15.49 15.57 16.90
30<τ ≤ 90 29.39 33.48 32.44 25.50 10.56 6.61 6.24 5.78 28.83 33.72 32.38 27.32 12.20 9.08 9.63 8.82
τ>90 33.52 27.94 29.32 19.01 11.06 9.63 8.63 4.62 33.42 27.61 28.35 19.05 11.84 10.36 10.00 6.46

Notes: This table reports the model pricing performance by the moneyness level and time to maturity. Models are calibrated to the Wednesday data sample from 10 October 2012 to 10 October 2013.
Derivative prices are then computed daily by using the calibrated model, the performance metrics, the Mean Absolute Percentage Error (MAPE), is calculated as in Equation (40). Option moneyness
is defined as the logarithm of the ratio between the strike price of the option and the underlying asset forward price. ‘W /O’ means calibration to the VIX derivatives data only, ‘W /’ means calibration
to both the VIX and VXX data. Numbers in bold indicate the smallest pricing error.
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SV but also other models with jumps (SVCJ and SVSJ) both in-sample and out-of-sample, no other signif-
icant model pair is found. In addition to the above performance measures, we also report the information
criteria for the models in Table 7. The information criteria include the Akaike information criterion (AIC)

Figure 1. Fit to VIX implied volatility (W/O).
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and Bayesian information criterion (BIC). Specifically, AIC = (2k − 2 ln L)/N, and BIC = (k lnN − 2 ln L)/N,
where k is the number of model parameters, N is the total number of derivatives contracts, ln L is the value of
the log-likelihood function of model pricing errors. We follow Jiang et al. (2022), Ornthanalai (2014),Wang and

Figure 2. Fit to VXX implied volatility (W/O).
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Wang (2020) to compute the log-likelihood functions of futures and options pricing errors, where the pricing
error for the ith derivative contract is defined as the relative pricing error εi = (Õi − Oi)/Oi or (̃Fi − Fi)/Fi,
where Õ, F̃ are the model-implied price, and O,F are the market quoted price. Numbers in bold indicate the

Figure 3. Fit to VIX implied volatility (W/).
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smallest information criteria. The patterns in the reported information criteria support our earlier findings that
the Hawkes jumps improve the model performance in terms jointly pricing VIX futures and options, and VXX
options.

Figure 4. Fit to VXX implied volatility (W/).
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5.3. Pricing performance bymoneyness and time tomaturity

To further analyse the pricing performance, Tables 8–10 report the pricing performance by moneyness and
time to maturity. When models are calibrated to VIX data only, regarding the in-sample pricing performance of
VIX futures and options, SVHJ model outperforms all other models across all moneyness levels and maturities
in pricing VIX futures and options in-sample. Turning to the out-of-sample, in terms of out-of-sample VIX
futures pricing, first, SVHJ is the best performing model at short to medium maturities, especially at medium
maturities, and SVSJ model performs the best for long maturities; second, models with jumps (SVCJ, SVSJ,
SVHJ) are superior to the model without jumps (SV). In terms of VIX option pricing out-of-sample, SVHJ is
superior for near-the-money (NTM) options and OTM calls and at short andmediummaturities, while SVHJ is
inferior to other models for OTMputs and at longmaturities. Moving to the out-of-sample VXX option pricing,
SVHJ model outperforms all other models for almost all moneyness levels except the deep OTM VXX puts in
the Wednesday sample, while only outperforms other models for OTM calls in the Thursday sample; SVHJ is
also found to provide better pricing performance at medium and long maturities in both VXX out-of-samples.

When models are calibrated to both VIX and VXX data, SVHJ outperforms all other models across all mon-
eyness levels and at all maturities in terms of pricing VIX futures, VIX and VXX options in-sample. Turning
to the out-of-sample pricing, SVHJ is superior to all other models in pricing VIX futures and options across all
moneyness levels andmaturities, and in pricing VXX options across all moneyness levels and at longmaturities.

Figure 5. Sensitivity to Hawkes self-excitation parameter βQ .
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Figure 1 shows the model fit to the average VIX implied volatility skew both in-sample and out-of-sample,
and Figure 2 shows the model fit to the average VXX implied volatility skew in the two out-of-samples, when
models are calibrated to VIX data only. Figures 3 and 4 show the model fit the average VIX and VXX implied
volatility skew both in-sample and out-of-sample, whenmodels are calibrated to both VIX andVXX data. These
figures in general confirm our findings. In particular, when VIX andVXX data are both employed in calibration,
SVHJ model provides a very good fit to the VXX implied volatility skew, especially at long maturities.

5.4. Sensitivity to Hawkes parameters

Figure 5 shows the sensitivity of VIX and VXX option price and implied volatility to the Hawkes self-excitation
parameter βQ. The option price and implied volatility are calculated by using the mean parameter estimates for
the SVHJ model when the model is calibrated to both VIX and VXX data, while βQ takes on different values.
Figure 6 shows the sensitivity of VIX and VXX option price and implied volatility to the Hawkes decaying
parameter α. The option price and implied volatility are calculated by using the mean parameter estimates for
the SVHJ model when the model is calibrated to both VIX and VXX data, while α takes on different values.

From Figure 5, we can see that, first, as βQ increases (VIX is more clustered), both option price and implied
volatility increase as a result; second, βQ has a larger impact on the VIX option price and implied volatility than
the VXX option price and implied volatility; third, VIX OTM calls are more sensitive to volatility clustering

Figure 6. Sensitivity to Hawkes decaying parameter α.
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than VIX OTM puts. From Figure 6, we can see that as α increases (the impact of previous jumps decays faster),
both option price and implied volatility increase; but the impact of α on the option price and implied volatility
is much smaller than that of βQ.

6. Conclusion

In this paper, we examine the effects of volatility clustering on the joint calibration of VIX andVXX options. The
volatility clustering feature is modelled by a self-exciting Hawkes jump process in the VIX dynamics; under the
consistent pricing framework, the resulting implied VXX dynamics inferred from the VIX is shown to also have
a Hawkes type of jumps. Closed-form formula for VXX options are obtained via Fourier transform. Calibrating
the model to the real market data, we find that: (1) the information contained in the VXX options is not fully
spanned by the VIX options, as a result, one can achieve better performance of pricing VXX options when both
VIX andVXX derivatives data are used in calibration, compared to the case when only VIX data are used; (2) the
model with Hawkes jumps (thereby incorporating the volatility clustering feature) outperforms other models
with either constant intensity/stochastic intensity Poisson jumps or no jumps in joint pricing of VIX futures,
VIX options and VXX options both in-sample and out-of-sample, the outperformance of the Hawkes jump
diffusion is statistically significant based on the pairwise t-test of model comparisons. This paper contributes
to the literature that it is the first to apply the Hawkes process in the pricing of VXX options, or more broadly,
options written on the VIX exchange traded products, and the formula for forward start VXX options are also
obtained. We hope the findings of this paper can shed some light on the joint dynamics of the VIX and VXX
and the pricing of options written on them.

This paper relates to a number of studies on the VIX and VXX dynamics. For example, stand-alone models
with infinite-activity Lévy jumps are found to be superior to models with poisson jumps with constant inten-
sity in terms of pricing VIX or VXX options (see Cao et al. 2020b, 2021). However, there are no studies that
compare these models with the Hawkes jump process, future work could explore the comparative performance
of models with these two different jump specifications. Moreover, dynamic VXX options hedging performance
of Hawkes jump diffusion model could also be explored, since the VXX option has a tradable underlying asset,
the SPVXSTR. Lastly, the approach employed in this paper can be easily extended to include other stylised facts
about these two markets such as regime switching.

Notes

1. For example, Alexander, Kapraun, and Korovilas (2015) find that VXX and VIX are highly positively correlated.
2. This is because

dZtdZt = a0 dBv,Qt + B(−i, τ0)σw dBw,Qt√
a20 + B(−i, τ0)2σ 2

w + 2σwρa0B(−i, τ0)

× a0 dBv,Qt + B(−i, τ0)σw dBw,Qt√
a20 + B(−i, τ0)2σ 2

w + 2σwρa0B(−i, τ0)
= dt

3. See product specifications at: https://www.cboe.com/exchange_traded_stock/etp_options_spec/.
4. There are only a handful of days where VIX futures is in backwardation from 2006 to 2020. See S&P Global at:

https://www.spglobal.com/en/research-insights/articles/the-vix-futures-curve-is-in-backwardation.
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Appendices

Appendix 1. Characteristic functions
This section contains the characteristic functions of vT = ln VIXT under the SVCJ, SVSJ and SVHJ models. The characteristic
functions can be found in or derived in the same way as in e.g. Jing, Li, and Ma (2020), Park (2016), Yuan (2022). Therefore,
derivation is omitted for brevity.

A.1 SVCJ
Based on the model in (4)–(5), the characteristic function has the following form:

f (φ; vt ,wt , t,T) = eA(φ,t,T)+iφavt+B(φ,t,T)wt

whose coefficients satisfy the following system of ODEs (see e.g. Yuan 2022):

∂A(φ, τ)
∂τ

= iφaκvu − iφaλ̄μJ + κww̄B(φ, τ)+ λ̄

(
1

1 − iφaμJ
− 1

)
∂B(φ, τ)
∂τ

= −κwB(φ, τ)− 1
2
φ2a2 + 1

2
σ 2
wB(φ, τ)

2 + ρσwiφaB(φ, τ)

subject to boundary conditions A(φ, 0) = B(φ, 0) = 0, a = e−κvτ .

A.2 SVSJ
Based on the model in (6)–(8), the characteristic function has the following form:

f (φ; vt ,wt , λt , t,T) = eA(φ,t,T)+iφavt+B(φ,t,T)wt+C(φ,t,T)λt

whose coefficients satisfy the following system of ODEs (see e.g. Yuan 2022):

∂A(φ, τ)
∂τ

= iφaκvu + κww̄B(φ, τ)+ κλθC(φ, τ)

∂B(φ, τ)
∂τ

= −κwB(φ, τ)− 1
2
φ2a2 + 1

2
B(φ, τ)2σ 2

w + iφaρσwB(φ, τ)

∂C(φ, τ)
∂τ

= −iφaμJ − κλC(,φ, τ)+ 1
2
C(φ, τ)2σ 2

λ +
(

1
1 − iφaμJ

− 1
)

subject to boundary conditions A(φ, 0) = B(φ, 0) = C(φ, 0) = 0, a = e−κvτ .
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A.3 SVHJ
Based on the model in (1)–(3), the characteristic function has the following form:

f (φ; vt ,wt , λt , t,T) = eA(φ,t,T)+iφavt+B(φ,t,T)wt+C(φ,t,T)λt

whose coefficients satisfy the following system of ODEs (see e.g. Jing, Li, and Ma 2020):

∂A(φ, τ)
∂τ

= iφaκvu + κww̄B(φ, τ)+ αλ∞C(φ, τ)

∂B(φ, τ)
∂τ

= −κwB(φ, τ)− 1
2
φ2a2 + 1

2
B(φ, τ)2σ 2

w + iφaρσwB(φ, τ)

∂C(φ, τ)
∂τ

= −iφaμJ − αC(,φ, τ)+
(

eC(φ,τ)βQ

1 − iφaμJ
− 1

)
subject to boundary conditions A(φ, 0) = B(φ, 0) = C(φ, 0) = 0, a = e−κvτ .

Appendix 2. Pricing VXX options under SVSJ
This section shows the derivation of themoment generating functionsψ1 andψ2 underlying P1 and P2 in (11), based on the implied
VXX dynamics in (19)–(21), in order to compute the VXX option prices in (10) under the SVSJ model. Let x = ln VXX, and letG –
a twice-differentiable function of x and state variablesw and λ – be the price of a related option contract. First,G = exP1 is the price
of an option that pays off VXXT on maturity T conditional on VXXT>K and 0 otherwise. Applying Ito’s lemma to G and using the
no-arbitrage conditions, we have P1 satisfy the following partial integro-differential equation (PIDE):

∂P1
∂τ

=
(
r + 1

2
σ̃ 2w + 1

2
C(−i, τ0)2σ 2

λλ− k̄λ
)
∂P1
∂x

+ [κw(w̄ − w)+ ρ̃σ̃ σww]
∂P1
∂w

+ [κλ(θ − λ)+ C(−i, τ0)σ 2
λλ]

∂P1
∂λ

+ 1
2
(σ̃ 2w + C(−i, τ0)2σ 2

λλ)
∂2P1
∂x2

+ 1
2
σ 2
ww
∂2P1
∂w2 + 1

2
σ 2
λλ
∂2P1
∂λ2

+ ρ̃σ̃ σww
∂2P1
∂x∂w

+ C(−i, τ0)σ 2
λλ
∂2P1
∂x∂λ

+ λEQ{ eln(1+k)[P1(x + ln(1 + k),w, λ)− P1(x,w, λ)]} (A1)

TheMGFψ1 underlyingP1 must also solve the above equation; Substituting the solutionψ1(φ; x,w, λ, t,T) = exp(D1(φ, τ)+ φx +
E1(φ, τ)w + F1(φ, τ)λ) to the PIDE in (A1), f1 solves

0 = −
(
∂D1(φ, τ)

∂τ
+ ∂E1(φ, τ)

∂τ
w + ∂F1(φ, τ)

∂τ
λ

)
+
(
r + 1

2
σ̃ 2w + 1

2
C(−i, τ0)2σ 2

λλ− k̄λ
)
φ

+ [κw(w̄ − w)+ ρ̃σ̃ σww]E1(φ, τ)+ [κλ(θ − λ)+ C(−i, τ0)σ 2
λλ]F1(φ, τ)

+ 1
2
(σ̃ 2w + C(−i, τ0)2σ 2

λλ)φ
2 + 1

2
σ 2
wwE1(φ, τ)

2 + 1
2
σ 2
λλF1(φ, τ)

2 + ρ̃σ̃ σwwφE1(φ, τ)

+ C(−i, τ0)σ 2
λλφF1(φ, τ)+ λEQ(e(1+φ) ln(1+k) − eln(1+k)) (A2)

subject to the boundary condition ψ1|τ=0 = eφx. Rearranging the above equation, we obtain the system of ODEs in Section 3.2.2
with j= 1.

Second, the MGF ψ2 underlying P2 can be treated as the current price of an option that pays off erτ+φx on maturity. Using
the standard conditions for contingent claims and applying the solution to ψ2 that ψ2(φ; x,w, λ, t,T) = exp(D2(φ, τ)+ φx +
E2(φ, τ)w + F2(φ, τ)λ), we have that ψ2 solves

0 = −
(
∂D2(φ, τ)

∂τ
+ ∂E2(φ, τ)

∂τ
w + ∂F2(φ, τ)

∂τ
λ

)
+
(
r − 1

2
σ̃ 2w − 1

2
C(−i, τ0)2σ 2

λλ− k̄λ
)
φ

+ κw(w̄ − w)E2(φ, τ)+ κλ(θ − λ)F2(φ, τ)+ 1
2
(σ̃ 2w + C(−i, τ0)2σ 2

λλ)φ
2 + 1

2
σ 2
wwE2(φ, τ)

2

+ 1
2
σ 2
λλF2(φ, τ)

2 + ρ̃σ̃ σwwφE2(φ, τ)+ C(−i, τ0)σ 2
λλφF2(φ, τ)+ λ[EQ(eφ ln(1+k))− 1] (A3)

subject to the same boundary condition ψ2|τ=0 = eφx. Subsequently, we obtain the system of ODEs in Section 3.2.2 with j= 2.


