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Abstract

Survival analysis problems involve predicting the time passed until the occurrence

of an event of interest (the target variable), based on the values of some predic-

tive features. Survival analysis is a specific type of supervised machine learning

problem where the value of the target variable can be censored — i.e., for some

individuals, it may be known only that they “survived” (did not experience the

event of interest) until a certain date, whilst it is unknown if the event of interest

occurred after that date. Traditional supervised learning methods cannot directly

cope with censored data, and so they need to be modified to properly address

survival analysis problems.

In this context, this thesis focuses on the random forest algorithm (a popular

and powerful supervised learning algorithm), and proposes new variants of random

forest (RF) or RF-based algorithms for survival analysis.

The proposed RF or RF-based variants are evaluated on 11 survival analysis

datasets created for this research, where the target variable is the time passed

until an individual is diagnosed with a certain age-related disease. Most of these

datasets were created by extracting relevant data from databases of longitudinal

studies of ageing, so that the target variable denotes in general the time passed

until an individual is diagnosed with some age-related disease.

This thesis has three main contributions, which involve proposing three new

types of variants of RF or RF-based algorithms to cope with censored data in

survival analysis problems, as follows.
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The first contribution is to propose new RF variants with a modified procedure

for creating subsets of training data to be used for learning the decision trees in

a RF. This involves replacing the censored value of a target variable by another

value which is then treated as an uncensored target value, therefore allowing the

other parts of a traditional RF algorithm to be applied without modification. Ex-

periments with the aforementioned 11 survival analysis datasets have shown that

the proposed RF variants improved predictive accuracy in general when compared

with the standard RF and some standard statistical methods for survival analy-

sis, with statistical significance in some cases. However, the proposed RF variants

were outperformed by a standard random survival forest (RSF) algorithm, which

is a powerful RF-based algorithm developed specifically for survival analysis.

Motivated by the good performance of the RSF algorithm in the previously

mentioned experiments, the second contribution of this thesis is to propose several

new variants of the RSF algorithm. The proposed RSF variants focus on mod-

ifying two major components of the standard RSF algorithm: (a) the criterion

used for feature selection at each node of each tree in the forest, and (b) the pro-

cedure used for computing the target variable value predicted by each leaf node

of each tree. Experiments with the aforementioned 11 survival analysis datasets

have shown that, although the variations in the feature-selection criterion did not

lead to significant differences in predictive accuracy, one of the variations in the

procedure for computing the values predicted at leaf nodes achieved in general

significantly higher accuracies than the standard RSF algorithm and the popular

Cox Proportional Hazard (PH) algorithm.

The third contribution is to propose several new variants of the Deep Survival

Forest (DSF) algorithm, which essentially learns a more complex survival analysis

model by stacking several learned RSF models into layers, inspired by deep learn-

ing principles. The proposed DSF variants focus on the base RSF algorithm used
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to learn the RSF models at each layer. More precisely, the proposed DSF vari-

ants replace the standard RSF algorithm with one of the RSF variants proposed

earlier in this thesis, as base learners in each layer. Experiments with the afore-

mentioned 11 survival analysis datasets have shown that one of the proposed DSF

variants achieved significantly higher predictive accuracy than the popular Cox

PH algorithm and somewhat higher accuracy than the standard DSF in general.

In summary, this research has proposed new variants of RF or RF-based algo-

rithms for coping with censored data in survival analysis problems; and in general

the proposed algorithm variants have been shown to be competitive with (some-

times significantly more accurate than) standard methods for survival analysis.
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Chapter 1

Introduction

Supervised Machine Learning (ML) is a very active area of research where al-

gorithms essentially employ training data to build a model capable of making

predictions about the value of a pre-defined target variable, based on the values of

other variables, called features or attributes (Singh, Thakur and Sharma, 2016).

The two main types of machine learning tasks addressed by supervised ML algo-

rithms are classification and regression, where the target variable takes categorical

(nominal) or real-valued numeric, respectively.

Among these two types of tasks, regression is more relevant for this thesis.

Hence, it is worth first briefly reviewing the basic principles of the regression task.

Regression methods learn a predictive regression model from instances (e.g.

patients in medical data) whose values of the target variable are known. This is

called the training phase. After a regression model has been created, it is expected

to be able to predict well the unknown values of the target variable of instances

previously unseen in the training phase, i.e. to show a good generalisation ability

for new instances. For example, medical researchers could use a regression method

for modelling patients’ cancer risk or predicting cancer patients’ survival time.

This thesis addresses the task of survival analysis, which consists of a set

of statistical or machine learning methods concerned with analysing the time

1
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until the occurrence of an event of interest (Kleinbaum and Klein, 2012). The

occurrence of such event is often referred to as a “failure” in the literature, but

the event of interest can be a “failure” or a “success”, or any other type of event

of interest.

To some extent, survival analysis is similar to the regression task, since the

target variable to be predicted in survival analysis, the time to an event occurrence,

is a numeric variable. A key difference, however, is that survival analysis involves

censored data, representing uncertainty about whether an event has occurred for

some individuals (instances), which cannot be effectively handled by standard

regression methods. In other words, censored data are data where the value of

the target variable is just partly known - i.e. it is known that the event did not

occur until a certain time point, but it is now known precisely when the event will

occur.

Note that censoring is very common in biomedical data. For example, in a

dataset of patients who have undergone surgery, say, one year ago, typically there

will be a mixture of uncensored and censored patients (instances), as follows. Some

individuals are known to have died, so that the value of their “survival time” (after

surgery) is precisely known (uncensored). However, for the individuals who are

still alive, their survival time is only partially known (censored), i.e., it is only

known to be at least one year.

Survival analysis has been extensively studied in the statistical literature (Ka-

plan and Meier, 1958; Nelson, 1972; Cox, 1972; Aalen, 1978; Simon et al., 2011),

but it has been relatively less studied (much less studied than classification and

regression) in the supervised ML literature.

Hence, this thesis focus on developing supervised ML algorithms for survival

analysis (with censored data). More specifically, regarding the type of supervised

ML algorithm, this thesis focuses on variants of the random forest algorithm

(Breiman, 2001; Touw, Bayjanov and al, 2013), including mainly the random



CHAPTER 1. INTRODUCTION 3

survival forest algorithm (Ishwaran and Kogalur, 2007). In essence, random forests

are a powerful type of supervised ML method for regression tasks, due to the

algorithm’s good performance of achieving high predictive accuracy in general,

using the power of an ensemble of decision trees to make more robust predictions.

Random forest algorithms also have the advantage of being non-parametric (i.e.

they do not require any assumption about the data distribution), naturally coping

with both numerical and nominal features, and being computationally efficient

(relatively fast, particularly for an ensemble method).

Note that, since random forest algorithms were developed for standard re-

gression, they cannot directly cope with censored data. However, random forest

algorithms have been adapted to the context of censored data, with the proposal

of the random survival forest algorithm (Ishwaran and Kogalur, 2007), which is

currently a powerful and popular method for survival analysis in the machine

learning literature (Li et al., 2022; Zhang et al., 2022; Snider and McBean, 2022;

Miao et al., 2018a; Weeraddana et al., 2020; Gul et al., 2020).

In this context, broadly speaking, the main contribution of this thesis is to

propose a number of variants of random forests (mainly random survival forest)

algorithms for survival analysis, coping with censored data. The thesis’ contribu-

tions will be described in more detail in Section 1.2.

The proposed algorithm variants have been evaluated on a number of real-

world biomedical datasets, which generally contain data about age-related dis-

eases, and were mainly created by extracting data from longitudinal databases

of ageing. More specifically, the datasets were created from three data sources,

namely: the English Longitudinal Study of Ageing (ELSA) (Clemens et al., 2019),

the Survey of Health, Ageing and Retirement in Europe (SHARE) (Börsch-Supan

et al., 2013; Gruber, Hunkler and Stuck, 2014), and the Haemodialysis survey
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(UK Renal Registry (UKRR), 2022)1. These data sources and the dataset cre-

ation process will be discussed in detail in Chapter 3.

The motivation for focusing on datasets of age-related diseases is as follows.

According to a World Health Organization’s report on World Population Ageing

(WHO, 2022), one in six human beings on earth will be 60 or older by 2030. By

this point, there will be 1.4 billion people over the age of 60, going up from 1

billion in 2020. The number of persons in the globe who are 60 years or older will

double by 2050 (2.1 billion). Furthermore, between 2020 and 2050 the number

of people 80 or older is projected to triple, reaching 426 million. Such a large

increase in the proportion of elderly people will lead to strong pressure on health-

care systems, considering that the elderly tend to suffer from multiple age-related

diseases (George, Elliott and Stewart, 2008).

Hence, there has been a growing need for statistical or supervised ML meth-

ods to analyse ageing-related data, including data on age-related diseases (Fabris,

de Magalhães and Freitas, 2017; Bha, 2006), in order to better understand and po-

tentially improve the diagnosis of such diseases. Previous studies have shown that

supervised ML-based survival analysis methods such as random survival forests

can effectively analyse biomedical data with censoring, including data on age-

related diseases (Rahman et al., 2021; Leary et al., 2020; Spooner et al., 2020;

Akai et al., 2018a; Nakatsu et al., 2018) Hence, this thesis further contributes to

this area by applying the proposed variants of random forest-based algorithms to

data about age-related diseases.
1The data reported here have been supplied by the UKRR of the UK Kidney Association.

The interpretation and reporting of these data are the responsibility of the authors and in no way
should be seen as an official policy or interpretation of the UKRR or the UK Kidney Association.
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1.1 Aims and Objectives

The broad aims of this research consist of developing new variants of random-

forest-based algorithms for survival analysis and evaluating those algorithm vari-

ants in biomedical datasets with censored data. Most of the proposed algorithm

variations involve random survival forests, including deep survival forests that use

random survival forests as classifiers. The motivation for focusing on these two

types of algorithms is that, among the types of algorithms specifically designed for

survival analysis, those two types of algorithms tend to yield state-of-the-art pre-

dictive performance results in survival analysis problems, in general. In addition,

the thesis also proposes some variations in standard random forest algorithms, in

order to adapt those algorithms (which were not designed for survival analysis)

to the survival analysis task. The main motivation for the latter algorithm vari-

ations is that they are conceptually simpler than random survival forests, and so

they can act as a simple baseline method, against which the more sophisticated

random survival forest algorithms can be compared.

More precisely, this thesis addresses four objectives, one involving dataset cre-

ation and three involving the development of three new types of variants of random

forest-based algorithms for survival analysis, as follows:

1. The first objective of this research is to create biomedical datasets with cen-

sored data for evaluating machine learning algorithms designed for survival

analysis. This research focuses particularly on datasets of age-related dis-

eases, given their strategic importance in biomedical sciences, as discussed

earlier. This objective is addressed in Chapter 3.

2. The second objective is to develop new variants of the random forest algo-

rithm based on the imputation of censored target variables. This objective is

addressed in Chapter 4. The technical approach followed to achieve this ob-

jective was, in essence, to modify only an early step of the standard random
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forest algorithm for regression, transforming censored data into uncensored

data in that early step, so that the other steps of the standard random forest

algorithm can be used without change.

3. The third objective is to develop new variants of the random survival forest

algorithm, which is in itself a version of the random forest algorithm that

was designed specifically for survival analysis (with censored data). This

objective is addressed in Chapter 5. The technical approach followed to

achieve this objective was, in essence, to modify the criterion used to select

a feature at each tree node and the criterion used to compute the value

predicted by each leaf node of the trees in the forest.

4. The fourth objective is to develop new variants of the deep survival forest al-

gorithm, which is in itself an expanded version of the random survival forest

algorithm, consisting of stacking multiple random survival forest models into

layers, based on some deep learning principles. This objective is addressed in

Chapter 6. The technical approach followed to achieve this objective was to

replace the base algorithm within the deep survival forest algorithm, which

was originally a standard random survival forest algorithm, by a new vari-

ant of the random survival forest algorithm proposed to achieve the previous

(third) objective.

All these types of random forest-based variant for survival analysis are evalu-

ated by using the same set of 11 real-world datasets of age-related diseases (whose

creation is described in Chapter 3).

1.2 Contributions of This Research

At a high level of abstraction, the main contributions of this research are essen-

tially new variants of random forest-based algorithms for survival analysis coping

with censored data. The new proposed random forest algorithm variants can be



CHAPTER 1. INTRODUCTION 7

divided into three groups, leading to three types of contributions, where each con-

tribution type involves modifying a certain type of random forest-based algorithm,

as described next.

First, this thesis proposes variants of the standard random forest (RF) algo-

rithms which modify the procedure for creating subsets of training data to be used

for learning the decision trees in a RF – which is basically the first step in the exe-

cution of a RF algorithm. This modification involves replacing the censored value

of a target variable by another target value which is then treated as an uncen-

sored target value, so that all other components of the RF algorithm can be used

without modification. The thesis proposes two variants of RF algorithms for this

data transformation. The first one is based on randomly generating uncensored

target values within certain lower and upper bounds, and the second one is based

on using the well-known K-Nearest Neighbour (K-NN) algorithm to estimate the

uncensored target value of each censored instance. The proposed variations of

the RF algorithm in general outperformed baseline versions of random forest as

well as the popular Cox Proportional Hazards (PH) method. The proposed RF

algorithm variants are described in Chapter 4.

Second, this thesis proposes a number of variants of the random survival forest

(RSF) algorithm (Ishwaran et al., 2008), (Wang and Li, 2017), which is the most

popular type of RF algorithm for survival analysis in the area of machine learning.

The RSF algorithm learns an ensemble of survival trees (decision trees adapted

to survival analysis problems, considering censored data), and has been shown to

outperform several methods in survival analysis (Weeraddana et al., 2020). Unlike

the classical RF algorithm (Breiman, 2001), the RSF algorithm employs some

statistical techniques which enable it to cope with censored data. The proposed

RSF variants focus on modifying two major components of the RSF algorithm: the

procedure used for selecting the feature to be used for splitting the data at each

tree node (the node-splitting criterion), and the procedure used for computing
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the value predicted by each leaf node (the leaf-node-prediction criterion). One of

the proposed variants of the RSF algorithm outperformed not only the other RSF

variants (including the standard one), but also the popular Cox PH method. The

proposed RSF algorithm variants are described in Chapter 5.

Third, this thesis proposes several variants of the deep survival forest (DSF)

algorithm, which is an extension of the RSF algorithm based on principles of deep

learning. In essence, a DSF model consists of multiple RSF models stacked into

layers, where each base RSF can be learned using a standard RSF algorithm. The

proposed DSF algorithm variants use the same overall process for stacking RSF

models into layers as used by a standard DSF algorithm. What is modified in

the proposed DSF algorithm variants is the type of RSF algorithm used to learn

the base RSF models. More precisely, the proposed DSF algorithm variants use

the RSF algorithm variants proposed in Chapter 5 to learn the base RSF models,

rather than using the standard RSF algorithm. The best proposed DSF variant

outperformed both the standard DSF algorithm and the popular Cox PH method.

As an additional, secondary type of contribution, this research involved the

creation of 11 real-world datasets of age-related diseases with censored data, where

the target variable represents the time passed until an individual is diagnosed with

a given age-related disease. These datasets were created by extracting and process-

ing data mainly from two freely available databases for studying human ageing,

namely the ELSA (Clemens et al., 2019) and SHARE (Börsch-Supan et al., 2013)

databases, with one dataset being based on haemodialysis data kindly provided

by a clinical professor at the University of Kent. In all these sources of data,

the original, raw data was far from being directly suitable for machine learning,

and had to be extensively processed for the creation of the age-related survival

datasets used in the experiments reported in this thesis. The creation of these 11

biomedical datasets is described in Chapter 3.
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1.3 Thesis Structure

Chapter 2 contains a background review on supervised machine learning and sta-

tistical methods for survival analysis. It will start with a review of two classical

types of supervised machine learning methods, namely decision trees and random

forests for regression tasks. Next, it will review the main concepts and methods

for survival analysis in the area of statistics. This will be followed by a review of

the machine learning methods for survival analysis most relevant to this thesis;

consisting mainly of the standard random survival forest and the deep survival

forest algorithms. Finally, the last part of that chapter will discuss related work

on variants of random survival forests proposed in the literature.

Chapter 3 describes in detail the creation, preparation and pre-processing of

11 real-world survival datasets, using data extracted mainly from the freely avail-

able ELSA and SHARE databases, and also data from a Haemodialysis database

provided by a clinical professor at the University of Kent. Specifically, this chapter

focuses on data cleansing and specifying the predictive features and target vari-

ables for each dataset, where the target variables represent the time passed until

the diagnosis of some age-related diseases (i.e., the “time-to-event” which is the

core characteristic of survival analysis problems). These 11 datasets are used in

the computational experiments reported in other chapters of this thesis, in order

to evaluate the performance the proposed methods for survival analysis.

The next three chapters describe the main contributions of this thesis, which

are new variants of random forest-based algorithms for survival analysis, as follows.

Chapter 4 describes new variants of Random Forests which involve the basic

idea of imputing the value of the target variable for censored individuals (in-

stances) when generating the data used for learning each tree in a random forest.

This chapter describes two methods for this imputation, named the Random Tar-

get Imputation Forest (RTIF) and the k-Nearest-Neighbour-Imputation Random
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Forest (kNN-RF) algorithms. The final part of this chapter reports results com-

paring these two new variants of random forest against standard statistical or

machine learning methods for survival analysis.

Chapter 5 describes new variants of the Random Survival Forest (RSF) algo-

rithm, which is a state-of-art, very popular technique for survival analysis in the

area of machine learning. More specifically, this chapter proposes two novel types

of modification of RSFs and experiments with 8 different RSF variants. The first

type involves modifications of the node-split criterion of the algorithm, leading

to 5 RSF variants; and the second type involves modifications of the leaf-node-

prediction criterion, leading to 3 RSF variants.

Chapter 6 describes some modifications of the Deep Survival Forest (DSF)

algorithm, which is a very recent machine learning method proposed for survival

analysis. The original DSF algorithm essentially consists of stacking random sur-

vival forests into a predictive model, partially based on some principles of deep

learning. This chapter proposes two new variations of DSF, based on the RSF

variants proposed in the previous chapter; and reports the results of experiments

comparing those variants against the standard RSF and DSF algorithms. This

Chapter also provides an interpretation of the best predictive models created in

the experiments, as a contribution to the study of human age-related diseases.

Finally, Chapter 7 summarises the contributions of this research, and presents

some conclusions and suggestions for future research.

1.4 Publications Derived from This Research

This research has led to the publication of two papers in peer-reviewed conference

proceedings, as follows.

T. Pomsuwan and A.A. Freitas. Adapting random forests to cope with heavily
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censored datasets in survival analysis. In: Proceedings of the 28th European Sym-

posium on Artificial Neural Networks, Computational Intelligence and Machine

Learning (ESANN 2020), 697-702. i6doc.com publ. ISBN: 978-2-87587-074-2.

URL: https://www.esann.org/proceedings/2020. Conference held in Bruges, Bel-

gium, Oct. 2020.

T. Pomsuwan and A.A. Freitas. New variations of random survival forests and

applications to age-related disease data. In: Proceedings of the 2022 10th IEEE

International Conference on Healthcare Informatics (ICHI-2022), 1-10. IEEE

Computer Society - Conference Publishing Services, 2022. Conference held in

Rochester, Minnesota, USA, June 2022.



Chapter 2

Background

This chapter reviews the background on survival analysis and machine learning

algorithms relevant to this research. This chapter is organised as follows. Section

2.1 reviews the types of classical machine learning methods that are the focus of

this work, namely decision trees and random forests — focusing mainly on the

regression task. Section 2.2 reviews concepts and methods for survival analysis,

focusing on right-censored data. Section 2.3 reviews traditional statistical ap-

proaches widely used to cope with data censorship. Section 2.4 reviews machine

learning approaches for survival analysis. Section 5.2 discusses related work, fo-

cusing on random survival forests.

2.1 Decision Tree and Random Forest Algorithms

for the Regression Task

This section reviews the background on decision tree and random forest algorithms

for the regression task of machine learning – with each of these types of algorithms

discussed in a separate subsection. We focus on the components of the algorithms

that are most relevant to this thesis.

12
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2.1.1 Decision trees for regression

Decision tree induction algorithms are machine learning algorithms for learning a

decision tree from data, typically in a top-down fashion (Quinlan, 1993). They are

non-parametric supervised learning methods in the statistical sense — i.e., they

do not assume that the data has any predefined distribution. They aim to learn

a model to predict the value of a nominal class variable (in classification tasks) or

a numerical (typically real-valued) target variable (in regression tasks).

Essentially, decision tree algorithms use a recursive learning process which re-

peatedly performs three main steps. To begin, the algorithm considers all training

instances, which are allocated to the root node of the decision tree. Secondly, a

feature (f), which best separates the classes based on a given feature selection cri-

terion, is selected to label the current (root) node. Lastly, the set of instances (I)

in the current node is partitioned into k mutually exclusive subsets of instances

(I1, . . . , Ik) according to the values of the selected feature f ; where k, the number

of instance subsets, is determined based on the type of selected feature f , as de-

scribed below. Then, each of the instance subsets is allocated to a new child node,

and the process is recursively repeated for those nodes until a stopping criterion

is satisfied (e.g., all instances in the current node belong to the same class).

The next two subsections discuss in more detail two components of decision

tree algorithms for regression: the criteria used for selecting the splitting variable

in the internal nodes of decision trees and the approach to compute the predicted

value of the target variable at leaf nodes of trees. The reason for this focus is

that these are the two algorithmic components that are modified to produce some

variants of decision tree-based methods that will be proposed later in this thesis.

Split Criteria for Regression Trees

To partition the current set of instances into k subsets, if feature f is nominal

(categorical), k is typically the number of values taken by the feature, so that an
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instance subset is created for each of the feature values. If feature f is numerical

(continuous), typically k is set to 2, so that the algorithm creates two instance

subsets, one with the instances satisfying the condition f ≤ thr and the other

with the instances satisfying the condition f > thr, where thr is a threshold au-

tomatically determined to maximise separation (minimising the impurity) among

the two instance subsets based on their values of the target or class variable.

Many decision tree induction algorithms were developed to cope with classifi-

cation tasks (Rokach and Maimon, 2014), where the goal is to allocate instances

of different classes to different subsets of instances, so that ideally all instances

allocated to each new child node belong to the same class.

Regression tasks, however, require different criteria in order to select the best

feature to partition the current set of instances, and then allocate instances with

similar values of a target variable to the child nodes, since in regression the target

variable takes continuous values, rather than nominal class labels like in classifica-

tion. A common feature selection criterion for regression is the Root-Mean-Square

Error (RMSE) (Wang and Witten, 1996), which minimises the variance of the tar-

get variable within each child node. The RMSE is defined in Equation 1:

RMSE(I) =
√√√√ 1

n

n∑
i=1

(ȳI − yi)2 (1)

where I is the set of instances in the current node, ȳ is the average value of

the target variable y over all instances in I, yi is the value of the target variable

in the i-th instance, and n is the number of instances in I. More precisely, the

feature selection criterion will be a weighted mean of the variance calculated by

Equation 1 over the two child nodes, where the weight for each node is given

by the proportion of the set of instances which is allocated to each child node.

Hence, more emphasis is given to the minimization of the variance in the child

node containing more instances.

This is shown in Equation 2, where E(I|f) denotes the evaluation function for
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the current node I, when the data in that node is split based on the values of

feature f . In this equation, IL and IR represent the numbers of instances allocated

to the left and right child nodes, respectively. In other words, E(I|f) computes the

weighted mean of the variance across the two child nodes, where the weights are

the proportion of instances in each created child node. For example, if one child

node has 75% of the instances and the other child node has 25% of the instances

of the current tree node, then minimizing the variance in the former child node

has a weight of 75%. Note that the expression VAR can be any variance measure

and is not limited to the RMSE measure.

E(I | f) = IL

I
VAR (IL) + IR

I
VAR (IR) (2)

Prediction at Leaf Nodes of Regression Trees

Similarly to classification decision trees, regression decision trees make a prediction

at every leaf node. There are two types of decision trees for regression, each using

a different type of leaf node, as follows.

In classical regression trees, the predicted value for each leaf node is the mean

of the target variable over all instances in that leaf node, as shown in Equation 3,

where n is the number of instances in the current leaf node.

µ̂I =
∑n

i=1 yi

n
(3)

By contrast, model regression trees build an internal (local) linear regression

model in each leaf node (Wang and Witten, 1996; Torgo, 1997).

In this thesis, we focus on the first variant, classical regression trees.
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2.1.2 Random Forests

Although decision tree induction algorithms’ effectiveness in terms of predictive

accuracy is generally acceptable, they are not considered the state of the art in

terms of predictive accuracy. However, more modern decision tree-based algo-

rithms like random forests (Breiman, 2001; Touw, Bayjanov and al, 2013), tend

to obtain higher predictive accuracy in general (Fernández-Delgado et al., 2014),

using the power of an ensemble of decision trees to make more robust predictions.

On the other hand, the fact that random forests use an ensemble of (with a

large number of) decision trees makes the model much harder to be interpreted

by the user than a single decision tree.

Suppose a dataset has M features, and T represents the training set containing

n instances, defined as follows:

T = {(Xl, yl) , (X2, y2) , . . . , (Xn, yn)}

where Xi is a set (or vector) of features fi1, fi2, . . . , fiM and yi is the target

variable value. Essentially, a random forest algorithm constructs a set of S clas-

sification or regression trees, and then aggregates them into a single prediction

model.

The learning process is based primarily on two types of ensemble methods –

bagging and random subspace (Breiman, 2001). Hence, in order to create S trees

in the forest, the algorithm starts by creating S data samples, each of them created

by randomly sampling instances from T with replacement, as shown in Figure 1.

The random sampling process is repeated n times for each created dataset, so

that their sizes are the same as the original dataset. This results in T1, T2, . . . , TS

training sets, where each Ti is called a bootstrap (training) dataset. Note that due

to using a “with-replacement” sampling approach, Ti can have duplicate instances

or be missing a subset of instances from the original training set T . This process
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is known as bootstrapping. In short, the bagging method is the process of taking

S bootstrap training sets and then aggregating the models (trees) learned from

each Ti.

In order to build each tree, at each node, the random forest algorithm first

randomly samples m features from the original feature set X, where m is usually

calculated as either
√

M or ln (M + 1) (a user-made decision), where the resulting

fraction (if any) is rounded (Breiman, 2001). Technically, the m features are

randomly sampled from the feature set X without replacement. This is called the

random subspace method. Then, the m features are considered candidate features

for selection, and the algorithm selects the best of those m features (based on a

given feature-selection criterion like minimizing the RMSE) to label the current

tree node and to split the set of instances in that node, as usual in regression

trees.

The last step of the bagging method is making a prediction. Since the random

forest algorithm constructs S prediction models (trees), K1, K2, . . . , KS, feeding

an instance into these models will result in S prediction values (outputs), as shown

in Figure 1. In order to report a single prediction value, a random forest model

combines the predictions of all trees by using an aggregation procedure such as

average (for regression) or voting (for classification).

2.2 Concepts for Survival Analysis, Focusing on

Right-censored Data

Survival analysis consists of a set of statistical methods concerned with analysing

the time until the occurrence of an event of interest (Kleinbaum and Klein, 2012).

The occurrence of such event is often referred to as a “failure” in the literature, but

the event of interest can be a “failure” or a “success”, or any other type of event of

interest. To some extent, survival analysis is similar to linear regression analysis
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Figure 1: : The basic idea of Random Forest algorithm, combining the predictions
of many decision trees, each learner from a bootstrap sample of the data
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where the prediction of the value of a target (response) variable is computed

from a set of features, since the time to an event occurrence can be considered a

numerical target variable to be predicted. The important difference, however, is

the presence of data censoring, which cannot be effectively handled by traditional

linear regression methods.

2.2.1 Censoring

Censoring occurs when observed instances have some information available for

estimating the survival time but the information is incomplete. Figure 2 shows

different situations where censoring occurs in survival analysis. In this Figure,

the occurrence of an event of interest is marked with a red cross (X). Looking

first at instance (subject) A, it is labelled as “uncensored” since its survival time

is precisely known - i.e., subject A was followed since the start of the study,

and her/his failure time was observed. Apart from that, the other instances are

censored.

There are two main types of censoring, namely right censoring and left cen-

soring (Kleinbaum and Klein, 2012). The first and most common one is right

censoring, where no event of interest occurred for a subject during the period in

which he/she was observed in the study. There are essentially two reasons for

the occurrence of right censoring. First, the patient was observed until the end of

the study, and no event of interest occurred until that time (instance B in Fig.2).

Second, the subject dropped out of the study or was lost to follow up before its

end and no event of interest occurred before the dropout (instance C in Fig.2).

Note that, in both cases of right censoring, the last observed time for a subject

is a lower bound for the unknown event occurrence time. Left censoring occurs

when a subject experiences the event of interest before the start of the study,

resulting in their entry into the study after the occurrence of the event (referred

to as instance D in Fig.2). Therefore, any information available at the beginning
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Figure 2: Diagrammatic representation of uncensored and censored instances in
survival analysis. “X” denotes an occurrence of the event of interest.

of the study holds no predictive power for the left-censored individuals.

We focus on right-censoring (as opposed to left-censoring), which is generally

encountered in medical research (Kleinbaum and Klein, 2012), such as the pre-

diction of cancer survival (Molinaro, Dudoit and Van Der Laan, 2004). More

specifically, it is also a common type of censoring in the datasets used in our ex-

periments, described later; since a patient is often either lost to follow up before

the end of the study or does not experience the event during the study.

2.2.2 Kaplan-Meier estimates of survival time

Regarding nonparametric methods, the Kaplan-Meier method (or estimator) is a

popular one for estimating the survival function from lifetime data (Kaplan and

Meier, 1958). An important advantage of the Kaplan-Meier method is that it
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Table 1: An example of the Kaplan Meier estimates for a survival function

Time
(t)

Risk set
(nt)

Failed
(mt)

Censored
(ct)

S(t)

0 1000 0 0 1
2 1000 90 10 1×

(
1− 90

1000

)
= 0.910

3 900 300 100 0.910×
(

1− 300
900

)
= 0.607

7 500 250 50 0.607×
(

1− 250
500

)
= 0.303

9 200 50 50 0.303×
(

1− 50
200

)
= 0.2275

10 100 10 90 0.227×
(

1− 10
100

)
= 0.2048

can take into account some types of censored data, particularly right-censoring

(Vock, Wolfson et al., 2016). In other words, the method considers both types

of information about a subject’s survival time, namely the time to the event and

the event status, when estimating the survival function S(t), given by Equation

4, where nj is the number of subjects in the risk set at the failure time j — i.e.,

the set containing subjects who have survived at least to time j; and mj is the

number of failures at time j. Essentially, this equation measures the product of

fractions representing the proportions of subjects alive across the time points.

S(t) =
t∏

j=0

(
1− mj

nj

)
(4)

Table 1 shows an example (adapted from (Kleinbaum and Klein 2012)) of how

the Kaplan-Meier method estimates several values of a survival function from a

dataset of 1000 subjects, with censored data included. There are five columns,

where t is the observed failure time; nt is the number of subjects in the risk set at

time t, i.e., the set containing subjects who have survived at least to time t; mt is

the number of failures at time t; ct is the number of subjects who were censored

at time t and S(t) is the value of the survival function estimated at time t. Note
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that there are five unique failure times by which the table is ordered. To make

the example more concrete, the time (t) is assumed to be measured in years.

To begin, the probability of surviving past zero is unity (all 1000 subjects

in the dataset), as it will always be for any dataset. Next, the probability of

surviving past the first ordered failure time of 2 years is given by 910/1000 (or

0.910) because 90 subjects failed at the 2-year mark. In addition, 10 subjects were

censored at the 2-year mark. Hence, 900 subjects from the original 1000 remained

as survivors past 2 years. Subsequently, the rest of the survival estimates is

calculated by multiplying the estimate of S(t) for the preceding failure time by

a fraction. For example, the fraction is 600/900 for surviving beyond 3 years

since 900 subjects remained up to this year and 300 of these failed to survive

past it. Hence, the probability of surviving past 3 years is 0.607. Similarly, the

next probability concerns subjects surviving past 7 years, which is 0.303 where

the fraction is 250/500: 500 remaining up and 250 of them surviving past this

time point; and so on.

2.2.3 Nelson-Aalen Estimates of Cumulative Hazard Func-

tion

The Cumulative Hazard Function (CHF) defines the ratio of occurrence of the

event of interest given that subjects survive past a certain amount of time. We

review the CHF here since it is an important component of Random Survival

Forests, one of the target types of algorithms in this work, as discussed later. The

CHF is another measure of the population’s survival distribution against time.

Whilst the well-known Kaplan-Meier estimator analyses the survival distribution

of the population through their survival function, the Nelson-Aalen estimator is

its counterpart, analysing the survival distribution of the population through their

CHF (Nelson, 1972).

Note that if a survival analysis focuses on frequencies of occurrences of the



CHAPTER 2. BACKGROUND 23

Table 2: An example of the Nelson-Aalen estimates for a CHF

Time
(t)

Risk set
(nt)

Failed
(mt)

Censored
(ct)

H(t)

0 1000 0 0 0
2 1000 90 10 90

1000 = 0.09

3 900 300 100 0.09 + 300
900 = 0.42

7 500 250 50 0.42 + 250
500 = 0.92

9 200 50 50 0.92 + 50
200 = 1.17

10 100 10 90 1.17 + 10
100 = 1.27

event, then the Nelson-Aalen estimator should be preferred, since Cumulative

Hazard estimates can be used to compute the expected number of events (Ishwaran

et al., 2008). By contrast, if the study is interested in the survival time of the

subjects, survival probability estimates produced by the Kaplan-Meier method are

more appropriate, since survival functions have a natural interpretation regarding

survival times - e.g., calculating the mean or median survival times.

The Nelson-Aalen estimate of the Cumulative Hazard Function for the event

of interest at a time point t, denoted by H(t), is given by Equation (23) (Nelson,

1972).

H(t) =
t∑

j=0

(
mj

nj

)
(5)

Where mj is the number of failures at time j and nj is the number of subjects

in the risk set at time j, i.e., the set containing subjects who have survived at least

to time j.

Table 2 shows an example of how the Nelson-Aalen method estimates several

values of a Cumulative Hazard rate from an example hypothetical dataset of 1000

subjects, with censored data included. Table 2 has five columns, where
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• t is the observed failure time;

• nt is the number of subjects in the risk set at time t, i.e., the set containing

subjects who have survived at least to time t; for each row i where i in

[2. . . 6], corresponding to t in {2,3,7,9,10}, ni = ni−1 −mi−1 − ci−1;

• mt is the number of subjects who “failed” at time t;

• ct is the number of subjects who were censored in the time interval starting

with time t up to but excluding the next failure time.

• H(t) is the ratio estimated by the Cumulative Hazard Function at time t.

Note that there are five unique failure times by which the table is ordered.

Hence, in the example of Table 2, subjects who survived until at least time

t = 10 have a CHF of 1.27.

2.2.4 The Log-Rank Statistic

In order to compare two (or more) groups of subjects through their estimated

survival functions (curves), several statistical tests are available. If the probability

distribution of the function fits a certain known distribution, then the associated

parametric test method is a natural choice. Otherwise, a non-parametric test is a

natural choice.

The Log-rank test, which is basically a type of chi-square test, is widely used

in practice since it is a nonparametric test designed for comparing the survival

distributions between two groups — i.e., it evaluates the difference in survival

times between two groups of subjects. In particular, it compares the hazard

functions at each observed event time. The Log-rank test is commonly used

together with the Kaplan-Meier method since both are nonparametric methods.

The Log-rank statistic is given by Equation (6):

Log–rank statistics = (Oi − Ei)2

Var (Oi − Ei)
(6)
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Oi − Ei =
k∑

j=1
(mij − eij) (7)

eij =
(

nij

n1j + n2j

)
× (m1j + m2j) (8)

Var (Oi − Ei) =
k∑

j=1

n1jn2j (m1j + m2j) (n1j + n2j −m1j −m2j)
(n1j + n2j)2 (n1j + n2j − 1)

(9)

In Equation (6), Oi is the sum of the number of observed failures in group i

across all failure times and Ei is the expected value of the sum of the number of

failures in group i across all failure times. To compute the Log-rank statistic, we

need to calculate the term Oi − Ei, which is a measure of the overall differences

of the survival or hazard function (curve) over all k failure times and is given

by Equation (7), where eij is the expected number of failures for group i at the

failure time j, as shown in Equation (8). Var(Oi − Ei) is the estimated variance,

which involves the number of subjects in the risk set in each group (nij) and the

number of failures in each group (mij) at time j. k is the number of distinct times

of observed failures. The summation is over all distinct failure times. Note that

when comparing any pair of survival functions, this calculation will be done for

just one of the two groups since the absolute difference is the same for the two

groups.

2.2.5 Metrics for Survival Analysis

In survival analysis, several evaluation metrics have been developed to assess the

predictive accuracy of a predictive model. Among these metrics, Harrell’s C-

index, Uno C-index, and the integrated Brier score are widely used to measure

the performance of survival models. This subsection will elaborate these three

evaluation metrics, especially the Harrell’s C-index as being focused in this thesis.
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Harrell’s C-index

Harrell’s C-index, a.k.a. Concordance index (C-index), is a predictive accuracy

measure of the learned model’s performance. The C-index can be interpreted as

the probability of correctly ordering the predicted survival values for a randomly

chosen pair of subjects whose actual survival times are different. As described

in (Harrell, Lee and Mark, 1996), the C-index can be adapted for censored data

by considering the concordance of actual survival times versus predicted survival

times among pairs of subjects whose survival outcomes can be ordered with respect

to their survival times, i.e., among pairs where both subjects are observed to

experience an event, or one subject is observed to experience an event before the

other subject is censored. Note that in this latter case we know that the censored

subject survived longer than the subject whose event was observed, so this pair of

subjects can be ordered, even though we do now know the precise survival time

for the censored subject.

Specifically, Table 3 enumerates four different types of subject pairs and deter-

mines the “usable” pairs for computing the C-index. Let T1 and T2 be the value

of the target variable (survival time) for subjects 1 and 2. Note that for simplicity

the second and third rows of this table refer only to the case where subject 1 is

censored and subject 2 is uncensored, but the subject order is arbitrary. Hence

these two rows also cover the dual cases where subject 1 is uncensored and subject

2 is censored, which would involve reversing the inequality operators in the second

column of the table.

As shown in Equation 10, C-index is a ratio of the count of useful and concor-

dant pairs of subjects (the numerator) over the number of usable pairs of subjects

(the denominator). The term Agreed order is defined in Equation 11 where T̂i, T̂j

are the estimated (predicted) survival time for subject i and j. Note that when

the predicted survival times are identical for a subject pair, 1
2 rather than 1 is

added to the count of concordant pairs in the numerator of Equation 10. In this
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Table 3: determining “usable” subject pairs for computing the C-index (concor-
dance index)

Subject 1 Subject 2 Usable? Remark

Uncensored Uncensored Yes,
unless T1 = T2

Usable pair, unless the survival times
for Subjects 1 and 2 are equal

Censored at time T1
Uncensored,
with survival time T2 ≤ T1

Yes Subject 1 is known to have survived
at least as long as subject 2

Censored at time T1
Uncensored,
with survival time T2 > T1

No
Subject 1 was not followed long enough
to know whether or not he/she
will survive longer than Subject 2

Censored at time T1 Censored at time T2 No
Unknown which subject survived longer,
since both subjects have unknown survival
times

case, one is still added to the denominator of Equation 10 (such subject pair is

still considered usable). A subject pair is unusable if both subjects are uncensored

and experienced the event at the same (known) time.

C-index = |{(i, j)| Usable (i, j) AND Agreed order (i, j)}|
|{(i, j)|Usable(i, j)}| (10)

Agreed order(i, j) =


true, if T̂i > T̂j and Ti > Tj

true, if T̂j > T̂i and Tj > Ti

false, otherwise

(11)

This thesis uses Harrell’s C-index as the measure of predictive performance for

all methods evaluated in the experiments.

Uno’s C-index

The Uno’s C-index, introduced by Uno et al. (2011), addresses a limitation of the

Harrell’s C-index, which does not directly address the uncertainty introduced by

censoring, i.e., it does not use instance weights to account for censored data. That

is, Uno’s method incorporates Inverse Probability of Censoring (IPC) weights to

assign positive weights to uncensored instances rather than just the rank ordering

as Harrell’s C-index. This can be meaningful to upweight the contributions of

censored subjects based on their predicted risks — i.e., addressing the uncertainty
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introduced by censoring. Equation 12 is the Uno C-index:

Uno C-index =
∑

i[wi · I(Ti > Tj) · I(T̂i > T̂j)]∑
i[wi · I(Ti > Tj)]

(12)

where wi denotes the IPC weight for the i-th subject (instance). The weights

can be calculated using Equation =18, which will be discussed in Subsection 2.3.2,

which is specifically about IPC weights. I is an indicator function that equals 1

if the condition is true.

Therefore, both Harrell’s C-index and Uno’s C-index account for censoring

in survival analysis, but there is a difference in their specific calculations and

weighting schemes. While Uno’s C-index incorporates IPC weights, Harrell’s C-

index considers the orderings of pairs involving censored observations without

explicitly using weights.

Brier Score and Integrated Brier Score

The Brier score at time t is defined as the mean squared difference between the

observed status and the predicted survival probability. Mathematically, for a set

of n individuals, it is defined as:

BS(t) = 1
n

n∑
i=1

(
Ŝ(t|xi)− δi(t)

)2
, (13)

where Ŝ(t|xi) is the estimated survival probability of individual i at time t

given covariates xi, and δi(t) is the observed status of individual i at time t (1 if

the individual has died, 0 otherwise).

The Integrated Brier Score (IBS) is a metric commonly used to assess the

accuracy of survival predictions. It measures the mean squared difference between

predicted survival probabilities and observed survival time over a specified time

interval. The IBS ranges from 0 (perfect calibration) to 1 (worst calibration).

The Integrated Brier Score is the time-average of these Brier scores up to a
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certain time point T , defined as:

IBS(T ) = 1
T

∫ T

0
BS(t)dt. (14)

The Brier score measures the mean squared difference between the predicted

probability of survival and the actual outcome, so a lower Brier score corresponds

to more accurate predictions. The IBS extends this idea by averaging these scores

over time, providing a single metric that summarises the model’s predictive per-

formance up to a certain time point.

It should be noted that the Brier score and by extension the IBS only assess the

calibration of the model, or the accuracy of the predicted probabilities, and not

the discrimination, which is the model’s ability to distinguish between individuals

who experience an event and those who do not.

Moreover, the IBS can be used if and only if the the machine learning/statistical

model is able to prediction survival functions, which is not a built-in feature for

all models. Specifically, methods such as the Cox Proportional Hazards (Cox

PH) model, commonly used in survival analysis, do not naturally estimate sur-

vival function. The Cox PH model is essentially a regression model which, rather

than estimating the survival function directly, estimates the effect of explanatory

variables on survival time.

2.3 Traditional Statistical methods for survival

analysis

This section provides an overview of traditional statistical approaches to analyse

survival data involving censored data.

The information about the survival time of a subject is composed of two parts:

one is the time to the occurrence of an event (when this is known) and the other
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is the event status, which records if the event of interest occurred or not. In order

to analyse survival data based on the target variable, although one could use

standard regression methods, such methods are in general inadequate for several

reasons. First of all, standard regression methods were not designed to cope

with censored data, which are very common in survival analysis. This is because

usually we are not able to observe an occurrence of the event of interest for every

individual, e.g., some individuals were lost to follow-up. Second, survival data in

general follow a skewed distribution, whereas standard regression methods assume

a normal distribution. Data violating this assumption may lead to a drop in the

performance of standard regression methods. Thirdly, most regression methods

ignore the fact that survival times cannot take negative values. Last but not least,

although regression methods can be used to estimate the time to event, some

survival studies are interested in the risk of experiencing the event conditional on

surviving until a certain point (Hazard function) given some attributes (factors)

of interest, such as age, gender, treatment, etc (Kleinbaum and Klein, 2012).

Two types of probability functions are used to describe survival data: the

survival function and the hazard function. They are key and opposite concepts

in survival analysis for describing the distribution of event times. The survival

function is the probability of surviving (or not experiencing the event of interest)

from the time at the start of the study to a specified future time, while the hazard

function is the failure rate for the occurrence of an event at a certain time given

that an individual has survived up to that time. In other words, in contrast to

the survivor function, which focuses on not having an event, the hazard function

focuses on the event occurring.

Therefore, in order to analyse survival data, statistical methods typically es-

timate one of these two functions. There are several statistical methods available

to estimate the survival function and the hazard function by using different types

of approaches, namely parametric, nonparametric and semiparametric methods.
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Parametric methods make an assumption about the distribution of the sur-

vival times following a certain known probability distribution. For example, the

exponential distribution is one of the common assumptions for survival functions,

whereas the Weibull distribution fits well into hazard functions (Kleinbaum and

Klein, 2012).

In the next two subsections, we briefly review two traditional statistical meth-

ods for survival analysis which have been used as baseline methods in some experi-

ments reported later in this thesis: first, the very popular Cox’s Proportional Haz-

ard Regression method; and second, the Inverse Probability of Censoring method.

2.3.1 Cox’s Proportional Hazard Regression

Cox’s Proportional Hazard Regression (Cox, 1972) is a semiparametric method

– making fewer assumptions than parametric methods such as the Weibull and

the Exponential hazard models. Specifically, while the Cox method does not

assume any particular distribution for the estimated survival time function, it

assumes a type of distribution for the features (attributes, or covariates) – i.e.,

the requirement of the proportional hazard assumption must be met. This refers

to a hazard ratio (between two subjects or two groups of subjects) being constant

over time or, ideally, the feature values must not change once measured. Note

that a few common health-related features such as a person’s age and weight can

be allowed even though their values would not stabilize (Kleinbaum and Klein,

2012). This type of exception is made due to the very little change in their effect

on the hazard function over time.

There are two terms involved in Cox’s Proportional Hazard Regression formula.

Each term takes one of the two parameters, time and features, into the calculation

separately, as shown in Equation 15:

h(t, X) = h0(t)eΣβX (15)
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This hazard function (or hazard model) expresses the hazard rate at time t for

an individual with a given specification of a set of features (covariates) denoted by

X. As shown in Equation 15, the Cox model is the product of two parts. The first

one, h0(t), is called the baseline hazard function, which involves the time t. The

second part, eΣβX , is the exponential expression which involves the set of features

X, where β is the set of coefficients measuring the impact (weight) of the features.

Note that β and X represent a set (or vector) of coefficients and features, so that

βX is a shorthand notation for β1X1 + β2X2 + · · ·+ βdXd where d is the number

of features.

Therefore, the Cox regression model estimates hazard functions considering

predictive features, unlike the Kaplan-Meier method. Hence, it could be used

directly to predict the hazard function and/or survival function of a subject with

the feature set X. However, this would require some assumptions about the type

of baseline hazard function. To avoid this assumption in practice, the Cox model

is generally used to compute a Hazard Ratio for two subjects or groups of subjects

with different sets of features.

From Equation 16, the Hazard Ratio equation can be derived as follows:

Hazard Ratio = h (t, X1)
h (t, X2)

= h0(t)e
∑

βX1

h0(t)e
∑

βX2
= e

∑
β(X1−X2) (16)

Since the baseline hazard part is cancelled out, the Cox regression model is

a proportional hazard model where the hazard curves are proportional and can-

not cross. As an example adapted from (Kleinbaum and Klein, 2012), Figure 3

illustrates two different scenarios for the hazard rates of two different groups of

patients, G1 and G2, and the Hazard Ratio (HR) between groups (the green line).

Part (a) of this figure illustrates that despite the hazard rates of G1 and G2 chang-

ing over time, both of them rise proportionally and the Hazard Ratio (the green

line) almost levels off (or changes very little): this meets the proportional hazard

assumption. Accordingly, a Hazard Ratio of 2.0 indicates the risk of patients in
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Figure 3: An example of how the Hazard Ratio between two groups may remain
constant (a) or change over time (b), depending on the stratified feature

G1 is twice of those in G2. However, in actual fact said assumption is unrealistic

to be satisfied.

Part (b) of the figure shows how the hazard rates change over time for two

different groups of individuals. Unlike part (a), for part (b) we suppose G1 denotes

the group with a substantial reduction of the hazard rate with time, while the

hazard rate of group G2 monotonically increases with time. G1 could represent

a group of patients who undergoes serious surgery – e.g., removing a cancerous

tumour. Such process normally leads to a high risk for a period of time after the

surgery but the individuals’ condition improves (i.e. the hazard ratio is reduced)

once they recover. G2, however, could represent another group of patients suffering

from the same long-term disease but not receiving any kind of treatment. In other

words, the hazard rate of G2 describes the likelihood of how the disease develops

over time in a natural way, without medical intervention. Therefore, looking at

the Hazard Ratio (green line) dropping from 2.0 to lower than 1.0 in part (b) of

the figure, the effect is reversed when patients in group G2 have a much higher

risk. This greatly violates the proportional hazard assumption, since the Hazard

Ratio is greater than 1 at any time point before the cross, whereas being smaller

than 1 afterwards. Hence, a HR of 2.0, estimated by the Cox model ignoring the

effect of time, is totally misleading.
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Furthermore, the method assumes that the effects of the features upon survival

are constant over time, due to Equation 16 being independent of the time t (Cox,

1972). This is often an unrealistic assumption, particularly when predicting age-

related diseases (the focus of this research) since the effect of several features on a

subject’s probability of survival often depends on the time the feature is measured

along the life of that individual (i.e., their age).

Another strong assumption is that each predictive feature has a linear rela-

tionship with the survival time, since the term ΣβX has a linear regression form.

2.3.2 Inverse Probability of Censoring

Based on sampling techniques, (Robins and Rotnitzky, 1992) introduced the con-

cept of Inverse Probability of Censoring (IPC) weights, where positive weights are

assigned to uncensored instances while the weights of the censored ones are set

to 0. As the name suggests, a subject who has a long survival time is assigned a

large IPC weight value, which is inversely proportional to its probability of being

censored.

The probability of censoring is estimated by the Kaplan-Meier method. Note,

however, that this is a different use of the Kaplan-Meier method. Instead of

estimating a survival function as in Section 2.2.2, the method is used to estimate

a censoring function, i.e., the probability that the censored time is greater than

t, denoted G(t), as shown in Equation 17, where nj is the number of subjects in

the risk set, i.e., the set containing subjects who have survived at least to time j,

and cj is the number of subjects who were censored at time j.

G(t) =
t∏

j=0

(
1− cj

nj

)
(17)

After G(t) – the probability of censoring function – has been computed, the

IPC weight for instance i (wi) is calculated as shown in Equation 18
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wi =


1

G(ti) , if i is uncensored

0, Otherwise
(18)

Where ti is the survival time observed for the i-th subject (recall that this is

known because this part of Equation 18 applies to uncensored subjects), and the

value of G(ti) is given by Equation 17.

2.4 Machine Learning Approaches for Survival

Analysis

This section reviews the main machine learning concepts and methods for analysing

survival data with censored target variables. It consists of four sub-sections. First,

it contrasts the two basic approaches of predicting the numerical value of the tar-

get survival variable (a regression problem) and binarising the target variable and

treating its prediction as a classification problem. Second, it reviews the survival

ensemble method, which is based on pre-processing the data in a way that takes

into account the censorship of the target variable. Third, it reviews random sur-

vival forests, which is a popular machine learning method for survival analysis

of censored data, and is used as the basis for several variants of random survival

forests proposed in Chapter 5. Fourth, it reviews deep survival forests, which is

an extension of random survival forests inspired by deep learning concepts, and is

also the basis for some variants of this method proposed in Chapter 6.

2.4.1 Binary Survival Classification vs Prediction of the

Numerical Survival Outcome (Regression)

Supervised machine learning studies focus on predicting the survival time of new

instances by building a model from the training data. Broadly speaking, there



CHAPTER 2. BACKGROUND 36

are two types of survival time prediction problems. The first one is a binary

classification problem, where a classification model is built in order to predict

whether or not an event of interest will occur within a certain period based on

a pre-defined survival time threshold. This approach is used in several studies

(Štajduhar, Dalbelo-Bašić and Bogunović, 2009; Delen, Walker and Kadam, 2005;

Urquhart et al., 2015; Chang et al., 2013; Chen, Ke and Chiu, 2014; Panahiazar

et al., 2015; Roadknight et al., 2015; Zacharaki, Morita et al., 2012) in which

the survival time thresholds were either varied or set to create a dataset with

a balanced class distribution. Note that normally varying the thresholds means

repeating experiments with different values of the survival time threshold, rather

than modifying the algorithms to try to find the best threshold. In this approach,

each instance (subject) is assigned a binary survival variable as a class variable,

taking the value “survival” or “non-survival”. Survival means the subject did not

experience an event before the time threshold and non-survival means otherwise.

The second and more challenging type of problem is the prediction of continuous

survival time, which is the focus of this work.

In general, conventional machine learning methods cannot effectively handle

censored data because of two problems. First, missing values for features during

the part(s) of the study when the subject was not observed (left censoring and

one type of right censoring) introduce uncertainty into feature values. Second,

right censoring introduces uncertainty into the value of the target variable to be

predicted. Recall that, when an instance is right censored, the last observed time

for a subject is a lower bound for the event occurrence time for that subject, i.e.,

the exact event time for that subject is unknown. Note that this is true when the

prediction problem is cast as regression, but not necessarily true when it is cast

as binary classification, since in the latter case the “lower bound” for a subject

may be greater than the time threshold, in which case we know the class for that

subject is “survival” anyway.
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Although censored data can be a serious problem for regression or classification

algorithms, if the number of censored instances is relatively low compared to the

dataset’s size, we can handle this problem by removing the censored instances,

as performed in some studies (Blanco et al., 2005; Delen, Walker and Kadam,

2005; Zacharaki, Morita et al., 2012). Note, however, that the proportion of the

instances removed from the dataset (for being censored) was not discussed in these

papers. After removal, they applied traditional classification algorithms to the

dataset. Alternatively, (Štajduhar, Dalbelo-Bašić and Bogunović, 2009) treated

censored instances as event-free, and then applied a conventional classification

algorithm. The authors concluded that their simple technique could handle a

relatively small level of censoring (up to 20%) without affecting the predictive

accuracy.

However, when the number of censored instances grows large, the drawback

of the above techniques cannot be ignored. Essentially, not only is the number

of instances available for learning substantially reduced when censored instances

are removed, but also both techniques would introduce some biases in the train-

ing set for machine learning algorithms. The censored instances might contain

information relevant to predicting the survival time, so that not including them

in the learning process may lead to the model failing to capture the underlying

trend in the data. Therefore, several studies have been conducted to overcome

this limitation (Kourou et al., 2015).

2.4.2 Survival Ensemble

Instead of completely removing censored instances from experiments, a few studies

attempted to oversample the uncensored instances such that they represent the

removed (censored) instances. As explained earlier in this chapter, (Robins and

Rotnitzky, 1992) introduced Inverse Probability of Censoring (IPC) weights where

positive weights are assigned to uncensored instances while the weights of the
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censored ones are 0. See Equations 17 and 18 for more details.

One of the studies making use of the IPC weight technique to cope with cen-

sorship is (Hothorn et al., 2006). This work predicts the log of the continuous

survival time (explained next) using a modified random forest algorithm. A ran-

dom forest is constructed where each tree was derived from bootstrap data where

each instance is sampled with a probability based on its IPC weights (recall that

censored instances had IPC weights of 0). More precisely, each instance whose

censoring probability can be drawn from the computed distribution is assigned a

weight, which is inversely proportional to its censoring probability. Hence, cen-

sored instances are not used in the tree-building process.

Another study is (Vock, Wolfson et al., 2016), which assigns IPC weights to

the training set, and then applied classical classification algorithms. The applied

methods included Bayesian networks, k nearest neighbours, decision trees, and

generalized additive models, since these methods have a natural way to cope with

weighted instances.

2.4.3 Random Survival Forests

There are a number of studies that attempt to directly modify machine learning

algorithms to enable their learning capability from censoring data in survival anal-

ysis — e.g., Bayesian Network (Ibrahim et al., 2001), Artificial Neural Networks

(Faraggi and Simon, 1995) and Support Vector Machine (Pölsterl, Navab and Ka-

touzian, 2015) to name a few. However, in terms of popularity of use, Random

Forests can consistently be seen in many practical uses in both industries and

academia.

As discussed earlier, the Random Forest algorithm is an ensemble learning

method consisting of decision-tree learning algorithms as base learners. One of

the convincing reasons behind its success is the fact that ensemble learning usu-

ally reduces prediction errors by reducing the effect of the variance on the final
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error (Zhou, 2012; Friedman, 1997). To do so, prediction outputs are aggregated

across the base learners, by means of average values, for example. Thus, random

prediction errors that would possibly be made by a stand-alone model (without

using an ensemble) can be avoided since they are more likely to be overwhelmed

by the predictions of the majority of trees in the forest. This is, of course, condi-

tional on the assumptions that not only are the base learners very different from

each other (so that their prediction errors are uncorrelated), but also they must

perform better than a random prediction procedure (Breiman, 1996; Zhou, 2012).

Hence, in the remainder of this subsection, we review the Random Survival

Forest algorithm, which consists of a major adaptation of the Random Forest

algorithm for coping with censored data in survival analysis tasks. As for other

well-known machine learning techniques modified for survival tasks, the reader is

referred to (Wang, Li and Reddy, 2019).

Motivation

As mentioned earlier for (Hothorn et al., 2006), the log transformation approach

has also been used to transform the survival time (target variable) in some other

studies such as (Wang and Dinse, 2011; Pölsterl, Navab and Katouzian, 2015).

This approach transforms highly skewed distributions, which are normally the

case for survival time (Clark et al., 2003), into less skewed ones. Therefore, it

can be helpful for some statistics and machine learning methods that assume the

survival times to be normally distributed when analysing survival data. Never-

theless, as pointed out in (Pölsterl, Navab and Katouzian, 2015), even after log

transformation, the distribution of the survival time is often still far from the nor-

mal distribution, which violates an assumption of ordinary least squares/classical

linear regression.

In order to avoid using the log transformation of the survival time, one ap-

proach is to use a survival analysis method which does not make the assumption
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of normal distribution for the target variable. In this context, the most popular

method for survival analysis in machine learning is known as Random Survival

Forest (RSF), proposed by (Ishwaran et al., 2008).

The RSF algorithm has been developed in order to produce a specific type of

predicted outcome at the leaf nodes which was designed to cope with censored

data. In other words, this replaces the normal prediction of target values at leaf

nodes in random forests for regression (which cannot cope with censored data).

The authors named said prediction “Ensemble Mortality”, which represents the

expected rate of deaths or the expected cumulative hazard rate. That is, instead

of focusing on the survival times of the instances, a survival tree uses the Nelson-

Aalen method for each leaf node to estimate the Cumulative Hazard Function

(CHF).

In addition, RSF learns an ensemble of “survival trees”, as opposed to standard

regression trees. It uses the Log-rank test as the node-splitting criterion; which is

a non-parametric test specifically for survival analysis rather than regression, as

discussed in more detail below.

Methodology

We assume that the reader is familiar with the well-known standard Random For-

est algorithm for regression (Breiman, 2001) – an overview of which was presented

in Section 2.1.2. Hence, we focus here on describing mainly the characteristics of

the Random Survival Forest (RSF) algorithm that makes it specifically adapted

for survival analysis with censored data (Ishwaran et al., 2008), rather than stan-

dard regression.

RSF is a powerful technique for learning predictive models from survival data

(with censoring) which learns an ensemble of “survival trees”, rather than standard

regression trees. It uses the Log-rank test as the node-splitting criterion; this is

a non-parametric test designed for comparing the survival distributions between
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two (or more) groups (in this case, child nodes in a survival tree). It compares the

hazard or survival functions at each observed event time. The Log-rank statistics

is given by Equation (19):

Log–rank statistics = (Oi − Ei)2

Var (Oi − Ei)
(19)

Oi − Ei =
k∑

j=1
(mij − eij) (20)

eij =
(

nij

n1j + n2j

)
× (m1j + m2j) (21)

Var (Oi − Ei) =
k∑

j=1

n1jn2j (m1j + m2j) (n1j + n2j −m1j −m2j)
(n1j + n2j)2 (n1j + n2j − 1)

(22)

In Equation (19), Oi is the sum of the number of observed failures in group i

across all failure times and Ei is the expected value of the sum of the number of

failures in group i across all failure times. To compute the Log-rank statistics, we

need to calculate the term Oi − Ei, which is a measure of the overall differences

of the survival or hazard function (curve) over all k failure times and is given by

Equation (20), where eij is the expected number of failures for group i at the

failure time j, as shown in Equation (21). Var(Oi - Ei) is the estimated variance,

which involves the number of subjects in the risk set in each group (nij) and the

number of failures in each group (mij) at time j. k is the number of distinct times

of observed failures. The summation is over all distinct failure times. Note that

when comparing any pair of survival functions, this calculation will be done for

just one of the two groups since the absolute difference is the same for the two

groups.

In addition, standard RSF uses a specific type of predicted outcome at their

leaf nodes, based on the ensemble Cumulative Hazard Function (Ishwaran et al.,
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2008), (Wang and Li, 2017), which was designed to cope with censored data.

Hence, this replaces the normal prediction of target values at leaf nodes in random

forests for regression (which cannot cope with censored data).

The ensemble CHF for a given subject is calculated as follows. First, for each

tree in the RSF, the subject’s feature values are used to find the leaf node used to

predict the survival time for that subject. In each tree, the CHF for that subject

is calculated using Equation 23 (the Nelson-Aalen estimate for CHF), setting t

to the last observed failure time (so that all failure times are considered in the

summation), and calculating the terms mj and nj for the j-th failure time based

on all the subjects assigned to the same leaf node as the current subject. Finally,

the ensemble CHF for a subject is simply the arithmetic mean of the CHF for

that subject over all trees in the RSF.

H(t) =
t∑

j=0

(
mj

nj

)
(23)

Mortality can be interpreted as the expected number of deaths for the set of

subjects at a leaf node. Specifically, the Mortality for the entire set of subjects

assigned to a given leaf node is defined as the expected value for the sum of

the Cumulative Hazard Function (CHF) values over all unique survival times

{t1, t2, . . . , tm} in the data, given the set of feature values in the path leading

from the root until that leaf node. This is shown in Equation (24). Note that all

instances that fall into the same leaf node h are predicted with the same mortality

(Mh), i.e. the same expected number of deaths.

Mh = Mi = Ei

 m∑
j=0

Hh (tj)
 (24)

In Equation (24), Ei is the expected value of mortality under the null hypoth-

esis that all instances j are similar to i. A survival tree enforces a null hypothesis

of similar survival within its leaf nodes; individuals in a leaf node share a common
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estimated hazard function. Hh(tj) is the Nelson-Aalen estimate of the Cumulative

Hazard Function (CHF) at time point tj for all instances classified at leaf node h.

The ensemble mortality e (predicted outcome) for individual i, denoted Me,i, is:

Me,i = Σj=1...nHe,h (tj).

2.4.4 Deep Survival Forest

In this subsection, we review the Deep Survival Forest (DSF) algorithm, a rela-

tively new machine learning algorithm for survival analysis. In order to explain

how the DSF algorithm functions, it is useful to start by reviewing some basic

principles of Deep Learning (LeCun, Bengio and Hinton, 2015; Goodfellow, Ben-

gio and Courville, 2016; Shrestha and Mahmood, 2019), one of the strongest kinds

of machine learning techniques currently.

Recently, Deep Learning has obtained great success, especially when process-

ing images, speech, text, etc. The state-of-art approach is known as Deep Neural

Networks (LeCun, Bengio and Hinton, 2015). The term “deep” can be charac-

terised by the existence of several hidden layers in neural networks, and the models

are typically trained by means of the very popular Backpropagation technique.

Although the algorithm has been around for several decades, it has only been

implemented into practical usage in a deep learning context over these past years.

One theoretical explanation behind the successes of deep neural networks

would be an increase in model complexity resulting in an increase in the learning

ability of machine learning models (LeCun, Bengio and Hinton, 2015; Hu et al.,

2021). Specifically, this was done by adding more layers in between the input layer

and output layer, creating hidden layers which increase the embedding depths of

the learned models.

On the other hand, complexity is not always beneficial for model learning; and

there are a few potential drawbacks when models contain many layers of neurons,

as follows.
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First, this could lead to the model overfitting the training set, due to the model

having too much capacity of learning — i.e., the model has high variance and

its performance is unstable adjusting too much to the training data. A simple

yet effective approach to reduce overfitting is by training the model on a large

dataset. Even though a neural network is set to have a huge learning capacity

(high complexity model), a sufficiently large number of instances can be fed to

allow the model to generalise well.

Second, complex neural networks together with a huge dataset will be very

expensive in terms of computational time. It is not a trivial task to algorithmise

around with the limited amount of hardware resources. Fortunately, with the

development of hardware technology, GPU (Graphics Processing Unit) acceler-

ation is available to address the problem, i.e., GPUs which consist of hundreds

or thousands of core processors are able to speed up the computational process,

model training particularly. This helps to explain why deep learning has gained

so much popularity and is considered to be one of the latest and most important

advancements in artificial intelligence.

However, deep neural network algorithms also have some disadvantages, as

follows. First, the predictive performance of neural network models is sensitive

to their hyper-parameter settings (Yamashita et al., 2018), and they have many

hyper-parameters, such as the number of hidden layers, the number of neurons

within each layer, the batch size, the number of epochs, the choice of activation

function, etc. Tuning these hyper-parameters is a non-trivial task since model

training is computationally expensive itself. Furthermore, replicating the results

of neural network experiments is tricky – i.e., it is difficult to reproduce the com-

putational results reported in the literature for comparison purposes.

Second, the model’s structure is usually inflexible, i.e., predetermined by the

hyper-parameters’ values. Model complexity should be adaptive, so it can be

adjusted upon the data, which would vary from application to application.
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Third, a neural network is a black box model due to its high complexity, so

interpretability of the models and knowledge extraction from it are challenging

– although a lot of research has focused on interpreting neural networks (Zhang

et al., 2021; Ghorbani, Abid and Zou, 2019; Wang et al., 2018). As a conse-

quence, the deep neural network approach might be impractical for high-stakes

decisions, especially when explainability, ethics or knowledge discovery are con-

cerned (Rudin, 2019).

Thus, using the same basic principle of deep learning, some studies proposed

new types of deep learning methods which avoid the use of neural networks, as

discussed next.

Motivation for the Deep Forest Algorithm

In (Zhou and Feng, 2019) the authors considered the three most important proper-

ties of the deep learning framework, in order to propose a Deep Forests algorithm

that avoids the use of neural networks.

The first property is layer-by-layer processing, since adding layers to a network

is usually more effective than simply adding base units such as neurons or base

models. This approach increases not only the number of base units, but also the

embedding depths of the learned model.

Second, the in-model feature transformation (or feature construction) is a rel-

atively rare property in classic supervised machine learning algorithms. However,

such property enables the model learning process not to be completely dependent

on the original features, and it goes along well with the first property of multiple

layers.

Third, sufficient model complexity is what makes the algorithms capable of

learning complex relationships in the data. Otherwise, the models might underfit

the data.

Therefore, (Zhou and Feng, 2019) proposed the Deep Forests (DF) algorithm,
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Figure 4: A graphical description of the Deep Forest algorithm, adapted from
Zhou and Feng (2019).

as shown in Figure 4 with the following principles.

First, a set of Random Forests (RFs) are organized into a sequence of layers

similar to that in deep neural networks, where each layer consists of RFs rather

than neurons. Note that, in the same way that a RF is an ensemble of decision

trees, a layer of a DF can be considered an ensemble of RFs, or an ensemble of

ensembles, as it was called by the algorithm’s authors. Hence, the layer-by-layer

processing property is available in DF models.

Second, in order to perform in-model feature transformation, the stacking

framework is employed. Essentially, the values of the target variable predicted

by the RFs in one layer are fed forward to the next layer as additional features.

That is, the original feature set is extended by a set of newly created features,

and then together they are used as input for all RFs within the next layer. The

number of additional features created in this step is equal to the number of RFs

in the current layer — i.e., the set of predictions output by each RF will form

one set of additional features. Note that the additional features are fed forward

only to the next layer. Note also that, for classification tasks, the set of additional

features contains L×M features, where L is the number of class labels and M is
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the number of forests in each layer. More specifically, each feature contains the

probability of a given class label computed by a given RF. For regression tasks,

however, each forest only produces a single numeric value as its prediction, so the

number of additional features, created to feed forward to the next layer, is M .

Third, for deep neural network, the number of layers is recognised to be one

of the most influential hyper-parameters, since it technically defines model com-

plexity. The more layers there are, the higher the complexity is. In order to make

the Deep Forests algorithm more flexible, the number of layers is no longer one of

the hyper-parameters whose value needs to be pre-defined; instead, the number

of layers is automatically determined by the algorithm. Specifically, the train-

ing process is conducted based on the stacking framework where new layers are

added one by one into the current DF model. A new layer is only added on the

condition that it would improve the predictive accuracy, which is estimated by

means of internal cross-validation (using the training set only, not the test set).

In other words, the training process terminates when the validation performance

on the training set no longer improves, compared against the performance of the

current DF model that has been learned so far. In theory, the main benefit of

such adaptive model complexity is to adjust the learning capacity of the model,

so it would neither underfit nor overfit the training set.

From Deep Forests to Deep Survival Forests

In (Utkin et al., 2020, 2021) the authors proposed Deep Survival Forest (DSF), a

new variant of the Deep Forest algorithm aimed to analyse survival data as well

as taking into account the presence of censoring. In essence, the DSF algorithm

learns a deep (multi-layer) model where each layer consists of multiple Random

Survival Forests (RSFs), rather than multiple Random Forests as in the original

Deep Forest algorithm.

The DSF algorithm is particularly relevant for this thesis since it is the basis
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for the new variants of this algorithm proposed in Chapter 6. Hence, it is described

in more detail next.

The pseudocode of the Deep Survival Forest (DSF) Algorithm 1

The pseudocode of the DSF algorithm is shown in Algorithm 1, which uses the

following notation:

• N = the number of layers (automatically determined)

• M = the number of Random Survival Forests (RSFs) in each layer

• Xi = the feature set for the i-th layer

• X1 = the original feature set

• K = the number of folds for internal cross-validation

• RF(i,j,k) = the j-th random forest in the i-th layer in the k-th cross-validation

fold

• Pred(i,j) = the prediction of the j-th forest in the i-th layer

• C index CVi = c-index value of the ensemble of RFs in the i-th layer

Lines 1-3 in this pseudocode simply initialise some variables. Line 4 is a loop

over the layers of the Deep Forest model. For each iteration, there is another loop

at Line 6 for an internal cross-validation: the training data are divided into K

folds with approximately equal distribution of censored and uncensored instances

across the folds.

After that, the third loop at Line 8 goes over the RSFs in the current layer. In

this loop, two different types of RSFs are trained per iteration: one standard RSF

and one Extra-RSF. An Extra-RSF is a type of tree-based ensemble model that fits

a number of extremely randomised survival trees, a.k.a. extra-trees, introduced

in (Geurts, Ernst and Wehenkel, 2006). Compared to a classic survival tree in

(Segal, 1988), an extremely randomised survival tree is trained with one extra

level of randomness in the way splits are computed. As in RSF, a random subset
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Algorithm 1: The pseudocode of the Deep Survival Forests algorithm.
1 N ← 0
2 C index CV0 ← 0
3 i← 1
4 repeat
5 C index CVi ← 0
6 for k ← 1 to K do
7 valid Yk ← Set fold k as the validation set
8 for j ← 1 to M

2 do
9 Train a Random Survival Forest model RF(i,j,k) on remaining

K − 1 folds (learning set) with feature set Xi

10 Train a completely-Random Survival Forest RF(i,j+ M
2 ,k) on

remaining K − 1 folds (learning set) with feature set Xi

11 end
12 Ensemble RFi,k ← aggregation of all RF(i,1,k) . . . RF(i,M,k)
13 C index CVi+ = C index of (Ensemb RFi,k, valid Yk)
14 end
15 C index CVi ← C index CVi

K

16 for j ← 1 to M do
17 Pred(i,j) ← aggregation of the predicted outputs from

RF(i,j,1) . . . RF(i,,j,K)
18 Add xij ← Pred(i,j)
19 end
20 Xi+1 ← X1 + {Add xi1, Add xi1, . . . , Add xiM}
21 N + +
22 until C index CVi−1 ≥ C index CVi

23 Use as final model the ensemble of RF s learned in the (N − 1)th layer
(previous layer)

24 Prediction← Average of the predicted outputs from
Pred(N,1), P red(N,2), . . . , P red(N,M)
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of candidate features is used, but instead of looking for the most discriminative

thresholds, thresholds are selected at random for each candidate feature and the

best of these randomly-generated thresholds is picked as the splitting criterion.

Note that in each extremely randomised survival tree, the quality of a split is also

measured by the log-rank statistics.

Thus, this step builds M RSFs within the current layer, with half of them being

built in the standard way and the other half being built completely at random, to

increase the diversity of RSFs within the current layer. All these RSFs are learned

from the k-th learning set of the internal cross-validation procedure.

All those M RFs are then aggregated into an ensemble of RFs for the current

i-th layer and the current k-th cross-validation fold in line 12. Then, in line 13, the

algorithm computes the value of the C-index (as a measure of predictive accuracy)

of that ensemble of RFs on the k-th validation set of the internal cross-validation

procedure, and the result is added to the total value of the C-index, over all K

cross-validation folds, for the current i-th layer of the deep RSF model. Once the

internal cross-validation loop from line 6 to line 14 is completed, in line 15 the

algorithm computes the final value of the C-index for the i-th layer, as the mean

of the C-index values over the K internal cross-validation folds.

Next, in the loop starting at line 16, M additional features are created – each of

which is the output predicted by a RSF model. More specifically, previously each

RSF was trained using the k-th learning set k and its predictions were computed

on valid Yk; and so in line 17, for each RSF, its predictions on all K validation

folds are aggregated to create a new feature. As a result, this step creates M new

features. Afterward, at line 20 the original feature set and the additional feature

set are concatenated to be used as input features for training the RSFs in the next

layer.

Finally, line 22 determines whether or not there has been any improvement in

the predictive performance (C-index value) from the previous layer to the current



CHAPTER 2. BACKGROUND 51

layer. If the C-index for the current layer is better than the C-index for the

previous layer, then the algorithm will construct the next layer of RSFs, otherwise,

it terminates the training process.

2.5 Conclusion

This chapter provided a comprehensive review of the background on survival anal-

ysis and machine learning algorithms relevant to this thesis. This section concludes

this chapter by describing the rationale about why the new methods proposed in

this thesis could lead to better predictive accuracy results.

The state-of-the-art methods in survival analysis, such as Cox regression, RSF,

and DSF, have made significant contributions to the survival-modeling field. How-

ever, when considering biomedical datasets and the prediction of actual survival

times, there are several gaps in these existing approaches that motivate the con-

tributions of this thesis.

First, biomedical datasets often exhibit unique characteristics, such as high-

dimensional features, complex interactions, and potential confounding factors.

Traditional statistical approaches like Cox regression may struggle to effectively

handle these complexities, potentially leading to suboptimal predictions. There-

fore, machine learning approaches are more practical to capture these character-

istics of biomedical datasets.

Second, biomedical datasets often contain non-linear relationships among the

features and the target variable. Cox regression assumes a linear relationship

between the features and the hazard function, which often is not true in real-world

datasets. RSF and DSF offer more flexibility in capturing non-linear relationships,

but they may not fully exploit the complex relationships present in biomedical

datasets — e.g., they may not exploit the important role of the Age variable to

improve predictive accuracy in survival datasets of age-related diseases (like the
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datasets used in this thesis).

Third, while Cox regression and RSF are commonly used for survival analysis,

they primarily focus on estimating relative hazards (risks) or survival probabilities

rather than predicting the actual survival times. Predicting accurate and precise

survival times is vital in biomedical research, since it could support clinicians and

researchers to make some crucial decisions such as patient management, treat-

ment strategies, and clinical trial design. The development of methods specifically

aimed at predicting actual survival times would be a significant advancement in

the field.

Through the contributions in this thesis, it is anticipated that the proposed

method will enrich not only the performance, but also interpretability of survival

models in the biomedical domain. The application of these novel approaches to

real-world biomedical datasets holds the potential to support clinical decision-

making, patient care, and advancements in biomedical research.



Chapter 3

Data Preparation

This chapter provides information about the datasets used in the experiments

to evaluate the proposed variations of random forests for survival analysis, and

the data preparation that was performed for the purposes of running the survival

analysis algorithms. It describes in particular the creation of the target variable

for each dataset, as well as the predictive features in the datasets.

3.1 Introduction

This chapter describes the creation of 11 survival analysis datasets, all in the

application domain of biomedical data. This is in general the main application

domain for survival analysis methods, since right-censored data naturally occurs

in this domain. Although there are some repositories of biomedical survival anal-

ysis datasets Desmedt et al. (2007); Kalbfleisch and Prentice (2011), this thesis

focuses on creating new survival analysis datasets mainly in order to exploit the

relatively large amount of data in longitudinal studies of ageing, which has been

unexplored so far in the survival analysis literature. Such studies are particularly

important for biomedical research, as discussed in more detail below. In addition,

53
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the creation of new datasets is more likely to lead to the discovery of new biomed-

ical knowledge or patterns, by comparison with the use of biomedical datasets

which have already been extensively used in the survival analysis literature.

Hence, 10 out of the 11 created datasets contain data about age-related diseases

from longitudinal studies of ageing. The motivation for focusing on such datasets

of age-related diseases is as follows.

As mentioned in the Introduction, according to a World Health Organization’s

report on World Population Ageing (WHO, 2022), one in six human beings on

earth will be 60 or older by 2030. The rise in the proportion of elderly peo-

ple will place significant strain on healthcare systems due to the higher preva-

lence of age-related diseases among the elderly, considering that the elderly tend

to suffer from multiple age-related diseases (George, Elliott and Stewart, 2008).

Consequently, there is an increasing demand for statistical or supervised machine

learning methods to analyse ageing-related data, including information about age-

related diseases. The objective is to gain a better understanding of these diseases

and potentially enhance the corresponding diagnoses and treatments.

The last created dataset described in this chapter is the haemodialysis dataset.

This dataset is important because about 65% of people commencing renal replace-

ment therapy in the UK also commence haemodialysis UK Renal Registry (2020),

and in total over 25,000 people receive haemodialysis in the UK.

The author is investigating the possibility of making the datasets available to

the research community.

The next three sections describe in detail the dataset creation process for each

of the datasets created in this thesis.
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3.2 The ELSA datasets

Most of the created datasets (9 out of 11) were derived from the English Longitudi-

nal Study of Ageing (ELSA) (Clemens et al., 2019) — https://www.elsa-project.

ac.uk/. The ELSA study is a longitudinal survey of ageing and quality of life

among older people that explores the dynamic relationships between health and

functioning, social networks and participation, and economic position as people

plan for, move into and progress beyond retirement. In this work, however, we

focus only on the biomedical data in ELSA, such as the results of blood tests and

other data collected by nurses, and the relationship between that data and the

health status of patients, as will be described in more details later.

There are four important issues about the data collection process used to create

the ELSA database. First, the ELSA subjects were recruited from a representa-

tive sample of the English population, who live in private households, aged 50 and

over. Follow-up interviews were subsequently conducted with these participants.

Second, the data has been collected every two years, where each data collection

period is known as a ‘wave’. In total, eight waves of data have been collected

and have well-documented data. Third, follow-up interviews were conducted with

these participants in subsequent waves, so that we can observe the variation of

each feature’s values for each individual across those waves. It should be noted

that efforts are made to track and re-interview participants in subsequent waves,

even if they have moved or experienced changes in their circumstances. Attrition,

or the loss of participants over time, is a common challenge in longitudinal studies.

However, ELSA has implemented various strategies to mitigate attrition and main-

tain a representative sample. Last but not least, ELSA incorporates nurse visits

in selected waves. These nurse visits provide an opportunity to collect detailed

health-related information, including physical measurements, biological samples

(such as blood and saliva), and functional assessments. These data enhance the

understanding of health conditions, biomarkers, and physical functioning among

https://www.elsa-project.ac.uk/
https://www.elsa-project.ac.uk/
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the study participants.

Since the data in the ELSA database was not collected specifically for machine

learning purposes, it was necessary to spend a large amount of time with data

preparation for the survival analysis. The first step was to define the instances

(subjects) used in the created datasets, the target variables to be predicted and

the predictive features used for prediction. In essence, the instances represent

individuals in the ELSA database, the target variables represent the time passed

until the first diagnosis of some age-related diseases, and the predictive features

represent biomedical information collected by nurses or other relevant character-

istics of an individual (age and gender).

3.2.1 Creating target variables and censoring variables

There are two special types of variables which have been generally used together

for each survival prediction problem in most survival studies in the literature. The

first one is the “target” variable, whose values are to be predicted. In order to

create the target variables, we looked into the ELSA core data, and then identified

some age-related diseases. Unfortunately, some diseases, such as Parkinson’s, did

not have the variables we needed to use as base variables in order to construct the

target variables, as explained below. At last, we ended up with 8 diseases which

had all necessary variables provided. These diseases are Angina, Heart Attack,

Diabetes, Stroke, Arthritis, Alzheimer’s, Cancer and Psychiatric.

Hence, we created 8 target variables, one for each of these diseases. In this

work, each target variable takes a numerical value indicating the time passed

(in months) from the date when a subject received a nurse visit in wave 2 (for

collecting the subject’s biomedical data) until the date when the subject was first

diagnosed with the disease corresponding to that variable.

The second special type of variable typically used in survival analysis is the

uncensored status variable, which takes the values “1” or “0” to represent the
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uncensored or censored values (respectively) of a target variable for each subject.

In this work, the uncensored (“1”) and censored (“0”) values indicate whether or

not (respectively) we know the date when a patient was first diagnosed with the

corresponding disease within the study period.

Note that target and uncensored status variables come in pairs, with one such

pair for each of the above 8 diseases. Hence, the uncensored status value “1”

means the value stored in the corresponding target variable for a given disease

and a given subject represents the true, known value for the time passed until the

first diagnosis; whilst the uncensored status value “0” means the value stored in

the corresponding target variable is just a “lower bound” of the true, unknown

value, since that value is censored. Therefore, a survival-time prediction method

has to interpret the value of the target variable in the context of the value of

the uncensored status variable for each disease and each subject (instance) in the

dataset. To determine the value of each target variable and each uncensored status

variable for each subject, we distinguish between two cases, depending on whether

or not the information about that subject’s first date of diagnosis for the disease

corresponding to the target variable is censored. These two cases are discussed in

detail next.

First Case: Determining the value of a target variable for uncensored

subjects

For each of the 8 diseases used to create the target variables in this thesis, the

ELSA database contains two variables indicating the year and the month the

subject was first diagnosed with that disease. These variables are hereafter called

first diag year and the first diag month, respectively. Hence, if the values of both

these variables for a given disease are known (i.e., not missing) for a given subject,

then the date of that disease’s first diagnosis for that subject is not censored,

and so the value of the target variable for that subject is directly determined by
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Equation 25:

Target = (first diag year−nurse year)×12+(first diag month−nurse month)

(25)

where the variables nurse year and nurse month represent the year and the

month of the nurse visit to the subject in wave 2.

Note that wave 2 (rather than wave 1) is the baseline wave for our task of

predicting the time passed until the first diagnosis of some age-related disease,

because wave 2 is the first wave for which there are biomedical variables in the

Nurse data section of the ELSA database, and those biomedical variables were

used to create the predictive features in our dataset, as explained later.

When using Equation 25, since there is no censorship for the date of the

first diagnosis for the current subject and disease, the value of the corresponding

uncensored status variable is set to 1.

As an example of the use of this equation, suppose that for a certain disease

(target variable) a subject has: “first diag year = 2010”, “first diag month = 11”,

“nurse year = 2005”, “nurse month = 1”. Then, using Equation 25 for this subject,

the target variable’s value is computed as follows:

Target = (2010− 2005)× 12 + (11− 1) = 70 months

This means that we know that the subject was not diagnosed with the disease

(i.e. she/he “survived” in the terminology of survival analysis) for 70 months since

the nurse visit in the baseline wave 2.
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Second Case: Determining the value of a target variable for censored

subjects

Unfortunately, in many cases the information about the year and the month when

the subject was first diagnosed with a certain disease is censored in the ELSA

database, i.e., the values of the first diag year and the first diag month variables

for that disease are missing for that subject. In this case, the computation of

the value to be assigned to the corresponding target variable is considerably more

complex than in the above case of uncensored subjects, as follows.

First of all, for each instance (subject), for each target variable (disease) and

for each wave (time point), we compute the value of a binary variable that takes

the value “1” or “0” to indicate whether or not (respectively) that subject was

known to have a diagnosis of that disease in that wave. These created variables

have a name of the form:

wX DiseaseName known diag,

where wX denotes the wave number X (for X = 2, . . . , 8). For instance, the

variable w2 Angina known diag indicates whether or not the subject was known

to have a diagnosis of Angina at wave 2.

Hereafter we use the term known diag as a shorthand notation to refer to the

above type of wX DiseaseName known diag variables when discussing them in a

generic way, referring to any wave and any disease. We will explain later the (quite

complex) computation of such known diag variables. Before that explanation,

let us describe how these variables are used as intermediate variables for the

computation of the value of each target disease, in the case of censored data. The

basic idea is that, by comparing the values of these known diag variables for a

given subject and a given target disease across all waves, we can determine the

last date (year and month) when the subject was observed and still did not have
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the diagnosis for the target disease; and then we can finally directly compute the

value of the (censored) target variable as the number of months passed between

the data of the nurse visit for that subject in the baseline wave 2 and the last date

when the subject was observed without a diagnosis for that disease. This last date

acts as a “lower bound” for the date of the first diagnosis for that disease, in the

context of a censored target variable.

More precisely, the known diag variables for a disease are used to compute

the value of a new last no diag year variable, which indicates the year when the

subject was last observed without a diagnosis. The value of the last no diag year

variable for each subject and each disease is computed in two steps, as follows.

Firstly, the system looks for the last wave number in which the corresponding

known diag has the value ‘0’. This means that we know that the subject was ob-

served in that wave, but unfortunately, there is no variable in the ELSA database

recording the date when the subject answered the questionnaire about disease

diagnoses. Hence, the information about lack of diagnosis for that disease for that

subject could have occurred in any month out of a two-year period associated with

that last wave where “known diag = 0”. Therefore, we only know that the subject

was not diagnosed with the disease in the first month of that two-year period, i.e.,

we cannot conclude that the subject was not diagnosed with the disease at later

months in that two-year period.

Hence, the second step for computing the value of the last no diag year vari-

able consists of assigning to it the first year out of the two years associated with

that wave based on the ELSA’s timetable as shown in Table 4. Finally, the value

of the target variable is then computed by Equation 26:

Target = (last no diag year − nurse year)× 12 + (1− nurse month) (26)

This is analogous to Equation 25, with the difference that the first diag month
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Table 4: Timetable of the ELSA project from wave 1 to wave 8

Wave number Years
1 2002 - 2003
2 2004 - 2005
3 2006 - 2007
4 2008 - 2009
5 2010 - 2011
6 2012 - 2013
7 2014 - 2015
8 2016 - 2017

month in Equation 26 is replaced by “1” (referring to January of the year stored

in last no diag year) in Equation 25 since the information about whether the

subject was diagnosed later is censored, as discussed earlier. To clarify how the

above procedure for computing the target variable works in the case of censored

subjects, we will use as an example the data for two subjects shown in Table 5.

As shown in that table, subject 1 did not have a diagnosis of Angina in waves

2, 3 and 4, which was the last wave when the subject was observed - which is

indicated by the fact that the Angina known diag variables for waves 5 through 8

have missing values (denoted by “?” in the table). As shown in Table 4, the first

year associated with wave 4 is 2004, and so the variable last year no diag is set to

2008. In addition, the date of the nurse visit for that subject was December 2004.

Hence, according to Equation 26, the value of the target variable for subject 1 is

computed as:

Targeti = (2008− 2004)× 12 + (1− 12) = 37months

This means that we know that subject 1 was not diagnosed with the disease

(i.e. she/he “survived” in the terminology of survival analysis) for at least 37

months since the nurse visit in wave 2. We emphasize that in this case the target
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Table 5: Values of the variables used for calculating the value of the target Angina
variable (as an example target disease), for two subjects used as examples. The
variables used in this table are needed to compute the value of the target variable
only for subjects whose first disease diagnosis date is censored, as explained in the
text. The symbol “?” denotes a missing value for a variable.

Subject Angina known diag nurse year nurse monthw2 w3 w4 w5 w6 w7 w8
1 0 0 0 ? ? ? ? 2004 12
2 0 0 0 1 1 1 1 2005 4

variable is assigned a value representing only a lower bound for the true, unknown

number of months until the first diagnosis of a disease, since the subject’s target

variable for that disease is censored. Therefore, in this case, the system also sets

the value of the uncensored status variable to 0 for that subject and that disease.

A similar computation is performed for subject 2 in Table 5. Although the

values of the Angina know diag variables for this subject are known for all waves,

we still cannot assign any precise date to the first diagnosis of Angina for this

subject. That is, subject 2 could have been first diagnosed with Angina at any

time during wave 5 (the first wave with “Angina diag known = 1”) or at any time

during wave 4, which is the last wave with “Angina diag known = 0”, since the

ELSA database does not record the precise date when the subject answered the

questionnaire about disease diagnosis, as mentioned earlier. We only know that

at the start of wave 4 subject 2 did not have her/his first Angina diagnosis yet,

and subject 2 had her/his first Angina diagnosis before the end of wave 5.

Hence, as explained above for subject 1 in Table 5, in order to compute the

target variable’s value for subject 2 in that table, we also set the value of the

variable last no diag year to 2008, the first year of wave 4 as shown in Table 4,

since wave 4 is the last wave when the subject was observed not to have her/his

first Angina diagnosis.

The computation of the target variable’s value for subject 2 proceeds in the
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same way as for subject 1, i.e. by applying Equation 26 we get:

Target2 = (2008− 2005)× 12 + (1− 4) = 33months

Now that the role of the know diag variables has been explained, we turn to a

detailed description of the procedure used to compute the values of these variables.

To compute such variables, we needed a variable in the ELSA database that

indicated when an individual was diagnosed with the disease. Unfortunately,

there were no such variables directly providing this information in the database.

However, this information was rather represented indirectly by several related vari-

ables whose values depend on the individual’s answer to questions like whether

or not the individual still had a previously diagnosed disease, whether the previ-

ously diagnosed disease was confirmed or whether the disease was newly reported.

Therefore, we needed to create a well-defined know diag variable for each disease

separately, by combining information from the several related variables associated

with that disease in the ELSA database. These variables obtained directly from

the ELSA database were called “base” disease variables.

Table 6 shows the set of rules used for creating the know diag variables for

each disease and each wave. The first column of this table shows the names of

the diseases, which correspond to the aforementioned 8 target variables. The

second column shows the names of the known diag variables, where each name

has a prefix denoting the wave number and the disease name, as described earlier.

The last column (Rule) of this table shows the precise rules used to compute the

values of the know diag variables, by combining information from the base disease

variables for each disease and each wave separately. In that last column, the base

disease variables occurring just before each “=” sign in an “IF” part of the rule

refers to base variables in ELSA’s core data from the corresponding waves.

Taking the assignment of the w3 HeartAtt known diag variable as an exam-

ple, the variables in the three conditions (w3hedacmi = 1), (w3hediami = 1) and
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(w3dhedimmi = 1) represent “whether confirms heart attack diagnosis” = “yes”,

“whether still has heart attack” = “yes” and “heart attack diagnosis newly re-

ported” = “yes” respectively. Joining these three conditions together with the

“OR” operator means that if the value of the variable in any of these conditions

is set to “yes”, then the w3 HeartAtt known diag variable is assigned the value

“yes”. Otherwise, the w3 HeartAtt known diag variable takes the value “no”.

Note that the base variables’ names in wave 2 for every disease are different

from those in the other waves. For instance, both w2HeDiaC2 and w3hedacan

represent “Whether confirms angina diagnosis”. The variable names in wave 3 are

very similar to the names from wave 4 onward, and the variable names in waves

4 through 8 are the same. Hence, to avoid redundancy, the Rule column of Table

6 shows just one entry using the symbol “X” to denote a variable’s wave number

varying in the range from 4 to 8. In addition, the full list of the base disease

variables used in these rules is reported in Table 7.

3.2.2 Creating the “Any-disease” target variable

The “Any-disease” target variable represents the time passed until the first diag-

nosis for any of the eight diseases. The value of this variable is computed based on

the values of the uncensored status variable (representing censorship status) and

the target variable (representing survival times) for each of the eight diseases. The

diseases included Angina, Heart Attack, Diabetes, Stroke, Arthritis, Alzheimer’s,

Cancer and Psychiatric Disorder.

The main motivation for creating the ELSA “Any-disease” dataset is to cre-

ate a different type of dataset with a larger uncensoring ratio, since 7 out of

the 8 other ELSA datasets have uncensoring ratios below 10% (heavily censored

datasets). Another motivation for this dataset creation lies in a potentially more

comprehensive understanding of disease progression and its impact on individuals’

health and well-being – i.e., to gain insights into the overall disease burden and
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Table 6: The rules used for computing the values of the known diag variables for
each disease and each wave

Disease (target) Intermediate Variable Name Rule

Angina
w2 Angina known diag

IF (w2HeDiaC2 = 1) OR (w2HeDiaS2 = 1)
THEN w2Angina known diag = 1
ELSE w2Angina known diag = 0

w3 Angina known diag
IF (w3hedacan = 1) OR (w3hedasan = 1) OR (w3hediaan = 1) OR (w3dhediman = 1)
THEN w3Angina known diag = 1
ELSE w3Angina known diag = 0

wX Angina known diag
IF (wXhedacan = 1) OR (wXhedasan = 1) OR (wXhediaan = 1) OR (wXhediman = 1)
THEN wXAngina known diag = 1
ELSE wXAngina known diag = 0

HeartAtt
w2 HeartAtt known diag

IF (w2HeDiaC3 = 1)
THEN w2HeartAtt known diag = 1
ELSE w2HeartAtt known diag = 0

W 3HeartAtt known diag
IF (w3hedacmi = 1) OR (w3hediami = 1) OR (w3dhedimmi = 1)
THEN w3HeartAtt known diag = 1
ELSE w3HeartAtt known diag = 0

wX HeartAtt known diag
IF (wXhedacmi = 1) OR (wXhediami = 1) OR (wXhedimmi = 1)
THEN wXHeartAtt known diag = 1
ELSE wXHeartAtt known diag = 0

Diabetes
w2 Diabetes known diag

IF (w2HeDiaC7 = 1) OR (w2HeDiaS7 = 1)
THEN w2Diabetes known diag = 1
ELSE w2Diabetes known diag = 0

w3 Diabetes known diag
IF (w3hedacdi = 1) OR (w3hediadi = 1) OR (w3dhedimdi = 1)
THEN w3Diabetes known diag = 1
ELSE w3Diabetes known diag = 0

wX Diabetes known diag
IF (wXhedacdi = 1) OR (wXhediadi = 1) OR (wXhedimdi = 1)
THEN wXDiabetes known diag = 1
ELSE wXDiabetes known diag = 0

Stroke
w2 Stroke known diag

IF (w2HeDiaC8 = 1)
THEN w2Stroke known diag = 1
ELSE w2Stroke known diag = 0

w3 Stroke known diag
IF (w3hedacst = 1) OR (w3hediast = 1) OR (w3dhedimst = 1)
THEN w3Stroke known diag = 1
ELSE w3Stroke known diag = 0

wX Stroke known diag
IF (wXhedacst = 1) OR (wXhediast = 1) OR (wXhedimst = 1)
THEN wXStroke known diag = 1
ELSE wXStroke known diag = 0

Arthritis
w2 Arthritis known diag

IF (w2HeDiaD3 = 1) OR (w2HeDiDS3 = 1) OR (w2HeDiaS3 = 1)
THEN w2Arthritis known diag = 1
ELSE w2Arthritis known diag = 0

w3 Arthritis known diag
IF (w3hedbdar = 1) OR (w3hedbsar = 1) OR (w3dhedibar = 1)
THEN w3Arthritis known diag = 1
ELSE w3Arthritis known diag = 0

wX Arthritis known diag
IF (wXhedbdar = 1) OR (wXhedbsar = 1) OR (wXhedibar = 1)
THEN wXArthritis known diag = 1
ELSE wXArthritis known diag = 0

Alzheimer
w2 Alzheimer known diag

IF (w2HeDiaD8 = 1) OR (w2HeDiDS8 = 1) OR (w2HeDiaS8 = 1)
THEN w2Alzheimer known diag = 1
ELSE w2Alzheimer known diag = 0

w3 Alzheimer known diag
IF (w3hedbdad = 1) OR (w3dhedibad = 1)
THEN w3Alzheimer known diag = 1
ELSE w3Alzheimer known diag = 0

wX Alzheimer known diag
IF (wXhedbdad = 1) OR (wXhedibad = 1)
THEN wXAlzheimer known diag = 1
ELSE wXAlzheimer known diag = 0

Cancer
w2 Cancer known diag

IF (w2HeDiaD5 = 1) OR (w2HeDiDS5 = 1)
THEN w2Cancer known diag = 1
ELSE w2Cancer known diag = 0

w3 Cancer known diag
IF (w3hedbdca = 1) OR (w3hedbsca = 1) OR (w3dhedibca = 1)
THEN w3Cancer known diag = 1
ELSE w3Cancer known diag = 0

wX Cancer known diag
IF (wXhedbdca = 1) OR (wXhedbsca = 1) OR (wXhedibca = 1)
THEN wXCancer known diag = 1
ELSE wXCancer known diag = 0

Psychiatric
w2 Psychiatric known diag

IF (w2HeDiaD7 = 1) OR (w2HeDiDS7 = 1)
THEN w2Psychiatric known diag = 1
ELSE w2Psychiatric known diag = 0

w3 Psychiatric known diag
IF (w3hedbdps = 1) OR (w3dhedibps = 1)
THEN w3Psychiatric known diag = 1
ELSE w3Psychiatric known diag = 0

wX Psychiatric known diag
IF (wXhedbdps = 1) OR (wXhedibps = 1)
THEN wXPsychiatric known diag = 1
ELSE wXPsychiatric known diag = 0
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Table 7: Base disease variables’ description used in the rules in Table 6

Base Variable Name Label
w2HeDiaC2 Whether confirms angina recorded in wave 1
w2HeDiaS2 Whether still has angina at wave 2
w3hedacan Whether confirms angina diagnosis
w3hedasan Whether still has angina
w3hediaan CVD: angina diagnosis newly reported
w3dhediman CVD: angina diagnosis newly reported (merged)
wXhedacan Whether confirms angina diagnosis
wXhedasan Whether still has angina
wXhediaan CVD: angina diagnosis newly reported
wXhediman CVD: angina diagnosis newly reported (merged)
w2HeDiaC3 Whether confirms heart attack recorded in wave 1
w3hedacmi Whether confirms heart attack diagnosis
w3hediami CVD: heart attack diagnosis newly reported
w3dhedimmi CVD: heart attack diagnosis newly reported (merged)
wXhedacmi Whether confirms heart attack diagnosis
wXhediami CVD: heart attack diagnosis newly reported
wXhedimmi CVD: heart attack diagnosis newly reported (merged)
w2HeDiaC7 Whether confirms diabetes recorded in wave 1
w2HeDiaS7 Whether still has diabetes at wave 2
w3hedacdi Whether confirms diabetes or high blood sugar diagnosis
w3hediadi CVD: diabetes or high blood sugar diagnosis newly reported
w3dhedimdi CVD: diabetes or high blood sugar diagnosis newly reported (merged)
wXhedacdi Whether confirms diabetes or high blood sugar diagnosis
wXhediadi CVD: diabetes or high blood sugar diagnosis newly reported
wXhedimdi CVD: diabetes or high blood sugar diagnosis newly reported (merged)
w2HeDiaC8 Whether confirms stroke recorded in wave 1
w3hedacst Whether confirms stroke diagnosis
w3hediast CVD: stroke diagnosis newly reported
w3dhedimst CVD: stroke diagnosis newly reported (merged)
wXhedacst Whether confirms stroke diagnosis
wXhediast CVD: stroke diagnosis newly reported
wXhedimst CVD: stroke diagnosis newly reported (merged)
w2HeDiaD3 Whether confirms arthritis recorded in wave 1
w2HeDiDS3 Whether still had arthritis at wave 2
w2HeDiaS3 Whether still has arthritis at wave 2
w3hedbdar Whether confirms arthritis diagnosis
w3hedbsar Whether still has arthritis
w3dhedibar Chronic: arthritis diagnosis newly reported
wXhedbdar Whether confirms arthritis diagnosis
wXhedbsar Whether still has arthritis
wXhedibar Chronic: arthritis diagnosis newly reported
w2HeDiaD8 Whether confirms Alzheimers disease recorded in wave 1
w2HeDiDS8 Whether still had Alzheimers disease at wave 2
w2HeDiaS8 Whether still has Alzheimers disease at wave 2
w3hedbdad Whether confirms Alzheimers Disease diagnosis
w3dhedibad Chronic: Alzheimers Disease diagnosis newly reported
wXhedbdad Whether confirms Alzheimers Disease diagnosis
wXhedibad Chronic: Alzheimers Disease diagnosis newly reported
w2HeDiaD5 Whether confirms cancer recorded in wave 1
w2HeDiDS5 Whether still had cancer at wave 2
w3hedbdca Whether confirms cancer diagnosis
w3hedbsca Whether still has cancer
w3dhedibca Chronic: cancer diagnosis newly reported
wXhedbdca Whether confirms cancer diagnosis
wXhedbsca Whether still has cancer
wXhedibca Chronic: cancer diagnosis newly reported
w2HeDiaD7 Whether confirms psychiatric problems recorded in wave 1
w2HeDiDS7 Whether still had psychiatric problems at wave 2
w3hedbdps Whether confirms psychiatric condition diagnosis
w3dhedibps Chronic: psychiatric condition newly reported
wXhedbdps Whether confirms psychiatric condition diagnosis
wXhedibps Chronic: psychiatric condition newly reported
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Table 8: the censoring distribution of instances based on different diseases

Disease Censored Uncensored Missing Before-nurse-visit
Angina 5774 307 788 390
HeartAtt 6099 287 788 271
Diabetes 5738 575 796 370
Stroke 6154 407 790 244
Arthritis 3158 1276 498 2892
Alzheimer 6706 78 830 11
Cancer 5695 775 739 541
Psychiatric 5915 422 768 707

its associated risk factors. Analysing this engineered variable may help to iden-

tify common patterns and shared risk factors among several diseases at the same

time, which could potentially have broader implications for healthcare systems

and public health strategies.

Before starting explaining the creation process of the Any-disease target vari-

able, it should be noted that, for each disease, the subjects in the dataset could

be categorised into four cases depending on the values of their corresponding tar-

get variable. Table 8 reports the number of instances for each case using four

columns, where Censored means censored instances whose target variables took

the lower-bounds; Uncensored means uncensored instances whose target variables

took the observed survival times; Missing represents instances with missing values

on the target variables; Before-nurse-visit refers to instances being diagnosed with

the corresponding disease before the date of nurse visit in wave 2 of the ELSA

survey and having the target variables with negative values or zeros.

Because of this, if we were to create the Any-disease target variable using all

four cases of instances, then the resulting dataset would have 2,190 uncensored

instances out of 6,837 with the following diseases as the cause:

• Arthritis 697

• Cancer 462

• Diabetes 333
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• Stroke 212

• Psychiatric 175

• HeartAtt 137

• Angina 125

• Alzheimer 49

However, this would ruin the definition of the Any-disease target variable by

including the before-nurse-visit instances, since these subjects were diagnosed with

the corresponding disease before the time at which the features of the datasets

had been collected. Furthermore, the same issue could be considered for instances

in the missing case as both their survival times and lower-bound were unknown.

Hence, in order to create a new dataset with the new target variable “Any-

disease”, only instances where all 8 diseases were categorized into the censored

or uncensored cases were included in the dataset; i.e. all instances where any

disease was categorized into the Missing or Before-nurse-visit cases were discarded.

This led to a substantial loss in the number of instances in the new dataset (979

uncensored instances out of 3,280), with the following distribution:

• Arthritis 443

• Cancer 202

• Diabetes 116

• Stroke 67

• Psychiatric 64

• HeartAtt 56

• Angina 45

• Alzheimer 10

Recall that the target and uncensored status variables come in pairs for each

of the 8 diseases. These pairs were used to determine the value of the Any-disease
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Table 9: Example with two diseases considering all possible pairs of cases of
censored and uncensored statuses

Subject Cancer Diabetes
Uncens. Time Uncens. Time

1 1 6 months 1 9 months
2 0 6 months 0 9 months
3 1 6 months 0 9 months
4 0 6 months 1 9 months

target variable for each subject as well as to distinguish between four possible

cases, depending on the values of those two variables for each disease.

To explain the computation of the value of the Any-disease target variable,

Figure 5 illustrates the procedure for engineering the Any-disease target variable.

It provides a visual representation of the steps involved in determining the value

of the Any-disease target variable for each subject and how it relates to the pairs

of target and uncensored status variables for the 8 diseases.

To illustrate this point, we will describe this variable creation for a simple hy-

pothetical scenario involving just two diseases, but the variable creation process

can be straightforwardly generalized to the scenario of 8 diseases in the ELSA

dataset. In this two-disease scenario, there are four possible cases for each in-

stance, regarding whether or not the instance is censored for each of the two

diseases. Considering, for instance, Cancer and Diabetes as the two diseases, the

four possible cases are:

1. both diseases uncensored,

2. both diseases censored,

3. one disease (Cancer) uncensored at an earlier time than the time of other

censored disease (Diabetes),

4. one disease (Cancer) censored at an earlier time than the time of the other

uncensored disease (Diabetes).

Table 9 shows an example dataset with 4 subjects, representing the above
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Figure 5: Procedure for engineering the Any-disease target variable
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Table 10: the extended example from Table 9 showing the calculation of values of
the created Any-disease variables.

Subject Cancer Diabetes Any-disease
LB UB Uncens. Time LB UB Uncens. Time LB UB Uncens. Time

1 - - 1 6 - - 1 9 - - 1 6
2 6 20 0 6 9 10 0 9 6 10 0 6
3 - - 1 6 9 10 0 9 - - 1 6
4 6 20 0 6 - - 1 9 6 9 0 6

4 combinations of censored and uncensored status for Cancer and Diabetes. In

order to explain the procedure for the creation of the Any-disease target variable,

the example dataset in Table 9 is expanded in Table 10, which has additional

columns reporting the Lower Bound (LB) and Upper Bound (UB) for the value

of the target variable (time) of each of the two diseases, as well as new columns

with the LB, UB, Uncensored status and value (time) of the created Any-disease

target variable.

Recall that, for each subject and base disease (Cancer and Diabetes in this

example), the LB and UB variables are defined only when the subject is censored

for that disease. If the patient is uncensored for that disease, the target variable

(diagnosis time) is completely known, and there is no need to consider LB and

UB. When the subject is censored for a given base disease, the LB is the value

of the target variable (representing the ‘censorship time’, i.e. the last date when

the subject was observed without a diagnosis of the disease). The computation

of the UB for the diagnosis time of a given disease will be described later; for the

purposes of the example dataset in Table 10, let us simply assume that the UBs

are as given in this Table.

Hence, the computation of the Any-disease target variable is performed as

follows, for each of the 4 subjects in Table 10. Subject 1 is uncensored for both

base diseases, so LB and UB are not applicable, since we know precisely when the

subject was diagnosed with each disease. Hence, the Uncensored status variable

for the new Any-disease variable is set to 1 (uncensored subject), and the value
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(time) of the Any-disease target is set to the minimum of the target values for the

two base diseases, i.e., set to 6 months (minimum of 6 and 9).

Subject 2 is censored for Cancer at time 6 and censored for Diabetes at time 9.

Given the LB and UB values, the subject may have been diagnosed with Cancer

any time between months 6 and 20, and may have been diagnosed with Diabetes

any time between months 9 and 10. Hence, regarding the Any-disease variable,

the LB for any diagnosis is set to the minimum of the LBs for Cancer and Diabetes

(i.e., 6), the UB is set to the minimum of the UBs for Cancer and Diabetes (i.e.

10), the Uncensored status is set to 0 (censored subject), and the value (time) of

the Any-disease target variable is set to 6, which is the LB for having any of the

two diseases.

Subject 3 is uncensored for Cancer at time 6 (i.e. her/his cancer diagnosis time

is completely known), but censored for Diabetes at time 9, with LB = 9 and UB =

10. Since it is known that the subject was diagnosed with Cancer before the LB for

the possible diagnosis of Diabetes, the date of the latter is irrelevant for computing

the Any-disease variable. Hence, regarding the Any-disease variable, LB and UB

are not applicable, the Uncensored status variable is set to 1 (uncensored subject),

and the value (time) of the Any-disease target is set to 6, which is the minimum

between the uncensored target value for Cancer and the LB for the censored target

value for Diabetes.

Finally, subject 4 is censored for Cancer at time 6, with LB = 6 and UB = 20;

and uncensored for Diabetes at time 9. Hence, regarding the Any-disease variable,

the LB is set to 6 (the LB for Cancer), the upper bound is set to 9, which is the

minimum between the Cancer’s UB of 20 and the uncensored Diabetes’ time of 9,

the Uncensored status variable is set to 0 (censored subject), and the value (time)

of the Any-disease target variable is set to 6, which is the LB for having any of

the two diseases.
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This procedure for computing the Any-disease target variable can be general-

ized to the case of N base diseases (N ≥ 2), by generalizing the description of the

previous 4 cases of combinations of censored and uncensored statuses, as follows:

Case (1): the subject is uncensored for all N diseases

In this simplest case, when creating the Any-disease target variable, LB and UB

are not applicable, the Uncensored status variable is set to 1 (uncensored subject),

and the value of the Any-disease target is set to the minimum of the value (time)

of the target variable among all N diseases.

Case (2): The subject is censored for all N diseases

In this case, the LB for any disease diagnosis is set to the minimum of the LBs for

all N diseases, the UB for any disease diagnosis is set to the minimum of the UBs

for all N diseases, the Uncensored status variable is set to 0 (censored subject),

and the value (time) of the Any-disease target variable is set to the minimum of

the LB among all N diseases.

The next two cases are more complex, and involve cases where the subject is

uncensored for some disease(s) and censored for another disease(s). We refer to

such cases as ‘mixed uncensored/censored statuses’ across all diseases. For the

purposes of creating the Any-disease target variable, what matters is whether the

earliest target variable value (time) among all N diseases is associated with an

uncensored or censored status. This leads to the following two cases.

Case (3): The subject has mixed uncensored/censored statuses, and the

earliest target variable value (time) among all N diseases corresponds

to an uncensored disease D1st−unc

In this case, the Any-disease target variable value (time) is simply set to the value

of the target variable for D1st−unc, which specifies the completely known time
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when the subject was diagnosed with any of the N diseases. The diagnosis time or

censorship time of the other diseases is irrelevant. There is no need to compute LB

and UB for the Any-disease target variable, and the Uncensored status variable

is set to 1 (uncensored subject).

Case (4): The subject has mixed uncensored/censored statuses, and the

earliest target variable value (time) among all N diseases corresponds

to a censored disease D1st−cen

In this case, the Any-disease target variable value (time) is set to the value of

the target variable for D1st-Cen, which specifies the lower bound for the time of

diagnosis for that disease, which is also, of course, the lower bound for any disease

diagnosis. The UB for any disease diagnosis is the minimum among the UB of all

censored diseases and the completely known target variable value of all uncensored

diseases. The Uncensored status variable is set to 1 (censored subject).

Therefore, in the case of censored subjects, the lower-bound of the Any-disease

simply took the smallest value among those of diseases, whilst the upper-bound

required a more complex calculation. To clarify how the above procedure worked,

we take Table 10 as an example where subjects 1 and 3 were uncensored and

their lower-bound and upper-bound were non-applicable (N/A). With regard to

subjects 2 and 4, the censored subjects, both took the lower-bound from that of

Cancer (6 months) due to it being smaller than that of Diabetes (9 months). Next,

subject 2 took the upper-bound from that of Diabetes (10 months) for the same

reason, whereas subject 4 had to compare between the smallest upper-bound (20)

and the smallest uncensored value of the target variable (9 from that of Diabetes).

Hence, subject 2 took the survival time for Diabetes as its upper-bound.
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Creating predictive features based mainly on the Nurse data

The methodology used to create predictive features described in this section is

heavily based on the methodology described in more detail in (Pomsuwan, 2017),

since the features are similar - although the target variables being predicted in this

thesis are very different from the target variables predicted in that work (which

addresses the classification task of machine learning, predicting nominal values of

a class variable).

In the created datasets, most features were created from raw variables available

in the Nurse Visit data, which is part of the previously discussed ELSA database

(Clemens et al., 2019). Those raw variables represent several types of biomedi-

cal information collected by a nurse, including for instance many types of blood

sample tests. In addition, the nurse took several physical performance measure-

ments that involved asking a patient to move his/her body in different ways. If a

particular movement could not be done by the participant or he/she felt that it

was unsafe to try to do it, the attempt was marked as ‘Not attempted’ or ‘Test

not completed’. These features are then used to predict the target variables rep-

resenting the time at first diagnosis of age-related diseases. Although the Nurse

variables are available at ELSA waves 2, 4, 6 and 8, our created datasets contain

only features for wave 2. The main reason is that many subjects were diagnosed

with one of the diseases of interest in wave 3, and using the predictive features

in wave 4 or 6 for predicting such diagnoses would lead to “predicting the past”,

which is not useful in practice.

As mentioned earlier, the raw biomedical variables collected by the nurses were

not collected specifically for machine learning, and they contain a large amount of

obviously redundant or irrelevant information. Hence, we have created predictive

features (for our task of predicting the time passed until the diagnosis of some age-

related disease) by extracting and combining information from the raw variables

in the Nurse data files, as follows. First of all, we kept potentially predictive
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variables from the Nurse data, whilst many other variables which are intuitively

useless for predicting age-related diseases were removed because such variables

were collected mainly to record problems in data collection for other variables. For

example, several variables capturing information such as the reasons why taking

a blood sample test was refused by a patient, and information about several types

of problems in some physical performance measurements, were discarded.

In addition, many variables in the Nurse data represented clearly redundant

information, in cases where the same variable (e.g. the result of a blood test)

was measured three different times in the same wave, in order to represent the

variability in test results. This resulted in the duplication of variables representing

the same biomedical property in each wave, and none of those three measures can

be considered ‘better’ than the other two. Hence, instead of using any of the three

underlying variables, we created a feature defined as the mean value over those

three measures, for each individual (instance), for each wave.

Another point to consider is the occurrence of different types of missing values

in many raw variables in the Nurse data, which were originally labelled as different

negative values, as follows (using as an example a blood test result variable):

• 1 = Not applicable

• 6 = Period between collection and receipt in the lab ¿ 5 days

• 8 = Don’t know

• 9 = Refusal

• 11 = Blood sample not taken

Considering all these types of missing values separately would considerably

complicate the task of the algorithms for predicting the time passed until the di-

agnosis of some age-related disease. Hence, to simplify, all these different negative

values were assumed to have the same meaning of “missing value”, so we treated

them in the same way by replacing all of them with the special missing value

symbol “?”.



CHAPTER 3. DATA PREPARATION 77

Besides the features created from the raw variables in the Nurse data files,

we also included in our datasets two features directly extracted from the Core

files in ELSA which intuitively represent potentially very relevant information

for predicting age-related diseases, namely the features “w2indager” (age) and

“indsex” (gender).

Finally, an important point is that, when creating the instances used in our

datasets, only data from “core” members were used, so the ELSA records of their

partners were ignored. The ELSA variable “idauniq”, which is a unique id for

each individual, was added to our datasets to match up data about the same core

member in different dataset files (across different waves). This variable was not

used for prediction purposes, of course, since it has no predictive power. Note

that an instance was created for an individual only if that individual was not

diagnosed with the disease of interest before wave 3 and participated in the ELSA

study at least up to wave 3, so that the target variable’s values are available for

all individuals (instances) in the created datasets.

3.3 The SHARE dataset

The Survey of Health, Aging, and Retirement in Europe (SHARE) (Börsch-Supan

et al., 2013) is a longitudinal study conducted across many European countries.

SHARE aims to investigate the health, socio-economic, and demographic aspects

of individuals aged 50 and older.

Similar to ELSA, SHARE collects data through waves, with each ‘wave’ rep-

resenting a specific time point of data collection. Each wave reports the chang-

ing circumstances of the participants as they age. In addition, SHARE incorpo-

rates health modules in its surveys to capture detailed health-related information.

These modules cover topics such as self-reported health, chronic diseases, func-

tional limitations, cognitive functioning, and mental health. These data provide
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insights into the health profiles by older individuals in Europe, and thus they are

used as the feature set for the SHARE dataset.

In terms of participants, the SHARE database is significantly larger than the

ELSA database. SHARE initially included around 30,000 individuals aged 50 and

older from 11 European countries in its baseline sample. Over time, additional

countries have been included, further increasing the sample size to over 100,000

participants. As a result, while both databases provide valuable insights into aging

and related factors, SHARE’s larger sample size allows for more robust analyses

and provides a broader representation of the older adult population in Europe.

Unlike the ELSA data, we only created the Any-disease target variable for the

SHARE dataset, with some slight differences in its definition. First, instead of the

target variable representing the number of months passed (for ELSA data), the

Any-disease target variable for the SHARE data represents the number of “waves”

passed until the first diagnosis for any of the given diseases. This is mainly due to

the variable availability in the SHARE database as will be explained next. Second,

there were 11 chronic diseases or medical conditions involved in the creation of the

SHARE’s target variable, instead of 8 diseases like in the ELSA data. Specifically,

these 11 diseases are:

1. A heart attack

2. High blood pressure or hypertension

3. High blood cholesterol

4. A stroke or cerebral vascular disease

5. Diabetes or high blood sugar

6. Chronic lung disease

7. Cancer or malignant tumor

8. Stomach or duodenal ulcer, peptic ulcer

9. Parkinson disease

10. Cataracts
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Table 11: Example dataset with censored and uncensored subjects

Subject wave wavepart chronic mod
1 1 1,2 0
1 2 1,2 1
2 4 4,5,6 2
2 5 4,5,6 2
2 6 4,5,6 2
3 4 4,5,6,7 0
3 5 4,5,6,7 0
3 6 4,5,6,7 1
3 7 4,5,6,7 0
4 1 1,2,3 0
4 2 1,2,3 0
4 3 1,2,3 0
5 7 7 0

11. Hip fracture or femoral fracture

To explain the computation of the value of the Any-disease target variable, we

use an example dataset, as shown in Table 11, which contains 5 unique instances

(subjects). In this table, the “wavepart” column shows the numbers of the waves

where the subject participated, and the “chronic mod” column shows the num-

ber of chronic diseases a subject was diagnosed with at each wave (indicated in

the second column). In the SHARE survey data, the data were stored in “long

format”, where data of the same subject were recorded in multiple rows and each

row contained information for one wave. Therefore, any variables that did not

change across time (i.e. across different waves), such as the subject’s date of birth

and gender, would have the same value in all the rows for a given subject in the

SHARE file.

Although SHARE was a longitudinal study, we used cross-sectional features

(predictor variables) in this project. Specifically, the features for each subject

were derived from the data at the first wave of that subject’s participation, i.e.,

the wave when he or she joined the SHARE survey. For example, the features
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used for subjects 1 and 4 were from wave 1 and the features for subjects 2 and 3

were from wave 4.

In order to create the Any-disease target variable, we used multiple values of

chronic mod variable, corresponding to the same subject, across the waves. Recall

that the Any-disease target variable represents the number of waves passed until

the first diagnosis of any of the above 11 diseases. Hence, the value of the target

variable for each subject is set to the number of the wave at which the value of

chronic mod was greater than 0 for the first time for that subject.

To explain this procedure, consider Table 12 as an example of how the target

variable was created based on the dataset shown in Table 11. First, subject 1

joined the SHARE survey in wave 1 and then was diagnosed with a disease in

wave 2 (Table 11). This means that subject 1 “survived” (i.e. was not diagnosed

with any disease) for 1 wave time, so that the target variable Any-disease took the

value of 1 (Table 12). For subjects 2 and 3, their targets were 0 and 2, respectively.

Since these three subjects developed at least one disease, their uncensored status

variable was marked as 1 (uncensored). Moving on to subjects 4 and 5, who are

censored subjects, we created two special variables: the lower-bound and upper-

bound, to describe all the possible values that the true target variable Any-disease

could take. As shown in Table 11, subject 4 joined the survey in wave 1 and

dropped out after wave 3, meaning the survival time was at least 3. The upper-

bound was set at the end of wave 7, the last wave of the study, so if the subject

survived throughout the study, then he/she survived for at least 7 waves. Next,

subject 5 participated in wave 7 only and no disease-diagnosis event occurred, so

both the lower-bound and upper-bound took the value of 1 for that subject.
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Table 12: An example of how the Any-disease target variable was created based
on the example dataset in Table 11. LB and UB stand for the lower bound and the
upper bound of the target variable, and Uncens is the uncensored status variable.

Subject Any-disease
LB UB Uncens. Target

1 - - 1 1
2 - - 1 0
3 - - 1 2
4 3 7 0 3
5 1 1 0 1

3.4 The Haemodialysis dataset

We used raw variables available in different data files to create the feature set for

the Hemodialysis dataset. Those raw variables represent several types of biomed-

ical information similar to that of the ELSA data collected by a nurse, including

for instance many types of blood sample tests. These features are then used to

predict the target variable representing the time at which the patient died from

kidney disease.

Similar to many other medical-survey databases, the Hemodialysis database

contains a few variables which are obviously redundant or irrelevant information.

Hence, we have created predictive features (for our task of predicting the time

passed until the patient died) by extracting and combining information from the

raw variables in the data files, as follows. First, we kept potentially predictive

variables from the data, whereas some other variables which are present to join

multiple data files together, such as Episode ID, were discarded.

Furthermore, there is another type of non-informative feature in the Haemodial-

ysis dataset where the variables contain a large number of patients (instances) with

missing values as well as a large number of instances with the value 0, which were

wrongly used to represent a “missing value”. Again, these variables are discarded.

As a result, the following lists of variables have been finalised from multiple
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data files.

From the file ExpPats:

• AgeFD: Age at first dialysis

• DxCat: Dialysis category

• TxpStat: Transplant status

• Diabetes: has diabetes (yes/no) (Note: missing values will be interpreted as

“no”)

• RDE1: Diagnosis list 1

• FallsRisk

From the file ExpDialysis:

• PatStatusType: patient status type, at the time of first dialysis (baseline

value)

• PatStatusDesc: patient status description, at the time of first dialysis (base-

line value)

• PostSyBP: post-dialysis systolic blood pressure, post the first dialysis (base-

line value)

From the file ExpKtV:

(again, values at the time of first dialysis, baseline value)

• UreaDiff: difference between first and second urea tests (using this instead

of 1st, 2nd urea values)

• URR: calculated URR

• SimpleKTV: calculated KtV

From the file ExpMeasures:

• BMI: body mass index (kg / m2)
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• estMetabolicRate: estimated metabolic rate

• GripStrength: grip strength

• MAC: Mid-arm circumference

• MAMC: Mid-arm muscle circumference

• TSF: Triceps skinfold thickness

From the file ExpPatCharlson:

• CharlsonScore: Charlson score, an index of co-morbidity

Encoding of categorical variables

Another common data cleansing method that often needs to be applied to real-

world data is one-hot encoding. The Haemodialysis dataset contains many cat-

egorical (nominal, non-numeric) variables, each typically with a large number of

distinct values (often tens of values), such as the variable RDE1 - describing a

diagnosis list, containing 80 distinct categorical values. By using the one-hot

encoding technique, each of these variables is transformed into a set of binary

variables, each one indicating whether or not (1 or 0) the patient has the corre-

sponding value of the original categorical variable. This leads to a large number

of new binary variables. Note that some of these new binary variables contain the

value 0 in nearly all instances because the corresponding categorical value has a

very small frequency in the original dataset. Therefore, these binary variables, i.e.

rare categorical values, are discarded from the dataset. Note that a ‘rare’ value is

defined as a frequency below the threshold of 10.

Creating the target variable for the Haemodialysis dataset

In the Haemodialysis dataset, the “target” variable, the variable to be predicted,

represents the time passed until the patient’s death from kidney disease (measured

in the number of days), or the survival time, which is defined as follows.
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SurvivalT ime = EndDate− StartDate,

where Start Date is the date of the first dialysis and the End Date is the

lower value (earlier date) between the date of death and the study end date

(31/12/2019).

In the Haemodialysis survey (whose data was used for creating the Haemodial-

ysis dataset used in this thesis’ experiments), patients can be categorised into five

types depending on the time period of their participation in this survey, as follows.

(1) The patient started dialysis before the start of the study, has been on

dialysis within the study for at least 2 years, and died within the study period.

This type of patient has no records of their health status before starting the

dialysis, thus, they will be excluded from this thesis’ experiments.

(2) The patient started dialysis after the start of the study, has been on dialysis

within the study for at least 2 years, remained in the study until its end, and died

after the end of the study. In this case, the End Date is the end of the study, the

patient is censored, and this patient will be used in this thesis’ experiments.

(3) The patient started dialysis after the start of the study, has been on dialysis

within the study for at least 2 years, and died within the study period. In this

case, the End Date is the date of death, the patient is uncensored, and this patient

will be used in this thesis’ experiments.

(4) The patient started dialysis after the start of the study, has been on dialysis

within the study for less than 2 years, and died within the study period. In this

case, the End Date is the date of death, the patient is uncensored, and this patient

will be used in this thesis’ experiments.

(5) The patient started dialysis after the start of the study, has been on dialysis

within the study for less than 2 years, and died after the end of the study. This

patient will not be used in this thesis’ experiments, as decided in discussions with

a medical expert on the data.
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Figure 6: An example of the different types of patients in the Haemodialysis
database.

In summary, only three out of five types of patients are included in the dataset

created for the machine learning (survival analysis) experiments performed in this

thesis, namely Patient types 2, 3 and 4. Type 2 patients are censored (did not

die before the end of the study) and, thus, their survival times are a lower-bound

for the unknown survival time. Types 3 and 4 patients are uncensored and their

survival times are defined as the number of days from their first dialysis to death.

3.5 Computation of lower and upper bounds for

the target variable

This section will describe how to compute the lower and upper bounds for the

value of the target variable in the case of censored subjects. These bounds will

be used as part of the specification of the new variations of random forests for

survival data proposed in the next two sections.
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Recall that the main challenge of survival analysis is to cope with censoring

in the target variable. This thesis focuses on right-censoring (as opposed to left-

censoring) (Kleinbaum and Klein, 2012), which is common in medical research

and occurs very often in our datasets (described in the previous chapter). Right-

censoring occurs when the subject dropped out of the study before its end and

no event of interest occurred before the dropout, or when the study ends before

the event of interest occurred for a subject. Note that in right-censoring the last

observed time for a censored subject is a lower-bound for the unknown event

occurrence time.

The target value’s upper-bound for each censored subject (i.e. each instance

in the dataset) is computed as the number of months passed between the date

of the nurse visit to the patient when the patient joined the study (nurse year

and nurse month) and the end of the study, which is wave 8 (last wave) for the

datasets derived from the ELSA database and wave 7 for the SHARE dataset.

In contrast with the ELSA and SHARE datasets, the Haemodialysis dataset

does not have a nurse visit date or an end-of-study date. Therefore, in the

Haemodialysis dataset, we have simply taken the longest survival time of the

censored patient as the upper-bound for every other patient in the dataset.

3.6 Conclusion

This chapter has described in detail the creation of 11 survival analysis datasets,

which will be used in the experiments reported in the next three chapters. In 10

of these datasets (derived from data in the ELSA and SHARE studies) the target

variable to be predicted is the time passed until an individual is diagnosed with

some age-related disease, whilst in the haemodialysis dataset the target variable is

the time passed until the death of an individual. Table 13 provides a summary of

the main characteristics of the created datasets; namely the number of instances
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Table 13: Main characteristics of the datasets used in the experiments

Dataset Name Data Source #Instances #Features
(Num.,Cat.) Uncens. Ratio

Alzheimer ELSA 6825 44 (27,17) 1.0%
Angina ELSA 6488 44 (27,17) 2.5%

HeartAtt ELSA 6607 44 (27,17) 2.8%
Psychiatric ELSA 5972 44 (27,17) 3.5%

Stroke ELSA 6632 44 (27,17) 4.1%
Diabetes ELSA 6500 44 (27,17) 6.4%
Cancer ELSA 6386 44 (27,17) 8.8%

Arthritis ELSA 4276 44 (27,17) 18.3%
Any-disease (ELSA) ELSA 3280 44 (27,17) 29.8%

Any-disease (SHARE) SHARE 139522 15 (4,11) 72.6%
Haemodialysis n/a 1097 38 (27,11) 71.4%

(individuals); number of features, also reporting the number of numerical and

categorical features; and the proportion of uncensored instances (uncensored ratio)

in each dataset.



Chapter 4

New Variants of Random Forests

for Survival Data based on the

Imputation of Censored Target

Variables

4.1 Introduction

This chapter will explore the potential of using imputation techniques to address

censoring issues. This approach involves substituting the censored target value

with an estimate of an uncensored value. This modification allows for the use of

all other components of the RF algorithm without any alterations. This chapter

proposes two novel RF algorithm variants for this data transformation. Both

variants involve the basic idea of imputing the value of censored target variables

in the data used for learning each tree in the random forest. It will also report

the results of computational experiments evaluating the proposed RF variants.

This chapter is organised as follows. Section 4.2 explains the Random Target-

Imputation Forests, the variant that generates uncensored target values randomly

88
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within certain lower and upper bounds. Section 4.3 describes the K-Nearest

Neighbours-based Imputation for Random Forests, the variant that uses the K-

Nearest Neighbour (KNN) algorithm to estimate the uncensored target value of

each censored instance. Section 4.4 describes the experimental methodology. Sec-

tion 4.5 reports experimental results, including both predictive accuracy results

and an analyis of the most important predictive features in the best models learned

in our experiments, for our age-related datasets.

4.2 Random Target-Imputation Forests (RTIF)

This section will describe the proposed RTIF method, a variant of random forests

where censored values of the target variable are randomly imputed (within certain

bounds) in the training data, before learning each tree in the forest. RTIF is

designed specifically to solve the censoring issue in survival analysis.

More precisely, the method is based on the idea of imputing the value of

the target variable of each censored instance, based on lower and upper bounds

for that instance’s target value. These lower and upper bounds are calculated as

explained in the previous section. This means that an imputed value of a censored

instance is a uniformly random value between its lower-bound and upper-bound.

In addition, in order to increase the diversity of the trees in the forest, this

target-variable imputation process is applied independently for every bootstrap

training set, as shown in Figure 7. Therefore, the same censored instance may

contain different imputed target values in different bootstrap samples.

Note that this imputation allows all other procedures of the Random Forest

algorithm to be used without modification.

The pseudo-code of the RTIF method is shown in Algorithm 2, where input targeti,

the i-th censored instance’s target value (survival time), is replaced by a randomly

generated value between LBi and UBi, which are the i-th censored instance’s lower
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bound and upper bound, respectively.

Algorithm 2: RTIF.
1 for each Bootstrap Sample do
2 for each censored instance i in the current Bootstrap Sample do
3 input targeti ← random(LBi, UBi)
4 end
5 end

4.3 K-Nearest Neighbours-based Imputation for

Random Forests (KNN-RF)

This section will describe in detail the KNN-RF method, where a variant of the

K-NN method is used for the imputation of censored values of the target variable

in the training data, before learning each tree in the forest.

The K-Nearest Neighbours Random-Forests (KNN-RF) method performs a

more sophisticated imputation of censored values than the previously described

RTIF method. More precisely, KNN-RF replaces the random generation of tar-

get variable values with a deterministic imputation method based on the actual

target values from the uncensored subjects which are the nearest neighbours of

the current censored subject (whose target variable value needs to be imputed).

Furthermore, in order to identify the nearest neighbours, the KNN-RF method

looks for uncensored subjects with the most similar age to the age of the current

censored subject. Then, the mean value of the target variable among all those

uncensored neighbours is used as the imputed value of the target variable for the

current censored subject.

In order to find the nearest uncensored neighbours for a censored subject based

on age, we propose the pseudo-code shown in Algorithm 3, which is based on the

following notation.
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Bootstrap T1

regression tree K1

Aggregation
Procedure

Prediction 1

Bootstrap T2

regression tree K2

Prediction 2

Bootstrap TS

regression tree KS

Prediction S

The model's prediction

Original Training set (T)

Random Sampling n instances
with-replacement

Imputing T1 Imputing T2 Imputing TS

Figure 7: Overview of the proposed Random Target-Imputation Forest (RTIF)
method, a variation of random forests for survival data analysis
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Notation used in Algorithm 3

• (xi, yi) = feature value vector xi and target variable value yi of the i-th

instance

• xi.age = age value of the i-th instance

• xi.uncens = uncensored status of the i-th instance (1 = uncensored, 0 =

censored)

• Nbi = valid neighbours of the i-th instance: neighbours which are uncensored

and have target value within the lower and upper bounds of the i-th instance

(LBi and UBi)

• Hi Age Nbi = valid neighbours with higher age as close as possible to the

i-th instance’s age

• Lo Age Nbi = valid neighbours with lower age as close as possible to the

i-th instance’s age

• Min age = minimum age value among all uncensored instances in the train-

ing set

• Max age = maximum age value among all uncensored instances in the train-

ing set

• LBi = lower bound for the target value of the i-th instance

• UBi = upper bound for the target value of the i-th instance

• Defaulti = the default imputation value of the i-th instance using the middle

value between LBi and UBi

There are three possibilities for computing the neighbours of the censored

subject in Algorithm 3, as follows.

First, the algorithm looks for valid neighbours of the same age as the censored

subject. If such neighbour(s) is(are) found, the algorithm imputes the target

value of the current censored subject with the median of target values among

valid neighbours. This is implemented in lines 6–8 of Algorithm 3. As shown in

Line 6, a training instance j is a valid neighbour of the current instance i (whose
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target value is being imputed) if instance j is uncensored and j’s target value is

within the lower and upper bounds of instance i.

Second, if there are no such neighbours, the algorithm looks for valid neigh-

bours with ages as close as possible to the censored subject’s age. If such valid

neighbour(s) is(are) found, the algorithm imputes the target value in the same

way as described for the above first case. This is implemented in lines 10–24

of Algorithm 3. These lines implement a loop which increases the “age gap” by

one unit at each iteration of the loop. Hence, at each iteration, the algorithm

produces two new candidate ages to try to find valid neighbours, by adding and

subtracting the age gap to and from the age of the current censored subject.

This process of increasing the age gap and looking for valid neighbours terminates

when some valid neighbours are found or when both adding and subtracting the

age gap produces new candidate ages which are greater than the maximum and

lower than the minimum age, respectively – where the maximum and minimum

ages are identified among all uncensored instances in the training set.

Finally, as in the third case, if there are no valid neighbours at all, the algorithm

uses a default imputation value generated by using the middle value between LBi

and UBi. This is implemented in lines 26–28 of Algorithm 3.

4.4 Experimental Methodology

This section is divided into four parts: the first subsection provides a summarised

description of the datasets used in the experiments; the second subsection men-

tions the predictive performance measure used; the third subsection describes

the hyper-parameter tuning procedure, based on nested cross-validation; and the

fourth subsection describes the statistical significance tests used to analyse the

results.
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Algorithm 3: KNN-RF.
1 N median sameAge input← 0
2 N median diffAge input← 0
3 N mean bounds input← 0
4 for each Bootstrap Sample do
5 for each censored instance i in the current Bootstrap Sample do
6 Nbi ← { (xk, yk) | xk.uncens = 1, xkage = xj.age, LBi ≤ yk ≤

UBi }
7 if Nbi ̸= ∅ then
8 yi ← median of y in Nbi

N median sameAge input← N median sameAge input + 1
9 else

10 Age gap← 1
11 repeat
12 if xi.age + Age gap ≤Max age then
13 Hi Age Nbi ← {(xk, yk) | xk.uncens =

1, xk.age + Age gap = xi.age, LBi ≤ yk ≤ UBi}
14 end
15 if xi.age− Age gap ≥Min age then
16 Lo Age Nbi ← {(xk, yk) | xk.uncens =

1, xk.age− Age gap = xi.age, LBi ≤ yk ≤ UBi}
17 end
18 Nbi ← Hi Age Nbi ∪ Lo Age Nbi
19 if Nbi ̸= ∅ then
20 yi ← median of y in Nbi

21 N median diffAge input←
N median diffAge input + 1

22 Age gap← Age gap + 1
23 end
24 until Nbi ̸= ∅ OR ((xi.age + Age gap > Max age) AND

(xi.age− Age gap < Min age))
25 end
26 if Nbi ̸= ∅ then
27 yi ← Defaulti = LBi+UBi

2
28 N mean bounds input← N mean bounds input + 1
29 end
30 end
31 end
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4.4.1 Datasets used in the experiments

The experiments used 11 datasets for 11 different age-related diseases (i.e. 11

separate survival prediction problems). 10 of these 11 datasets were created from

two different surveys, ELSA (English Longitudinal Study of Ageing) (Clemens

et al., 2019) and the Survey of Health Ageing and Retirement in Europe (SHARE)

(Börsch-Supan et al., 2013). The other dataset involves predicting the survival

time for haemodialysis patients. The creation of these datasets was described in

detail in Chapter 3.

More precisely, 9 out of the 11 datasets were constructed from the ELSA data,

containing between 3,000 and 7,000 instances (depending on the target variable),

with exactly the same 44 predictive features, but different target variables. On

the other hand, the dataset constructed from the SHARE data is much larger,

containing almost 140,000 instances but only 15 predictive features. In essence, the

instances represent individuals (subjects) in these surveys, and the target variables

represent the ‘survival times’, more precisely, the time passed (in months) until

an individual is diagnosed with a certain disease (for 8 datasets) or any of several

diseases (for two datasets); whilst the predictive features represent biomedical

information collected by nurses or other relevant characteristics of an individual

(age and gender). The haemodialysis dataset has 1,097 instances with 38 features,

and in this dataset the target variable represents the survival time of patients

undergoing haemodialysis.

In general, the ELSA datasets have a small proportion of uncensored instances

(i.e. the large majority of their instances are censored). By contrast, the SHARE

dataset and the Haemodialysis dataset have a large proportion of uncensored

instances.
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4.4.2 Predictive Performance Measure

In the experiments being reported in this chapter, the predictive performance of

the learned survival models was estimated by the concordance index (C-index),

which is a measure accounting for censored data, and is probably the most used

measure of performance for survival prediction tasks. Recall that the C-index can

be interpreted as the probability of correctly ordering the predicted survival times

for a randomly chosen pair of subjects whose actual survival times are different.

For a precise formal definition of the C-index, the reader is referred to Section

2.2.5 in Chapter 2.

4.4.3 Hyper-parameter tuning with nested cross-validation

All experiments were performed using nested cross-validation, where 5-fold in-

ner cross-validation performs hyper-parameter tuning and 10-fold outer cross-

validation estimates predictive performance. That is, for each of the 10 training

sets of the outer cross-validation, each candidate configuration (combination of

hyper-parameter settings) of the algorithm is evaluated via a 5-fold inner cross-

validation applied to that training set only — without using the corresponding test

set. Hence, in each run of the algorithm during the 5-fold inner cross-validation,

the algorithm is trained on 80% of the training data and evaluated on the remain-

ing 20% of the training set, called the validation set. The algorithm configuration

with the highest average C-index value over the 5 validation sets of that inner

cross-validation is chosen as the best configuration for the current training set.

Then, the algorithm is re-trained, with that configuration, on the entire train-

ing set, and the learned model is evaluated on the current test set of the outer

cross-validation. The result returned by the nested cross-validation is the aver-

age C-index value computed over the 10 test sets of the outer cross-validation, as

usual.

Regarding the Random Forest hyper-parameters to be optimised by the inner
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cross-validation, first, we set the number of trees in the forests to a constant of

500 as suggested by (Probst, Wright and Boulesteix, 2019). Then, in order to

optimise the performance of the Random Forests algorithm, we selected two more

important hyper-parameters as suggested by (Lin and Jeon, 2006) and (Lynch

et al., 2017): the minimum node size (the minimum number of instances allowed

at leaf nodes) and mtry (the number of randomly sampled candidate features at

each tree node) for all experiments performed in this chapter.

We used 5 folds for the inner cross-validation for all datasets, whilst the number

of folds for the outer cross-validation was set to 10 for the ELSA datasets and the

haemodialysis dataset and set to 5 for the SHARE dataset. The SHARE dataset

has fewer folds to save computational time since it is much larger than the other

datasets.

The tuning procedure tried all possible combinations of 3 minimum node size

values (5, 7 and 10) for all datasets. However, we consider a different set of

candidate mtry values for the ELSA datasets and SHARE dataset separately,

since there is a difference between their numbers of features, where the former

contains 44 and the latter contains 15 predictive features. For ELSA, we specify

four candidate values for mtry (4, 7, 10, 13). The first two values were calculated

as ceil(ln(44)) = 4 and ceil(sqrt(44)) = 7, where the natural logarithm (ln) and

the square root (sqrt) are often considered default functions for specifying the

value of mtry in random forests, and ceil(x) returns the ‘ceiling’ of x, i.e. the

lowest integer that is greater than or equal to x (i.e. it rounds x up to the nearest

integer). Similarly, the set of candidate values for SHARE is (3, 4, 6, 8), where

the first two values were calculated as ceil(ln(15)) = 3 and ceil(sqrt(15)) = 4.

Third, I use mtry = 5, 6, 8, 10 for the Haemodialysis dataset. Therefore, for

all methods and each dataset, at each iteration of the outer cross-validation, the

inner cross-validation is run 12 times on the training set, considering 12 candidate

random survival forest configurations (4 candidate mtry values times 3 candidate
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node size values).

4.4.4 Statistical significance tests

In this section, all statistical significance tests used to analyse our experimental

results are described. Besides average ranking and win count, statistical tests

are helpful to assure whether or not the performance gaps among the supervised

models are significant. In statistical words, we attempt to strengthen our confi-

dence as well as deny the claim that an improvement in the observed results is a

coincidence. We focus on pairwise comparisons for machine learning models.

In order to evaluate whether the null hypothesis of the test may be rejected

or not, statisticians generally use p value as a measure of probability to compare

against a significance level called α, which is a pre-defined parameter: 5% is the

most commonly used value. In the context of machine learning, a null hypoth-

esis (H0) can be defined as all of the models being equally accurate in terms of

predictive performance. As such, we can assert an alternative hypothesis (H1 or

HA) that there is a significant difference among the models’ performances at 1−α

confidence (Demšar, 2006).

Friedman’s test

Friedman’s test is a rank-based non-parametric test for determining whether or

not there are significant differences in the performance of multiple supervised ma-

chine learning models across multiple datasets (Friedman, 1940). Non-parametric

means that the test makes no assumption about the dataset having a particular

distribution, e.g., the normal distribution. The null hypothesis for the test is

that all the prediction models have identical predictive accuracy. The alternative

hypothesis is that the prediction models have different predictive accuracy.

Friedman’s test involves several steps (Demšar, 2006), which can be sum-

marised as follows. First of all, it ranks the predictive accuracy values of the
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models being compared for each dataset (row) separately. That is, the model

with the highest predictive accuracy is assigned a rank of 1. In the case of a tie,

the corresponding average rank is assigned to the tied models. Afterwards, the

ranks are averaged for each survival method. The next step is to calculate the

Friedman’s test statistic (χ2
F ) as follows:

χ2
F = 12N

k(k + 1)

∑
j

R2
j −

k(k + 1)2

4

 (27)

where N is the number of datasets, k is the number of methods and Rj is the

average ranks of the models being compared. However, as pointed out in (Iman

and Davenport, 1980), a better statistic can be derived, as shown in equation 28,

FF = (N − 1)χ2
F

N(k − 1)− χ2
F

(28)

which is distributed according to the F distribution with (k−1) and (k−1)×(N−1)

degrees of freedom and FF is the Friedman’s test value.

After that, there are two equivalent ways to determine the test result. First,

compute the critical value based on the given degrees of freedom; if the Fried-

man’s test value is greater than the critical value, then the null hypothesis can be

rejected. Second, convert the Friedman’s test value into a p value; if the p value

is smaller than the significance level α, then the null hypothesis can be rejected.

Otherwise, the null hypothesis cannot be rejected, and thus the comparison is

deemed non-significant.

If the null hypothesis is rejected, which means that there is a significant differ-

ence in predictive performance among the different methods, we need to apply a

post-hoc test to determine which pairs of methods have significantly different per-

formances. The post-hoc test used in this thesis, the Holm procedure, is described

next.
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Holm Procedure

The Holm procedure is a post-hoc and non-parametric test for multiple compar-

isons — i.e., determining whether or not there are significant differences in the

predictive performance of the best (control) method against each of the other

methods (Holm, 1979). Specifically, a post-hoc test is applied if and only if a

pre-hoc test (like the Friedman’s test) has determined that there is a significant

difference in the predictive performances of several methods. In addition, the

Holm procedure is a multiple-hypothesis test where the number of null hypothe-

ses is the same as the number of method comparisons, which is the number of

methods against which the best (control) method is compared. That is, this pro-

cedure compares the best method against each other i-th method, i = 1,...,k − 1,

where k is the number of methods.

Let pi denote the p-value for the comparison between the control method and

the i-th method. In order to compensate for multiple comparisons, the Holm

procedure compares each pi value against an adjusted significance level αi based

on a pre-defined target significance level, denoted target α (0.05 in general), as

follows.

αi = target α

k − i
(29)

The test result of each comparison is determined by the pi value derived from

the zi score, computed as shown in equation 30:

zi = Ri −R0

SE
(30)

where R0 and Ri are the average ranks of the control method and the compared

method, respectively; and SE is the standard error which can be computed from

the following equation 31,
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Table 14: Results of the calculations performed by the post-hoc Holm procedure,
for the example scenario discussed in the main text

i method zi = Ri−R0
SE

pi αi

1 B 2.6−1.4
0.426 = 2.683 0.0037 0.025

2 C 2.0−1.4
0.426 = 1.342 0.0899 0.050

SE =
√

k(k + 1)
6N

(31)

where N is the number of datasets, k is the number of methods.

As such, the Holm procedure decides whether to reject the null hypotheses in

a step-wise fashion, starting with the smallest (most significant) p value (Demšar,

2006). If that pi value is larger than the αi, then the corresponding null hypothesis

cannot be rejected. Therefore, the test result concludes a non-significant differ-

ence, and then the whole procedure terminates, and all the other comparisons are

also deemed non-significant. However, if that pi value is smaller than the adjusted

αi, then the corresponding null hypothesis is rejected. Then, the test moves to

the next null hypothesis (the second smallest p-value) and repeats the process.

For example, consider the case where three different methods are compared in

an experiment with 11 datasets (which is the case in some experiments reported

later in this thesis). Suppose that methods A, B and C obtained the average

ranks of 1.4, 2.6 and 2.0, respectively. Since method A is the best among the

three based on the average rank, it is selected as the control method, and it will

be compared against the other two methods, B and C, using the Holm procedure

to adjust the α values for multiple comparisons. Suppose that target α is 0.05

(as usual). Then, applying equation 29 with k = 3, α1 = 0.025 and α2 = 0.05.

Next, in order to compute the corresponding statistics and p values, we need to

calculate the standard error SE =
√

3(3+1)
6×11 = 0.426 and each p value is calculated

from the corresponding z score based on consulting a table of probabilities for the

standardised normal distribution.
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The calculations of the zi and pi values for the above example are shown in

Table 14. As a result, the Holm procedure rejects the first null hypothesis (H0),

but does not reject the second H0. Hence, there is sufficient evidence to support

the claim that method A significantly outperformed method B, but there is not

enough evidence to support the claim that A is significantly better than C.

4.5 Computational Results

This section reports the computational results obtained by the proposed Random

Forests variants and other methods, including the results of statistical significance

tests. This section is divided into five subsections, as follows.

Subsection 4.5.1 compares the predictive performance of one of the RF vari-

ants proposed in this chapter, namely Random Target-Imputation Forest (RTIF)

against the performance of two simple baselines: a standard Random Forest (RF)

for the regression task and the IPC-weight RF (Vock, Wolfson et al., 2016) – de-

scribed in Chapter 2. The standard RF for regression uses a simple approach to

cope with censored instances, dropping the censored instances. The IPC-weight

RF consists of removing the censored instances and assigning weights to the un-

censored instances, as described in Subsection 2.3.2. Hence, both these baseline

methods essentially involve modifying the data rather than modifying the RF

method, i.e. they use a standard RF method. It is important to note that hy-

perparameter tuning was performed not only for the proposed RTIF, but also for

these two baseline methods. The same candidate hyperparameter settings were

used to tune these 3 algorithms.

Subsection 4.5.2 compares the predictive performance of the other RF vari-

ant proposed in this chapter, K-Nearest Neighbour RF (KNN-RF), against the

performance of the same two baselines.

Subsection 4.5.3 compares the predictive performance of the two proposed RF
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variations against the standard Random Survival Forest (RSF) method. RSF

is one of the most popular and powerful methods for survival analysis in the

area of machine learning, and it uses sophisticated survival analysis concepts and

techniques to cope with censored data. More precisely, in RSF the procedures

for selecting the best variable at each node of a decision tree and the procedure

for computing the predictions at leaf nodes are based on specific survival analysis

concepts for coping with censored data (as discussed in Chapter 2), unlike the

standard RF for regression and the IPC-weight RF.

Subsection 4.5.4 compares the predictive performance of the two proposed RF

variations against the Cox Proportional Hazards (PH) method. The Cox PH

method is a classical and probably the most popular method for survival analysis

in the area of statistics.

We present these results in four separate subsections, as opposed to compar-

ing all 5 methods in a single section, in order to more clearly identify the relative

strength or weakness of the proposed RF variants by comparison with different

types of baseline methods, with different degrees of sophistication in their ap-

proach to cope with censored data.

Finally, subsection 4.5.5 reports the hyper-parameter settings most frequently

chosen for each RF method by the previously described nested cross-validation

approach for hyper-parameter optimisation. In this case, there is no predictive

performance comparison across methods, rather the goal is simply to identify

patterns involving the best hyper-parameter settings for all the RF variants used

in the experiments, so it is appropriate to discuss this in a single subsection.

4.5.1 Results comparing the proposed RTIF against two

baseline Random Forest methods

Table 15 reports the C-index values obtained by three variants of Random Forests:

the standard Random Forest for regression task, the IPC-weight Random Forests
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Table 15: Predictive performance obtained by three variants of Random Forests

Dataset RF regressor IPC weight RTIF
Disease uncensoring ratio c-index c-index c-index

Alzheimer 69/6825 (1.0%) 0.7160 0.6576 0.7742
Angina 165/6488 (2.5%) 0.5472 0.5691 0.5723

HeartAtt 186/6607 (2.8%) 0.5856 0.5894 0.6228
Psychiatric 219/5972 (3.5%) 0.4709 0.4834 0.4692

Stroke 270/6632 (4.1%) 0.5919 0.5983 0.6366
Diabetes 416/6500 (6.4%) 0.6395 0.6796 0.7443
Cancer 562/6386 (8.8%) 0.5129 0.5071 0.5135

Arthritis 784/4276 (18.3%) 0.5019 0.5068 0.5078
Any-disease

(ELSA) 979/3280 (29.8%) 0.5249 0.5316 0.5384

Any-disease
(SHARE)

101300/139522
(72.6%) 0.6597 0.6552 0.7061

HD 783/1097 (71.4%) 0.4874 0.4927 0.5435
Average Rank 2.64 2.18 1.18

(Vock, Wolfson et al., 2016) and the proposed Random Target-Imputation Forest

(RTIF) method, breaking down by each disease used as the target variable to

be predicted. Recall that the target variable in each dataset represents the time

passed (in months) until a subject is diagnosed with the corresponding disease.

The second column of this table shows the number and ratio of uncensored

instances in each dataset. The datasets are listed in the table in increasing order

of their uncensoring ratio. Note that in nearly all datasets the uncensoring ratio

is smaller than 50%, i.e. the majority of instances were censored. The only two

exceptions are the SHARE (Any-disease) dataset, where 72.6% of the instances are

uncensored, and the Haemodialysis (HD) dataset, where 71.4% of the instances

are uncensored. The uncensoring ratio is smaller than 10% in 7 of the 11 datasets,

which makes them particularly challenging datasets for survival analysis.

The last three columns of Table 15 report the C-index values obtained by the

three RF variants. For each dataset (i.e. in each row), the highest C-index value

is highlighted in boldface font; and the last row shows the average rank obtained
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by each method. To compute this, first each method was assigned a rank for each

dataset, with the best method (highest C-index) assigned rank 1 and the worst

method (lowest C-index) assigned rank 3; and then the rank of each method was

averaged across the 11 datasets.

As shown in Table 15, the proposed RTIF performed considerably better than

the other two baseline variants, with 9 wins across the 11 datasets and the best av-

erage rank of 1.18. Regarding the performance of the IPC-weight RF method, its

lower predictive accuracies were presumably partly due to the small proportions of

non-zero-weight instances – e.g., in 7 datasets the proportion of non-zero-weight

(uncensored) instances is smaller than 10%, as mentioned earlier. Recall that the

IPC weight is 0 for censored instances. Hence, for most datasets, the large major-

ity of instances were censored and had absolutely no participation in the model

training. In any case, the IPC-weight RF at least outperformed the standard RF

regressor, with the former obtaining 1 win and an average rank of 2.18, whilst the

latter did not obtain any win and had the worst average rank, 2.64. The poor

performance of the RF regressor was expected since this is standard a standard

RF method for regression which was not designed for survival analysis (unlike

IPC-weight RF, which was designed for survival analysis).

Intuitively, we would expect that, in general, the performance of all these

three RF methods would be better (with a higher C-index) in datasets with larger

uncensoring ratios than in datasets with very small uncensoring ratios, since the

latter provides substantially less information about the precise values of the target

variable. However, the results do not support this intuition. In particular, for all

the 3 RF variants, their two highest C-index values were obtained on the Alzheimer

and Diabetes datasets, both of which have very low proportions of uncensored

instances, 1% and 6.4%, respectively (as shown in the second column of Table

15). In addition, for all the three RF variants, in general, their lowest C-index

values were obtained on the Psychiatric, Arthritis, Cancer and HD datasets, where
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the latter three have an uncensoring ratio of 18.3%, 8.8%, and 71.4% respectively.

Although 18.3% and 8.8% are low ratios, they are higher than the uncensoring

ratios of the two aforementioned datasets with the best results; and 71.4% is by

far the highest uncensoring ratio in our 11 datasets. Hence, it is clear that a

higher uncensoring ratio is not associated with a higher C-index value in general,

for the results in Table 15.

The non-parametric Friedman test (Demšar, 2006) was used to determine

whether or not there is a significant difference among the average ranks of the

three methods and the mean rank of 2.0 under the null hypothesis. The calcu-

lated value of FF is 12.407. With 3 methods and 11 datasets, FF is distributed

according to the f distribution with 3 - 1 = 2 and (3-1) x (11-1) = 20 degrees of

freedom. The critical value of F(2,20) for α = 0.05 is 3.493 (p-value = 0.002). FF

is greater than the critical value, and so the null hypothesis is rejected at the con-

ventional significance level of α = 0.05. Hence, there is a statistically significant

difference between the performances of the three methods as a whole.

Therefore, we proceed with the Holm post-hoc test (Demšar, 2006), which

compares the average rank of the best (control) method, RTIF, against each of the

other two methods, by adjusting the significance level of α = 0.05 to compensate

for multiple comparisons. The results were that RTIF significantly outperformed

both the RF-regressor (p-value = 0.0003, smaller than adjusted α = 0.025) and

the IPC-Weight RF variant (p-value = 0.010, smaller than α = 0.050). Hence,

there is sufficient evidence to support that the RTIF significantly outperforms the

other two baseline RF variants, since the two null hypotheses can be rejected.
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Table 16: Predictive performance obtained by three variants of Random Forests

Dataset RF regressor IPC weight KNN-RF
Disease uncensoring ratio c-index c-index c-index

Alzheimer 69/6825 (1.0%) 0.7160 0.6576 0.7747
Angina 165/6488 (2.5%) 0.5472 0.5691 0.5677

HeartAtt 186/6607 (2.8%) 0.5856 0.5894 0.6269
Psychiatric 219/5972 (3.5%) 0.4709 0.4834 0.4748

Stroke 270/6632 (4.1%) 0.5919 0.5983 0.6421
Diabetes 416/6500 (6.4%) 0.6395 0.6796 0.7029
Cancer 562/6386 (8.8%) 0.5129 0.5071 0.5093

Arthritis 784/4276 (18.3%) 0.5019 0.5068 0.5020
Any-disease

(ELSA) 979/3280 (29.8%) 0.5249 0.5316 0.5351

Any-disease
(SHARE)

101300/139522
(72.6%) 0.6597 0.6552 0.7034

HD 783/1097 (71.4%) 0.4874 0.4927 0.5742
Average Rank 2.64 2.00 1.36

4.5.2 Results comparing the proposed KNN-RF against

two baseline Random Forest methods

Table 16 reports the C-index values obtained by three variants of Random Forests

(RF): the standard Random Forest for the regression task, the IPC-weight Ran-

dom Forest (Vock, Wolfson et al., 2016) and the proposed KNN-RF method,

breaking down by each disease used as the target variable to be predicted – whose

value is the number of months passed until a subject is diagnosed with the corre-

sponding disease, as described earlier. The second column of this table shows the

number and ratio of uncensored instances in each dataset, which also appears in

Table 15 but is repeated here for the reader’s convenience. The boldfaced C-index

values highlight the best result for each dataset, and the average ranks in the last

row are computed as previously described for Table 15.

As reported in the C-index columns of Table 16, the proposed KNN-RF per-

formed, overall, substantially better than the other two baseline methods. More
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specifically, KNN-RF was the winner in 8 of the 11 datasets, followed by IPC-

weight RF, the winner in the three other datasets. KNN-RF also obtained the

best average rank, 1.4.

Again (similarly to the results in Table 15), all of the RF variants had very poor

performance (C-index around 0.5) in 3 datasets (Arthritis, Cancer and Psychiatric

disorder); and the two baseline RF methods also had very poor performance on

the HD dataset. The three highest C-index values in the entire Table 16 were

0.7747, 0.7034 and 0.7029, obtained by the proposed KNN-RF in the Alzheimer,

SHARE and Diabetes datasets, respectively.

We applied the non-parametric Friedman test (Demšar, 2006) to determine

whether or not there is a significant difference between the average ranks of the

three methods and the mean rank of 2.0 under the null hypothesis. The value

of FF is 6.806 while the critical value is 3.493 (p-value = 0.002). FF is greater

than the critical value, and so the null hypothesis is rejected at the conventional

significance level of α = 0.05. Hence, there is a statistically significant difference

between the performances of the three methods, KNN-RF included, as a whole.

Therefore, we proceed with the Holm post-hoc test (Demšar, 2006), which

compares the average rank of the best (control) method, KNN-RF, against each

of the other two methods, by adjusting the significance level of α = 0.05 to com-

pensate for multiple comparisons. The results were that KNN-RF significantly

outperformed RF-regressor (p-value = 0.0014, smaller than adjusted α = 0.025)

whereas it was not statistically better than the IPC-Weight RF (p-value = 0.0678,

greater than α = 0.05). Hence, there is a sufficient evidence to support that the

KNN-RF significantly outperforms only the RF-regressor, and not the IPC-Weight

RF.
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Table 17: Predictive performance obtained by three variants of Random Forests:
the proposed RTIF and KNN-RF, as well as Random Survival Forest

Dataset RSF RTIF KNN-RF
Disease uncensoring ratio c-index c-index c-index

Alzheimer 69/6825 (1.0%) 0.7632 0.7742 0.7747
Angina 165/6488 (2.5%) 0.5854 0.5723 0.5677

HeartAtt 186/6607 (2.8%) 0.6369 0.6228 0.6269
Psychiatric 219/5972 (3.5%) 0.5390 0.4692 0.4748

Stroke 270/6632 (4.1%) 0.6099 0.6366 0.6421
Diabetes 416/6500 (6.4%) 0.7907 0.7443 0.7029
Cancer 562/6386 (8.8%) 0.5349 0.5135 0.5093

Arthritis 784/4276 (18.3%) 0.5443 0.5078 0.5020
Any-disease

(ELSA) 979/3280 (29.8%) 0.5489 0.5384 0.5351

Any-disease
(SHARE)

101300/139522
(72.6%) 0.7118 0.7061 0.7034

HD 783/1097 (71.4%) 0.5794 0.5435 0.5742
Average Rank 1.36 2.27 2.36

4.5.3 Results comparing the new RF variants against Ran-

dom Survival Forest

Table 17 reports the C-index values for Random Survival Forest (RSF), which

is a popular and powerful method for survival analysis in the area of machine

learning; and it compares its results against the two proposed Random Forest

(RF) variants, RTIF and KNN-RF, which use different imputation approaches

for the target variable of the censored training instances. Recall that the large

majority of instances were censored in all datasets, except in the SHARE and HD

datasets.

Regarding the overall predictive accuracy of the three methods, the table shows

that RSF achieved the highest C-index values for 9 out of the 11 datasets. Fur-

thermore, it also achieved the best average rank, 1.36, substantially better than

the average ranks for RTIF (2.27) and KNN-RF (2.36). RTIF did not achieve a

single win for any of these datasets, whilst KNN-RF obtained two wins but had
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the worst predictive performance in general, with the largest rank (2.36).

The non-parametric Friedman test was used to determine whether or not there

is a significant difference among the average ranks of the three different methods

and the mean rank of 2.0 under the null hypothesis. The calculated value of FF

is 4.405 and the critical value of F(2,20) for α = 0.05 is 3.493. Note that FF is

greater than the critical value, and so the null hypothesis is rejected. Hence, there

is statistical evidence to support the claim that there is a significant difference

between the performance of the three methods.

Therefore, we proceed with the Holm post-hoc test (Demšar, 2006), which

compares the average rank of the best method, RSF, against each of the other

two methods, by adjusting the significance level of α = 0.05 to compensate for

multiple comparisons. The results were that RSF significantly outperformed the

other two methods: (1) against KNN-RF (p-value = 0.0095, which is smaller than

adjusted α = 0.025); and (2) against RTIF (p-value = 0.0165, which is smaller

than α = 0.05). Hence, there is sufficient evidence to confirm that RSF, a popular

and powerful method for survival analysis in the area of machine learning, has

significantly better performance than our two proposed methods in these datasets.

4.5.4 Results comparing the new RF variants against Cox

Proportional Hazards Regression

Table 18 reports the C-index values for Cox’s Proportional Hazard (PH) Regres-

sion, which is a very popular method for survival analysis in the area of statistics;

and it compares its results against the two proposed Random Forest (RF) vari-

ants, RTIF and KNN-RF, which use different imputation approaches for the target

variable of the censored training instances.

Regarding the overall predictive accuracy of the three methods, both the newly

proposed variants outperform the Cox PH regression. The RTIF method obtained

the best average rank (1.91), and KNN-RF came second with an average rank of
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Table 18: Predictive performance obtained by Cox’s PH regression and two pro-
posed variants of Random Forests: RTIF and KNN-RF

Dataset CoxPH RTIF KNN-RF
Disease uncensoring ratio c-index c-index c-index

Alzheimer 69/6825 (1.0%) 0.6175 0.7742 0.7747
Angina 165/6488 (2.5%) 0.5672 0.5723 0.5677

HeartAtt 186/6607 (2.8%) 0.6219 0.6228 0.6269
Psychiatric 219/5972 (3.5%) 0.5333 0.4692 0.4748

Stroke 270/6632 (4.1%) 0.5952 0.6366 0.6421
Diabetes 416/6500 (6.4%) 0.7300 0.7443 0.7029
Cancer 562/6386 (8.8%) 0.5163 0.5135 0.5093

Arthritis 784/4276 (18.3%) 0.5399 0.5078 0.5020
Any-disease

(ELSA) 979/3280 (29.8%) 0.5345 0.5384 0.5351

Any-disease
(SHARE)

101300/139522
(72.6%) 0.7242 0.7061 0.7034

HD 783/1097 (71.4%) 0.5736 0.5435 0.5742
Average Rank 2.09 1.91 2.00

2.00. Cox PH regression obtained the worst average rank of 2.09.

The Friedman test determines that, with the FF of 0.083 the critical value

of 3.493, FF is smaller than the critical value (p-value = 0.913), and so the null

hypothesis cannot be rejected. Hence, there is no statistical evidence to support

the claim that any of the three methods has better predictive performance than

the others.

4.5.5 Most Frequently Selected Hyper-parameter Values

Table 19 reports the hyper-parameter settings most frequently selected by the

nested cross-validation procedure (which was used for hyper-parameter optimisa-

tion). Recall that the nested cross-validation procedure selected one configuration

of hyper-parameter settings for each RF variant for each of the training sets of the

external cross-validation, for each dataset. Hence, among those selected hyper-

parameter settings per dataset, the most frequently selected one is reported in the
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Table 19: Most Frequently Selected Hyper-parameter Settings, for each RF variant
and each dataset

Dataset RF regressor IPC weight RSF RTIF KNN-RF

Disease uncensoring ratio (mtry/
node size)

(mtry/
node size)

(mtry/
node size)

(mtry/
node size)

(mtry/
node size)

Alzheimer 69/6825 (1.0%) (4, 5) (10, 5) (4, 10) (4, 5) (4, 10)
Angina 165/6488 (2.5%) (4, 10) (4, 10) (7, 5) (4, 10) (4, 5)

HeartAtt 186/6607 (2.8%) (13, 10) (7, 7) (4, 10) (4, 10) (4, 7)
Psychiatric 219/5972 (3.5%) (4, 10) (13, 5) (10, 5) (13, 5) (13, 5)

Stroke 270/6632 (4.1%) (4, 10) (4, 10) (4, 10) (4, 10) (4, 10)
Diabetes 416/6500 (6.4%) (4, 10) (13, 5) (4, 10) (4, 10) (4, 10)
Cancer 562/6386 (8.8%) (4, 10) (4, 5) (13, 5) (13, 5) (13, 5)

Arthritis 784/4276 (18.3%) (4, 7) (4, 10) (4, 10) (4, 10) (4, 10)
Any-disease

(ELSA) 979/3280 (29.8%) (4, 10) (4, 10) (4, 10) (4, 10) (4, 10)

Any-disease
(SHARE)

101300/139522
(72.6%) (3, 10) (4, 10) (4, 10) (4, 10) (4, 10)

HD 783/1097 (71.4%) (5, 5) (5, 5) (5, 5) (8, 5) (10, 5)

table.

Recall also that all RF variants had two hyper-parameters optimised: mtry

and the minimum number of instances per leaf node (node size, for short). The

candidate node size values were 5, 7, 10 for all RF variants and datasets. The

candidate mtry values were the same for all RF variants and nearly the same across

the datasets; more precisely: mtry = 4, 7, 10 or 13 for the nine ELSA datasets,

mtry = 3, 4, 6, 8 for the SHARE dataset (due to the substantially smaller number

of features in this dataset, as mentioned earlier), and mtry = 5, 6, 8, 10 for the

Haemodialysis dataset.

As shown in Table 19, the most frequently selected hyper-parameter setting

combination was (mtry = 4, node size = 10), which was the winner 31 times out

of 55 (considering the five RF methods and the 11 datasets). In addition, all five

RF methods consistently chose the (4,10) combination in two datasets: Stroke

and Any-disease ELSA.

Moreover, considering the selection frequency of each hyper-parameter setting

separately, the mtry value of 4 was particularly effective: it was selected 37 out

of 55 times – or more precisely out of 50 cases where it could possibly be selected
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since the value 4 was not a candidate mtry value in the HD dataset. This mtry

value was the smallest of the 4 candidate values in the ELSA datasets, and the

second smallest candidate mtry value in the SHARE dataset. Hence, these results

show that, in these datasets, smaller mtry values (which tend to increase the

diversity of trees in the RF) are more effective in general.

In addition, the node size value of 10 was also very effective by itself; it was

selected 33 out of 55 times. This value of 10 was the largest of the 3 candidate

node size values. Hence, it seems that it is better to use relatively large node

size values for these datasets, so that the number of instances in each leaf node

is large enough to allow the decision trees in the RF to generalise well from those

instances.

4.6 Conclusion

This section offers a concise summary of the computational results for the two

novel variants of the Random Forest (RF) algorithm proposed in this chapter –

the Random Target-Imputation Forests (RTIF) and the K-Nearest-Neighbours-

Imputation Random Forests (KNN-RF).

Both these RF variants aimed at imputing censored target variables. This

small yet effective modification to the standard RF algorithm allows it to perform

survival-analysis tasks, enhancing its capability while maintaining its simplicity.

The efficacy of these variants was assessed by comparing them against four baseline

methods: a standard RF for regression, a RF with Inverse Probability of Censoring

(IPC), Cox regression with the Proportional Hazard (PH) assumption, and a

standard Random Survival Forest (RSF). Performance was evaluated using the

C-index on 11 real-world biomedical datasets.

In summary, the computational results were as follows. First, RTIF signifi-

cantly outperformed both the standard RF regressor and RF with IPC in terms
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of predictive accuracy. Second, KNN-RF outperformed the standard RF regressor

significantly but showed no significant difference when compared with RF with

IPC. Finally, the last experiment revealed that RTIF and KNN-RF both had a

higher predictive accuracy than the Cox PH regression, with RTIF slightly lead-

ing, although the differences were not statistically significant. However, RTIF and

KNN-RF were significantly outperformed by RSF.

These results evidently confirm the potential and effectiveness of RTIF and

KNN-RF in enhancing the standard RF algorithm’s performance in survival anal-

ysis tasks, although RTIF and KNN-RF were outperformed by RSF. The next

chapter will focus on proposing new variations of RSF to try to improve RSF’s

predictive performance.



Chapter 5

New Variants of Random

Survival Forests

5.1 Introduction

This chapter describes in detail two proposed types of modifications of the Random

Survival Forest (RSF) algorithm, which is a type of random forest algorithm

designed for survival analysis with censored data (Ishwaran et al., 2008). More

precisely, the proposed variations of RSF involve the modification of the node-split

criterion and the leaf-node-prediction criterion of the algorithm. This chapter

also reports the results of computational experiments evaluating the proposed

variations of the RSF algorithm.

This chapter is organised as follows. Section 5.2 reviews related work on differ-

ent variants of RSF. Section 5.3 describes the proposed variants of RSF. Section

5.4 describes the experimental methodology. Section 5.5 reports experimental

results, including both predictive accuracy results and an analysis of the most

important predictive features in the best models learned in our experiments.

115
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5.2 Related Work on Random Survival Forests

There are a number of machine learning studies dealing with censored data in

survival analysis using the standard Random Survival Forest (RSF) algorithm. To

mention a few, the work of (Akai et al., 2018b; Mogensen, Ishwaran and Gerds,

2012; Pang et al., 2012) employs the RSF method to analyse survival problems

from different application domains. Additionally, some biomedical studies such

as (Hamidi et al., 2016; Dietrich et al., 2016; Miao et al., 2018a) use RSF to

predict rates of deaths in patients who developed age-related diseases as well as

attempting to identify the most relevant factors in their respective exposures.

Some very recent work (Li et al., 2022) uses RSF to predict the recurrence of

breast cancer from a long-term clinical dataset over 8 years in order to identify

the high-risk patients, and (Zhang et al., 2022) creates a RSF model for prognosis

prediction in patients with sepsis.

In contrast to the aforementioned works (which in general use a standard RSF

algorithm), there are several studies that propose new variants of the RSF algo-

rithm that involve the modification of the leaf-node-prediction criterion and/or

the node-split criterion of the algorithm, as follows.

The work of (Weeraddana et al., 2020) proposes a modified leaf-node-prediction-

criterion where, instead of outputting the CHF at each leaf node, the lower and

upper bounds of the prediction uncertainty are calculated from the conditional

probability distribution of instances.

In (Wang and Li, 2017) the authors comprehensively review several node-

splitting-criteria of tree-based methods for survival analysis. They compare 9

different node-splitting-criteria for survival trees (i.e. decision trees for survival

analysis), and then 4 of those criteria are implemented in the original RSF method

(Ishwaran and Kogalur, 2007). Besides this, the other studies have proposed

alternative criteria, namely AUC splitting, C-index splitting, L1 splitting and

Maximally selected rank splitting.



CHAPTER 5. VARIANTS OF RANDOM SURVIVAL FORESTS 117

In (Miao et al., 2018b) the authors propose “improved Random Survival For-

est” (iRSF) where the standard node-split-criterion of RSFs (the standard log-

rank test) is replaced with improved log-rank-type tests from (Yang and Prentice,

2010). The said criterion uses adaptive weights based on the change of the hazard

rates over time to handle the non-proportional hazard issue. iRSF was applied to

a clinical dataset about heart failures and the learned models were able to identify

the critical features responsible for heart failure. The authors concluded that their

approach outperforms the conventional RSF — i.e., it obtained a higher C-index

value.

In (Eifler, 2014) the authors proposed a RSF variant where the log-rank test

was replaced with the C-index node-split criterion. Overall, their proposed variant

outperforms the original RSF in their datasets, especially ones with high censoring

ratios.

In (Wright, Dankowski and Ziegler, 2017) the authors proposed Conditional

Inference Forests (CIF); where the standard node-split-criterion was replaced with

the maximally selected rank statistic, which is another statistical test based on

log-rank scores. Specifically, for each feature the test selects the split point with

maximally selected rank statistics and obtains the corresponding p-value, and

then the feature with the smallest p-value is selected for splitting the data at

the current node in the current survival tree. They concluded that said method

removes the bias towards selecting features with multiple candidate split points

in standard RSFs.

In (Wang and Liu, 2018) the authors used RSF to predict gene expression

and identify biomarkers in survival analysis. Their RSF variant uses the standard

log-rank test as the node-split-criterion, but samples candidate features (genes)

using topological weights. That is, mtry features are randomly sampled as can-

didate features for each node splitting, based on the topological weights of the

genes that they represent. These topological weights are computed by a directed
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random walk algorithm, which is biased to sample the most highly connected

genes. Hence, this RSF variant is suitable only for application domains where the

features’ topological weights can be computed, unlike most other RSF variants

proposed in the literature, which have more general applicability.

Besides, a few studies replaced both the standard node-split-criterion and the

standard leaf-node-prediction-criterion by new variants of these criteria, as follows.

In (Wongvibulsin, Wu and Zeger, 2019) the authors proposed Random Forests

for Survival, Longitudinal, and Multivariate data analysis (RF-SLAM). They use

Poisson regression with log-likelihood for the node-splitting criterion and Bayes

estimate of the event rates for the leaf-node-prediction criterion. Broadly speak-

ing, the RF-SLAM algorithm builds decision trees using data binned based on

user-defined lengths of time – counting process information units (CPIUs). Each

individual can have many CPIUs. The algorithm assumes that an individual’s

event hazard is constant within each CPIU, but it does not assume a proportional

hazard across the entire follow-up time for an individual. The algorithm assembles

the predictions for each CPIU for an individual to obtain the hazard function.

In (Jaeger et al., 2019) the authors proposed the Oblique Random Survival

Forest (ORSF) algorithm, where subsampling is used rather than bootstrap sam-

pling with replacement and both the node-splitting and the leaf-node-prediction

criteria are extended to enrich the accuracy of CHF. Furthermore, the log-rank

test, the classic node-split-criterion for RSF, is used together with the oblique

splits (regularized Cox’s proportional hazards models): it uses the elastic net (Zou

and Hastie, 2005), a combination of Lasso and Ridge regularizations, to learn the

regularized Cox’s proportional hazard models at each parent tree node. Also, the

leaf-node-prediction-criterion becomes the Nearest Neighbour aggregation scheme

as in Conditional Inference Forests (CIF) (Wright, Dankowski and Ziegler, 2017).

The authors concluded that, regarding predictive performance, although ORSF

outperformed the gradient boosting method in simulated datasets, their proposed
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method lost to gradient boosting when tested in real-world datasets.

Last but not least, there are some studies that enrich RSF by other means, as

follows.

In (Utkin et al., 2019b) the authors proposed a weighted Random Survival

Forest (WRSF) where a weight is assigned to every tree in the forest for aggre-

gating the trees’ predictions; where weights are computed to maximise C-index

values.

In (Tollenaar and Van Der Heijden, 2019) the authors compared two tree-based

ensemble methods in an application involving criminal recidivism data. The two

methods were RSF and the Gradient-boosted Cox proportional hazard loss with

regression trees as the base learner. They concluded that RSF’s prediction error

increases relative to the Gradient-boosting’s error; the longer the observation time,

the longer the increase. Hence, the Gradient-boosting method obtained slightly

higher overall performance.

In (Gul et al., 2020) the authors proposed Optimal Ensemble of Survival Tree

(OSTE), an extension of Optimal Trees Ensemble (OTE). Broadly speaking, the

algorithm selects the best subset of survival trees for prediction: it starts with

the top-ranked tree and adds one of the top-M trees at a time (where M is a

user-defined parameter), as long as this improves predictive performance.

5.3 Modifying the Node-Splitting and Leaf-Node-

Prediction Criteria of Random Survival Forests

We propose new variants of the Random Survival Forest (RSF) algorithm, in

order to try to improve this type of algorithm’s predictive performance. Since

RSF is a decision tree-based learning algorithm, we propose modifying the two

key components of the algorithm: (1) the node-splitting criterion, and (2) the

leaf-node-prediction criterion.
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Table 20: weights used in Equations (32) and (33) by different Log-rank statistics
variants

Test Statistics Weight
Log-rank 1
Wilcoxon n

Tarone-Ware sqrt(n)

5.3.1 Modifying the Node-Splitting Criterion

We propose to replace the log-rank statistics, the default node-splitting crite-

rion used in RSF, with its weighted versions, replacing the Oi − Ei term in the

numerator and the denominator of Equation (19) by Equations (32) and (33),

respectively. Note that Equations (32) and (33) have weights wj and w2
j , respec-

tively, multiplying the term within the scope of the summation symbol. Hence,

the effect of using the weighted Equations (32) and (33) to implement Equation

(19) will depend on how those weights are determined. In this work, the weight wj

is varied according to the Log-rank variants in Table 20, including the Wilcoxon

and Tarone-Ware criteria, where n is the number of subjects in the current risk

set (n1j + n2j) and sqrt(n) is the square root of n.

Oi − Ei =
k∑

j=1
wj (mij − eij) (32)

Var (Oi − Ei) =
k∑

j=1
w2

j

n1jn2j (m1j + m2j) (n1j + n2j −m1j −m2j)
(n1j + n2j)2 (n1j + n2j − 1)

(33)

Note that in Equations (32) and (33) the summation is performed over the

k distinct failure times. Hence, the original Log-rank node-splitting criterion as-

signs the same importance (weight 1) to all failure times, whilst the Wilcoxon
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and Tarone-Ware node-splitting criteria emphasize earlier failure times. One mo-

tivation for this emphasis is that the value of n (the size of the risk set) tends

to be greater in earlier failure times, increasing the statistical support for the

calculations of the test statistics.

5.3.2 Modifying the Leaf-Node-Prediction Criterion

As discussed earlier, in the standard RSF algorithm, the prediction made by the

leaf nodes of the trees for the current instance (subject) being classified is the value

of the ensemble Cumulative Hazard Function (CHF) for that instance, which is

the average of the CHF values over all trees in the forest, as shown in Equation

34. Note that a CHF value is essentially a sum of the “failure rates” across all

observed failure times, but it was not designed to directly answer the fundamental

question about how long a subject will “survive”, i.e. how much time will pass

until the event of interest occurs for a given subject.

H(t) =
t∑

j=0

(
mj

nj

)
(34)

Although Random Survival Forests generally produce high predictive accuracy

as measured by the C-index, ensemble mortality is another type of measure de-

signed to describe the population’s survival distribution against time. In other

words, it is not conceptually suitable with the goal of predicting a survival time:

how long until the event of interest will occur to a given individual.

Therefore, we propose a series of leaf-node-prediction criteria that are inspired

by the standard Random Forest algorithm for regression (rather than for survival

analysis), where the value predicted at a leaf node is an estimate of the mean of

the target variable over the instances at that leaf node.

However, the standard Random Forest algorithm for regression cannot cope

with censored data. Therefore, we propose a modification of the Random Survival
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Forest algorithm where, at each leaf node in a decision tree, the value predicted

at that leaf node will be an estimate of the mean survival time of the instances at

that leaf node by taking into account censored data. The proposed modification

will be in general denoted by “constant-hazard-mean” prediction criteria.

There are four proposed variants of the leaf-node-prediction criteria (one of

which is just a naive baseline approach, not recommended in general), as follows.

The Naive Mean criterion: Disregarding an instance’ censorship status

First, this naive approach is meant to be used as a very simple baseline method

in comparison with the other three variants. In this approach, we make the very

strong and unrealistic assumption that all of the censored instances experienced

the event of interest at the time of censorship. In other words, the predicted value

for the target variable at each leaf node will be simply calculated as the mean

of the values of the target variable over all instances assigned to that leaf node

regardless of the censoring status. That is, the calculation ignores the value of

the binary uncensored-status variable – which indicates whether an instance is

censored or uncensored.

Hence, the predicted value for the target variable at each leaf node will be

an under-estimate of “real”, unknown mean survival time for that node; and it

is expected to reduce predictive accuracy – particularly in datasets with a large

proportion of censored instances, like in our datasets. The only advantage of

this naive approach is its conceptual and computational simplicity. Hence, as

mentioned earlier, this is a very simple baseline approach.

The “constant-hazard-mean” criterion: a new mean formula based on

the assumptions of constant hazard rates and non-informative censoring

This approach modifies the classical formula for computing the mean value of the

target variable at each leaf node, in order to be able to handle censored instances.
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Table 21: The linear correlation coefficients between age and survival time for the
uncensored instances, for each dataset (disease).

Dataset Alzheim. Angina Heart
attack Psychiat. Stroke Diabetes Cancer Arthritis Any-dise.

ELSA
Any-dise.
SHARE

Correl.
Coeff. -0.196 -0.251 -0.168 -0.044 -0.163 -0.113 -0.164 -0.081 -0.125 -0.175

This can be done by making the following two assumptions:

• the hazard rate is constant throughout the study — i.e., a person’s chance

of experiencing the event of interest does not change with time (a strong

assumption); and

• the censoring is non-informative — i.e., the time when an instance is cen-

sored is independent of its “failure” time, or in short, instances are censored

at random (a common assumption in the survival analysis literature).

At first glance, the constant hazard rate assumption would seem unlikely to

be satisfied in our datasets of age-related diseases, since the time passed until the

diagnosis of age-related disease (our “survival time”) tends to be smaller for older

subjects. However, in our datasets this age effect is relatively small in general, and

so that assumption can still be used to produce reasonable estimates of survival

time in practice, as shown next.

To be precise, we measured the Pearson’s linear correlation coefficient between

the age and survival time of uncensored subjects, for each disease (target variable),

i.e. for each dataset. Age was measured at the ELSA/SHARE survey’s baseline,

and survival time is the number of months passed from that baseline time until

the diagnosis of a disease. Table 21 reports these correlations.

As expected, the correlations are negative, since older individuals are more

likely to be diagnosed with an age-related disease sooner, resulting in a shorter

’survival time’. However, these correlations are quite weak in general. In addition,

Fig 8 shows the scatterplots for two diseases (datasets) as examples: Angina (with
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(a) Angina dataset (b) Cancer dataset

Figure 8: Survival time of uncensored individuals over different ages

the largest negative correlation, -0.251) and Cancer (with the 5th largest negative

correlation, -0.164). Note that there is no clear correlation between age and

survival time for ages below about 85. The (negative) correlation is clear and

strong only for ages above about 85, representing a small minority of subjects in

our datasets. Therefore, the constant hazard rate assumption is approximately

valid in our datasets in general.

Given the aforementioned assumptions, we can conclude that all instances

have identical remaining mean survival time µ, regardless of their previously ob-

served survival time t (Selvin, 2008). With these two assumptions, as shown in

(Selvin, 2008), the estimated mean survival time (µ̂) can be computed as shown

in Equation (35):

µ̂ =
∑n

j=1 tj + mµ̂

n
(35)

where tj is the value of the target variable (survival time) for the j-th individ-

ual, n is the total number of individuals (counting both uncensored and censored

individuals), and m is the number of censored individuals. Recall that tj is the

true value of survival time if the j-th individual is uncensored, whilst it is a lower

bound of the true, unknown survival time for censored individuals. Hence, in
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Equation (35), the term ∑n
j=1 tj is simply the sum of all observed survival times,

considering both uncensored and censored individuals, whilst the term mµ̂ adds

the total “missing”, unobserved survival time associated with all m censored in-

dividuals — assuming that each censored individual has a remaining expected

survival time (after censorship) of µ — as implied by the above two assumptions

(Selvin, 2008). By applying some simple algebraic operations to Equation (35),

we derive Equation (35):

nµ̂ =
n∑

j=1
tj + mµ̂

µ̂(n−m) =
n∑

j=1
tj

µ̂ =
∑n

j=1 tj

(n−m) (36)

Hence, the estimated mean survival time at each leaf node of the survival

trees in a RSF model is computed using Equation (35), where the summation of

all survival times, censored and uncensored included, is divided by the number of

uncensored instances.

The “weighted-age-mean” criterion: Extending the new mean formula

with the age-based weights for censored instances

To take into account the dependence of an individual’s survival time on their

age (measured at the individual’s last observed time), we can assign different

weights to different censored individuals depending on their age, when computing

the term mµ̂ – estimating the “missing” survival time for censored subjects – in

Equation (35). The basic idea is that the older an individual is when she or he is

censored, the smaller her or his expected remaining survival time is. Hence, the
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term mµ̂ in Equation (35) is replaced by the term ∑m
i=1 wiµ, wi in [0..1], where

older individuals are assigned smaller weight values than younger individuals, to

reflect the fact that the former is expected to have a smaller remaining survival

time (after the censorship time point).

More precisely, the weight for a censored individual j (wi) is calculated from

Equation 37, so wi = 1 if the age is the minimum (youngest) and wi = 0 if the age

is the maximum (oldest) among the set of last observed ages for all individuals in

the training set.

wi = agemax − agei

agemax − agemin

(37)

To compute Equation 37, the last observed age for each i-th individual is the

age of that individual at the time point where the individual was last observed

- i.e., either the time when the individual was diagnosed with the disease cor-

responding to the target variable (for uncensored individuals) or the time when

the individual was censored (for censored individuals). All the values of agemax,

agemin and agei are computed with respect to this set of last observed ages. Hence,

for censored individuals, agei is the age of the i-th individual at the time point

when she or he was censored. Note that Equation 37 is used to compute the

weights of censored individuals only, the weights of uncensored individuals are

simply 1.

The rationale to compute wi based on the set of last observed ages, rather

than the ages at the baseline wave, is that the former takes into account more

information about each individual’s survival time. A simple example shows this

point. Consider two censored individuals: Ind1’s age was 55 at the baseline wave,

and it was censored when her/his age was 70; whilst Ind2’s age was 60 at the

baseline wave, and it was censored at age 65. Clearly, although Ind1 was younger

than Ind2 at the baseline wave, Ind2 is expected to have a larger remaining survival

time than Ind1, considering their ages at the times when the individuals were



CHAPTER 5. VARIANTS OF RANDOM SURVIVAL FORESTS 127

censored.

Hence, replacing the term mµ̂ in Equation 35 by the term ∑m
i=1 wiµ and per-

forming algebraic operations similar to the ones previously used to derive Equation

36, the new age-dependent estimate of mean survival time is given by Equation

38:

µ̂ =
∑n

j=1 tj

(n−∑m
i=1 wi)

(38)

The approach using this equation will be referred to as the “weighted-age-mean

approach”.

The “KNN-Mean” criterion: Computing the mean at a leaf node by

using K-NN for estimating censored target values

Last but not least, although the weighted-age-mean approach takes into account

the individual’s age in the mean formula, the strong assumption of the hazard

rate being constant throughout the study period is still required to utilise the

equation. Hence, in order to avoid that assumption, we propose to use the K-

Nearest Neighbour (K-NN) algorithm, a non-parametric machine learning method,

within the procedure for computing the predicted value at each leaf node. The idea

is to use K-NN to estimate the survival time of censored individuals, i.e. imputing

target values based on K-NN’s predictions. Note that K-NN is used only as part

of the leaf-node prediction criterion of Random Survival Forests (RSF). That is,

K-NN is not used during other procedures of the RSF algorithm – like the creation

of bootstrap samples, selection of the best feature for node splitting, etc – which

will continue to work with censored target values as usual.

More precisely, this approach works as follows. At each leaf node, for each

censored subject, we replace the target value (number of months survived until

censorship) but an estimate of the unknown survival time. That estimate will be

computed essentially by using the K-NN algorithm to find the nearest uncensored
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neighbour of the current censored subject, and assigning that uncensored neigh-

bour’s survival time to the survival time (target value) of the current censored

subject.

In all the experiments reported in this chapter, the value of K in the K-NN

algorithm was set to 1. The motivation for this setting is as follows. Recall that,

in the proposed method, the K-NN algorithm is used to retrieve the K nearest

uncensored neighbours. However, in general the datasets used in our experi-

ments have a very small proportion of uncensored instances (e.g., only 1% in

the Alzheimer’s dataset). Hence, it is difficult to find several uncensored “neigh-

bours” which are really “close” to a given instance. Therefore, setting K = 1 helps

to avoid the risk of using inappropriate neighbours that are quite different from

the current instance whose target variable value is being inputted by the K-NN

algorithm.

To avoid the problem that each leaf node may contain very few or even just

one uncensored subjects, which would not be enough to reliably compute nearest

neighbours, the nearest neighbour can be computed from the entire training set.

This introduces, however, the problem that this is a completely “global” com-

putation, ignoring the characteristics of local subjects in the current leaf node.

There is also the problem that, in high-dimensional datasets, the computation of

distances is not very meaningful – i.e., all instances tend to be far away from each

other in a very large dimensional space.

Therefore, as a solution to both problems, it is proposed to adapt the K-NN

algorithm to consider only a subset of features to measure the distances between

instances. More precisely, it is proposed to measure distance based on only the

features that occur in the path from the root node to the current leaf node.

This means that the local context of the leaf node is taken into account, i.e., the

distance computation is not completely global, and it is partly based on local

information. Furthermore, the high-dimensionality problem is greatly reduced
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because the distance will be computed using only a subset of features, rather than

all features.

Another problem that needs to be addressed is that the returned nearest neigh-

bour may have a target value (survival time) smaller than the censored time of

the current subject, which would be an invalid target-value estimation. This is

avoided by further modifying the K-NN algorithm to find the nearest uncensored

neighbour only among the uncensored subjects whose target value (survival time)

is greater than or equal to the target value of the current censored subject.

In summary, we propose the pseudo-code shown in Algorithm 4, based on the

just-described adapted K-NN algorithm, for computing the predicted mean at

each leaf node of the RSF algorithm.

Notation used in Algorithm 4

• SX = the set of uncensored subjects in the training set whose value of the

target variable (their known survival time) is greater than or equal to the

value of the target variable for subject X (i.e., the number of months that

X “survived” until censorship)

• (xi, yi) = feature value vector xi and target variable value yi of the i-th

instance

• xi.uncens = uncensored status of the i-th instance (1 = uncensored, 0 =

censored)

• LBX = lower bound for the target value of instance (subject) X

• NUNX = the Nearest Uncensored Neighbour of the subject X among all

training instances that are uncensored and have a target value higher than

the lower bound of X (LBX)

In this Chapter, we have proposed two different variants of Random-Forest-

based approaches involving the Age variable and/or the KNN algorithm. In addi-

tion, recall that in Chapter 4 we assumed the Age variable to be highly correlated
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Algorithm 4: RSF-KNN-mean
1 for each leaf node L do
2 for each censored subject X do
3 SX ← { (xk, yk) | xk.uncens = 1, LBi ≤ yk }
4 NUNX ← Nearest Neighbours of X in S
5 imputation ← arithmetic mean of all y in NUN
6 yX ← max(LBX , imputation)
7 end
8 prediction ← arithmetic mean of all y at L
9 end

Table 22: The differences among the three Random Forests based approaches
proposed in this work.

Comparison Criterion KNN-imputation in RF RSF with K-NN-mean age-weighted mean RSF
Imputation technique Yes Yes Technically yes
Involved in Pre-processing step Leaf-node-prediction Leaf-node-prediction
Split criterion RMSE Log-rank Log-rank

Use the Age variable To find the closest
uncensored neighbours

To estimate the remaining
survival time

To estimate the mean
survival time

Global information used Valid neighbours’
survival times Max Age, Min Age, Max Age, Min Age,

Local information used Lower and upper-
bounds of instance i

Max Surv Time(i),
Cens Surv Time(i) Lower-bound of instance i

If invalid Use the default value Always possible possible when d0>0

Assumption The event occurred
by the end of the study

The event occurred by
the end of the study constant hazard rate

to the actual survival times of the censored subjects, and in that chapter we pro-

posed to apply a simplified version of the K-NN algorithm to impute the censored

target values accordingly. Table 22 shows the comparison among these three ap-

proaches proposed in this thesis.

5.4 Experimental Methodology

This section is divided into four parts, analogous to the four subsections of Section

4.4 in Chapter 4. The first subsection provides a summarised description of the

datasets used in the experiments. The second subsection mentions the predictive
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performance measure used. The third subsection describes a hyper-parameter tun-

ing procedure, based on nested cross-validation. The fourth subsection describes

the statistical significance tests used to analyse the results.

5.4.1 Datasets Used in the Experiments

The experiments used 11 datasets for 11 different age-related diseases (i.e. 11

separate survival prediction problems); and the creation of these datasets was

described in detail in Chapter 3.

Recall that, as summarised in Section 4.4.1, 9 out of the 11 datasets were

constructed from the ELSA data, containing between 3,000 and 7,000 instances

(depending on the target variable), with exactly the same 44 predictive features,

but different target variables. On the other hand, the dataset constructed from

the SHARE data is much larger, containing almost 140,000 instances but only

15 predictive features. In essence, the instances represent individuals (subjects)

in these surveys, and the target variables represent the ‘survival times’, more

precisely, the time passed (in months) until an individual is diagnosed with a

certain disease (for 8 datasets) or any of several diseases (for two datasets); whilst

the predictive features represent biomedical information collected by nurses or

other relevant characteristics of an individual (age and gender). The haemodialysis

dataset has 1,097 instances with 38 features, and in this dataset the target variable

represents the survival time of patients undergoing haemodialysis.

5.4.2 Predictive Performance Measure

Similarly to the previous chapter, in the experiments being reported in this chap-

ter, the predictive performance of the learned survival models was estimated by the

concordance index (C-index), which is a popular measure accounting for censored

data. Recall that the C-index can be interpreted as the probability of correctly or-

dering the predicted survival values for a randomly chosen pair of subjects whose
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actual survival times are different. For a precise formal definition of the C-index,

the reader is referred to Section 2.2.5 in Chapter 2.

5.4.3 Hyper-Parameter Tuning via Nested Cross-Validation

All experiments are performed using a nested cross-validation procedure, where

an inner cross-validation performs hyper-parameter tuning and an outer cross-

validation estimates the predictive performance of the survival models. For a

more detailed description of this nested cross-validation procedure, the reader is

referred to Subsection 4.4.3.

We used 5 folds for the inner cross-validation for all datasets, whilst the number

of folds for the outer cross-validation was set to 10 for the ELSA datasets and the

haemodialysis data, and set to 5 for the SHARE dataset. The SHARE dataset

has fewer folds to save computational time since it is much larger than the other

datasets.

We tune two hyper-parameters of the RSF algorithm, namely: (a) mtry, i.e.,

the number of features randomly sampled to be used as candidate features for

selection at each decision tree node; and (b) d0, i.e., the minimum number of

uncensored instances required at each leaf node. According to (Probst, Wright

and Boulesteix, 2019), mtry has been recognized as the most influential hyper-

parameter in general in random forests. In addition, d0 can be seen as the survival

task-related counterpart of the hyper-parameter node size in classical random

forests. It is considered worth tuning according to, for instance, the experiments

in (Lin and Jeon, 2006) and (Lynch et al., 2017).

We consider three candidate values for d0, namely 1, 2 and 3, for all datasets.

However, we consider a different set of candidate mtry values for the ELSA

datasets and SHARE dataset separately, since there is a difference between their

numbers of features, where the former contains 44 and the latter contains 15 pre-

dictive features. For ELSA, we specify four candidate values for mtry (4, 7, 10, 13).
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The first two values were calculated as ceil(ln(44)) = 4 and ceil(sqrt(44)) = 7,

where the natural logarithm (ln) and the square root (sqrt) are often considered

default functions for specifying the value of mtry in random forests, and ceil(x)

returns the ‘ceiling’ of x, i.e. the lowest integer that is greater than or equal to

x (i.e. it rounds x up to the nearest integer). Similarly, the set of candidate

values for SHARE is (3, 4, 6, 8), where the first two values were calculated as

ceil(ln(15)) = 3 and ceil(sqrt(15)) = 4. Third, I use mtry = 5, 6, 8, 10 for the

Haemodialysis dataset.

We also tune two hyper-parameters of the RTIF algorithm: (a) mtry, with the

same aforementioned candidate values used for RSF; and (b) node size, analogous

to d0 in RSF, with one difference: node size is the minimum number of instances

(regardless of their original censorship status) in a leaf node. So, its candidate

values, (5, 7, 10), are larger than RSF’s candidate d0 values.

Hence, for all methods (the RSF versions and RTIF), for each dataset, at each

iteration of the outer cross-validation, the inner cross-validation is run 12 times on

the training set, considering 12 candidate random survival forest configurations

(4 candidate mtry values times 3 candidate d0 or node size values).

All analyses were performed using Python 3 with the scikit-survival library

version 0.14.0 (Pölsterl, 2020), a Python module built on top of the scikit-learn

machine learning library (Pedregosa, Varoquaux et al., 2011). In addition, some

parts of the program were written and customised in Cython-code, which played

an important role in boosting the performance of RSF due to Python’s relatively

slow performance. The program code is publicly available in the following GitHub

link: https://github.com/mastervii/new_variants_of_RSF.

5.4.4 Statistical significance tests

The statistical analysis of the results was performed using, in most cases, the

statistical significance tests described in Section 4.4.4, namely the Friedman test

https://github.com/mastervii/new_variants_of_RSF
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to compare the performance of multiple (more than 2) algorithms and the post-

hoc Holm’s test to perform multiple hypothesis correction. However, subsection

5.5.4 compares the predictive accuracies of only two algorithms, and in this case

we apply instead the Wilcoxon signed-ranks test. This test will be used more

often in Chapter 6, and hence, its description is provided in that chapter only (in

Section 6.3.4), in order to avoid redundancy. In general, we attempt to reject the

null hypothesis that different survival analysis methods (i.e., different variants of

RSF or RTIF) have the same predictive performance across the 11 datasets used

in the experiments. We used the tests with the usual significance level of α = 0.05.

5.5 Computational Results

This section reports the computational results obtained by the proposed Random

Survival Forest (RSF) variants and the baseline methods, including the results of

statistical significance tests.

This Section is divided into four subsections, as follows. The first subsection

compares the results of three RSF variants, with three different node-splitting

criteria, with all these variants using the same standard leaf-node-prediction cri-

terion. The second subsection compares the results of five RSF variants, with five

different leaf-node-prediction criteria, with all these variants using the same stan-

dard node-splitting criterion. The third subsection compares the results of three

RSF variants, with three different node-splitting criteria, with all these variants

using the same “constant-hazard-mean” leaf-node prediction criterion, which led

to the best results among all RSF variants compared in the second subsection.

The fourth subsection compares the results of the RSF variant which obtained the

best results across all previous subsections, namely RSF-constant-hazard-mean,

against the very popular Cox Proportional Hazards (PH) regression.



CHAPTER 5. VARIANTS OF RANDOM SURVIVAL FORESTS 135

5.5.1 Comparing the results of RSF with three node-splitting

criteria and standard leaf-node-prediction criterion

Table 23 reports the C-index values obtained by three different variants of Random

Survival Forests (RSF), using three different node-splitting criteria: the Log-Rank,

the Wilcoxon and the Tarone-Ware statistics. In all these three RSF variants, the

leaf nodes compute the CHF as in standard RSFs.

The first two columns of Table 23 describe the datasets, where the first column

identifies the disease used as the target ‘survival’ variable (time passed until disease

diagnosis) and the second column shows the uncensoring ratio of each dataset,

which is the ratio of the number of uncensored instances over the total number of

(censored or censored) instances. Note that most datasets have small uncensoring

ratios, representing challenging survival analysis problems. The next 3 columns

of this table report the C-index values obtained by the 3 RSF variants on the 11

datasets. In this and other tables reporting C-index values in this chapter, the

last row shows the average rank obtained by each RSF variant (the lower the rank

the better the result); and the best result (highest C-index) for each dataset is

shown in boldface font.

The RSF Log-rank variant, the original one (with the default Log-rank node-

splitting criterion), obtained the best average rank (1.82), and it achieved the

highest C-index in 5 of the 11 datasets. The second best RSF variant was the one

using the Wilcoxon node-splitting criterion, which obtained an average rank of

2.0 and the best C-index in 4 datasets. The RSF Tarone-Ware variant obtained

the worst results, with an average rank of 2.18, and only 2 wins.

We applied the non-parametric Friedman test (Demšar, 2006) to determine

whether or not there is a statistically significant difference between the average

ranks of the three RSF variants and the mean rank of 2.0 under the null hypothesis.

The calculated value of FF is 0.342. With 3 variants and 11 datasets, FF is

distributed according to the f distribution with 3 - 1 = 2 and (3-1) x (11-1) = 20
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Table 23: C-index values of three RSF variants with different node-splitting crite-
ria. All RSF variants had their mtry and d0 hyper-parameters tuned via nested
cross-validation

Dataset (Disease) RSF Log-rank RSF Wilcoxon RSF Tarone-Ware
Alzheimer 0.7725 0.776 0.7736

Angina 0.6018 0.6002 0.6013
HeartAtt 0.6351 0.6370 0.6343

Psychiatric 0.5372 0.541 0.5462
Stroke 0.6373 0.635 0.6335

Diabetes 0.7527 0.7542 0.7516
Cancer 0.5473 0.5436 0.5382

Arthritis 0.5340 0.5383 0.5380
Any-disease (ELSA) 0.5426 0.5425 0.5455

Any-disease (SHARE) 0.6890 0.6882 0.6883
HD 0.5778 0.5216 0.5358

Average Rank 1.82 2.00 2.18

degrees of freedom. The critical value of F(2,20) for α = 0.05 is 3.493. Note that

FF is smaller than the critical value (p-value = 0.695), and so the null hypothesis

cannot be rejected. Hence, there is no statistical evidence to support the claim

that any of the three RSF variants have better predictive performance than the

others.

5.5.2 Comparing the results of RSF with five different

leaf-node-prediction criteria and standard node-splitting

criterion

In the previous subsection, the choice of node-splitting criterion did not signifi-

cantly affect the C-index values, when the RSF algorithm was using the standard

leaf-node-prediction criterion (computing the CHF). This subsection investigates

the complementary issue of whether the choice of leaf-node-prediction criterion

affects the C-index, by fixing the node-splitting criterion to the Log-rank test,

the original criterion, which is the most popular criterion and obtained the best
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Table 24: C-index values of five RSF variants with different constant-hazard-
mean criteria. All RSF variants had their mtry and d0 hyper-parameters tuned
via nested cross-validation

Dataset RSF
(Original)

RSF
Naive-mean

RSF
constant-hazard

-mean

RSF
Weight-age

-mean

RSF
KNN-mean

Disease uncensoring
ratio c-index c-index c-index c-index c-index

Alzheimer 69/6825
(1.0%) 0.7725 0.7861 0.7564 0.7919 0.7906

Angina 165/6488
(2.5%) 0.6018 0.5911 0.6085 0.6015 0.5915

HeartAtt 186/6607
(2.8%) 0.6351 0.6347 0.651 0.6458 0.6348

Psychiatric 219/5972
(3.5%) 0.5372 0.544 0.5596 0.5677 0.5494

Stroke 270/6632
(4.1%) 0.6373 0.6456 0.6425 0.6401 0.6528

Diabetes 416/6500
(6.4%) 0.7527 0.6959 0.7594 0.7152 0.704

Cancer 562/6386
(8.8%) 0.5473 0.5309 0.5553 0.5513 0.5321

Arthritis 784/4276
(18.3%) 0.5340 0.5081 0.5462 0.5381 0.5189

Any-disease
(ELSA)

979/3280
(29.8%) 0.5426 0.5307 0.5616 0.5554 0.5306

Any-disease
(SHARE)

101300/139522
(72.6%) 0.6890 0.7009 0.7104 0.6968 0.7012

HD 783/1097
(71.4%) 0.5778 0.5622 0.5934 0.5741 0.5696

Average Rank 3.36 4.18 1.63 2.45 3.36

predictive accuracy in the previous subsection – as reported in Table 23.

Table 24 shows the C-index values obtained by the original RSF with the Log-

rank test (Ishwaran et al., 2008) and the four proposed RSF variants with different

modified leaf-node-prediction criteria, focusing on estimating the survival times.

Again, the first two columns of this table show the disease used as the target

‘survival time’ variable and the uncensoring ratio for each dataset; with the next

5 columns reporting the C-index values of the 5 RSF variants being compared.

The proposed RSF constant-hazard-mean obtained overall the best predictive

performance (highest C-index values) among the 5 RSF variants, having 8 wins

across the 11 datasets. The average rank of RSF constant-hazard-mean (1.63)
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is much lower (better) than that of RSF Weight-age-mean, the runner-up with 2

wins across the 11 datasets, which had an average rank of 2.45. Moreover, both

methods outperformed the original RSF (where the leaf nodes compute the CHF),

the most popular RSF variant in the literature.

The non-parametric Friedman test (Demšar, 2006) was used to determine

whether or not there is a significant difference between the average ranks of the

five RSF variants and the mean rank of 3.0 under the null hypothesis. The cal-

culated value of FF is 6.176. With 5 variants and 11 datasets, FF is distributed

according to the f distribution with 5 - 1 = 4 and (5-1) x (11-1) = 40 degrees

of freedom. The critical value of F(4,40) for α = 0.05 is 2.606. Hence, FF is

greater than the critical value (p-value = 0.002), and so the null hypothesis can

be rejected. Hence, there is strong statistical evidence to support the claim that

there is a significant performance difference among these 5 RSF variants.

Therefore, we proceed with the Holm post-hoc test (Demšar, 2006), which

compares the average rank of the best (control) method, viz. constant-hazard-

mean RSF, against each of the other four methods, by adjusting the significance

level of α = 0.05 to compensate for multiple comparisons. The statistical results

can be reported as follows:

• RSF constant-hazard-mean significantly outperformed RSF Naive-mean with

p-value = 0.00008, smaller than adjusted α = 0.0125. The null-hypothesis

is rejected.

• RSF constant-hazard-mean significantly outperformed RSF KNN-mean with

p-value = 0.005, smaller than adjusted α = 0.017. The null-hypothesis is

rejected.

• RSF constant-hazard-mean significantly outperformed the original RSF with

p-value = 0.005, smaller than adjusted α = 0.025. The null-hypothesis is

rejected.
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• comparing RSF constant-hazard-mean to RSF Weight-age-mean, the statis-

tical test shows that the p-value = 0.112 is greater than adjusted α = 0.050.

Hence, the null hypothesis cannot be rejected.

Hence, based on the results of the Holm post-hoc test, RSF constant-hazard-

mean was significantly better than 3 of the other RSF variants, whilst there was

no significant difference between RSF constant-hazard-mean and RSF Weight-

age-mean.

5.5.3 Comparing results of RSF variants with three dif-

ferent node-splitting criteria and the best proposed

leaf-node-prediction criterion

Subsection 5.5.1 reported the results of RSF variants with different node-splitting

criteria when using the standard leaf-node prediction criterion (CHF). This sub-

section investigates a complimentary issue. We conducted an experiment to com-

pare results obtained by RSF variants with different node-splitting criteria when

using the best modified leaf-node-prediction criterion, based on the results in Ta-

ble 24 – i.e., the constant-hazard-mean criterion. The 3 node-splitting criteria

used in this subsection are the same as the ones used in Subsection 5.5.1.

Table 25 reports the C-index values obtained by the 3 different RSF variants

with the proposed constant-hazard-mean RSF leaf-node-prediction criterion. Sim-

ilarly to the results reported in Table 23, the RSF variant with Log-rank obtained

the best average rank (1.81), and also the largest number of wins (in 6 out of the

11 datasets).

Applying the Friedman test, the calculated value of FF is 0.283. Therefore, the

null hypothesis cannot be rejected – p-value = 0.739. Hence, there is no statistical

evidence to support the claim that any of the 3 variants of the constant-hazard-

mean RSF (varying the node-splitting criteria) has better performance than the



CHAPTER 5. VARIANTS OF RANDOM SURVIVAL FORESTS 140

Table 25: C-index values of three RSF variants of constant-hazard-mean with
different node-splitting criteria. All RSF variants had their mtry and d0 hyper-
parameters tuned via nested cross-validation

Dataset (Disease) constant-hazard
-mean Log-rank

constant-hazard
-mean Wilcoxon

constant-hazard
-mean Tarone-Ware

Alzheimer 0.7564 0.7738 0.7576
Angina 0.6085 0.6054 0.6073

HeartAtt 0.651 0.6537 0.6538
Psychiatric 0.5596 0.5539 0.557

Stroke 0.6425 0.6424 0.6417
Diabetes 0.7594 0.7641 0.7611
Cancer 0.5553 0.5476 0.5532

Arthritis 0.5462 0.5423 0.5458
Any-disease (ELSA) 0.5616 0.5578 0.5583

Any-disease (SHARE) 0.7104 0.7126 0.7126
HD 0.5934 0.6054 0.5907

Average Rank 1.81 2.14 2.05

others.

5.5.4 Comparing the best RSF variant (RSF-constant-hazard-

mean) against Cox Proportional Hazards regression

Table 26 reports the C-index values for the standard Cox’s Proportional Hazard

(PH) Regression and the proposed RSF variant with constant-hazard-mean (using

the default Log-rank test for node splitting), which achieved the best predictive

performance among all five RSF variants in Table 24 and all three RSF variants

in Table 25. The results are shown for each disease used as the target ‘survival’

variable. Recall that the large majority of instances were censored in all datasets,

except in the SHARE and HD datasets.

As shown in Table 26, RSF-constant-hazard-mean outperforms the Cox regres-

sion in 10 out of the 11 datasets. The difference in the C-index values of these two

methods is particularly large in the Alzheimer dataset (a difference of 13.9%); and
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Table 26: C-index values obtained by Cox’s PH regression and RSF-constant-
hazard-mean

Dataset (Disease) CoxPH RSF-constant-hazard-mean
Alzheimer 0.6175 0.7564

Angina 0.5672 0.6085
HeartAtt 0.6219 0.6510

Psychiatric 0.5333 0.5596
Stroke 0.5952 0.6425

Diabetes 0.7300 0.7594
Cancer 0.5163 0.5553

Arthritis 0.5399 0.5462
Any-disease (ELSA) 0.5345 0.5616

Any-disease (SHARE) 0.7242 0.7104
HD 0.5736 0.5934

Average Rank 1.91 1.09

the difference is about 4% or 5% in a couple of other datasets, namely: Angina

(a difference of 4.1%) and Stroke (4.7%).

In addition, the average rank of RSF-constant-hazard-mean (1.09) is remark-

ably lower (better) than that of the Cox model (1.91). Applying the Wilcoxon

signed-ranks test, the null hypothesis of equal rank for both methods is rejected at

the usual 5% significance level with a p-value of 0.003. Hence, there is statistical

evidence supporting the conclusion that, overall, the RSF-constant-hazard-mean

performed significantly better than the Cox PH regression across these 11 survival

datasets.

5.5.5 Most Frequently Selected Hyper-parameter Values

Table 27 reports the hyper-parameter settings most frequently selected by the

nested cross-validation procedure (which was used for hyper-parameter optimisa-

tion). Recall that the nested cross-validation procedure selected one configuration

of hyper-parameter settings for each RSF variant for each of the training sets of
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the external cross-validation, for each dataset. Hence, among those selected hyper-

parameter settings per dataset, the most frequently selected one is reported in the

table.

Recall also that all RSF variants had two hyper-parameters optimised: mtry

and d0 (the minimum number of uncensored instances per leaf node). On one

hand, the candidate mtry values for all RSF variants exactly were the same as

that for all RF variants in Section 4.4; mtry= 4, 7, 10 or 13 for the nine ELSA

datasets, mtry= 3, 4, 6, 8 for the SHARE dataset, and mtry= 5, 6, 8, 10 for

the Haemodialysis dataset. On the other hand, the candidate d0 values were

noticeably smaller than the candidate node size values for RF variants, since in

the context of RSFs the d0 hyper-parameter refers to uncensored instances. We

used the candidate values d0 = 1, 2 or 3 for all datasets.

As shown in Table 27, the most frequently selected hyper-parameter setting

combination was (mtry = 4, node d0 = 3), which was the winner 11 times out of

22 (considering the 2 RSF methods and the 11 datasets). In addition, both RSF

methods consistently chose the (4,3) combination in 4 datasets: Heart Attack,

Psychiatric, Stroke and Any-disease ELSA.

Moreover, considering the selection frequency of each hyper-parameter setting

separately, the mtry value of 4 was particularly effective: it was selected 13 out

of 22 times – or more precisely out of the 20 cases where it could possibly be

selected, since the value 4 was not a candidate mtry value in the HD dataset.

This mtry value was the smallest of the 4 candidate values in the ELSA datasets,

and the second smallest candidate mtry value in the SHARE dataset. Hence,

these results show that, in these datasets, smaller mtry values (which tend to

increase the diversity of trees in the forest) are more effective in general.

In addition, the d0 value of 3 was also very effective by itself; it was selected

in 17 out of 22 times. This value of 3 was the largest of the 3 candidate d0 values.

Hence, it seems that it is better to use relatively large d0 values for these datasets,
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Table 27: Most Frequently Selected Hyper-parameter Settings, for each RSF vari-
ant and each dataset

Dataset RSF RSF-constant
-hazard-mean

Disease uncensoring ratio (mtry/d0) (mtry/d0)
Alzheimer 69/6825 (1.0%) (10, 1) (13, 3)

Angina 165/6488 (2.5%) (13, 1) (4, 3)
HeartAtt 186/6607 (2.8%) (4, 3) (4, 3)

Psychiatric 219/5972 (3.5%) (4, 3) (4, 3)
Stroke 270/6632 (4.1%) (4, 3) (4, 3)

Diabetes 416/6500 (6.4%) (13, 3) (4, 1)
Cancer 562/6386 (8.8%) (13, 3) (4, 3)

Arthritis 784/4276 (18.3%) (4, 3) (4, 1)
Any-disease

(ELSA) 979/3280 (29.8%) (4, 3) (4, 3)

Any-disease
(SHARE)

101300/139522
(72.6%) (3, 3) (3, 3)

HD 783/1097 (71.4%) (10, 3) (10, 1)
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so that the number of uncensored instances in each leaf node is large enough to

allow the survival trees in the RSF to generalise well from those instances.

5.5.6 Computational Runtimes

The performance of the proposed RSF variants primarily depends on the size

of the dataset. As a result, when comparing different variants using the same

dataset, their runtimes are generally similar.

Regarding dataset size, the datasets derived from the ELSA database share

the same feature set and exhibit relatively similar numbers of instances, ranging

from 3,000 to 7,000. Therefore, the experiment runtimes for each dataset were not

much different, varying from about 2 to 3 days to run a nested cross-validation

for each RSF variant, for each dataset. It should be noted that all experiments

were conducted using the Myrtle computer cluster (with 80 CPU threads dis-

tributed inside the department) hosted by the University of Kent. In contrast,

the SHARE dataset comprises over 100,000 instances, leading to experiment du-

rations of approximately 14 days (2 weeks) for the nested cross-validation for each

RSF variant. On the other hand, the haemodialysis dataset achieved the fastest

experiment results, completing a nested cross-validation for each RSF variant in

just over a day.

5.6 Conclusion

This Chapter introduced several variants of Random Survival Forests (RSFs) to

improve the algorithm for survival analysis tasks using a machine learning ap-

proach. To evaluate these proposed RSF variants, we compared them against the

standard RSF and the Cox Proportional Hazards (PH) regression using 11 real-

world biomedical datasets. The predictive accuracy, measured by C-index values,

was calculated in four different types of experiments.
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The first experiment compared three RSF variants using different node-splitting

criteria, with all variants employing the standard Cumulative Hazard Function for

leaf-node-prediction. The Log-rank test delivered the best predictive accuracy, but

no statistically significant difference was observed among the three variants.

The second experiment compared five RSF variants with different leaf-node-

prediction criteria, all using the Log-rank test. In this experiment, the RSF

with the “constant-hazard-mean” criterion demonstrated the highest predictive

accuracy across all datasets. Statistically, it was found to be significantly better

than three out of the four other RSF variants.

In the third experiment, we compared the three RSF variants using different

node-splitting criteria once again, but this time using the “constant-hazard-mean”

for the leaf-node-prediction, as it had shown the best results previously. The RSF

variant with Log-rank criterion performed the best, with no statistically significant

difference observed among the three variants.

The fourth and final experiment compared the RSF variant with the best

performance across all previous experiments (Log-rank test and constant-hazard-

mean predictions) against the well-known Cox Proportional Hazards (PH) re-

gression. The RSF variant outperformed the Cox PH regression in 10 out of 11

datasets, a statistically significant result.

In summary, this study suggests that a new version of the RSF algorithm,

particularly using the Log-rank test for node-splitting and the “constant-hazard-

mean” criterion for leaf-node-prediction, tends to improve the predictive accuracy

in survival analysis tasks.



Chapter 6

New Variants of Deep Survival

Forests

6.1 Introduction

This section will briefly recap the main parts of the Deep Survival Forest (DSF)

algorithm (described in Subsection 2.4.4) that will be modified by the proposed

versions of DSFs in this chapter.

Before discussing the DFS algorithm, it is worth recalling the basic character-

istics of the Deep Forest algorithm, which was designed for supervised learning

in general, not survival analysis. (Zhou and Feng, 2019) have designed the Deep

Forest algorithm based on some principles of deep neural networks, which are

a state-of-the-art type of supervised learning method in general. The principles

taken into account were in particular layer-by-layer processing, in-model feature

transformation (or construction) and sufficient model complexity to learn complex

relationships in the data.

Essentially, (Zhou and Feng, 2019) proposed the following principles for the

Deep Forests (DF) algorithm. First, a set of Random Forests (RFs) are organized

into a sequence of layers similar to that in deep neural networks, where each layer

146
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consists of RFs rather than neurons. Second, the values of the target variable

predicted by the RFs in one layer are fed forward to the next layer as additional

features. In other words, these additional features are concatenated with the

original features, and this concatenated set of features is used as input for the

RFs in the next layer. The number of additional feature sets created for the

next layer is equal to the number of RFs in the current layer — i.e., the set of

predictions output by each RF will form one set of additional features. Note that

the additional features are fed forward only to the next layer. Note also that, for

classification tasks, a set of additional features contains L features, where L is the

number of class labels. More specifically, each feature contains the probability of

a given class label.

A few studies have adopted the Deep Forest algorithm for classification tasks,

and new algorithms have been built upon it (Utkin et al., 2019a; Ganaie, Hu

et al., 2021; Chen et al., 2020). Most importantly, (Utkin et al., 2020, 2021)

developed a new variant of Deep Forest which is particularly relevant to this

thesis, and is the basis for the algorithms proposed in this chapter. Specifically,

they extended the Deep Forest algorithm for survival analysis tasks, proposing the

Deep Survival Forest (DSF) algorithm. In this algorithm, each layer consists of

Random Survival Forests (RSFs), rather than Random Forests as in the original

Deep Forest algorithm.

In the experiments reported by (Utkin et al., 2020, 2021), DSF was shown to

perform as well as Random Survival Forests, achieving high predictive accuracy

as measured by the C-index.

It should be noted that the DSF algorithm was designed specifically for survival

analysis based on RSFs, i.e., predicting the “Ensemble Mortality” which is the

type of outcome predicted by the RSF. As discussed in Section 2.4.3, Ensemble

Mortality represents the expected rate of deaths or the expected cumulative hazard

rate as defined in Equation 24. Again, instead of focusing on the survival times
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of the instances, the DSF method uses the Nelson-Aalen method to estimate

an ensemble Cumulative Hazard Function (CHF), a sum of the “failure rates”

across all observed failure times. That is, it was not designed to directly answer

the fundamental question about how long a subject will “survive”, i.e. how much

time will pass until the event of interest occurs for a given subject. This limitation

of the concepts of Ensemble Mortality and CHF is a motivation for the proposed

variations of DSF described in the next Section.

6.2 Description of the new variations of Deep

Survival Forests

As mentioned earlier, since the DSF algorithm is based on predicting Ensemble

Mortality, it is not conceptually suitable for the goal of predicting the survival

time for a specific individual, i.e., how long until the event of interest will occur

to a given individual.

To cope with this issue, recall that Section 5.3.2 has proposed several variants

of the leaf-node-prediction criteria of RSFs, inspired by the standard Random

Forest algorithm for regression (rather than for survival analysis), where the value

predicted at a leaf node is an estimate of the mean of the target variable over the

instances at that leaf node, by taking into account censored data.

Therefore, we also employ this proposed modification of the RSF algorithm

in the context of the DSF algorithm. That is, we modify the DSF algorithm by

replacing the base RSF algorithm with our proposed variations of RSF described

in Section 5.3.2, based on some variants of the “mean-at-leaf” prediction criteria.

Out of the four proposed “mean-at-leaf” prediction criteria, we choose two

variants in order to conduct experiments in this chapter, as follows.

The first variant is the RSF with a new mean formula based on the assumptions

of constant hazard rates and non-informative censoring since this variant produced
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the highest predictive accuracy overall in the experiments reported in Chapter 5.

Recall that this constant-hazard-mean criterion estimates a mean survival time

at each leaf node of the survival trees in a RSF model using Equation (35), where

the summation of all survival times, censored and uncensored included, is divided

by the number of uncensored instances.

The second chosen variant is the RSF variant with KNN-mean replacing the

base RSF in the DSF algorithm, due to the KNN-mean criterion being the most

sophisticated technique among all the proposed leaf-node-prediction criteria. This

criterion makes no strong assumptions about the survival distribution of the

dataset, and no assumption of constant hazard rate. As described earlier, unlike

the constant-hazard-mean approach, this technique is designed such that it uses

the K-Nearest Neighbour (K-NN) algorithm, a non-parametric machine learning

method, within the procedure for computing the predicted value at each leaf node.

The idea is to use K-NN to estimate the survival time of censored individuals, i.e.

imputing target values based on K-NN’s predictions. Recall that K-NN is used

only as part of the leaf-node prediction criterion of RSF. For details of the K-NN

leaf-node-prediction criterion, see Algorithm 4 and Section 5.3.2 in Chapter 5.

6.3 Experimental Methodology

This section describes the experimental methodology used for obtaining the com-

putational results reported in this chapter; and it is divided into four parts, as

follows. The first subsection provides a summarised description of the datasets

used in the experiments. The second subsection mentions the predictive perfor-

mance measure used. The third subsection describes the hyper-parameter tuning

procedure. Finally, the fourth subsection mentions the statistical significance tests

used.
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6.3.1 Datasets used in the experiments

The experiments used 11 datasets for 11 different age-related diseases (i.e. 11

separate survival prediction problems). 10 of these datasets were created from

two different surveys, the English Longitudinal Study of Ageing (ELSA) (Clemens

et al., 2019) and the Survey of Health Ageing and Retirement in Europe (SHARE)

(Börsch-Supan et al., 2013). The other dataset involves the prediction of the

survival time of patients undergoing haemodialysis. The creation of these datasets

was described in detail in Chapter 3.

Recall that 9 out of the 11 datasets are constructed from the ELSA data,

containing between 3,000 and 7,000 instances (depending on the target variable),

with exactly the same 44 predictive features, but different target variables. On

the other hand, the dataset constructed from the SHARE data is much larger,

containing almost 140,000 instances but only 15 predictive features. In essence, the

instances represent individuals (subjects) in these surveys, and the target variables

represent the ‘survival times’, more precisely, the time passed (in months) until

an individual is diagnosed with a certain disease (for 8 datasets) or any of several

diseases (for two datasets); whilst the predictive features represent biomedical

information collected by nurses or other relevant characteristics of an individual

(age and gender). Lastly, we have the Hemodialysis dataset which contains 1,097

instances with 38 features.

6.3.2 Predictive Performance Measure

Similarly to the two previous chapters, in the experiments being reported in this

chapter, the predictive performance of the learned survival models was estimated

by the concordance index (C-index), which is a popular measure accounting for

censored data. Recall that the C-index can be interpreted as the probability of

correctly ordering the predicted survival values for a randomly chosen pair of

subjects whose actual survival times are different. For a precise formal definition
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of the C-index, the reader is referred to Section 2.2.5 in Chapter 2.

6.3.3 Hyper-Parameter Tuning via Nested Cross-Validation

Similarly to the two previous chapters, all experiments are performed using a

nested cross-validation procedure, where an inner cross-validation performs hyper-

parameter tuning and an outer cross-validation estimates the predictive perfor-

mance of the survival models. For a more detailed description of this nested

cross-validation procedure, the reader is referred to Subsection 4.4.3.

Similarly to the previous two chapters, we used 5 folds for the inner cross-

validation for all datasets, whilst the number of folds for the outer cross-validation

was set to 10 for the ELSA datasets and the Haemodialysis dataset, and set to 5

for the SHARE dataset. The latter has fewer folds to save computational time,

since the SHARE dataset is much larger than the other datasets.

The internal cross-validation is used to tune three hyper-parameters of the

DSF algorithm, namely: (a) n rfs layer, i.e., the number of RSFs in each layer of

the cascade; (b) n fail layers, i.e., the maximum number of rounds allowed for

the training process to terminate when the validation performance on the training

set fails to improve compared against the best validation performance achieved

so far; and (c) d0, i.e., the minimum number of uncensored instances required at

each leaf node of the trees in RSFs learned by the DSF algorithm.

According to (Zhou and Feng, 2019), both n rfs layer and n fail layers have

been recognized as the most influential hyper-parameters in general in the original

Deep Forest algorithm – which was designed for general supervised learning rather

than survival analysis. Intuitively, these hyper-parameters are also important in

DSFs, in the context of survival analysis, since they control the complexity (size)

of the model in terms of the number of RSFs per layer and number of layers

(note that n fail layers influences the number of layers added to the cascade).
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In addition, d0 can be seen as the survival task-related counterpart of the hyper-

parameter node size in classical random forests.

For each hyper-parameter, there are predefined candidate values, with the

same candidate values being available for all 11 datasets, as follows. First, we

consider two candidate values for d0, namely 1 and 3. Second, n fail layers has

2 candidate values, 1 and 2. Basically, we would like to test whether or not giving

a chance of failure to improve the accuracy would lead to a better predictive

performance in the end. Third, the set of candidate values for n rfs layer is 1,

2 and 4, where the total number of trees across all forests in a layer is fixed to

500 per layer. This means that if n rfs layer = 1, then there are 500 trees in the

sole RF in each layer. If n rfs layer = 2, then each RF contains 250 trees. If

n rfs layer = 4, then each RF contains 125 trees.

Overall, there are 12 candidate configurations of the hyper-parameter set-

ting for the DSF experiment: 3 candidate n rfs layer values times 2 candidate

n fail layers values times 2 candidate d0 values.

All computational experiments were performed using Python 3 with the scikit-

survival library version 0.14.0 (Pölsterl, 2020), a Python module built on top of the

scikit-learn machine learning library (Pedregosa, Varoquaux et al., 2011), together

with (Weinstein et al., 2019). In addition, some parts of the program were written

and customised in Cython-code, which played an important role in boosting the

performance of RSF due to Python’s relatively slow performance.

6.3.4 Statistical significance tests

In Subsection 4.4.4 we described the statistical tests of significance which were

used for comparing the performance of more than two methods in the previous

two chapters. In the statistical analysis of results in this current chapter, we used

not only those tests, but also the Wilcoxon Signed-Rank test, which was used

when directly comparing the performance of only two methods. Hence, this test
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is described next.

The Wilcoxon-Signed Ranks Test

The Wilcoxon signed-ranks test (Wilcoxon, 1945) is a non-parametric statistical

significance test used in this thesis for comparing the predictive accuracies (more

precisely, C-index values) of two algorithms. The main advantage of this test is its

non-parametric nature, making no assumption of normal distribution (Japkowicz

and Shah, 2011), which is a strong assumption made in particular by the alter-

native paired t-test. Another advantage of the Wilcoxon signed-ranks test is its

robustness against outliers, since it is based on the relative ranks of the predictive

performances of two models, instead of being based on their raw performance such

as the raw C-index values.

The null hypothesis for this test is that the medians of the two learned models’

predictive performances are equal.

The Wilcoxon signed-ranks test involves several steps (Demšar, 2006), as fol-

lows. To begin, the difference (di) between the predictive accuracies of the two

learned models is calculated for each i–th dataset, i = 1, . . . , N , where N is the

number of datasets. Next, the differences are ranked according to their absolute

values (rank(di), i = 1,. . . ,N ,), ignoring their signs; in the case of a tie, the cor-

responding average rank is assigned. Once the data have been prepared, we start

to calculate the Wilcoxon signed-rank sums. The calculations proceed separately

according to Equations 39 and 40 for the positive and negative differences in ac-

curacy, respectively. That is, R+ denotes the sum of ranks for positive differences

and R− denotes the sum of ranks of negative differences. It should be noted that

the differences of 0 have their ranks split evenly among the sums; if there is an

odd number of them, one is discarded.

R+ =
∑
di>0

rank (di) + 1
2
∑
di=0

rank (di) (39)
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R− =
∑
di<0

rank (di) + 1
2
∑
di=0

rank (di) (40)

Afterwards, the smaller of R+ or R− is used for the test statistic, T. Let T and

Tcritical be the smaller of the rank sums and the exact critical value respectively.

The null hypothesis is rejected if T is greater than or equal to Tcritical, accepted

otherwise. In general, the exact value of Tcritical can be found in a precomputed

table (available e.g. in (Bruning and Kintz, 1987)) for values of N up to 25. For

a larger number of datasets, the distribution of the test statistic can be approx-

imated by a normal distribution, with the following equation for calculating the

z-score:

z =
T − 1

4N(N + 1)√
1
24N(N + 1)(2N + 1)

(41)

where T is the test statistic and N is the number of datasets. Subsequently,

the null hypothesis is rejected if z is smaller than the critical value for z-score.

6.4 Computational Results

This section reports the computational results obtained by the proposed Deep

Survival Forest (DSF) variants and the baseline methods, including the results of

statistical significance tests.

This section is divided into four subsections, as follows. The first subsection

reports results comparing the original DSF algorithm against the original Random

Survival Forest (RSF) algorithm. The second subsection reports results comparing

three different variants of the DSF algorithm with different leaf-node-prediction

criteria. The third subsection reports results comparing DSF-KNN-mean (the

DSF variant which achieved the best results in the second subsection) against the

very popular Cox Proportional Hazards regression. Finally, the fourth subsection
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Table 28: Comparison of the predictive performance of the Random Survival
Forest (RSF) and that of the Deep Survival Forest (DSF)

Dataset RSF DSF

Disease uncensoring
ratio c-index c-index

Alzheimer 69/6825
(1.0%) 0.7725 0.7670

Angina 165/6488
(2.5%) 0.6018 0.6151

HeartAtt 186/6607
(2.8%) 0.6351 0.6417

Psychiatric 219/5972
(3.5%) 0.5372 0.5578

Stroke 270/6632
(4.1%) 0.6373 0.6335

Diabetes 416/6500
(6.4%) 0.7527 0.7555

Cancer 562/6386
(8.8%) 0.5473 0.5493

Arthritis 784/4276
(18.3%) 0.5340 0.5418

Any-disease (ELSA) 979/3280
(29.8%) 0.5426 0.5557

Any-disease (SHARE) 101300/139522
(72.6%) 0.6890 0.7026

HD 783/1097
(71.4%) 0.5778 0.5776

Average Rank 1.73 1.27

reports results comparing DSF-KNN-mean, which obtained the best results across

all the previous subsections of this chapter, against RSF-constant-hazard-mean,

which obtained the best results in Chapter 5.
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6.4.1 Comparing the results of Deep Survival Forest (DSF)

with Random Survival Forest (RSF)

Table 28 compares the C-index values obtained by the original RSF algorithm (Ish-

waran et al., 2008) and the original DSF algorithm (Utkin et al., 2020), breaking

down by each disease used as the target ‘survival’ variable. In this and other ta-

bles reporting C-index values in this chapter, the best result (highest C-index) for

each dataset is shown in boldface font; and the last row shows the average rank

(across all datasets) obtained by each method – the lower the rank the better the

result.

It can be seen that DSF outperformed the original RSF in 8 out of 11 datasets,

although the differences in the C-index values are in general small. The three

highest C-index values across all datasets are 0.7725, 0.7555 and 0.7026, obtained

in the Alzheimer (by RSF), Diabetes (by DSF) and SHARE (by DSF) datasets,

respectively.

In addition, the average rank of DSF (1.27) is notably lower (better) than that

of the original RSF (1.73). Applying the Wilcoxon signed-ranks test, the null

hypothesis of equal rank for both methods is rejected at the usual 5% significance

level with a p-value of 0.042. Hence, there is statistical evidence supporting the

conclusion that, overall, the original DSF performed significantly better than the

original RSF in these 11 survival datasets.

To further analyse these results, we tried to detect some association between

high/low C-index values and high/low uncensoring ratios across datasets. The

uncensoring ratio is simply the ratio of the number of uncensored instances over

the total number of instances in a dataset. Uncensoring ratios are reported in the

second column of Table 28 – as noted in previous chapters, most datasets have a

very small uncensoring ratio (or equivalently, a very high censoring ratio), making

the problem of survival-time prediction particularly challenging.
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The three datasets with the highest C-index values had a great difference be-

tween their uncensoring ratios: just 1% for Alzheimer, 6.4% for Diabetes and

72.6% for Any-disease (SHARE). In addition, the three datasets with the low-

est C-index values also had substantially different uncensoring ratios: 3.5% for

Psychiatric, 8.8% for Cancer and 18.3% for Arthritis, respectively. Hence, there

is no clear association between the predictive performance (C-index) of the two

methods and the uncensoring ratio of the datasets.

6.4.2 Comparing the results of DSF with three different

leaf-node-prediction criteria

Table 29 reports the C-index values obtained by the original DSF (Utkin et al.,

2020) and the two proposed DSF variants with different modified leaf-node-prediction

criteria, focusing on estimating the survival time of each individual (instance).

The first column of this table shows the disease used as the target ‘survival time’

variable, and the next 3 columns report the C-index values of the 3 DSF variants

being compared.

Overall, both the newly proposed DSF variants outperform the original DSF.

The DSF-KNN-mean variant obtained the best average rank (1.82), and it achieved

the highest C-index in 6 of the 11 datasets. The DSF-constant-hazard-mean comes

second with an average rank of 2.0 and the best C-index in the 3 datasets. The

original DSF variant obtained the worst results, with the worst average rank of

2.18 and only 2 wins.

We applied the non-parametric Friedman test (Demšar, 2006) to determine

whether or not there is a statistically significant difference between the average

ranks of the three DSF variants and the mean rank of 2.0 under the null hypothesis.

The calculated value of FF is 0.342. With 3 variants and 11 datasets, FF is

distributed according to the f distribution with 3 - 1 = 2 and (3-1) x (11-1) = 20

degrees of freedom. The critical value of F(2,20) for α = 0.05 is 3.493. Note that
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Table 29: C-index values of three DSF variants with different leaf-node-prediction
criteria. All DSF variants had their n rfs layer, n fail layers and d0 hyper-
parameters tuned via nested cross-validation

Dataset (Disease) DSF DSF
(constant-hazard-mean) DSF (KNN-mean)

Alzheimer 0.767 0.7644 0.7899
Angina 0.6151 0.6087 0.6036

HeartAtt 0.6417 0.6483 0.6384
Psychiatric 0.5578 0.5521 0.5891

Stroke 0.6335 0.6436 0.6504
Diabetes 0.7555 0.7649 0.7060
Cancer 0.5493 0.5536 0.5621

Arthritis 0.5418 0.5468 0.5582
Any-disease (ELSA) 0.5557 0.5607 0.5666

Any-disease (SHARE) 0.7026 0.7136 0.7000
HD 0.5776 0.5742 0.5749

Average Rank 2.18 2.00 1.82

FF is smaller than the critical value (p-value = 0.695), and so the null hypothesis

cannot be rejected. Hence, there is no statistical evidence to support the claim

that any of the three DSF variants have better predictive performance than the

others.

6.4.3 Comparing the results of DSF with standard Cox

Proportional Hazards regression

Table 30 reports the C-index values for Cox’s Proportional Hazard (PH) Regres-

sion and the proposed DSF variant with KNN-mean, which achieved the best

predictive performance among all three DSF variants in Table 29. The results are

shown for each disease used as the target ‘survival’ variable. Recall that the large

majority of instances were censored in all datasets, except in the SHARE and HD

datasets.

As shown in this table, DSF-KNN-mean outperforms the Cox PH model in 9

out of the 11 datasets. The difference in the C-index values of these two methods
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Table 30: C-index values obtained by Cox’s PH regression and DSF with KNN-
mean

Dataset (Disease) CoxPH DSF (KNN-mean)
Alzheimer 0.6175 0.7899

Angina 0.5672 0.6036
HeartAtt 0.6219 0.6384

Psychiatric 0.5333 0.5891
Stroke 0.5952 0.6504

Diabetes 0.7300 0.7060
Cancer 0.5163 0.5621

Arthritis 0.5399 0.5582
Any-disease (ELSA) 0.5345 0.5666

Any-disease (SHARE) 0.7242 0.7000
HD 0.5736 0.5749

Average Rank 1.82 1.18

is particularly large in the Alzheimer dataset (a difference of 17.2%); and the

difference is about 5% in a few other datasets, namely: Psychiatric (a difference

of 5.6%), Stroke (5.5%) and Cancer (4.6%).

In addition, the average rank of DSF-KNN-mean (1.18) is remarkably lower

(better) than that of the Cox model (1.82). Applying the Wilcoxon signed-ranks

test, the null hypothesis of equal rank for both methods is rejected at the usual

5% significance level with a p-value of 0.032. Hence, there is statistical evidence

supporting the conclusion that, overall, the DSF variant with KNN-mean per-

formed significantly better than the Cox’s PH regression across these 11 survival

datasets.

6.4.4 Comparing the results of the DSF method with KNN-

mean against the constant-hazard-mean RSF method

Table 31 reports the C-index values for the pair of our best proposed methods,

namely RSF-constant-hazard-mean and DSF-KNN-mean, which achieved the best
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Table 31: C-index values obtained by constant-hazard-mean RSF and DSF with
KNN-mean

Dataset (Disease) RSF-constant-hazard-mean DSF-KNN-mean
Alzheimer 0.7564 0.7899

Angina 0.6085 0.6036
HeartAtt 0.6510 0.6384

Psychiatric 0.5596 0.5891
Stroke 0.6425 0.6504

Diabetes 0.7594 0.7060
Cancer 0.5553 0.5621

Arthritis 0.5462 0.5582
Any-disease (ELSA) 0.5616 0.5666

Any-disease (SHARE) 0.7104 0.7000
HD 0.5934 0.5749

Average Rank 1.55 1.45

predictive performance from Chapter 5 and this chapter, respectively. Both meth-

ods have their leaf-node-prediction criteria modified to compute the mean survival

times. Note that this comparison of the results of RSF-constant-hazard-mean and

DSF-KNN-mean is intended to conclude what was the best method overall, out

of all RSF and DSF variants proposed in this thesis and all standard (baseline)

methods included in the thesis’ experiments. To draw this conclusion, it is enough

to compare the best methods in Chapters 5 and 6, because the best method in

Chapter 4, the standard RSF, had a predictive accuracy worse than the best

methods in Chapters 5 and 6.

As shown in Table 31, the predictive accuracy determined by C-index values

achieved from the two different random-forest-based methods suggests a very little

difference between the performance of the two approaches, 6 wins for DSF-KNN-

mean and 5 wins for RSF-constant-hazard-mean. In addition, the average rank of

DSF-KNN-mean (1.45) is slightly lower (better) than that of the RSF-constant-

hazard-mean (1.55). By applying the Wilcoxon signed-ranks test, the statistical

result reports that the null hypothesis of equal rank for both methods cannot be

accepted, given the large p-value of 0.97. Hence, there is no significant difference
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Table 32: Most Frequently Selected Hyper-parameter Settings, for each DSF vari-
ant and each dataset

Dataset (Disease) DSF DSF
(constant-hazard-mean) DSF (KNN-mean)

Alzheimer (1, 2, 3) (1, 1, 3) (1, 2, 3)
Angina (1, 1, 1) (1, 1, 3) (1, 1, 3)

HeartAtt (1, 4, 3) (1, 4, 3) (1, 1, 3)
Psychiatric (1, 1, 3) (1, 1, 3) (1, 2, 3)

Stroke (1, 2, 3) (1, 2, 3) (1, 4, 3)
Diabetes (1, 2, 3) (1, 2, 3) (1, 2, 3)
Cancer (2, 1, 3) (1, 1, 3) (1, 1, 3)

Arthritis (1, 4, 3) (1, 4, 1) (1, 4, 1)
Any-disease (ELSA) (2, 4, 3) (1, 1, 1) (1, 2, 3)

Any-disease (SHARE) (1, 4, 3) (1, 4, 3) (1, 4, 3)
HD (1, 1, 1) (1, 1, 1) (1, 1, 1)

between these two best proposed methods.

6.4.5 Most Frequently Selected Hyper-parameter Values

Table 32 reports the hyper-parameter settings most frequently selected by the

nested cross-validation procedure (which was used for hyper-parameter optimisa-

tion) for the original DSF (Utkin et al., 2020) and the two proposed DSF variants

with different modified leaf-node-prediction criteria. Recall that the nested cross-

validation procedure selected one configuration of hyper-parameter settings for

each DSF variant for each of the training sets of the external cross-validation, for

each dataset. Hence, among those selected hyper-parameter settings per dataset,

the most frequently selected one is reported in the table. Thus, in each cell of

the table, the three values in brackets are the most frequently selected settings

for each of the 3 hyper-parameters being optimised.

As mentioned earlier, the 3 hyper-parameter optimised for these DSF vari-

ants are: (a) n fail layers, i.e., the maximum number of rounds allowed for the

training process to terminate when the performance on the validation set fails to
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improve compared against the best performance achieved so far on the validation

set; (b) n rfs layer, i.e., the number of forests in each layer; and (c) d0, i.e., the

minimum number of uncensored instances required at each leaf node of the trees

in a forest. Recall also that n fail layers can take the values 1 or 2; n rfs layer

can take the values 1, 2 or 4; and d0 can take the values 1 or 3.

As reported in Table 32, the top 3 frequently selected hyper-parameter set-

ting combinations (n fail layers, n rfs layer, d0) are (1,2,3), (1,1,3) and (1,4,3),

which were the winners 9 times, 8 times and 7 times, respectively, each out of 33

cases (considering the 3 DSF methods and the 11 datasets). Hence, the com-

bination of n fail layers = 1 and d0 = 3 seems to pair well together, while

the n rfs layer hyper-parameter tends to take different values depending on the

dataset and the DSF variant.

Furthermore, considering the selection frequency of each hyper-parameter set-

ting separately across all DSF variants and all datasets, the n fail layers value

of 1 is particularly effective: it was selected 31 out of 33 times. This value means

that no more layers should be added once the accuracy has dropped from that of

the last round. An advantage over the n fail layers value of 2 is the efficiency of

the algorithm as this will remarkably reduce the computational time during the

training process. Additionally, these results show that, in these datasets, shal-

lower models (where the algorithm tends to end up with fewer layers in the DSF

models) are more effective in general.

Next, regarding the n rfs layer parameter, the value of 1 seems to be slightly

preferred overall; it was selected 14 out of 33 times. Interestingly, this means

that one forest in each layer is sufficient to create a single additional feature to be

fed-forward to the next layer. Hence, it seems that, overall, it is slightly better to

use a single forest with 500 trees for these datasets; although the optimal value of

this hyper-parameter is clearly dependent on the dataset and DSF variant.
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Layer Count

Recall that the DSF algorithm dynamically adjusts the number of layers based on

the characteristics and complexity of training data, in order to optimise predic-

tive performance. During the experiments conducted on the nine ELSA datasets

and the haemodialysis dataset using 10-fold cross-validation, and the SHARE

dataset where 5-fold cross-validation was employed, the three variants of the DSF

algorithm, namely DSF, DSF-constant-hazard, and DSF-kNN-mean, generated

varying numbers of layers. The number of layers in each variant is reported in

Table 33.

Table 33: Frequency of selection for different numbers of layers in the DSF models

Variant 1 Layer 2 Layers 3 Layers 4 Layers 5 Layers 6 Layers
DSF 47 43 5 8 1 1

DSF-const 71 29 3 2 - -
DSFkNN 80 16 3 5 - 1

It can be observed on Table 33 that the majority of models in all three DSF

variants tend to have either 1 or 2 layers. The frequency of models with more

layers decreases as the number of layers increases, and very few models had more

than 4 layers.

Overall, the insights gained from these experiments highlight the dynamic

nature of the DSF algorithm and its variants, showcasing their ability to adjust the

number of layers based on the specific dataset being processed. This adaptability

reflects the algorithms’ potential to optimize performance and capture complex

relationships within the data.

6.4.6 Computational Runtimes

Compared to the RSF variants, all three DSF variants exhibit significantly larger

runtimes. This is primarily due to the need to train multiple random forests per

layer and the presence of multiple layers in the DSF model. Consequently, the
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runtime of the DSF variants is influenced by the dataset size and the number of

layers in the model.

As previously mentioned, the datasets derived from the ELSA database are

not very large, resulting in relatively fast DSF runtimes, ranging from about 7 to

10 days to run a nested cross-validation for each DSF variant, for each dataset.

In contrast, each experiment on the DSF variants consumed a very large amount

of time when analysing the SHARE dataset, consisting of over 100,000 instances,

leading to experiment durations of approximately 11 weeks for the nested cross-

validation of each DSF variant. On the other hand, the haemodialysis dataset

yielded the fastest experiment results, with a nested cross-validation for each

DSF variant completing within 5 days. Please note, again that, the experiments

were conducted using the Myrtle computer cluster hosted by the University of

Kent. The cluster had with 80 CPU threads, which were distributed among the

department’s PhD students and researchers.

6.4.7 Top-ranked features for survival prediction

Neither the RSF nor the DSF algorithm produces a model which is directly in-

terpretable since their learned models have too many survival trees. However, in

order to provide human users with some interpretation of the learned models, we

can use a feature importance measure to identify the most important features in a

RSF/DSF model learned from the data, i.e., the features that most influence the

predictions of the model. This feature-importance analysis can highlight general

trends in the learned models and can be useful to better understand the relation-

ships between some features and the target variable – i.e., the time passed until

the diagnosis of age-related disease.

Hence, we report next the most important features in the survival models

learned by the winning algorithm for each dataset, i.e., either RSF-constant-

hazard-mean or DSF-KNN-mean, whichever was the algorithm with the better
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predictive performance for each dataset, according to the results in Table 31. To

identify the most important features for each dataset, we first computed the im-

portance of each feature in the learned RSF/DSF model, using the well-known

“permutation feature importance” measure (Altmann et al., 2010). This measure

essentially quantifies the decrease in the C-index of the learned RSF/DSF model

when a single feature has its values randomly shuffled.

More precisely, there are five steps involved in the permutation feature im-

portance procedure. First, after a survival model has been trained, its C-index

is calculated on the test set to measure the model’s performance, as a base-

line. Second, the procedure iteratively shuffles the values of a feature in the

test set, one feature at a time, while keeping the values of other features constant.

Third, the C-index value is re-calculated for each feature, in order to measure

that feature’s importance score. I.e., for each feature, the procedure calculates

the difference between the baseline C-index value and the new C-index value

obtained when that feature’s values are shuffled in the test set: the larger the

decrease in C-index value, the higher the importance of the feature. Forth, the

shuffling of each feature can be repeated for multiple iterations, and the proce-

dure computes the average importance score over those iterations, in order to

get more robust results (instead of relying on a single random shuffling). In

this work, the number of random shuffle iterations is 100. Fifth, the features

are ranked by their importance scores. The permutation importance measure

was computed by ELI5, a Python package built on top of scikit-learn (https:

//github.com/eli5-org/eli5/blob/master/docs/source/overview.rst).

We report three sets of most important features, one for the ELSA datasets and

the other two for the SHARE dataset and the haemodialysis dataset, as follows.

First, recall that the 9 ELSA datasets share the same set of 44 predictive features

– those datasets differ in their target variables (age-related diseases). Hence, we

identify the top-ranked features across the RSF/DSF models learned for those 9

https://github.com/eli5-org/eli5/blob/master/docs/source/overview.rst
https://github.com/eli5-org/eli5/blob/master/docs/source/overview.rst
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Table 34: The 8 features which appear most often in the sets of top-10 features
in the RSF/DSF models learned from the ELSA datasets

Feature count Alzheimer Angina HeartAtt Psychiatric Stroke Diabetes Cancer Arthritis Any-disease
(ELSA)

mmgsn me
(grip strength) 8 V V V V V V V V

confage
(age) 6 V V V V V V

hdl (blood test) 6 V V V V V V
mmrroc
(chair-rise test) 5 V V V V V

wtval
(weight) 5 V V V V V

scako
(alcohol use frequency) 4 V V V V

smokerstat
(smoking status) 4 V V V V

indsex
(gender) 4 V V V V

Table 35: The 4 most important features in the RSF model learned from the
SHARE dataset

Rank Feature Description Pred. Error
1 age Age at interview (in years) 0.0878± 0.0286
2 mobilityind Mobility index (high: has difficulties) 0.0284± 0.0203
3 bmi Body mass index 0.0202± 0.0104
4 lgmuscle Large muscle index (high: has difficulties) 0.0176± 0.0140
5 casp CASP: quality of life and well-being index 0.0021± 0.0035

Table 36: The 4 most important features in the RSF model learned from the
haemodialysis dataset

Rank Feature Description Pred. Error
1 AgeFD Age at first dialysis 0.0537± 0.0714

2 CharlsonScore a measure of co-morbidity
(incidence of multiple diseases) 0.0124± 0.0116

3 Myelomatosis light
chain deposit disease

Myelomatosis/light chain
deposit disease (binary) 0.0052± 0.0104

4 CHOL Cholesterol level
(HDL and LDL) 0.0025± 0.0076

5 UREADIFF difference between urea
after the dialysis 0.0020± 0.0070
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datasets as a whole, which allows us to identify the most predictive features for

multiple age-related diseases at the same time. This is useful to study the ageing

process as a whole, from a more systemic perspective, rather than studying just

one disease at a time. Second, in the case of the SHARE and haemodialysis

datasets, since they contain uniquely distinct feature sets, we report their top-

ranked features separately.

Table 34 shows the 8 most influential features overall, in the best RSF/DSF

models learned from the 9 ELSA datasets. To identify these features, we first

ranked the features in decreasing order of the permutation feature importance in

each learned RSF/DSF model (i.e. for each dataset). Then, we computed the

frequency of occurrence of each feature in the sets of top-10 features for those

9 datasets, and ranked the features in decreasing order of that frequency. That

frequency is shown in the column “count” in Table 34, and the following columns

show precisely for which datasets (i.e., diseases) the feature was among the top-10

features in the learned RSF/DSF model. This table includes all features whose

count value is greater than or equal to 4 (out of the 9 ELSA datasets), and the

8 features satisfying this condition are shown in the first column of the table. In

the columns with dataset names, for each cell, a tick symbol V indicates that the

feature in the corresponding row is among the top-10 features for the dataset in

the corresponding column.

The 8 most influential features shown in Table 34 (for the best RSF/DSF

models learned from the ELSA datasets) can be described as follows (Clemens

et al., 2019): mmgsn me is the grip strength (Kg) of the non-dominant hand,

confage is the subject’s age when the data were collected, hdl is the blood HDL

(High-Density Lipoprotein) level, mmrroc is the outcome of chair-rise tests, wtval

is the subject’s valid weight (Kg), scako measures how often the subject had an

alcoholic drink during the last 12 months, smokerstat is the present or past smoker

status, and indsex is the gender.



CHAPTER 6. NEW VARIANTS OF DEEP SURVIVAL FORESTS 168

In addition, Tables 35 and 36 report the 5 top-ranked features in the best RSF

model learned from the SHARE and haemodialysis datasets, respectively (note

that for both these datasets, the best RSF model outperformed the best DSF

model). We report only the 5 top-ranked features in the best models for these

two datasets due to their relatively small number of features, 15 and 38 features

for the SHARE and Haemodialysis datasets, respectively.

As expected, the age variable takes the top spot (rank 1) in the best RSF

model for both the SHARE and the Haemodialysis datasets, and is the runner-

up (rank 2) in the best RSF/DSF models for the 9 ELSA datasets as a whole.

Interestingly, several of the top-ranked features for these datasets are not stan-

dard biomarkers of specific diseases, but rather reflect the level of the frailty of

individuals, like mmgsn me and mmrroc for ELSA datasets and mobilityind for

the SHARE dataset. Out of the several blood test results used as features in

the ELSA datasets, only the HDL (“good cholesterol”) level is among the top-8

features in Table 34; and the related variable CHOL (Cholesterol level) is also

among the top-ranked features in Table 36 (for the Haemodialysis dataset).

6.5 Conclusion

This Chapter proposed new variants of the Deep Survival Forest (DSF) algo-

rithm, a modification of the Deep Forest (DF) algorithm, which itself extends the

Random Forest (RF) algorithm for classification or regression tasks. The DF algo-

rithm draws from deep learning principles, especially the use of multiple learning

layers. In a standard DF model, a Random Forest is trained at each layer, with

predictions passed on to the next layer as additional features, much like a deep

neural network. DSF extends this concept to survival analysis by replacing the

base RF algorithm with the Random Survival Forest (RSF) algorithm, learning a

stack of RSF models at each layer.
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To assess these proposed DSF variants, we conducted a comparative analy-

sis against the standard DSF and the standard Cox Proportional Hazards (PH)

regression. Four types of experiments, using 11 real-world biomedical datasets,

assessed the predictive accuracy (C-index values) of these methods.

In the first experiment, the standard DSF was compared with the standard

RSF. The results demonstrated that the standard DSF consistently achieved sig-

nificantly higher accuracies, validating it as a state-of-the-art survival analysis

method since it outperformed the RSF, a well-recognized and effective survival

analysis method.

The second experiment contrasted the two proposed DSF variants against the

standard DSF. The proposed DSF with KNN-mean exhibited the highest predic-

tive accuracy across all datasets. However, no statistically significant difference

was observed among the three DSF variants.

The third experiment compared the best performing proposed DSF variant,

with KNN-mean, against the widely used Cox PH regression. DSF with KNN-

mean outperformed Cox PH regression in 9 out of 11 datasets, a statistically

significant difference.

In the final experiment, we compared the best performing DSF variant from

Chapter 6 (DSF with KNN-mean) with the best performing RSF variant from

Chapter 5 (RSF with constant-hazard-mean). Both these variants outperformed

the standard RSF. DSF with KNN-mean achieved higher predictive accuracy in

6 out of 11 datasets, while RSF with constant-hazard-mean performed better in

the remaining 5 datasets. However, the difference was not statistically significant.

It should be noted that DSF with KNN-mean, and other DSF variants, pose a

significant disadvantage due to their high computational cost. The layered nature

of DSF models, each requiring the training of several RSF models, makes them

the most computationally intensive methods evaluated in this thesis.



Chapter 7

Conclusions and Future Research

Survival analysis is a difficult research topic yet a promising one for employ-

ing powerful machine learning algorithms. Although the main characteristics of

survival-analysis tasks look alike that of regression tasks (where machine learn-

ing methods have been very successful), survival analysis presents an interesting

difficulty, i.e., data censorship. Unlike missing values, data censoring enables a

wide range of data analysis techniques, taking into account the partial information

about survival times associated with censored data. Therefore, broadly speaking,

the goal is to utilise incomplete yet helpful information in censored data to build

effective machine learning models for survival analysis.

In terms of machine learning algorithms, this thesis has focused on decision-

tree-based ensembles, proposing new variants of random forests and random sur-

vival forests for survival analysis problems with censored data. This also included

new variants of deep survival forests, which are based on some principles of deep

learning and random survival forests.

The proposed algorithm variants have been evaluated on 11 real-world biomed-

ical datasets, consisting mainly of datasets created from human ageing studies,

where the target variable (to be predicted) is the time passed until the diagnosis

of some age-related disease. The main motivation for focusing on this type of

170
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dataset is due to the growing need for research on age-related diseases, given that

old age has been shown to be the greatest risk factor for a wide variety of diseases

and that the proportion of old people among the world population is continuing

to increase.

In addition, most of the datasets used in the experiments have a relatively large

proportion of censored data (i.e., a small proportion of uncensored instances),

because a small proportion of participants were diagnosed with the age-related

disease of interest by the time the data were collected. This is especially true

for the datasets derived from the ELSA survey; where overall, the percentage of

censored instances (subjects) is above 80% and up to 99%. This makes them

particularly challenging datasets for survival analysis methods.

In summary, this research has developed new variants of supervised machine

learning algorithms (based on ensembles of decision trees) for survival-analysis

tasks. In addition, this thesis reported the results of computational experiments

which compared the predictive accuracy of the proposed algorithm variants against

the accuracy of several standard survival-analysis methods; overall the proposed

algorithm variants have been shown to be competitive to (sometimes significantly

more accurate than) standard methods.

The remainder of this chapter is divided into two sections. First, the next

section summarises the thesis’ contributions and the obtained computational re-

sults about the evaluation of the proposed algorithm variants. Then, the following

section suggests research directions for future work.

7.1 Summary of Contributions

This section summarises the main contributions of this thesis, focusing on the

dataset creation and the three types of new random forest variants proposed for

survival analysis with censored data. These will be discussed in three separate
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sub-sections, each reviewing the main rationale for the proposed method and

summarising its computational results.

7.1.1 Dataset Creation

This subsection summarises this thesis’ first contribution, which was the creation

of the 11 survival analysis datasets used in the experiments reported in the thesis.

In ten of these datasets, derived from the ELSLA and SHARE studies, the target

variable represents the time until an individual is diagnosed with an age-related

disease. However, in the haemodialysis dataset, the target variable represents the

time until the death of an individual.

The dataset creation process involved data cleansing and the specification of

a procedure for creating the target variables from the variables available in the

original databases, as described in Chapter 3.

7.1.2 New Variants of Random Forests for Survival Anal-

ysis

This subsection summarises the description and computational results of the Ran-

dom Target-Imputation Forests (RTIF) and the K-Nearest-Neighbours-Imputation

Random Forests (KNN-RF) algorithms, which were described in Chapter 4.

In this context, we proposed two new variants of the random forest (RF) algo-

rithm based on the imputation of censored target variables. These two proposed

RF variants consist of modifying the procedure for creating subsets of training

data to be used for learning the decision trees in a RF – which is basically the

first step in the execution of a RF algorithm. This involved replacing the censored

value of a target variable by another target value (an estimated survival time)

which is then treated as an uncensored target value, so that all other components

of the RF algorithm can be used without modification. Hence, these proposed
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RF variants have the advantage of simplicity, involving just a small modification

of standard RF algorithms for regression, to allow such algorithms to cope with

survival-analysis tasks. The thesis proposes two variants of RF algorithms for this

data transformation, as follows.

The first variant is based on replacing a censored target value by a randomly

generated target value within instance-specific lower and upper bounds.

The second proposed RF variant is based on using the well-known K-Nearest

Neighbour (KNN) algorithm to estimate the uncensored target value of each cen-

sored instance. This is a more sophisticated approach, it replaces the random

generation of target variable values with a deterministic imputation method based

on the actual target values from the uncensored subjects which are the nearest

neighbours of the current censored subject (whose target variable value needs to

be imputed). This approach uses the available known data as a “heuristic” for

estimating survival times for the purpose of training the decision trees in a RF

model.

The predictive performances of the two proposed RF variants were compared

against the predictive performances of four other methods: a standard RF for

regression, a RF with Inverse Probability of Censoring (IPC), the popular Cox re-

gression with the Proportional Hazard (PH) assumption, and a standard Random

Survival Forest (RSF) method, which is probably the most popular and successful

survival analysis method in the machine learning literature.

The predictive performance of all these methods was evaluated by computing

their C-index, which is probably the most popular performance measure in the

survival analysis literature, in experiments with 11 real-world biomedical datasets.

The results were analysed with statistical tests of significance. Four types of

experiments were performed, all using the same 11 datasets, but with different

experiments comparing the predictive performances of different sets of methods.

The results of these experiments and statistical analyses can be summarised as
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follows.

In the first experiment, RTIF obtained overall higher predictive accuracy than

the standard RF regressor and RF with IPC weights. The results were statistically

significant when comparing RTIF against each of the other two methods.

In the second experiment, KNN-RF also obtained overall higher predictive

accuracy than the standard RF regressor and RF with IPC weights. The results

were statistically significant when comparing KNN-RF against the RF regressor,

but there was no significant difference between the results of KNN-RF and RF

with IPC weights.

In the third experiment, the standard Random Survival Forest (RSF) obtained

overall higher predictive accuracy than the two proposed RF variants (RTIF and

KNN-RF). The results were statistically significant, i.e. RSF significantly outper-

formed both RTIF and KNN-RF.

Finally, in the fourth experiment, both RTIF and KNN-RF obtained overall a

higher predictive accuracy than the standard and very popular Cox Proportional

Hazards (PH) regression, with RTIF obtained overall the best ranking regarding

predictive accuracy. However, the differences in predictive accuracies between

RITF and each of the other two methods were not statistically significant.

7.1.3 New Variants of Random Survival Forests

This subsection summarises the description and results of several variants of Ran-

dom Survival Forests (RSFs) proposed in Chapter 5.

Recall that the RSF algorithm learns an ensemble of survival trees, which are

decision trees adapted to survival analysis problems. Hence, unlike the classical

RF algorithm, the RSF algorithm employs some statistical techniques which en-

able it to cope with censored data. RSF is the most popular type of RF algorithm

for survival analysis in the area of machine learning, and it has been shown to

outperform several methods in survival analysis (Li et al., 2022; Zhang et al., 2022;
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Snider and McBean, 2022; Miao et al., 2018a; Weeraddana et al., 2020; Gul et al.,

2020).

The second contribution of this thesis was to propose a number of variants of

the RSF algorithm. The proposed RSF variants focus on modifying two major

components of the standard RSF algorithm: (a) the procedure used for selecting

the feature to be used for splitting the data at each tree node (the node-splitting

criterion); and (b) the procedure used for computing the value predicted by each

leaf node (the leaf-node-prediction criterion).

Regarding the modification of the node-splitting criterion of RSFs, this thesis

proposed to replace the standard Log-rank test by the Wilcoxon and Tarone-Ware

tests. The main idea is that the original Log-rank node-splitting criterion assigns

the same importance to all failure times, whilst the Wilcoxon and Tarone-Ware

node-splitting criteria emphasize earlier failure times.

Regarding the modification of the leaf-node-prediction criterion of RSFs, this

thesis proposed to modify the standard criterion of the Cumulative Hazard Func-

tion by a more direct and simpler estimate of the survival time for each subject,

directly based on estimating the mean of the target variable over all instances

in a leaf node, in a way that takes into account the presence of censored data.

More specifically, four variants of the leaf-node-prediction criterion of RSFs were

proposed, as follows:

1. The Naive-mean criterion: The survival time predicted at each leaf node

is simply the mean over the target variable values of all instances in that leaf

node, regardless of the instances’ censorship status (censored or uncensored).

This is a naive method used as a baseline only, which underestimates the

true survival time at each node.

2. The constant-hazard-mean criterion: Making the strong assumption

of constant hazard rate in the data, the mean survival time predicted at a

leaf node is calculated as the summation of the target variable values of all
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instances in that node, censored and uncensored included, divided by the

number of uncensored instances. This procedure overestimates the survival

time at each node.

3. The weight-age-mean criterion (age-based weights): This is an ex-

tension of the previous criterion where, when computing the mean survival

time predicted at a leaf node, censored subjects have their target variable

values weighted, where the weights for older subjects are smaller than the

weights for younger subjects, reflecting the fact that older subjects (at the

time of censorship) are expected to have smaller survival times. As a result,

the aforementioned overestimation of predicted survival time (associated

with the constant-hazard-mean criterion) is reduced.

4. K-NN mean: In this criterion, before calculating the mean survival time

at a leaf node, the unknown survival times of censored instances are esti-

mated based on K-NN’s predictions. Essentially, for each censored instance,

the K-NN algorithm finds the K nearest uncensored neighbours of the cur-

rent censored instance, and the value of the target variable for the current

censored instance is replaced by the mean of the target variable values (sur-

vival times) among those K neighbours. Once this replacement is done for

all originally censored instances in the current leaf node, the predicted sur-

vival time at that leaf node is simply the mean over all target variable values

at that node.

The results of these proposed RSF variants were compared among themselves

and against the standard RSF and the standard Cox Proportional Hazards (PH)

regression, in experiments evaluating the predictive accuracy (C-index values) of

the methods on 11 real-world biomedical datasets (described in Chapter 3). This

involved four types of experiments, with different sets of methods being compared,

and the results of these experiments can be summarised, as follows.
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The first experiment compared the results of the three RSF variants with differ-

ent node-splitting criteria, i.e. with the Log-rank (default criterion), Wilcoxon and

Tarone-Ware criteria. In this experiment, all three RSF variants used the same

standard leaf-node-prediction criterion for RSF, namely the Cumulative Hazard

Function (CHF). Overall, the RSF variant with the default Log-rank test ob-

tained the best predictive accuracy results (highest C-index values), but there

was no statistically significant difference among the results of these three RSF

variants.

The second experiment compared the results of the aforementioned five RSF

variants with different leaf-node-prediction criteria. All these RSF variants used

the same node-splitting criterion, the default Log-rank test, which obtained the

best results in the first experiment. Overall, RSF with the “constant-hazard-

mean” criterion obtained the highest predictive accuracy (C-index values) across

the 11 datasets. When comparing the results of RSF constant-hazard-mean

against the results of each of the other four RSF variants, RSF constant-hazard-

mean was found to be significantly better than three of the other four variants –

the only exception was that there was no significant difference between the RSF

constant-hazard-mean and RSF weight-age-mean variants.

The third experiment compared three RSF variants with different node-splitting

criteria, again Log-rank, Wilcoxon and Tarone-Ware criteria, but this time all RSF

variants used “constant-hazard-mean” as the leaf-node-prediction criterion, which

was the best criterion with the best results in the second experiment. Overall, the

best results were again obtained by the RSF variant with Log-rank. Again, there

was no statistically significant difference between the three RSF variants in this

experiment. Hence, the results of this third experiment are similar to the results

of the first experiment, both confirming that the default Log-rank criterion was

the best out of the three evaluated node-splitting criteria.
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Finally, the fourth experiment compared the best RSF variant across all pre-

vious experiments, namely RSF with Log-rank test and constant-hazard-mean

predictions, against the very popular Cox Proportional Hazards (PH) regression.

That RSF variant achieved higher predictive accuracy than the accuracy of Cox

PH in 10 of the 11 datasets, and this result was statistically significant.

7.1.4 New Variants of Deep Survival Forests

This subsection summarises the description and results of the new variants of the

Deep Survival Forest (DSF) algorithm proposed in Chapter 6.

The DSF algorithm is an extension of the Deep Forest (DF) algorithm, which

is in turn an extension of the RF algorithm designed for regression or classification,

rather than survival analysis. The DF algorithm is based on some principles of

deep learning, particularly the use of multiple layers of learning. In the standard

DF algorithm, a set of RFs is trained in each layer and the predictions of one

layer are propagated to the next layer as additional features (analogous to the

layers of a deep neural network). That is, a DF model is essentially a stack of

several RF models, each of which is learned using the original RF algorithm. The

DSF algorithm extends the DF algorithm by adapting it to survival analysis, by

simply replacing the base RF algorithm with the RSF algorithm. Hence, the DSF

algorithm learns a stack of several RSF models, each learned using the standard

RSF algorithm.

The third contribution of this thesis was to propose two variants of the DSF

algorithm. The proposed DSF algorithm modifications arrange RSF models into

layers in the same manner as the standard DSF method does. The difference

is that the two proposed DSF variants use two of the RSF variants proposed in

Chapter 5, namely RSF constant-hazard-mean and RSF KNN-Mean (instead of

standard RSF), as base learners in each layer.

The results of the proposed DSF variants were compared against the standard
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DSF and the standard Cox Proportional Hazards (PH) regression, in experiments

which evaluated the predictive accuracy (C-index values) of the methods on 11

real-world biomedical datasets (described in Chapter 3). This involved four types

of experiments, with different sets of methods being compared across the experi-

ments. The results of these experiments can be summarised as follows.

In the first experiment, the standard DSF was compared against the stan-

dard RSF. The results have shown that standard DSF obtained statistically sig-

nificantly higher accuracies than standard RSF. This supports the claim that

standard DSF is a state-of-the-art survival analysis method, since it clearly out-

performed standard RSF, which is by itself a very strong survival analysis method,

often outperforming other methods in the literature, as mentioned earlier.

In the second experiment, the two proposed variants of DSF (with leaf-node-

prediction criteria proposed in this thesis) were compared against standard DSF.

Overall, the highest predictive accuracy (C-index) results were obtained by the

proposed DSF with KNN-mean. However, the differences in the results of the

three DSF variants were not statistically significant.

In the third experiment, the best proposed DSF variant, with KNN-mean, was

compared against the very popular Cox PH regression. The results have shown

that DSF with KNN-mean obtained higher predictive accuracies in 9 of the 11

datasets, and the difference in predictive accuracy between these two methods

was statistically significant.

In the fourth experiment, DSF with KNN-mean, which obtained the best

results among the DSF variants evaluated in Chapter 6, was compared against

RSF with constant-hazard-mean, which obtained the best results among the DSF

variants evaluated in chapter 5. Note that both these algorithm variants obtained

better results than the standard RSF, which in turn was the best method evaluated

in Chapter 4. Hence, the results of this fourth experiment reported in Chapter

6 are useful to determine which was the best survival analysis method overall,
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across all methods evaluated in the thesis. The results have shown that DSF with

KNN-mean obtained higher predictive accuracy (C-index values) in 6 of the 11

datasets, whilst RSF with constant-hazard-mean obtained higher accuracy in the

other 5 datasets. The difference in these results was not statistically significant.

It should be noted, however, that DSF with KNN-mean, as well as the other

DSF variants (including standard DSF), have the disadvantage of being by far the

most computationally expensive of the several types of methods evaluated in this

thesis. This is due to a DSF model typically having multiple layers, where each

layer requires the training of several RSF models.

7.2 Research Directions for Future Work

This section suggests five research directions for future work, as follows. First,

proposing other new variants of the Random Survival Forest (RSF) algorithm.

Second, proposing other new variants of the Deep Survival Forest (DSF) algo-

rithm. Third, performing additional experiments to evaluate the proposed algo-

rithm variants. Fourth, proposing a new Automated Machine Learning (Auto-

ML) system for survival analysis. Finally, discovering new knowledge or patterns

about age-related diseases. These research directions are discussed in the next

five subsections.

7.2.1 Proposing other new variants of the Random Sur-

vival Forest (RSF) algorithm

Although several different variants of the RSF algorithm have already been pro-

posed in the thesis, it would still be interesting to design and evaluate other,

potentially more powerful variants of the algorithm – possibly using as a basis a

more advanced version of this type of algorithm in the literature.

Taking the Oblique Random Survival Forest (ORSF) algorithm (Jaeger et al.,
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2019) as an example, this algorithm learns an ensemble of survival trees with

oblique data splits where features were regularised by Cox proportional hazard

models before applying the Log-rank test. Therefore, two options for modifying

this algorithm are as follows: (1) the Log-rank test could be replaced with other

node-splitting-criteria, such as the other criteria used in this thesis or a different

criterion like the AUC-based node-splitting criteria proposed in (Eifler, 2014);

and (2) the leaf-node-prediction criterion of ORSF could be replaced with other

criteria, such as the other criteria proposed in the thesis.

In addition, as a more sophisticated type of leaf-node-prediction criterion, it

would be interesting to investigate the use of model trees (Witten et al., 2005),

where the target value predicted by each leaf node is computed by a linear re-

gression model, learned for the data belonging to that leaf node, after replacing

censored target values by an estimate (like the one calculated by the K-NN-mean

criterion). The use of such linear models in survival trees’ leaf nodes could be

investigated not only as a variant of the standard RSF algorithm, but also as a

variant of the ORSF algorithm.

7.2.2 Proposing other new variants of the Deep Survival

Forest (DSF) algorithm

Recall that the standard DSF algorithm learns a model consisting of multiple

layers (inspired by the multiple layers of deep neural networks), where each layer

consists of several RSF models, learned by the standard RSF algorithm. Hence,

a simple but potentially effective approach for designing a more powerful DSF

variant consists of replacing the base algorithm that is used for learning the RSF

models in each layer. More specifically, the standard RSF algorithm used for

learning in each layer could be replaced by another, potentially more effective

RSF variant.

This thesis has already proposed (in Chapter 6) two DSF variants where the
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base RSF algorithm was replaced by two corresponding RSF variants proposed

in Chapter 5 of the thesis. It should be noted that, out of the several new RSF

variants proposed in Chapter 5, only two were selected to be used as a basis

for the two new DSF variants proposed in Chapter 6. This was mainly due to a

limitation in the time available to run all experiments with DSF variants since the

DSF algorithm (and its variants) are very time-consuming. Hence, in future work,

it would be interesting to propose and evaluate other new DSF variants, based

on other RSF variants proposed in Chapter 5; or going further, new DSF variants

based on other potentially more powerful types of RSF variants not evaluated in

this thesis, like the aforementioned Oblique RSF.

7.2.3 Performing additional experiments to evaluate the

proposed algorithm variants

In this thesis, the proposed variants of RF, RSF and DSF algorithms were com-

pared against each other and against two other types of methods: the standard

versions of those algorithms, and other well-known methods for survival analysis

(including the very popular Cox PH regression).

However, one limitation of the experiments is that the proposed RF, RSF,

and DSF variants were not compared against other variants of those algorithms

proposed in the literature – e.g. (Weeraddana et al., 2020; Wang and Li, 2017;

Miao et al., 2018b; Eifler, 2014; Wright, Dankowski and Ziegler, 2017; Wang and

Liu, 2018; Wongvibulsin, Wu and Zeger, 2019; Jaeger et al., 2019; Utkin et al.,

2019b; Tollenaar and Van Der Heijden, 2019; Gul et al., 2020). Hence, future

research could be directed at performing this kind of comparison, in order to

further evaluate the effectiveness of the proposed algorithm variants.

In addition, future research could include extending the experiments to include

more real-world survival analysis datasets, beyond the 11 real-world datasets used

in this research.
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7.2.4 Proposing a new Automated Machine Learning (Auto-

ML) system for survival analysis

Automated Machine Learning (Auto-ML) is a sub-area of machine learning that

involves automatically selecting the best machine learning algorithm (out of a

pre-defined set of algorithms) and its best hyper-parameter settings for a given

input dataset (Waring, Lindvall and Umeton, 2020; Liu, Lu and Lu, 2021). There-

fore, Auto-ML avoids users spending a lot of time and effort with ad-hoc exper-

iments trying user-specified machine learning algorithms and different configura-

tions (hyper-parameter settings) of those algorithms.

The majority of Auto-ML systems address a standard supervised learning task

(typically classification), so those systems’ base algorithms cannot directly cope

with censored data. Hence, an interesting direction for future research would be

to develop an Auto-ML system for survival analysis tasks with censored data.

In this case, the space of candidate algorithms could include e.g. many variants

of RSF, DSF and Cox regression algorithms (as well as other types of survival

analysis methods), and then the Auto-ML system would automatically select the

best of those algorithm variants and its best configuration for any given input

survival analysis dataset.

This would be a more systematic and principled approach for exploring a large

number of different survival analysis methods as a whole, in a single experiment; as

opposed to the more ad-hoc approach followed in this thesis, where many smaller

experiments (each comparing a few methods) were performed, and their results

had to be individually analysed.

This author is aware of only two works on Auto-ML systems that address

survival analysis tasks, coping with censored data, as follows. The AutoScore-

Survival system was specifically designed to cope with time-to-event, right-censored

data (Xie et al., 2022). However, from an Auto-ML perspective, it is a relatively
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simple system where the used survival analysis methods are essentially a stan-

dard RSF and standard Cox regression. Therefore, there is plenty of opportunity

for extending the set of candidate survival analysis methods in the AutoScore-

Survival system with other variants of RSF and Cox regression, as well as other

more advanced methods like DSF. Actually, the authors of (Xie et al., 2022) ad-

mit (in the Discussion section of their article) that “this is the initial development

of AutoScore-Survival . . . Future development should extend the framework with

advanced algorithms”.

Another relevant Auto-ML system is Just Add Data Bio (JADBio), which

was designed for biomarker discovery in biomedical applications, i.e. identifying a

relatively small set of features that can be used as biomarker or biosignatures for

predicting a target variable (Tsamardinos et al., 2022). This article claims that

the system can cope with right-censored data, but the article focused on reporting

the results of the system in several biomedical case studies, rather than a precise

machine learning-oriented description of the system. Hence, it is not clear in the

article which candidate survival analysis methods can be selected by the system

and which of their hyper-parameter settings can be optimised.

7.2.5 Discovering new knowledge or patterns about age-

related diseases

Finally, the survival analysis datasets of age-related diseases created in this thesis

represent an interesting and important application domain; considering that, as

discussed earlier, the proportion of elderly people in the world population is in-

creasing (WHO, 2022). Hopefully, the application of machine learning methods to

such datasets can lead to new knowledge, patterns or insights about which predic-

tive variables have a greater influence in the development of age-related diseases

(as the type of target variable being predicted).

This thesis has made an initial attempt at identifying such most important
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predictive variables in each of the created datasets, by ranking the features in the

best learned RSF or DSF models in decreasing order of feature importance and

reporting the top-ranked features in each dataset. However, this initial analysis

of feature importance was limited to using just one standard feature importance

measure, which is often used in the context of random forests.

Hence, a natural direction for future research would be to perform a more

extensive feature importance analysis by using several different feature importance

measures proposed in the literature, and comparing their results. For instance,

it would be interesting to evaluate to what extent different feature importance

measures produce similar feature ranks, and try to identify a subset of features

which are consistently among the top-ranked features across all or nearly all of

the feature importance measures used in an experiment. This could lead to the

identification of a more robust set of features that most strongly predict the future

diagnosis of some age-related diseases.

More broadly speaking, this could potentially improve our understanding of

how complex health states affect the process of ageing and perhaps open up new

treatment paths for extending a healthy lifespan (i.e. the period of life spent in

good health, without suffering the heavy burden of age-related diseases). After all,

we want to maintain our physical and mental capability to perform the activities

that we cherish at old age, rather than living idly in the hospital.
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selection in Bayesian classifiers for the prognosis of survival of cirrhotic patients

treated with TIPS. Journal of Biomedical Informatics, 38(5), pp. 376–388.
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Appendix A

The values of the features’

coefficients in the learned Cox

regression models

In this Appendix, there are 11 tables reporting the values of the features’ coef-

ficients (the β values) in the Cox regression models learned from each of the 11

datasets. These β values were obtained by training the Cox regression algorithm

on the full dataset (instead of using cross-validation), in order to maximise the

quality of the learned model. In each table (i.e. for each dataset), the features are

shown in decreasing order of the absolute (ignoring sign) value of the coefficient

β. That is, the most important features in each model are placed at the top rows

of the corresponding table. Note that, by considering absolute feature values, the

importance of a feature depends only on the magnitude of its coefficient, without

distinguishing between positive and negative β signs, but the signs are shown to

allow a more precise interpretation of the feature’s effect on the target variable.

The meaning of each feature in these tables is defined in Chapter 3.
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Table 37: The coefficients of the Cox re-
gression model for the Alzheimer target
variable of the ELSA dataset

Feature coefficient

rtin=1 -7.9327087

mmcrre=2.0 -7.9269699

hdl=3 -7.5502405

sysval=4 -6.7253336

hasurg -6.6699189

hdl=4 -6.5004141

mmssre=2 -6.173749

htfvc=3 -6.1061719

mmlsre=2.0 5.91917147

hba1c=3 -5.6734029

mmgsd me=4 -5.4876862

htfev=3 -5.421895

hscrp=1 -5.2041246

hipval=4 -5.166779

rtin=2 -5.0725379

diaval=4 -4.9608085

apoe=2 -4.881852

cfib=3 -4.7877512

htpf=4 -4.6653746

bmival=4 -4.4747892

fglu=2 -4.4334273

fglu=3 -4.2450812

rtin=4 -4.1420562

Feature coefficient

htval=3 3.99831941

htval=2 3.96905735

hscrp=2 -3.8446216

trig=2 -3.6523373

hba1c=4 -3.6280704

apoe=3 -3.6153941

mmgsn me=4 -3.6037633

htval=1 3.41851446

chol=4 -3.1074139

hgb=2 3.09944777

htval=4 -2.9749137

hgb=1 2.9423102

cfib=4 -2.8208819

wstval=3 2.70239253

hgb=4 2.6973123

rtin=3 -2.5868053

wtval=3 -2.3231511

mmftre2=4.0 -2.1372757

hgb=3 2.0656981

mapval=4 -2.0518362

whval=4 1.97348444

mapval=3 1.90356337

chol=3 1.85821828

ldl=2 -1.6949972

trig=3 -1.5811611

mapval=2 1.56359026
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Feature coefficient

ldl=4 -1.5459865

wtval=2 -1.5190695

scako=6.0 -1.441642

chol=2 1.40908569

hastro 1.39258523

hscrp=4 -1.3901362

mmstre=2.0 1.3058999

hba1c=2 1.26451507

sysval=2 -1.2043922

trig=4 -1.174429

mmftre2=3.0 -0.9900997

mmgsn me=2 -0.9770861

scako=5.0 -0.9468894

ldl=3 -0.9287365

bmival=2 -0.9148555

pulval=1 0.89609719

mmstre=3.0 0.88298203

inhaler -0.8611083

diaval=1 0.84351594

fglu=4 -0.8178241

mmgsn me=1 -0.7790026

scako=2.0 -0.770892

mmrroc=4.0 0.7669385

mmftre2=5.0 0.75395418

ldl=1 -0.7423104

bmival=3 0.71759976

Feature coefficient

mmlsre=3.0 -0.6419641

scako=8.0 -0.6242398

cfib=1 0.6031585

chol=1 0.59425249

fit 0.57362675

bmival=1 -0.5591869

wstval=1 0.55598391

mmrroc=2.0 0.55315667

scako=7.0 -0.5427747

fglu=1 -0.5345483

mmlore=2.0 0.5282357

htfev=1 -0.5250644

mmgsd me=3 -0.5206794

wstval=4 -0.5192351

wtval=4 -0.5123828

mmcrre=3.0 0.50075705

mmlore=3.0 0.47939025

cfib=2 -0.4768621

wtval=1 -0.4694903

pulval=4 -0.4590249

mmftre2=2.0 0.41488052

hipval=1 0.36554053

whval=3 -0.3596172

hdl=2 -0.3592826

pulval=3 -0.3535901

clotb 0.3436563
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Feature coefficient

scako=4.0 -0.3272378

eyesurg 0.3230047

hdl=1 -0.3222967

htfvc=4 -0.3189674

smokerstat=3.0 0.3045343

pulval=2 0.28616469

diaval=2 0.28445655

htfev=4 -0.2771801

htfvc=1 0.27545266

sysval=1 -0.2442869

htfvc=2 -0.2384819

whval=2 -0.2367132

indsex 0.23118003

smokerstat=4.0 0.23056008

mmrroc=5.0 -0.22729

mmgsd me=2 -0.2053699

hipval=3 0.20105205

mmrroc=3.0 0.19458657

htfev=2 -0.1897344

htpf=1 0.18758467

whval=1 -0.182184

mapval=1 0.17683598

scako=3.0 -0.1717864

trig=1 0.15773053

smokerstat=1.0 -0.1319435

mmgsn me=3 0.13159401

Feature coefficient

diaval=3 -0.1062664

confage 0.09681828

smokerstat=2.0 0.07851031

hipval=2 0.07322581

mmssre=3 -0.0700315

htpf=2 0.06466189

hba1c=1 -0.0605851

chestin 0.05166471

apoe=1 0.04983529

sysval=3 -0.0493828

mmgsd me=1 -0.04847

htpf=3 -0.0435565

hscrp=3 -0.027277

wstval=2 -0.0072674

apoe=4 -0.002075
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Table 38: The coefficients of the Cox
regression for the Angina target variable
of the ELSA dataset

Feature coefficient

mmssre=2 -7.620346

htfvc=3 -7.1403567

rtin=2 -7.1167932

bmival=4 -6.731847

trig=2 -6.4477572

fglu=2 -6.4371299

htpf=4 -6.3214846

hscrp=1 -6.2475208

cfib=3 -6.2201957

trig=3 -5.9401698

apoe=3 -5.8026

hipval=4 -5.7681639

hba1c=3 -5.5334062

rtin=4 -5.225452

hba1c=4 -5.1101654

hgb=4 5.03883471

chol=4 -4.845758

trig=4 -4.6408961

htval=1 4.63675503

htval=3 4.63029121

rtin=3 -4.4902854

hgb=2 4.44301451

htval=2 4.37723035

Feature coefficient

hgb=3 4.33633379

hscrp=2 -4.2802617

cfib=4 -4.0545397

mapval=4 4.00127889

pulval=4 -3.9492577

hgb=1 3.78951284

htval=4 3.78432663

fglu=3 -3.7299687

htfvc=4 -3.5243833

diaval=4 -2.9702354

hastro 1.93370877

ldl=4 -1.7010552

mmftre2=5.0 -1.6344135

fglu=4 -1.4764844

mmgsd me=2 -1.2084239

hdl=3 -1.159237

hasurg 1.07192906

mmgsd me=4 -1.0507147

htfev=3 1.03901868

hba1c=2 1.01350818

mmlsre=3.0 1.00514769

hscrp=4 -0.9859174

wstval=3 -0.9616217

mmcrre=3.0 -0.9422017

fit 0.9341515

mmgsd me=3 -0.9326254



APPENDIX A. THE VALUES OF THE FEATURES’ COEFFICIENTS IN THE LEARNED COX REGRESSION MODELS204

Feature coefficient

chol=3 0.89026713

hipval=3 0.87269346

sysval=3 0.84875961

apoe=2 0.84469026

mmgsd me=1 -0.8235417

hdl=4 0.77159829

wtval=2 0.70552436

wtval=4 -0.6885426

trig=1 0.67089842

mmrroc=4.0 -0.6482446

whval=3 -0.6410551

scako=7.0 0.63500336

hipval=2 -0.6250662

mmcrre=2.0 0.59599421

wtval=3 0.58864211

htfvc=2 -0.5771085

smokerstat=1.0 0.55698044

chol=1 -0.5449089

smokerstat=2.0 0.53651735

hdl=2 -0.5345504

mapval=2 -0.5342824

ldl=3 -0.5246043

mmlsre=2.0 0.4879062

mmrroc=5.0 0.47754914

mmstre=2.0 -0.4770752

bmival=2 0.47691588

Feature coefficient

bmival=3 -0.4701682

mapval=3 -0.4644559

scako=8.0 0.44793942

pulval=2 0.4452195

mmssre=3 -0.4324309

scako=6.0 0.43176391

sysval=4 -0.4108623

diaval=2 0.40193172

whval=1 -0.3734499

mmstre=3.0 -0.3690946

htpf=1 0.36597593

mmftre2=3.0 0.36508321

mmgsn me=3 0.34382161

smokerstat=4.0 0.3426991

whval=2 -0.341516

chestin 0.31892058

cfib=2 -0.3186197

hba1c=1 0.30818925

wtval=1 0.30209513

inhaler 0.30190336

apoe=1 -0.2961453

wstval=2 -0.291414

htpf=2 0.29052164

mmrroc=3.0 -0.2793078

mapval=1 -0.2706839

htfev=1 0.27005148
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Feature coefficient

diaval=1 0.26152745

bmival=1 0.2550899

mmlore=3.0 0.25254342

mmlore=2.0 0.24022951

pulval=1 0.23828597

scako=4.0 -0.2259461

mmftre2=2.0 -0.2116881

hscrp=3 -0.2036734

mmrroc=2.0 0.19471245

wstval=4 -0.1945655

htfvc=1 -0.1649451

sysval=1 0.1643518

sysval=2 0.15961334

scako=5.0 -0.1461821

mmgsn me=1 0.14354431

chol=2 -0.1396803

rtin=1 0.1346034

fglu=1 -0.1325183

hdl=1 -0.1307568

indsex 0.12679221

diaval=3 -0.1254126

htpf=3 0.12027138

htfev=2 0.09184959

hipval=1 0.08965017

mmgsn me=2 -0.0888209

scako=2.0 -0.0755155

Feature coefficient

scako=3.0 0.07493693

clotb 0.0739859

cfib=1 -0.0738325

pulval=3 0.0706568

smokerstat=3.0 0.0595946

mmgsn me=4 0.04641292

mmftre2=4.0 0.04386294

confage 0.04365893

ldl=2 0.03441834

whval=4 -0.0317313

htfev=4 -0.0275974

wstval=1 0.00883225

eyesurg -0.0054089

apoe=4 -0.0039168

ldl=1 0.00390816
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Table 39: The coefficients of the Cox re-
gression model for the Any-disease tar-
get variable of the ELSA dataset

Feature coefficient

hscrp=4 10.175242

cfib=4 -7.3247284

apoe=4 -7.281966

trig=4 -7.2781148

hscrp=3 -6.8486819

pulval=4 -6.7941804

hipval=4 -6.6905569

hscrp=2 -6.5621927

htfvc=4 2.99980789

htfev=4 -1.7311636

fglu=2 1.5847906

hba1c=4 1.54303669

fglu=4 1.45577924

hba1c=3 1.31199089

hba1c=2 1.26538034

wtval=4 1.17794009

hgb=4 -1.162146

hdl=4 -0.9732054

ldl=4 -0.9645058

mmcrre=2.0 0.93114375

mapval=4 0.92818633

hastro 0.79893356

hgb=3 -0.7336361

Feature coefficient

hgb=2 -0.7140102

wstval=4 0.66526073

mmssre=2 0.64854145

whval=4 0.62370727

htfev=3 -0.6100218

mmrroc=2.0 0.57416159

bmival=4 0.57178443

mmstre=2.0 -0.5652856

apoe=2 0.55170861

wtval=3 0.53362028

eyesurg 0.51447618

mmssre=3 -0.5041489

hgb=1 -0.4715526

rtin=4 0.47151622

mmrroc=5.0 0.46881736

diaval=4 -0.4608419

wstval=3 0.45654897

hscrp=1 0.45007459

ldl=3 -0.4387779

mmftre2=4.0 0.41113188

htfvc=3 0.40356518

rtin=1 0.38195567

whval=1 0.36830648

fglu=1 0.36557705

sysval=3 0.36449683

pulval=3 0.35656706
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Feature coefficient

bmival=3 0.34954556

wtval=1 0.34436998

wtval=2 0.33874202

mmlsre=3.0 0.32174383

cfib=3 0.31530804

mmftre2=3.0 0.2993868

mmrroc=3.0 -0.2739087

htfvc=2 -0.2693475

wstval=2 0.26257594

mmgsn me=4 0.25553167

sysval=4 0.25097335

whval=2 0.23583648

mmcrre=3.0 -0.2325463

mapval=3 -0.2278776

mmgsd me=1 -0.2261859

chol=3 0.22341488

indsex -0.2130369

hdl=2 -0.2065131

mmgsn me=2 -0.190998

smokerstat=1.0 -0.1896403

hasurg -0.1845854

mmgsd me=4 -0.178294

htval=4 0.17554883

scako=7.0 0.17298339

chol=1 -0.1623666

apoe=3 -0.158563

Feature coefficient

chol=4 0.1576282

scako=5.0 -0.1569162

trig=1 -0.1539875

hipval=1 0.1457227

whval=3 0.14095382

mmlore=3.0 -0.1381909

wstval=1 0.1322957

bmival=1 -0.13134

mmftre2=2.0 -0.1248535

hba1c=1 0.11687656

mmgsd me=3 -0.1168035

mmgsd me=2 -0.1050843

ldl=2 -0.1050524

chestin -0.096234

bmival=2 0.08745771

htpf=4 -0.0796537

htval=1 0.07671792

diaval=3 -0.076626

chol=2 -0.0711572

scako=4.0 -0.0700388

hipval=3 -0.0695995

mmgsn me=1 -0.069526

fit -0.0681629

mmlsre=2.0 -0.0679914

smokerstat=3.0 0.06696189

mapval=1 -0.0643409
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Feature coefficient

mmgsn me=3 -0.0643217

mmrroc=4.0 -0.0639756

rtin=2 0.06322902

htpf=3 -0.06257

hipval=2 0.06227592

hdl=1 -0.0537697

mmlore=2.0 0.0512987

diaval=2 0.05020946

pulval=1 0.04914189

htval=2 0.04818401

scako=8.0 0.04747473

mmstre=3.0 0.04430711

htval=3 0.0439132

mapval=2 0.04174562

inhaler -0.0389644

scako=2.0 0.03109668

sysval=1 0.03028577

smokerstat=2.0 0.02962991

scako=6.0 0.02467921

cfib=1 0.02231149

cfib=2 0.02216864

confage 0.02104021

pulval=2 0.02027646

scako=3.0 -0.0178802

smokerstat=4.0 -0.0168148

htfev=2 0.01454268

Feature coefficient

clotb 0.01332637

htfvc=1 0.01330201

mmftre2=5.0 -0.0091113

trig=2 -0.0074305

htpf=2 -0.0073617

htpf=1 -0.007052

sysval=2 -0.0064363

htfev=1 0.00602529

ldl=1 0.00597547

diaval=1 0.00494482

apoe=1 0.00297846

hdl=3 0.00201211

trig=3 0

fglu=3 0

rtin=3 0
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Table 40: The coefficients of the Cox re-
gression the for the Arthritis target vari-
able of the ELSA dataset

Feature coefficient

htfev=4 -14.011158

mapval=4 -8.1797771

htfvc=4 8.08704706

mmcrre=3.0 -7.8565215

cfib=4 -7.8127789

apoe=3 -7.4660541

hscrp=2 -7.2844382

pulval=4 -7.1434892

hba1c=4 -6.8114378

hscrp=3 -6.7371326

hgb=1 6.6755572

fglu=3 -6.4100873

hgb=2 6.25034009

hgb=3 6.23954961

fglu=4 -5.8644085

rtin=2 -5.7373329

hgb=4 5.68789999

hscrp=4 4.95366918

trig=4 -3.8413637

apoe=4 -3.7991784

wtval=4 2.16076795

rtin=3 2.01274027

sysval=4 1.53842205

Feature coefficient

mmssre=2 1.32861306

fglu=2 1.29246418

mmcrre=2.0 1.0756104

hasurg -0.969319

cfib=3 0.85914092

trig=2 0.79987798

hdl=4 -0.7223741

mmrroc=2.0 0.64731177

ldl=4 0.64138755

rtin=4 0.63071497

wtval=3 0.60473112

hipval=4 0.59323011

htpf=4 0.55222879

mmgsd me=4 -0.5110416

hipval=2 0.51021682

clotb 0.4993916

pulval=3 -0.4700368

mmrroc=4.0 -0.4634406

hba1c=2 0.45832405

mmlsre=3.0 -0.4549191

mmlore=3.0 0.444865

fglu=1 -0.4098736

rtin=1 0.40924104

sysval=3 0.40098342

wtval=2 0.39134129

bmival=4 0.37192635
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Feature coefficient

indsex -0.3640852

mmgsd me=3 -0.3526073

mmstre=2.0 -0.3437439

chestin -0.3393918

wtval=1 0.33480863

sysval=1 0.33402958

fit 0.32594653

trig=1 -0.3217318

diaval=3 -0.2885614

wstval=4 -0.2852297

htval=2 0.27165459

hipval=3 -0.2569725

hastro -0.2568866

htfev=2 0.25604496

mmgsn me=2 -0.2532575

htval=1 0.25115472

mapval=3 0.24376804

mmlsre=2.0 -0.2290625

hscrp=1 -0.2190311

sysval=2 0.20876631

eyesurg -0.1982571

apoe=2 0.19627947

wstval=2 0.18973998

mapval=1 -0.1852998

hipval=1 0.18148885

scako=4.0 -0.1679249

Feature coefficient

chol=3 0.166488

ldl=1 0.16610444

mmgsd me=1 -0.1344279

mmssre=3 0.12320835

htfev=3 0.11779203

smokerstat=2.0 0.11522651

scako=5.0 -0.114624

hdl=1 -0.1132758

whval=4 -0.1130608

smokerstat=3.0 -0.107939

scako=3.0 0.10677824

ldl=3 -0.1034086

scako=7.0 0.10154984

chol=2 0.10138919

htfvc=3 0.09991637

bmival=3 -0.0975439

scako=2.0 -0.0944119

htpf=1 0.09107622

apoe=1 0.09071346

mmstre=3.0 -0.0879797

diaval=4 0.08533211

mmrroc=3.0 -0.0849126

mmlore=2.0 -0.0843824

pulval=2 0.08314892

mmftre2=4.0 0.08264179

htfvc=2 -0.0809872
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Feature coefficient

cfib=2 0.07928901

htfev=1 0.07811997

htpf=2 -0.0776816

mmftre2=3.0 0.07236465

diaval=1 0.06986004

hdl=3 -0.0684205

diaval=2 0.06698506

mmgsn me=3 0.06647406

mmgsd me=2 -0.066292

smokerstat=1.0 0.06598008

bmival=2 -0.0650508

scako=8.0 -0.0594636

mmgsn me=1 -0.0588609

wstval=3 0.0573271

mmrroc=5.0 -0.0527987

chol=1 0.04978863

inhaler 0.04646118

htpf=3 -0.0447267

whval=1 0.04020254

htfvc=1 -0.0399875

hba1c=1 0.0384582

whval=2 0.03773256

mmftre2=5.0 0.03755734

cfib=1 0.03656825

htval=4 -0.0338042

smokerstat=4.0 0.03361622

Feature coefficient

scako=6.0 0.032209

hdl=2 -0.0288729

whval=3 -0.0278249

mmgsn me=4 -0.0238836

pulval=1 -0.0190082

chol=4 -0.0185081

hba1c=3 0.0159767

htval=3 0.01486348

wstval=1 0.00867243

bmival=1 0.00625589

ldl=2 -0.0056927

mmftre2=2.0 0.0027789

mapval=2 -0.002081

confage 0.0005729

trig=3 0
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Table 41: The coefficients of the Cox
regression model for the Cancer target
variable of the ELSA dataset

Feature coefficient

hipval=4 -8.2452876

ldl=4 -8.0274891

wstval=4 -7.8748098

apoe=2 -7.6091816

pulval=4 7.51583836

fglu=2 -7.0420457

mapval=4 -7.0326264

apoe=3 -6.7910174

apoe=4 -5.849462

htfvc=4 -5.7972357

cfib=4 -5.7802624

rtin=4 -5.6571747

sysval=4 -5.5716617

htval=3 4.76206732

htval=2 4.73406011

htval=4 4.72051316

htval=1 4.70435873

fglu=4 4.2701582

htfev=4 -3.796319

hscrp=3 3.59630246

hscrp=4 -3.4155066

fglu=3 2.89951692

hba1c=4 2.30162259

Feature coefficient

rtin=3 2.22673977

mmftre2=5.0 -1.7911834

wtval=4 1.75855511

chol=4 1.75091546

hscrp=2 1.73232654

hgb=2 -1.7285295

hgb=3 -1.5807891

hgb=4 -1.5448762

wstval=3 1.1975817

hgb=1 -1.1394598

hdl=3 1.11419337

hba1c=2 -1.0175386

bmival=4 1.00447221

trig=4 -0.9476069

hba1c=3 -0.9272944

mmrroc=2.0 -0.8789287

htpf=4 -0.7899401

mmcrre=3.0 -0.7780309

mmrroc=5.0 0.74347694

mmgsn me=4 0.74321071

trig=2 -0.697113

cfib=3 0.6560014

wtval=3 -0.6352387

htfev=3 0.5565223

mmgsd me=4 -0.5218293

mmcrre=2.0 -0.4906893
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Feature coefficient

eyesurg -0.4882548

mmgsn me=2 0.48746474

sysval=3 0.46345803

pulval=2 -0.4520699

pulval=3 -0.4434157

whval=3 -0.4235174

hasurg 0.40636416

ldl=1 -0.3823337

wstval=2 0.37908728

mmrroc=4.0 0.37000613

htfvc=3 0.36957345

whval=2 -0.3605642

scako=7.0 0.33972706

cfib=2 0.33034145

mmssre=3 -0.3266951

hdl=4 0.32389203

hscrp=1 0.32068575

smokerstat=1.0 -0.2979384

inhaler -0.2966227

chol=1 0.2950233

mmssre=2 -0.2899554

trig=3 -0.2845705

rtin=2 0.27305883

mmlore=3.0 0.27029039

diaval=4 0.25014016

smokerstat=4.0 0.24618251

Feature coefficient

htfev=1 -0.2458878

smokerstat=2.0 0.23861071

mmlsre=3.0 -0.237581

mmftre2=4.0 -0.2348818

hdl=1 0.22296946

fit -0.2217365

whval=4 0.21660553

htfvc=2 -0.2150219

pulval=1 -0.2124412

scako=5.0 0.21162905

clotb -0.2102702

mapval=1 0.18787162

hipval=1 -0.1873355

smokerstat=3.0 0.17371119

hdl=2 -0.1633887

mmlsre=2.0 -0.1631944

diaval=3 -0.1600679

whval=1 -0.1529563

mmrroc=3.0 0.15101774

trig=1 0.1499507

wstval=1 0.14645337

sysval=1 -0.1332539

scako=4.0 0.13284452

scako=6.0 0.13117542

mmlore=2.0 0.13036918

mmgsn me=1 0.12874554
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Feature coefficient

mmgsd me=3 0.12686364

scako=3.0 0.1177874

mmstre=3.0 0.11718944

mmgsd me=2 0.11654141

hipval=2 -0.1158105

scako=8.0 -0.1093979

hastro -0.1087937

mapval=2 0.10786997

htpf=1 -0.1051121

hipval=3 0.10504098

mapval=3 -0.1001408

diaval=2 -0.0986155

apoe=1 0.09251814

htfev=2 -0.0923905

bmival=3 0.09174691

fglu=1 0.0900725

htpf=2 -0.0851641

chol=2 -0.0818859

mmstre=2.0 0.06674482

rtin=1 -0.0663849

indsex -0.0650776

diaval=1 -0.0643342

ldl=2 -0.057042

mmftre2=2.0 -0.0534456

hba1c=1 -0.0524968

bmival=2 0.04627599

Feature coefficient

chol=3 0.04531045

wtval=2 0.04337225

htpf=3 -0.0415451

sysval=2 0.04056033

confage 0.03724313

ldl=3 -0.0307623

bmival=1 -0.0240992

chestin 0.01909158

mmftre2=3.0 -0.0189348

scako=2.0 0.01759936

mmgsd me=1 -0.0169962

htfvc=1 0.01570281

wtval=1 0.01026843

cfib=1 -0.0083243

mmgsn me=3 -0.0068433
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Table 42: The coefficients of the Cox
regression model for the Diabetes target
variable of the ELSA dataset

Feature coefficient

trig=4 -8.4931402

hdl=3 -8.0991794

eyesurg -7.854386

hipval=4 -7.8396572

trig=3 -7.690475

hgb=1 7.07996624

hgb=4 6.85248945

hgb=3 6.80771278

hgb=2 6.60101737

wstval=4 -6.593431

ldl=4 -6.5862892

hdl=4 -6.2458492

apoe=4 -5.2239055

rtin=3 -5.1899831

cfib=4 -4.9369648

htval=2 4.9128543

htval=1 4.89941328

htval=4 4.73285337

htval=3 4.57440509

hba1c=4 4.06503237

pulval=4 4.01378987

fglu=4 3.40820086

hba1c=2 3.40302538

Feature coefficient

mapval=4 -3.3640815

hba1c=3 3.32044016

apoe=3 3.01561979

hscrp=2 2.71929499

fglu=2 2.31688282

hscrp=3 -1.9463122

hscrp=4 -1.8951141

sysval=3 1.89357793

chol=4 1.88604993

cfib=3 -1.781083

wtval=4 1.70732962

trig=2 -1.6594976

hba1c=1 1.63927083

rtin=4 1.58526022

diaval=4 1.57375159

fglu=1 1.55982253

sysval=4 1.5279631

apoe=2 1.39682298

htfev=3 -1.3364883

sysval=2 1.27944635

bmival=4 1.26555284

mapval=3 -1.2334491

rtin=2 1.16014236

wstval=2 1.13067969

htfev=4 1.11260447

hdl=2 -1.0574251
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Feature coefficient

bmival=2 1.05445125

mmlsre=3.0 0.94336832

sysval=1 0.93531919

htfev=2 -0.9235308

fit -0.9215452

mmgsd me=4 -0.8683379

wstval=1 0.81069918

hastro -0.7556557

bmival=3 0.75342691

hasurg -0.703779

wstval=3 0.69930543

scako=2.0 -0.6992957

diaval=3 0.69042985

mapval=2 -0.6831388

chol=2 0.6778633

htfvc=4 0.67166654

mmgsn me=4 0.6510526

mmgsd me=2 -0.6339463

mmssre=2 0.60968188

mmcrre=3.0 0.59748233

ldl=3 -0.5882059

hipval=3 0.55801955

indsex 0.55661944

whval=4 0.5537927

htfvc=3 0.55322262

clotb 0.51084417

Feature coefficient

wtval=3 0.50170863

chol=1 0.50081276

mmftre2=5.0 0.49942109

mapval=1 -0.4922883

mmrroc=3.0 -0.4553108

bmival=1 0.45047159

pulval=3 0.44534771

hscrp=1 0.42320127

chol=3 0.38276927

mmcrre=2.0 -0.3732762

diaval=2 0.36078623

mmgsn me=2 -0.3512996

mmgsn me=3 -0.3499895

wtval=1 0.34874214

mmgsn me=1 -0.3369265

mmgsd me=1 -0.333085

scako=3.0 -0.332479

trig=1 0.33071026

chestin -0.3274855

htfev=1 -0.3273794

mmrroc=4.0 -0.3112836

mmgsd me=3 -0.3075974

wtval=2 0.30187368

scako=7.0 0.2931687

whval=3 0.27603413

hdl=1 -0.2667309
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Feature coefficient

mmftre2=2.0 -0.2630407

pulval=2 0.25576537

hipval=2 -0.2491735

pulval=1 0.24634066

mmstre=3.0 0.24582036

diaval=1 0.23664407

scako=4.0 -0.2322434

apoe=1 0.23211082

ldl=2 -0.2285895

htpf=1 -0.225706

mmrroc=2.0 0.21929646

rtin=1 0.21299376

htpf=2 -0.2064246

smokerstat=1.0 -0.1785303

htpf=3 -0.1735736

mmrroc=5.0 -0.1727088

mmlsre=2.0 -0.1702601

mmftre2=3.0 0.15994581

mmssre=3 -0.1491508

inhaler 0.12162553

smokerstat=2.0 -0.1202445

hipval=1 -0.1155659

cfib=2 -0.1150687

whval=2 0.1057846

smokerstat=4.0 0.10561814

mmlore=2.0 0.07763565

Feature coefficient

cfib=1 0.07756603

mmstre=2.0 0.07518869

smokerstat=3.0 -0.0626358

htfvc=1 0.05758673

scako=8.0 -0.0560216

htfvc=2 0.03746714

mmftre2=4.0 -0.0370658

confage -0.0282241

scako=5.0 -0.0259621

scako=6.0 -0.0226694

ldl=1 0.01553887

htpf=4 0.01268887

whval=1 -0.008542

mmlore=3.0 -0.0029223

fglu=3 0
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Table 43: The coefficients of the Cox
regression model for the Heart Attack
target variable of the ELSA dataset

Feature coefficient

hscrp=3 9.55510165

htfev=3 -8.4327836

hscrp=1 -7.8960106

mmrroc=2.0 -7.8818519

wstval=4 7.85608125

mmcrre=3.0 -7.6775028

chol=4 -7.5584524

fglu=2 -7.5365534

diaval=4 -6.8283568

hdl=4 -6.7647871

trig=2 -6.5869858

hipval=4 -6.5691024

rtin=2 -6.4446354

htval=1 6.10457203

hba1c=3 -6.0665986

htval=4 6.04597009

bmival=4 -5.8387027

hba1c=4 -5.8071108

htval=3 5.76008219

htval=2 5.7174984

wtval=4 5.54550077

cfib=3 -5.3708198

apoe=3 -5.2597361

Feature coefficient

trig=3 -5.1395446

rtin=3 -5.0774648

fglu=3 -5.0257985

htfev=4 -4.9931383

sysval=4 -4.7659409

mapval=4 -3.7793902

cfib=4 -3.5890539

trig=4 -3.5790824

whval=4 -3.2395789

hscrp=2 -3.0153586

rtin=4 2.66482481

hgb=1 -2.4066381

htfvc=4 -2.3901666

sysval=3 1.94912874

hgb=3 -1.8558188

hgb=2 -1.8372993

htfvc=3 1.5565591

mmlsre=3.0 1.49791011

mmlore=3.0 -1.4927359

apoe=2 1.43442966

ldl=3 1.33079821

mmgsn me=2 -1.2919595

smokerstat=3.0 -1.2487655

mmcrre=2.0 1.2000419

hipval=3 -1.1447645

wtval=3 1.12959894
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Feature coefficient

hasurg 1.11215748

hgb=4 -1.0955626

fglu=4 -1.0095984

sysval=2 0.99681685

whval=2 -0.9682671

sysval=1 0.96176938

ldl=2 0.93527204

scako=2.0 -0.9301825

mmgsd me=4 0.90342811

mmrroc=5.0 0.87827826

whval=3 -0.8751973

mapval=2 0.87129307

mmgsn me=1 -0.8355116

whval=1 -0.8263152

fit 0.82375971

indsex 0.80499951

hba1c=2 0.79698972

chol=2 -0.7734565

mmssre=3 0.77099869

hscrp=4 -0.7472192

htfev=2 -0.741358

mmgsd me=3 0.69270686

mmftre2=3.0 -0.6922797

mmlsre=2.0 0.68482136

ldl=1 0.66882821

mmgsn me=4 -0.6445939

Feature coefficient

mmftre2=5.0 -0.6366131

mmgsn me=3 -0.6240749

diaval=3 -0.6133503

diaval=2 -0.6122113

chol=1 -0.6110988

chol=3 -0.6090703

mmrroc=4.0 -0.5993254

mmstre=2.0 0.58853233

scako=5.0 -0.5641538

pulval=4 -0.5552109

mmgsd me=2 0.55416864

bmival=3 0.54193292

pulval=3 -0.5063226

apoe=1 0.49917708

bmival=2 0.49628306

hdl=3 0.49609891

htpf=4 0.49264634

wstval=3 -0.4909923

mmssre=2 0.47428221

ldl=4 -0.4709071

hipval=1 0.4515722

hdl=2 -0.433986

smokerstat=4.0 0.42542163

cfib=2 0.41302628

rtin=1 -0.379957

htfvc=2 -0.3780664
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Feature coefficient

mmftre2=4.0 -0.3760799

trig=1 -0.3737206

hdl=1 -0.3735558

pulval=1 0.36843602

hba1c=1 0.36047713

scako=7.0 -0.360204

mmgsd me=1 0.34519259

mapval=1 0.32433482

eyesurg 0.28459904

smokerstat=1.0 -0.2658444

htpf=3 0.24292218

mapval=3 0.21387381

hastro -0.209175

clotb 0.19485712

smokerstat=2.0 -0.1866691

htpf=1 -0.1827455

chestin 0.17113616

scako=8.0 0.164426

diaval=1 -0.1598116

wstval=2 -0.1567578

fglu=1 -0.1440142

htfvc=1 -0.1327861

htpf=2 0.13097423

wtval=1 -0.1308862

wtval=2 0.12774399

scako=6.0 0.0979871

Feature coefficient

mmftre2=2.0 -0.094681

mmrroc=3.0 0.08706727

bmival=1 0.07200919

scako=3.0 -0.0675788

mmstre=3.0 -0.0570043

cfib=1 -0.0529962

pulval=2 -0.0412388

confage 0.03475355

hipval=2 0.02034183

inhaler -0.0178579

wstval=1 -0.0134858

scako=4.0 -0.0114631

mmlore=2.0 -0.0107384

htfev=1 0.00592468

apoe=4 -0.000208
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Table 44: The coefficients of the Cox re-
gression model for the Psychiatric disor-
der target variable of the ELSA dataset

Feature coefficient

htfev=3 -14.688214

htfev=4 -12.451733

htfvc=4 10.2327462

hasurg -7.7098603

htfvc=3 -7.3978565

mmgsn me=4 -6.9239873

hba1c=3 -6.8434996

mmgsd me=4 -6.7745884

whval=4 -6.7383442

hdl=4 -6.651327

hba1c=4 -6.4584527

trig=3 -6.4533377

pulval=4 -6.4454495

fglu=2 -6.3539214

cfib=3 -6.1753572

wtval=4 -5.984573

hscrp=1 -5.9695818

trig=4 -5.9618291

hgb=4 5.95195657

hgb=1 5.9206951

hgb=3 5.75760223

hgb=2 5.73195221

hipval=4 -5.7057825

Feature coefficient

chol=4 -5.4273047

rtin=4 -5.0537688

cfib=4 -4.9122836

rtin=2 -4.7720886

fglu=3 -4.7471458

rtin=3 -4.3535287

fglu=4 -3.8317822

hscrp=2 -3.5098877

sysval=4 2.87732896

wstval=4 -2.3172506

apoe=3 2.19333365

pulval=3 -2.0875423

mmlsre=3.0 1.58608179

hastro 1.44746455

ldl=3 -1.4473424

mapval=3 -1.2977384

apoe=2 1.24272269

sysval=3 1.23554147

wstval=3 -1.2311962

pulval=2 -1.1696701

bmival=4 1.11613279

hscrp=4 -0.9905284

mmcrre=2.0 0.93826703

mmrroc=5.0 0.92325603

trig=1 0.86037404

chol=3 0.85259774
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Feature coefficient

mmgsd me=3 0.82320393

ldl=1 0.77339227

mmgsn me=3 -0.7718106

trig=2 -0.7672726

scako=2.0 -0.7366359

mapval=1 -0.7317698

apoe=1 -0.7164139

ldl=4 -0.7110988

pulval=1 -0.7099274

eyesurg 0.64938263

apoe=4 -0.6479222

diaval=4 0.62493468

mapval=4 -0.6132614

hba1c=2 0.61298221

htval=3 0.57900334

sysval=2 0.51062896

mapval=2 -0.5010168

scako=5.0 -0.468974

htval=1 0.46557047

ldl=2 0.44135811

cfib=2 -0.4191519

bmival=3 0.39868035

smokerstat=2.0 0.38106166

whval=1 -0.3768646

mmssre=3 -0.3743048

rtin=1 -0.3724284

Feature coefficient

hipval=2 -0.3685294

indsex -0.3645478

mmssre=2 0.35262586

whval=3 -0.3510723

diaval=1 0.34957404

clotb 0.34368643

hdl=3 -0.3426565

whval=2 -0.3407074

hdl=2 -0.3398684

mmrroc=2.0 0.33532988

htfev=1 -0.3334911

smokerstat=3.0 0.32591308

scako=4.0 -0.3188103

htval=4 0.31295204

mmftre2=5.0 0.30867723

htpf=3 -0.2873622

wtval=1 0.28341527

mmgsd me=1 0.2834072

hdl=1 -0.2832113

diaval=3 0.27168051

fglu=1 0.26282379

mmlsre=2.0 0.23145593

mmftre2=3.0 -0.2291707

htpf=4 -0.2263165

inhaler 0.21941085

mmlore=3.0 0.2107462
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Feature coefficient

mmftre2=4.0 0.20990814

bmival=1 -0.203669

sysval=1 0.20352343

mmcrre=3.0 0.20313842

htfev=2 -0.1993733

mmstre=3.0 0.19283612

wstval=1 -0.1885475

scako=7.0 0.18418051

mmgsn me=2 -0.1667051

mmstre=2.0 0.16487559

chol=1 -0.1536729

hscrp=3 -0.1461413

wstval=2 -0.1195775

chestin -0.1018395

smokerstat=1.0 0.10112534

htfvc=2 0.10098114

wtval=2 0.09958401

htval=2 0.09910937

mmlore=2.0 -0.091012

fit 0.08500947

mmrroc=4.0 0.08384553

smokerstat=4.0 0.08263621

scako=6.0 0.07590401

chol=2 0.07464007

mmrroc=3.0 0.06743386

hipval=1 0.06493724

Feature coefficient

cfib=1 -0.0648313

htfvc=1 0.05469485

diaval=2 0.0508063

htpf=2 -0.0410051

wtval=3 0.02886178

scako=8.0 -0.0282733

mmftre2=2.0 0.02599605

mmgsd me=2 0.02318575

scako=3.0 -0.0224732

htpf=1 -0.0208927

bmival=2 0.01836079

confage -0.0157655

mmgsn me=1 0.01202925

hba1c=1 0.01045744

hipval=3 -0.0103812
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Table 45: The coefficients of the Cox
regression model for the Stroke target
variable of the ELSA dataset

Feature coefficient

htfev=4 -13.901515

rtin=2 -11.395533

hscrp=4 -8.5136698

htfvc=4 8.01989058

mmrroc=2.0 -7.8908482

mmgsn me=4 -7.7858115

hscrp=1 -7.0186781

ldl=4 -6.7979294

hdl=4 -6.7220709

apoe=4 -6.5717586

apoe=3 -6.4010841

trig=3 -6.1750347

htfev=3 -6.142761

cfib=3 -6.1153124

hba1c=4 -6.1140794

pulval=4 -5.7838049

bmival=4 -5.6542283

hipval=4 -5.3886602

rtin=4 -5.3577766

fglu=3 -5.3057645

rtin=3 -5.1253689

hscrp=2 -4.5892514

fglu=4 -4.3177877

Feature coefficient

trig=4 -4.2247604

cfib=4 3.59998765

mmlsre=3.0 2.40507919

mmssre=2 2.12069561

htpf=4 2.01091091

wstval=4 -1.9257757

hgb=3 -1.7566493

hgb=1 -1.7202655

chol=4 1.64798371

htval=4 -1.5419884

hgb=2 -1.485796

hgb=4 -1.4108951

hdl=3 -1.3783941

sysval=4 1.23620219

sysval=3 1.20504716

htval=1 -1.192686

mmgsn me=2 -1.0967337

hipval=3 -1.0425371

mmstre=2.0 1.00550495

mmstre=3.0 1.00280284

htval=3 -0.9535941

chol=3 -0.9481754

wtval=4 -0.9399198

htval=2 -0.9276249

mmftre2=3.0 -0.920535

wtval=3 -0.8518606
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Feature coefficient

diaval=4 -0.8122189

ldl=3 -0.8111655

chol=1 -0.7658644

fglu=2 0.72900521

mmgsn me=1 -0.6766683

trig=2 0.66291011

sysval=2 0.65703385

mmlsre=2.0 0.63614

mmrroc=5.0 0.61868571

bmival=3 0.60685624

htfvc=3 0.60539429

mmgsn me=3 -0.5951974

diaval=1 -0.5945777

mmgsd me=3 0.59301957

diaval=2 -0.5792313

mmgsd me=2 0.55756268

bmival=2 0.54195863

mapval=4 0.51117283

mmssre=3 0.46873191

mapval=2 0.45523885

mmftre2=5.0 -0.4530132

mmgsd me=4 0.43589715

hipval=2 -0.4234598

sysval=1 0.42183012

pulval=3 -0.4127403

mmftre2=4.0 -0.402873

Feature coefficient

smokerstat=4.0 0.39110889

wstval=2 -0.3690123

fglu=1 0.36821341

eyesurg 0.36647427

whval=4 0.36343036

mapval=1 0.35755115

scako=4.0 -0.3522506

trig=1 0.33779746

smokerstat=3.0 0.33257032

hdl=1 -0.3305968

cfib=2 0.32814076

htfev=2 -0.326723

mmgsd me=1 0.32511917

scako=6.0 -0.3167792

wstval=3 0.2982155

ldl=1 0.2955625

clotb 0.29514041

hscrp=3 -0.2910935

hasurg -0.280883

chol=2 -0.2798368

hdl=2 -0.2680231

mmlore=2.0 0.26685822

cfib=1 0.26072993

mmlore=3.0 0.25685592

diaval=3 -0.2543801

wstval=1 -0.2484339
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Feature coefficient

mmcrre=3.0 -0.2465687

apoe=1 -0.2416889

scako=2.0 -0.2327551

htfvc=2 -0.2269477

scako=8.0 0.2194743

mmrroc=3.0 0.19675418

hba1c=2 -0.190899

indsex 0.17935618

whval=2 0.17688573

pulval=1 0.16587928

smokerstat=2.0 0.15088176

bmival=1 0.14422689

ldl=2 -0.1311953

scako=3.0 0.12237501

htpf=3 0.12053097

wtval=2 -0.1188908

mmcrre=2.0 -0.1134774

whval=3 0.10816614

hba1c=3 -0.1054497

whval=1 -0.1015949

rtin=1 0.10063758

hipval=1 -0.0989686

hba1c=1 -0.0978006

apoe=2 -0.0963757

htpf=1 -0.0873529

mapval=3 -0.0863727

Feature coefficient

scako=7.0 0.06944343

pulval=2 0.06873757

inhaler -0.0543166

hastro 0.0504157

mmrroc=4.0 0.0441866

fit -0.0430341

confage 0.03830532

wtval=1 0.03749159

mmftre2=2.0 -0.0353639

htfvc=1 -0.0325378

htpf=2 0.03200552

htfev=1 0.02177943

scako=5.0 -0.0154971

chestin 0.01290678

smokerstat=1.0 -0.0012738
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Table 46: The coefficients of the Cox re-
gression model for the Any-disease tar-
get variable of the SHARE dataset

Feature coefficient

maxgrip=4 -0.4425834

bmi=2 0.33366131

mobilityind=3.0 0.22161766

lgmuscle=4.0 0.21851409

bmi=1 0.20884418

mobilityind=2.0 0.2001368

lgmuscle=3.0 0.18909584

mobilityind=1.0 0.1821891

mobilityind=4.0 0.17157139

lgmuscle=2.0 0.17133513

iadlza=5.0 -0.1710163

grossmotor=4.0 -0.1687743

lgmuscle=1.0 0.16102185

grossmotor=3.0 -0.1546868

bmi=3 0.15173584

adla=5.0 0.14595222

iadlza=3.0 -0.1387141

casp=1 0.13300752

iadlza=4.0 -0.1267138

casp=2 0.1048609

grossmotor=2.0 -0.1012363

ever smoked 0.09443105

br015 =4.0 0.09108701

Feature coefficient

bmi=4 0.08393774

casp=3 0.07570523

adla=4.0 0.07547842

maxgrip=3 -0.0599051

iadlza=2.0 -0.0598788

br015 =3.0 0.05931362

br015 =2.0 0.05299952

br010 mod=2.0 0.05141445

female 0.04839139

grossmotor=1.0 -0.0467667

smoking -0.0457124

br010 mod=7.0 0.0395388

adla=3.0 0.03700037

br010 mod=3.0 0.03324835

br010 mod=6.0 0.02861607

iadlza=1.0 -0.0231415

adla=1.0 0.02106356

finemotor=1.0 0.0189295

age 0.01892203

br010 mod=5.0 0.0176155

finemotor=2.0 0.01565171

maxgrip=1 -0.015019

finemotor=3.0 0.0135096

br010 mod=4.0 0.01329486

adla=2.0 0.01074344

casp=4 -0.0081846
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Feature coefficient

maxgrip=2 0.00804222

ldl=3 -0.8111655

chol=1 -0.7658644

fglu=2 0.72900521

mmgsn me=1 -0.6766683

trig=2 0.66291011

sysval=2 0.65703385

mmlsre=2.0 0.63614

mmrroc=5.0 0.61868571

bmival=3 0.60685624

htfvc=3 0.60539429

mmgsn me=3 -0.5951974

diaval=1 -0.5945777

mmgsd me=3 0.59301957

diaval=2 -0.5792313

mmgsd me=2 0.55756268

bmival=2 0.54195863

mapval=4 0.51117283

mmssre=3 0.46873191

mapval=2 0.45523885

mmftre2=5.0 -0.4530132

mmgsd me=4 0.43589715

hipval=2 -0.4234598

sysval=1 0.42183012

pulval=3 -0.4127403

mmftre2=4.0 -0.402873

Feature coefficient

smokerstat=4.0 0.39110889

wstval=2 -0.3690123

fglu=1 0.36821341

eyesurg 0.36647427

whval=4 0.36343036

mapval=1 0.35755115

scako=4.0 -0.3522506

trig=1 0.33779746

smokerstat=3.0 0.33257032

hdl=1 -0.3305968

cfib=2 0.32814076

htfev=2 -0.326723

mmgsd me=1 0.32511917

scako=6.0 -0.3167792

wstval=3 0.2982155

ldl=1 0.2955625

clotb 0.29514041

hscrp=3 -0.2910935

hasurg -0.280883

chol=2 -0.2798368

hdl=2 -0.2680231

mmlore=2.0 0.26685822

cfib=1 0.26072993

mmlore=3.0 0.25685592

diaval=3 -0.2543801

wstval=1 -0.2484339
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Feature coefficient

mmcrre=3.0 -0.2465687

apoe=1 -0.2416889

scako=2.0 -0.2327551

htfvc=2 -0.2269477

scako=8.0 0.2194743

mmrroc=3.0 0.19675418

hba1c=2 -0.190899

indsex 0.17935618

whval=2 0.17688573

pulval=1 0.16587928

smokerstat=2.0 0.15088176

bmival=1 0.14422689

ldl=2 -0.1311953

scako=3.0 0.12237501

htpf=3 0.12053097

wtval=2 -0.1188908

mmcrre=2.0 -0.1134774

whval=3 0.10816614

hba1c=3 -0.1054497

whval=1 -0.1015949

rtin=1 0.10063758

hipval=1 -0.0989686

hba1c=1 -0.0978006

apoe=2 -0.0963757

htpf=1 -0.0873529

mapval=3 -0.0863727

Feature coefficient

scako=7.0 0.06944343

pulval=2 0.06873757

inhaler -0.0543166

hastro 0.0504157

mmrroc=4.0 0.0441866

fit -0.0430341

confage 0.03830532

wtval=1 0.03749159

mmftre2=2.0 -0.0353639

htfvc=1 -0.0325378

htpf=2 0.03200552

htfev=1 0.02177943

scako=5.0 -0.0154971

chestin 0.01290678

smokerstat=1.0 -0.0012738
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Table 47: The coefficients of Cox regres-
sion for the Haemodialysis dataset

Feature coefficient

CREA=4 -9.6307633

Transferrin=1 -7.7892497

FERR=3 -7.609931

Transferrin=2 -6.8974805

PTH=4 -6.5590497

FERR=4 -6.3571868

MAMC=4 -5.9472031

CRP=4 -5.4476195

CHOL=4 3.44590315

FERR=1 3.14853846

PTH=2 2.28176325

HBa1C=4 2.19746821

Urea=4 2.10409372

CharlsonScore=4 1.54636034

ALB=4 1.47890027

HB=4 -1.4361246

CRP=2 -1.3301905

PO4=3 1.3247969

TRAN=4 1.26607276

TRAN=3 1.21302843

Myeloma Amyloid -1.0615495

MAC=3 -1.0555043

MAC=4 -1.0298259

CRP=3 0.91444318

Feature coefficient

CharlsonScore=3 0.82655811

Chol HDL=4 0.81208059

PostBMI=3 -0.8112887

CA=3 -0.802152

B12=3 -0.7690683

CHOL=3 -0.7434584

CA=4 -0.6468105

TRAN=2 0.60091144

ALB=2 0.58863054

HDL=4 0.58617728

TSF=1 -0.5329514

CREA=2 -0.495134

CHOL=2 0.49200419

PostBMI=4 -0.4690498

MAMC=3 0.45946969

ALB=3 0.4563885

TIN 0.45390577

CharlsonScore=2 0.42006248

estMetabolicRate=3 0.39803601

ALB=1 0.38997504

GripStrength=4 -0.3849983

B12=4 0.35230222

MAC=2 -0.347721

CREA=3 0.34516018

PostBMI=1 -0.3370802

FallsRisk=3.0 -0.331693
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Feature coefficient

MAMC=1 0.3305329

MAC=1 -0.294227

Transferrin=4 -0.2881953

TSF=3 -0.282225

Diabetic+Nephropathy -0.2716045

Renal Vascular Disease 0.26915399

PTH=1 0.26331246

Chol HDL=2 0.26252815

CRP=1 -0.2590165

MAMC=2 0.25529349

HBa1C=3 0.25052759

PostBMI=2 -0.2257672

Acute HD -0.2250627

CREA=1 -0.2194862

GripStrength=1 -0.2179637

HDL=2 -0.2049712

TxpStat -0.1909532

ESR=2 0.18870192

CharlsonScore=1 0.18073845

K=4 -0.1798042

HBa1C=1 -0.1773377

TRAN=1 -0.1750703

HB=3 -0.174307

PTH=3 0.17323733

HCO3=4 0.17104585

estMetabolicRate=4 -0.1648629

Feature coefficient

CHOL=1 -0.1601672

B12=2 0.15683723

Structural Renal Disease 0.14592599

ESR=1 -0.1116703

CA=1 -0.1105436

Primary GN 0.10984405

Diabetes 0.09469222

GripStrength=3 0.08906317

ESR=4 0.08901845

TSF=2 0.08175234

HBa1C=2 0.08163238

PO4=1 -0.0792953

HDL=3 0.07660908

EPO=3.0 0.07510639

HB=2 -0.072854

HB=1 -0.0590355

K=3 0.0566431

K=1 0.05640102

HDL=1 0.055072

estMetabolicRate=2 -0.0518765

Urea=1 0.04710159

PO4=4 0.04008387

AgeFD 0.03920714

EPO=2.0 -0.0364014

K=2 -0.0356546

CA=2 -0.0319856
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Feature coefficient

estMetabolicRate=1 0.0277908

Chol HDL=3 0.02723692

Chol HDL=1 -0.0264698

GripStrength=2 -0.026221

TSF=4 -0.0198872

B12=1 0.01396124

FallsRisk=2.0 0.00810364

PO4=2 -0.0052998

ESR=3 0.00506127

Urea=3 0

Transferrin=3 0

FERR=2 0

HCO3=1 0

HCO3=2 0

HCO3=3 0

Urea=2 0

whval=3 0.10816614

hba1c=3 -0.1054497

whval=1 -0.1015949

rtin=1 0.10063758

hipval=1 -0.0989686

hba1c=1 -0.0978006

apoe=2 -0.0963757

htpf=1 -0.0873529

mapval=3 -0.0863727

scako=7.0 0.06944343

Feature coefficient

pulval=2 0.06873757

inhaler -0.0543166

hastro 0.0504157

mmrroc=4.0 0.0441866

fit -0.0430341

confage 0.03830532

wtval=1 0.03749159

mmftre2=2.0 -0.0353639

htfvc=1 -0.0325378

htpf=2 0.03200552

htfev=1 0.02177943

scako=5.0 -0.0154971

chestin 0.01290678

smokerstat=1.0 -0.0012738
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