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Abstract

Tetratricopeptide (TPR) domains are known protein interaction domains. We show that the

TPR domain of FKBP8 selectively binds Hsp90, and interactions upstream of the conserved

MEEVD motif are critical for tight binding. In contrast FKBP8 failed to bind intact Hsp70. The

PPIase domain was not essential for the interaction with Hsp90 and binding was completely

encompassed by the TPR domain alone. The conformation adopted by Hsp90 peptides,

containing the conserved MEEVD motif, in the crystal structure were similar to that seen for

the TPR domains of CHIP, AIP and Tah1. The carboxylate clamp interactions with bound

Hsp90 peptide were a critical component of the interaction and mutation of Lys 307, involved

in the carboxylate clamp, completely disrupted the interaction with Hsp90. FKBP8 binding to

Hsp90 did not substantially influence its ATPase activity.

Introduction

Immunophilins are a highly-conserved family of proteins that bind immune-suppressive

drugs such as cyclosporin, rapamycin and FK506 [1–3]. FKBP8 consists of an N-terminal glu-

tamate rich region and a PPIase domain that is connected by a loop to a tetratricopeptide

domain (TPR) (Fig 1). Downstream of the TPR domain is a calmodulin binding- and a mem-

brane anchor-region at the extreme C-terminus (Fig 1). Two isoforms of this immunophilin

have been described, the full-length FKBP8 and a product of the truncated ORF of this gene

known as FKBP38 [4].

FKBP8 belongs to the FK506 family of binding proteins, but unlike many members of this

family it lacks a constitutive PPIase activity, which instead relies on regulatory control [5, 6].

Studies show that the structural fold of FKBP8 is almost identical to that of FKBP12, except for

a larger loop structure between β-strand C and D of FKBP12 [7, 8]. The lack of a constitutive

PPIase activity in FKBP8 has been attributed to the side chain of Arg 184 (donated as Arg 127

in [8]), which occludes access to the active site of the catalytic domain [8]. FKBP8 is unique

amongst typical PPIases in that its PPIase activity is regulated by the calcium sensor calmodu-

lin (CaM), by interaction with the PPIase domain of FKBP8, including the N-terminal
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glutamate rich region and with a second site downstream of the TPR domain of FKBP8 [9, 10].

The regulation of FKBP8 is further complicated by the presence of a charge-sensitive loop near

the putative active site, which acts as a cation coordination site involving two aspartic acid resi-

dues. However, the precise details of the activation of FKBP8 remain unknown. In contrast to

FKBP8, FKBP52 consists of two immunophilin domains, and crystallization studies show that

only the N-terminal of the two immunophilin domains is occupied by FK506 [7]. It appears

that the C-terminal immunophilin domain possess a helical element, formed by a longer

amino acid sequence in this region of the domain (DLGKGEVI versus EIGEGENLDLP), that

apparently occludes FK506 binding.

Activated FKBP8 has been shown to bind Bcl-2 and block its interaction with the pro-apo-

ptotic protein, Bad [11], an activity which is inhibited by the molecular chaperone Hsp90 [12,

13]. Beyond apoptosis, FKBP8 has also been shown to play a role in neural tube formation,

Fig 1. Constructs and domain boundaries. FKBP8: green, glutamate rich domain; yellow, PPIase domain; red, TPR domain; orange, calmodulin binding

region and cyan, transmembrane region. Hsp90: green, N-terminal domain; orange, charged linker region; yellow, middle domain; red, C-terminal domain

and cyan, conserved MEEVD TPR-binding motif. Hsp72: green, N-terminal domain; yellow, substrate binding domain and red, lid region. Numbers represent

the approximate domain boundaries.

doi:10.1371/journal.pone.0173543.g001
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regulation of mTOR kinase activity and regulation of cellular hypoxia and Hepatitis C virus

replication (HCV) [14–21]. It’s role in virus replication appears to be Hsp90 dependent [18].

Human butyrate-induced transcript 1 (hB-ind1) has been found in complex with FKBP8 and

Hsp90 and appears to be required for HCV replication [20, 21]. Finally, NS5A interacts with

FKBP8 and can disrupt FKBP8-mediated mTOR regulation, while also stabilizing interaction

with Hsp90 [11].

The TPR domain of FKBP8 is homologous to other such domains including AIP, CHIP,

HOP and Tah1p [22–24]. These domains represent a protein interacting cleft that has been

shown to bind either Hsp90 (TPR-1 domain of HOP and Tah1p), Hsp70 (TPR-2A domain of

HOP), or more extensively the same TPR domain has been shown to bind both Hsp90 and

Hsp70 (CHIP) or Hsp90, Hsp70 and TOMM20 (AIP) [24–27]. This study aims to address the

specificity of the FKBP8 TPR domain towards Hsp90 and Hsp70 using structural and bio-

chemical studies.

Materials and method

Protein expression and purification

FKBP8 (FKBP1-380) was cloned as an NdeI-HindIII fragment representing amino acids 1–380

and lacking the C-terminal trans-membrane helix into pDMXV4 with a non-cleavable C-ter-

minal His6-Tag (Fig 1). The FKBP38 immunophilin domain, representing amino acids 92–

207 (FKBP92-207), and a larger fragment containing both the immunophilin and TPR domain

(FKBP92-380) were also cloned in pDMXV4 (Fig 1). The K307E mutation was generated in the

FKBP892-380 construct by PCR mutagenesis. Full-length human Hsp90β, human Hsp70, two

middle domain human fragments (Hsp90β295–689 and Hsp90β295–724) and a yeast C-terminal

fragment of Hsp90 (yHsp90546-709) were expressed from pRSETA as His-tagged fusions. The

Hsp90α464–732 construct was expressed from p2E (A. Oliver, University of Sussex), as a Pre-

Scission cleavable His-tagged fusion. Proteins were overexpressed in E.coli BL21 (DE3) and

purified by Talon affinity chromatography (Clontech, Oxford, England) equilibrated in 20

mM Tris pH 7.5 containing 100 mM NaCl and eluted with the same buffer but containing 500

mM imidazole at pH 7.0. Protein was then concentrated using Vivaspin concentrators (5,000

to 10,000 Da molecular-weight cutoff) and subjected, as appropriate, to Superdex 75, 200 or

Sephacryl 300 HR gel-filtration chromatography equilibrated in 20 mM Tris pH 7.5 containing

500 mM NaCl, 1.0 mM EDTA and 0.5 mM TCEP. Proteins requiring further purification were

subjected to Q-sepharose ion-exchange chromatography equilibrated in 20 mM Tris pH 7.5, 1

mM EDTA and 0.5 mM TCEP and eluted with a NaCl gradient in the same buffer. Pure pro-

tein was desalted in 20 mM Tris pH 7.5, 140 mM NaCl, 0.5 mM TCEP, concentrated and then

stored frozen at −20˚C.

Analytical gel-filtration

Equimolar concentrations of the C-terminal fragment of yHsp90546-709 and FKBP92-380 were

mixed and loaded onto an analytical Superdex 200 column equilibrated in 50 mM Tris, 300

mM NaCl, 1 mM EDTA and 0.5 mM TCEP at pH 7.5.

Isothermal titration calorimetry

Proteins were dialysed overnight into 20 mM Tris, 300 mM NaCl, 1mM EDTA pH 7.5. The

heat of interaction was measured on an ITC200 microcalorimeter (Microcal), with a cell vol-

ume of 200 μL, under the same buffer conditions. Typically, aliquots of 700 to 800 μM of

FKBP1-380, FKBP92-380, FKBP92-380 K370E mutant protein, FKBP92-207 were injected into
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50 μM of intact Hsp90β, Hsp90β295–689, Hsp90β295–724, Hsp90α464–732 or yeast Hsp90546-709.

For peptide binding experiments aliquots of 2 mM of Hsp90β (EDASRMEEVD) or Hsp70

(GSGPTIEEVD) peptide were injected into 50 μM FKBP1-380. Heats of dilution were deter-

mined in a separate experiment by diluting protein into buffer, and the corrected data were fit-

ted using a non-linear least-squares curve-fitting algorithm (Microcal Origin) with three

floating variables: stoichiometry, binding constant and change in enthalpy of interaction.

X-ray crystallography

Crystals of FKBP92-380 in complex with yHsp90 DTEMEEVD peptide were obtained by mixing

FKBP92-380 with yHsp90546-709 in a 1:1 molar ratio at 18 mg ml-1 and crystalizing by using the

sitting drop vapour diffusion technique. Crystals appeared in 0.02 M sodium potassium phos-

phate, 20% w/v PEG 3350 at 14˚C. Data was collected from a single crystal to 2.2Å at the Dia-

mond Synchrotron on beamline IO4_1 at wavelength 0.917Å. The dataset was processed using

the DIALS [28]. Molecular replacement by Phaser (Phoenix) [29], was conducted with the

PDB files 2AWG (FKBP90-205, lacking the TPR domain) and 2FBN (plasmodium falciparum

construct of a PPIase-TPR domain). Arp/Warp [30] and Buccaneer [31] were then used to

build into the electron density. The structure then underwent several rounds of refinement in

the Phoenix suite and manual building in Coot [32]. Final refinement was with Buster [33].

Crystallization data and statistics are given in Table 1. Structures and cartoons were displayed

using PyMOl [34] and LigPlot [35, 36].

Results

FKBP8 selectively binds Hsp90 using additional contacts outside the

MEEVD motif

TPR domains are known peptide interaction sites [37]. While most are specific for a particular

peptide sequence, such as the TPR 2A domain of HOP and Tah1 that bind the conserved

MEEEVD motif of Hsp90 [22, 23] or the TPR1A domain of HOP that recognises the conserved

IEEVD motif of Hsp70 [27], others, such as CHIP and AIP, can accommodate both MEEVD and

IEEVD peptides [23, 38]. Using isothermal titration calorimetry (ITC) to characterise the binding

of the Hsp90 EDASRMEEVD and Hsp70 GSGPTIEEVD C-terminal peptides to the FKBP8 iso-

form (FKBP1-380, but lacking the transmembrane domain), showed that both peptides bound

weakly to FKBP1-380 (Kd of 64.5 ± 3.7 and 147 μ 2.4 μM, respectively) (Fig 2A and 2B). In con-

trast to C-terminal peptides, full-length Hsp90β tightly bound FKBP1-380 (Kd of 2.8 ± 0.1 μM),

while no binding interaction was seen for human Hsp70, suggesting that FKBP1-380 selectively

binds Hsp90β and that binding may involve additional interactions outside those of the Hsp90β
EDASRMEEVD peptide (Fig 2C and 2D). The immunophilin domain alone (FKBP92-270) failed

to bind full-length Hsp90β, indicating that it was not essential for binding to Hsp90β (Fig 2E).

Using fragments of Hsp90 (Hsp90295-724 and Hsp90295-689) representing the middle and C-termi-

nal domain of Hsp90β showed that sequences downstream of residue 689, that include the con-

served MEEVD sequence, were essential for the interaction (Fig 2F and 2G). Hsp90295-724 bound

FKBP1-380 with a similar affinity (Kd = 6.4 ± 0.5 μM; Fig 2F) to that seen for intact Hsp90β
2.8 ± 0.1 μM; Fig 2C). The FKBP38 isoform (FKBP92-380) bound Hsp90β with similar affinity

(Kd = 2.6 ± 0.2 μM; Fig 2H) to that seen with FKBP1-380 (Kd of 2.8 ± 0.1 μM; Fig 2C). The

stoichiometry for binding full-length Hsp90β was 1:1 (2 FKBP molecules to 1 Hsp90 dimer)

for both the FKBP8 (FKBP1-380) and FKBP38 (FKBP92-380) isoforms. Finally, we showed that

FKBP1-380 bound the C-terminal domain of Hsp90α (Hsp90α464–732 Kd = 8.3± 0.6 μM; Fig

2I) and yeast (yHsp90546-709; Kd 2.3± 0.2 μM Fig 2J), with similar affinities. Analytical gel-

Structure of FKBP38-Hsp90 MEEVD peptide complex
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filtration chromatography showed that the C-terminal domain of yHsp90546-709 co-migrated

with FKBP92-380 (Fig 2L), thus confirming the ITC interaction data.

Structural features of FKBP38 in complex with Hsp90 MEEVD peptide

Structural overview. Attempts to crystallise the C-terminal domain of yeast Hsp90 with

FKBP92-380 yielded crystals of FKBP92-380 in complex with MEEVD containing peptides of the

C-terminal domain of yeast Hsp90. (Fig 3A and 3B). It was clear that during crystallization

the C-terminal domain of Hsp90 had undergone proteolytic cleavage to leave the C-terminal

MEEVD peptides bound to the TPR domain of FKBP92-380. Four molecules of FKBP92-380

were observed in the unit cell of the crystal and the structure was solved at 2.18 Å (PDB

5MGX) resolution (Table 1). The bound peptides found were DTEMEEVD, ATEMEEVD

Table 1. Data collection and refinement statistics.

Data Collection FKBP92-380-Hsp90 MEEVD

Wavelength (Å) 0.91741

Space group P1 21 1

Unit cell a, b, c (Å) 74.29, 105.64, 100.19

α, β, γ (o) 90.0, 93.1, 90.0

Resolution range (Å) 100–2.18 (2.24–2.18)

Total reflections 148001 (14436)

Unique reflections 76276 (3524)

Multiplicity 2.9 (2.9)

Completeness (%) 95.9 (96.0)

Mean I/σ(I) 5.0 (1.5)

Wilson β-factor 19.43

Rmerge (%) 0.111 (0.492)

Rmeas (%) 0.156 (0.694)

Rpim (%) 0.110 (0.489)

CC1/2 0.947 (0.733)

CC* 0.993 (0.722)

Refinement

Reflections used in refinement 76276 (5509)

Reflections used for R-free 3524 (275)

R-work (%) 0.246 (0.330)

R-free (%) 0.308 (0.364)

Number of non-hydrogen bonds 9220

macromolecules 8162

Solvent 1058

Protein residues 1088

RMS (bonds) (Å) 0.009

RMS (angles) (o) 1.15

Ramachandran favored, allowed, outliners (%) 96.46, 3.08, 0.47

Rotamer outliers (%) 3.26

Clashscore 3.31

Average B-factor (Å2) 33.57

macromolecules 33.66

Solvent 32.85

Highest shell in parentheses

doi:10.1371/journal.pone.0173543.t001
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Fig 2. Isothermal titration calorimetry interactions. ITC interactions between FKBP1-380 and A), Hsp90β
EDASRMEEVD peptide B); human Hsp70 GSGPTIEEVD peptide; C), full-length Hsp90β; D), full-length

human Hsp70; E), between FKBP92-207 and full-length Hsp90β; F), between FKBP1-380 and Hsp90β295–724 or

G), Hsp90β295–689; H), between FKBP92-380 and full-length Hsp90β; I), between FKBP1-380 and human

Hsp90α464–732; J), between FKBP1-380 and yHsp90546-709; K), and between the FKBP1-380 K307E mutant and

yHsp90546-709. L), Gel-filtration chromatography of yHsp90546-709 (black trace), FKBP1-380 (red trace) and

yHsp90546-709—FKBP1-380 (blue trace), showing that yHsp90546-709 and FKBP1-380 co-migrate as a

complex.

doi:10.1371/journal.pone.0173543.g002
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(where the side chain of the first aspartate residue was modeled as an alanine), EMEEVD and

EMEE. For amino acid residues defined by visible electron density the conformation of the

amino acid at similar positions was very similar in all cases (Fig 3B and 3C).

The immunophilin domain of FKBP92-380 is similar to that solved by NMR, except in the

crystal structure of FKBP92-380 a section in the middle of β-strand 3 of the immunophilin

Fig 3. PyMol Cartoon structure of the FKBP92-380-DSTMEEVD complex. A), FKBP92-380 consists of a

single PPIase domain (left domain) and a TPR domain (right helical domain) that acts as the binding site of the

DSTMEEVD Hsp90β peptide (yellow stick representation). B), Superimposition of the MEEVD containing

peptides found bound to the four TPR domains of FKBP92-380 of the unit cell of the crystal. The peptide

sequences bound were DTEMEEVD, ATEMEEVD (where the side chain of the first aspartate residue was

modeled as an alanine residue), EMEEVD and EMEE. For amino acid residues defined by visible density the

conformation of the amino acid was very similar in all cases. C), Representation of the electron density shown

as a mesh for the bound DTEMEEVD peptide.

doi:10.1371/journal.pone.0173543.g003
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domain is restructured into a loop (Fig 4). Superimposition of FKBP92-380 with FKBP52 [39]

shows that the TPR domains are essentially the same consisting of three pairs of anti-parallel

helices and a C-terminal α-7 helix (Fig 5A). However, the DTEMEEVD peptide of the TPR

domain of FKBP92-380 is bound in an opposite polarity to that observed for the MEEVD pep-

tide bound to FKBP52 (Fig 5A). In addition to the unexpected polarity, the conformation of

the bound peptide for two molecules of FKBP52, found bound with peptide in the unit cell,

Fig 4. Superimposition with the NMR structure of the PPIase domain of FKBP38. Superimposition of the

PPIase domains from NMR (yellow) and crystallography (green) show that the structures are essentially the

same. However, in the crystal structure, relative to that of the NMR structure, a loop is present (Red) that

disrupts β-strand 3 into two shorter β-strands.

doi:10.1371/journal.pone.0173543.g004
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was modelled differently (Fig 5A). On closer inspection, the methionine and valine residues of

the bound MEEVD peptide are unexpectedly exposed to solvent in the FKBP52 structure (Fig

5A). In contrast, a comparison with the MEEVD binding TPR domain of CHIP [24] shows

that the conformation of the Hsp90 peptide in both FKBP92-380 and CHIP is almost identical

(Fig 5B), and therefore similar to those also seen in AIP and Tah1 [22, 23]. Because these struc-

tures share a common peptide polarity, and the hydrophobic methionine and the valine resi-

dues of the DTEMEEVD peptide are buried, as expected, in hydrophobic pockets, it is highly

likely that this conformation represents the physiologically bound state for Hsp90 peptide (Fig

6). It is evident that the peptide bound to FKBP52 is most likely not bound in the physiologi-

cally relevant state, or was modelled incorrectly.

The side chain of Arg 184 (donated as Arg 127 in [8]) occludes access to the active site of

the catalytic domain and therefore thought to be responsible for the lack of constitutive PPIase

Fig 5. Superimposition of the TPR domain of FKBP52 and FKBP92-380. A), Superimposition of the TPR

domains of two molecules of the unit cell of the FKBP52 structure with bound peptide (green colored molecule with

gold peptide and cyan colored molecule with blue peptide) and that of FKBP92-380 (magenta colored molecule

and peptide) showing that the TPR domains are essentially the same. However, the bound MEEVD containing

peptides are in radically different conformations. The peptides from the FKBP52 structure do not superimpose and

are bound in an opposite polarity to that seen for FKBP92-380. While the hydrophobic residues, methionine and

valine, of the conserved MEEVD motif of Hsp90 are buried in hydrophobic pockets of FKBP92-380, the same

residues are surprisingly exposed to solvent in the FKBP52 structure. B), Superimposition of FKBP92-380 (green

molecule with yellow bound peptide) and the TPR domain of CHIP (cyan molecule and bound peptide) showing

that the bound MEEVD containing peptide conformations are essentially the same.

doi:10.1371/journal.pone.0173543.g005
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activity [8]. Instead PPIase activity is regulated by the calcium sensor calmodulin (CaM) by

interaction with the immunophilin domain of FKBP38, including the N-terminal glutamate

rich region and with a second site downstream of the TPR domain of FKBP38 [9, 10]. Our

structure shows that the conformation of the side-chain of Arg 184 is partly defined (the last

visible atom being the cδ atom of arginine), but none-the-less access to the PPIase pocket is

likely to remain restricted. For example, in an FKBP12 structure (PDB 1NSG) the equivalent

atom is His 87 and lies 4.6 Å from the nearest atom of the bound rapamycin [40]. In contrast,

the cδ atom of Arg 184 is 3.1 Å to the exact same atom of rapamycin, when the FKBP12 struc-

ture is superimposed over that of FKBP92-380. Considering the rest of the Arg 184 atoms must

protrude, at least partly, towards the bound rapamycin molecule, then it appears that access to

the binding pocket of this PPIase domain would most likely be restricted.

FKBP38-DTEMEEVD peptide interactions. The structure of the FKBP92-380-Hsp90 pep-

tide shows that the C-terminal carboxylate group and the C-terminal aspartate side-chain of

the Hsp90 peptide are involved in a series of hydrogen bonds that is reminiscent of the carbox-

ylate clamp seen in the MEEVD-HOP complex (Fig 6). The C-terminal carboxylic acid makes

direct hydrogen bonds to the amine nitrogen of Asn 229 and Asn 277 and a salt bridge interac-

tion to one of the amine nitrogen atoms of Arg 225, as well as water mediated interactions to

the amine group of Lys 273 (Fig 6). The main-chain amide group of the terminal aspartic acid

residue is also hydrogen bonded to the carboxyl group of Asn 277. The aspartate group of the

peptide makes a salt bridge interaction with the amine group of Lys 307 and a series of water

mediated interactions with the amide groups of Asn 305, Asn 276 and Arg 311 (Fig 6). The

other amine group of Arg 311 is directly bonded to the main-chain carbonyl of the last gluta-

mate residue of the Hsp90 peptide (DTEMEEVD).

For the peptide valine, the main-chain amide group forms water mediated interactions to the

carbonyl and amine side-chain groups of Gln 233 (Fig 6). The side chain of the peptide valine is

itself bound in a hydrophobic environment formed by the side chains of Asn 229, Tyr 232, Glu

233, and Asn 277. While these are polar or charged amino acid residues, the aliphatic sections of

their side-chains conspire to form the hydrophobic pocket. The penultimate glutamate of the

peptide (DTEMEEVD) forms a salt bridge and a water mediated interaction with the amine

group of Lys 314. The remaining interactions consist of hydrogen bonds between the main-chain

peptide to the side-chain carbonyl, amide or hydroxyl groups, as appropriate, of Ser 388, Asn

339, and Glu 366. Finally, the methionine side chain is bound in a hydrophobic pocket lined by

Ile 306, Lys 307, Phe 310, Thr 341, Ile 342 and Asn 339 (Fig 6). Once again, for the polar or

charged residues the aliphatic sections of the side chain conspire to define the hydrophobic

pocket.

The carboxylate clamp is required for Hsp90 binding. The binding of the conserved

MEEVD motif of Hsp90 is dependent on the carboxylate clamp interactions previously identi-

fied for this type of TPR domain [26]. Although the precise details of the carboxylate clamp

interactions can vary, the interactions seen in the FKBP92-380-DTEMEEVD complex are none-

the-less a critical component of the TPR domain interaction. To support this, we mutated Lys

307 to glutamate, which compromised the carboxylate clamp binding interaction. Using ITC,

we showed that this mutant failed to bind the C-terminal domain of yeast Hsp90 (Fig 2J and

2K). This suggests that the carboxylate clamp of this TPR domain is similarly important in the

binding of the conserved MEEVD motif of Hsp90 (Fig 6).

FKBP8 does not affect the ATPase activity of Hsp90

Previous studies showed that the peptidyl-propyl isomerase, Cpr6, could weakly activate and

that the TPR domain protein Sti1 (HOP in humans) could inhibit the ATPase activity of yeast

Structure of FKBP38-Hsp90 MEEVD peptide complex
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Hsp90 [41, 42]. In contrast, ATPase assays using yeast Hsp90 and FKBP8 did not show any

substantial effect on the activity of Hsp90 (Fig 7).

Fig 6. Illustrations of the bound DTEMEEVD peptide. A), Pymol cartoon showing interactions between the

DTEMEEVD peptide (cyan) and the FKBP92-380 protein (green). Hydrogen bonds and salt bridges are shown

as dotted blue lines and water molecules as cyan spheres. B), Ligplot showing the interactions between the

DTEMEEVD peptide and the FKBP92-380 protein. Hydrogen bonds and salt bridges are shown as dotted cyan

colored lines and water molecules as cyan spheres. Red amino acid residues represent the peptide and those

in black represent FKBP92-380.

doi:10.1371/journal.pone.0173543.g006
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Discussion

TPR domains are versatile protein interaction modules that have been found to bind the con-

served MEEVD, IEEVD EDDVE motifs of Hsp90, Hsp70 and TOMM20, respectively. FKBP

proteins represent a large group of proteins that can interact with Hsp90 using TPR domains

[37]. FKBPs are involved in receptor signaling, protein folding, trafficking and transcription

[43]. Here we have determined the structure of FKBP92-380, and shown that this TPR domain

is specific for Hsp90 binding over Hsp70. Specificity and high affinity binding to Hsp90

appears to include residues outside the terminal ten amino-acid residues of Hsp90 (EDASR-

MEEVD). While further structural work will be required to understand the complete interac-

tion between FKBP8 and Hsp90, current attempts to crystallize larger C-terminal domain

fragments of Hsp90 with TPR domains have so far failed to yield diffracting crystals.

Yeast Hsp90 C-terminal domain failed to bind the K307E mutant of FKBP92-380 suggesting

that its binding was completely disrupted. As with other TPR domains, Lys 307 is part of an

extended hydrogen bond network called the carboxylate clamp, and is critical for the binding

of MEEVD containing peptides [22, 23, 27]. A similar peptide form Hsp70 (GSGPTIEEVD) to

that of Hsp90 (EDASRMEEVD), which shares a substantial portion of similar interacting resi-

dues (EEVD), bound weakly to the TPR domain of FKBP8. However, intact full-length Hsp70

failed to interact suggesting that FKBP8 is specific for Hsp90, and that the structural features

of the TPR domain of FKBP8 are most similar to those of Tah1[22].

The TPR and PPIase domain of FKBP92-380 are similar to immunophilin proteins such as

FKBP52 [39]. The FKBP1-380 bound MEEVD containing peptides of Hsp90 were found bound

in a similar conformation to that seen in other TPR domain containing proteins such as AIP,

Tah1, and CHIP [22–24]. Our analysis showed that MEEVD containing peptides seen bound

in the FKBP52 structure were surprisingly in an opposite polarity to that seen in this and other

similar TPR domains [22, 23, 39]. In fact, the peptide conformation adopted in complex with

FKBP52 varied between molecules in the unit cell of that structure (Fig 5) [39]. This suggested

that either the peptides failed to bind correctly or were modelled incorrectly into the electron

density maps. Furthermore, the hydrophobic residues, methionine and valine, of the MEEVD

Fig 7. ATPase activity of yeast Hsp90. Using a 5-molar excess of FKBP92-380, over Hsp90 did not

substantially alter the ATPase activity of the chaperone. Geld, geldanamycin.

doi:10.1371/journal.pone.0173543.g007
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peptide, were unexpectedly exposed to solvent in the FKBP52 structure, which has not been

previously observed, as far as we are aware. Taken together, our results suggest that the bound

conformation seen in the FKBP52 structure is not physiological. In contrast, the methionine

and valine residues of MEEVD in our FKBP92-380 structure were bound within hydrophobic

pockets as seen in other similar TPR domain structures, suggesting that the conformation seen

in these structures is the correct physiological state [22–24].

The regulation of the ATPase activity is a critical feature of the Hsp90 chaperone cycle

which involves cycling between an open and closed state by dimerization of the N-terminal

domains of Hsp90 [44–46]. Sti1 (HOP in humans) acts as a strong inhibitor of Hsp90 ATPase

activity [42], thus halting the cycle, whereas the yeast peptidyl-propyl isomerase, Cpr6, weakly

activates and therefore accelerates this cycle [41]. In contrast, we show that FKBP1-380 did not

affect the ATPase activity of Hsp90. In conclusion, we show that FKBP8 specifically binds

Hsp90 over Hsp70, but doesn’t appear to regulate the ATPase activity of Hsp90.
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