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Abstract

The controlled entry and expulsion of small molecules across the bacterial cytoplasmic membrane is essential for efficient cell 
growth and cellular homeostasis. While much is known about the transcriptional regulation of genes encoding transporters, 
less is understood about how transporter activity is modulated once the protein is functional in the membrane, a potentially 
more rapid and dynamic level of control. In this review, we bring together literature from the bacterial transport community 
exemplifying the extensive and diverse mechanisms that have evolved to rapidly modulate transporter function, predomi-
nantly by switching activity off. This includes small molecule feedback, inhibition by interaction with small peptides, regulation 
through binding larger signal transduction proteins and, finally, the emerging area of controlled proteolysis. Many of these 
examples have been discovered in the context of metal transport, which has to finely balance active accumulation of elements 
that are essential for growth but can also quickly become toxic if intracellular homeostasis is not tightly controlled. Consistent 
with this, these transporters appear to be regulated at multiple levels. Finally, we find common regulatory themes, most often 
through the fusion of additional regulatory domains to transporters, which suggest the potential for even more widespread 
regulation of transporter activity in biology.

INTRODUCTION
The transport of small molecules across the bacterial cell membrane is essential for cellular growth. Many key nutrients, ions 
and co-factors are impermeable to the bacterial cytoplasmic membrane and require specialized transport proteins to facilitate 
their uptake. The accumulation of some small molecules and ions can be deleterious to cell growth, so their transport across 
the membrane is tightly regulated. While genetic control of levels of transport protein in cells is well known – take, for example, 
expression of the lactose permease, LacY, encoded as part of the canonical lac operon [1, 2] – transport can also be effectively 
regulated by direct post-synthesis modulation of transport protein activity by small molecule or protein–protein interactions. 
Understanding these regulatory mechanisms will provide insight into the adaptations bacteria undergo to survive under various 
conditions and may reveal targets for antimicrobial drug development.

Transport proteins are integral membrane proteins that are capable of passive or active transport across the membrane. Passive 
transporters, otherwise known as facilitators, allow the transport of a substrate down a concentration gradient, a process that does 
not require energy input. Active transporters, on the other hand, facilitate the energetically unfavourable movement of a substrate 
against its gradient by harnessing an energy source. Active transporters can be broadly divided into two groups, depending on 
their energy source: primary transporters, which use a primary source of energy, for example, ATP hydrolysis; and secondary 
transporters that utilize electrochemical gradients across the membrane, specifically H+ and Na+ gradients, to power transport. 
While many transporters are involved in uptake of chemicals, many others are involved in export and efflux, for example for 
initial export of antibiotics [3] and then subsequent resistance to them [4]. For example, of the 68 predicted ATP binding cassette 
(ABC) transporters in Escherichia coli K-12, 57 are involved in uptake and 11 in export [5].

Regardless of the energy required to power transport, active transporters are dynamic proteins that undergo multiple, often 
large-scale, conformational changes to move the substrate from one side of the membrane to the other. Transporter mechanisms 
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are minimally composed of an inward-facing state (IFS), in which the substrate-binding site is exposed to the cytoplasmic side 
of the membrane, and an outward-facing state (OFS), where the substrate-binding site is accessible to the extracytoplasmic space 
(periplasm or extracellular milieu). Therefore, transport activity can be controlled by modulating one or more of these stages of 
the transport process.

The ability to rapidly ‘switch off ’ a transporter, i.e. inhibit the transport cycle, could be advantageous under changing environ-
mental conditions. If a bacterial cell is using a transporter to enable growth, then a reduction in its transcription and translation, 
combined with general turnover of the existing protein in the membrane, might not be fast enough for the cell to adapt to new 
conditions effectively. For example, if an essential but toxic metal becomes concentrated above safe levels through transporter 
activity, then slow removal of the transporter from the membrane might not be a fast enough response to ensure homeostasis. 
With the above-described general transport cycle in mind, transport activity could be terminated rapidly by interfering with 
substrate binding through competitive inhibition, preventing substrate interactions via allosteric inhibition, cutting off the energy 
source, or preventing the essential conformational changes.

While there are numerous studies of transporters themselves acting as sensors as part of signal transduction systems to control 
gene expression [6], a good example being the E. coli Mlc protein that senses flux through the glucose phosphotransferase system 
[7], less is known about how transporter activity is regulated once they are functioning in the membrane. Here, we use selected 
examples to describe the major types of regulation of activity known for bacterial transporters, namely the use of small molecules, 
small peptides and larger signal transduction proteins for rapid, often reversible control before then covering recent discoveries 
around targeted proteolysis of transporters for more permanent inactivation.

SMALL MOLECULE REGULATION OF TRANSPORTER ACTIVITY
It has long been established that the activity of bacterial transporters can be regulated by the concentration of intracellular 
metabolites [8, 9]. In many cases, the uptake of nutrients is regulated by a process referred to as transinhibition, where the 
transporter is inhibited by its own translocated substrate upon it reaching a threshold cytoplasmic concentration; a process akin 
to feedback inhibition experienced by some soluble enzymes. In other cases, regulation can be mediated by another intracellular 
metabolite, an early example being glucose inhibition of fructose uptake in E. coli, which was termed ‘catabolite inhibition’ [10]. 
In this first section, we discuss the structural basis of small molecule protein-level regulation of transporters from multiple 
structurally distinct families, which often requires additional small regulatory domains to provide the added allosteric feedback 
properties of the protein.

ATP-binding cassette (ABC) importers regulated by substrate-dependent transinhibition
The molecular basis for transinhibition was first revealed for two ABC transporters, the E. coli MetNI methionine transporter 
[11] and the Methanosarcina acetivorans ModABC molybdate/tungstate transporter [12]. Briefly, ABC transporters (TC 3 .A.1 
[13]) are a large superfamily of primary-active transporters responsible for the uptake and extrusion of a multitude of ions 
and compounds across bacterial membranes [14]. They are defined by the presence of a highly conserved nucleotide-binding 
domain (NBD) that binds and hydrolyses ATP. The conformations induced by the binding and hydrolysis of ATP are coupled 
to the transmembrane domain (TMD), which undergoes substantial isomerization. As the membrane spanning TMD houses a 
substrate binding site, these coupled conformational changes facilitate the alternating access of the substrate-binding site to both 
sides of the membrane. While ABC transporters involved in efflux from the cell are usually composed of a TMD and an NBD, 
ABC importers in bacteria often employ a substrate-binding protein (SBP) that resides in the periplasm or is lipid-anchored to 
the outer leaflet of the cytoplasmic membrane [15]. A canonical ABC uptake mechanism consists of the SBP that binds substrate 
with high affinity and selectivity, which docks with the TMD to trigger the ATP-dependent transport cycle described above.

Transinhibition of methionine uptake was one of the earliest regulatory mechanisms discovered for transporters, being described 
by Robert Kadner in 1975, with the observation that E. coli cells pre-loaded with methionine exhibited substantially lower rates 
of transport than untreated cells [9]. The transporter responsible, the dl-methionine uptake system, MetNIQ (otherwise known 
as MetD), has two copies of the NBD, MetN, two copies of the transmembrane protein, MetI, and the cognate SBP, MetQ, which 
has a high affinity for both l- and d-methionine [16, 17]. The crystal structure of the MetNI complex was captured in the inward-
facing state with the ATP-free NBDs splayed apart [11] (Fig. 1a, Fig. 2a). The NBDs contain the typical ATP-binding domain 
found in other ABC transporters but also an additional C-terminal domain, termed the C2-domain, which dimerizes to bridge 
the two NBDs [11]. This dimerization is facilitated by the binding of two methionine molecules sandwiched at the interface 
of this auxiliary domain, which prop open the NBDs, thus preventing ATP hydrolysis and inhibiting transport [11, 18, 19]. A 
similar mechanism is observed in the molybdate/tungstate ABC transporter ModABC, from M. acetivorans, where the NBD 
(ModC) contains a similarly positioned C-terminal regulatory domain (although a different fold to the MetNI C2 domain) [12] 
(see Table 1 for summaries of systems not illustrated in Fig. 1). Here, molybdate and tungstate bind at the dimeric interface of the 
C-terminal domains, preventing the transporter from cycling between its inward- and outward-facing states and thus inhibiting 
further transport [12].
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Direct substrate-dependent regulation is widespread in diverse metal uptake and efflux systems
The metal-dependent transinhibition described in the previous section for ModABC is only one example of this phenomenon 
observed in metal transporters. The use of metals by bacteria is often a double-edged sword as, although many divalent metals, 
including Zn2+, Fe2+, Ni2+ and Cu2+, are essential as cofactors for metalloenyzmes, they are also toxic to the cell at elevated cyto-
plasmic levels, hence, there has been strong evolutionary selection to maintain these concentrations in the useful but tolerated 
range [20–22]. In this section, we illustrate this concept by highlighting examples of direct substrate-mediated transport regulation, 
including both uptake and efflux systems, for Mg2+ and other divalent cations.

The importance of Mg2+ for the function of many enzymes [23] has ensured that bacterial cells maintain intracellular concentra-
tions of ~30 mM, with a free cytosolic concentration of ~0.3–1 mM [24]. To keep the intracellular concentration high enough, 
bacteria have evolved multiple routes for uptake that function under different external Mg2+ concentrations. Under non-limiting 
Mg2+ conditions, bacteria such as E. coli and Bacillus subtilis use channel proteins, CorA and MgtE (Fig. 1g), respectively, to 
facilitate uptake of Mg2+ ions. Given the cationic nature of the substrate, this process is powered by both the inwardly directed 
Mg2+ gradient and the negative-inside membrane potential [25]. Although not a transporter per se, it is notable that CorA can 
be gated by Mg2+ binding to a regulatory domain, leading to pore closure when the internal concentration of Mg2+ is too high 
[26, 27]. When Mg2+ is more limiting, bacteria use active transporters, such as the P-type ATPase MgtA, that couple ATP hydrolysis 
to Mg2+ uptake [28], powering Mg2+ transport against its gradient or an unfavourable membrane potential [29]. MgtA consists 
of a nucleotide-binding domain (N), an actuator domain (A), a phosphorylation domain (P) and a transmembrane region that 
forms the pathways across the membrane [30]. Together, these components undergo a series of complex conformational changes 
in response to ATP binding, substrate binding and autophosphorylation events to facilitate vectorial substrate transport [30]. 
While most other P-type ATPases are relatively insensitive to Mg2+ concentrations and can maintain transport activity in Mg2+ 
concentrations exceeding 20 mM, MgtA is only active at the much lower concentration of ~1 µM Mg2+ with strong inhibition 
exhibited at concentrations over 1 mM (Fig. 1k) [31]. While the molecular mechanism of inhibition has not yet been elucidated, 
the biochemical data fit nicely with the known cytosolic concentration of free Mg2+ [32, 33], suggesting that this is a physiologi-
cally relevant process.

Fig. 1. An overview of the various post-translational regulatory mechanisms used by bacteria to control transport of metabolites. Representative 
examples of the various regulatory mechanisms described in the main text are shown with a blue background. A collection of examples of post-
translational regulation of Mg2+ transport in bacteria is shown with a yellow background.
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While switching off uptake systems can rapidly halt further accumulation of Mg2+ if the metal exceeds a tolerable cytoplasmic 
concentration, bacteria also encode active metal efflux pumps, allowing them to grow in environments with high Mg2+ levels. 
For example, Salmonella enterica serovar Typhimurium (S. Typhimurium) can tolerate ~300 mM Mg2+, whereas Staphylococcus 
aureus is able to handle ~800 mM Mg2+ in the medium [34, 35]. The prodigious tolerance exhibited by S. aureus is due to the Mg2+ 
efflux pump, MpfA, which, if disrupted, leads to growth inhibition in concentrations of as little as ~10 mM external Mg2+ [35]. 
MpfA belongs to the CBS-pair domain divalent cation transport mediators (CNNM)/CorB transporter family (TC# 1.A.112) [36] 
that consist of a DUF21 transmembrane domain and a regulatory cytosolic cystathionine-β-synthase (CBS) pair domain, which 
is capable of binding Mg2+-ATP. The structures of two CNNM/CorB family members, CorB from Methanoculleus thermophilus 
(MtCorB) [37] and CorC from Thermus parvatiensis (TpCorC) [38], has shed light on some details of the transport and regula-
tory mechanisms (Fig. 2b). Both proteins form similar homodimeric complexes with a Mg2+-binding site in the centre of the 
transmembrane DUF21 domain, demarcating the Mg2+ translocation pathway [37, 38]. The contacts between the cytosolic CBS 
pair domains are mediated by two ATP molecules bound at the interface, in an arrangement reminiscent of the NBDs in ABC 
transporters [39]. However, unlike in an ABC transporter, the bound ATP is not hydrolysed. Instead, in combination with Mg2+, 
ATP binding triggers adoption of the active conformational state of the pump [37], which then uses the transmembrane Na+ 
electrochemical gradient to power transport [37] (Fig. 1m). Therefore, in contrast to the previous examples in this section that 
are negatively regulated, in this case, Mg2+-ATP is acting as a transactivator of efflux activity.

Efflux of other toxic divalent cations can be catalysed by the cation diffusion facilitator (CDF) family of efflux proteins (TC# 2 .A.4), 
which are proton-driven antiporters [40]. The first structurally characterized CDF transporter was YiiP (FieF) from E. coli (Fig. 2c), 
which revealed a homodimeric arrangement, with each protomer consisting of a transmembrane domain, each with an inde-
pendent Zn2+ translocation pathway, and a large cytoplasmic C-terminal domain (CTD) that adopts a metallochaperone-like fold 
[41, 42]. The EcYiiP structure revealed the presence of three well-conserved Zn2+-binding sites: one in the membrane embedded 
domain; one at the interface of the transmembrane domains and one in the CTD at the dimer interface [42, 43]. Comparison of 
outward- and inward-facing structures of EcYiiP and SoYiiP from Shewanella oneidensis suggests that alternating access to each 
membrane-embedded binding site is achieved through relative rocking and rotating of a bundle of four transmembrane helices 
[44, 45].

The Zn2+-binding sites in the CTDs are distant from the translocation pathway and are thought to play a role in positively 
regulating efflux activity. The CTD interface is stabilized by the coordination of four Zn2+ ions in EcYiiP and mutagenesis of even 
a single Zn2+-binding site residue in the CTD substantially reduces transport activity [42, 43, 45]. In addition, complete removal 
of the CTD from other CDF transporters considerably reduces transport activity [46]. Förster resonance energy transfer (FRET) 

Fig. 2. Crystal structures of selected transporters regulated through small-molecule binding to cytoplasmic regulatory domains. (a) Crystal structure of 
the MetNI transporter showing the transmembrane domains (TMDs, green, pink), nucleotide-binding domains (NBDs, orange, blue) and the regulatory 
C2 domains (purple, yellow). Adapted from [11]. (b) A crystal structure of the homodimeric MtCorB without the C-terminal CorC domain showing the 
DUF21 transmembrane domains (dark blue, light blue) and regulatory cystathionine-β-synthase domains (CBS, pink, magenta). Mg2+ ions are shown 
as green spheres. The 2 Mg2+-ATP molecules bound to the CBS domains are indicated by the red circle. Adapted from [37]. (c) A crystal structure of the 
YiiP transporter showing the TMDs (green, orange) and C-terminal domains (CTDs, grey, red). Zn2+ ions are shown as green spheres. Adapted from [43]. 
All figures were rendered using PyMOL using PDB codes 3DHW, 7M1T and 3H90.
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measurements with full-length EcYiiP reveal Zn2+-dependent closure of the CTDs, which is not observed in a Zn2+-binding site 
mutant [43]. Furthermore, metal-dependent CTD closure has been observed for isolated CTDs taken from CzrB from Thermo-
toga maritima and MamM from Magnetospirillum gryphiswaldense using protein crystallography, SAXS and PELDOR, further 
supporting the predicted regulatory mechanism of this domain [47–49]. Collectively, these data suggest that in the presence of 
low cytoplasmic Zn2+ concentrations, the CTD is in its apo state and the transporter adopts a state of low activity. Then, upon an 
increase in the Zn2+ concentration, the Zn2+-bound CTDs associate, driving the membrane domains into an active state, providing 
another example of a transactivation process. However, cryo-EM structures of SoYiiP suggest that only small conformational 
changes occur in the CTD between the apo and metal bound states [50], suggesting that perhaps large conformation changes 
driven by the regulatory domains are not required in every case.

Osmoregulation of transport activity
Bacterial osmoregulation refers to a set of processes enacted by bacterial cells in response to changes in the osmolarity of the 
external environment [51–53]. One way in which this regulation is achieved is through the action of osmosensory transporters, 
a group of importers whose activity is increased in response to hyperosmotic conditions so as to accumulate compatible solutes 
to prevent dehydration of the cell. Extensive work from numerous laboratories has provided mechanistic insight into how these 
transporters are regulated, primarily through the study of three systems that represent different transport families, namely, 
ProP [MFS (TC# 2 .A.1)], BetP [betaine-carnitine transporter (BCCT) family (TC# 2 .A.15)] and OpuA (ABC), which have 
been reviewed comprehensively elsewhere [51–53]. Studies of the different transporters reconstituted in proteoliposomes have 
identified trends in the stimuli to which the transporters respond under conditions of hyperosmotic stress, which reflect the in 
vivo response of the cells. Generally, the activity of these proteins is activated by increasing concentrations of inorganic cations 
on the cytoplasmic side of the membrane (such as K+, Na+ and Li+) [54–56] and the presence of molecular crowding agents (such 
as polyethylene glycol (PEG)) [55, 57]. Activation is also dependent on lipid composition, with anionic lipids increasing the 
osmolarity required for activation of all three transporters [58–60].

Mechanistically, early work on E. coli ProP identified the role of an extended cytoplasmic C-terminal domain (CTD) [61] as 
being important for osmoregulation, a feature later found in BetP and OpuA, although not sequence related [62–64]. Altering or 
removing this CTD results in changes in transporter sensitivity to osmotic stimuli, suggesting that such domains play an important 
role in osmosensory behaviour [57, 65, 66]. Current models of the regulatory mechanism suggest that under normal physiological 
conditions the CTD associates with the membrane, which locks ProP in an inward-facing state, preventing transport [61]. It 
has been proposed that the lowering of membrane order that occurs due to increasing K+ concentrations during hyperosmotic 
conditions results in loss of association between residues of the ProP CTD and E. coli membrane lipids [67]. Release of the CTD 
allows it to form a coiled-coil with a CTD from a neighbouring ProP, forming a homodimer, which together then activates 
both ProP transporters (Fig. 1b). Similarly, homotrimeric BetP contains three long CTDs (one on each protomer) that undergo 
cytoplasmic K+-dependent changes in its interactions, switching it between binding to either the membrane, intracellular loops 
of the same protomer and/or the N-terminus of the neighbouring protomer. However, the precise details of these transitions and 
the mechanistic consequences remain to be determined [68, 69].

The ABC transporter OpuA employs two different mechanisms to rapidly alter its activity [70], both through the introduction 
of additional sequence features in the NBD. The first is a unique membrane proximal helix–turn–helix (HTH) motif containing 
a series of positively charged residues that modulate the sensitivity of the transporter to osmotic change. The NBD also contains 
tandem CBS domains, similar to that mentioned for MpfA, although here they bind cyclic di-AMP, which acts as an ‘override 
switch’ to deactivate the transporter [70]. Together, these two regulatory mechanisms provide a rapid route to modulate transporter 
activity, with the cyclic-di-AMP acting as a ‘double brake’ to stop hyper accumulation of compatible solutes, which is in itself 
also detrimental to bacterial viability [70]. Interestingly, the KUP family of K+ transporters can also be deactivated by binding 
of cyclic-di-AMP to its CTD, which in this case is a phosphopantetheine adenylyltransferase (PPAT) domain rather than a CBS 
domain [71].

MODULATION OF TRANSPORT ACTIVITY BY SMALL REGULATORY PROTEINS
Small proteins, generally defined as being <50 aa in length, are being increasingly recognized as regulatory components in multiple 
bacterial processes [72–74], which has been the topic of multiple comprehensive reviews [73–77]. Here, we focus on a selection 
of examples of small proteins that regulate bacterial transporter function by either direct interaction or as adaptors/modifiers 
that target transporters for degradation.

Direct modulation of activity through small protein binding
An excellent example of a small protein with a regulatory role in metabolite transport was discovered during studies of the 
response of E. coli to glucose phosphate stress (GPS), which occurs upon accumulation of toxic levels of cytoplasmic sugar 
phosphates [78]. GPS stimulates the transcription of the sgrS gene, which encodes a small RNA (sRNA), SgrS, that consists 
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of two distinct sections [79]. The 3′ end of the sRNA base pairs to and prevents the translation of the manXYZ and ptsG 
mRNA, which encode the components of the mannose- and glucose-specific phosphotransferase systems (PTSs), respectively, 
thus reducing any further production of intracellular sugar phosphates [80, 81]. In contrast, the 5′ end of sgrS encodes the 
43 aa peptide SgrT [79], which binds to and inhibits the activity of the glucose-specific PTS protein PtsG (Fig. 1d) [82]. The 
precise molecular details of this peptide-mediated inhibition are not yet clear, but an AlphaFold model of SgrT (UniProt 
ID: C1P5Z7) predicts an alpha-helical hairpin that could plausibly interact with the membrane-bound transporter. Ectopic 
expression of just the 3′ or 5′ ends of the sgrS gene in a ΔsgrS background results in a stark difference in uptake of a radiola-
belled glucose analogue, with SgrT completely inhibiting uptake whilst SgrS has a minimal effect [82]. This highlights the 
importance of post-translational regulators in enacting rapid responses to conditions that are toxic to bacteria. Two further 
examples of small proteins that inhibit transport activity in E. coli are MgtS (31 aa) and MntS (42 aa), which regulate the 
Mg2+-coordinated phosphate-exporter PitA (Fig. 1l) and the Mn2+-exporter MntS, respectively, to prevent loss of the metal 
ions under depleted conditions [83–85].

A different example of small protein-based regulation mediated through transporter binding is AcrZ, a small E. coli protein 
(49 aa) that interacts with the AcrAB–TolC RND (TC# 2.A.6) efflux pump by forming a single-helical ‘belt’ around the 
transmembrane domains of AcrB [86–88]. The absence of AcrZ reduces the specificity of the RND pump, a modulation of 
activity that also appears to be related to binding of the lipid cardiolipin to the AcrBZ (Fig. 1c) [89, 90]. While the interaction 
between AcrZ and AcrB has been characterized extensively through structural work [86, 88, 89], it is not currently clear how 
the function of AcrZ is itself modulated, which would be an important requirement for any dynamic regulatory element. We 
note that E. coli contains at least one other similar small protein, YajC, that interacts with AcrAB–TolC to modulate its activity. 
Interestingly, YajC binds to AcrB in a similar site to AcrZ [91], suggesting potential competition between these modulators.

The small protein, WatS1 (55 aa), from Methylomonas sp. DH-1 can also bind and regulate the activity of an RND pump to 
alter its substrate specificity quite specifically [92] . The RND pump WatABO is required for acid stress survival and ordinarily 
recognizes and exports a range of small organics [92]. However, upon binding WatS1, WatABO specifically increases its ability to 
efflux acetate, but not other tested organic acids [92]. In addition, a recent structure of a novel ABC transporter for lipid uptake 
from Mycobacterium tuberculosis revealed a previously unknown but conserved small transmembrane protein, LucB, that was 
proposed to be involved in regulating activity [93]. Overall, these data suggest that small proteins can play important roles in 
modulating the activities of various types of transporter.

Small protein binding to direct transporter turnover
The general turnover of membrane proteins in bacteria is a relatively poorly understood process, but the membrane-anchored 
AAA+protein FtsH, an essential protein in E. coli, is known to play a role in this process. When originally discovered, FtsH was 
found to be involved in the removal of misfolded integral membrane proteins [94]. Since this time, and as will be described herein, 
FtsH is now known to also function in the specific degradation of properly folded, functional transporters, which is a drastic but 
effective route for downregulating transporter activity [95–97].

A prime exemplar of this regulatory mechanism is the interplay between the small proteins MgtR (30 aa) and MgtU (28 aa), 
which are both involved in cytoplasmic Mg2+ homeostasis in S. Typhimurium [95, 96]. Under Mg2+-depleted conditions, MgtR 
and MgtU are produced alongside the P-type ATPase Mg2+ importer, MgtB [96–99]. While MgtR binds to both MgtB and a 
second P-type ATPase, MgtA, to promote their FtsH-dependent degradation, MgtU only binds and stabilizes MgtB, specifically 
protecting MgtB from FtsH-mediated proteolysis (Fig. 1h,i) [95–97]. Interestingly, a similar regulatory interaction is present in 
E. coli, where the small protein MgtS, which is noted in the previous section to inhibit the activity of PitA, can also bind to and 
stabilize MgtA (Fig. 1j) [100]. The ultimate consequence of MgtR-based small protein-mediated regulation in S. Typhimurium 
is the differential retention of MgtB over MgtA under prolonged Mg2+ depletion. Yeom et al. speculate that this difference in 
abundance of the closely related transporters MgtA and MgtB is linked to the fact that MgtB, unlike MgtA, is required for long-
term survival of Salmonella in low-Mg2+ environments [101], such as within macrophages [96]. In accordance with this, MgtU 
was demonstrated to promote survival of Salmonella inside mouse macrophages, presumably through increasing MgtB stability. 
MgtB displays greater Mg2+ affinity than MgtA, as well as a decreased propensity for inhibition, reasons posited to enable the 
transporter to aid Salmonella infection of macrophages [96, 102].

Another excellent example of transport regulation via small protein-directed proteolysis is FeoC, which influences the activity 
of FeoB, the primary bacterial importer of ferrous (Fe2+) iron for many bacteria under anaerobic conditions [103–105]. In Vibrio 
cholerae, no FeoB-dependent uptake of Fe2+ is observed in the absence of FeoC [104]. In addition, FeoB abundance in Salmonella 
enterica is substantially diminished in the absence of the feoC gene, suggesting that the lack of observed Fe2+ transport in V. 
cholerae is due to FeoB turnover [104, 105]. FeoB depletion in the S. enterica ΔfeoC strain is prevented when FtsH protease levels 
are depleted, suggesting that loss of FeoB activity is through FtsH-dependent proteolysis. Interestingly, when cells adapt from 
anaerobic (conditions under which FeoB is produced) to aerobic conditions the FeoC levels in S. enterica drop rapidly due to 
O2-induced damage from an iron–sulfur (Fe–S) cluster in FeoC, accelerating its degradation by Lon protease (an AAA+ protease 
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for soluble proteins) [106, 107]. Therefore, an elegant model has been proposed in which FeoC turnover under aerobic conditions 
leads to the subsequent proteolysis of FeoB by FtsH [106], which facilitates rapid modulation of transport activity based on an 
environmental signal.

REGULATION OF ACTIVITY BY CYTOPLASMIC SIGNAL TRANSDUCTION PROTEINS
Beyond the binding of small peptides to transporters, there are also multiple examples of larger soluble proteins that can 
interact with transporters on their cytoplasmic surface to regulate their activity. One of the best understood examples of 
this comes from the need for tight control of the flux of ammonium during growth of E. coli. During nitrogen limitation, 
E. coli induces expression of the ammonium transporter, AmtB, which aids the ATP-dependent glutamine synthetase (GS) 
enzyme in nitrogen assimilation [108, 109]. The amtB gene was noted to be genetically linked to glnK, which encodes a PII 
family signal transduction protein [109, 110]; both GlnK and AmtB form trimeric complexes, which are key to their ability 
to interact in a 1 : 1 ratio [111].

When bacteria pre-adapted to nitrogen limitation encounter a pulse of free ammonia, they need to quickly inhibit the energy-
hungry ATP-dependent route for nitrogen assimilation. This inhibition is achieved by downregulation of GS, but also via GlnK 
directly plugging the translocation pathway of AmtB, preventing further uptake of ammonium (Fig. 1f) [112, 113]. The GlnK–
AmtB interaction is itself regulated; the tight interaction required for inhibition of AmtB is only possible following the removal 
of a uridylyl group from GlnK, which is triggered by the action of upstream regulatory proteins [112, 114, 115]. Interestingly, 
this same PII protein-mediated regulation has been observed for the AmtB equivalent in cyanobacteria, Amt1, except that the 
interaction in this case is controlled by reversible phosphorylation rather than uridylylation, potentially providing more dynamic 
control of transport [116, 117].

PII family signal transduction proteins have also been shown to directly modulate the activity of other families of transporters. 
In cyanobacteria, the PII protein GlnB can interact with the nucleotide-binding domains of the nitrate/nitrite ABC transporter, 
NrtABCD, and the urea ABC transporter, UrtABCDE, to inhibit their uptake activity [118–121]. While the molecular details 
of these interactions remain to be elucidated, it is interesting to note that inhibition of these two ABC transporters is facilitated 
by interactions with different sites on the PII proteins, suggesting that individual PII proteins could have multiple targets. A 
PII family protein, SbtB, has also been shown to directly regulate the Synechocystis PCC 6803 bicarbonate transporter, SbtA, 
which is a member of the Na+ solute symporter (SSS) transporter family (TCDB #2 .A.21) [122]. As with the GlnK–AmtB 
interaction, the trimeric SbtB interacts directly with the trimeric SbtA to lock the transporter into a single conformational 
state, thus inhibiting its function. In this case, the interaction only occurs when SbtB is bound to AMP, adding an extra layer 
of regulation to this inhibition [123]. In conclusion, PII proteins appear to have evolved to interact with multiple transporter 
types to regulate their activity, although their use does appear to be restricted to transporters that can function as trimers.

REGULATION BY CROSSTALK FROM OTHER TRANSPORTERS
As bacteria switch from using one nutrient to another, changes in transcription lead to downregulated expression of now redun-
dant transporters and catabolic pathways, and replacement with new ones. In E. coli, there is a strong hierarchy for the use of 
different sugars, with glucose being preferred [124]. In parallel with transcriptional control, there are additional levels of regula-
tion that ensure that glucose is taken up first even in the presence of other sugars. The key player in this process is the bacterial 
phosphoenolpyruvate : sugar phosphotransferase system(s) [PTS(s)], one of which is the primary route for glucose uptake in 
E. coli [125]. PTSs consist of a membrane-embedded sugar permease and a series of cytoplasmic components that collectively 
uptake and concomitantly phosphorylate molecules of sugar or sugar derivatives [125, 126].

One of these cytoplasmic components, the EIIAGlc protein, forms part of the phosphorelay system that powers the PTS. 
EIIAGlc can exist in either a phosphorylated or dephosphorylated form, with the dephosphorylated form predominant under 
conditions where glucose uptake is active [124]. To favour glucose uptake, dephosphorylated EIIAGlc can also bind to and 
inhibit a range of non-PTS transporters, preventing uptake of other sugars and preventing induction of genes encoding 
unnecessary catabolic proteins [125]. An excellent example of this regulation is found in E. coli, where dephosphorylated 
EIIAGlc associates with the cytoplasmic loops of lactose permease, LacY, an MFS transporter [127], reducing its ability to bind 
its substrates [128]. In addition, the same dephosphorylated EIIAGlc interacts with nucleotide-binding domains (MalK) of the 
maltose ABC transporter, MalFEGK (Fig. 1e) [129]. Structural analysis of the inhibitory complex reveals that the binding of 
two dephosphorylated EIIAGlc to dimeric MalK prevents the interdomain rotations required for ATP hydrolysis during the 
transport cycle, thus inhibiting function [130]. This process is also highly reversible, as if glucose transport slows or stops, 
phosphorylated EIIAGlc accumulates, which then removes inhibition of the other sugar transporters.

An interesting variation of this concept is in the streptococci and lactobacilli, where a EIIAGlc-like domain is fused directly 
to the lactose/galactose antiporter, LacS [131]. Here, the phosphocarrier HPr can phosphorylate the EIIAGlc-like domain to 
modulate the activity of transport in response to the metabolic needs of the cell [132, 133] and thus PTS-mediated regulation 
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ensures that lactose is not taken up when glucose is available. LacS represents the sole example of bacterial transporter 
regulation being achieved through direct phosphorylation of the transport protein in question. This apparent scarcity of 
phosphorylation-mediated control contrasts strongly with eukaryotes, in which it is a well-characterized mode of regulation 
[134]. A notable example of such regulation in eukaryotes is the serotonin transporter of mammals, for which phosphoryla-
tion by various kinases affects protein levels at the plasma membrane [135].

RHOMBOID PROTEASES: EMERGING ROLES IN CONTROLLED MEMBRANE PROTEIN TURNOVER
We have seen earlier in this review that small proteins can function to regulate transport by either providing protection from or 
stimulation of degradation by the general AAA+ protease, FtsH, introducing the idea of engaging the general pathway for membrane 
protein turnover to modulate transporter activity. There is increasing evidence now for additional functions for membrane-bound 
proteases in transporter regulation and targeted membrane protein turnover more generally. While the leader (or signal) peptidase, 
SPase I, is well studied and will act on membrane transporters, this is still only a membrane-anchored protease domain that acts on 
the membrane surface [136]; however, the rhomboid protease family, which we discuss in this final section, comprises examples of 
truly integral membrane-bound enzymes, that have solved the rather paradoxical problem of catalysing a hydrolytic (water requiring) 
reaction in a membrane environment where water is explicitly excluded.

The rhomboid proteases were discovered approximately 20 years ago in eukaryotes, playing a role in the cleavage of EGFR ligand precur-
sors in Drosophila melanogaster [137]. These receptor substrates are typical of the type of proteins cleaved by eukaryotic rhomboid 
proteases, in that they are generally single-pass transmembrane proteins, i.e. membrane-anchored proteins, where the protease action 
is required for release from the membrane in a controlled way. Soon after the first discovery of rhomboid it was noted that rhomboids 
were widespread in bacteria [138] and that different bacterial homologues, including an E. coli protein called GlpG, were able to 
catalyse the same cleavage as the Drosophila rhomboid-1 when expressed in mammalian cells [138]. This remarkable observation 
supported a widely conserved mechanism for substrate recognition and enzymatic cleavage in these enzymes and further studies on 
the function and mechanism of GlpG were completed [139], leading to its structure being solved in 2006 [140]. This work confirmed 
a six-transmembrane helix organization with a Ser–His dyad as the catalytic centre and a large periplasmic cavity open to water that 
is required for the catalytic cycle.

Another bacterial protein shown to rescue the Drosophila rhomboid-1 phenotype was a mysterious protein called AarA, whose function 
was uncovered through the work of Philip Rather and his group [141]. Briefly, they had discovered a mutant in the Enterobacteriaceae, 
Providencia stuartii, that failed to secrete a membrane-anchored quorum-sensing molecule [142]. After mapping multiple mutants 
with this phenotype to the same gene, aarA, which encoded a rhomboid-like protein, they were able to demonstrate that AarA cleaves 
a unique N-terminal extension of the TatA protein, an essential component of the Tat protein secretion system, the removal of which 
by AarA is required for TatA function and interaction with TatC [143]. Since this pioneering work was completed, another rhomboid 
protein, YqgP, from B. subtilis, was discovered in 2020 to directly modulate magnesium uptake. YqgP can cleave the previously 
described magnesium transporter, MgtE, between its first and second transmembrane regions, thus removing the CBS domain and 
inactivating transport function (Fig. 1g) [144]. This cleavage only occurred in the cells during conditions where uncontrolled MgtE 
activity would be detrimental, supporting the idea that this is a regulatory mechanism. In fact, the authors showed that an additional 
N-terminal domain in the rhomboid protein was responsible for sensing the metals when at toxic levels and presumably activating 
the ability of the rhomboid domain to cleave MgtE. Finally, they also demonstrated that YqgP has an additional role in directing the 
MgtE to FtsH for further degradation, a function that surprisingly does not depend on the catalytic activity of the rhomboid domain 
[145], but which is in fact a phenomenon already known from some other eukaryotic rhomboid proteins such as derlins [144]. These 
exciting findings reveals increasingly complex layers of regulation of cellular processes in bacterial cells, in this case following their 
initial discovery in eukaryotes.

CONCLUDING REMARKS
We have outlined a diverse range of systems where transporter activity changes rapidly in the cell, with a common theme being rapid 
reduction of net uptake, by either reducing uptake, promoting efflux, or triggering protein inactivation and/or degradation. While 
transinhibition was described conceptually over 50 years ago, molecular insight has come from biochemistry and structural biology 
to allow us to understand these mechanisms, which from the examples outlined in this review, often require additional small fused 
domains that are required for this ‘plug on’ addition of allosteric control. With this knowledge one can browse completed genomes of 
bacteria and find many examples of transporters that have additional fused domains where the function is not known, suggesting that 
there is extensive use of regulatory domains in transporter biology. We recently assessed the extent of these adaptations for the MFS 
transporter family and found many classes of fused domains, usually at the C-terminus of the protein, that have possible regulatory 
functions [146, 147].

One domain we have seen in multiple guises in this review is the cystathionine β-synthase (CBS) domain. This domain has been 
utilized by many different families of transporters to allow allosteric control by some form of nucleotide and is usually found as 
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tandem repeat on the C-terminus. One more complex variation of this is the function of the CBS domain in the MgtE Mg2+ channel 
[148]. Here, ATP binding to the domain is prerequisite for Mg2+ binding to the same domain, which is required for channel closing, 
meaning that the domain is now integrating two signals [149]. The CBS domains are also found fused to MFS transporters, which 
supports more generally the idea of ‘plug and play’ domains that can be recruited by diverse transporters to add regulatory properties. 
MFS transporters are also found fused to cyclic nucleotide-binding domains (CNBDs), PAS domains and UspA fusions [146, 147], 
suggesting that there is a library of different regulatory domains that can be recruited. The UspA fusions are interesting in that they 
have been observed in many cases, either directly fused or encoded within the transporter operon [150], but none have yet been 
experimentally characterized in the context of transporter regulation. We have suggested that, given that these domains are known 
to bind ATP, this might be another novel way to regulate transporter activity based on the cellular energy status [147], but this is just 
one example of where there are exciting opportunities to discover new functions for bacterial proteins.

We should also expect to find increasing numbers of examples of small integral membrane protein regulators of transporters, 
which were for a time totally overlooked, because bacterial genome annotation tools would not even recognize them as 
genuine coding sequences [74]. Partly through their discovery as ‘additional density’ in X-ray and cryo-EM structures of 
transporters, a number of these peptides have been recognized and in some cases their regulatory/modulatory functions 
described. More widely, the ‘dark proteome’ of small proteins is being recognized as having a multiplicity of function in 
both bacteria and eukaryotes [151].

The exciting new evidence for controlled protein degradation is an emerging field for bacteria, following behind earlier work 
in eukaryotes. Perhaps these systems have more subtle roles than they play in eukaryotes, as they often do not appear to be 
essential genes. An example comes from recent work on the Rhom7 protein from Shigella sonnei [152]. Here, deletion of 
both Rhom7 and the GlpG rhomboids resulted in no obvious growth-related phenotypes, but by careful analysis the authors 
discovered that the proteases appear to target ‘orphan’ subunits of membrane protein complexes found in the membrane 
and so perhaps have a more general role in membrane protein quality control. Emerging evidence from other organisms 
such as Brucella abortus and Corynebacterium glutamicum shows that removal of rhomboid proteins alters levels of multiple 
membrane proteins, including some solute transporters [153, 154]. Together, these data suggest that rhomboid proteins are 
used widely in bacteria, but seemingly for fine tuning of overall membrane functions, although there is clearly much more 
to learn about their biological roles in other bacterial systems.

What other regulatory mechanisms might be out there waiting to be discovered? We have seen how small molecules can 
bind to transporters and that other proteins can alter their activity, but not yet considered their physical environment within 
a lipid bilayer. There is evidence for the activity of some of the osmoregulatory transporters mentioned in this review, like 
BetP, requiring negatively charged phosphatidyl glycerol (PG) lipids for their activation by osmotic stress [155], and there 
is increasing evidence that the nature of the lipids interacting with the transporter can alter its conformational landscape 
[156, 157]. If there were dynamic ways to alter the lipid composition in the cell, through relocalizing transporters in the 
membrane, for example, or altering their interactions with their surrounding lipids, then one could imagine that these might 
be additional ways to alter transporter function on a relatively short timescale [158].

In conclusion, we have drawn together literature highlighting diverse examples of transporter regulation (Fig. 1, Table 1). The journey 
of a membrane transporter from the initial transcription of the gene, translation of protein and its insertion into the membrane are 
regulated processes, but only form short periods in the transporter’s lifetime, and it is not surprising that multiple additional routes 
have evolved in biology to control its activity once active in the membrane. Application of this information could have multiple uses 
in actively modulating cellular function. Some will serve as excellent drug targets, but the tendency for bacteria to build redundancy 
into their small molecule transporters means that in many cases they will not be suitable targets [159]; however, their manipulation 
during biotechnological processes to limit the flow of a nutrient and/or product in or out of the cell is certainly possible, although to 
date examples of ‘transporter engineering’ sit around changing transporter profiles through manipulating gene expression rather than 
protein activity [160–162]. We hope this review serves as a useful summary of what is known and act as a catalyst for more study in 
this area.
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