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Developmental, cytogenetic and
epigenetic consequences of
removing complex proteins and
adding melatonin during in vitro
maturation of bovine oocytes
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Rob Simmons3, Fei Sang4, Giuseppe Silvestri5,
Carla Canedo-Ribeiro5, Alan H. Handyside5, Remi Labrecque6,
Marc-André Sirard7, Richard D. Emes1,2, Darren K. Griffin5

and Kevin D. Sinclair1,2*

1School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom, 2School of
Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom,
3Paragon Veterinary Group, Carlisle, United Kingdom, 4School of Life Sciences, University of
Nottingham, Nottingham, United Kingdom, 5School of Biosciences, University of Kent,
Canterbury, United Kingdom, 6L’Alliance Boviteq Inc., Saint-Hyacinthe, QC, Canada, 7CRDSI,
Département des Sciences Animales, Faculté des sciences de l’agriculture et de l’alimentation,
Université Laval, Quebec City, QC, Canada
Background: In vitro maturation (IVM) of germinal vesicle intact oocytes prior to

in vitro fertilization (IVF) is practiced widely in animals. In human assisted

reproduction it is generally reserved for fertility preservation or where ovarian

stimulation is contraindicated. Standard practice incorporates complex proteins

(CP), in the form of serum and/or albumin, into IVM media to mimic the ovarian

follicle environment. However, the undefined nature of CP, together with batch

variation and ethical concerns regarding their origin, necessitate the

development of more defined formulations. A known component of follicular

fluid, melatonin, has multifaceted roles including that of a metabolic regulator

and antioxidant. In certain circumstances it can enhance oocyte maturation. At

this stage in development, the germinal-vesicle intact oocyte is prone to

aneuploidy and epigenetic dysregulation.

Objectives: To determine the developmental, cytogenetic and epigenetic

consequences of removing CP and including melatonin during bovine IVM.

Materials and methods: The study comprised a 2 x 2 factorial arrangement

comparing (i) the inclusion or exclusion of CP, and (ii) the addition (100 nM) or

omission of melatonin, during IVM. Cumulus-oocyte complexes (COCs) were

retrieved from stimulated cycles. Following IVM and IVF, putative zygotes were

cultured to Day 8 in standard media. RNAseq was performed on isolated cumulus

cells, cytogenetic analyses (SNP-based algorithms) on isolated trophectoderm

cells, and DNA methylation analysis (reduced representation bisulfite

sequencing) on isolated cells of the inner-cell mass.
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Results: Removal of CP during IVM led to modest reductions in blastocyst

development, whilst added melatonin was beneficial in the presence but

detrimental in the absence of CP. The composition of IVM media did not affect

the nature or incidence of chromosomal abnormalities but cumulus-cell

transcript expression indicated altered metabolism (primarily lipid) in COCs.

These effects preceded the establishment of distinct metabolic and epigenetic

signatures several days later in expanded and hatching blastocysts.

Conclusions: These findings highlight the importance of lipid, particularly sterol,

metabolism by the COC during IVM. They lay the foundation for future studies

that seek to develop chemically defined systems of IVM for the generation of

transferrable embryos that are both cytogenetically and epigenetically normal.
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1 Introduction

In vitro maturation (IVM) of germinal vesicle (GV) intact

oocytes prior to in vitro fertilization (IVF) is practiced commonly

in livestock species (1). In cattle, GV oocytes are collected either

from abattoir derived ovaries (a by-product of meat production) or

by transvaginal follicular aspiration (ovum pickup; OPU) from

living donors (2, 3). Historically, IVM has proven to be

technically more challenging in human assisted reproduction

(ART) (4) and so is practiced less widely; the procedure being

used mostly for fertility preservation or where ovarian stimulation is

contraindicated (5–7). However, recent advances in oocyte recovery

and IVM culture methods have meant that IVM is beginning to

gain traction in human ART (8, 9).

During IVM, GV oocytes, arrested at the diplotene stage of

prophase I, undergo meiotic resumption and transit towards

metaphase II prior to IVF (10). In normal ovarian cycles leading to

spontaneous ovulation, these cytogenetic events coincide with a

carefully choreographed series of cytoplasmic and molecular

modifications within the oocyte, as well as molecular/metabolic

exchanges between the oocyte and surrounding follicular cells. Such

events occur over several days and ultimately determine the post-

fertilization developmental competency of the egg (11–13). Follicular

aspiration for recovery of GV oocytes and IVM truncates these

processes and subjects the maturing oocyte to suboptimal

physiological conditions that currently represent a poor facsimile of

the natural environment offered by the ovarian follicle.

For the most part, commonly employed protocols rely on

relatively basic media for both livestock (2) and human (5) IVM.

These protocols generally utilize readily available commercial base

medium (2, 14) and include FSH to promote oocyte maturation

(15). However, the follicle-enclosed oocyte that matures in vivo is

exposed, natural ly , to a more complex and dynamic

microenvironment comprising a myriad of stimuli from

hormones, growth factors, lipids, antioxidants and other

metabolites (16–22). These arise through interactions with

surrounding fluids, resident cumulus, granulosa and theca cells
02
(23, 24). This reliance on multiple interactions, along with the

oocyte’s changing metabolic requirements during maturation,

renders the formulation of a physiologically relevant and effective

IVM medium particularly challenging.

As a substitute for the complex interplay with follicular fluid

components, undefined biological protein complexes are frequently

added to IVM media. In the case of livestock IVM, this primarily

comes in the form of fetal calf serum and/or albumin (25, 26) and, to a

lesser extent, follicular fluid (27). Human IVM on the other hand has

relied predominantly on maternal serum and/or albumin, or human

follicular fluid (5). The addition of such complex proteins (CP)

presents several issues, not least of which relates to ethical concerns

regarding their origin (28). Their undefined nature and biological

variation between batches contribute to poorly reproducible results

(29). Therefore, removal of CP from IVM media can be considered a

necessary first step required to introduce future specific refinements

to this stage of in vitro embryo production (IVP). As a biological

material, CP also confer a risk of disease transmission (30), and there

are concerns relating to potential adverse epigenetic effects on

offspring such as, but not limited to, those associated with Large

Offspring Syndrome reported in livestock (31, 32).

A component of follicular fluid with a myriad of effects on the

follicular environment is melatonin, which interacts with thecal

(33), granulosa (34, 35) and cumulus (36, 37) cells, together with the

oocyte itself (38, 39). Levels of melatonin in follicular fluid are

linked to oocyte developmental capacity (40, 41). Specifically, the

addition of melatonin to livestock IVMmedia in the presence of CP

can reduce reactive oxygen species (ROS) (38, 42). It can alter

metabolism, particularly lipid utilization and storage (43, 44),

leading to improved oocyte maturation (38, 45) and embryo

development (45, 46). Improvements in oocyte and embryo

development have also been reported when melatonin is included

in human IVM media (47, 48). Here, melatonin is of particular

interest in cases of PCOS, given that abnormally low concentrations

of this indolamine in follicular fluid are a characteristic feature of

PCOS (49, 50). Indeed, the addition of melatonin to IVM media

improved embryo implantation rates for oocytes retrieved from
frontiersin.org
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PCOS patients (51). However, melatonin effects during cell culture

are modified in the absence of CP (52, 53), but how such

interactions influence IVM is not yet known.

The foregoing discussion highlights the need to develop more

chemically defined systems of IVM for mammalian GV-stage

oocytes that limit or eliminate the use of CP. Moreover, we need

to understand how this may modify the effects of remaining IVM

components. With these thoughts in mind, the current article

reports on the first of a series of ongoing experiments that seek to

develop more chemically defined systems of IVM for the laboratory

production of embryos (IVP). Two aspects are considered: the first

relates to the complete removal of CP from our standard IVM media

(54, 55) to be replaced with polyvinylpyrrolidone (PVP) as a

macromolecule. The rationale was to determine how well oocytes

would mature, and embryos develop, following IVF under these

minimal conditions. The cytogenetic and epigenetic status of

advanced (potentially transferable) blastocysts was also of interest as

wepreviously reported that these can be affected by IVM inour culture

system (55, 56), and may be predictive of pregnancy outcomes upon

embryo transfer (57, 58). The second aspect considered the

developmental, molecular and metabolic effects of adding melatonin

to both CP containing media (which we hypothesized would be

beneficial), and to defined media (i.e., with PVP), for which there is

limited information. We report (i) the potential to generate modest

yields of transferrable quality embryos in the absence of CP; (ii)

beneficial effects of melatonin in the presence but detrimental effects

in the absence of CP; and (iii) no effect of IVMmedia composition on

the incidence of chromosomal abnormalities but altered metabolism

(primarily lipid) in cumulus-oocyte-complexes (COC) which

manifests as distinct metabolic and epigenetic signatures several days

later in expanded and hatching blastocysts. These findings highlight

the importance of lipid metabolism by the COC during IVM and lay

the foundation for future studies that seek to develop defined systems

of IVM that lead to the generation of transferrable embryos which are

both cytogenetically and epigenetically normal.
2 Materials and methods

2.1 Generic considerations

All animal procedures adhered to the Animals (Scientific

Procedures) Act, 1986. Associated protocols complied with the

ARRIVE guidelines and were approved by the University of

Nottingham Animal Welfare and Ethical Review Body (AWERB)

with project licensed authority (PDBF3E539; 29/05/2019). All

chemicals and reagents were sourced through Sigma-Aldrich

Company Ltd (Dorset, UK) unless otherwise specified.
2.2 Experimental design, animals, estrous
synchronization and ovarian stimulation

Cumulus-oocyte complexes (COCs) utilized in this study were

retrieved from four cycles of ultrasound guided, transvaginal
Frontiers in Endocrinology 03
follicular aspiration (Ovum Pick-Up; OPU) involving eight 13-16

month-old post-pubertal Holstein-Friesian heifers. These animals

were bred and accommodated at the University of Nottingham

dairy farm and fed a standard grass/maize silage-based diet

formulated to meet the nutrient requirements of young heifers

growing at around 0.8 kg/d (59).

Heifers were paired at random for the purposes of COC

allocation to each of four in vitro maturation (IVM) treatment

groups. This allocation was rotated at the end of each of the four

cycles so that oocytes from each donor were allocated to each of the

four treatments during the study. Oocytes were matured, fertilized,

and zygotes cultured to the blastocyst stage whilst retaining

individual donor identity. This involved using separate

maturation vials and culture wells for each donor. The study

consisted of a 2 x 2 factorial arrangement which compared (i) the

inclusion (+CP) or exclusion (-CP) of complex proteins (derived

from serum and albumin) and (ii) the addition (+M; 100 nM) or

omis s i on ( -M) o f me la ton in , bo th dur ing in v i t ro

maturation (IVM).

Estrous cycles were synchronized initially by insertion of an

intravaginal progesterone device (PRID® Delta, CEVA Santé

Animale, Libourne, France; impregnated with 1.55g P4) and 125

µg GnRH i.m. (Acegon, Zoetis UK Ltd, Leatherhead, UK) (both

administered on Day -12), followed by 150 µg prostaglandin i.m.

(Prelim, Zoetis UK Ltd, Leatherhead, UK) administered on Day -6,

and PRID® Delta withdrawal and a second prostaglandin injection

(both on Day -5). A second GnRH injection was then administered

on Day -4, and ablation (aspiration) of all follicles ≥ 5 mm in

diameter (dominant follicle removal; DFR) was undertaken on Day

0. Each heifer received a PRID® Delta following DFR and ovarian

stimulation commenced 48h later. This involved six injections

(i.m.) of follicle stimulating hormone (FSH; Folltropin, 70IU dose

per injection, Vetoquinol UK Ltd, Towcester, UK) given at 12 h

intervals. The first session of OPU was undertaken approximately

38-42 h following the final FSH injection. All OPU procedures were

undertaken in a dedicated theatre where the ambient temperature

was maintained between 30 and 34°C. Following OPU, a

replacement PRID® Delta was inserted and the subsequent cycle

of DFR commenced eight days later.
2.3 Collection and grading of COCs

Cumulus-oocytes complexes were aspirated as described

previously (55, 60). Briefly, OPU used a Cook Medical vacuum

pump with a 7.5 MHz ultrasound scanner (Exapad, IMV Imaging,

Glasgow, UK) with aspiration pressure set at -70 mmHg. COCs

were aspirated through an 18G needle and 1.4 m of 1.4 mm (I.D.)

silicone tubing into 5 mL of Tyrodes lactate-based aspiration media,

as described previously (60). OPU aspirants were passed through a

heated (~37°C) filter, and filtrates transferred to 100 mm petri

dishes on a heated stage (~38°C) for COC retrieval. COCs were

graded 1-4 according to (61, 62). All COCs with sparse, expanded or

absent cumulus or with fragmented, pale or irregular cytoplasm

were classed grade 4 and rejected.
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2.4 In vitro embryo production

Grade1COCswere trimmedusingan18-Gneedle toapproximately

5 layers of cumulus cells (CCs). Removed CCs were collected into Ca2

+/Mg2+ free PBS/0.1% PVP (PBS/PVP) on ice, and later washed in PBS/

PVP, pelleted (by centrifugation) and stored at -80°C.

Base media for oocyte maturation was HEPES buffered

TCM199 supplemented with 0.2 mM pyruvate, 50 µg/mL

gentamicin, 5 µg/mL FSH, 0.5 µg/mL LH (Lutropin-v, Bioniche

Animal Health), 1 µg/mL E2, and 2.5 mM L-carnitine [as described

previously (54)]. Base media was further modified to create the four

aforementioned-treatment groups. Media containing ‘Complex

Proteins’ (+CP) included 10% (v/v) FBS [Gibco (10082139)] and

4 mg/mL fatty acid free BSA (MP Biomedicals (9048-46-8)

California, USA). In contrast, ‘Defined Media’ (-CP) included 4

mg/mL polyvinylpyrrolidone (average mol wt. 40,000; PVP40) as a

substitute for CP. Melatonin (Sigma-Aldrich; M5250, Lot

SLCC7825) was added at 100nM in line with previous studies

that reported positive effects at this concentration during IVM

and IVC (39, 42). Thus, the four IVM treatment combinations were:

Complex Proteins (+CP-M), CP plus Melatonin (+CP+M), Defined

Media (-CP-M), and Defined Media plus Melatonin (-CP+M).

Oocyte maturation was completed in screw top cryovials

(Thermo Fisher Scientific Inc. Loughborough, UK) at

atmospheric CO2 and 38.5°C for 23-24 h (55, 60).

Following maturation, oocytes were gently drawn into a fine-

bore glass pipette to remove expanded CCs, leaving the corona

radiata intact. Cumulus cells were washed through 50 µl drops of

PBS/PVP and collected into PBS/PVP on ice and later pelleted and

stored at -80°C. Oocytes were transferred to Tyrodes lactate-based

fertilization media and inseminated with gradient purified sperm

from a single sire (55, 60). Briefly, frozen-thawed semen from a

single bull was prepared by centrifugation through a 45%/90%

gradient (BoviPure; Nidacon International AB, Mölndal, Sweden).

Fertilization occurred in 50 mL drops (maximum of 5 oocytes per

drop) of modified Tyrode’s lactate media under oil (final

concentration of 70,000 sperm per drop). These gametes were co-

cultured for 18-21 h in a humified environment of 5% CO2 in air at

38.5°C. Resultant zygotes were cultured in SOF based sequential

media in drops under oil maintained in a humidified environment

at 6.8% CO2, 5% O2 and 38.5°C, with media changed at 72, 120 and

168 h (55). Embryos were cultured at no more than 11 per 10 mL
drop for the first two media changes, and then transferred to 20 mL
drops (Day 6) following the final media change. Embryo

development was assessed at 48 and 120 h and blastocysts

assessed for stage and quality in accordance with the

International Embryo Transfer Society (IETS) guidelines for

bovine embryo assessment (63) at 168 h. The most advanced

blastocysts (up to 4/donor/cycle) were immuno-dissected (55),

and inner cell mass (ICM) and trophectoderm (TE) samples

frozen individually in 4 µl PBS at -80°C for later DNA

methylation (ICM) or karyotype/mtDNA (TE) analyses. All

remaining blastocysts were pooled (by donor) in 4 µl PBS, and

frozen at -80°C. Spent media drops were collected and pooled by

treatment, and frozen at -80°C for metabolic analyses.
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2.5 RNAseq analyses of cumulus cells

Cumulus cell pellets were thawed, cells lysed and RNA extracted

using PicoPure RNA Isolation Kit (Thermo Fisher Scientific Inc.) as

per manufacturer’s instructions for cell pellets. For each sample

cDNA was generated from 100ng of total RNA using the QuantSeq

3’mRNA-Seq library prep kit for Illumina (FWD) (Lexogen GmbH,

Vienna, Austria) following the manufacturer’s instructions.

Libraries were then sequenced on the Illumina NextSeq 500

(Illumina, San Diego, USA) using a NextSeq 500 High Output

v2.5 75 cycle kit (Illumina) to generate approximately 5 million

75bp single-end reads per library.

Raw reads were aligned to the Bos taurus ARS_UCD1.2

reference genome, using the Bluebee Genomics Analysis Platform

(https : / /www.bluebee .com/lexogen) according to the

manufacturer’s instructions, with unique and correctly aligned

reads being taken into the counts file. DESeq2 (version: 1.24.0)

was used to detect the differentially expressed genes for each

comparison using default settings. Gene enrichment analysis used

ShinyGo v0.76.3 (http://bioinformatics.sdstate.edu/go/) (64) with a

minimum pathway size of 2 and FDR cutoff of 0.05 to identify

pathways enriched for genes differentially expressed between

treatments. Heatmaps were performed using bespoke R scripts

using heatmap.2 from the gplots package v 3.0.1 (65).
2.6 Chromosomal errors and mitochondrial
DNA copy number in the trophectoderm

Isolated TEs were employed for whole genome amplification

(WGA) (55). The WGA DNA output was split for SNP array

analysis (and subsequent chromosomal analysis), and for

mitochondrial copy number analysis. SNP array analyses were

performed by Neogen Europe Ltd (Ayr, Scotland, UK) as

described previously (55), with the exception that the chip used

was a GeneSeek® GGP Bovine 100K SNP (Illumina, Cambridge,

UK). The resultant data was used for chromosomal error analyses,

as described previously (55, 58). Briefly, chromosomal

abnormalities were detected by applying three PGT-A

algorithms for each embryo: signal intensity data B-Allele

Frequency (BAF) and Log R Ratio (LRR) graphs, Karyomapping

(66), and Gabriel-Griffin plots (67). BAF and LRR were employed

to detect copy number variations, whereas Karyomapping was

used to investigate the parental origin (maternal or paternal) of

each abnormality and for detection of triploidy and uniparental

disomy. Gabriel-Griffin plots were also employed to understand

the meiotic origin of trisomies (MI, MII, or mitotic). For each

abnormality, mosaicism state was inferred through the

LRR values.

Due to the limited number of SNPs available for chromosome

Y, this chromosome was not analyzed by Karyomapping as

haploblock tracing was not possible. Paternal chromosome X

errors were also not characterized by Karyomapping due to the

inability to perform haploblock tracing, as in the sire, sex

chromosomes are present in a single copy.
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Mitochondrial DNA copy number was determined by qPCR

using primers for the mitochondrial gene NADH dehydrogenase

subunit 4 (ND4) (F: CTCGCCTTCCTTTACACGGGA, R:

GCAGTTCTTGCATACTTTTTCGGTA), normalized to a single

copy-number gene (Protein arginine N-methyltransferase 7

( PRMT7 ) ) ( F : TGGCAAGGCTGCTTTTCTCT , R :

ACCTTGCAATCTCCTGGTGG). PCR conditions were 95°C for

2 min, followed by 40 cycles at 95°C for 5s and 60°C for 10s, then a

final cycle of 95°C for 10s, followed by a melt curve of 65°C to 95°C at

0.5 °C increments. To generate a standard curve, ND4 and PMRT7

were amplified fromWGADNAandpurified using theZymoclean gel

DNA recovery kit (Zymo Research, Irvine, USA) according to the

manufacturer’s instructions. PCR products were then sequenced to

confirm identity prior to quantification using the Qubit HS dsDNA

assay kit (Thermo Fisher Scientific Inc.). A standard curve (6 points of

5-fold serial dilution 1 x10-5 to 3.2 x 10-9 copies per reaction) was

incorporated with each qPCR, and samples run in duplicate.

Amplification efficiencies for both genes were >95%.
2.7 ICM reduced representation
bisulfite sequencing

In order to generate RRBS libraries, DNA was extracted from

pools of five stage-matched ICMs to form three ‘biological

replicates’ across the four treatment groups. Within each

‘biological replicate’, ICMs were derived from the same four

donor animals for each of the four treatments. Libraries were

prepared based on (56). Briefly, extracted DNA from pooled

ICMs (in 20 µl PBS within a single tube) underwent restriction

enzyme (MspI) digestion, end-repair, dA tailing, adaptor ligation,

and bisulfite conversion (68). Unmethylated-DNA (8 pg/µL,

Promega, Southampton, UK) was added to samples prior to

MSP1 digestion to monitor completeness of bisulfite conversion.

Bisulfite converted DNA was then amplified by PCR with KAPA

HiFi uracil+ (Roche Diagnostics Ltd, West Sussex, UK) for 22

cycles, followed by size selection of 150-600 bp amplified DNA

fragments and primer adapter removal using the BluePippin system

(Sage Science, Beverly, MA, USA). Final RRBS libraries (x12)

were sequenced to a depth of ~80 million 150 bp paired-end

reads using an Illumina NovaSeq6000 S4 platform (Novogene,

Cambridge, UK).

Bioinformatic analyses: Multiplexed sequencing reads were

trimmed to remove adapter sequences and low-quality bases using

skewer with commands (-Q 20, -q 3) (69). Trimmed reads were

aligned to the bovine reference genome (Bta.ARS-UCD1.2.97) using

bisulfite read mapper Bismark (70) using default settings. Duplicate

reads were marked using the MarkDuplicates module of Picard tools

[https://broadinstitute.github.io/picard/] and methylation values

extracted using bismark_methylation_extractor module (commands

–no_overlap –paired-end). Methylation values were extracted from

output SAM format files using methylKit (71) (nolap=TRUE,

mincov=5, minqual=20). To avoid methylation differences being

called which may be related to underlying genetic differences of

cells analyzed, bases at known variant positions (as reported in

Bta.ARS-UCD1.2.97) were removed. Differentially methylated
Frontiers in Endocrinology 05
cytosines (minimum difference of >10% (72–74); between groups

were identified using limma (75) and annotated using the

genomation package (76). Gene enrichment analysis of ‘Biological

Process’ gene ontology terms was performed using GeneTrail (77)

overrepresentation enrichment algorithm with a significance value of

0.05 adjusted as per (78), with a size category minimum of 2 and

maximum of 700.
2.8 Spent media glucose and amino
acid analyses

Spent and control media from two replicates were analyzed for

glucose concentration. Media were thawed at room temperature

and immediately diluted 1:25 in PBS and analyzed using a

commercial glucose assay (GlucoseGlo, Promega, Southampton,

UK) according to the manufacturer’s instructions and measured on

a luminescent plate reader (Spectramax 5 – Molecular Devices, San

Jose, USA). Spent and control media from three replicates were

analyzed for amino acid concentration as previously described (79,

80) but modified to account for small sample volume. Briefly, media

were thawed at room temperature and 24 µL used for assay. To this,

6uL solution of mixture of internal standards Norleucine (1mM)

and 5-sulphosalicylic acid (60mg/mL) was added, and incubated at

4°C for 60 min. It was then centrifuged at 13000 rpm for 15

minutes. Amino acids in the top layer were then measured using

a Biochrom 20+ amino acid analyzer (Biochrom Ltd, Cambridge).

EZChrom Elite Software (Agilent Technologies, Inc., Santa Clara,

CA) was used for peak integration.
2.9 Statistical analyses

Analyses were performed using theGenStat statistical package (21st

Edition, VSN International, 2022; https://www.vsni.co.uk/). All data

associated with embryo development were analyzed using restricted

maximum likelihood (REML) generalized linear mixed models that, in

the case of proportions, assumed binomial errors and used logit-link

functions. In the case of counts, models assumed Poisson errors (with

log-link functions) and normal errors formetabolic andmolecular data.

‘Donor’ formed the random effect in these models, whereas fixed effect

terms were ‘Cycle’, ‘Media’ (Complex vs Defined), ‘Melatonin’ (Present

vs Absent), and interactions between these two latter terms. Data are

presented as means ± SEM.
3 Results

Briefly, to reiterate, this study consisted of a 2 x 2 factorial

arrangement that compared (i) the inclusion (+CP) or exclusion

(-CP) of ‘complex proteins’ (derived from serum and albumin) and

(ii) the addition (+M; 100 nM) or omission (-M) of melatonin, both

during IVM. Cumulus oocyte complexes (COCs) were retrieved

from stimulated (‘coasted’) cycles of OPU as described. Following

IVF, zygotes were cultured to the blastocyst stage whilst retaining

individual donor identity.
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3.1 Melatonin interacts with complex
proteins during IVM to affect
embryo development

Over the course of four OPU cycles, 420 GV oocytes were

collected, matured and inseminated leading to the production of

254 blastocysts. The absence of CP in maturation media had no

significant effect on the overall percentage of oocytes that cleaved

following insemination by Day 2 of culture, although there was an

indication (p=0.059) that the presence of melatonin during IVM

reduced the percentage cleaved (Table 1). However, of oocytes

cleaved, a greater (p < 0.001) percentage of those matured in the

presence than absence of CP had progressed beyond the 6-cell stage

(57.5 ± 6.72 vs 27.0 ± 5.36). There also appeared (p = 0.092) to be an

interaction between CP and melatonin on the developmental

progress of cleaved embryos, whereby adding melatonin in the

presence of CP increased the percentage of embryos that developed

beyond the 4-cell stage, whilst adding melatonin in the absence of

CP decreased this percentage (Table 1).

Similar trends were observed at Day 6, with a greater (p = 0.032)

percentage of inseminated oocytes progressing to and beyond the 12-
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cell stage in the presence thanabsenceofCP.An interaction (p=0.028)

between CP and melatonin indicated that, whereas the inclusion of

melatonin in IVM media containing CP increased the percentage of

Day 6 blastocysts, its inclusion to defined IVM media (i.e., in the

absence of CPs) decreased blastocyst yields (Table 1). This interaction

was also evident byDay 8, for bothDay 8 blastocysts as a percentage of

Day6 embryos (P=0.035) andhatched (i.e., IETSStage9) blastocysts of

Day 8 blastocysts (p = 0.019). In general, however, the percentage of

embryos that developed to advanced stages was greater in the presence

than absence of CPs (Table 1).
3.2 Removal of CP during IVM alters
transcripts involved in lipid and steroid
metabolism in cumulus cells

Transcript expression was determined by 3’ mRNA-sequencing

using RNA extracted from cumulus cells (CC) trimmed from Grade

1 COCs immediately before and following IVM. Cumulus cell

transcript expression changed substantially following IVM.

Between pre- and post-maturation 8,777 genes were differentially
TABLE 1 Effect of the presence or absence of complex proteins (CP), with or without 100 nM added melatonin, during in vitro oocyte maturation on
subsequent embryo development to Day 8 following in vitro fertilization.

Complex proteins (CP) Present Absent p-Value

Melatonin (M), nM 0 100 0 100 CP M CPxM

Donor cycles, n 8 8 8 8

A. Day 2 cleavage stage embryos

Inseminated per donor, n 10.4 ± 1.16 13.6 ± 1.32 13.0 ± 1.28 13.6 ± 1.36 – – –

Cleaved of inseminated, % 97.5 ± 2.11 87.5 ± 5.67 94.0 ± 3.37 81.7 ± 6.62 – 0.059 –

3-4 cells of cleaved, % 15.5 ± 6.04 9.1 ± 4.75 28.0 ± 6.50 30.0 ± 7.30 0.011 – –

5-6 cells of cleaved, % 21.9 ± 7.20 22.6 ± 5.74 39.0 ± 6.73 30.8 ± 6.57 0.052 – –

>4 cells of cleaved, % 80.2 ± 6.04 90.0 ± 4.33 66.4 ± 5.90 64.2 ± 6.89 0.004 – 0.092

>6 cells of cleaved, % 48.5 ± 10.80 65.1 ± 8.04 28.4 ± 7.17 25.8 ± 7.88 <0.001 – –

B. Day 6 embryos (≥ 12 -cell stage)

Embryos of inseminated, % 80.1 ± 6.71 79.3 ± 5.90 56.5 ± 2.91 71.2 ± 6.76 0.032 – –

Embryos of cleaved, % 82.6 ± 5.44 87.8 ± 4.26 61.2 ± 6.07 83.9 ± 4.83 0.028 0.002 –

Blastocysts of Day 6, % 14.7 ± 7.98 31.5 ± 8.26 22.3 ± 7.39 6.7 ± 4.99 – – 0.028

C. Day 8 blastocysts

Blastocysts of inseminated, % 61.4 ± 6.68 67.5 ± 5.48 52.3 ± 6.00 53.9 ± 6.28 0.088 – –

Blastocysts of cleaved, % 62.9 ± 6.95 74.9 ± 5.50 56.8 ± 6.30 63.9 ± 6.77 – – –

Blastocysts of Day 6, % 78.5 ± 7.43 84.1 ± 6.22 92.7 ± 5.34 75.9 ± 8.20 – – 0.035

Stage‡ 8 & 9 of Day 6, % 31.9 ± 6.90 45.7 ± 6.13 19.8 ± 4.93 17.3 ± 5.92 0.001 – –

Stage‡ 8 & 9 of Day 8, % 40.7 ± 7.78 55.1 ± 6.43 21.7 ± 5.16 24.2 ± 5.51 <0.001 – –

Stage‡ 7 (1), 8 & 9 of Day 8, % 71.8 ± 8.66 78.8 ± 6.63 53.9 ± 9.04 59.4 ± 9.54 0.019 – –

Stage‡ 9 of Day 8, % 19.5 ± 4.80 34.6 ± 4.47 13.4 ± 2.68 6.6 ± 3.28 <0.001 – 0.019
front
‡Blastocyst Stage according to IETS (63): Stages 8 and 9 = hatching and hatched blastocysts respectively; Stage 7 = fully expanded. Stage 7(1) refers to morphological grade 1 (63) fully expanded
Day 7 blastocysts.
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expressed, with 4,760 upregulated and 4,017 downregulated post-

maturation (Figure 1A). Gene enrichment analysis of all

differentially expressed transcripts post maturation highlighted

upregulated transcripts within KEGG pathways associated with

cell signaling in general, and downregulated transcripts within

KEGG pathways associated with various aspects of cellular

metabolism (Top 20 KEGG pathways represented; Figures 1B, C).

When gene enrichment analysis was limited to transcripts

upregulated >4-fold post maturation, more than 70 KEGG

pathways were identified (Supplementary Figure 1A). These

related mostly to processes such as inflammation, cytokine/

immune response, cell proliferation, extracellular matrix (ECM),

and intra-cellular signaling. In comparison, only seven KEGG

pathways were identified for genes downregulated by >4-fold

(Supplementary Figure 1B). These include genes involved in

meiosis, nitrogen and glutathione metabolism, and cell

cycle regulation.

The removal of CP from maturation media resulted in

differential expression of 77 genes (40 up and 37 down regulated)

in post-maturational CC. Gene enrichment analysis indicated that

removal of CP led to an upregulation of 27 genes related to lipid,

cholesterol and steroid metabolism or biosynthesis processes

(Figures 2A, B). Downregulated genes (Figure 2C) were

predominantly involved in cellular organization including

proliferation, motility, and apoptosis. Many of these genes are

responsive to factors expected to be increased in the presence of

CP, such as fatty acids (FA), ROS, cytokines, and growth factors

(Supplementary Table 1).

Changes in post-maturational CC transcript expression were

less evident when melatonin was added to IVM media. When

melatonin was added in the presence of CP, only 22 genes were

differentially expressed (3 up and 19 down regulated). Gene

enrichment analysis indicated that many of these genes are

involved in immune responses or are cytokine inducible
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(Supplementary Table 2). Of these 22 genes, 16 (1 up, 15 down

regulated) are linked to metabolic functions, pre-dominantly

glycolysis (Supplementary Table 3). There was no significant

differential expression of transcripts when melatonin was added

in the absence of CPs (i.e., -CP+M vs -CP-M). However, relative to

the control group (+CP-M), 131 transcripts were differentially

expressed when CP was removed and melatonin added (-CP+M).

Also, a similar number of differentially expressed transcripts (81)

were observed when CPs were removed in the presence of

melatonin (-CP+M vs +CP+M). Many of the same genes/gene

ontology terms were observed as for the removal of CPs, suggesting

a dominant influence of CPs. However, a number of additional gene

enrichment terms relating to downregulated genes for -CP+M vs

+CP-M or +CP+M were observed. These included hippo, NF-kB
and oxytocin signaling, regulation of insulin secretion, and

responses to hypoxia (Supplementary Figure 2).
3.3 Removal of CP during IVM alters
metabolism and mtDNA copy number in
Day 8 blastocysts

We next sought to characterize, non-invasively, glucose and

amino acid metabolism of transitioning blastocysts between Days 6

to 8 of development from the analysis of spent culture media.

Glucose uptake by embryos during this period did not differ

significantly between treatments, although there was an indication

that it declined when CP were removed from IVM media

(Figure 3A). However, there was a decrease (p = 0.014) in the

uptake of two amino acids (aspartate and glutamate) by embryos

between Days 6 to 8 when CP were removed from IVM media

(Figure 3B). The triglyceride content of Day 8 blastocysts was also

determined. However, this did not differ significantly between

treatment groups (data not presented).
B

C

A

FIGURE 1

(A) Heatmap depicting cumulus-cell gene expression before and after in vitro maturation; (B) Top 20 KEGG pathways enriched for genes up
regulated following maturation; (C) Top 20 KEGG pathways enriched for genes down regulated following maturation gene. Figures (B, C) generated
by ShinyGO v0.76.3 (64).
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To gain an insight into mitochondrial responses during these latter

stagesof embryodevelopment,DNAwas extracted fromtrophectoderm

(TE) cells andmitochondrial DNA (mtDNA) copy number determined

by qPCR using primers for the NADHdehydrogenase subunit 4 (ND4)

normalized to a single copy-number gene (Protein arginine N-

methyltransferase 7 (PRMT7). Interestingly, mitochondrial DNA copy

number in TE cells was higher (p = 0.01) in euploid (Figure 3C) but not

aneuploid (Figure 3D) Day 8 blastocysts derived from oocytes matured

in the absence rather than the presence of CP.
3.4 No evidence that removal of CP
affects the incidence of aneuploidy in
Day 8 blastocysts

Chromosomal errors were assessed in immuno-dissected TE

cells from Day 8 blastocysts by Karyomapping and Gabriel-Griffin

plots (which indicate meiotic aneuploidy) and Signal Intensity data

(BAF/LRR) which indicate overall aneuploidy (55, 58). Of the 123
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TE (across all four treatments) tested, 25 (20.3%) were aneuploid.

From these 25 TE, 30 errors were identified, of which whole

chromosome errors (trisomy 40.0% [12/30], and monosomy

16.7% [5/30]) were the most common, followed by triploidy/

hypotriploidy (26.7% [8/30]) (Table 2A). Neither the type of error

identified, nor the incidence of aneuploidy, differed significantly

between treatments. However, numerically, the lowest incidence of

aneuploidy recorded (15.7%) was for oocytes matured in the

presence of CP but without melatonin (i.e., +CP-M). The

percentage aneuploidy for the other treatments were: +CP+M

(22.2%), -CP-M (23.1%), and -CP+M (20.7%).

The parental origin of aneuploidy was identified in all but six

cases (Table 2). It was also possible to identify the developmental

origin of 18 from 30 errors (in 25 affected TE samples). Of the 12

trisomies (Table 2B), 10 originated during meiosis I, one during

meiosis II and one during mitosis. In addition, for 6 triploidies/

hypotriploidies, two originated during MI, one during MII and

three during mitosis. Finally, the single case of tetrasomy originated

during MI. Although most errors occurred during meiosis I
B C

A

FIGURE 2

Differential transcript expression in cumulus cells following 24 h maturation in the presence or absence of complex proteins (CPs). (A) Network for
top 20 enriched pathways for transcripts differentially expressed (i.e., up and down regulated) when CP are removed from IVM media; (B)
Hierarchical clustering of top 20 pathways for upregulated transcripts in CP-free media; (C) Hierarchical clustering of top 20 terms for
downregulated transcripts in CP free media. Note, in (A) two pathways are connected if they share 20% or more genes. Darker nodes are more
significantly enriched; larger nodes contain more transcripts; thicker lines represent more overlapped transcripts. Concerning (B) and (C), pathways
with many shared transcripts are clustered together. Larger dots indicate greater statistical significance. Figures generated by ShinyGO v0.76.3 (64).
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(66.7%), errors for the +CP-M group were only identified during

either meiosis II or during mitosis.
3.5 Composition of IVM media generates
unique patterns of DNA methylation in
Day 8 blastocysts

To gain an insight into the epigenetic consequences of removing

CP from IVMmedia, the inner-cell mass (ICM) of Day 8 blastocysts

was isolated and analyzed for differential DNA methylation (56)

between IVM treatment groups. Analyses revealed differences in

CpG methylation for each of the six comparisons between the four

IVM treatment groups (Table 3). Interestingly, the number of CpGs

that were differentially methylated was similar in magnitude for

each comparison, with a similar percentage that either gained or

lost methylation.

Further analysis sought to identify overlapping differentially

methylated CpGs between each of the six comparisons for the four
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IVM treatment groups. This analysis revealed a high number of

differentially methylated CpGs for four pairwise comparisons

where, in each case, CpG methylation was greater in the primary

treatment group compared to the other three (Figure 4A). When

presented as a heat map this analysis visually identified sets of

relatively ‘hypermethylated’ CpGs unique to each of the four IVM

treatment groups (Figures 4B–E).

Genes identified within 1000 bases of these uniquely

hypermethylated CpGs were next submitted to gene enrichment

analysis (GeneTrail 3.2 – https://genetrail.bioinf.uni-sb.de/

start.html). ‘Metabolic process’ accounted for approximately one

quarter of genes, regardless of treatment, with 23.8%, 25.1%, 28.4%

and 23.5% of genes (+CP-M, +CP+M, -CP-M and -CP+M

respectively) relating to this term. From these genes, processes

unique to the individual treatments were further examined. When

CP were removed (i.e. -CP-M), there was enrichment for the terms

‘Catabolic process’ and ‘Lipid metabolic process’, for which many of

the genes overlapped, suggesting an influence on lipid catabolism.

Terms enriched for the treatment group where both CP and M were
B

C D

A

FIGURE 3

Embryo metabolism and embryo mitochondrial DNA copy number for oocytes matured in the presence or absence of complex proteins with or
without the inclusion of 100 nM melatonin. Glucose (A) and aspartate and glutamate (B) uptake from media between Days 6 to 8 of embryo culture;
mitochondrial DNA copy number (ratio of NADH dehydrogenase subunit 4 (ND4): Protein arginine N-methyltransferase 7 (PRMT7)) in euploid (C) and
aneuploid (D) Day 8 blastocysts.
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present (i.e., +CP+M) included ‘Negative regulation of biosynthetic

process’ (from which none of the genes overlapped with the other

metabolic term ‘Lipid biosynthesis’). For ‘Lipid biosynthesis’ genes

predominantly related to cholesterol, sterol and long-chain fatty

acid biosynthesis. Lipid related genes were also identified when CP

was removed and M added (i.e., -CP+M treatment group), with

enrichment for the term ‘Response to lipid’.”
4 Discussion

A number of important findings emerge from the current study.

Importantly, we report that, at least in the context of GV-intact

oocytes originating from stimulated (‘coasted’) cycles of OPU,

modest yields of transferrable-quality blastocysts can be generated
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following the complete removal of CP from IVM media. Also,

whilst the addition of melatonin to IVM media enhances embryo

development in the presence of CP [thereby representing an

improvement to standard practice (54, 55, 60)], it impairs embryo

development when added in the absence of CP. Interestingly, these

interactive effects of CP and melatonin on embryo development do

not appear to be mediated by either the nature or incidence of

chromosomal errors arising during IVM, as statistically these were

unaffected by treatment (Table 2). A more rigorous assessment

would require a larger sample size. However, the lack of numerical

differences between treatments indicates that any effects, should

they exist, are likely to be small. Instead, they most likely arose due

to metabolic perturbations occurring within the cumulus-oocyte

complex (COC), together wi th impaired ce l l - to-ce l l

communication, reduced lipid availability and utilization. At
TABLE 3 Differentially methylated (>10%) cytosine-phosphate-guanine dinucleotide (CpG) counts between the inner-cell mass (ICM) of Day 8
blastocysts derived from oocytes matured in the presence (+CP) or absence (-CP) of complex proteins (CP) with or without the inclusion of melatonin
(0 v 100 nM).

General
comparison

Specific
comparison

CpG count ↑ Methylation ↓ Methylation

Standard IVM (+CP-M) vs
other combinations

+CP-M vs +CP+M 2878 1408 (48.9%) 1470 (51.15)

+CP-M vs -CP-M 2698 1293 (47.9%) 1405 (52.1%)

+CP-M vs -CP+M 2105 1213 (57.4%) 892 (42.6%)

Standard IVM + Melatonin vs Defined
+CP+M vs -CP-M 3382 1610 (47.6%) 1772 (52.4%)

+CP+M vs -CP+M 2576 1478 (57.4%) 1098 (42.6%)

Defined IVM vs
Defined + Melatonin

-CP-M vs -CP+M 2290 1331 (58.1%) 959 (41.9%)
Arrows indicate gain (↑) or loss (↓) of methylation (percentage altered in parentheses).
TABLE 2 Nature and incidence of chromosomal errors in Day 8 blastocysts.

Overall Parental origin

Dam Sire Embryo

A. Aneuploidy class

Triploidy and hypotriploidy 8 1 4 3

Whole chromosome 20 16 1 3

Segmental 2 – 2 –

Total errors 30 17 7 6

B. Whole chromosome errors

Trisomy 12 11 – 1

Mi (10) (10) – –

Mii (1) (1) – –

Mitotic (1) – – (1)

Tetrasomy 1 1 – –

Chromosome Y disomy 1 – 1 –

Monosomy 5 4 – 1

Uniparental disomy (UPD) 1 – – 1
fro
Analyses undertaken on immuno-dissected trophectoderm cells.
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present, this supposition is based primarily on altered global

transcript expression in cumulus cells, which indicates that

removal of CP from IVM media leads to an increase in molecular

pathways associated with sterol (particularly cholesterol)

biosynthesis, and a reduction in pathways associated with cell

structure, organization and signaling (Figure 2). Anecdotally, it

was also noted at the time that the expanded cumulus-oophorus

was ‘less coherent’ (i.e., there was a loose association between

cumulus cells and the oocyte) following IVM in the absence of
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CP. In contrast, the inclusion of melatonin to CP supplemented

IVM media led to a reduction in expression of transcripts linked to

glucose metabolism, primarily glycolysis. Ultimately, the

composition of IVM media led to distinct metabolic and

epigenetic signatures in fully expanded and hatching/hatched

blastocysts, linked to mitochondrial biogenesis and associated

glucose, fatty acid and cholesterol metabolism. Collectively, these

findings highlight the importance of lipid metabolism (in this

instance derived from CP) by the COC during IVM.
B C

D E

A

FIGURE 4

Overlapping differentially methylated (>10%) CpGs (ranked by number) identifies four pairwise comparisons between each of the four treatment
groups with each of the other three treatments (A); and heat maps for each of these pairwise comparisons which, in each case, reveal that the
majority of CpG methylation was high in the primary treatment group and low in the other three (B–E). These heat maps present the three biological
replicates for each treatment. Analyses were restricted to DNA extracted from the inner-cell mass of pools of five fully expanded blastocysts derived
from oocytes matured in the presence (+CP) or absence (-CP) of complex proteins (CP) with (+M) or without (-M) the inclusion of melatonin (0 v
100 nM).
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4.1 Developmental and metabolic impact
of removing complex proteins during IVM

Whilst post-fertilization development to the blastocyst stage

was impaired following removal of CP from IVM media in the

current study, reasonable yields of Day 8 blastocysts (~53% of

presumptive zygotes) were nevertheless obtained. This observation

is generally consistent with previous reports on the effects of

removing CP (which can come in the form of serum and/or

albumin) from IVM media (81–85). These studies, however, differ

from the current in that they invariably utilized GV-intact oocytes

retrieved from non-stimulated abattoir derived ovaries, whereas we

recovered GV-intact oocytes from FSH-stimulated (‘coasted’) cycles

of OPU. Oocytes originating from such cycles are developmentally

more competent (54, 55, 86) having partially undergone

cytoplasmic and molecular maturation in vivo prior to aspiration

(87, 88). Further variability in responses to CP removal between

studies can be attributed to differences in basal maturation medium,

origin and inclusion level of albumin and/or serum, nature and

inclusion level of alternative macromolecules (e.g., polyvinyl alcohol

vs PVP), and presence or absence of different combinations of

hormones (e.g., FSH) and growth factors (e.g., EGF).

Complex proteins in the form of serum and albumin comprise

numerous but poorly defined components (89) that can aid oocyte

maturation (85). Removal of these components, as undertaken in

the current study, can therefore provide important insights into

their collective function. Here, for example, we report that the

absence of CP during IVM leads to an increase in mRNA expression

by cumulus cells for processes linked to lipid and sterol metabolism

(Figures 2A, B), and a decrease in mRNA expression linked to

cellular organization (Figure 2C). Further analyses (ShinyGo

v0.76.3) of upregulated transcripts listed in Supplementary

Table 1 identified 7 out of 20 (with a >200-fold enrichment)

within the KEGG ‘steroid biosynthesis’ pathway. Specifically,

these 7 transcripts (FDFT1, SQLE, LSS, CYP51A1, TM7SF2,

MSMO1 and NSDHL) occupy 10 consecutive enzymatic steps in

the biosynthesis of cholesterol from farnesyl pyrophosphate via 14-

demethyl-14-dehydrolanosterol (i.e., follicular fluid meiosis-

activating sterol (FF-MAS)); an intermediate in cholesterol

biosynthesis that serves to promote meiotic resumption under the

influence of FSH (90). Also upregulated in this pathway was

DHCR7, which catalyzes the final step of cholesterol biosynthesis.

Other notable upregulated transcripts linked to cholesterol uptake

and metabolism listed in Supplementary Table 1 include LDLR

(endocytosis of cholesterol by the cell), ACLY (conversion of citrate

to actetyl-CoA, from which cholesterol is derived via farnesyl

pyrophosphate), ACAT2 (esterification of cholesterol), HMGCR (a

rate limiting enzyme for cholesterol and isoprenoid synthesis),

HMGCS1 (early step in cholesterol biosynthesis involving the

condensation of acetyl-CoA with acetoacetyl-CoA), and INSIG1

(involved in SREBP-mediated regulation of cholesterol

biosynthesis). Complex proteins therefore serve as a key source of

cholesterol for the COC during IVM, removal of which leads to

compensatory upregulation of sterol biosynthetic pathways by

cumulus cells. Indeed, the absence of serum during IVM is
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known to reduce intracellular levels of non-polar lipids (including

cholesterol) in oocytes (91, 92).

At present, the timing of these metabolic responses during IVM

is not defined but, given the important role of oocyte-derived

factors such as GDF9 and BMP15 in regulating cholesterol

biosynthesis in cumulus cells (93), is likely to coincide with the

period leading up to GV-breakdown and expansion of the cumulus

oophorus, both of which are initiated between 6-9 h after follicular

aspiration (94–96). Indeed, a significant amount of trafficking of

small molecules and transcripts between cumulus cells and the

oocyte occur via intact transzonal projections during this period

(97). Nonetheless, metabolic processes and exchange of molecules

between cumulus cells and the oocyte, that promote post-

fertilization development, continue beyond this stage of

maturation (98). Data from the current study, however, can shed

no further light on these temporal aspects as the observed decrease

in transcripts linked to metabolic processes, and increase in

transcripts linked to cell signaling, inflammation and formation of

the ECM, occurred over 24 h of IVM (Figure 1).

The decline in embryo development following removal of CP

during IVM (Table 1) was matched by metabolic alterations in

blastocysts between Days 6 and 8 of culture (Figure 3). Consistent

with these findings are reports in the mouse that both glucose and

aspartate consumption are reduced in ‘slower’ developing

blastocysts, together with transcripts for two glucose transporters

(Slc2a1, Slc3a3) and glutamic-oxaloacetic transaminase (Got1) (99).

This enzyme is centrally involved in the malate-aspartate shuttle

which, in turn, regulates tricarboxylic acid cycle activity within the

mitochondrion (100). The increase in mtDNA copy number in

chromosomally normal blastocysts (Figure 3C) further points to a

potentially ‘programmed’ dysregulation of energy metabolism in

embryos derived from oocytes matured in the absence of CP.
4.2 Melatonin and complex proteins
interact during IVM to impact
embryo development

In contrast to the effects of removing CP, the impact of adding

melatonin to IVM media was more subtle, being largely dependent

on the presence of CP, and was most apparent at later stages of

embryo development (Table 1; Figure 4), although there was an

indication that the percentage cleaved following insemination was

reduced. The motivation for adding melatonin to our standard IVM

media, which contains CP, stemmed from its known actions as a

metabolic regulator (44) and antioxidant (38). Melatonin is a

natural component of follicular fluid, being derived from both

systemic and local sources (51, 101), and its inclusion during

IVM in media comparable to our +CP standard has been found

to enhance oocyte maturation and embryo development (38,

42, 46).

Reduced rates of cleavage (102) and reduced polyspermy (103)

can occur following the addition of melatonin during IVM. This

may be due to increased/improved cortical granule distribution

which has been observed for oocytes matured in the presence of
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melatonin (104, 105). Interestingly, incubating sperm with

melatonin also reduces its ability to bind to oocytes (106) and

leads to lower polyspermy (107), suggesting melatonin may be an

important factor in regulating fertilization. The implication is that

the improved percentage of Day 6 blastocysts of those that had

cleaved following melatonin treatment (Table 1B) may have been a

consequence of a reduced number of polyspermic embryos on Day

2, although this remains to be verified.

In the current study, the addition of melatonin to our standard

media (i.e., +CP+M vs +CP-M) altered the expression of 22

transcripts in cumulus cells (Supplementary Tables 2, 3). These

were mostly linked to immune function and metabolism

(particularly glycolysis), and the addition of melatonin

downregulated the expression of 20 of these transcripts. Pathway-

fold enrichment for six transcripts (i.e., KRT8, KRT18, DSG,

PDGFRA, AKAP12 and CSRP3) stood apart from the rest

(Supplementary Table 2). The first five of these six transcripts are

known to be expressed within the ovarian follicle and are linked to

cell proliferation and apoptosis (108–111). Their downregulation,

therefore, could tentatively be associated with more ‘viable’ and

‘mature’ COCs.

There was no significant effect of melatonin on cumulus-cell

transcript expression when it was added to IVM media in the

absence of CP (i.e., -CP+M vs -CP-M). In contrast, the expression

of 118 transcripts differed between the two treatments that led to the

greatest difference in embryo development (i.e., -CP+M vs +CP+M;

Table 1). However, as reported earlier, the increase in transcript

expression observed following the removal of CP in the presence of

melatonin was related mostly to sterol and lipid metabolism. Of the

68 downregulated transcripts, eight overlapped within and between

identified KEGG pathways and GO Biological Processes

(Supplementary Figures 2C, D). In cumulus cells, these

transcripts are linked to cAMP and calcium signaling [PRKACB,

RYR2 (112, 113)], mitochondrial metabolism [PDK3, UCP2 (114,

115)], apoptosis [MT1E, FAM162A (116)], and prostaglandin

synthesis [PLA2G4A, PTGS2 (117, 118)]. Additionally, four of

these transcripts (UCP2, FAM162A, PTGS2, PDK3) were identified

as hypoxia inducible. These have been implicated in preferential

glycolysis in tumor cells (119–122). The addition of melatonin has

been shown to inhibit such preferential glycolysis (123), and to reduce

proliferation in cancer (124) and granulosa cells (125) in vitro.

Interestingly, it has also been shown that this inhibition is less

effective (126) or indeed reversed (53) in the presence CP. Whilst

these processes are fundamental to the successfulmaturation ofCOCs,

the link to observed differences in embryo development (Table 1) is

tenuous at present given their disparatenature and the limited number

of underpinning transcripts.
4.3 The ploidy status of blastocysts is
unaffected by the composition
of IVM media

Chromosomal abnormalities are a major cause of early embryo

loss and pregnancy failure in both humans and cattle (58, 127, 128),

and there are concerns that procedures involved in ART could
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exacerbate their incidence (129). However, ovarian stimulation in

cattle, at least using the ‘coasting’ protocol described herein, is not

responsible per se for inducing aneuploidy (55). The implication is

that, because most errors reported are of meiotic (mostly MI;

Table 2) origin (55, 58), and the incidence of aneuploidy is

greater for IVP than for in vivo derived embryos (55), a

proportion of these errors arise a consequence of ‘stresses’

associated with oocyte recovery (OPU) and/or IVM.

In the current study, 20% of blastocysts harbored some form of

chromosomal abnormality; a level comparable to that (14% to 24%)

of our previous studies (55, 58). Yet, neither the removal of CP nor

the addition of melatonin to IVM media appeared to affect the

incidence of aneuploidy; although it could be argued that

experimental power wasn’t great enough to provide a robust

statistical analysis for this outcome across the four treatment

groups. Rather, the increased incidence of aneuploidy associated

with these procedures is more likely a consequence of the

precocious onset of meiotic resumption in the oocyte upon

aspiration from the ovarian follicle (130), combined with

fluctuations in the micro-environment (i.e., mechanical stresses,

osmolarity, temperature and pH) during processing (129).
4.4 Composition of IVM media determines
unique DNA methylation ‘signatures’
in blastocysts

The striking feature to emerge from the analysis of DNA

methylation within the ICM of Day 8 blastocysts is the existence

of distinct subsets of methylated CpGs specific to each of the four

IVM treatment groups (Figure 4). This indicates that modest

alterations to the composition of IVM media for GV oocytes

transiting to MII prior to fertilization can lead to heritable

epigenetic modifications to DNA methylation in fully expanded

and hatching blastocysts. Although the experimental conditions

and treatments were not similar, such observations are not

unprecedented in that elevated concentrations of non-esterified

fatty acids during IVM can lead to modified DNA methylation in

both bovine and porcine embryos (131, 132).

Considering each of the four treatment combinations in the

current study (Figure 4), together with the selected biological

processes depicted in Supplementary Table 4, the data indicate

that removal of CP and/or addition of melatonin during IVM

increase CpG methylation in blastocysts for the genes listed which,

in these examples, are associated with lipid metabolism. This

observation implies that the associated biological processes

portrayed in Supplementary Table 4 are likely to fall under

greater epigenetic regulation specific to each IVM treatment.

Curiously, CpG methylation was also greater in regulatory regions

of genes involved in lipid metabolism for blastocysts derived from

heifers undergoing similar OPU procedures to those of the current

study (133), suggesting that these metabolic pathways are more

precisely regulated epigenetically at this stage of development.

Despite the presence of unique CpG profiles in the current

study, there was a degree of overlap between treatments with respect

to biological processes, particularly related to lipid metabolism and
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response to lipids more generally (Supplementary Table 4). Some

notable genes associated with differential CpG methylation

(Supplementary Table 4), with relatively high fold enrichment,

were COQ2 (biosynthesis of CoQ10 involved in the mitochondrial

electron transport chain), ACACA (rate limiting enzyme in fatty

acid synthesis), HADHB (b-oxidation of long-chain fatty acids

within the mitochondrion), LRP6 (LDL endocytosis and WNT

signaling), and FOXA1 (DNA-binding chromatin modifier with

down-stream links to metabolism). At this juncture, due to the

number and dispersal of differentially methylated CpGs, it would be

problematic to associate these epigenetic differences in DNA

methylation to transcript expression in blastocysts and to

subsequent developmental outcomes; this would require more in-

depth analyses. Also, the functional significance of the biological

processes l is ted, and genes contained there in , await

further investigation.
4.5 Reflections on cytogenetic and
epigenetic analyses

A strength of the current study is that immunodissection of Day

8 blastocysts allowed us to undertake both cytogenetic and

epigenetic analyses in the same cohort of embryos. We previously

reported a high degree of concordance between the TE and ICM in

both the nature and incidence of chromosomal errors (55), so that it

was not necessary to analyze both lineages. However, there are

recognized differences in chromatin organization and CpG

methylation (56, 134–136), as well as in transcriptional profile

(137) between these two lineages, so that lineage separation prior

to DNA methylation analyses can be considered a refinement over

whole blastocyst analyses which would otherwise confound these

differences. As the ICM gives rise to the embryo proper it made

sense to prioritize this lineage; an approach adopted by others (e.g.,

138). However, greater culture-induced differences in regional CpG

methylation were observed in TE than ICM cells in bovine embryos

at around Day 7/8 (56) and Day 17 (139), so that IVM-induced

epigenetic effects reported in the current study may be an

underestimate of the true magnitude across both lineages.

Furthermore, the pooling of ICMs required for DNA extraction

prior to library preparation prohibited an assessment of the

interactive effects of culture and embryo sex on CpG methylation,

as reported by others (140). However, ICMs in the current study

were pooled from stage-matched blastocysts and the percentage

male embryos in our system is consistently around 58%; it appears

to be insensitive to interventions such as those reported in the

current study (55, 56).
5 Conclusions

In the current study, the absence of CP during IVM led to

modest reductions in embryo development, whilst the effect of

added melatonin was beneficial in the presence, but detrimental in

the absence, of CP. Interactive effects of CP and melatonin on
Frontiers in Endocrinology 14
embryo development were not associated with chromosomal errors

arising during IVM. Instead, they were mediated in part via

modifications to metabolism, predominantly of lipids, by COCs

during IVM. This, in turn, resulted in a related metabolic and

epigenetic legacy detectable in fully expanded and hatching

blastocysts several days later. These outcomes lay the foundation

for future studies that seek to develop defined (protein free) systems

for the in vitro maturation of mammalian oocytes. They highlight

the importance of lipid, particularly sterol, metabolism during this

period, and indicate that developmental and epigenetic

consequences may persist beyond the point of embryo transfer.
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131. Desmet KL, Van Hoeck V, Gagné D, Fournier E, Thakur A, O’Doherty AM,
et al. Exposure of bovine oocytes and embryos to elevated non-esterified fatty acid
Frontiers in Endocrinology 18
concentrations: integration of epigenetic and transcriptomic signatures in resultant
blastocysts. BMC Genomics (2016) 17(1):1004. doi: 10.1186/s12864-016-3366-y

132. Shi M, Sirard MA. Transcriptome and epigenome analysis of porcine embryos
from non-esterified fatty acid-exposed oocytes. Domest Anim Endocrinol (2021)
76:106605. doi: 10.1016/j.domaniend.2021.106605
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