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Abstract

Cerebral Palsy, a non-progressive neurological disorder, is a lifelong condition. While it

has no cure, clinical intervention aims to minimise the impact of the disability on indi-

viduals’ lives. Wearable robotic devices, like exoskeletons, have been rapidly advancing

and proving to be effective in rehabilitating individuals with gait pathologies.

The utilization of artificial intelligence (AI) algorithms in controlling exoskeletons, par-

ticularly at the supervisory level, has emerged as a valuable approach. These algorithms

rely on input from onboard sensors to predict gait phase, user intention, or joint kine-

matics. Using AI to improve the control of robotic devices not only enhances human-

robot interaction but also has the potential to improve user comfort and functional

outcomes of rehabilitation, and reduce accidents and injuries.

In this research study, a comprehensive systematic literature review is conducted, ex-

ploring the various applications of AI in lower-limb robotic control. This review focuses

on methodological parameters such as sensor usage, training demographics, sample size,

and types of models while identifying gaps in the existing literature.

Building on the findings of the review, subsequent research leveraged the power of deep

learning to predict gait trajectories for the application of rehabilitative exoskeleton

control. This study addresses a gap in the existing literature by focusing on predicting

pathological gait trajectories, which exhibit higher inter- and intra-subject variability

compared to the gait of healthy individuals. The research focused on the gait of chil-

dren with neurological disorders, particularly Cerebral Palsy, as they stand to benefit

greatly from rehabilitative exoskeletons. State-of-the-art deep learning algorithms, in-

cluding transformers, fully connected neural networks, convolutional neural networks,

and long short-term memory networks, were implemented for gait trajectory predic-

tion. This research presents findings on the performance of these models for short-term

and long-term recursive predictions, the impact of varying input and output window

sizes on prediction errors, the effect of adding variable levels of Gaussian noise, and

the robustness of the models in predicting gait at speeds within and outside the speed

range of the training set.

Moreover, the research outlines a methodology for optimising the stability of long-term

forecasts and provides a comparative analysis of gait trajectory forecasting for typically
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developing children and children with Cerebral Palsy. A novel approach to generating

adaptive trajectories for children with Cerebral Palsy, which can serve as reference

trajectories for position-controlled exoskeletons, is also presented.
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Chapter 1: Introduction

1.1 Background

Cerebral Palsy (CP) is a neurological condition characterised by motor impairments

resulting from cerebral injury that occurs shortly before, during, or after birth [1]. CP

is the most common childhood motor disability, affecting between 1 to 4 children per

1000 live births worldwide [2]. Although CP is non-progressive, it is a lifelong condition.

Since it cannot be cured, the goal of clinical intervention is to minimise the impact of

disability on the individual’s life [3].

CP manifests itself in various forms. In addition to motor impairments, CP can lead

to intellectual impairments (in about two-thirds of patients), neurological abnormali-

ties that affect hearing and vision, seizures, and gastrointestinal problems [4]. Motor

impairments associated with CP are often classified into three main types: spastic,

dyskinetic, and ataxic CP. Spastic CP which accounts for 70% to 80% of the cases, is

characterized by deep tendon reflexes, hypertonicity (increased muscle tone), tremors,

and a crouch gait [4]. Dyskinetic CP, comprising 10% to 20% of the cases, is charac-

terised by abnormal movements and posture resulting from impairments in movement

control, muscle tone, and coordination [4,5]. Ataxic CP, the least common type at 5%

to 10%, is characterised by impairments in balance and coordination, and a wide-based

gait [4].

Various clinical interventions are available for managing CP, including medications such

as botulinum toxin injections that assist in muscle relaxation, surgical interventions like
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selective dorsal rhizotomy to reduce spasticity, and external aids such as orthoses that

restrict undesirable joint movements [4, 6]. Physiotherapy and rehabilitation are also

key interventions. In the case of children with CP, physiotherapy and rehabilitation

play an important role in increasing muscle strength and local muscular endurance,

as well as maintaining or increasing joint range of motion [7, 8]. Improvement in gait

patterns is achievable with those interventions and positively correlates with increased

independence and community participation [9, 10].

There has been a notable increase in the development of novel robotic devices aimed

at the rehabilitation of pathological gait, including for children with CP [11]. Among

those devices, exoskeletons have gained attention as a type of robot-assisted therapy.

Exoskeletons are comprised of a ridged structure with sensors, actuators, and a control

strategy that provides assistive torque to joints, to help with walking [12]. Exoskeletons

have aided in ‘massed practice’, a training approach in which patients perform exercises

with reduced number and duration of breaks in-between, in one rehabilitation session

[13, 14]. Massed practice can optimise motor learning while reducing the strain on

therapists [13].

Several studies have demonstrated that exoskeletons contribute to favourable rehabili-

tation outcomes, including improved spatiotemporal parameters (increased mean veloc-

ity, cadence, and stride length), decreased energy expenditure, and improved hip and

knee extension during the stance phase of the gait cycle [13,15]. However, the extent of

benefits has varied across these studies, potentially due to differences in methodological

setup and practice time [13,15]. Additionally, the effectiveness of the exoskeleton may

depend on the control strategy, which can vary widely.

The aim of a rehabilitative exoskeleton can be to provide assistive control, challenge-

based control, or adaptive control [16]. However, there is currently no consensus on

the optimal control strategy, as it may depend on the individual’s condition and their

needs [15, 16]. Nonetheless, improving the control strategy of an exoskeleton, as well

as enhancing human-robot synchronization, are essential for optimising rehabilitation

outcomes. Exoskeleton control strategies are typically a three-level hierarchy, starting

from the high-level which detects user intention and desired locomotion, to the mid-
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level which translates desired movement into the necessary actions, and finally, the

low-level which implements the selected action [17]. Further research and development

efforts can be focused on improving all three stages.

Accurate and timely estimation of user intention, which is part of the high-level control

of an exoskeleton can result in smooth human-robot interaction. In the field of robotics,

intention refers to ‘the need for the robot to have knowledge of some aspect of the

human’s planned action in order for the robot to appropriately assist toward achieving

that action’ [18]. Intention can be decoded into discrete states, which trigger the start of

certain movements or transitions between discrete control modes, as well as continuous

states such as the desired position trajectory [18]. Recent advances in exoskeleton

control have leveraged the power of artificial intelligence (AI) for intention prediction

and for the high-level control of exoskeletons [19].

1.2 Research Motivation

Artificial intelligence and deep learning methods have experienced growing utilization in

gait analysis [20,21]. This includes diagnosing movement disorders such as Parkinson’s

disease [22] or Cerebral palsy [23], identifying humans for biometric applications [24],

preventing sports injuries [21], and for sports management [21].

There are several advantages to using artificial intelligence in the context of exoskeleton

control, particularly deep learning (DL) methods.

• Outperforming conventional methods: DL outperformed heuristic-based approaches

and rigid mathematical models defined by experts for tasks such as gait event

classification, achieving higher accuracy and shorter duration between the time

of event prediction and the time of the true gait event [25]. Timely predictions

are necessary for providing timely support during gait events.

• Human motion intention prediction: DL enabled the prediction of human motion

intention, resembling the user’s desired motion for the exoskeleton to follow, and

utilising bio-signals such as EEG and EMG [26–28]. This has led to a reduction
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in the mean absolute error as well as the average delay between the movement of

the human and the robot [29].

• Accelerated exoskeleton control development: DL can expedite exoskeleton de-

velopment by allowing the use of raw spatiotemporal gait data as input, elim-

inating the need for extensive data pre-processing or feature engineering that

are time-consuming and require expert selection. Extensive data pre-processing

and feature engineering may sometimes lead to discarding features that may be

otherwise important for describing human movement and analysing gait [30].

• Data-driven predictions: DL methods also generate data-driven predictions, util-

ising large amounts of data captured from low-cost and non-intrusive wearable

devices including smartwatches, inertial measurement units (IMUs), and smart-

phones [21]. They can deal with high-dimensional data and interdependent gait

parameters [31,32].

• Data-fusion (multi-joint and multi-modality approaches): DL methods allow for

data fusion, including multi-joint data fusion where predictions are generated

based on data from several joints (e.g., hip angles and knee angles) and multi-

modality data fusion where predictions are generated based on input from mul-

tiple sensors (e.g., plantar pressure combined with acceleration data). Multi-

modality models demonstrated superior performance over single-modality mod-

els [33].

• Personalised/individualised treatment for each patient: DL has the potential to

generate personalised/individualised treatments for each patient, particularly ad-

vantageous in rehabilitative exoskeletons. Studies have reported DL network

abilities in capturing the variability of humans [32], while also being capable of

individualising to specific individuals [34]. The ability of deep learning models to

customise the reference trajectory an exoskeleton follows, based on user param-

eters such as anthropometrics and gait speed, is key for enhancing synchronised

and seamless human-robot interaction and may lead to improved functional out-

comes of rehabilitation [35,36].

This research was driven by the growing importance and value of developing rehabilita-
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tive exoskeletons for children with Cerebral Palsy. Considering the promising potential

demonstrated in the literature regarding the integration of deep learning for exoskeleton

control, this study focuses on implementing deep learning models for the supervisory

control of exoskeletons designed for children with Cerebral Palsy.

1.3 Research Aims and Objectives

The aim of this study is to develop and advance AI systems that improve the control of

rehabilitative exoskeletons, specifically those targeting children with neurological disor-

ders, with a focus on Cerebral Palsy. This target group stands to benefit greatly from

exoskeleton technology, and the study aims to explore the use of artificial intelligence

(AI) for this purpose.

The objectives of this research work are as follows:

• Identify various types and applications of AI models used in the literature for

lower limb robotic control.

• Explore the use of deep learning methods for predicting trajectories of children

with neurological disorders. These predictions can serve as feed-forward input for

exoskeleton controllers to compensate for control time delays or act as reference

patterns for position-controlled exoskeletons.

• Investigate different characteristics of state-of-the-art deep learning models and

how their performance is impacted by variables such as input and output length,

the addition of noise, and robustness in predicting gait at varying speed ranges,

both within and outside the range of gait speeds used for training.

• Explore approaches to generating adaptive and individualised gait patterns for

children with Cerebral Palsy.

Specifically, this research work aims to address the research questions listed below.
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1.4 Research Questions

This thesis attempts to address the following research questions (RQ):

• RQ 1: Can deep learning models accurately predict the gait patterns of individ-

uals with pathological gait such as children with Cerebral Palsy?

• RQ 2: What is the effect of longer time horizons for gait trajectory predictions

regarding robustness and accuracy especially considering the effects of noise?

• RQ 3: What are possible methods for improving deep learning models regarding

the propagated error in long-term predictions?

• RQ 4: Can deep learning models trained on gait data from typically developing

children be utilized to generate continuous and adaptive target/reference trajec-

tories for children with Cerebral Palsy?

• RQ 5: What is the effect of different gait speeds in training deep learning models

for gait trajectory predictions?

1.5 Key Contributions

The main contribution of this research is the development and advancement of AI

systems primarily designed and optimised for controlling rehabilitative exoskeletons

targeting children with neurological disorders, particularly Cerebral Palsy. The out-

comes of this research study can be summarised in the following points, each linked to

the research questions (RQ) they address:

• Reviewed the various applications of AI and its integration in the supervisory

level of control for lower limb exoskeletons. This review identified gaps in the

existing literature and provided insights into future research directions.

• Implemented and compared the performance of several state-of-the-art deep learn-

ing models for gait trajectory prediction.
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• Investigated the feasibility of forecasting joint kinematics of children with neuro-

logical disorders, which exhibit high inter- and intra-subject variability compared

to healthy gait patterns, using deep learning. (RQ 1)

• Extended our understanding of the influence of changing the length of input and

output window sizes on gait trajectory prediction and the influence of the addition

of variable levels of Gaussian noise on the stability of predictive models. (RQ 2)

• Introduced an approach for optimising the stability of long-term forecasts, ad-

dressing challenges associated with prediction accuracy over extended time peri-

ods. (RQ 3)

• Proposed a methodology for generating adaptive gait trajectories for children with

Cerebral Palsy, which can serve as reference trajectories for position-controlled

exoskeletons. (RQ 4)

• Explored the robustness of the models in predicting joint kinematics at varying

gait speeds that are within and outside the training set speed range. (RQ 5)

Several publications have been produced as a result of this research work. A full list of

those publications can be found on page v. Chapters of this thesis have been based on

those papers. The author of this thesis is the first author of those papers.

1.6 Thesis Structure

The structure of the thesis is as follows:

• Chapter 2 presents the findings of a systematic literature review on the use of AI

for controlling lower limb robotics, including exoskeletons and orthoses. In this

chapter, key information regarding machine learning and gait analysis was intro-

duced. The review aims to explore the application of AI in predicting or detecting

key parameters related to gait, such as gait phase, locomotion mode, joint kinet-

ics, and joint kinematics. Throughout the review, the focus was on examining

several methodological parameters including sensor usage, training demograph-

ics, sample size, and types of models employed in the studies. Additionally, we
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identified gaps in the existing literature and highlighted areas for future research

and development.

• Chapter 3 introduces the three datasets used to develop (train and evaluate) the

trajectory forecasting models presented in Chapters (4 to 6). It also discusses

ethical considerations regarding the data used.

• Chapter 4 presents the results of a study that explored the feasibility of forecasting

the trajectories of children with pathological gait using deep learning models. In

this chapter, the performance of deep learning models, namely a long-short-term

memory network and a convolutional neural network, was explored and compared

against non-intelligent methods. The impact of varying the length of input and

output window size on the accuracy of predictions was also investigated.

• Chapter 5 focuses on the prediction of gait trajectories for two distinct groups:

typically developing children and children with Cerebral Palsy. This chapter

examines the performance of the deep learning models in both short-term and

long-term prediction of joint kinematics. Additionally, an approach to optimise

the stability of long-term predictions was introduced. The impact of introducing

variable levels of Gaussian noise on the stability of the models was investigated as

well. The chapter proposes a novel approach for generating continuous adaptive

trajectories for children with Cerebral palsy, that serve as reference patterns for

position-controlled exoskeleton.

• Chapter 6 investigates the performance of deep learning models in predicting

joint kinematics across a range of gait speeds. The study specifically focuses on

assessing the robustness of these models in predicting gait patterns at speeds both

within and outside the training gait speed range.

• Chapter 7 summarises the overall thesis, emphasizing key contributions and in-

sights derived from the conducted studies. Limitations of this research work were

discussed and potential future research directions were identified.
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Chapter 2: Literature Review on Intelli-

gent Algorithms for Exoskeleton Control

2.1 Overview

In this chapter, a systematic literature review on the use of AI for the control of lower

limb robotics, specifically exoskeletons and orthoses, is presented. The review aims to

explore the diverse applications of AI in predicting various gait parameters. Method-

ologically, this review examines the types of models employed, sensor usage, and train-

ing demographics in the existing literature. Limitations in current implementations are

discussed and future research directions are also proposed.

2.2 Introduction

The development of wearable robotics devices, such as exoskeletons and orthoses, has

gained significant attention in recent years. These devices serve several functional and

medical purposes. An exoskeleton, in particular, is an electro-mechanical device com-

prised of actuators, sensors, and controllers that provides torque to joints [12]. The

provision of supportive torque allows for physical actions to be performed with more

ease and lower strain. The concept of an exoskeleton dates back to the 1960s when

they were initially designed and developed for military use [12]. Hardiman I exoskele-

ton, developed by the General Electric Company, aimed to augment the endurance

and strength of the soldiers, leading to what was described as the ‘union of man and
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machine’ [37]. Over the years, exoskeletons evolved to serve a broader range of pur-

poses including industrial applications [38], rehabilitation, and restoration of gait for

patients with Spinal Cord Injuries [39], Cerebral Palsy [40], and Multiple Sclerosis [41].

These exoskeletons are designed to support the upper limbs, lower limbs or the entire

body and can be categorised as passive, active or quasi-passive [42]. Several state-

of-the-art exoskeletons exist in various domains. For industrial applications, Berkeley

Lower Extremity Exoskeleton (BLEEX) is one example. It is a seven-degree-of-freedom

exoskeleton, actuated with linear hydraulics enabling heavy load lifting [43]. The MIT

exoskeleton is another quasi-passive exoskeleton designed for heavy load lifting. It

utilises springs and dampers instead of actuators and acts as an intermediator, trans-

ferring 80% of the load from the person to the ground [44]. In the field of rehabilitation,

Hybrid Assistive Limb (HAL-5) developed by the University of Tsukuba, is a full-body

exoskeleton that targets healthy people as well as patients. It enables paraplegics to

walk by decoding their intentions [45]. Another example is MINDWALKER, which

uses brain-generated electroencephalogram (EEG) and electromyogram (EMG) signals

to control a series of elastic actuated full-body exoskeleton targeted for paraplegics [46].

Orthoses are another category of assistive and corrective technologies, sometimes used

interchangeably with exoskeletons. However, there is a difference between the two.

According to Herr, the purpose of orthosis is to assist those with pre-existing patholo-

gies, contrary to exoskeletons which augment human capabilities, including healthy

people [47]. Orthoses can also be passive [48] or active [49]. In the MIT labs, an active

ankle-foot orthosis for drop-foot gait treatment has been developed [49].

Lower limb exoskeletons, when used as assistive devices, have two primary applications:

(i) rehabilitation and gait training, or (ii) locomotion assistance to help perform daily

life activities [50]. The control strategy, which specifies the way the exoskeleton moves

and interacts with the user, is therefore based on the exoskeleton’s application, as well

as the condition of the patient using the device. Trajectory tracking is a type of control

strategy, whereby an exoskeleton allows the patient to walk following a pre-defined

gait trajectory pattern, often obtained from a healthy person. Assist as needed, is

another control strategy whereby the support given by the exoskeleton is variable and

dependent on the user’s need. The level of assistance provided may be dependent on
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phase of gait, the level of effort exerted by the patient, and the stage a patient is in

their recovery journey [50].

The control scheme is often a multi-level hierarchy, consisting of low, mid and high lev-

els of control. The high-level control is responsible for user intention detection/event

estimation. The mid-level control is responsible for exoskeleton state transitions, based

on the intention/event detected. An example of a mid-level controller is a Finite State

Machine (FSM). The low-level control is responsible for tracking user motion and en-

suring stability, often utilising force, position, or impedance control [51–53]. Intention

detection and gait event estimation have a crucial role in the exoskeleton’s control and

functionality as they are at the top of the control hierarchy. Various techniques have

been used to analyse gait for their estimation. Controlling exoskeletons is one of the

most recent uses of gait analysis, which has already been used in various clinical and

non-clinical settings. In clinical settings, gait analysis is used for rehabilitation assess-

ment [54], and diagnosis of pathology [55]. In non-clinical settings, gait analysis is used

in sports for post-injury recovery monitoring [56] and performance evaluation [57], in

security, for biometric identification and authentication [58–60], in safety, for elderly

fall detection technologies [61], and in wellbeing, for emotional state identification [62].

Gait analysis involves measuring or estimating a range of parameters, including spatial-

temporal parameters, EMG activity, kinematic, and kinetic parameters during walking

or other locomotion activities [63].To perform this analysis a range of wearable and

non-wearable sensing modalities are used. Wearable sensors include inertial measure-

ment units (IMUs) with accelerometers and gyroscopes, goniometers, electromyography

(EMG), electroencephalographs (EEG), and foot pressure sensors. Non-wearable sen-

sors include ground reaction force (GRF) plates and motion capture systems [63], [20].

The measurements obtained from the wearable sensors are then processed to derive gait

parameters. Researchers have experimented with numerous algorithms to process the

sensor data. Examples include conventional thresholding algorithms that use angular

velocity to detect gait phases [64], musculoskeletal models that estimate intention using

EMG [65], and a wide range of machine and deep learning techniques.

These gait analysis techniques have been reviewed, compared, and analysed in sev-
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eral published works in the literature in recent years. Reviews have been conducted

to evaluate the advantages and disadvantages of multiple sensors used for gait phase

detection, taking into account factors such as the number of phases to be detected, sen-

sor placement location, and the computational algorithms used to process the sensor

readings [66]. Wearable sensors have also been compared to conventional laboratory

systems for analysing gait, exploring their potential as substitutes for these traditional

systems [67]. Literature reviews have covered parameters of gait, machine learning

algorithms, and challenges associated with gait analysis in clinical and non-clinical

applications [63]. Some authors focused on reviewing a category of computational

algorithms for gait analysis, such as intelligent predictive systems [68], or deep learning

algorithms [20], while others examined a specific category of algorithms and sensors,

such as artificial intelligence using inertial sensors [69].

Despite their recent publication between the years 2016 to 2020, there is a lack of liter-

ature solely focused on gait analysis techniques for the high-level control of lower limb

exoskeletons and orthoses. Prior to 2002, the number of papers published on exoskele-

tons where less than 30 per year, with a cumulative total of fewer than 500 papers.

However, by mid-2019, the cumulative number of papers was approaching 4000 [70].

Given this exponential increase in research, there is a need to have a systematic re-

view specifically focused on gait analysis for controlling lower limb robotics, utilising

intelligent algorithms and techniques in particular.

Machine learning (ML) algorithms offer multiple advantages that make their use prefer-

able over conventional gait analysis methods. Gait is temporal and the relationship

between its parameters is non-linear. ML algorithms excel at mapping non-linear rela-

tionships between inputs and outputs, making them well-suited for gait analysis [71].

Furthermore, compared to conventional methods and heuristics used in analysing gait,

ML algorithms are better equipped at handling data variability. This is particularly

important when analysing pathological gait which exhibits high levels of inter and in-

trasubject variability [25]. ML implementations have demonstrated higher accuracy

in predictions [25,72,73], resulting in reduced torque prediction errors [74]. They have

also demonstrated lower prediction time errors [25]. ML algorithms exhibit adaptabil-

ity, as they were able to form predictions under dynamic speeds [74]. Furthermore, they
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shorten the time required for tuning controller parameters compared to manual tuning.

Tuning the parameters of an exoskeleton controller for different patients is necessary

to accommodate for variations in their gait trajectories and strength capabilities, lead-

ing to more effective rehabilitation [75]. Some ML algorithms eliminate the need for

hand-crafted, or expert-selected features, as they can learn relevant features from the

data [76].

The numerous advantages of ML algorithms and their increasing use were the moti-

vation behind conducting this systematic review. This chapter will focus on research

that utilised intelligent algorithms such as machine and deep learning, for gait analysis

in the context of active lower limb exoskeleton and orthoses control. This chapter will

explore the various gait parameters and features that researchers are detecting and

utilising for these robotic devices, as well as the sensors they incorporate into their

designs. This chapter is organised into nine sections. Section 2.3 outlines the research

methodology adopted, explaining the criteria used to include or exclude papers from

this analysis. Section 2.4 will present background information on the topics covered

in the review. Sections 2.5 to 2.8 offer a comprehensive review of the selected papers,

with each section focusing on a single gait parameter being detected/predicted. These

sections are further grouped based on the type of intelligent algorithm utilised. Finally,

Section 2.9 consists of a discussion and conclusion, where the findings of this review

are analysed and summarised.

2.3 Methods

2.3.1 Research Identification

A systematic review has been conducted, which is a systemic approach to exploring

existing literature. It involves selecting a set of keywords, along with Boolean operators,

to extract the most relevant papers from the literature. The focus of the review is on

literature that implemented intelligent machine learning algorithms for gait analysis

to be used with lower limb exoskeletons and orthoses. Therefore, the chosen keywords

should reflect the topic. They should be general enough to capture applicable literature
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and encompass the various techniques, sensors, and terminology used by researchers in

their studies, while also being restrictive to eliminate irrelevant research. The chosen

keywords are: (exoskeleton OR orthosis OR orthotic) AND (gait OR locomotion) AND

(recognition OR classification OR prediction OR intention OR selection OR detection

OR discrimination OR partitioning OR segmentation OR estimation) AND (“machine

learning” OR ”deep learning” OR ”artificial intelligence” OR ”neural” OR ”fuzzy”).

2.3.2 Databases for Research Extraction

The aforementioned keywords were used to retrieve papers from two databases: IEEE

and SCOPUS. Initially, PubMed was also included but no relevant papers were found.

Figure 2.1: Flowchart on the methodology of article selection.
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2.3.3 Inclusion and Exclusion Criteria

In addition to the keywords, specific inclusion and exclusion criteria were applied to

refine the results. The review includes research published between the years 1989 to

May 2020 in the English language. Results were limited to journal and conference

papers only. There were a few studies on SCOPUS where the full-text papers were

not available or inaccessible and hence were not included. A total of 226 papers met

the inclusion and exclusion criteria. Duplicate papers available on both databases

have been removed, reducing the papers to 172. These papers were initially analysed

based on their abstract, and irrelevant or less relevant papers were manually removed.

Reasons for exclusion include the use of prostheses rather than orthoses or exoskeletons,

focus on the upper limb rather than lower limb robotics, and the absence of intelligent

machine or deep learning algorithms. Results were further limited to research articles,

excluding conference papers. Out of the 64 full-text articles assessed for eligibility, 41

were included in this review. The full texts of these articles were reviewed, focusing on

the parameters the researchers considered, the intelligent algorithms used, the sensing

modalities employed, the types of subjects used for testing or training the algorithms

and the overall system performance. This process is visually illustrated in Figure 2.1.

2.4 Gait Parameters

According to Whittle, the term ‘gait’ is a technical terminology used to describe ‘the

manner or style’ we walk in [77]. When studying or describing gait, multiple parameters

are observed. These parameters typically have normal ranges for healthy gait, with

variations due to several factors such as anthropometric parameters (i.e. age, height

and limb lengths) [78]. Pathological gait parameters often deviate from these typical

ranges. In this section of the chapter, four gait parameters will be introduced: (1) gait

phase, (2) locomotion mode, (3) trajectory and joint angle, and (4) torque and moment.

Those gait parameters have been detected, predicted and analysed for the control of

lower limb robotics using different mechanisms and techniques. Refer to Appendix A

for more details on the machine learning algorithms used for the detection/prediction
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Figure 2.2: The four categories of gait parameters that have been predicted/detected
in the reviewed studies for the control of lower limb exoskeletons.

of those gait parameters.

2.4.1 Gait Phase

There are cycles of events that periodically repeat during gait. Each cycle includes a

stance phase, during which the lower limb is in contact with the ground, and a swing

phase where there is no contact. The stance phase can be divided into four periods:

(1) loading response, which starts with heel strike (also known as initial contact), (2)

midstance, when the foot is flat on the ground due to a dorsiflexion moment, (3)

terminal stance, when the heel begins lifting from the ground, and (4) pre-swing, which

is the last period of ground contact before the foot is lifted into the swing phase. The

swing phase is further divided into three more periods: (1) initial swing, (2) mid-swing

and (3) terminal swing. Overall, there are seven phases in a gait cycle (see Figure 2.3),

and this sequence of events alternates between the right and left foot, resulting in a

forward movement. During a single gait cycle, there will be periods of double support,

when both legs are in contact with the ground, and single support, where one leg is in

contact only [78]. Gait phases are part of the spatiotemporal parameters of gait [63].
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Figure 2.3: Illustration of the seven phases of the gait cycle that occur in the stance
and swing periods.

2.4.2 Joint Angle

During the gait cycle, the angles of the hip, knee and ankle joints undergo periodic

changes. Their values are often measured in the sagittal plane, where the greatest

movement is observed, compared to frontal and transverse planes [78]. Joint kinematics

[63], in addition to their first- and second-time derivatives, namely angular velocity and

angular acceleration, are commonly measured and reported in gait analysis.

2.4.3 Torque/Moment

The moment of force refers to the rotational effect caused by the application of force.

The magnitude of the moment depends on both the magnitude of the force applied

and the shortest distance between the location of the force’s application and a fulcrum

or pivot. This distance is referred to as the lever arm. Moment and torque are terms

that are often used interchangeably but there is a slight difference between moment

and torque. Moment results in bending and torque in rotating and twisting [79]. In

the context of biomechanics, a moment of force happens when the muscles contract,

causing the knee joint, which serves as the pivot, to rotate. Moments can be internal
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or external. Internal moments result from tension in soft tissue or from the contraction

of muscles (eccentric, concentric, and isometric contraction), while external moments

are due to external forces such as gravitational force. The rotational impact of these

moments on joints is the cumulative sum of all the individual internal and external

moments [78]. Moment of force is a kinetic parameter of gait [63].

2.4.4 Locomotion Mode

Locomotion modes encompass various physical activities including ground-level walk-

ing, standing up, sitting down, ascending and descending a slope, and ascending and

descending a staircase.

2.4.5 Other Parameters

In addition to the four gait parameters introduced above, the term ’intention’ has been

used in some of the reviewed papers. ‘Intention’ in the field of human-robot interaction

has been defined as “the need for the robot to have knowledge of some aspect of the

human’s planned action in order for the robot to appropriately assist toward achieving

that action” [18]. The measurement of intention can occur at the central nervous

system level based on the brain’s electrical activity, or at the peripheral nervous system

level based on the muscle’s electrical activity, or based on interaction forces between

the human and robot which can be measured with force sensors. Intention can be

characterised by discrete states, which can initiate certain movements or control mode

transitions, or by continuous states such as the desired position trajectories [18].

The two most common neural correlates reported by researchers for measuring intention

from the brain are Movement-Related Cortical Potentials (MRCP) and Event-Related

Desynchronization (ERD) [80, 81]. These neural correlates can be measured using

electromyography (EEG). MRCP has a component called Bereitschaftspotential (BP),

which begins around two seconds before the start of voluntary movement [82]. Mean-

while, significant ERD was observed to happen one second before movement initiation

and involves a reduction in spectral power of the alpha and beta bands, which have
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frequencies in the ranges of 8 to 13 Hz and 14 to 30 Hz, respectively [83]. Two other

neural features mentioned in He et al’s review paper on existing brain-machine inter-

faces used for lower-limb exoskeletons and orthoses control are the rate of neuronal

firing and Steady-State Visual Evoked Potentials (SSVEPs) [84].

Muscles are effectors that execute commands from the central nervous system, con-

tracting as a result. The electrical activity of muscles can be measured using surface

electrodes, which allows the detection of voluntary activity initiation shortly before

joint movement. The time delay between the activation of a muscle and the production

of force is known as electromechanical delay [85].

2.5 Gait Phase

The magnitude of assistive torque provided by the active exoskeleton or orthosis may

vary according to the phase of gait [74], making the detection of some or all gait phases

essential. A wide variety of wearable sensors and algorithms have been utilised for

this purpose. The granularity of the phase detection varied, ranging from as low as

two phases up to eight phases. This section will include a list of machine learning

algorithms used for gait phase detection. The identified phases and the overall system

performance have been discussed in detail. Refer to Appendix B.1 for a table that

summarises the details of all the papers that predict gait phases.

2.5.1 Neural Networks

Jung et al [72] implemented a multilayer perceptron neural network (MLPNN), to

detect two gait phases: stance and swing. Their study focused on controlling ROBIN-

H1, an exoskeleton designed for the rehabilitation of stroke patients. Pitch orientation

and angular velocities were measured by several sensors and were used as input to

the MLPNN. Ground truth labels were obtained using force plates. The MLPNN

had one hidden layer with growing nodes that increased from 5 to 50. The back-

propagation algorithm was used for optimisation. Classification success rate (CSR) was

the metric used to evaluate performance, which accounted for three types of errors:
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early classification, delayed classification and erroneous classification. The authors

considered erroneous classification errors the most dangerous type of error for robotic

control and a potential risk of injury. Both offline and online tests were conducted

based on data from healthy subjects. The average CSR rate for the offline test was

97.75%, which was higher than the average CSR for the online test, which was 90.75%.

Ma et al [86] also implemented an MLPNN to detect four phases of gait: heel strike,

flat foot, heel off, and swing. It was compared to the kernel recursive mean square

method (KRLS). The average classification rates of the MLPNN for 3, 5, and 10-fold

cross-validation were 83.17%, 82.42%, and 83.23%, respectively. However, the MLPNN

showed lower performance compared to KRLS, with a difference of 2.33%, 3.62%, and

3.04% in classification rates for the respective classification cross-validation folds.

Kang et al [74] implemented a neural network to estimate the percentage of the gait

cycle for controlling a bilateral hip exoskeleton. Instead of discrete phases, the gait was

considered as a continuous variable, and the model aimed to detect the percentage of

the gait phase. Different combinations of sensors were experimented with, and a neural

network with one hidden layer and 20 nodes was trained. The authors found that using

all sensors combined resulted in greater error than using the hip encoder and thigh

IMU only, possibly due to the simple architecture of the model used. Three models

were evaluated: a generalized/independent model (trained on data from multiple users

and tested on data from an unseen user), a user-specific/dependent model (trained on

data from a single user and tested on unseen samples from that user), and a semi-

dependent model (trained on data from multiple users and tested on unseen samples

from one of the users it initially trained on). These models were compared to a time-

based estimation (TBE) model that uses FSRs, under varying gait speeds. For steady-

state speeds, there wasn’t a significant difference in performance, and the generalized

model had the highest error even compared to TBE. However, under dynamic and

extrapolated speed dynamic movements, the user-specific and semi-dependent models

showed higher accuracies compared to TBE, reducing estimation error by 23.4% and

26.3% respectively. The enhanced estimation led to a decrease in torque generation

error by 32.4% (p <0.05) for the dependent model and by 40.9% (p <0.05) for the

semi-dependent model. The semi-dependent model showed the best performance.
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Hua et al [87] implemented an adaptive neural-fuzzy inference system (ANFIS), which

combines Takagi-Sugeno fuzzy inference system and neural networks, for detecting two

phases: stance and swing. Their objective was to develop a lower limb exoskeleton

capable of withstanding the lifting of heavy loads. Plantar pressure readings and their

first and second derivatives were used as input for predictions. A trapezoidal mem-

bership function was employed. The authors demonstrated the model’s generalization

potential by segmenting gait phases under various locomotion modes.

Nazmi et al [88] implemented an MLPNN to detect stance and swing using EMG

signals. Two types of optimisation algorithms, the scaled conjugate gradient (SCG)

algorithm and the Levenberg-Marquardt (LM) algorithm were compared. The SCG

achieved optimisation in a shorter duration, while the LM resulted in higher accuracy

and lower MSE. Numerous features derived from the muscle activity were used for

training the neural network including mean absolute values (MAV) only, mean absolute

value and waveform length (group 1), and mean absolute values, waveform length, RMS,

SD and integrated EMG (group 2). Using the LM optimization algorithm, the accuracy

using MAV features was 78.6%, for group 1 features was 82.3%, and for group 2 features

was 87.4%. These results indicated that using the greatest number of features leads to

more accurate predictions.

Zhang et al [89] implemented a backpropagation neural network (BPNN) to detect

five phases of gait. The authors investigated the effect of variations in the load carried

by the users on the EMG activity and the ability of an algorithm trained on data from

users carrying one load level to perform accurate predictions when tested on data from

users carrying multi-load levels. EMG data was collected from users carrying multiple

loads as a percentage of their masses (0%, 20%, 30%, and 40%) while walking on a

treadmill at three different speeds. The authors found out that intra-load testing, which

involves training and testing a model using data from users carrying one load level, had

higher accuracy than inter-load testing, which involves training a model using data

from users carrying one load level and testing it using data from users carrying another

load level. These findings indicate that muscle activity changes with load variations,

and emphasises the importance of training the algorithm with data from multi-load

conditions to maintain the performance of the exoskeleton in various conditions.
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2.5.2 Deep Neural Networks

Zhen et al [90] implemented a long short-term memory and deep neural network (LSTM-

DNN) for the detection of two phases: stance and swing, using acceleration signals ob-

tained from an inertial measurement unit. The LSTM had 36 units, and its output was

fed into a DNN. The LSTM-DNN was tested under three predefined speeds, achieving

accuracies greater than 91.8% and F-scores greater than 92%. The LSTM model on its

own had lower performance, with accuracies greater than 86.8% and F-scores greater

than 86.4%.

Wang et al [33] implemented a deep memory convolutional neural network (DM-CNN)

to detect four phases of gait, using foot pressure sensors and IMUs. Phase classification

using the single-mode (i.e., training the model on data from a single sensor) and multi-

modal approach (i.e., training the model on data from multiple sensors) were compared.

The multi-modal achieved a higher performance, and classification with acceleration

signals alone outperformed classification using pressure signals alone.

Jung et al [72] implemented a non-linear autoregressive with external inputs (NARX),

which is a type of recurrent neural network. The performance of NARX was slightly

lower than the MLPNN, with an offline CSR of 97.05%, and an online CSR of 91.93%.

However, NARX had fewer unstable regions, which are oscillations in the output, com-

pared to the MLPNN. The authors suggested that segmenting the data into individual

strides for training may have resulted in discontinuities in the gait pattern, affecting

the performance of NARX.

2.5.3 Decision Trees/Random Forest

Farah et al [91] implemented a logistic model decision tree (LMT) for the detection

of four gait phases: loading response, swing, terminal swing, and push-off using knee

angles, thigh angular velocity, and acceleration as input features. The chosen LMT

model was a J-48 decision tree with terminal nodes performing a logistic function.

The C4.5 decision tree splitting criteria was followed, resulting in a tree with a total

size of 1643 and 822 nodes. To remove erroneous or misclassifications and improve
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accuracy, a transition sequence validation and correction algorithm (TSVC) was applied

post-classification. The training and validation accuracies were 98.76% and 98.61%

respectively. The F-score for the validation set was 0.97. It was noted that a large

proportion of false negatives were due to transition periods during the phases.

Pasinetti et al [92] implemented a random forest (RF) algorithm to detect two phases

of gait: stance and swing, using time of flight cameras. Depth cameras were embedded

in two crutches used when walking with the exoskeleton, with each camera monitoring

the contralateral leg. The images captured were processed to separate the leg and

floor from the environment. A plane detection algorithm identified the floor’s surface

as a reference for measuring distances between it and other objects, i.e., foot. The

percentiles of these distances were used as features for classification. Two variations of

algorithms were implemented, a random forest (RF) comprised of decision trees and a

sigma-z random forest. The Sigma-z RF accounts for uncertainties such as measurement

errors, and for variances in the data that can occur if there is similarity or overlap

between features of distinct classes. Sigma-z outputs a classification, in addition to a

confidence value for that classification. The choice of admittance threshold influenced

a trade-off between classification accuracy and the number of unclassifiable samples.

The RF and sigma-z RF achieved accuracy values of 81% and 87.3%.

2.5.4 Fuzzy Logic

Chinimilli et al [93] implemented fuzzy logic to detect four gait phases, with the aim

of creating an adaptive virtual impedance controller for a knee exoskeleton. Ground

contact forces measured with smart shoes were input to a fuzzy logic algorithm, which

consisted of partial trapezoid and triangular membership functions. The classified gait

phase, along with the locomotion mode (further discussed in the following section of this

chapter), were used as inputs to a Gaussian mixture model (GMM) that determined

the appropriate stiffness and damping ratio for controlling the exoskeleton. While the

classifier’s performance was not recorded, automatic impedance tuning that is based

on the outputted gait phase and locomotion mode has been assessed in comparison

to constant impedance and finite state machines. The automatic impedance control
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showed desirable results, decreasing the EMG activity level (of the vastus medial),

shortening the step length and increasing the cadence compared to the two other control

modes.

Chen et al [94] implemented fuzzy logic for the detection of four phases using foot

pressure data. The HEXO exoskeleton utilised hybrid control, with adaptive impedance

control (AIC) in the stance phase and active-disturbance rejection control with fast

terminal sliding mode control (ADRC-FTSMC) in the swing phase. The fuzzy logic

algorithm for phase detection used a sigmoid membership function.

Huo et al [95] used fuzzy logic for gait phase detection for E-ROWA, an exoskeleton

that supports walking by generating appropriate torque according to the phase of gait.

The authors also detect locomotion modes, discussed in the following section.

2.5.5 K-nearest Neighbour

Chen et al [96] implemented the k-nearest neighbour (KNN) method to detect eight

gait phases using joint angle sensors that measure the angle of the hip, knee, and ankle

joints, and plantar pressure sensors.

Wang et al [33] implemented a KNN algorithm for the detection of four gait phases.

However, KNN’s performance was lower compared to DM-CNN, N-HMM, and HMM,

with an accuracy of 88.5%, 8.6% lower than the best-performing algorithm. Its precision

and recall values were 81.5% and 82.5% respectively.

Zhen et al [90] implemented a KNN algorithm for the detection of two gait phases.

Seven different values of K were used, ranging from 2 to 30, and the Euclidean distance

was set as the distance parameter. The algorithm’s performance was evaluated at

three walking speeds. The KNN had the worst performance compared to LSTM-DNN,

LSTM, and SVM. Its accuracy ranged between 69% and 76% while its F-score was

between 70% and 77%.

A KNN is implemented by Zhang et al [89], for the detection of five gait phases. The

KNN algorithm had a lower performance than BPNN.
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2.5.6 Hidden Markov Model

Manchola et al [73] implemented a hidden markov model (HMM) to detect four gait

phases using a single IMU placed on the instep of the foot. Gyroscope signals in the

sagittal plane were used instead of acceleration signals that require a Kalman filter

to address the issue of drift. The Baum-Welch algorithm was used for model train-

ing and the Viterbi algorithm for gait phase recognition. Two types of training have

been performed: inter-subject/subject-specific training (SST), where the algorithm was

trained on data from a single user and tested on unseen samples from that user, and

inter-subject/standardised parameter training (SPT), where the algorithm was trained

on healthy users and tested on unseen samples from one of those healthy users or on

a patient. SST had higher accuracy compared to SPT, and the difference was more

pronounced for healthy subjects than for patients. The SST accuracy was 81.44% for

healthy users and 78.06% for patients, meanwhile, the SPT accuracy was 76.91% for

healthy users and 76.36% for patients. Despite the training approach, the HMM ac-

curacies were still higher than the threshold-based algorithm, which was a finite state

machine that classifies gait by detecting peaks, troughs and zero-crossings of the signals

of an accelerometer and gyroscope.

Wang et al [33] implemented both HMM and N-HMM as a comparison to DM-CNN.

However, both had lower accuracies compared to DM-CNN model, scoring 96.2% and

92.3% respectively.

2.5.7 Support Vector Machines

Ma et al [86] implemented a support vector machine (SVM) to detect four gait phases

and compared its performance to the kernel recursive least-square method (KRLS) and

MLPNN. The SVM used a Gaussian kernel function and was optimised using particle

swarm optimization. The SVM achieved accuracies of 83.00%, 82.69% and 83.29% for

3, 5, and 10-fold cross-validation, respectively. However, its performance was lower

than that of the KRLS method.

Zhen et al [90] implemented an SVM for the detection of two gait phases. Four kernel
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functions were used: linear, RBF, sigmoid and poly with the RBF kernel resulting

in the highest performance. The SVM achieved slightly higher performance than the

KNN but was outperformed by the LSTM-DNN and LSTM models.

Zhang et al [89] implemented an SVM and compared its performance to BPNN, KNN,

and SVM. The SVM and kNN demonstrated lower performance than the BPNN.

2.5.8 Principal Component Analysis

Tanghe et al [97] implemented a probabilistic model, specifically the probabilistic prin-

ciple component analysis (PPCA), for the prediction of four phases of gait before they

occur, which are initial contact, flat foot, heel off, and toe off events along with joint

trajectories. The training dataset used consisted of data from healthy participants

walking without an exoskeleton. The models were validated on two separate data sets:

one with healthy participants walking without an exoskeleton and another with healthy

participants walking with an exoskeleton. In this paper, zero error signifies that the

phase was predicted 0.2 seconds before to the actual event. The maximum median

error for the exoskeleton-free validation dataset across all four phases was 9ms. How-

ever, when considering the dataset involving the exoskeleton, the median was higher,

reaching 15ms for initial contact, and 33ms for toe-off. It was also noted that heel-off

was the most challenging phase to predict.

2.5.9 Kernel Recursive Least Square Method

Ma et al [86] implemented a kernel recursive least square method (KRLS) for gait

phase detection, using the knee and hip joints angle as input. The reported accuracies

for gait phase classification were 85.49% for 3-fold cross-validation, 86.04% for 5-fold

cross-validation, and 86.26% for 10-fold cross-validation.
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2.6 Locomotion Mode

Identifying the locomotion mode is essential for robotic devices that provide assis-

tance with daily life activities. This is because each activity requires specific assistive

requirements, and identifying the mode allows for smooth transitions between the dif-

ferent activities. Locomotion modes can be classified into static or dynamic modes.

The main static locomotion modes are sitting and standing. The main dynamic loco-

motion modes are straight-level walking, ascending stairs, descending stairs, ascending

slope, and descending slope. Some authors also focus on detecting mode transitions,

such as sitting to standing or level walking to ascending etc. Often, the identification of

locomotion mode is performed in conjunction with gait phase detection, either before or

after identifying the current phase. Refer to Appendix B.2 for a table that summarises

the details of all the papers that detect locomotion modes.

2.6.1 Neural Networks

A BPNN is implemented by Song et al [98], for locomotion mode detection. They

identified 4 static, and 11 dynamic modes, resulting in a total of 15 locomotion modes

including sitting, standing, level walking, and level walking with weight, among oth-

ers. IMUs and foot pressure sensors were used to acquire signals, from which they

extracted time domain, frequency domain and energy features. A total of 141 features

have been extracted, including mean, variance, correlation coefficient, wavelet energy

entropy, SMA, Fourier series and maximum values. Some features are more suited for

classifying static modes such as leg angles, while others were more appropriate for dy-

namic modes. Three neural networks were developed, each with three layers. The first

network determined whether the mode is static or dynamic and contained 5 input, 25

hidden, and 1 output node. Depending on the outcome, a static mode or a dynamic

mode neural network was employed. The static neural network has 20 input nodes, 100

hidden nodes and 1 output node, while the dynamic had 40 input nodes, 200 hidden

nodes and 1 output node. The authors found it easier to classify dynamic modes due

to their larger inherent pattern differences compared to static modes. However, they
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observed some confusion between standing and sitting with a load. For single-mode

classification, the overall accuracy was 98.28%. The accuracy of multi-mode classifica-

tion, which involved transitioning between modes, was lower.

An ANN is implemented by Islam et al [99] to detect: level walking, ascending stairs/ramp,

and descending stairs/ramp, for controlling their Portable Powered Ankle-Foot Ortho-

sis (PPAFO) using IMU and foot pressure sensors. Calibration was performed with

every step to address drift, particularly at the zero-acceleration stage (mid-stance).

Foot pressure sensors assisted in identifying mid-stance for calibration. The input of

a three-layer neural network consisted of six tapped delays of vertical foot velocity

and angle measurements derived from IMU. The hidden layer had 10 nodes and the

output layer had 3 nodes. Subject-specific training was conducted, and the accuracies

ranged from 97.8% and 100%. The authors also measured the time required to detect

a transition as a percentage of the gait cycle, representing how much of the gait cycle

elapsed before a mode transition is detected. Mode transitions were identified in the

swing phase of the transitioning step, within 28% of the gait cycle for the stair mode

and 16% of the gait cycle for the ramp mode.

Backpropagation neural network (BPNN) and radial basis function neural network

(RBFNN) are implemented by Wang et al [100], to detect six locomotion modes with

IMUs and plantar pressure sensors. Both networks had an architecture consisting of 20

nodes for input, 12 nodes for the hidden layer and 6 outputs. The BPNN outperformed

the RBFNN, achieving an accuracy of 93.3% compared to 91.2%.

2.6.2 Support Vector Machine

Wang et al [100] implemented an SVM to detect six locomotion modes. The SVM

outperformed two algorithms, the Radial Basis Function Neural Network (RBFNN)

and Backpropagation Neural Network (BPNN), achieving an accuracy of 96.5%. When

comparing the choice of kernel functions, the linear kernel resulted in better perfor-

mance compared to the polynomial function.

Villa-Parra et al [101] implemented an SVM with a Gaussian kernel for locomotion
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intention prediction based on EMG. The authors used muscle activity from the trunk

and compared it to that of the lower leg to predict the intention to perform various

locomotion modes such as flexion-extension of the knee, standing up, sitting down etc.

The reported accuracies ranged between 76%-83% and 71%-77% for lower limb and

trunk muscles. The comparison between trunk muscles and lower limb muscles aimed

to assess their abilities to accurately predict locomotion intentions. The goal was to

determine if the truck muscles can be used as an alternative to lower limb muscles

which are often affected by pathologies or weakness in patients with preserved trunk

muscle activity.

Goh et al [76] implemented an SVM as a comparison to a Spectral Representation

Learning Model (SSRL) for the detection of four locomotion modes with EEG. Principle

Component Analysis (PCA) and F-score (FS) were used for dimensionality reduction.

SVM-PCA and SVM-FS performed worse than SSRL, although SVM-FS outperformed

SVM-PCA.

2.6.3 Deep Neural Networks

Hua et al [87] implemented a deep neural network (DNN) and convolutional neural net-

work (CNN) for the detection of 6 locomotion modes. They have experimented with

several machine learning algorithms, including DT, DA, KNN, SVM, EM which were

pre-processed with kPCA to reduce the dimensions of the input features. The deep

learning algorithms outperformed traditional ML algorithms achieving 52% higher ef-

ficiency, without the need for kPCA, with a lower duration (20ms) to perform the

computation. The stacked autoencoder DNNs, optimized with Genetic Algorithm Par-

ticle Swarm Optimization (GA-PSO), achieved accuracies around 99%, compared to

97.2% prior to optimization.

Goh et al [76] implemented a spatio-spectral representation learning model (SSRL) to

detect four locomotion modes using EEG signals. The locomotion modes include level

walking without an exoskeleton, and level walking with an exoskeleton at zero, low, and

high torque support modes. The SSRL consisted of three hidden layers: a spatial layer,

a spectral layer, and a fully connected layer. EEG data from 27 healthy male subjects
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was collected from 20 channels. The models were trained using wide spectral frequencies

(WS) ranging from 1-42 Hz or prominent spectral frequencies (PS) ranging from 8-30

Hz. SSRL was compared with two other machine learning algorithms, random forest

and support vector machines with radial basis function kernels, that had dimensionality

reduction methods, including principal component analysis (PCA) and F-score (FS)

applied to them. The SSRL-WS had the highest accuracy, 77.8 ± 1.8%. The accuracies

of SVM-FS, SVM-PCA and RF-FS algorithms for the wide spectral frequencies were

74.3 ± 1.6%, 64.3 ± 1.8%, and 65.9 ± 1.8%, respectively. The accuracies when using

the prominent spectral frequencies were lower, but the algorithms still had the same

order of performance, with SSRL achieving 72.9 ± 1.7%, while SVM-FS, SVM-PCA and

RF-FS achieved 70.2 ± 1.6%, 54.8 ± 2.0%, and 58.9 ± 1.7% respectively. The results

showed that FS performed better than PCA, but the SSRL, which obviated the need

for handcrafted features, still performed better than both. Additionally, the spatial

parameters of the network provided insights into the role of different brain regions in

controlling gait, contributing to the understanding of the topographic organization of

the brain.

2.6.4 Fuzzy Logic

Chinimilli et al [93], implemented a fuzzy inference algorithm to detect three locomotion

modes: level walking, uphill and downhill walking. The algorithm utilised the detected

heel strike (right leg) and the knee angle derived from IMUs placed on the thigh and

shank. The number of locomotion modes detected was limited by the experimental

setup, which involved a treadmill only.

Parri et al [102] implemented a fuzzy logic algorithm to detect seven locomotion modes

for the control of a hip orthosis. The algorithm first used a threshold-based algorithm

to categorise whether a mode is static or dynamic using hip angles. Static modes

including sitting, standing and transitioning between the two were identified with this

approach. Dynamic modes, including level walking, ascending and descending stairs

were classified using the fuzzy logic algorithm based on hip joint angles and centre of

pressure measured by sensitive insoles. A Gaussian function was used as a membership
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function. The authors aimed to create a generalised model and avoid subject-specific

training, therefore, membership values were based on data from 6 subjects with varying

speeds and assist modes. The effect of inter-subject variability had a noticeable impact

on the reduction of performance for a participant who was taller than the others.

Huo et al [95] implemented a fuzzy logic algorithm to detect five modes of gait. The

Mamdani fuzzy inference system has been specifically employed with bell-shaped curves

as membership functions. Four healthy participants wearing the E-ROWA exoskeleton

were asked to walk under normal and simulated abnormal gait, with the abnormal gait

achieved by locking the flexion of one knee joint. The algorithm achieved accuracies

greater than 97.7% for normal gait and 97% for abnormal gait. The authors also

reported the latency of detection, with modes detected at the start of the step rather

than the end, was less than 32 ± 8.3% of a step.

2.6.5 Random Forest/Decision Trees

Novak et al [103] implemented a Decision tree algorithm to decode the intention of gait

initiation and termination, using IMU and pressure insoles. Gait initiation was divided

into two parts: onset which includes events that occur in preparation for toe-off, approx-

imately 0.5 s before the foot begins to lift from the ground, and toe-off which is when

the foot is fully lifted from the ground. Gait termination is when a person decides to

stop walking. Within-subject trials yielded better results than subject-independent tri-

als. The use of IMU and pressure sensors separately and combined as input to decision

trees have also been compared. IMUs performed better in detecting gait termination,

however, pressure insoles were still needed particularly for the segmenting gait cycles.

In 80% of within-subject classification trials, gait termination was predicted prior to

the actual event. The research aims to assist a user with their first step upon detection

of their intention to walk or terminate assistance when they desire to stop walking.

The authors noted that the effects of an assistive device, such as an active orthosis, on

‘masking’ intention are yet to be evaluated.

Goh et al [76] implemented a random forest (RF) algorithm to detect four locomotion

modes with EEG. Pre-processing involved dimensionality reduction using F-score (FS).
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RF-FS algorithm performed worse than the SSRL model to which it was compared.

2.6.6 Multiple Kernel Learning

Zhang et al [26] implemented multiple kernel learning (MKL) algorithms to decode

intention for performing four locomotion modes using EEG including forward walk-

ing, stopping, turning left and turning right. 64 channels of electrodes were used and

placed according to the 10-20 international system. The brain was segmented into

13 regions, and the algorithm’s performance and role of the brain regions were evalu-

ated. The frontal and front-central regions, particularly, the MFC and RFC had the

highest weighting indicating the largest role in intention/limb control. However, the

exact precedence of those regions differed in the healthy and SCI participants, with the

healthy participant having the highest weighting in MFC followed by the RCF region,

while the SCI participant had the reverse order. The accuracy of the model was 74.5%

for the healthy participant and 68.4% for the SCI participant in the single-session ex-

periment. In a nine-session experiment over 30 days, the classifier was set to detect

walking and stopping only with an accuracy greater than 90% and resulted in a change

in the weighting of the regions, indicating cortical plasticity. The weighting and accu-

racy improved as sessions progressed, and the stopping mode was the most difficult to

detect among the four modes.

2.6.7 Sparse Discriminant Analysis

Gui et al [27] implemented linear discriminant analysis (LDA) to detect intention for

four locomotion modes: stopping, level walking, accelerating, and decelerating. The

authors used cognitive and peripheral signals, with LDA relying on brain-generated

Steady-State Visual Evoked Potentials (SSVEP) as input features. The central pattern

generator uses the output of the LDA to generate the exoskeleton’s trajectory. The

recognition rate of steady-state (ROS) was 92.40%, and the duration of transient state

(DOT) or time delay was 1.7 seconds. The authors discussed the impact of increasing

the locomotion modes from four to eight on the quality of SSVEP, which reduced the

recognition rate to 70%. EEG was used for transitioning between the four discrete
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modes, whereas continuous locomotion speed control relied on EMG. EMG was the

input to an admittance model with further details discussed in their paper.

Lopez-Larraz et al [28] implemented sparse discriminant analysis (SDA) to identify

gait initiation intention for an exoskeleton that assists patients with incomplete spinal

cord injuries. From EEG signals that were generated and cue-guided, event-related

desynchronization (ERD) and movement-related cortical potential (MRCP) features

were derived and used with SDA. The model was tested on data from three healthy

participants and four SCI patients. The experimental protocol contained four parts:

rest, preparation, attempt movement, and movement. The accuracy for decoding the

intention of healthy users was higher than those with SCI, with 88.44 ± 14.56% com-

pared to 77.61 ± 14.72%. Frequency ERD features were more commonly chosen over

temporal MRCP features.

2.6.8 Canonical Correlation Learning

Zheng et al [104] implemented the canonical correlations algorithm (CCA), an un-

supervised learning algorithm, to decode intention for three motion patterns. The

authors used steady-state visual evoked potential (SSVEP) features. They conducted

both offline and online experiments to evaluate the performance of their approach. In

offline experiments, visual stimuli were presented to participants, followed by intention

classification based on their EEG. In online experiments, participants were exposed

to visual stimuli and then performed physical motions including squatting, walking

then standing. This setup involved multi-modal data as input features, including foot

pressure and joint positions. In both experimental scenarios, the authors achieved a

classification accuracy of over 90%.

2.7 Moment/Torque

Torque and moment are kinetic parameters of gait that have been detected using var-

ious machine learning algorithms as follows. Refer to Appendix B.3 for a table that

summarises the details of all the papers that predict joint torque/moment.
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2.7.1 Neural Network

Ma et al [86] implemented an MLPNN to predict hip joint assist torque to support

the extension and flexion of the hip. For hip extension assistance, torque needs to be

provided in heel strike and flat foot phases. For hip flexion assistance, torque needs

to be provided in the heel-off and swing phases. The authors developed a generalised

model that was trained on one group and tested on another. However, when compared

to the kernel recursive least-square method, the MLPNN’s mean square errors were

twice as large.

Gui et al [105] implemented a radial basis function neural network (RBFNN) to out-

put passive and active torques. This method serves as an alternative to the hill-type

model, often used for deriving torque from EMG activity. The torques generated by the

RBFNN are utilised by a motion controller, the extended Slotine-Li, that controls an

assist-as-needed exoskeleton. Two neural networks are employed in this setup; one uses

motion states as input and outputs passive torque, while the other uses motion states

and processed EMG signals as input and outputs active torque. The first RBFNN is

trained with the muscles relaxed until a satisfactory steady-state error level is reached.

Subsequently, the second network is trained while asking the subjects to perform volun-

tary active torque, keeping the parameters of the first network constant. The outputs

are compared against measurements from torque sensors. The authors calculated torque

during the swing phase only, due to the unavailability of force plates. The utilisation

of the Slotine-Li scheme eliminated the need for EMG signal calibration. To achieve

‘activity-based neuroplasticity’ the delay between estimated and actual torques needs

to be below 300ms. This has been achieved as the time delay ranged between 174ms

and 305ms. In future work, the authors suggest using high-density EMG.

Xiong et al [106] implemented a neural network for internal joint moment prediction

using EMG signals and joint angles. Prior to the neural network, an elastic net was

used to eliminate noise and redundant features in the input, resulting in reduced com-

putational load and enabling real-time prediction. The neural network was trained on

the data from 8 healthy subjects. The outputs of the network were compared to joint

moment values calculated via inverse dynamics, which the authors acknowledged is a
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source of limitation since the calculated values do not account for the presence of errors

between calculated values and actual internal torques.

Xiong et al [107] implemented an extreme machine learning neural network (ELM) to

predict joint moments. A hill-muscle model is used to determine the essential features

for making accurate predictions. The authors successfully calculated moments of var-

ious joint movements, including flexion and extension of the hip and knee, abduction

and adduction of the hip, and the plantar and dorsiflexion of the ankle. The perfor-

mance of the model was evaluated using the variance accounted for (VAR). Results

showed that incorporating muscle activity, muscle actuate joint angles, and angular

velocities (instead of joint angles and angular velocities) yielded the best performance,

with a VAF of 89.67 ± 5.56%. Conversely, using EMG alone resulted in a significantly

lower VAF of 82.83%. This highlights the inadequacy of relying on EMG signals alone

for joint moment calculation. Furthermore, the study demonstrated that foot pressure

sensors were not needed.

2.7.2 Kernel Recursive Least-Square Method

Ma et al [86] implemented the kernel recursive least-square method (KRLS) to pre-

dict hip joint assist torque. It has been compared against MLPNN, with MLPNN

performing worse than KRLS.

2.7.3 Joint Angle and Trajectory

Joint angles and trajectories are considered a kinematic parameter of gait and have been

primarily predicted using neural networks and principal component analysis. Refer to

Appendix B.4 for a table that summarises the details of all the papers that predict

joint angles.
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2.7.4 Neural Network

Kutilek et al [108] implemented an artificial neural network (ANN) to predict joint

angles using cyclograms. The authors used a neural network trained with backprop-

agation, where the inputs included current joint angles (for a single joint), angular

acceleration, weight, and age. They also trained a separate neural network that incor-

porates inclination angles calculated using PCA to the angles of two joints as inputs.

The predictions for the hip-knee were found to be more accurate than ankle-knee angle

predictions, and the neural network that utilised inclination angles performed better.

In another study published a year later, Kutilek et al [109], expand on their work by

including the second moment of area (x-axis and y-axis) as additional inputs for joint

angle prediction.

Mazumder et al [110] implemented a radial basis function neural network (RBFNN)

to generate gait trajectories. The model incorporates joint angles derived from IMU

signals, gait phases and stride times calculated based on EMG signals, and foot pressure

sensors as input to the RBFNN. The model was trained on data from 5 healthy subjects

and is capable of adapting to the user’s walking pace and anthropometrics.

Lee et al [111] implemented RBFNN and MLPNN for the calculation of joint angles,

using EMG signals. Their focus was on using the joint angles of a healthy leg to predict

the joint angles of a pathological leg with an orthosis or prosthetic. The RBFNN uses

EMG signals from the rectus femoris to predict knee joint angles of the healthy lower

limb while the MLPNN uses the output of the RBFNN to predict the hip and joint

angles of the pathological lower limb. The experimental setup involved measuring joint

angles during level walking, sitting and standing off a chair, with an average accuracy

of 97.5% and an absolute average error rate of 0.25º.

Xie et al [112] implemented a generalized regression neural network (GRNN) and BPNN

for calculating joint angles. The inputs included EMG, hip joint angles, and plan-

tar pressure. The GRNN was optimized with the golden-selection algorithm with

a Gaussian kernel transfer function. Wavelet denoising was also implemented since

high-frequency signals contribute to the instability of data affecting the output of the
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GRNN. Meanwhile, the BPNN was trained with the Levenberg-Marquardt algorithm.

The GRNN had a shorter prediction time than the BPNN, 2.38s compared to 16.029s

respectively, for very similar correlation coefficient values.

Wang et al [113] implemented an Elman neural network to detect knee joint angles

using EMG. The Elman network has a feedback mechanism and a memory component.

EMG signals were recorded during leg extension exercises at various speeds, both with

and without load. The researchers employed a multilevel wavelet decomposition and

calculated the correlation dimension of wavelet coefficients (WCCD) that were used

with the Elman neural network. The WCCD achieved the lowest RMSEs compared

to time-domain feature extraction algorithms, IEMG and RMS, and frequency-domain

feature extraction algorithms, MNP. The Elman Neural network outperformed other

algorithms, including BPNN, LSSVM, GRNN. The study reported that higher speeds

during the extension exercises resulted in larger RMSEs. However, when comparing

exercises with and without load under constant speeds, having load led to lower RMSEs.

Gomes et al [114] implemented three MLPNNs to generate trajectories for a lower

limb orthosis. The first neural network approximated inverse dynamics and calculated

torque variations. The second neural network performed optimization to determine the

adapted step time. The third neural network calculated the trajectory input to the

orthosis’s position controller including position, velocity, and acceleration values. By

considering the zero-moment point criterion and interaction forces between the user’s

limb and the orthosis, the users can voluntarily alter their walking pattern, such as

increasing their speed while maintaining stability.

Wu et al [115] implemented an autoencoder neural network (AENN) for the predic-

tion of hip and knee joint trajectories for their lower limb robot SLEX. The generated

patterns were based on walking speed and 21 body parameters. A Gaussian regression

process (GRP) with automatic relevance determination (ARD) was used to map the

relationship between walking speed (desired) and body parameters to spatial-temporal

features. The AENN utilised the spatial-temporal features to output joint trajectories

for the knee and hip angle. This approach allowed for individualized gait trajecto-

ries tailored to the person’s particular body parameters, enabling the sharing of the
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exoskeleton by multiple users.

2.7.5 Deep Neural Network

Boudali et al [116] implemented a recurrent neural network (RNN) for hip and knee

joint trajectory prediction during transitioning locomotion modes, such as level walking

and ascending stairs. The authors utilised the angular position and velocity of a cane,

to predict the angular position of the contralateral foot. The RNN used for dynamic

mapping was compared to the least square method used for static mapping. The RNN

outperformed the least square method and demonstrated the capability of producing

predictions during mode transitions (i.e., not limited to predictions during steady state),

which was a limitation of the least square method. Introducing the position and velocity

of an arm to the model further lowered the RMS errors of the predictions reported as

1.36º and 2.48º for the hip and knee joints respectively, for experiments involving

intra-subject training. It was observed that the accuracy was higher for intra-subject

mappings compared to inter-subject mappings.

2.7.6 Least Square Method

Ma et al [86] implemented the kernel recursive least square method for hip assist torque

prediction, outperforming the MLPNN. The mean square errors were between -11.18

and -13.41 across five trials.

Boudali et al [116] implemented the least square method for hip and knee joint tra-

jectory prediction. However, this method resulted in larger RMS errors compared to

the RNN. Furthermore, it was limited to performing static mappings and could not

perform dynamic mappings.
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2.7.7 Principal Component Analysis and Best Linear Unbiased Esti-

mation

Complementary limb motion estimation (CLME) is utilised in some wearable robotics,

particularly for patients with hemiplegia, in which a healthy limb is used to produce

a reference trajectory for a pathological limb based on a mapping function. Vallery et

al [117], evaluated CLME using principal component analysis (PCA) or best linear un-

biased estimation (BLUE) for the generation of trajectories, comparing it to impedance

control (fixed trajectory) and zero-torque control. Evaluation criteria included moni-

toring the amount of power delivered by the exoskeleton in the different control modes,

as well as the distortive impact of this method on muscle activity and the kinematics of

gait. Compared to impedance control, CLME produced more natural walking patterns.

PCA-CLME also performed worse than BLUE-CLME.

Tanghe et al [97] implemented a probabilistic principal component analysis (PPCA)

model for the prediction of gait trajectories. The model is capable of predicting motions

over a short time horizon but fails for longer time horizons.

Hassan et al [118] implemented PCA. The authors investigated the efficacy of synergy-

based control, also referred to as complementary limb motion estimation (CLME), for

patients with hemiparesis. They used the kinematics of the healthy limb and an assistive

cane to estimate the reference trajectory of the affected limb. The reference trajectory

was the input to a proportional differential (PD) controller, which controls a single-limb

HAL exoskeleton. Synergies of the limbs of healthy people were first identified to be

able to map the relationship between the healthy and affected limbs of patients with

hemiparesis. Synergy-based control was compared to autonomous control.

2.8 Other Parameters

Xu et al [119] conducted a study where they used EEG to decode the intention to

perform dorsiflexion for controlling a motorized active foot orthosis. The goal was to

promote cortical plasticity for stroke patients, by providing timely control of the dorsi-
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flexion of a motorized ankle-foot orthosis. The importance of appropriate stimulation

timing correlates with the Hebbian rule that states that ‘neurons that fire together,

wire together’. The authors used locality-preserving projections (LPP) and a linear

discriminant classifier (LDC) to detect movement-related cortical potentials (MRCP).

The LPP-MRCP approach performed signal versus noise classification and two consecu-

tive ‘signal’ classifications indicated the presence of an MRCP. The classifier was tested

on 10 healthy subjects, achieving a true prediction rate of 73.0 ± 10.3%. To evaluate

whether cortical plasticity was induced, transcranial magnetic stimulation (TMS) was

conducted before, right after, and 30 minutes after the 15 min BCI-MAFO session. The

study found an 87.2% increase in MEP post-BCI-MAFO, indicating the induction of

cortical plasticity.

2.9 Discussion and Conclusion

This systematic literature review presented a comprehensive overview of intelligent

algorithms utilised for obtaining gait parameters in the context of controlling wearable

lower limb robotics, including exoskeletons and orthoses. Although these technologies

share a common objective of assisting individuals in walking and engaging in various

locomotion activities, they differ in terms of their control algorithms, functional purpose

and sensors employed.

2.9.1 Gait Parameter

Several classification and regression models have been implemented for the identification

of gait phases, locomotion modes, torque/moments and joint angle trajectories. The

type of parameter that needs to be detected depends on several factors, including:

1. The type of control: Gait phases, for instance, can be used for switching be-

tween discrete control modes, while joint trajectory prediction can be used as

feedforward to the controller, enhancing stability by compensating for the time

delays. Access to future trajectory information or intent can facilitate smoother

transitions between control modes [97].
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2. The functional purpose of the exoskeleton: Intention inferred from muscle activity

can be mapped to a discrete number of control modes. This approach is suitable

for neurorehabilitation applications where the intention information serves as a

‘trigger’ to initiate timely and appropriate movements of the exoskeleton. Other

modes of neurorehabilitation or functional purposes may require mapping the

intention derived from muscle activity to a continuous signal, such as the desired

joint torque [18].

3. The patient’s condition and disease: Exoskeletons may be employed for locomo-

tion assistance and/or rehabilitation, serving as compensation for limb amputa-

tion or paralysis. They can also promote complete or partial neural recovery in

individuals with neurological injuries, including strokes [18].

Considering these factors is crucial when determining the parameters to be detected.

The proportion of the parameters in relation to all of the papers reviewed is as follows:

35.6% gait phase, 31.1% locomotion mode, 24.4% joint angle and trajectory and 8.9%

torque and moment (see Figure 2.4).

Figure 2.4: Four main gait parameters have been detected or predicted using intelligent
algorithms for the control of lower limb robots. The pie chart illustrates the distribution
of the gait parameters in the reviewed papers. A large proportion of papers are on gait
phases.

Although the maximum number of gait phases is eight, most researchers detected fewer

phases in their implementations (see Figure 2.5). Approximately 50% of the papers

identified four phases, 30% identified two phases and only one implementation identified

all eight phases. Some authors reported that identifying a low number of discrete phases

is sufficient for their robotic applications. Another approach presented in some papers
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is to determine the percentage of the gait phase instead, which eliminates the need for

clear features to identify the start and end of each phase.

Figure 2.5: Number of phases identified in the reviewed papers

In terms of locomotion mode identification, the number of modes detected varied.

Some implementations identified as few as one mode, representing the intention for gait

initiation, while others detected up to fifteen modes which include standing, sitting,

walking at different speeds, walking up a slope, and other static and dynamic states.

Overall, the most commonly identified locomotion modes were level walking, ascending

and descending stairs/ramp, and sitting/standing. The number of modes to be detected

should be determined based on the device’s design, intended purpose, and users.

Several authors focused on joint angles and trajectories. A reference trajectory can be

generated and used as input to a controller. Complementary limb motion estimation

(CLME) was used in cases where joint trajectories of a healthy limb were utilized to

generate trajectories for a pathological limb, such as for patients with hemiparesis.

The least commonly detected gait parameter was joint torque/moment, which was

only identified in 8.9% of all the reviewed papers. Some papers identified multiple

parameters together, mostly combining gait phases with locomotion modes, while the

remaining papers focused on detecting one gait parameter only.
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2.9.2 Algorithm

Two main types of algorithms have been used for parameter detection/prediction in the

reviewed papers. Classification models were used to identify a discrete number of gait

phases or locomotion modes, while regression models were used to predict continuous

kinematic or kinetic trajectories for estimating joint angles or torques and moments.

In order to compare the performance of various machine learning techniques, some

authors implemented multiple algorithms while keeping other influential factors such

as sensors, signal processing techniques, and input/testing data constant. A wide range

of algorithms was used for gait phase detection, including neural networks, deep neural

networks, SVMs, KNN, fuzzy logic etc. The accuracies for gait phase detection ranged

from as low as 70% to as high as 98%. Similarly, a wide range of algorithms were

used for locomotion mode identification. Most implementations that detected three

locomotion modes achieved an accuracy greater than 95%. However, there was a lower

diversity of algorithms for torque and moment predictions, which were predominantly

predicted with neural networks. Similarly, neural networks were primarily used for the

prediction of joint angles and trajectories, followed by PCA.

Deep learning models were implemented in only 15% of the papers reviewed, primarily

for gait phases. When deep learning models such as LSTM-DNN, DM-CNN, SSRL,

and LSTM were compared to other shallow machine learning implementations, they

exhibited higher accuracy and F-score metrics. These promising results encourage

further research.

When reporting the performance of the machine learning models, multiple performance

metrics have been used, including accuracy, root mean square error (RMSE), F-score,

precision and recall rates, as well as delay times. However, not all authors considered

the duration of computation and the delay of the prediction. For real-time applications,

these factors are crucial to consider when choosing a model or a type of sensor, as even

high-accuracy models may not be viable if the delay times or computation durations

are significantly large, hindering real-time control of exoskeleton or orthosis.

Different combinations of sensors to measure data were used as input for the models.
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Wearable sensors such as IMUs, foot pressure sensors, and EMG electrodes have been

utilised in some studies. Non-wearable sensors such as Motion Capture Systems, and

ground force plates (measure ground reaction force) have also been used. Although

smartphone sensors have been used in gait analysis [120], they were not deployed in the

papers reviewed in this study. Each sensor type has its advantages and disadvantages.

IMUs which measure acceleration signals suffer from drift, but this issue has been

addressed by calibrating with every step. A method to address this issue has been

proposed by Qui et al [121].

There were single-modality and multi-modality approaches. Single-modality approaches

rely on data from a single sensor such as an IMU or EMG, while multi-modality ap-

proaches combine data from multiple sensors. The optimal location for sensor place-

ment has been frequently studied [122]. Preferences for specific sensing modalities have

emerged based on the predicted parameter. IMU sensors have been commonly used for

gait phase detection, whereas EEG has been commonly used for locomotion modes and

not for any other parameter. EMG has predominantly been used for torque/moment

and joint angle trajectory predictions.

It’s important to differentiate between sensors that collect measurements as input for

algorithms and those that collect measurements to segment data or produce ground

truth labels for supervised learning algorithms. Foot pressure sensors have been com-

monly used for the segmentation or labelling of gait phases. Measurements from motion

capture systems have served both as inputs to ML algorithms or as references for evalu-

ating predictions of ML algorithms, as motion capture systems are considered the ‘gold

standard’ for certain measurements.

There have been varied choices regarding the use of accelerometers, gyroscopes, or both

as well as the number of axes considered. Also, multiple sensors can be used to obtain

the same measurement. For example, joint angles could be measured with a goniometer

or motion capture system, but they can also be derived using signals from IMU using

quaternion calculations. The choice of sensors can impact performance when comparing

wearable and non-wearable sensors. Thus, algorithms trained with data from motion

capture systems may demonstrate lower performance when data from wearable sensors

44



are used in the actual implementation.

The type of sensor used has an impact on the detection of locomotion mode. Implemen-

tations involving EEG or EMG sensors have demonstrated lower prediction accuracies,

ranging from 68.4% to 92.4%, while implementations utilising other sensors such as

IMUs had accuracies mostly above 90%. For torque and moment prediction, EMG and

joint angle sensors were predominantly used.

2.9.3 Training Dataset

In the identified studies, the number of participants in the testing of the proposed

models is generally small, with some cases having as little as one participant. This

can pose an issue, particularly for generalised models that aim to capture inter-subject

variability. The highest number of participants in a study reached around thirty, while

others ranged around ten participants. Studies have shown that algorithms trained on

one group of participants and tested on data from other participants perform worse

than personalised models that learn the gait patterns from a single person and are

tested on unseen data from that person. Ideally, achieving higher performance with a

generalised model is desirable, yet if inter-subject variability remains high, even among

people with similar anthropometrics and gait conditions, individual models may be

necessary.

The environmental conditions in which the training sets were recorded also impact

the real-time performance of the algorithms. Most of the data collected comes from

experiments in labs, usually under controlled environments. Some studies set walking

speeds (using treadmills), while others involved self-selected speeds. These conditions

may perturb natural gait patterns, which typically experience more stochasticity and

noise in real environments. Therefore the performance of some of the models presents

an “upper-bound on the performance” [123], and some deterioration in performance

should be expected.
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2.9.4 Future Directions

The development of robotic devices and their control models has been progressing

rapidly. This chapter presents a range of state-of-the-art models that have been used

in controlling exoskeletons, highlighting the different parameters that researchers have

been investigating. Both classification and regression methods have been successfully

integrated with exoskeleton controllers, as demonstrated by the papers applying these

algorithms. As previously discussed, the choice of methods depends on the type of

controller, the functional purpose of the exoskeleton, and the disease and condition of

the patient. However, further research is needed to compare and contrast these methods

and investigate their integration with controllers.

One of the important issues that need to be addressed is the lack of pathological

gait datasets. This is a known limitation across the majority of the papers, as the

models presented require training and testing on pathological gait patterns. In the

presence of pathological gait data, transfer learning can be used to enhance the model’s

adaptability to different gait patterns. Knowledge gained in identifying healthy gait

parameters can be transferred to pathological gait, particularly when datasets for users

with pathologies are limited [124, 125]. It is not only pathological gait data that is

needed, but also representative data for accurate predictions. The data sets should

include gait patterns obtained while users are wearing an exoskeleton, in zero-torque

mode, or in assistive modes as these conditions alter gait patterns. They should also

include users walking at a range of speeds.

Furthermore, the classification models used for gait phase or locomotion mode detection

primarily focus on identifying activities. It would be beneficial to develop algorithms

capable of assessing the activity [126] since this would enable evaluating the current

state of the user and monitoring how their gait progresses with the use of the robotic

device. The development of explainable AI is also important, allowing us to gain in-

sights into the factors that influence predictions and enhance our understanding of gait

analyses. For instance, explainable AI is particularly significant in decoding intention

from brain signals, as this will increase our understanding of the brain, and the role of

its regions.
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Human-robot interaction requires awareness not only of the state of the user but also

of the environment. Enhancing environmental awareness is crucial, such as developing

models capable of detecting the type of terrain the user is walking on and adapting

the assistance accordingly. This would enhance the performance of robotic devices in

real-world scenarios.

Given the limited amount of research on the use of AI for gait trajectory predictions,

accounting for only 24.4% of the reviewed studies compared to the other gait param-

eters, and recognising the value of incorporating trajectory information in exoskeleton

control strategies, the subsequent chapters will primarily focus on predicting gait tra-

jectories using AI methods. Each chapter will introduce a study regarding this topic

and provide further relevant background information.
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Chapter 3: Datasets & Ethical Consider-

ations

3.1 Overview

This chapter introduces the three datasets used to develop (train and evaluate) the

trajectory forecasting models presented in Chapters (4 to 6). The Canterbury Christ

Church University & Chailey Clinic dataset was collected by partner institutions which

we collaborated with for this research, while the Gillette Children Specialty Healthcare

dataset and the EPIC - Georgia Tech University dataset are publicly available online.

The chapter also discusses ethical considerations regarding the data used.

3.2 Datasets

3.2.1 Gillette Children Specialty Healthcare Dataset

The Gillette Children Speciality Healthcare dataset was used for the development of the

models presented in Chapter 4. The deep learning models implemented were trained

and evaluated on data from children with neurological disorders. The data is available

online and was collected over the years 1994 and 2017 [127]. It has been previously

used for the development of a deep learning model aimed at automatically detecting

gait events, specifically foot contact and foot off events [25]. The dataset comprises

recordings of children between the ages of 4 and 19. The majority of them had cerebral
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Table 3.1: Demographics of the Children in Gillette Children Specialty Healthcare
Dataset [25]

Training Set Test Set

Age (years) 11.4 (std = 6.2) 11.0 (std = 4.5)

Weight (kg) 35.7 (std = 17.7) 35.9 (std = 16.7)

Height (cm) 135.7 (std = 21.6) 135.6 (std = 21.4)

Leg length (cm) 70.3 (std = 14.0) 70.6 (std = 12.8)

Walking speed (m/s) 0.84 (std = 0.28) 0.85 (std = 0.29)

palsy (73%), while the remaining had a combination of neurological, developmental,

orthopaedic, and genetic disorders (27%). A motion capture system (VICON) was used

for data collection, with a sampling frequency of 120 Hz. The children were recorded

while walking for a distance of 15 meters and the data consist of a 99-dimensional

vector containing kinematics and marker positions.

For this study, the data were divided into a training and testing set. The statistical

distribution of the features in the training set is as follows: age (11.4 ± 6.2 years), weight

(35.7 ± 17.7 kg), height (135.7 ± 21.6 cm), leg length (70.3 ± 14.0 cm), and walking

speed (0.84 ± 0.28 m/s). The statistical distribution of the children in the testing set is

as follows: age (11.0 ± 4.5 years), weight (35.9 ± 16.7 kg), height (135.6 ± 21.4 cm),

leg length (70.6 ± 12.8 cm), and walking speed (0.85 ± 0.29 m/s) [25]. In this study,

only kinematics were used for trajectory forecasting; these include angles of the hip,

knee, and ankle in the yaw, pitch, and roll dimensions. The kinematic data represent

Euler angles, which are calculated using the plug-in-gait mechanical model [25].

3.2.2 Canterbury Christ Church University & Chailey Clinic Dataset

A dataset containing gait recordings from both typically developing children and chil-

dren with Cerebral Palsy was used to develop and evaluate the models in Chapter 5.

The dataset includes flexion-extension angles of the hip, knee and ankle measured si-

multaneously in the sagittal plane, for the right and left legs. The data was collected

and provided by Canterbury Christ Church University, and Chailey Clinical Services,

two partners in the MOTION project which we collaborated with for this research.
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Table 3.2: Distribution of the Children in the Canterbury Christ Church University &
Chailey Clinic Dataset

Number of
Children

Age (years) Height (m) Mass (kg)

Typically
Developing

10 8.10 ± 2.56 133.39 ± 16.25 29.85 ± 9.76

Cerebral
Palsy

11 9.45 ± 1.37 135.25 ± 8.29 33.44 ± 10.07

The gait of typically developing (TD) children and children with Cerebral Palsy (CP)

was recorded while they walked at self-selected speeds. Several trials were conducted

for each child, with a requirement to walk a distance of 8 meters per trial. Data were

collected using the ISEN inertial motion capture system (STT Systems, Spain) which

uses inertial measurement units (IMUs) to capture the gait (refer to Figure 3.1 for

locations of IMU placement). The raw inertial measurements collected by IMUs were

exported and processed by the accompanying ISEN software, which derived the flexion-

extension angles for the hip, knee, and ankle, for the left and right legs. The data were

collected at a sampling frequency of 100Hz.

The study included a total of 10 typically developing (TD) children and 11 children

with Cerebral Palsy (CP) (see Table 3.2). TD children were between 4 and 13 years

old, while children with CP were between 8 and 12 years old with a Gross Motor Func-

tion Classification Scale (GMFCS) between I-II. The anthropometrics and demographic

details of the participants are included in Figure 3.2 and Figure 3.3 respectively.

3.2.3 EPIC - Georgia Tech University Dataset

The models in Chapter 6 were developed using an online gait dataset by Camargo et

al. [128]. The dataset consists of gait data collected from 22 able-bodied individuals

(age 21 ± 3.4 years, height 1.70 ± 0.07 m, mass 68.3 ± 10.83 kg). Gait patterns were

recorded while walking on a treadmill at 28 different speeds (0.5 m/s to 1.85 m/s in

0.05 m/s increments). The dataset contains joint kinematic values including the hip,

knee, and ankle angles of the left and right legs in the sagittal plane, which were

used in this study. The joint angles were derived using OpenSim’s inverse kinematics

50



Figure 3.1: Locations of IMU sensor placement for the Canterbury Christ Church
University & Chailey Clinic Data Collection. IMUs were placed on the feet, shank,
thigh, sacrum, and trunk (dorsal) according to the ISEN inertial motion capture system
(STT Systems) guidelines.

Figure 3.2: Box plot of the anthropometrics of Typically Developing (TD) children
and children with Cerebral Palsy (CP) in the Canterbury Christ Church University &
Chailey Clinic Dataset.
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Figure 3.3: Demographics of Typically Developing children and children with Cerebral
Palsy in the Canterbury Christ Church University & Chailey Clinic Dataset (in per-
centages). (a) and (b) report the gender of typically developing children and children
with Cerebral Palsy respectively, (c) is the type of CP, and (d) is the Gross Motor
Function Classification of children with CP.

tool based on motion capture data collected at a 200 Hz sampling frequency. For a

visual representation of the demographic distribution of the dataset, refer to Figure

3.4. Additional details about the data processing procedures can be found in [128].

Figure 3.4: Box-plots showing demographics of the individuals of the training and
testing sets in the EPIC - Georgia Tech University Dataset, which includes their age
in years, height in meters, and mass in kilograms
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3.3 Ethical Considerations

The Gillette Children Speciality Healthcare dataset (used in Chapter 4, available

at [127]) and the EPIC - Georgia Tech University dataset (used in Chapter 6, available

at [128]) are publically available online, with the participants anonymised to preserve

their privacy. Regarding the dataset collected by our research collaborators, Canter-

bury Christ Church University & Chailey Clinic (used in Chapter 5), local ethical

approval and NHS approval were granted for these studies (IRAS project ID 288842,

reference number 21/PR/0927, CCCU ethics: ETH1920-0278).
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Chapter 4: Forecasting Gait Trajectories

of Children with Neurological Disorders

4.1 Overview

This chapter is focused on the implementation of deep learning models for gait tra-

jectory prediction of children with neurological disorders. The dataset used to train

the models contains gait recordings of children with neurological disorders, 73% of

which have Cerebral Palsy. The performances of two deep learning models, a long-

short-term memory network and a convolutional neural network, are compared to two

non-intelligent models. Furthermore, this chapter presents the results of investigating

the influence of varying the length of the input and output (prediction) window on the

predictive performance of the models.

4.2 Introduction

Powered exoskeletons require a control strategy to guide the exoskeleton’s interaction

with the user. This control strategy coordinates the movement of the exoskeleton with

the user’s body providing full support or synchronises the exoskeleton’s movement with

the user’s body providing partial support [17]. As discussed in chapter 2, the control

strategy typically follows a three-level hierarchy: high, mid, and low levels [17]. At the

high level, the control strategy is responsible for detecting user intention and predicting

the desired state of the exoskeleton [17,19,52]. This includes estimating desired torque
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from EMG signals [106], classifying locomotion modes (e.g., standing up, sitting down,

walking up/down a staircase, etc.) [98] and their transitions, as well as environment

classification (predicting the user’s interaction with the surrounding environment [129]).

The mid-level control is responsible for selecting and switching between the continuous

states of the exoskeleton [17,52]. Baud et al. [17], in their review on control strategies

for lower limb exoskeletons, divided this level into detection/synchronisation and action

sub-levels. Detection/synchronisation involves identifying the state of the user, such as

the phase of gait, while action computes the appropriate output for the identified state.

The low-level control directly controls the actuators of the exoskeleton and implements

the control strategy by supplying torque to the joints. It tracks the reference input and

ensures stability [51–53].

The timing and magnitude of supportive torque provided by an exoskeleton depend on

the control strategy implemented, which is influenced by the specific application of an

exoskeleton. In rehabilitation applications, one common control strategy is trajectory

tracking, where the exoskeleton follows a predefined trajectory, that can be based on the

trajectory of a healthy user [130]. Another strategy used in rehabilitative exoskeletons

is assis-as-needed, where the level of support provided by the exoskeletons is variable

and can change throughout the course of rehabilitation. An example of an assist-as-

needed strategy is impedance control, where the assistance provided depends on the

effort exerted by the patient [130]. In locomotion assistance applications, trajectory

tracking is also commonly used. The predefined trajectory could be from a healthy

user, or in the case of hemiparetic patients, the predefined trajectory for the patho-

logical limb can be from the healthy limb (also known as complementary limb motion

estimation [117]). As for strength augmentation applications, hybrid and force control

strategies are commonly employed [130].

Integrating gait trajectory prediction into the control strategy of exoskeletons is an area

of research [97]. Several studies investigated the use of deep learning techniques for gait

trajectory prediction. Liu et al. [131] developed a deep spatio-temporal model using

Long Short-Term Memory (LSTM) units to predict two time-steps in the future, and

averaged the predictions to smooth fluctuations. Zaroug et al. [132] implemented an

auto-encoder LSTM for predicting linear acceleration and angular velocity trajectories.
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They experimented with varying lengths of input time steps, between five and 40 steps,

to predict five or 10 steps in the future (equivalent to 30 ms or 60 ms). An LSTM with

a weighted discount loss function was proposed by Su et al. [133] for predicting angular

velocities of the thigh, shank, and foot segments. They used 10 or 30 time-steps as

input to predict five or 10 steps in the future, corresponding to 100 ms and 200 ms,

respectively. Hernandez et al. [134] used a hybrid Convolutional Neural Network (CNN)

and LSTM neural network, DeepConvLSTM, to forecast kinematic trajectories with an

average MAE of 3.6◦. Jia et al. [135] implemented a deep neural network with LSTM

units and a feature fusion layer to combine kinematic and physiological data (i.e., joint

angles and EMG) for trajectory prediction. Zarough et al. [136] also compared vanilla,

stacked, bidirectional, and autoencoder LSTMs while Zhu et al. [137] used attention-

based CNN-LSTM, predicting trajectories 60 ms in the future.

It has been observed that the values of kinematic parameters within a gait cycle exhibit

greater variation between different individuals (inter-subject) compared to the values

of kinematic parameters within the same individual (intra-subject) [138]. Studies have

shown that intra-subject trajectory prediction models, which are tested on data from

the same individuals used for training, tend to be more accurate in their predictions

than inter-subject models, which are tested on data from individuals who were not

included in the training process [133]. However, the variability of pathological gait,

such as in children with spastic cerebral palsy, is even higher compared to healthy

gait. Children with spastic cerebral palsy were found to have higher within-day and

between-day variability compared to healthy children, possibly attributed to spasticity

that limits their joint range of motion [139,140].

Existing studies have primarily focused on models trained on healthy gait trajectories

only, the ability of deep learning models to accurately forecast pathological trajec-

tories with greater heterogeneity and variability has yet to be evaluated. The main

contribution of this study is to investigate, for the first time, the performance of deep

learning networks, specifically the Long Short-Term Memory (LSTM) neural network

and Convolutional Neural Network (CNN), in forecasting pathological gait trajectories

of children with neurological disorders. A comparison between the two networks is

conducted. Furthermore, the influence of the length of the input and output windows
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on prediction accuracy is investigated, while providing technical recommendations for

improving the prediction process.

4.3 Materials and Methods

4.3.1 Data

The deep learning models implemented in this study were trained and evaluated on the

Gillette Children Specialty Healthcare Dataset. Details on this dataset can be found

in Chapter 3, section 3.2.1.

4.3.2 Data Processing

The available data included Euler angles of the hip, knee, and ankle in yaw, pitch, and

roll dimensions for both legs, however, data from only one leg was utilised for training

the models. The pre-processing of data involved trimming the leading and the trailing

zeros, and removing trials with spurious data (which were assumed to be Euler angles

greater or less than a 90◦ cut-off threshold).

To train deep learning models, fixed-length input and target trajectory sequences were

generated using the sliding window method, illustrated in Figure 4.1. This method

involves creating a shorter sequence xin with k time-steps, where k is the size of the

input, i.e., the number of time-steps utilised by the model to make predictions, xin =

{x1, x2, . . . , xk}. A corresponding shorter output sequence yout with z time-steps is

created, where z is the size of the output, i.e., the number of time-steps that will

be predicted by the model, yout = {xk+1, xk+2, . . . , xk+z}. Each input window has a

corresponding output window (target label to train the models), and together they form

one training sample. The stride, which denotes the distance between the beginning of

one sample and the beginning of the next sample, was set to 5 time-steps. Ten samples

are generated from each trial.

The models were trained using various sizes of input and output windows. For the
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Figure 4.1: Illustration of the sliding window method. Continuous gait trajectories are
used to generate input and output windows for training the model using the sliding
window method. Each pair of input and output windows forms one sample. Several
samples can be generated from one continuous gait trajectory by sliding the window
for a specified distance, also known as stride length.

LSTM model, the input window sizes were 50, 100, 200, 400, 600, 800, and 1000 ms,

corresponding to 6, 12, 24, 48, 72, 96, and 120 time-steps based on the data’s sampling

frequency of 120Hz. The output window sizes for the LSTM were 8.33, 25, 50, 100, and

200 ms which correspond to 1, 3, 6, 12, and 24 time-steps. This resulted in a total of

35 combinations of input and output window sizes. As for the CNN, the focus was on

using 6 and 120 input time-steps (the smallest and largest input sizes we used with the

LSTM) to predict 1, 3, 6, 12, and 24 output time-steps. These time ranges were chosen

based on values proposed in the literature by researchers that forecasted healthy gait.

Zaroug et al. experimented with a wide range of input windows from 5 to 40 steps to

forecast 5 or 10 steps in the future, which correspond to 30 and 60 ms respectively [132].

Output windows ranging from 50 to 60 ms were common too [132,135,137], and a few

researchers have predicted output windows of 100 ms or larger [133,136].

For n training samples, f features (hip, knee, and ankle angles in the yaw, pitch, and

roll directions), lin input window size and lout output window size, an input matrix X

and target output matrix Y are created, where X ∈ Rn×lin×f and Y ∈ Rn×lout×f . The

matrices are then normalised such that X ∈ [0, 1] and Y ∈ [0, 1]. The aim is to build a

model g() that maps X to Ŷ , i.e., Ŷ = g(X), where Ŷ is a close approximation to true
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value Y .

4.3.3 Long Short-Term Memory (LSTM) Architecture

The Long Short-Term Memory (LSTM) neural network is a popular choice for time-

series applications including forecasting future trajectories. It is a type of gated Re-

current Neural Network (RNN), which addresses the issue of vanishing and exploding

gradients during training and is capable of learning long-term dependencies in the

data [141]. An LSTM cell contains three gates: an input gate, an output gate, and a

forget gate. The equations of these gates, as explained in Goodfellow et al. [141], are

reported below.

The forget gate unit f
(t)
i equation for time-step t, cell i, input vector x(t), hidden layer

vector h(t), biases bf , recurrent weights W f , and input weights Uf is:

f
(t)
i = σ

(
bfi +

∑
j

Uf
i,jx

(t)
j +

∑
j

W f
i,jh

(t−1)
j

)
. (4.1)

The sigmoid function, represented by σ, bounds the value between 0 and 1.

The internal state of an LSTM cell, s
(t)
i , is updated depending on the value of the forget

gate unit f
(t)
i , and its equation for biases b, input weights U , and recurrent weights W

is:

s
(t)
i = f

(t)
i s

(t−1)
i + g

(t)
i σ

(
bi +

∑
j

Ui,jx
(t)
j +

∑
j

Wi,jh
(t−1)
j

)
. (4.2)

The external input gate unit, g
(t)
i , is calculated as:

g
(t)
i = σ

(
bgi +

∑
j

Ug
i,jx

(t)
j +

∑
j

W g
i,jh

(t−1)
j

)
. (4.3)

The output of the LSTM cell h
(t)
i is calculated as:

h
(t)
i = tanh

(
s
(t)
i

)
q
(t)
i . (4.4)
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Figure 4.2: Architecture of the long-short-term memory (LSTM) network used in this
study. The model consists of four LSTM layers with 128 hidden units each, followed
by a fully connected layer. The input and output features of the LSTM include Euler
angles of the hip, knee, and ankle in the yaw, pitch, and roll dimensions.

For biases bo, input weights Uo, and recurrent weights W o, the value of the output gate

unit is:

q
(t)
i = σ

(
boi ,+

∑
j

Uo
i,jx

(t)
j +

∑
j

W o
i,jh

(t−1)
j

)
. (4.5)

The LSTM network implemented in this study contained 4 layers of LSTM units, with

128 units per layer. The hidden state of the final layer is used as input to a fully

connected layer which is then reshaped to obtain the desired output. The overall

architecture is depicted in Figure 4.2.

4.3.4 Convolutional Neural Network (CNN) Architecture

In this study, a Convolutional Neural Network (CNN) is used to map input trajectories

X to forecasted predictions Ŷ . The CNN utilizes the convolution operation between
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a sequence and a kernel, with the weights of the kernel adjusted during the learning

process. Equation (4.6) is employed to calculate the output of the convolution operation

S, which has been adapted from the format described in Goodfellow et al. [141] to

accommodate a 1D time-series I and kernel K.

S(i) = (I ∗K)(i) =
∑
m

I(m)K(i−m). (4.6)

The CNN architecture consists of several 1D convolutions and pooling layers, followed

by a dense fully connected layer. The number of kernels in each convolution layer, as

well as the size of the pooling layers, is illustrated in Figure 4.3. Dilated convolutions

were experimented with, but they did not improve performance, so they were not

included in the final architecture.

4.3.5 Baseline Methods

The performance of the deep learning models was benchmarked against a simpler ma-

chine learning model, a Fully Connected Network (FCN), and two non-intelligent mod-

els, referred to as Näıve Method 1 and Näıve Method 2.

The FCN implemented in this Chapter, and in Chapters 5 and 6 are dense feedforward

neural networks, sometimes referred to as multilayer perceptions (MLP) in literature.

They consist of several linear layers with an activation function in between (ReLU)

and are trained using gradient descent and the Adam optimiser. The only difference

between the FCN implemented in Chapters 4, 5, and 6 is the number of units in each

linear layer, as well as the overall number of layers. However, gradient descent and

Adam optimiser have been used for training the FCNs in all those chapters. In this

study, the FCN contains five hidden layers with 200 nodes per layer.

The first näıve method predicts the same value for all output time-steps, which is equal

to the final time-step in the input window. The second näıve method predicts the mean

value of the input as the predicted value for all output time-steps.
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Figure 4.3: Architecture of the convolutional neural network (CNN) used in this study.
The model consists of four 1-dimensional convolutional layers, two pooling layers, and
a fully connected layer. The input and output features of the CNN include Euler angles
of the hip, knee, and ankle in the yaw, pitch, and roll dimensions
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4.3.6 Details of Network Implementation

The objective of the deep learning models in this study is to find a mapping between

the input trajectories X and forecasted trajectories Ŷ , such that the error between

predicted trajectories Ŷ and true trajectories Y is minimised. The loss function that

has been used to optimise the deep learning models is the Mean Squared Error (MSE).

The number of trials used from the dataset was 16,782 and each trial was used to extract

10 samples using the sliding window method, described in section 4.3.2. This resulted

in a total of 167,820 samples. The samples were split into training (70%), validation

(20%), and testing (10%) sets. Both the CNN and LSTM were trained in mini-batches,

with a batch size of 32 samples. The Adam optimiser was used for learning.

To determine the hyper-parameters and architecture for the CNN, LSTM, and FCN

models (described in section 4.3.3 and section 4.3.5), a hyper-parameter search was

performed. The search involved defining a search space for the parameters and se-

lecting the parameters that optimize the performance of the network by minimizing

the validation loss. The parameters in the search included learning rate, number of

layers of LSTM, number of hidden units, and size of kernels. The tree-structured

Parzen estimator algorithm, a type of Bayesian hyper-parameter sampler, was used for

this purpose [142]. The search space for the hyper-parameters and the corresponding

selected values can be found in Table 4.1. The hyperparameters were optimised for

predictions with an input window size of 72 time-steps and an output window size of

12 time-steps. The number of epochs, which was also included in the hyper-parameter

search, was fine-tuned manually afterward. The numbers of epochs for training the

LSTM, CNN, and FCN were 60, 150, and 180, respectively. Once the optimal archi-

tecture and parameters were selected, the training and validation sets were combined

to train these networks. The total numbers of trainable parameters for the optimised

LSTM, CNN, and FCN models were 495,320, 4,666,888, and 380,216, respectively. The

final performance of the networks was evaluated on the testing set.

The framework described in this study has been implemented using Python, utilising

the following libraries: Pytorch, Numpy, Matplotlib, SciPy, and Scikit-learn. Optuna
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Table 4.1: Hyper-parameter optimisation for the LSTM network, CNN, and FCN.

Hyper-Parameter
Search
Space

Selected
Value

LSTM
learning rate [0.1, 0.01, 0.001, 0.0001, 0.00001] 0.001
number of LSTM layers [1, 2, 3, 4] 4
number of LSTM hidden units [16, 32, 64, 100, 128] 128

CNN

learning rate [0.1, 0.01, 0.001, 0.0001, 0.00001] 0.0001
conv1D layer 1 channels [16, 32, 48] 32
conv1D layer 2 channels [32, 48, 64] 48
conv1D layer 3 channels [64, 128, 256] 256
conv1D layer 4 channels [128, 256, 512] 512
kernel size for layers 1, 2 [1, 2, 3, 4, 5, 6, 7] 7
kernel size for layers 3, 4 [1, 2, 3, 4, 5, 6, 7] 7
padding [0, 1, 2, 3, 4, 5] 4
conv1D stride [1, 2, 3, 4, 5] 1
dilation [1, 2, 4] 1

FCN
learning rate [0.1, 0.01, 0.001, 0.0001, 0.00001] 0.001
hidden layers [3, 4, 5, 6, 8, 10, 12] 5
nodes per layer [10, 20, 40, 60, 100, 140, 160, 200] 200

was used for the hyper-parameter search [142]. An Nvidia Geforce RTX 2070 GPU was

used for computation.

4.3.7 Evaluation Metrics

Several metrics have been used to evaluate the performance of the models. To measure

how close the predicted trajectories Ŷ are to the observed trajectories Y the mean

square error MSE, mean absolute error MAE, and Pearson correlation coefficient P

were calculated after the de-normalisation (i.e., re-scaling to the original ranges) of the

predicted trajectories. Given that n is the number of testing samples, f is the number

of features, and lout is the output window size, the equations are as follows:

Mean absolute error (MAE):

MAE =
1

n.f.lout

n∑
i=1

f∑
j=1

lout∑
k=1

|yi,j,k − ŷi,j,k| (4.7)
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Mean absolute error (MAE) standard deviation:

σMAE =

√√√√ 1

n.f.lout

n∑
i=1

f∑
j=1

lout∑
k=1

(|yi,j,k − ŷi,j,k| −MAE)2 (4.8)

Mean squared error (MSE):

MSE =
1

n.f.lout

n∑
i=1

f∑
j=1

lout∑
k=1

(yi,j,k − ŷi,j,k)2 (4.9)

Mean squared error (MSE) standard deviation:

σMSE =

√√√√ 1

n.f.lout

n∑
i=1

f∑
j=1

lout∑
k=1

((yi,j,k − ŷi,j,k)2 −MSE)2 (4.10)

Pearson correlation coefficient:

P =
1

f

f∑
j=1

cov(yj , ŷj)

std(yj) × std(ŷj)
. (4.11)

These metrics were used to evaluate and compare the performance of the networks,

with results presented in Section 4.4.

4.4 Results

4.4.1 LSTM Network Performance for Varying Input and Output

Window Sizes

The LSTM model was trained using 35 combinations of input and output window sizes.

The input window sizes were 6, 12, 24, 48, 72, 96, and 120 time-steps, which correspond

to 50, 100, 200, 400, 600, 800, and 1000 ms, respectively. The output window sizes were

1, 3, 6, 12, and 24 time-steps, and correspond to 8.33, 25, 50, 100, and 200 ms. The

performance of the models measured by MAE, MSE, and Pearson correlation coefficient

is reported in Table 4.2.
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The results in Table 4.2 show that as the size of the output window decreases, the

prediction errors also decrease. LSTMs predicting one output time-step had the lowest

mean errors, while LSTMs predicting 24 time-steps had the highest mean errors, which

was expected. On the other hand, the size of the input window did not have a significant

influence on mean losses when predicting short output windows, specifically six output

time-steps or below (see Figure 4.4a-c). However, the size of the input window had

an influence when predicting larger output windows of 12 and 24 time-steps. Larger

input sizes resulted in lower mean errors (see Figure 4.4d,e). Specifically, for 12 and

24 time-step output windows, using a 120 time-step input window size, which is the

largest input size tested, led to the lowest mean absolute errors (see Figure 4.4a-c).

Table 4.2: Performance of LSTM in forecasting gait trajectories for varying input and
output window sizes.

Input
Window
Size (ms)

Input
Time-
Steps

Output
Window
Size (ms)

Output
Time-
Steps

MSE
(Degrees)

MSE
std

(Degrees)

MAE
(Degrees)

MAE
std

(Degrees)

Mean
Pearson

Correlation
Coefficient

50 6 8.33 1 0.034 0.065 0.143 0.115 1.000
100 12 8.33 1 0.077 0.130 0.214 0.177 1.000
200 24 8.33 1 0.027 0.055 0.126 0.105 1.000
400 48 8.33 1 0.019 0.161 0.095 0.099 1.000
600 72 8.33 1 0.030 0.266 0.126 0.119 1.000
800 96 8.33 1 0.020 0.125 0.107 0.092 1.000
1000 120 8.33 1 0.022 0.318 0.109 0.098 1.000
50 6 25 3 0.079 0.526 0.175 0.220 1.000
100 12 25 3 0.077 0.474 0.187 0.206 1.000
200 24 25 3 0.079 0.793 0.176 0.218 1.000
400 48 25 3 0.080 3.068 0.169 0.227 1.000
600 72 25 3 0.092 2.597 0.173 0.250 1.000
800 96 25 3 0.104 1.279 0.200 0.252 1.000
1000 120 25 3 0.117 2.028 0.223 0.261 1.000
50 6 50 6 0.614 4.115 0.461 0.633 0.998
100 12 50 6 0.422 3.956 0.365 0.537 0.998
200 24 50 6 0.416 4.416 0.350 0.541 0.998
400 48 50 6 0.381 2.773 0.356 0.505 0.998
600 72 50 6 0.426 7.653 0.352 0.550 0.998
800 96 50 6 0.363 3.377 0.332 0.502 0.998
1000 120 50 6 0.405 5.414 0.359 0.526 0.998
50 6 100 12 3.548 15.749 1.104 1.526 0.984
100 12 100 12 3.310 15.545 1.058 1.480 0.985
200 24 100 12 3.200 14.790 1.008 1.478 0.985
400 48 100 12 3.279 30.567 1.007 1.505 0.985
600 72 100 12 2.723 14.993 0.927 1.365 0.987
800 96 100 12 2.524 13.366 0.906 1.305 0.988
1000 120 100 12 2.157 9.940 0.847 1.200 0.990
50 6 200 24 16.981 57.084 2.531 3.252 0.928
100 12 200 24 15.025 49.937 2.383 3.057 0.935
200 24 200 24 15.114 55.836 2.357 3.091 0.934
400 48 200 24 14.058 50.333 2.282 2.975 0.937
600 72 200 24 12.617 48.434 2.158 2.821 0.945
800 96 200 24 10.389 38.372 1.973 2.549 0.955
1000 120 200 24 8.971 36.862 1.828 2.373 0.961

Bold entries denote the lowest MSE and MAE values for a given output window size.

4.4.2 Performance of the CNN and Comparisons with LSTM Network

A CNN model was trained and compared with the LSTM network. The study specifi-

cally focused on using six and 120 input time-steps for the CNN, which are the small-

est and largest input sizes used with the LSTM, to predict 1, 3, 6, 12, and 24 output

time-steps. The performances of both models, measured in MAE, MSE, and Pearson
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Figure 4.4: Performance of LSTM, measured by MAE, for varying input and output
window sizes. Input sizes range from 6 to 120 time-steps, corresponding to 200 to 1000
ms. Output sizes range from 1 to 24 time-steps, corresponding to 8.33 to 200 ms. Sub-
figures 4a, 4b, 4c, 4d, and 4e correspond to networks with 1, 3, 6, 12, and 24 output
time-steps, respectively.
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Figure 4.5: Comparison of the performance of the CNN and LSTM network, measured
by MAE, for varying output window sizes. In (a), the input size is fixed at 6 time-steps,
while in (b) the input is fixed at 120 time-steps.

correlation coefficient, are reported in Table 4.3.

Table 4.3: Performance of CNN in forecasting gait trajectories for varying input and
output window sizes.

Input
Window
Size (ms)

Input
Time-
Steps

Output
Window
Size (ms)

Output
Time-
Steps

MSE
(Degrees)

MSE
std

(Degrees)

MAE
(Degrees)

MAE
std

(Degrees)

Mean
Pearson

Correlation
Coefficient

50 6 8.33 1 0.069 0.960 0.129 0.229 1.000
50 6 25 3 0.184 1.699 0.234 0.360 0.999
50 6 50 6 0.891 4.685 0.552 0.766 0.996
50 6 100 12 5.265 20.277 1.358 1.850 0.977
50 6 200 24 20.437 65.596 2.840 3.517 0.913

1000 120 8.33 1 0.061 0.709 0.138 0.203 1.000
1000 120 25 3 0.216 2.020 0.259 0.386 0.999
1000 120 50 6 0.994 4.966 0.576 0.814 0.995
1000 120 100 12 5.496 18.724 1.440 1.850 0.975
1000 120 200 24 18.007 54.453 2.738 3.242 0.926

According to the results in Table 4.3, the errors of the CNN increase as the number

of predicted time-steps increases, similar to what was observed with the LSTM. In

Figure 4.5 we compare the performance of the CNN and LSTM, and it is evident that

their mean errors are quite similar when predicting small output windows, such as one

and three time-steps. However, as the output window sizes increase to 6, 12, and 24

future time-steps, the difference in the MAE between the CNN and LSTM becomes

more pronounced, with LSTM outperforming CNN. Interestingly, the magnitude of this

difference depends on the input window size: when six time-steps are used as input,

the CNN MAE is larger than that of the LSTM; when 120 time-steps are used as input,

the difference in their MAEs is even larger.

68



Table 4.4: Benchmarking performance of deep learning models

Input
Window
Size (ms)

Input
Time-
Steps

Output
Window
Size (ms)

Output
Time-
Steps

LSTM
MAE

(Degrees)

CNN
MAE

(Degrees)

FCN
MAE

(Degrees)

Näıve
Method 1 a

MAE
(Degrees)

Näıve

Method 2 b

MAE
(Degrees)

50 6 8.33 1 0.143 * 0.129 *,† 0.195 *,† 0.449 † 1.513 *,†

50 6 25 3 0.175 0.234 *,† 0.294 *,† 0.888 † 1.916 *,†

50 6 50 6 0.461 * 0.552 *,† 0.568 *,† 1.517 † 2.486 *,†

50 6 100 12 1.104 * 1.358 *,† 1.336 *,† 2.640 † 3.494 *,†

50 6 200 24 2.531 * 2.840 *,† 2.489 *,† 4.417 † 5.096 *,†

1000 120 8.33 1 0.109 * 0.138 *,† 0.369 *,† 0.448 † 6.090 *,†

1000 120 25 3 0.223 * 0.259 *,† 0.594 *,† 0.888 † 6.121 *,†

1000 120 50 6 0.359 * 0.576 *,† 0.902 *,† 1.520 † 6.167 *,†

1000 120 100 12 0.847 * 1.440 *,† 1.454 *,† 2.651 † 6.254 *,†

1000 120 200 24 1.828 * 2.738 *,† 2.320 *,† 4.448 † 6.385 *,†

a Näıve Method 1: all output time-steps are predicted to be the value of the last input time-step.
b Näıve Method 2: all output time-steps are predicted to be the mean value of the input time-steps.
* and † represent statistical significance compared to Näıve Method 1 and LSTM, respectively.
Significance is based on pairwise t-tests (p <0.05). Bold entries denote the lowest MAE value for a
given input and output window size.

4.4.3 Benchmarking Performance of Deep Learning Models

A benchmark comparison between the performance of the two deep learning models and

between a simpler machine learning algorithm, the Fully Connected Network (FCN),

and two näıve/non-intelligent methods was conducted. The first näıve method pre-

dicted the final time-step in the input window as the value for all output time-steps,

while the second näıve method used the mean value of the input as the predicted

value for all output time-steps. Table 4.4 displays the MAEs for the deep learning and

benchmark models. The deep learning models outperformed all näıve methods and the

majority of the FCN predictions. However, there were two instances where the FCN

obtained better results. The first was when the input and output window sizes were

six and 24 time-steps, respectively, where the FCN had lower MAE compared to the

LSTM and CNN. The other case was when the input and output sizes were 120 and 24

time-steps, respectively, with FCN performing better than CNN, but not better than

LSTM.

Näıve Method 1 resulted in lower MAEs compared to Näıve Method 2, therefore, pair-

wise t-tests were conducted between the Näıve Method 1 and all other intelligent meth-

ods (LSTM, CNN, and FCN). This was done to determine whether the mean absolute

errors were significantly different (with p <0.05); the results in Table 4.4 confirm that

intelligent models perform better than non-intelligent models. Furthermore, pairwise

t-tests were conducted between the LSTM and all the other models; the differences in

the MAEs were found to be statistically significant, as indicated in Table 4.4.
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4.4.4 Accuracy of the Models across the Different Time-Steps

In the previous subsections of this chapter, the mean errors across all features and

time-steps were recorded. In this subsection, the MAE is calculated separately for each

time-step for a given output window (see Figure 4.6). The MAE is calculated using an

adapted form of Equation 4.7 (see Section 4.3.7), where the summation over k = 1:lout

is not performed. As expected, the results show that predictions further in the future

tend to deviate more from the actual values. This deviation becomes more pronounced

after approximately the 3rd time-step, as shown in Figure 4.7. Figure 4.7 also shows

that the LSTM MAE increases with larger output window sizes.

4.4.5 Performance of the Models for Each Joint

The association of higher errors with a particular type of joint was investigated. The

MAE results for each of the hip, knee, and ankle joints are presented in Figure 4.8. The

MAE for each joint represents the combined errors for the angles predicted in the pitch,

roll, and yaw dimensions. They were calculated using an adapted form of Equation 4.7

(see Section 4.3.7), where the numbers of features, f , in the summation over j = 1:f

are reduced to the pitch, yaw, and roll angles for a single joint, rather than for all

joints. However, the results did not reveal any specific trend indicating consistently

higher errors for a particular joint.

4.5 Discussion

In this chapter, deep learning models were implemented, specifically LSTM and CNN,

to forecast trajectories of children with pathological gait. This is the first time deep

learning models have been applied for predicting trajectories of pathological gait of

children, which exhibit larger inter- and intra-subject variability compared to the tra-

jectories of typically developing children.

The advantage of using deep learning models is that they make predictions based

on current input data while leveraging the learned representations of gait trajectories
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Figure 4.6: Mean absolute errors for each individual time-step predicted by the LSTM
and CNN for a given output window. Input window size is fixed at 120 time-steps.
Sub-figures 6a, 6b, 6c, and 6d correspond to networks with 3, 6, 12, and 24 output
time-steps, respectively.
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Figure 4.7: Mean absolute errors for each individual time-step predicted by the LSTM
network with 3, 6, 12, and 24 output window sizes. Input window size is fixed at 120
time-steps.

Figure 4.8: MAEs for each of the hip, knee, and ankle joints for the CNN and LSTM
networks with varying output sizes. Input window size is fixed at 120 time-steps and
the MAE for each joint represents the combined MAE for the yaw, pitch, and roll
dimensions. Sub-figures 8a, 8b, 8c, 8d, and 8e correspond to networks with 1, 3, 6, 12,
and 24 output time-steps, respectively.
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acquired during a prior learning stage from numerous gait sequences. The LSTM

and CNN networks were utilised to forecast hip, knee, and ankle trajectories based

on varying input and output window sizes. Input window sizes for the LSTM were

50, 100, 200, 400, 600, 800, and 1000 ms (for data captured at a sampling frequency

of 120Hz, these durations correspond to 6, 12, 24, 48, 72, 96, and 120 time-steps).

Input window sizes for the CNN were 50 and 1000 ms (corresponding to six and 120

time-steps). The reason behind using input window sizes up to 1000 ms is to cover

approximately one full gait cycle or lower as the average length of a gait cycle for a

typically developing school-aged child is 980–990 ms [143]. The output window sizes

for the LSTM and CNN were 8.33, 25, 50, 100, and 200 ms (corresponding to 1, 3, 6,

12, and 24 time-steps) meaning that up to 20% of the cycle could be predicted with

those models. The time ranges used are based on values proposed in the literature by

researchers that forecasted healthy gait (refer to Section 4.3.2 for details).

The LSTM, a type of gated recurrent network known for its effectiveness with sequen-

tial data was used for forecasting gait trajectories [141]. The LSTM has the advantage

of taking into account the order of values in an input sequence and has the ability

to learn long-term dependencies [141]. The LSTM network was compared to a CNN,

mostly used for computer vision problems with 2D grid-like topology inputs using 2D

convolutions, but it is increasingly employed with time-series sequences using 1D convo-

lutions [144]. The CNN was implemented to evaluate if it shows promising performance

in the task of forecasting trajectories for children with neurological disorders.

The results showed that the LSTM’s performance is better than the CNN, particularly

with larger input and output window sizes. The difference in MAE between the two

networks was highest when using 120 time-steps as input, and 24 time-steps as output,

with a gap of 0.91 degrees. There was one instance where the MAE for the CNN

was higher than the LSTM, which occurred with the smallest combination of input

and output windows (six and one time-steps, respectively). However, the difference

in MAE between the two networks was small (0.014 degrees), and the CNN had a

larger standard deviation. These findings differ from the results of other studies such

as one by Moreira et al. [145], who found that the CNN was more robust for ankle joint

torque estimation based on kinematics, speed, and anthropometry. The findings are

73



also different from the results of Molinaro et al. [146], where their temporal convolution

network (with dilated convolution layers) outperformed an LSTM network. Its worth

noting that Molinaro et al. considered joint moments rather than joint angles.

The influence of the size of the input and output windows on predictions was also

investigated in this study. The size of the input window did not have a significant

influence on the accuracy of the LSTM network when predicting small output window

sizes (including one, three, and six time-steps). However, for longer output window

sizes (including 12 and 24 time-steps), larger input windows resulted in lower errors.

For both 12 and 24 time-steps, the lowest error was achieved using 120 input time-

steps. This finding contrasts with a previous study by Zaroug et al. [132], who reported

that increasing the input size beyond 30 time-steps led to increased mean errors when

predicting five time-steps in the future (10 time-steps correspond to 60 ms in that

study).

There were cases in the results of this study where the difference between the actual

and predicted trajectories was large compared to the mean absolute error. It’s difficult

to determine whether this was due to the model’s lack of generalisability for certain

types of pathological gait patterns, or related to an underlying issue with the data

for those samples, such as sensor or marker errors. This limitation stemmed from

the anonymisation of the subjects in the dataset which did not contain supplementary

information/videos for each trial. Another limitation of this study, also stemming

from the anonymisation of the dataset, was the inability to test whether there is a

significant difference in performance between individualised models (models that are

subject-specific and need to be trained on data from the user of the exoskeleton) and

generalised models (models that are subject-independent and make predictions without

the need to be trained on data from a specific user). This is an important consideration

when designing exoskeleton control strategies.
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4.6 Conclusions

To conclude, two deep learning models, LSTM and CNN, were used to forecast the

trajectories of children with neurological disorders. The results demonstrated that our

deep learning models outperformed the three baseline methods, with the LSTM being

the top performer, except for two cases where the FCN performed better (see Sec-

tion 4.4.5 for details). The variation of input and output windows was explored to

enhance our understanding of the impact of the length of input data and the length of

the future horizon on performance. A potential application of this presented approach

is the control of lower limb robotics, whereby forecasted trajectories can serve as a

proxy for the user’s intentions. These intentions can be integrated into the control hi-

erarchy of exoskeletons, specifically into the high-level control responsible for detecting

the user’s intention and passing it on to the mid and low-levels to generate appropri-

ate movement commands. It is important to strike a balance between performance

and speed in real-time systems, ensuring input windows are large enough to achieve

acceptable errors without significantly slowing down the system. Building on the work

conducted in this study, the performance of the models should be evaluated on data

collected using wearable sensors (e.g., IMUs and foot pressure sensors) rather than mo-

tion capture systems. This will be addressed in chapter 5. The difference between the

performance of individualised and generalised models should be also studied. Further-

more, forecasted trajectories should be coupled with a corrective algorithm, tailored to

each gait sequence. In this scenario, the user intention derived from a trajectory fore-

casting model would be adjusted by a corrective algorithm that produces the “desired

trajectory” used by the mid- and low-level controllers of the exoskeleton. This has been

addressed in the following study, presented in chapter 5.
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Chapter 5: Reference Trajectory Gener-

ation for Children with Cerebral Palsy

5.1 Overview

This chapter presents the results of gait trajectory prediction of two distinct popula-

tions: typically developing children and children with Cerebral palsy. To accomplish

this, four state-of-the-art deep learning models, namely a transformer, long-short-term

memory network, convolutional neural network, and a fully connected neural network

are implemented. The predictive performance of these models is evaluated in short-

term and long-term (recursive) predictions and in the presence of varying levels of

added Gaussian noise. This study introduces a methodology aimed at enhancing the

stability of long-term prediction of joint kinematics. Furthermore, this chapter pro-

poses a methodology for generating individualised, adaptive, and continuous trajecto-

ries tailored for children with Cerebral palsy, that can serve as reference trajectories

for position-controlled exoskeletons.

5.2 Introduction

There are exoskeletons that have been specifically developed for children with CP [11],

and Sarajchi et al. present a comprehensive literature review on this topic [11]. There

are approximately fifteen single-joint and multi-joint lower limb exoskeletons primarily

designed for children with Cerebral Palsy [11], including HAL [147], P-LEGS [148],
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Trexo [149], CPWalker [150], EExRoLEG [151] and WAKE-up [152].

Incorporating knowledge of future gait trajectories can enhance the performance of the

exoskeleton, by providing feed-forward input to the low-level controllers rather than

utilising feed-back input only [97]. This approach can improve tracking of the exoskele-

ton’s movement, and compensate for the control time-delays [97]. Several probabilistic

and machine learning-based methods have been used to predict future gait trajectories

[19, 97, 135, 137, 153]. However, these methods still need to be evaluated for stability

in their predictions, which can be impacted due to measurement or controller noise, as

well as during signal acquisition and transmission.

Furthermore, many exoskeletons currently follow a fixed gait trajectory, often based on

the mean trajectory of a healthy population [154]. However, this may not be the most

suited trajectory for the user, since it may not take into account their specific param-

eters, such as height and limb length, which have been shown to influence gait [155].

Some studies have focused on generating normalised gait cycles based on individual

body parameters [35, 36]. While this approach provides more personalised gait tra-

jectories to follow, it does not consider stride-to-stride variability during gait or the

asymmetry between the left and right joints.

Motivated by the current limitations, several novel contributions are presented in this

chapter. Firstly, stable deep-learning models are developed to predict one-step-ahead

kinematic trajectories, specifically flexion-extension angles of the hip, knee, and ankle

joints of both legs. A methodology is presented to optimise the long-term stability of

these models by using dynamic time warping (DTW) distance metric for early stopping

during training. The stability of the models was evaluated through (1) recursive fore-

casting (where predictions are used as input to the models, leading to the propagation

of errors), and (2) the addition of varying levels of Gaussian noise to the input of the

models (1-5%). The performance of the models in predicting the gait patterns of TD

and CP individuals is assessed. Finally, an approach is proposed for generating continu-

ous individualised and corrective reference trajectories for children with CP, taking into

account the stride-to-stride variability and asymmetry of gait. This approach involves

training the deep learning models on gait from typically developing children only, feed-
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ing the models with CP gait as input, and then using the predictions from the trained

models as potential reference trajectories for exoskeletons. It is hypothesised that these

models can learn features of ‘healthy’ gait patterns. When CP gait patterns are used

as input, these models can ‘correct’ CP patterns by introducing TD gait patterns,

while still considering the individual features of the child and the asymmetry of their

gait. The focus of this study is on predicting pediatric gait patterns and implementing

the above using a variety of deep learning models including long-short-term-memory

(LSTM), fully connected network (FCN), convolutional neural network (CNN), as well

as Transformers which have never been investigated for gait trajectory prediction.

5.3 Background

Forecasting gait trajectories is valuable in exoskeleton control for several purposes.

The predicted future trajectories can be used as feed-forward input to the controllers,

enabling better tracking of the exoskeleton’s movement [97], and compensating for

delays in controller response times [97, 133]. Future trajectories can serve as target

trajectories, as a guide for users to follow [154].

Several approaches have been used for the gait trajectory forecasting task, including

probabilistic models [97] and deep learning models such as LSTMs and CNNs [135,137].

These approaches vary in the number of time-steps predicted, ranging from single to

multiple time-steps in the future. The predicted trajectories can take the form of

joint angles, linear accelerations or angular velocities. Another difference amongst the

approaches is the input parameter or sensors used to collect the data to develop the

models which included motion capture systems [132, 136, 137, 156], IMUs [133, 134],

encoders [131], and surface electromyography (sEMG) [135,157]. A summary of some

approaches in literature is provided in Table 5.1. Real-time predictive models are

prone to receive noisy inputs, during signal acquisition and transmission. Therefore,

it is crucial for models predicting gait trajectories intended for exoskeleton control to

be robust to noise and exhibit stability in their predictions. While the accuracy of

these models has already been evaluated, the stability of these models is yet to be

investigated.
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Table 5.1: Summary of the results of the papers that implement trajectory prediction

Paper Method Predicted
Parameter

Sensors /
Modality

Input window
size

Output Window
size

Error
Metric

Error Subjects

Jia et
al. [135]

LSTM
with

feature
level-
fusion

Knee angle Motion capture
and EMG

- 50ms RMSE 0.464 ± 0.096 4 healthy

Zhu et
al. [137]

Attention
based
CNN-
LSTM

Knee and ankle
angle

Motion capture - 60ms / 9
time-steps (150

Hz)

RMSE /
MAE

0.317 / 0.202 Healthy

Zhu et
al. [137]

CNN-
LSTM

Knee and ankle
angle

Motion capture - 60ms / 9
time-steps (150

Hz)

RMSE /
MAE

0.665 / 0.523 Healthy

Zhu et
al. [137]

LSTM Knee and ankle
angle

Motion capture - 60ms / 9
time-steps (150

Hz)

RMSE /
MAE

0.745 / 0.562 Healthy

Zhu et
al. [137]

CNN Knee and ankle
angle

Motion capture - 60ms / 9
time-steps (150

Hz)

RMSE /
MAE

0.619 / 0.810 Healthy

Ling et al.
[157]

Back
Propaga-

tion
Neural
Network

Knee angle Surface
electromyograph

(sEMG)

- 1 time-step RMSE 4.406 – 5.945
(offline) /
5.219-6.622
(online)

4 healthy

Ling et al.
[157]

LSTM Knee angle Surface
electromyograph

(sEMG)

- 1 time-step RMSE 6.3600-12.2033
(offline) /

6.4928-12.5539
(online)

4 healthy

Ling et al.
[157]

SVR Knee angle Surface
electromyograph

(sEMG)

- 1 time-step RMSE 8.2800-10.0430
(offline)

/8.7688-10.6569
(online)

4 healthy

Liu et al.
[81]

Deep
Spatial
temporal
model

Hip and knee
angle

Encoder 50 time-steps
(50Hz)

1 time-step
(50Hz)

- Refer to fig 6 in
paper

35 healthy
(25±3)

Hernandez
et al.
[134]

Deep Conv
LSTM

Hip, knee ankle,
lumbar

IMU 100 time-steps
(100 Hz)

100 time-steps
(100 Hz)

MAE 3.6 ± 2.1
(average)

27 healthy (26.5
± 3.9 years)

Moosavian
et al.
[158]

LSTM Robowalk hip
and knee angle

- 64 (step size of
3)

- - 5 degrees
(maximum), 0.5

degrees for
stepping up

mode

7 ( 5 healthy +
2 transfemoral
prosthesis users)

Ren et al.
[156]

LSTM Hip, knee, ankle Motion Capture - 1 time-step RMSE 3.738-18.052
(Conventional

LSTM) /
0.392-0.778
(LSTM with
real time
updates)

CMU database

Zaroug et
al. [132]

LSTM Linear
acceleration and
angular velocity

Motion Capture 25 time-steps
(100Hz)

5 time-steps MAE 0.047 m/s2
thigh LA, 0.047
m/s2 shank LA,

0.028 deg/s
thigh AV, 0.024
deg/s shank AV.

6 healthy male
(age 22 ± 2

years)

Zaroug et
al. [136]

Vanilla
LSTM

Linear
acceleration and
angular velocity

Motion Capture 25 time-steps /
0.5 sec (50Hz)

5 time-steps /
0.1 sec (50Hz)

MAE 0.221-0.379 13 healthy male
and 3 female (28

± 4years)

Zaroug et
al. [136]

Stacked
LSTM

Linear
acceleration and
angular velocity

Motion Capture 25 time-steps /
0.5 sec (50Hz)

5 time-steps /
0.1 sec (50Hz)

MAE 0.176-0.340 13 healthy male
and 3 female (28

± 4years)

Zaroug et
al. [136]

Bi-LSTM Linear
acceleration and
angular velocity

Motion Capture 25 time-steps /
0.5 sec (50Hz)

5 time-steps /
0.1 sec (50Hz)

MAE 0.204-0.365 13 healthy male
and 3 female (28

± 4years)

Zaroug et
al. [136]

ED-LSTM Linear
acceleration and
angular velocity

Motion Capture 25 time-steps /
0.5 sec (50Hz)

5 time-steps /
0.1 sec (50Hz)

MAE 0.176-0.336 13 healthy male
and 3 female (28

± 4years)

Su et
al. [133]

LSTM Angular velocity IMU 10 time-steps or
30 time-steps

10 time-steps /
200ms or 5
time-steps /
100ms (50Hz)

MAE 0.063-0.308 12 healthy (6
males and 6

females) (25-30
years)
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In addition to using predictive model outputs as feed-forward to controllers, predicted

gait trajectories can be used as reference trajectories for exoskeletons [154]. Exoskele-

tons that operate based on position control rely on a reference trajectory, often derived

from healthy individuals, to dictate the desired joint positions during a gait cycle. This

reference trajectory is used to correct pathological gait patterns [117], but it does not

take into consideration several parameters that influence gait, including speed, gender,

and anthropometrics [155]. Gaussian process regression and recurrent neural networks

(RNNs) have been used to address this issue, by generating healthy gait trajectories

based on parameters such as speed, gender and anthropemtrics [35]. These models learn

the mapping between body parameters and healthy gait cycles, allowing the genera-

tion of personalised reference trajectories for each individual. Using individualised gait

trajectories for gait rehabilitation has resulted in improvements in energy efficiency,

measured by an increase in heart rate and reduction in peripheral capillary oxygen

saturation (SpO2), compared to generalised trajectories [159].

While these approaches provide more individualised trajectories, they are fixed for all

gait cycles and do not consider the inherent cycle-to-cycle variability observed during

gait. Children with spastic CP, have been shown to exhibit higher within-day and

between-day variability in comparison to typically developing children, which can be

due to the limited range of motion caused by their spasticity [139,140]. An online adap-

tive trajectory generation is needed to account for this cycle-to-cycle variability. Vallery

et al. [117] used complementary limb motion estimation (CLME) for hemiparetic indi-

viduals, that relies on the trajectories of the healthy leg for the online estimation of the

reference trajectory for the pathological leg. Using CLME approach was more efficient,

led to EMG patterns that were closer to unperturbed gait than when using a fixed ref-

erence trajectory and avoided out-of-phase walking, which can be generated by using

a fixed reference trajectory [117]. Nevertheless, this approach is specific to individuals

with hemiparesis and not those who have both limbs affected. Meanwhile, Zhou et al.

[36] used RNNs to generate normalised gait trajectories based on anthropometrics, as

well as gait speed, yet their approach does not account for the kinematic asymmetry

between the left and right joints.

These limitations were the motivation behind this study which presents one-step-ahead
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kinematic trajectory prediction models that are optimised for stability in their long-

term predictions and are evaluated for their robustness in the presence of added noise.

This study also presents an approach to generate adaptive target/reference trajectories

for children with CP, that vary from cycle-to-cycle, and take into account the asym-

metry of the left and right joints, since a separate trajectory will be generated for each

joint of the left and right sides. A similar approach has been done by Endo et al.

[160], who trained a GaitForMer network based on healthy gait patterns for human

motion forecasting, and then retrained the model that learned gait mappings to pre-

dict the severity of gait impairment of patients with Parkinson’s disease, based on the

Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS).

In this study, a transformer network has been implemented for gait trajectory predic-

tion. Transformers have gained significant popularity, outperforming CNNs and LSTMs

in several applications, as shown in [161]. Using transformers offers several advantages.

Firstly, transformers rely on the attention mechanism rather than on recurrence or

convolutions allowing for the capture of long-range dependencies. Moreover, the ele-

ments of the input sequence to a transformer are processed in parallel, enabling faster

training [162]. The promising results of transformers demonstrated in literature have

inspired its use in this study [161]. To the best of our knowledge, this is the first time

transformers have been utilised for gait trajectory prediction.

5.4 Methodology

5.4.1 Overview

This study involves developing end-to-end kinematic trajectory prediction models, that

perform one-step-ahead prediction of joint angles of the hip, knee and ankle for both

legs. The models are trained using 100 time-points of past joint angles (equivalent

to 1000ms for a sampling frequency of 100Hz) and optimised for long-term stability

in their predictions by using dynamic time warping distances (DTW), in addition to

validation loss, as metrics to end training of the models. Four deep learning models

are implemented, including LSTM, FCN, CNN and transformer that, importantly, are
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trained on the gaits of typically developing children. Their stability is evaluated in

long-term forecasting of 200 time-steps in the future, which is twice the length of the

input size. The stability of the four models is evaluated by: (1) performing recursive

prediction which can lead to the propagation of errors, and (2) by adding varying levels

of Gaussian noise to the input (1-5%). Finally, the four models are used to predict

future trajectories (200 time-steps ahead) when using 100 time points of CP gait as

input. It is hypothesised that the predictions from models that learned the gait patterns

of typically developing children could be used as an aid to correct the gait of children

with CP.

5.4.2 Data

The deep learning models implemented in this study were trained and evaluated on

the Canterbury Christ Church University and Chailey Clinic Dataset, which contains

recordings of gaits from both typically developing children and children with Cerebral

Palsy. The dataset includes flexion-extension angles of the hip, knee and ankle measured

simultaneously in the sagittal plane, for the right and left legs. Details on this dataset

can be found in Chapter 3, section 3.2.2.

5.4.3 Pre-processing

The data of typically developing children were divided into 3 subsets: training, valida-

tion and testing sets. The division was performed at the subject level (i.e. data from

8 children were used for training, data from the other 2 children for testing and data

from 1 child for validation). The children for each set were selected at random. This

was done to avoid testing the models on samples from a child used for training and

therefore ensure the generalisability of the models.

Prior to training the models, each one of these sets was pre-processed by segmenting

the trials into samples; each trial is a recording of the flexion-extension angles of the

hip, knee, and ankle joints while walking for 8 meters. Each sample consisted of an

input matrix xin, which contained joint angle values for 100 time-steps, and a target
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vector yout, which contained the joint angle values for the subsequent time-step. The

input window size was specifically chosen to be 100 time-steps because this corresponds

to 1000ms (for a 100Hz sampling frequency), which is equivalent to the length of one

full gait cycle as the average length of a gait cycle for TD school-aged children is 980-

990ms [143]. This allows the model to make predictions based on one full previous

cycle of an exoskeleton user. In chapter 4, the effect of varying the length of the

input window on the accuracy of predicting trajectories in the form of Euler angles

was investigated [153]. The range of input window sizes used in that study were 50,

100, 200, 400, 600, 800, and 1000 ms. Results showed that for short-term predictions,

the size of the input window does not have a significant influence on accuracy, while

for long-term predictions, larger input window sizes result in better performance. This

further supports our choice to set the input window size to 100 time-steps (equivalent

to 1000ms). The decision to set the input window size to 100 time-steps (equivalent to

1000ms) for this study was based on these findings.

For n samples in a set, Xin ∈ Rn×lin×f , where lin (set to 100) is the number of input

time-steps and f (set to 6) is the number of features that we input to the models (hip,

knee and ankle angles for the left and right leg). Similarly, Yout ∈ Rn×lout×f , where n

is the number of samples, lout (set to 1) is the number of target time-steps, while f (set

to 6) is the number of features. The samples were generated using the sliding window

method (discussed in chapter 4) [153]. The stride value was set to 1 to maximize the

number of training samples that can be generated from each trial. For the typically

developing gait data, the training, testing, and validation sets consisted of 41120, 7316,

and 4832 samples, respectively.

In addition to these 3 main sets, two additional long-term prediction validation and

testing sets were generated. These sets had the same input size as in Xin (i.e. 100

time-steps), but they have an output size (lout) of 200 time-steps. These sets were

generated to evaluate the feasibility and stability of recursive long-term forecasts of the

trained models (see section 5.4.5.2 and section 5.4.6 for further details).

All the data from children with CP were used only for testings the models, both for

one-step-ahead prediction and long term predictions. The data from children with CP
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Figure 5.1: Probability density distribution of the hip, knee, and ankle angles (in de-
grees) for TD and CP gait data before processing. The blue and yellow lines correspond
to CP and TD probability density distributions, respectively.

were processed in the same manner as the data for typically developing children.

After generating the sets, they were normalised using min-max normalization, such that

Xin ∈ [0, 1] and Yout ∈ [0, 1]. The testing and validation sets are normalised according

to the normalisation factors (i.e. min and max values) used during training. The

min-max values were chosen to account for the joint angle ranges of both the typically

developing and CP distributions with an additional safety boundary. This was done

to ensure that the models are capable of handling test data from subjects that have

slightly different joint angle ranges while keeping input bounded between 0 and 1. Also,

this is to accommodate for differences in CP and TD gait data distributions which can

be shown in Figure 5.1.
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Figure 5.2: Illustration of one-step-ahead gait trajectory prediction models. Based on
a 100 time-step window of six input features (f1-f6), the models make one-step-ahead-
predictions for each feature. The features are the flexion-extension angles of the hip,
knee, and ankle for both legs.

5.4.4 One-step-ahead trajectory prediction models

Four deep learning models were implemented for one step ahead prediction of gait

trajectories, including a Fully Connected Neural Network (FCN), a Long Short-Term

Memory (LSTM), a Convolutional Neural Network (CNN), and a Transformer. These

sequence-to-sequence models were trained to predict one-step ahead gait trajectories

based on a 100 time-step input window of joint angles, specifically the hip, knee and

ankle angles of the left and right foot (see Figure 5.2). The models’ g(X) learns the

mapping between input X (made of 100 time-steps) and the output Ŷ (one-step ahead

prediction), to minimise the difference between the estimated output Ŷ and the true

output Y . For n number of samples, lin input window length, lout output window

length, and f features, the input of the model is matrix X, where X ∈ Rn×lin×f , and

the output of the model is matrix Ŷ , where Ŷ ∈ Rn×lout×f . In the following subsections,

the architecture of each of the models will be described.

5.4.4.1 Fully Connected Network (FCN)

The Fully Connected Network (FCN) consists of a series of fully connected linear layers

with ReLU activation functions in between, and a final sigmoid layer as an output. The

2-dimensional input R100×6 (given that we have 6 joint angles and a 100 time-step input

window) has been flattened to a 1-dimensional vector R600 before passing it through

the fully connected layers. A total of five linear layers were used, with the architecture
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Figure 5.3: Architecture of the Fully Connected Neural Network (FCN). The network
contains a total of five linear layers and predicts one future time step based on 100
input time steps.

shown in Figure 5.3. A note on how the FCN in this chapter differs from the ones

implemented in Chapters 4 and 6 is included in Chapter 4, section 4.3.5.

5.4.4.2 Long-short-term-memory Network (LSTM)

The LSTM is a type of gated recurrent neural network commonly used with time-

series data, since it processes the data sequentially. Each LSTM unit which consists

of an input, output, and a forget gate, regulates the flow of information through the

network. The parameters of these gates are set during the training process, to optimise

performance [141]. For this study, a network that contains 2 layers, and 100 LSTM

units per layer was implemented. The last hidden state of the final layer is then passed

onto a fully connected layer before reshaping the output into the desired shape. The

architecture of the LSTM network is shown in Figure 5.4.

5.4.4.3 Convolutional Neural Network (CNN)

While CNNs are primarily associated with 2-dimensional inputs such as images, they

can be applied to 1-dimensional sequences, whereby the 2D convolution operation is

replaced with the 1D convolution operation [144]. The CNN architecture implemented

in this study contained two pooling and four convolution layers, followed by a fully

connected linear layer at the end. A ReLU activation function was used after each

convolution layer. The architecture of the CNN model is depicted in Figure 5.5.
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Figure 5.4: Architecture of the Long-short-term-memory (LSTM) Network. The net-
work contains two LSTM layers with 100 hidden units each followed by one fully con-
nected layer. The network predicts one future time step based on 100 input time steps.

Figure 5.5: Architecture of the Convolutional Neural Network (CNN). The network
contains a total of four convolutional layers, two pooling layers, and one fully connected
layer. The network predicts one future time step based on 100 input time steps.
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5.4.4.4 Transformer

The transformer architecture implemented for this study is based on the one proposed

by Vaswani et al. [163]. The transformer consists of one encoder layer and one decoder

layer. The input which consists of 100 time-steps of six joint angles (hip, knee, and

ankle flexion-extension angles for both legs) is fed into a linear layer that expands the

dimension from R100×6 to R100×80. The expansion of the input dimension is necessary

to be able to set the number of multi-dimensional heads of the encoder model to 8. The

output of the linear layer is concatenated with positional encodings, which are used to

inform the model of the order of the sequence [163]. The result of the concatenation is

fed into the encoder, which is a single layer consisting of 8 multi-attention heads, and

a 100-unit feed-forward network. Meanwhile, the last time-step of the input is fed to a

linear layer that expands the dimension from R1×6 to R1×80. The decoder receives two

inputs: the output of the decoder’s linear layer which is concatenated with positional

encodings, and the output of the encoder (which is the output of the feedforward

network added and normalised with a residual connection) [163]. The output of the

decoder goes through a fully connected layer and then a sigmoid activation function.

The positional encodings had a dropout rate of 0.2, while the encoder and decoder had

a dropout rate of 0.1. The architecture of the Transformer implemented is illustrated

in Figure 5.6.

5.4.5 Model Optimisation

The following subsections describe the training and optimisation processes for the

LSTM, FCN, CNN and Transformer networks.

5.4.5.1 Hyper-parameters

All models were trained using the Adam optimiser, with the mean squared error (MSE)

between one-step-ahead predictions and true values used as the loss function to update

the weights of the models. The models were trained up to 40-50 epochs. We stored

the models at the epoch where the DTW distance between the recursive predictions of
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Figure 5.6: Architecture of the Transformer Network. The network consists of an
encoder and a decoder and predicts one future time step based on 100 input time steps.

89



the 200 time-steps and the true joint angles of the validation set was the lowest. To

select the optimal hyperparameters for the models in this study, we have started with

hyperparameters that have been selected in the previous study, presented in chapter

4. Those hyperparameters were selected based on a hyperparameter search that uses

the tree-structured Parzen estimator algorithm, a type of Bayesian hyperparameter

sampler, and optimised for the prediction of trajectories in the form of Euler angles for

children with CP. Details on the search space are included in chapter 4. Subsequently,

these hyper-parameters have been fine-tuned to optimise the performance of the models

on the current dataset. The batch sizes for the FCN, LSTM, CNN, and Transformer

were 32, 256, 256, and 512 respectively. The learning rate was set at 0.0001 for the

FCN, LSTM and CNN, and at 0.001 for the Transformer.

5.4.5.2 Dynamic Time Warping Distances as Early Stopping Criteria

In this study, the mean square error (MSE) between the one-step-ahead predictions and

the true values was used as the loss function, with the models being trained to minimise

the loss. While minimising this loss ensures low errors in short-term predictions, it does

not guarantee that the models are not over-fit to short-term forecasting, and are capa-

ble of accurate long-term recursive forecasts. After each epoch of training, the DTW

distance between the 200 recursively predicted time steps and the true gait values of

the validation set is calculated. This distance serves as a measure of the model’s perfor-

mance in long-term forecasting. The validation loss was monitored to ensure the model

is learning and performing well on short-term prediction, and the DTW distance on the

validation set was used to determine when to end the training of the model to avoid

overfitting and ensure the stability of the models in long-term forecasting. Figure 5.7

provides an example plot illustrating the training and validation MSE loss as well as

the DTW distance measured for each epoch during the training of one of the models.

The plot shows that initially, during the beginning of training, both the validation loss

and DTW distance decreased, indicating improvement in short-term prediction and

long-term recursive forecasting. However, after a certain number of epochs, the DTW

distance increases, suggesting a degradation in the model’s ability to accurately fore-

cast long-term trajectories. Based on these observations, this training approach aims

90



Figure 5.7: Plot of the loss curves during training of a model. (a) shows the training
and validation MSE loss on one-step-ahead predictions, and (b) shows the dynamic
time warping (DTW) distances between 200 recursively predicted outputs and the true
outputs of the validation set.

to optimise for low one-step-ahead MSE validation loss while also minimising the DTW

distance in long-term recursive forecasting. This strategy ensures that the models are

capable of both accurate short-term predictions and reliable long-term forecasts. This

approach is illustrated in Figure 5.8.

5.4.5.3 Framework

The Pytorch machine learning framework has been used to implement deep learning

models. Several additional libraries were utilised including Numpy, Matplotlib, SciPy,

Seaborn, and Scikit-learn. DTW python package was used for calculating dynamic

time-warping distances [164]. Computation was run on an Nvidia Geforce RTX 2070

GPU.
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Figure 5.8: Strategy for optimising the stability of the models for the long-term gait
prediction task. Dynamic time warping distances are calculated between 200 recursively
predicted time-steps and the true gait values after each training epoch. This procedure
is repeated after each epoch on the validation set. The weights that lead to the lowest
DTW distances are saved for inference.
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5.4.6 Long-term recursive trajectory forecasting

Recursive forecasting is a technique where the one-step-ahead predictions made by the

model are reused as input for making subsequent predictions. In this study, this method

has been used to evaluate the feasibility of long-term recursive forecasts (see section

5.4.7), and also as a metric for early stopping during training to optimise for long-

term stability (see section 5.4.5.2). The one-step-ahead prediction models developed in

section 5.4.4 were used for recursive forecasting.

5.4.7 Evaluating Stability

Two methods were used to evaluate the stability of the networks. The first method in-

volved long-term recursive prediction. A stable network should be able to make accurate

predictions over an extended period using recursive input, without being significantly

affected by noise resulting from the propagation of error. The stability of the networks

was evaluated by recursively predicting 200 time-steps into the future, equivalent to

approximately two gait cycles, which is twice the length of input times-steps used by

the model. During the first 100 recursive predictions, the input to the model consisted

of a combination of true and predicted values. For the next 100 recursive predictions,

the input was based solely on predicted values. The long-term predictions were com-

pared to the true values and the errors between them were calculated to measure the

network’s stability.

The second method employed to assess the stability of the networks involved the ad-

dition of Gaussian noise to the predictions. This method was used in conjunction

with the long-term recursive prediction described above and involved the addition of

varying levels of Gaussian noise (1-5%) to each prediction before using it as input for

the model. Subsequently, 200-time steps were recursively predicted into the future with

added Gaussian noise, and the errors between these predictions and the true gait values

were calculated.
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5.4.8 Cerebral Palsy Gait Correction

Position-controlled exoskeletons often guide users to follow a reference/target trajec-

tory, based on the mean trajectories of a healthy population, which results in corrections

to their pathological gait patterns [117,154]. This study proposes an approach for gen-

erating personalized adaptive target/reference trajectories for individuals with CP by

leveraging the one-step-ahead trajectory prediction models trained on the gait of TD

children.

The process involves training one-step-ahead trajectory prediction models exclusively

on TD gait. These models are then fed with CP gait, and the models’ predictions are

used as proposed reference/target trajectories for the child with CP (see Figure 5.9).

The models make predictions based on input from both the right and left limbs, and

produce separate output predictions for the right and left limbs, instead of the same

trajectory for both limbs. This allows accommodating for the asymmetry and slight

differences in right and left limb trajectories, especially for children with unilateral

CP, where only one side is affected. We hypothesise that these models will learn the

mappings of ‘healthy’ trajectories and the inter-joint couplings, and will introduce the

TD patterns onto CP gait when CP gait is used as input.

Specifically, once the models have been trained on TD gait, the models are fed with

100 time-steps of CP gait and recursively predict 200 time-steps into the future. These

predictions are compared with the natural evolution of CP gait to assess whether the

models introduced TD patterns to the predictions.

5.4.9 Performance Metrics

For evaluating the predictive performance of the models in short-term (one-step-ahead)

and long-term predictions, two common error metrics are used: mean squared error

(MSE) and mean absolute error (MAE). These metrics were calculated after the de-

normalisation of the predictions (refer to Chapter 4, section 4.3.7 for the equations used

to calculate MAE and MSE as well as their standard deviations).
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Figure 5.9: Methodology for generating adaptive reference/target trajectories for chil-
dren with CP by training the deep learning models on the gait patterns of TD children.
The blue lines correspond to the model’s input, the green lines to the model predictions,
and the red lines to the actual gait values.

5.5 Results

This section presents the results of the predictive performance of the four models,

in the short-term (one-step-ahead, section 5.5.1) and the long-term (200 time-steps,

section 5.5.2). It also reports the effect of noise on gait predictions (section 5.5.3),

and showcases illustrative examples of gait trajectory corrections for children with CP

(section 5.5.4).

5.5.1 Performance on short-term (one-step-ahead) predictions

Four deep learning networks (LSTM, FCN, CNN and Transformer) were trained for

the task of one-step-ahead gait trajectory prediction (see Figure 5.10 and Figure 5.11).

The input consisted of 100 time steps, representing hip, knee, and ankle angles in

the sagittal plane for both legs. These networks were trained on the gait patterns

of typically developing (TD) children. To evaluate the predictive performance of the

models, a test set consisting of data from two TD children that were not included in

the training process is used. The mean squared errors (MSE) and mean absolute errors

(MAE) between the predictions and true values were calculated. Additionally, these

models, trained on TD gait, are tested on data from 11 children with Cerebral Palsy

(CP). The results of these evaluations are reported in Table 5.2.
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Figure 5.10: One-step-ahead prediction of the hip, knee and ankle flexion-extension
angles based on a 100 time-step input window. The blue line corresponds to the model’s
input, the green and red markers correspond to the predicted and actual gait values,
respectively. The figure shows TD gait.

According to the results, the LSTM model achieved the lowest MAE (0.87°) for one-

step-ahead prediction of TD gait. The Transformer model performed slightly worse

with an MAE of 1.17°, followed by the FCN model with an MAE of 1.63°. The CNN

model showed the poorest performance with an MAE of 4.05°. The MAEs of the

predicted values for children with CP were higher compared to TD children.

5.5.2 Performance on long-term recursive predictions

The one-step-ahead prediction models trained on typically developing children are used

for long-term forecasting, by recursively using the one-step-ahead predictions as input

(see Figure 5.13), to predict a total of 200 time-steps in the future. The results for

96



Figure 5.11: One-step-ahead prediction of the hip, knee and ankle flexion-extension
angles for 200 time-steps. The blue line corresponds to the model’s input, the red line to
the actual gait values, and the green markers correspond to the predicted values. Each
prediction (green marker) is based on a 100 time-step window of the actual/measured
gait values (i.e. without recursive input). The figure shows TD gait.

Table 5.2: MAEs and MSEs for one-step-ahead gait trajectory predictions for typically
developing children and children with Cerebral Palsy (in degrees)

LSTM FCN CNN Transformer

TD

MSE 1.29 4.35 43.55 2.23

MSE std 1.92 6.17 68.14 3.25

MAE 0.87 1.63 4.96 1.17

MAE std 0.69 1.23 4.05 0.88

CP

MSE 3.11 11.07 88.67 5.89

MSE std 5.74 19.46 148.23 9.82

MAE 1.32 2.48 6.94 1.83

MAE std 1.09 2.04 5.79 1.50
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Figure 5.12: MAEs for one-step-ahead gait trajectory predictions for typically devel-
oping children and children with Cerebral Palsy (in degrees)

long-term predictions are reported in Table 5.3. For long-term predictions of TD gait,

the LSTM model achieved the lowest MAE (9.36°) among the four models. The FCN

model followed closely with an MAE of 10.03°, followed by the Transformer model with

an MAE of 10.31°. The CNN model showed slightly higher errors with an MAE of

10.72°. For long-term predictions, the models demonstrated similar performance, with

differences in errors between the different models smaller in long-term predictions than

the differences in errors between the models observed in short-term predictions.

Table 5.3: MAEs and MSEs for long-term (200 time-step) recursive predictions for
typically developing children and children with Cerebral Palsy (in degrees)

LSTM FCN CNN Transformer

TD

MSE 171.76 183.93 224.25 204.35

MSE std 328.28 336.98 399.06 377.30

MAE 9.36 10.03 10.72 10.31

MAE std 8.62 8.90 9.64 9.29

CP

MSE 322.13 358.69 351.25 405.60

MSE std 516.78 552.19 536.44 628.04

MAE 13.41 14.29 14.03 14.93

MAE std 11.32 11.72 11.55 12.51
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Figure 5.13: Long-term (200 time-step) recursive predictions of the hip, knee, and
ankle flexion-extension angles based on a 100 time-step input window. The blue line
corresponds to the model’s input, the green line to the recursive predictions, and the
red line to the actual gait values. The figure shows TD gait.

Figure 5.14: MAEs for long-term (200 time-step) recursive predictions for typically
developing children and children with Cerebral Palsy (in degrees)

99



5.5.3 Effect of Gaussian noise on the stability of the models

Recursive predictions, generated by using on-step-ahead predictions as inputs to the

models, are a way to assess the stability of the networks since the predictions will

contain a level of error which will be continuously propagated. We have evaluated

the performance of recursively predicting 200 time-steps in the future based on a 100

time-step input (see section 5.5.2 for details). To further investigate the effect of noise,

Gaussian noise was added to the predictions (between 1-5% of the predicted value)

before using it as a recursive input. The errors for long-term (200 time-step) predictions

were calculated afterwards. Figure 5.15 illustrates the impact of noise on the prediction

of hip flexion-extension angles. Note that noise has been added to all joint angles, and

its effect is evaluated in TD and CP gait predictions.

Figure 5.16 presents the effect of Gaussian noise (levels 1-5%) on the MAEs for long-

term prediction of TD gait. The results demonstrate that the errors increase linearly

with increasing noise levels. Among the models, the LSTM is the most affected by

noise. The FCN and Transformer are slightly more affected by noise compared to the

CNN, but they are still more stable than the LSTM overall. A similar trend is observed

for CP gait predictions with noise, as shown in Figure 5.17.

5.5.4 Generating adaptive reference trajectories for Cerebral Palsy

Gait

This study proposed an approach that suggests corrections to cerebral palsy (CP) gait

trajectories, which can be used as target/reference trajectories for position-controlled

rehabilitative exoskeletons. The deep learning models were trained on typically de-

veloping (TD) gait data only and their performance for long-term predictions (200

time-steps) when CP gait was used as input was evaluated. The results reported in

Figure 5.18 indicate that the models appear to introduce TD patterns onto the pre-

dicted CP gaits. Preliminary observations show that the predicted trajectories are

ahead of the actual CP trajectories which indicates that the models may be imposing

a higher gait speed. Figure 5.18(a) and Figure 5.18(b) illustrate this effect by showing

100



Figure 5.15: Effect of varying Gaussian noise levels (1%-5%) on the long-term recursive
prediction of the hip flexion-extension angle. The blue line represents the gait input,
the red line represents the actual values, and the orange line represents the predictions
with added noise.

Figure 5.16: Effect of varying Gaussian noise levels (1%-5%) on MAEs for TD gait
predictions
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Figure 5.17: Effect of varying Gaussian noise levels (1%-5%) on MAEs for CP gait
predictions

a decrease in the stride time in the predicted corrections compared to the CP gait tra-

jectory without intervention, measured by a shorter peak-to-peak distance. The stride

time in Figure 5.18(a) reduces from 137 time-steps in the CP gait trajectory without

intervention to 85 time-steps in the predicted correction. Similarly, the stride time in

Figure 5.18(b) was also reduced by 57 time-steps in the corrected intervention.

Furthermore, the predicted corrections indicate an increased range of motion, such

as increased knee flexion, making them more similar to TD gait. This is illustrated in

Figures 5.18(c), 5.18(d), 5.18(e) where the range of motion of the joint angles increased

by 28.4°, 13.97°, and 19.32° respectively, in the predicted corrections compared to the

CP gait without intervention.

These observations align with desired outcomes in CP rehabilitation which include in-

creased mean velocity and improvement in knee extension [9, 13, 40]. However, it’s

important to note that these results are preliminary observations, and further evalu-

ation is needed to assess the effectiveness of the generated trajectories in enhancing

rehabilitation outcomes, such as reducing metabolic cost and increasing gait speed, as

well as considering the comfort of users. Clinical studies in a controlled setting would

be necessary to evaluate these aspects.
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Figure 5.18: Examples of corrections to Cerebral Palsy gait predicted by a model
trained on the gait patterns of typically developing children only. The blue line rep-
resents the CP gait input, the red line represents the actual CP values, and the green
line represents the predicted corrections to CP gait. (a) and (b) show a decrease in the
peak-to-peak distance in predicted correction compared to CP gait without interven-
tion, suggesting that the models are imposing higher speeds. (c), (d), and (e) show an
increase in the range of angles in predicted corrections compared to CP gait without
intervention indicating that the models are imposing a larger range of motion.

103



5.6 Discussion

In this study, the focus was on developing end-to-end deep learning models for the task

of gait trajectory prediction, specifically for flexion-extension angles of the hip, knee,

and ankles of both the right and left legs. The intended application of these models is

the control of rehabilitative exoskeletons for children with Cerebral Palsy (CP). Four

deep learning models (LSTM, FCN, CNN, and Transformer) were trained for one-step-

ahead predictions using a 100 time-step input window. To the best of our knowledge,

this is the first time Transformers have been evaluated for gait trajectory forecasting.

These models have been trained on the gait patterns of typically developing (TD)

children. We proposed a methodology that optimises for long-term stability during

training. This methodology involves using dynamic time warping (DTW) distances

between long-term recursive predictions and true values as an early stopping metric

(described in section 5.4.5.2). This has prevented the models from over-fitting on one-

step-ahead predictions, at the cost of long-term stability.

The performance of these models was evaluated in terms of mean absolute errors

(MAEs) for both one-step-ahead and long-term predictions. For one-step-ahead predic-

tions of typically developing (TD) gait patterns, the MAEs ranged from 0.87° to 4.96°

across all models, with LSTM achieving the lowest errors, followed by the Transformer,

FCN, and CNN. The performance gap between the CNN and the other models was

relatively large. For long-term recursive predictions (200 future time-steps), the MAEs

on the TD gait test set ranged from 13.41° to 14.93°. The differences in performance

across all models were narrower in long-term predictions, but LSTM still had the lowest

errors while CNN had the largest errors.

Comparisons with prior studies in the literature are challenging due to the novelty

of applying AI trajectory prediction models to pediatric gait and the gait of children

with CP. Furthermore, previous studies have focused on different parameters, such as

predicting linear acceleration, angular velocity, or joint moments instead of joint angles,

or used different data modalities, such as EMG or a motion capture system. However,

some general comparisons can still be made. For example, CNN’s performance in this

104



study aligns with previous findings of it being less robust in gait prediction compared

to other networks. These results are shown in chapter 4 [153]. But these findings were

different to what was reported by Moreira et al. [145] who performed ankle joint torque

estimation based on kinematics, speed, and anthropometry, and found the CNN to be

more robust. They didn’t however compare the performance to FCN or transformers.

On the other hand, the LSTM’s superiority over the FCN in one-step-ahead predictions

is consistent with findings from other studies on joint moment prediction such as the

study by Molinaro et al. [146] who found that the LSTM outperforms the FCN in

joint moment prediction.

The study conducted has shed light on the stability of deep learning models. The impact

of Gaussian noise on the models (between 1%-5% of the predicted value) was examined,

revealing a linear increase in MAEs. The LSTM which had the lowest short-term and

long-term errors was the most affected, while the CNN, which had the largest short-term

and long-term errors, exhibited greater stability. The Transformer and FCN showed

an intermediate response to noise; they were impacted slightly more than the CNN

network, but less significantly compared to the LSTM network. These findings highlight

the importance of minimizing noise in the system to improve prediction accuracy. This

should be considered during the design of the exoskeletons.

Considering the overall results, the Transformer and FCN models emerged as more

suitable options for trajectory prediction in exoskeleton control. They exhibited low

errors in both short-term and long-term predictions while demonstrating better stability

in the presence of noise compared to the LSTM and CNN models.

The study also proposed an approach for generating adaptive target/reference trajecto-

ries for children with CP by utilising trajectory forecasting models trained on typically

developing (TD) gait data. We hypothesised that a trajectory forecasting model trained

on the gait of typically developing children only, will learn their representations, and

introduce corrections to CP gait patterns when used as input. Preliminary observa-

tions indicated that these models introduced TD patterns into CP gait, which aligns

with desired CP rehabilitation outcomes. However, further evaluation is needed to as-

sess the effectiveness of these reference trajectories on rehabilitation outcomes and user
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comfort.

Several limitations of the study were acknowledged, including the relatively small

dataset size and the need for a larger sample of TD children with a wider anthro-

pometric distribution. The dataset used consists of 21 children (10 TD and 11 CP).

We believe that a larger sample of TD children, with a wider anthropometric distri-

bution, is needed to train the model; ideally, the anthropometrics of children with CP

and of TD children used in this study should have had a more similar distribution,

with a larger sample and more gait variability. Furthermore, the models were trained

on flexion-extension angles obtained from IMU sensors rather than encoders which are

typically used in exoskeletons.

5.7 Conclusion

The main objective of this study was to develop and evaluate deep learning algorithms

for predicting gait trajectories that can be used to control exoskeletons for the rehabil-

itation of children with Cerebral Palsy (CP). Four deep learning models were trained

on gait data from typically developing children, specifically focusing on the task of one-

step-ahead prediction of gait trajectories. The goal was to leverage these predictive

models to assist in the control of exoskeletons during CP rehabilitation. A method-

ology has been proposed to enhance the stability and accuracy of long-term forecasts,

and the performance of the models was assessed in the presence of noise. The results

indicated that the Transformer and Fully Connected Network (FCN) models exhibited

better stability and achieved lower prediction errors, making them potentially well-

suited for the intended application. Additionally, an approach for generating adaptive

reference or target trajectories for position-controlled exoskeletons was introduced. The

idea was to utilise the learned representations of gait patterns from typically develop-

ing children to “correct” the gait patterns observed in children with CP. Preliminary

findings showed promising results, indicating that the models were able to introduce

typical gait patterns to CP gaits. However, further investigations are necessary to eval-

uate the effectiveness of using these adaptive patterns as reference trajectories in terms

of rehabilitation outcomes and user comfort. Overall, this study contributes to the
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development of deep learning algorithms for gait trajectory prediction and proposes

potential applications in exoskeleton control for CP rehabilitation. The models and

methodologies presented have the potential to improve the control and effectiveness of

exoskeletons in assisting children with CP. Future studies should focus on evaluating

the practical effectiveness and impact of these approaches in clinical settings.
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Chapter 6: Investigating the Effect of

Gait Speed on Trajectory Prediction

6.1 Overview

In this chapter, the robustness of deep learning models, specifically fully connected

neural networks, is investigated. This study involves predicting joint kinematics at

varying gait speeds. The predictive performance of the fully connected network is

evaluated in short-term and long-term prediction at gait speeds included in the training

dataset speed range, and on speeds excluded from it.

6.2 Introduction

AI models require training on datasets and in the case of exoskeleton applications, the

training dataset could include gait parameters such as joint kinetics, joint kinematics,

foot pressure, and muscle activity [19]. AI models utilise these parameters as input to

make predictions or classifications, depending on the task. It is crucial for the training

dataset to be a representative sample of the data that the exoskeleton is expected to

receive as input during real-life operation. Depending on the data used for training

and testing the model, we can develop individualised (dependent), generalised (inde-

pendent), and semi-dependent models [74]. A dependent model needs to be trained on

data from an exoskeleton user before using the exoskeleton. An independent model,

on the other hand, does not require training on data from each exoskeleton user but
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is instead trained on data from multiple individuals. Semi-dependent models combine

both approaches, where a model is trained on data from multiple individuals but fine-

tuned using data from the specific user before using the exoskeleton [74]. Although

individualised models have demonstrated higher accuracy in performance compared to

generalised models [74], it is not always possible or practical to fine-tune models for

each user, which is why generalised models are sometimes adopted.

It is essential to consider how the models, often trained on data from able-bodied users,

would perform when controlling assistive and rehabilitative exoskeletons for users with

pathological gaits. The target users of these exoskeletons typically walk at slower

gait speeds [165]. For instance, able-bodied adults have walking gait speeds between

0.75 and 1.75 m/s, whereas adult stroke patients walk at much lower speeds, ranging

between 0.08 and 1.05 m/s [166]. Additionally, over the course of a rehabilitation

session, a patient’s speed may change, with their mean velocity increasing [13].

The main contribution of this study is to investigate the effect of speed on the prediction

of gait trajectories for able-bodied users, as well as the performance of the models in

predicting trajectories at gait speeds that are excluded from the training speed range

(see Section 6.4 for details). The performance of the models is compared on gait speeds

included in the training range, as well as speeds excluded from it. This investigation

enables us to assess the generalisability of the models when tested on gaits from users

walking at speeds that have not been included in the training dataset and to examine

the influence of speed on gait. The findings of this study can serve as guidance for

developers of exoskeletons, informing their decision on which speeds to include when

collecting data for training AI models for exoskeleton control.

6.3 Background

Gait speed is known to impact spatiotemporal parameters (cadence, step length, and

stride length), joint kinetics, ground reaction forces, and joint kinematics [167]. The

magnitude of this impact varies among children, young adults, and older adults [167].

The effect of gait speed on joint kinematics has been shown to be moderate to large
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[167]. In young adults, for example, gait speed has been shown to impact the mini-

mum and maximum joint angle values, specifically increasing hip flexion, hip extension,

knee flexion, and ankle plantar-flexion angles with higher speeds [167]. Furthermore,

gait speed appears to have a more significant impact on the kinematics of children,

whose gait patterns have not fully matured, compared to individuals from other age

groups [167,168].

Since speed is a vital biomechanical determinant of gait patterns [165], it is essential to

consider it when generating reference gait patterns for position-controlled exoskeletons.

Fukuchi et al. [165] utilised regression to generate normalised reference gait patterns

that were speed-dependent. They aimed to establish a database of reference gait pat-

terns at varying speeds that could be used to assess the gait patterns of individuals

with gait pathologies, who often walk at lower speeds compared to able-bodied individ-

uals [169,170]. Zaroug et al. [136] assessed the performance of deep learning models in

predicting lower limb kinematics at speeds 20% lower and higher than preferred walk-

ing speeds. The performance of their models decreased when predicting gait at slower

speeds but increased when predicting gait at faster speeds. Apart from speed, anthro-

pometric parameters can also influence gait patterns [29, 159, 171]. Zou et al. [172]

developed a two-step method for gait trajectory prediction based on an individual’s

unique anthropometrics and desired speed during rehabilitation. Their approach con-

sisted of a Gait Parameter Model (GPM), which is a neural network that selects gait

parameters based on anthropometrics and speed, and a Gait Trajectory Model (GTM),

which uses these parameters, along with kernelised movement primitives, to reconstruct

the reference gait patterns for an exoskeleton. Han et al. [173] implemented Future

Generative Adversarial Nets (F-SeqGAN) trained on varying gait speeds for gait tra-

jectory prediction, even during acceleration, without the need to pre-define the input

speed. Embry et al. [174] developed a basic model that can continuously predict joint

kinematics based on gait phase, speed, and inclination.

Although many of the existing approaches test their models on gait speeds included

in the training speed range, only a few have explored how the models perform and

extrapolate to speeds that are excluded from the training set. For the task of gait

phase prediction, Lu et al. [175] observed a decrease in the performance of a long short-
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term memory (LSTM) network on speeds not included in the training set. However,

their study was limited to only two subjects, and the training data were biased towards

constant speeds. Meanwhile, Kang et al. [74] implemented neural networks for gait

phase prediction and found that their models were capable of extrapolating to higher

speeds, with the semi-dependent model outperforming the dependent and independent

models. Their results were based on 10 subjects, but they only extrapolated to speeds

0.1 m/s higher than the training speed range. The two aforementioned studies assessed

the ability of the models to classify gait phases on speeds excluded from the training

speed range, but either had a low number of participants or extrapolated to speeds

that were only slightly beyond the training speed range. Furthermore, no studies have

investigated the task of gait trajectory prediction, where the performance of models is

evaluated for gait speeds that are both lower and higher than the training speed range.

To address these gaps, this study aims to evaluate and compare the performance of

deep learning models when tested on speeds that are both included and excluded from

the training speed range. This assessment may help determine the transferability of

the models to real-world applications, where an exoskeleton may need to operate in an

environment with greater variability than what it was initially trained for.

6.4 Methodology

6.4.1 Overview

This study evaluates how fully connected neural networks (FCNs) for gait trajectory

prediction extrapolate to speeds excluded from the training range. The FCNs were

trained to perform one-step-ahead predictions of joint kinematics, focusing on the angles

of the hip, knee, and ankle for both the left and right legs. Predictions were based on

a short input window of past joint kinematic values. Four FCNs were trained and

developed using data obtained at varying gait speeds. Subsequently, the performance

of the models was evaluated by testing them on gait speeds included and excluded from

the training speed range (refer to Table 6.1 for further details).
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Table 6.1: Range of speeds FCNs were trained and tested on (low speeds 0.5 m/s - 1.0
m/s, medium speeds 1.05 m/s - 1.45 m/s, and high speeds 1.5 m/s - 1.85 m/s)

Model

Training Set
Speed Ranges (m/s)

(included speeds)

Testing Set
Speed Ranges (m/s)

(excluded speeds)

Generalised speed model
all

(0.5 - 1.85)
all

(0.5 - 1.85)

Low-speed model
low and medium

(0.5 - 1.45)
high

(1.50 - 1.85)

High-speed model
high and medium

(1.05 - 1.85)
low

(0.5 - 1.0)

Low-high speed model
low and high

(0.5 - 1.0, 1.50 - 1.85)
medium

(1.05 - 1.45)

6.4.2 Data

The FCNs in this study were trained using an online gait dataset by Camargo et

al. [128]. Details on this dataset can be found in Chapter 3, section 3.2.3.

6.4.3 Pre-processing

In order to evaluate the predictive performance of the FCNs at speeds excluded from

the training range, the data is segmented into three distinct speed ranges: low speeds

ranging from 0.5 m/s to 1.0 m/s, medium speeds ranging from 1.05 m/s to 1.45 m/s,

and high speeds ranging from 1.5 m/s to 1.85 m/s. These speed ranges were determined

based on the low-, comfortable-, and high-speed ranges reported in the literature for

young adults [167,176,177].

Four FCNs were developed and evaluated in this study. They had the same architecture

(including the number of layers and nodes per layer) but each was trained on gait data

at varying speeds. The respective training and testing speed ranges for each of the

models were as follows: (1) the generalised-speed model was trained and tested on all

gait speed ranges, (2) the high-speed model was trained on medium and high speeds and

tested on low speeds, (3) the low-speed model was trained on low and medium speeds

and tested on high speeds, and (4) the low-high-speed model was trained on low and

high speeds and tested on medium speeds. Details about the FCN models and their

corresponding training and testing speed ranges can be found in Table 6.1.
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Figure 6.1: Illustration of the train-test split used for training and evaluating the FCNs,
using the leave-one-out cross-validation method.

The data from the 22 able-bodied individuals were randomly split into two sets: a

development set and a test set. This division was performed at the subject level, with

11 subjects in each set. The development set was used for two main purposes: hyper-

parameter optimisation and model training. For hyperparameter optimisation, 70% of

the subjects in the development set were used for training (8 subjects), whereas the

remaining 30% (3 subjects) were used for validation. After the hyperparameter optimi-

sation phase, cross-validation was performed using the leave-one-subject-out method.

In this process, the FCNs were trained on data from 10 subjects in the development

set, with the data from the 11th subject left out for validation. This procedure was

repeated 11 times, each time using a different subject as the validation subject. The

test set, consisting of data from unseen subjects, was used to evaluate the performance

of the models each time (see Figure 6.1). This evaluation included assessing the per-

formance of the models on the gait speeds included in the training range, as well as on

outlier speeds.

The windowing method, introduced in chapter 4, was used to generate training and

testing samples for each set in the study [153]. The stride length, which determines the

number of training samples that will be derived from each gait sequence, was varied for

the different FCN models to ensure that all models, including the generalised-, low-,

high-, and low-high-speed models, were trained on a similar number of samples. Each
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training sample consisted of an input matrix, xin, and target vector yout. xin represents

a 200-time-step window of joint angle values, including the hip, knee, and ankle angles

for the left and right legs in the sagittal plane. The input window corresponds to 1 s of

data for a sampling frequency of 200Hz. yout represents the values of the joint angles

(hip, knee, and ankle angles for the left and right feet) for the next time-step. The

output window size is 1 time-step, representing the immediate future joint angle values

that the FCN models are trained to predict.

For n samples in a set, Xin ∈ Rn×lin×f , lin (set to 200) is the input window size

and f (set to 6) is the number of input features (kinematic joint angles). Similarly,

in Yout ∈ Rn×lout×f , lout (set to 1) is the output window size and f (set to 6) is the

number of output features.

The FCN models (generalised-speed, low-speed, high-speed, and low-high-speed mod-

els) were trained and tested on different gait speeds. All inputs to the models and the

corresponding target outputs were normalised using min-max normalisation such that

Xin ∈ [0, 1] and Yout ∈ [0, 1]. The min-max values were chosen to accommodate for the

minimum and maximum values of all the individuals in the dataset, with an additional

safety boundary to ensure the data fell within the normalised range.

6.4.4 Model Architecture and Optimisation

According to the findings in chapter 5, the fully connected neural network (FCN)

demonstrated low errors in both short-term and long-term gait trajectory prediction

tasks and exhibited higher robustness to added noise [178]. These were the reasons

for selecting the FCN for this study. The input to the FCN, which was 2-dimensional

R200×6 as it included the values of 6 joint angles for a 200-time-step window, was

flattened into a 1-dimensional vector R1200 and passed through 5 fully connected linear

layers with ReLU activation functions in between. The FCN architecture is illustrated

in Figure 6.2. A note on how the FCN in this chapter differs from the ones implemented

in Chapters 4 and 5 is included in Chapter 4, section 4.3.5.

For training, each of the models was optimised to minimise the mean squared error
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Figure 6.2: Fully Connected Neural Network (FCN) Architecture

(MSE) difference between the predictions and the target one-step-ahead kinematic val-

ues using the Adam optimiser. The optimal hyperparameters, including the learning

rate, number of layers, number of nodes per layer, and batch size, were selected based

on the tree-structured Parzen estimator algorithm, a type of Bayesian hyperparameter

sampler. Hyperparameter optimisation (HPO) was applied to the generalised model,

and the optimised architecture resulting from this process was used for the other models

(low-speed, high-speed, and low-high-speed models). The search space and correspond-

ing selected values are shown in Table 6.2.

During training, the dynamic time-warping (DTW) distances were calculated between

200 recursively predicted time-steps and the true gait values after each training epoch.

The DTW distances were used as a metric to determine when to end the training of the

models. The models were trained for 70 epochs, with training being terminated earlier

(using the early stopping method) if the DTW distances on the validation set did not

decrease for 20 epochs (refer to chapter 5 which elaborates on how DTW distances were

used to optimise gait trajectory prediction models [178]).

The Pytorch machine learning framework was used in this study, along with various

libraries, including Matplotlib, Numpy, Seaborn, SciPy, Scikit-Posthocs, and Optuna,

for hyperparameter optimisation [142]. The DTW Python package was used for calcu-

lating dynamic time-warping distances [164]. The computations were performed using

an Nvidia Geforce RTX 2070 GPU.
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Table 6.2: Search space for FCN hyper-parameters and the selected values

Hyper-parameter Search Space Selected Value

learning rate [0.01, 0.001, 0.0001, 0.00001] 0.00001

number of layers [3, 4, 5, 8, 10, 12] 5

nodes per layer [10, 30, 70, 100, 150, 200] 100

batch size [32, 64, 128, 256, 512] 32

6.4.5 Evaluation Metrics and Statistical Analysis

The mean absolute error (MAE) and mean squared error (MSE) were used as the eval-

uation metrics to assess the performance of the models. These metrics were calculated

for both short-term predictions, comparing one predicted time-step to the actual gait

values, and long-term predictions, comparing 200 time-steps of gait values generated

using recursive forecasting (where predictions are fed back as input to generate fur-

ther predictions) to the actual gait values. The MAEs and MSEs were calculated after

the de-normalisation of the models’ outputs. The MAEs were calculated using equa-

tion 4.7, while MSEs were calculated using equation 4.9, both introduced in Chapter 4,

section 4.3.7.

Section 6.5 reports the results of the statistical tests conducted. The tests were carried

out in Python using the Scipy and Scikit-Posthocs libraries.

6.5 Results

Firstly, the performance of the four different models (generalised-speed, low-speed,

high-speed, and low-high-speed models) was evaluated on speeds included in the train-

ing range but from unseen subjects. The MAEs and MSEs for the short-term (1-time-

step) and long-term (200-time-step) predictions are presented in Table 6.3. For the

short-term predictions (depicted in Figure 6.3), the MAEs ranged from 1.21° to 1.34°,

with a maximum MAE difference of 0.14° across the four models. The low-speed model

showed slightly higher errors compared to the other three models (see Figure 6.4a,
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Table 6.3: MSE and MAE for 1-step-ahead and 200 time-step gait trajectory predictions
for generalised, low, high, and low-high speed models evaluated on speeds included in
the training range (in degrees).

Generalised speed
model

Low speed
model

High speed
model

Low-high speed
model

1-
time-step

MSE 2.58 2.66 2.62 3.43

MSE std 0.99 1.08 1.32 2.58

MAE 1.21 1.22 1.21 1.34

MAE std 0.24 0.25 0.30 0.46

200-
time-steps

MSE 60.84 58.36 43.13 63.25

MSE std 25.97 22.00 24.18 23.92

MAE 5.24 5.13 4.42 5.39

MAE std 1.04 0.98 1.06 0.97

illustrating the MAE difference for short-term predictions). Meanwhile, for the long-

term predictions (depicted in Figure 6.5), the MAEs were higher, ranging from 4.42° to

5.39°, with a maximum difference of 0.97° across the four models. The low-high-speed

model exhibited the highest MAEs, whereas the high-speed model exhibited the lowest

MAEs (see Figure 6.4b, illustrating the MAE difference for long-term predictions). All

differences in the one-step-ahead prediction errors on speeds included in the training

range among the various FCNs were statistically significant. The statistical significance

was determined based on the Kruskal–Wallis H-test (p <0.05), followed by Dunn’s post

hoc test for pairwise comparisons.

The performance of the four models was subsequently evaluated on speeds excluded

from the training range and from unseen subjects. The MAEs and MSEs for the short-

and long-term predictions on excluded speeds are presented in Table 6.4. For the short-

term predictions on excluded speeds, the MAEs ranged from 1.31° to 2.03° across the

four models, and from 4.86° to 8.42° for the long-term predictions. We compared the

difference in the performance of the models on speeds included in the training range

and speeds excluded from the training range (see Figure 6.6). It was observed that

the performance of the low- and high-speed models worsened when tested on the ex-

cluded speeds. For the one-step-ahead predictions, the MAE of the low-speed model

on the excluded speeds was 66.2% higher compared to the MAE on speeds included in

the training range, whereas the MAE of the high-speed model was 43.7% higher. For

the long-term predictions, the MAE of the low-speed model on the excluded speeds
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Figure 6.3: Short-term (one-step-ahead) prediction of the flexion-extension angles of
the hip, knee, and ankle. Predictions (green marker) are made based on a 200 time-step
input to the model (blue line), and compared to the actual values (red marker).

Figure 6.4: Prediction errors on speeds included in training range. (a) shows errors on
short-term (1-step-ahead) predictions, while (b) shows errors on long-term (200 time-
step) recursive predictions.
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Figure 6.5: Long-term (200 time-step) prediction of the flexion-extension angles of the
hip, knee, and ankle. Recursive predictions (green line) are made based on a 200 time-
step input to the model (blue line), and compared to the actual values (red line).
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Table 6.4: MSE and MAE for 1-step-ahead and 200 time-step gait trajectory predictions
for low, high, and low-high speed models on speeds excluded from the training range
(in degrees).

Low speed
model

high speed
model

Low-high speed
model

1-timestep

MSE 7.40 5.41 3.21

MSE std 4.64 3.18 2.50

MAE 2.03 1.74 1.31

MAE std 0.63 0.54 0.44

200-timesteps

MSE 142.49 152.09 49.85

MSE std 107.71 65.94 21.87

MAE 7.92 8.42 4.86

MAE std 3.06 2.02 1.06

Figure 6.6: Comparison of prediction errors for gait speeds included in training range
and for excluded speeds. (a) shows errors on short-term (1-step-ahead) predictions,
while (b) shows errors on long-term (200 time-step) recursive predictions. All differences
in prediction errors (MAEs) between included and excluded speeds for each FCN model
are statistically significant for both short-term and long-term predictions (significance
based on Kruskal-Wallis H-test (p <0.05))

increased by 54.3% compared to the MAE on the included speeds, whereas the MAE of

the high-speed model increased by 90.7%. However, the low-high-speed model showed

different outcomes. It performed better on the excluded speeds (i.e., medium-speed

ranges) compared to the included speeds (i.e., low- and high-speed ranges). In fact, the

MAE for the excluded speeds decreased by 2.8% for the short-term predictions, com-

pared to the MAE for the included speeds, and by 9.8% for the long-term predictions.

All differences in the prediction errors (MAEs) between the included and excluded

speeds for each FCN model were statistically significant for both the short- and long-

term predictions. Statistical significance was determined based on the Kruskal–Wallis

H-test (p <0.05).
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6.6 Discussion

In this study, fully-connected-neural networks (FCN) were implemented for gait tra-

jectory prediction. The FCNs were trained on four different gait speed ranges and

evaluated on speeds included and excluded from the training set. The results showed

that the performance of the generalised-, low-, high-, and low-high-speed models was

very similar when evaluated on the speeds they were trained on. The low-high-speed

model exhibited slightly higher errors compared to the other three models for both

short-term and long-term predictions. On the other hand, the high-speed model ex-

hibited slightly lower errors, especially for long-term predictions. The findings are

consistent with the results of a previous study by Zaroug et al. [136], which reported

improved performance for lower limb kinematic predictions at higher gait speeds.

In comparison to related studies, Kang et al. [74] reported good performance of their

gait-phase estimation model on extrapolated speeds, although they only evaluated

speeds slightly higher than their training speed ranges. Meanwhile, Lu et al. [175]

evaluated their continuous gait-phase recognition algorithm on untrained speeds and

observed a decline in performance, but their results were based on a small number

of subjects. In this study, the performance of the low- and high-speed FCN mod-

els worsened when evaluated on excluded speeds, as indicated by an increase in mean

squared errors (MSEs) and mean absolute errors (MAEs) for both short-term and long-

term predictions. The MAEs increased by 43.7% to 90.7% for the low- and high-speed

models when compared to the MAEs on trained speeds. Interestingly, the low-high-

speed model, which was trained on low- and high-speed ranges only, performed well on

medium speeds. In fact, the MAEs for medium speeds improved by 2.8% for short-term

predictions and 9.8% for long-term predictions compared to the low- and high-speed

ranges the model was trained on. These results suggest that FCNs are capable of in-

terpolating to speeds that lie between the maximum and minimum training speeds,

even if they have not been explicitly trained on those speeds. However, they are unable

to extrapolate to speeds beyond or below the maximum and minimum speeds of the

training range.
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One important limitation of this study is the relatively small size of the dataset used

to develop and test our models, which included data from 22 subjects. This limitation

is a common challenge for many applications involving human data, as data scarcity

often arises due to practical constraints and limited resources. To mitigate the risk of

overfitting the models and assess their generalisability across different subjects, leave-

one-out cross-validation was implemented. Nonetheless, it is still necessary to validate

the findings with FCNs that are trained on larger datasets. Advancements in wearable

technology that enable continuous data collection may assist in addressing the issue of

data scarcity. Another limitation of this study is that the data used to train the models

were collected from gait cycles performed at constant speeds. To improve the imple-

mentation, it would be beneficial to include data from gait cycles with dynamic speeds,

as this better reflects real-life walking conditions. Additionally, the study only consid-

ered data captured on even surfaces, without accounting for inclinations or unevenness

that may be encountered in outdoor environments.

6.7 Conclusions

This study explored the performance of fully connected neural networks (FCNs) in pre-

dicting gait trajectories across different speed ranges. It examined both short-term and

long-term predictions and evaluated the models on speeds that were both included and

excluded from the training gait speed range. The results revealed that the FCN models

exhibited a decline in performance when predicting kinematic joint trajectories at gait

speeds significantly higher or lower than the training speed ranges. However, the FCN

models demonstrated satisfactory performance on speeds within the maximum and

minimum speed ranges, even if those speeds were not included in the training dataset.

These findings highlight the importance of considering the range of speeds that an ex-

oskeleton may encounter in real-life applications during the training and development of

the models. They also emphasise the need for the development of explainable AI tech-

niques to gain insights into the influential input features and limitations affecting the

model’s performance. This information can enrich our knowledge of gait analysis and

biomechanics, leading to improved interventions for gait assistance and rehabilitation.
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Chapter 7: Concluding Remarks and Fu-

ture Directions

7.1 Overview

This chapter provides a summary of the key findings of this research. It includes

concluding remarks, highlights limitations, and suggests potential future research di-

rections.

7.2 Summary of Key Findings

This research was driven by the need to develop control algorithms for rehabilitative

exoskeletons for children with Cerebral Palsy. The aim was to propose strategies to im-

prove the control of those exoskeletons through the integration of deep-learning models.

Improved control could result in enhanced human-robot interaction and has the poten-

tial to lead to increased user comfort, improved functional outcomes of rehabilitation,

and reduced incidence of accidents and injuries.

This research work started with conducting a literature review (Chapter 2), where the

existing use of intelligent algorithms in gait analysis for robotic control was systemat-

ically explored. Through this review, it was found that the gait parameters that are

predicted or classified by AI models depend on the type of exoskeleton control, the

exoskeleton’s functional purpose, and the specific condition or disease of the patient.
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Among the reviewed studies, the gait phase accounted for 35.6% of the predicted pa-

rameters, locomotion mode for 31.1%, joint kinematics for 24.4%, and joint kinetics

(torque/moment) for 8.9%. Additionally, among the various machine learning models

used, deep learning was implemented in 15% of the reviewed studies. An important gap

identified in the literature is the lack of studies that included pathological gait for the

development and assessment of their models. Rehabilitative and assistive exoskeletons

that target individuals with pathological gait need to be tailored for and assessed on the

gait of these users, who inherently have higher inter and intra-subject gait variability

compared to healthy gait.

This research addresses the existing gap in the literature, by developing AI models that

predict the gait trajectories of children with neurological disorders (Chapter 4). For this

task, two deep learning models were implemented, a convolutional neural network and

a long-short-term-memory network. For training and evaluating the models, a dataset

containing gait recordings of children with neurological disorders was utilised, 73% of

which had Cerebral Palsy. The influence of the size of input and output on predictions

was investigated. A total of 35 combinations of input and output time-frames were

examined, with window sizes for input vectors ranging from 50 to 1000 ms, and output

vectors from 8.33 to 200 ms. The results showed that the input size has no significant

influence on mean prediction errors when the output window is 50 ms or smaller. For

output window sizes greater than 50 ms, the larger the input window, the lower the

error. This suggests that for longer prediction horizons, the input window size should

be increased for better performance. The study in Chapter 4 and its findings address

research questions RQ1 and RQ2 presented in section 1.4.

Additionally, the performance of deep learning models for predicting the gait of typically

developing children and children with Cerebral Palsy was explored (Chapter 5). The

study compared the predictive capabilities of four deep learning models (Transformer,

long-short-term-memory network, convolutional neural network, and fully connected

neural network) in forecasting the gait trajectories of these two distinct populations, for

short-term and long-term (recursive) predictions. The study introduced an approach

to optimise the stability of long-term predictions. The stability of the models was

subsequently assessed in the presence of varying levels of Gaussian noise. The results
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revealed that the errors, measured by mean absolute error (MAE) increase linearly

with higher noise levels. Based on the results of this study, the Transformer and

fully connected neural network emerged as the most suitable deep learning models for

trajectory predictions in the context of exoskeleton control. These models exhibited

low errors in short-term (one-step-ahead) and long-term prediction tasks while being

more stable in the presence of added noise. These findings address research questions

RQ2 and RQ3 presented in section 1.4.

In Chapter 5, an approach for generating adaptive target/reference trajectories for

children with Cerebral Palsy was also proposed. It was hypothesised that a trajectory

forecasting model trained on the gait of typically developing children only, will learn

their representations, and introduce corrections to CP gait patterns when used as input.

Preliminary observations showed that the predicted trajectories are ahead of the actual

CP trajectories, which indicates that the models may be imposing a higher gait speed.

Furthermore, the predicted corrections demonstrated an increased range of motion,

such as an improvement in knee flexion, making them more similar to the gait patterns

of typically developing children. Those observations follow desired CP rehabilitation

outcomes which include an increase in mean velocity and an improvement in knee

extension and may suggest that the models are introducing TD patterns to CP gait.

The results address research question RQ 4, included in section 1.4.

This research work also investigated the robustness of deep learning models in predict-

ing kinematic trajectories at varying speeds, particularly at speeds within the training

speed range and speeds outside of it (Chapter 6). The findings showed that the perfor-

mance of the low and high-speed models, measured by mean absolute errors (MAE),

decreased by approximately 43.7% to 90.7% when tested on speeds excluded from the

training dataset. Meanwhile, the performance of the low-high-speed model (trained on

low and high speeds only) improved when tested on excluded medium speeds by 2.8%

for short-term predictions and by 9.8% for long-term predictions. The results suggested

that the FCNs are able to interpolate to speeds that lie between the maximum and

minimum training speed ranges, even if they have not been explicitly trained on those

speeds. However, the predictive performance of the models decreases when predicting

gait at speeds beyond or below the maximum and minimum training speed range. The
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findings address research question RQ5 in section 1.4.

7.3 Concluding Remarks

To conclude, the primary aim of this research was to develop and advance AI sys-

tems designed and optimized for controlling rehabilitative exoskeletons for children

with neurological disorders, specifically Cerebral Palsy. To address this objective, sev-

eral research studies were conducted. AI systems, based on state-of-the-art network

architectures, were developed and optimised to forecast gait trajectories using data

from typically developing children and children with neurological gait. These studies

explore various characteristics of AI systems, including how the predictive performance

is impacted by variables such as the input and output length and the addition of noise,

as well as the robustness in predicting gait at varying speed ranges, both within and

outside the range of gait speeds used for training. The conclusions drawn from these

studies can be applied to the development of high-level control systems for exoskeletons

targeted for Cerebral Palsy gait rehabilitation. Additionally, throughout this research,

an approach for generating adaptive and individualised gait patterns for children with

Cerebral Palsy was proposed, with the potential to improve the control and effectiveness

of rehabilitative exoskeletons. Despite these achievements, our research has some limi-

tations, and several future research directions can be proposed based on our findings,

both of which are outlined below.

7.4 Limitations

There have been some limitations in our research work, which we discuss in this section.

• Collecting gait data from children with Cerebral Palsy is a challenging task.

Therefore, the models implemented in this study have been trained on data from

a relatively small number of participants. Data scarcity is a common challenge in

many applications involving human data, especially when dealing with patients.

This limitation is often due to practical constraints and limited resources [21].
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Having a larger sample size would greatly benefit the improvement of model per-

formance given that deep learning models are data-driven. Additionally, a larger

sample size would allow for a better assessment of the models’ generalisability

on a larger population. Cerebral palsy, in particular, manifests itself in various

forms and there is a four-level gross motor function classification (GMFC) for CP,

with each level corresponding to the severity of gait impairments. Furthermore,

a recent Delphi consensus study has identified 49 different joint patterns in CP,

including distinct patterns in the sagittal, transverse, and coronal planes for the

knee, ankle, hip, pelvis, and foot [179]. Overcoming this limitation could be facil-

itated by advancements in wearable sensing technologies that can be easily worn

and capture gait over extended periods, even outside of gait labs.

• Due to the clinical nature of the studies, the majority of the data has been

collected in a laboratory setting under controlled conditions. In Chapters 4 and

5, data from participants walking at self-selected speeds for a predefined distance

was utilised, while Chapter 6 utilised data captured under controlled gait speeds

on a treadmill. It is important to note that data collected in a laboratory reflects

the participants’ “walking capacity” or their best performance, whereas data

collected in real life reflects their “walking performance,” which represents their

daily walking habits [180]. Studies have shown that many gait characteristics

including gait variability, pace, rhythm, and asymmetry differ when collected

in a laboratory compared to outside of it. For instance, when assessed outside

the laboratory, stride time and asymmetry are expected to increase while gait

speed is expected to decrease. Furthermore, in clinical settings, children with

CP often perform better [180]. Therefore, it is necessary for AI models used for

gait trajectory prediction to be trained and evaluated on data captured outside

of the clinical environment. Some approaches have started collecting field-based

data outside of laboratories and structured environments [181]. Advancements in

wearable sensors capable of capturing data in diverse environments can also help

address this limitation.

• The methods proposed in this study are applications of AI in exoskeleton control

for the rehabilitation of children with CP. However, it is important to note that
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these models need to be integrated with the mid- and low-level control aspects

of an exoskeleton. Several factors, such as the response times of the exoskeletons

and their effectiveness in rehabilitation, need to be thoroughly assessed. Although

these considerations are limitations of the current study, they present opportu-

nities for future research to address and investigate. Subsequent studies should

focus on further exploring the integration of these AI models with the broader

control framework of exoskeletons and evaluating their real-world performance in

rehabilitation settings.

• In a review on the clinical effectiveness of exoskeleton control strategies for the

rehabilitation of individuals with brain injuries, trajectory tracking was found to

be the most commonly used for mid-level control (97%) [16]. However, the au-

thors highlighted the difficulty in comparing the effectiveness of different control

strategies due to the heterogeneity in experimental protocols across the reviewed

studies. Additionally, inconsistencies were observed in the choice of benchmarks

used to evaluate the effectiveness of a proposed exoskeleton control mode. These

benchmarks could range from conventional gait therapy to unpowered exoskele-

tons or exoskeletons in zero torque mode. Furthermore, there was wide variability

in the outcome measures selected to evaluate the effectiveness of an intervention

or treatment. One of the commonly used metrics is walking speed, but other pa-

rameters can be considered including biomechanical metrics, step length, set-up

timings, adaptation time, and long-term improvements in gait not only during

the rehabilitation session but after it as well. Moreover, the effectiveness may

be dependent on the specific condition of the individual including factors such

as their gross motor function [15, 16]. Given that there is no consensus on the

optimal control strategy, the control strategy proposed in this study still requires

evaluation in a clinical setting and comparison to other control strategies in a con-

trolled intervention study. Additionally, the proposed approach may need to be

combined with an additional control strategy, such as for designing a challenged-

based controller.
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7.5 Future Directions

Exoskeletons are advancing rapidly and there are several directions for further research

and improvement. In the context of the findings of this research, here are some potential

directions for future investigations:

• Incorporating Environmental Information: The gait trajectory prediction models

developed in this study relied on knowledge of the user’s joint positions, specifi-

cally using the hip, knee, and joint angles as input features. However, considering

information about the external environment, such as terrain type and inclination,

can positively impact the user’s interaction with the exoskeleton. In a study by

Laschowski et al. [129], computer vision techniques were used for classifying the

environment based on an onboard wearable camera. Including environmental

information for gait trajectory prediction may further enhance human-robot in-

teraction by delivering the most appropriate level of assistance.

• Enhancing Interpretability with Explainable AI (XAI): Deep learning models suf-

fer from the black box problem, making it difficult to understand why certain

predictions are generated. Explainable artificial intelligence (XAI) techniques

can be applied to enhance the interpretability and transparency of the predic-

tions. Especially in clinical contexts, justifications for predictions are needed to

increase confidence in the system and enhance clinical acceptance [21, 30]. For

example, when generating adaptive reference gait trajectories for children with

Cerebral Palsy, more information needs to be provided on characteristics of the

input data that are influencing the result, as well as how much each individual

joint pattern contributes to the overall prediction. One of the first examples of

implementing XAI in the context of gait analysis was by Horst et al. [30], who

used Layer-Wise Relevance Propagation (LRP) to identify which portions of the

gait cycle are important for identifying individuals by their gait. LRP highlighted

which features of the input to the deep learning model, which include ground re-

action forces (GRF) and joint angles of the full body, influence the predictions.

Implementing XAI techniques can improve the interpretability, transparency, and
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clinical acceptance of gait trajectory prediction models.

• Implementing Reinforcement Learning (RL): Another potential area of research

is the use of reinforcement learning (RL) for the generation of adaptive reference

trajectories for children with Cerebral Palsy. Reinforcement learning involves an

agent and an environment. The agent interacts with the environment, and each

interaction is associated with a reward value. The objective of reinforcement

learning is for the agent to learn how to interact with the environment through

a trial and error process, by rewarding optimal interactions [182]. This is partic-

ularly important in the context of exoskeletons which are expected to encounter

variable and unpredictable external perturbations and interaction forces between

the human and the exoskeletons that can be enhanced by the varying levels of

disability of the target users [183]. A study by Luo et al. [184] introduced a re-

inforcement learning-based walking controller which was virtually tested for its

robustness and effectiveness. RL-based approaches eliminate the need for tuning

the parameters of the controller for each patient. Investigating the application of

RL-based controllers specifically tailored for children with CP would be a promis-

ing research direction.
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Appendices

A Machine Learning Algorithms

An algorithm is a set of procedures to transform an input into an output. When the proce-

dures are unknown, and cannot be explicitly programmed, it is possible to approximate the

transformation using machine learning algorithms. Machine learning algorithms learn patterns

between inputs and outputs, based on large amounts of data in a specific subject domain.

Learning is achieved by optimising a pre-selected performance metric, such as the accuracy

of output prediction. Machine learning algorithms can be broadly categorised based on their

style of learning [71]. The three main categories are supervised, unsupervised and reinforce-

ment learning. Supervised learning algorithms require input and target output data. They

continuously compare the algorithm’s generated output with the target output until the error

between them is minimized [185]. Meanwhile, unsupervised learning algorithms do not require

target output data. They aim to find inherent patterns within the structure of the data [186].

Reinforcement learning also does not require target output data and learns through a reward

system [187]. Some of the machine learning algorithms include:

A.1 Support Vector Machine

Support Vector Machine (SVM) is an algorithm used for both classification and regression

problems. This supervised machine learning algorithm can separate linearly separable classes

or features using a hyperplane. In the case of two classes that can be separated by a linear line

(hyperplane), as in Figure 1, the optimal hyperplane is chosen to be the one that maximizes

the distance between itself and the classes. The objective is to maximize the margin. If the

classes are not linearly separable, they can be transformed into higher dimensions where they

are linearly separable, or kernels can be used [188–191].
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Figure 1: Illustration of the Support Vector Machine that uses a hyperplane to separate
linearly separable classes or features.

A.2 Decision Trees

Decision trees, illustrated in Figure 2, are another type of supervised machine-learning algorithm

used for classification. They have a hierarchical tree-like structure that starts with a root node

and each node is divided into multiple branches based on an attribute value. These nodes are

initially considered as ‘impure’ and continue dividing based on the attribute’s value until they

reach the leaf node, an indivisible ‘pure’ node that represents a single class [191,192]. ID3 [193]

and C4.5 [194] are popular examples of decision trees.

A.3 Neural Networks

Neural networks are connectionist networks, heavily inspired by the neurons of the brain [195].

The history of neural networks began with McCulloch and Pitts mathematical approximation

of a neuron in 1943 [196], followed by Rosenblatt perceptron in the 1960s [197]. Neural networks

consist of input, hidden and output layers. Each layer contains nodes, also called neurons which

perform a non-linear mathematical operation on input data. The mathematical operation is

known as an activation function and the sigmoid function or tanh function are some examples.

Each node has an activation value that is dependent on the input to the node, and the weight

assigned to it. The values of the weights are adaptive and change as the neural network is

learning. If the input influences the generation of the output, a high weight is chosen, leading

to a high activation value. Otherwise, a low weight is chosen. The multilayer perceptron (MLP)
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Figure 2: A Simplified Decision Tree that separates the classes based on an attribute
value.

is a fully connected feed-forward neural network, where a node in a particular layer is connected

to all the nodes in the previous layer and all the nodes in the preceding layer. Nodes within the

same layer are not connected. This topology allows for parallel computations [191,198,199].

The radial basis function neural network (RBFNN) is a type of neural network that differs from

the multilayer perceptron (MLP) in several ways. Unlike the MLP which can have multiple

hidden layers, the RBFNN can only have one hidden layer. The computation performed by

the nodes in RBFNN is also distinct. The nodes calculate the Euclidean distance between the

input and pre-defined prototypes. These prototypes are typically pre-set using an unsupervised

algorithm such as the k-Means algorithm. To calculate the output of a node, a nonlinear

Gaussian function is used as the activation function. The closer the data point is to the

prototype, the greater its influence on the output, since the output of the Gaussian function

would be close to one. Conversely, the further away the data point is from the prototype, the

lower its influence on the output since the output of the Gaussian function would be close to

zero [200].

Both of the aforementioned algorithms are supervised learning algorithms that rely on weights

and parameters. The values of these weights are selected in a way to maximize the performance

of an algorithm. Backpropagation is commonly used to update the values of the weights. It

begins by calculating the error or cost between the algorithm’s prediction and the target output.

Errors that are often calculated include cross-entropy errors or squared errors. Afterwards, the

derivative of the error with respect to the chosen weights is computed. The objective is to
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minimize this error, and this is achieved by iteratively adjusting the weights based on the

calculated derivative until a satisfactory performance is achieved. This process is a form of

optimisation, known as gradient descent [201].

A.4 Deep Neural Networks

Deep neural networks are essentially neural networks with many hidden layers. The number of

hidden layers determines the model’s depth [141].

Convolutional neural networks (CNNs) are a type of deep neural networks commonly utilised for

images. The main operation in a CNN is the convolution operation. A kernel, smaller than the

size of the original image, is applied to the image and slides across it. The kernel performs the

convolution operation with each portion of the image, producing feature maps. Feature maps

are analogous to hidden layers in ANNs. Unlike hidden layers in ANNs which have nodes that

connect to every single input, in CNNs, a group of inputs the size of the kernel would be mapped

to a single point on the feature map. This is one of the special features of a CNN, known as

sparsity of connections, which reduces the number of parameters in the model leading to more

efficient memory storage space and computational power requirements. Another notable feature

of CNNs is parameter sharing. To produce a single feature map, the same set of weights is used

across the entire image. The weights are only adjusted when producing feature maps that

extract different features. In addition to convolution layers, there are also other pooling layers,

which downsample feature maps. After several alternating convolution and pooling operations,

the final feature map is flattened into a fully connected hidden layer to generate the output

[141,202].

While CNNs are effective for 2D input data, another category of deep learning algorithms that

are effective with 1D sequential data, such as time series, are Recurrent neural networks (RNNs).

RNNs have recurrent connections allowing previous outputs to be used for calculating current

outputs. Long short-term memory (LSTM) algorithm is a type of gated RNN. Its architecture

consists of cells with an input, an output, and a forget gate. LSTMs have the capability of

learning long-term dependencies, meaning that they can generate output depending on input

data that happened much earlier in time [141].
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B Systematic Literature Review Tables

B.1 Gait Phase

Table 1: Existing literature on gait phases

Authors Model Phase

Gran-

ular-

ity

Performance

Metric

Value of

Perfor-

mance

Metric

Optimization

Algo-

rithm

Sensors Sample Purpose

Jung

et al

[72]

MLP (a)

NARX (b)

2 CSR 97.75% (a)

97.63% (b)

(offline)

90.75% (a)

91.93% (b)

(online)

Back-

propagation

IMUs absolute

encoders

incremental

encoders force

plates (for

segmentation)

10 healthy

(7 offline

training +

validation,

3 online

validation)

Stroke

patient

rehabilita-

tion

Kang

et al

[74]

NN % of

the

gait

cycle

RMSE

(for semi-

dependent

model)

5.07 ±

0.49%

(steady-

state) 5.22

± 0.81%

(dynamic)

SGD

optimizer

with

Nesterov

momen-

tum

absolute

encoders (on

actuators)

IMUs (thigh

and trunk)

FSRs (for

segmentation)

8 healthy

(initial

data

collection)

10 healthy

(for

validation)

Bilateral

hip ex-

oskeleton

Hua

et al

[87]

ANFIS 2 - - - Plantar

pressure

- heavy

load

lifting

Nazmi

et al

[88]

MLPNN 2 accuracy

(group 2

features

and LM

algorithm)

mean

absolute

time

difference

compared

to FSRs

(for

unlearned

data)

87.4%

35±25 ms

(heel

strike)

49±15 ms

(toe-off)

Levenberg

Mar-

quardt (a)

scaled

conjugate

gradient

(b)

EMG (tibialis

anterior,

gastrocnemius

medialis) foot

pressure sensor

(evaluation

only)

8 healthy -

Zhang

et al

[89]

BPNN (a)

kNN (b)

SVM (c)

5 accuracy 91.81 ±

3.69%

(intra-

load) (a)

69.42 ±

7.86%

(inter-load)

(a)

- EMG (tensor

fasciae latae,

vastus

medialis,

semitendinosus

adductor

longus)

Camera (for

segmenting

gait cycle)

10 healthy -
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Zhen

et al

[90]

LSTM-

DNN (a)

LSTM (b)

KNN (c)

SVM (d)

2 Accuracy

(1 m/s

velocity)

F-score (1

m/s

velocity)

91.8% (a)

86.8% (b)

69.0% (c)

71.0% (d)

92.0% (a)

86.4% (b)

70.0% (c)

72.3% (d)

AdaGrad IMUs (thigh,

instep, calf)

4 healthy -

Wang

et al

[33]

DM-CNN

(a) KNN

(b)

N-HMM

(c) HMM

(d)

4 Accuracy

Precision

Rate

Recall

Rate

97.1% (a)

88.5% (b)

96.2% (c)

92.3% (d)

95.9% (a)

81.5% (b)

95.5% (c)

92.0% (d)

94.5% (a)

82.5% (b)

93.5% (c)

90.5% (d)

Back-

propagation

pressure

sensors IMUs

(calf and

thigh)

10 healthy -

Farah

et al

[91]

DT+TSVC 4 Accuracy

(valida-

tion set)

F-score

(valida-

tion set)

98.61%

0.97

- Computer-

Assisted

Rehabilitation

Environment

(CAREN-

extended)

containing:

Force-plates

Motion

Capture

System

30 healthy

(training)

+ 12

healthy

(valida-

tion)

Stance-

control

knee-

ankle-foot

orthoses

for knee-

collapse

prevention

Pasinetti

et al

[92]

RF (a)

Sigma-z

RF (b)

2 Accuracy 81% (a)

87.3% (b)

- time of flight

cameras

4 walking in

in-

door/outdoor

environ-

ments

(with

crutches)

Tanghe

et al

[97]

PPCA 4 Median

Error

Without

exoskele-

ton With

exoskele-

ton

<9ms (all

events)

15ms

(initial

contact)

33ms

(toe-off)

- Vicon cameras

split belt

treadmill for

GRF (for

segmentation)

28 healthy

(without

exo) + 5

healthy

(with exo)

Exoskeleton

that uses

feedfor-

ward

allowing

control

modes to

transition

more

smoothly

Chinimilli

et al

[93]

Fuzzy

logic

4 - - - smart shoes

IMUs (thigh

and shank +

not used for

gait phases)

EMG (for

testing only)

Motion

capture

3 healthy Knee

assistive

device

with

automatic

virtual

impedance

modula-

tion
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Chen

et al

[94]

Fuzzy

logic

4 - - - foot pressure

sensors

- Locomotion

assistance

using

hybrid

control

Huo

et al

[95]

Fuzzy

logic

4 - - - Foot pressure

sensor (GRF)

IMUs Absolute

encoders (hip,

knee, and

ankle)

4 healthy Walking

assistance

using

hybrid

power

assistive

control

Chen

et al

[96]

kNN 8 Correct

rate of

phase

classifica-

tion

95.32% - Joint angle

sensor (hip,

knee and

ankle) plantar

pressure sensor

10 healthy Locomotion

assistance

full body

exoskele-

ton

Manchola

et al

[73]

HMM 4 accuracy

(SST)

accuracy

(SPT)

81.44% (H)

78.06% (P)

76.91% (H)

76.36% (P)

- IMU (instep)

FSR per foot

(reference and

testing only)

18 (9

healthy, 9

hemi-

paretic)

exoskeleton

for hemi-

paretic

patients

Ma

et al

[86]

KRLS (a)

SVM (b)

MLPNN

(c)

4 accuracy

(10-fold

cross vali-

dation)

86.26% (a)

83.29% (b)

83.23% (c)

- goniometer

(hip and knee

joint) foot

pressure

sensor (for

segmentation)

10 healthy Walking

assistance

for para-

plegics +

rehabilita-

tion of

stroke

patients

B.2 Locomotion Mode

Table 2: Existing literature on locomotion modes

AuthorsModel Number

of

Modes

Modes Performance

Metric

Value of

Perfor-

mance

Metric

Optimization

Algo-

rithm

Sensors Sample Purpose

Song

et al

[98]

BPNN 15 sitting

standing

running

level

walking

(multiple

paces and

with

weight) etc.

(refer to

paper for

exhaustive

list)

accuracy

(single-

mode)

accuracy

(multi-

mode)

98.28%

92.7%

(group 1)

97.4%

(group 2)

- IMUs per leg

(foot, calf

and thigh)

foot pressure

sensors Vicon

motion

capture (for

normalization

and

validation of

sensors)

healthy -
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Islam

et al

[99]

NN 3 level

walking

ascending

stairs/ramp

descending

stairs/ramp

accuracy 97.8% -

100%.

Lavenberg

-

Marquardt

algo-

rithm

with

Bayesian

regular-

ization

IMU (heel)

foot switches

5

healthy

Powered

ankle

foot-

orthosis

with

variable

ankle

actuation

during

swing

Wang

et al

[100]

SMV

(a)

BPNN

(b)

RBFNN

(c)

6 standing

level

walking

stair ascent

stair

descent

slope ascent

slope

descent

accuracy 93.3% (b)

91.2% (c)

Trainlm

for (a)

and (b)

IMUs (right

and left

thighs and

calf, waist)

FSRs

5

healthy

-

Villa-

Parra

[101]

SVM 6 Standing up

Sitting

Flexion-

extension of

knee Level

walking

Resting

while

standing up

Resting

while sitting

down

accuracy 76%-83%

(lower

limb

muscles)

71%-77%

(trunk

muscles)

- sEMG (biceps

femoris.

erector

spinae, vastus

lateralis,

semitendi-

nosus, rectus

femoris, gas-

trocnemius)

10

healthy

Robotic

knee ex-

oskeleton

for loco-

motion

mode

assistance

based on

admit-

tance

control

Hua

et al

[87]

DNN 6 standing/transition

level

walking

stair ascent

stair

descent

ramp ascent

ramp

descent

accuracy 0.997 Genetic

Algo-

rithm

Particle

Swarm

Opti-

mization

absolute

autoencoder

(for joint

angles) IMU

(back) GRF

connecting

rod sensors

Heavy

load

lifting

Goh

et al

[76]

SSRL

(a)

SVM-

FS

(b)

SVM-

PCA

(c)

RF-

FS

(d)

4 walking

without

exoskeleton

walking

with

exoskeleton

at:

Zero-torque

Low

assistive

torque High

assistive

torque

Accuracy

(wide

spectral

frequen-

cies)

(prominent

spectral

frequen-

cies)

77.8 ±

1.8% (a)

74.3 ±

1.6% (b)

64.3 ±

1.8% (c)

65.9 ±

1.8% (d)

72.9 ±

1.7% (a)

70.2 ±

1.6% (b)

54.8 ±

2.0% (c)

Adam

Algo-

rithm

EEG (20

channels)

30

healthy

(3

ex-

cluded)

-
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Chinimilli

et al

[93]

fuzzy

infer-

ence

algo-

rithm

3 level

walking

uphill

walking

downhill

walking

- - - smart shoes

IMUs (thigh

and shank)

EMG (for

testing only)

Motion

capture

3

healthy

Knee

assistive

device

with

automatic

virtual

impedance

modula-

tion

Parri

et al

[102]

Fuzzy

logic

3 level

walking

Stair ascent

Stair

descent

accuracy 0.994 - sensitive

insoles (64

optoelectronic

sensors)

encoders (hip

joint angles)

6

healthy

Powered

orthosis

for hip

assistance

Huo

et al

[95]

Fuzzy

logic

5 Level

walking

Stair ascent

Stair

descent

Slope ascent

Slope

descent

accuracy

latency

97.7%

(normal)

97% (ab-

normal)

<32 ±

8.3% of a

step

- Absolute

encoder (hip,

knee, and

ankle) IMUs

4

healthy

Walking

assistance

using

hybrid

power

assistive

control

Novak

et al

[103]

DT 2 Intention

for gait

initiation

and

termination

Median AE

(gait

initiation/

IMUs/

within-

subject

trials)

Accuracy

(gait ter-

mination/

IMUs/

within-

subject

trials)

∼0.08 s

(onset)

<0.05 s

(toe-off)

>80%

- IMUs (thigh,

shank, upper

arm, foot)

foot pressure

sensors

10

healthy

Assist to

initiate or

terminate

a step

based on

intention

Zhang

et al

[26]

MKL 4 Intention

for:

Stopping

Walking

Turning left

Turning

right

accuracy 74.5%

(healthy)

68.4%

(SCI)

- EEG (64

channels

placed

following

10-20

international

system)

1

healthy

1

SCI

Restoration

of

movement

for

patients

with

motor dis-

abilities

and

induction

of cortical

plasticity

Gui

et al

[27]

LDA 4 Intention

for:

Stopping

Level

walking Ac-

celeration

Decelera-

tion

Recognition

rate of

steady-

state

(ROS)

Duration

of transient

state

(DOT)

92.40%

1.7

seconds

- EEG 6

healthy

Admittance

control

exoskele-

ton for

rehabilita-

tion and

motor

recovery

for para-

plegics
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Lopez-

Larraz

et al

[28]

SDA 1 Intention

for gait

initiation

accuracy 88.44 ±

14.56%

(healthy)

77.61 ±

14.72%

(SCI)

- EEG (32

channels)

3

healthy

4

SCI

Assist-as-

needed

exoskele-

ton for

rehabilita-

tion and

motor

recovery

of patients

with

paralysis

Zheng

et al

[104]

CCA 3 Intention

for motion

patterns:

Standing

Level

walking

Squatting

Accuracy >90%

(EEG –

offline)

>90%

(multi-

modal –

online)

- EEG Sensor

for joint

position

Sensor for

foot pressure

4

healthy

-

B.3 Gait Kinetics (Joint Torque/Moments)

Table 3: Existing literature on torque and moment

Authors Model Parameter Performance
Metric

Value of
Perfor-
mance
Metric

Sensors Sample Purpose

Ma
et al
[86]

KRLS (a)
MLPNN

(b)

hip joint
assist
torque

MSE (ranges
for five
trials)

-32.77 to -
28.05 (a)
-13.41 to
-11.18 (b)

goniometer
(hip and

knee
joint)

10 healthy Walking
assistance for
paraplegics +

rehabilitation of
stroke patients

Gui
et al
[105]

RBFNN active
torque
of hip
and
knee

RMSE (ex-
perimental
session 1-3)
correlation
coefficient r

2.0 N.m r
>0.8

EMG
(quadri-

ceps
femoris

and bicep
femoris)
motion
states
torque
sensors
(for

validation
only)

4 healthy Assist as needed
exoskeleton for
rehabilitation
training for
patients with
lower-limb
paralysis

Xiong
et al
[106]

NN internal
joint

moment

NRMSE <7.89% EMG
Joint
angles

8 healthy Exoskeleton for
motor

rehabilitation
Xiong
et al
[107]

ELM Joint
moment

VAF - EMG (10
muscles)

10 healthy
(online

database)

Exoskeleton
control

B.4 Gait Kinematics (Joint Angles)

Table 4: Existing literature on joint angles

Authors ModelParameter Performance

Metric

Value of

Perfor-

mance

Metric

Optimization

Algorithm

Sensors Sample Purpose

Kutilek

et al

[108]

NN Joint angles - - Backpropagation Motion capture 10

healthy

Exoskeleton

for reha-

bilitation
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Boudali

et al

[116]

LRNN

(a)

LS

(b)

hip and

knee joint

trajectories

RMS 1.36º (hip

joint) (a)

2.48º (knee

joint) (a)

Levenberg-

Marquardt

back-

propagation (a)

Motion capture 9

healthy

Rehabilitation

exoskele-

ton that

assists

with loco-

motion

tasks

(involves

the use of

cane)

Mazumder

et al

[110]

RBFNN joint

trajectories

Tracking

error

∼2º (hip)

8-10º

(knee)

- IMUs (thigh,

shank, torso,

foot) EMG

sensors (vastus

medialis,

medialis

hamstring, vastus

laterialis, rectus

femoris - for gait

phases) Foot

pressure sensor

(for gait phases)

5

healthy

Exoskeleton

with

intention-

based

adaptive

trajectory

control

Lee et

al

[111]

RBFNN

and

MLPNN

Joint angles

of healthy

and

pathological

leg

accuracy

absolute

error rate

97.5%

0.25º

error backprop-

agation

algorithm (for

MLPNN)

EMG (recuts

femoris) tilt

sensor (shin

center)

- -

Xie et

al

[112]

GS-

GRNN

(a)

BPNN

(b)

joint angles Prediction

time

RMSE

2.38s (a)

16.029s (b)

0.7353 hip

(a) 2.6998

knee (a)

3.8373

ankle (a)

Golden

selection

algorithm (a)

Levenberg-

Marquardt

algorithm (b)

EMG (rectus

femoris,

semitendinosus,

biceps femoris)

Joint angle

sensor plantar

pressure sensor

6

healthy

-

Wang

et al

[113]

Elam

NN

(a)

BPNN

(b)

GRNN

(c)

LSSVM

(d)

Joint angles RMSE

(low

speed

without

load con-

ditions)

4.0854 (a)

8.9152 (b)

8.7564 (c)

8.6982 (d)

Backpropagation

(a)

EMG (biceps

femoris

gastrocnemius,

rectus femoral,

vastus medialis,

semitendinosus)

Codamotion (for

evaluation only)

12

healthy

-

Gomes

et al

[114]

MLPNN Joint

trajectories

(position,

velocity and

accelera-

tion)

- (Refer to

Figure 14

in [105])

- - 1

healthy

Active

orthosis

that

adapts

gait tra-

jectories

based on

walking

speed
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Wu et

al

[115]

AENN Hip and

knee joint

trajectories

Individualized

gait

pattern

genera-

tion

Correla-

tion

coeffi-

cient (r)

mean

absolute

deviation

(MAD)

0.99 (right

hip) 0.97

(right

knee) 0.98

(left hip)

0.98 (left

knee) 2.60

(right hip)

3.40 (right

knee) 2.62

(left hip)

3.64 (left

knee)

- Motion Capture

(Noitom TM)

33

healthy

Individual

trajectory

generation

for

sharing

lower limb

exoskele-

ton

(SLEX)

Vallery

et al

[108]

PCA-

CLME

BLUE-

CLME

Joint

trajectories

- - - Torque & angle

trajectories (hip

and knee joint)

EMG (tibialis

anterior,

gastrocnemius,

bicep femoris,

rectus femoris

-for evaluation)

9

healthy

-

Tanghe

et al

[97]

PPCA Hip, knee

and ankle

joint

trajectories

Mean

Error

Close to

zero (refer

to Table

III in [97])

- Vicon cameras

split-belt

treadmill for

GRF (for

segmentation)

28

healthy

with-

out

exo +

5

healthy

with

exo

feedforward

to ex-

oskeleton

control al-

gorithms,

as com-

pensation

to control

time

delays

Hassan

et al

[118]

PCA Joint

trajectories

of the

affected

limb

- - - IMUs (thigh,

shank and cane)

Motion capture

system (for

verification)

5 pa-

tients

with

hemi-

paresis

-
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