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Abstract

I argue for an inferentialist account of the meaning of causal claims, which

draws on the writings of Sellars and Brandom. The account is meant to be

widely applicable. In this work, it is motivated and defended with reference

to complex systems sciences, i.e., sciences that study the behaviour of systems

with many components interacting at various levels of organisation (e.g. cells,

brain, social groups).

Here are three, seemingly-uncontroversial platitudes about causality. (1)

Causal relations are objective, mind-independent relations and, as such, ana-

lysable in objective, mind-independent terms. (2) There is a tight connection

between our practice of predicting, explaining and controlling phenomena,

and the use of causal notions. (3) The second platitude should be explained

in terms of the first.

Contrary to this widely-held stance, I suggest that we reverse the order

of analysis, by taking our activities of agents as the raw material in terms of

which to account for the obtaining of causal relations. To this end, I propose

and defend an inferentialist account of causality. Causality is a ‘category’ that

the knowing subject employs to ‘mediate’ between himself and the world. In

inferentialist terms, this mediation is the result of the concept of cause figuring

in a network of inferences, used in our practice of gathering evidence and using

it to explain, predict and intervene. Complexity only makes the mediation

more difficult, thereby rendering the meaning of causality more evident.
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Introduction

Causal claims belong to our ordinary language as well as scientific language.

What is their meaning? Philosophers have been trying to answer this question

since, at least, the times of Aristotle. But the topic is still a matter of

controversy. This is all the more frustrating since we all think to grasp the

concept of causality, and we tend to believe that by regimenting our intuitions

on the concept it is possible to achieve a firm understanding of the nature of

causality itself.

For instance, a widespread intuition, which one finds already in Hume’s

Treatise, is that a cause is something that makes a difference to the effect.

Another, widespread intuition, which traces back to Aristotle himself, is that

a cause is something that produces, or brings about, the effect. And we

have other intuitions, too, e.g., that a cause is something that explains and is

evidence for the effect, that the relation takes place in space and time, that

it is asymmetric, local, transitive, etc.

Yet, in spite of repeated attempts to build solid analyses on these intu-

itions, the notion of causality continues to elude us. We keep debating on

whether the causal relata are events, processes, properties, variables, facts,

etc., on whether the causal connection is necessary or contingent, intrinsic or

extrinsic, whether it involves the operation of powers or not, on whether it

should be analysed in terms of general or singular facts, on whether it is an

epistemic or an ontic notion, etc.

In this thesis, I purport to take a fresh look at the issue from a still un-

explored point of view, viz. inferentialism. Inferentialism is a pragmatist po-

sition in semantics, leading to an unconventional sort of conceptual analysis.

The motivation for this approach in the case of causality is the dissatisfaction

with traditional approaches based on truth-conditionalist and representation-

alist semantics. The search for truth conditions or truth-makers has so far

encountered problems on both conceptual and empirical grounds. On the one

hand, for any account of causality on offer counterexamples can be found. On

the other hand, no account seems to fully capture how the concept of causal-

ity is employed in scientific practice. Also, current approaches seem somehow
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limited, or ‘one-sided’, insofar as they focus on either test conditions (which

are then usually erected to truth conditions) or use conditions. This attitude

reflects the one-sidedness of traditional theories of meaning, which focus on

either conditions of application of expressions (e.g., verificationists, assert-

ibilists, reliabilists) or consequences of application of expressions (“pragma-

tists of the classical sort”) (cf. Brandom, 2000, pp. 63-66). Inferentialism,

instead, gives equal weight to both components.

For the inferentialist, meaning is based on inferences, both intra-linguistic

(language-to-language moves) and extra-linguistic (responses to non-linguistic

circumstances and actions). The former are not to be interpreted only in de-

scriptive terms, but also normative terms. Neither is to be interpreted in

terms of reference or truth. The outcome of the analysis is not the iden-

tification of necessary and sufficient conditions, but the explication of the

inferential connections that are constitutive of the meaning of sentences (e.g.,

causal claims) and subsentential locutions (e.g., ‘causes’).

It should be stressed that, since my main focus is the semantics of causal

claims, I won’t be directly concerned with metaphysical issues. For the infer-

entialist, causal claims are analysed in terms of endorsement conditions, not

truth conditions. This does not entail, at least not straightforwardly so, any

metaphysical stand on the nature of the relation that is supposed to make

the claim true. However, some qualifications are needed.

First, inferentialism does allow one to re-interpret traditional issues such

as whether causal talk is referential and in virtue of what. Reference is,

for the inferentialist, not what grounds meaning but a consequence of the

social and normative attitudes that institute meaning. It is only in this

circumscribed sense that, in this thesis, semantics will serve the purpose of

drawing conclusions on the nature of the relation talked about in the claim.

Secondly, for the inferentialist metaphysical investigations require a study

of the jobs that concepts do for us, e.g. of the explanatory function of the

verb ‘causes’. It is usually thought that an understanding of the metaphysics

of causation is sufficient to deliver an account of causal explanation. This

is problematic, since the asymmetry of explanation is not reducible to the

asymmetry of causation: why do causes explain effects and not the other

way round? A better approach is to take the epistemology of causation to

provide an account of causal explanation: in fact, the observation that the

cause makes a difference to the effect is conducive to causal explanation.

Still, one may ask: why are causal epistemology and causal explanation both

10



causal? My suggestion is to use inferentialism to understand both ‘causes’

and ‘causally explains’. There will be inferences constitutive of the meaning

of causal claims and inferences constitutive of the meaning of causal expla-

nations. Here I focus on the former.

The account I propose is meant to be widely applicable. In the thesis, it

is illustrated and defended with reference to complex systems. Why complex

systems? Because complexity calls into doubt our intuitions about causality

and makes causal talk problematic. So, complex systems make a better test

case to uncover the meaning of causal claims. Arguably, if their meaning

can be explicated in complex systems, it can also be explicated in areas of

discourse where causal talk is less or equally problematic. In particular, I

will mainly refer to two case studies, one from systems biology (apoptosis),

the other from computational economics (asset pricing). This choice is meant

to help develop an account that is encompassing enough as to bridge the

natural-social divide, so that the account can be more easily applied outside

complex systems. Why complex case studies rather than toy examples? There

are several reasons for this choice. First, rather than toy examples, real

science examples serve better the desideratum that a scientific account of

causality be faithful to the notion of causality at work in scientific practice.

Secondly, contrary to the intuition that different analyses are best suited to

different areas of inquiry, no traditional analysis seems particularly well suited

to complex systems sciences. Finally, complex systems are also convenient

because a handful of examples are sufficient to drive my point home.

The thesis is structured as follows. In chapter 1, I give an informal char-

acterisation of complexity. In chapter 2, I motivate my project by arguing for

the compatibility of complex and causal phenomena and for the need of a suit-

able interpretation of causality in complex systems. In chapter 3, I introduce

the reader to the case studies and argue for the causal interpretability of the

models provided by complex systems sciences. With reference to this picture,

I discuss and criticise monistic accounts in chapters 4 and 5, and pluralist

accounts in chapter 6. In chapter 7, I develop my inferentialist account on

the meaning of ‘causes’, which I illustrate with reference to complex systems

in chapter 8.



Chapter 1

The Advent of Complexity

Causality has always been a hotly debated topic in philosophy. Complexity,

on the other hand, is an equally hot but relatively new topic of philosophical

discussion. Before embarking on the arduous task of discussing causality in

complex systems, it is appropriate to characterise, even if only informally, the

notion of complexity. Since ‘complexity’ is hard to define (§1.1), I will proceed

by first defining ‘simplicity’ (§1.2) and then adding complications until prima

facie genuinely complex phenomena emerge (§1.3).

1.1 What is complexity?

The last thirty years have witnessed an increasing interest within many scien-

tific fields towards the phenomenon of complexity. This increase has occurred

for several reasons. On the one hand, there has been a feeling of widespread

dissatisfaction with the ‘traditional’ scientific approach—i.e., an approach

that postulates idealised physical systems and perfectly rational agents to

reduce hard tasks to simpler ones, analysable in terms of stable equilibria,

linear relations, periodic motions, controllable variables, etc. This traditional

approach, in fact, leaves untouched pressing questions such as: How does

living matter arise out of non-living matter? Why do financial crises occur

so often? On the other hand, this increasing interest towards complexity

depends on the success with which new mathematical models and tools, orig-

inally developed to deal with a handful of striking, peculiar cases (weather

forecasts, fluid turbulence, population dynamics, etc.), have been applied to

a large variety of phenomena. Complexity has been advertised as a novel,

revolutionary, ‘post-Newtonian’ paradigm in opposition to classical, ‘Newto-

nian’ science. This has motivated the hope that a new science with its own

subject matter was about to spring forth.

Despite this growing interest, however, the existing variety of approaches

12



§1.1 What is complexity? 13

that fall under the label of “complexity science” still hasn’t received a unified

and generally accepted treatment. This is because there is a substantial

disagreement and ambiguity on what ‘complex’ means, and how complexity

can be defined, measured, etc. Existing boundaries between complex and

simple phenomena are vague, and available criteria to distinguish between

complex and simple are not unanimously accepted. It is important to stress

that defining complexity is not the task of this thesis. For my purposes, it will

be sufficient to give an intuitive, non-formal characterisation of systems that

are commonly regarded as complex, and then go on and show what notion of

causality is best applicable to them.

There exist formal measures of complexity, viz. algorithmic and statistical

complexity, which count the number of symbols of the shortest program that

produces the data (algorithmic) or statistically significant features of the data

(statistical). However, the two measures can deliver conflicting verdicts with

regard to the same situations. For instance, a maximum entropy situation has

maximum algorithmic complexity but minimum statistical complexity—it is

complex to reproduce exactly position and momentum of the particles, but

simple to describe statistically significant features, such as their mean and

variance. It’s hard to decide between these or other measures in the absence

of a notion of what it is exactly that they are supposed to measure.

Many definitions of complexity, whether formal or informal, have been

provided so far, none of which has, however, been unanimously endorsed.

There have been attempts to provide necessary and sufficient conditions

for complexity. For instance, Rosen has proposed that a system is complex if

and only if some of its models are non-Turing computable (see Rosen, 1998,

p. 292). It is debatable, however, whether some formal feature of the models

should be taken as bearing on the ontology of the systems that such models

are meant to represent.

Most definitions of complexity have an informal character. Some of them

tend to focus on objective features of complex systems such as self-organisation

(‘order through fluctuations’ (Prigogine and Stengers, 1984), ‘self-organised

criticality’ (Bak, 1997), ‘intermittent criticality’ (Sornette, 2002)), adaptation

(Holland, 1995), ‘autopoiesis’ (Varela et al., 1974), or some mixture of these

(see, e.g., Mitchell, 2003, Part I). Other characterisations, instead, make also

reference to subjective aspects, such as observer-relativity (Gersherson, 2002)

or ‘contextuality’ (Chu et al., 2003). As we shall see (§1.3.4), the factors re-

sponsible for complexity can be highly contextual, i.e., their salience changes
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from situation from situation.

Given the current unavailability of unambiguous and unanimously ac-

cepted definitions of complexity, I will proceed towards a characterisation of

complex systems suitable for my investigation in a piecemeal fashion, by first

characterising ‘simple’ systems and then adding ‘complications’ until prima

facie complex features appear. This will help me illustrate in what sense, and

to what extent, complexity has modified our notion of causality.

1.2 Simplicity

The notion of simplicity is usually associated with classical, ‘Newtonian’ sci-

ence (see Prigogine and Stengers, 1984, chap. 2). Newtonian science was

guided by the belief that every event, or state of a system, is determined by

some previous conditions together with dynamical laws that specify the evo-

lution of the system’s behaviour in time. This opened the way to the idea that

the universe is made of machines, and is itself a big machine, such that its

behaviour can be in principle predicted, controlled, and exploited by knowing

the laws of its working. It is no coincidence that after the rise of classical

mechanics, which purports to describe the relative motions of massive bodies

by reference to just four general principles, viz. Newton’s laws, the myth also

arises of an omniscient being, or ‘demon’, that in virtue of its knowledge of

position and momentum (i.e., the product of mass and velocity of a body)

of all bodies in the universe at a given time is able to infer the state of the

universe at any other time, whether in the past or in the future (see Laplace,

1902, p. 4).

In classical mechanics, the trajectories of the particles of any closed system

(i.e., a system that does not exchange energy or matter with the environment)

can be, in principle, fully specified. Such trajectories are (i) lawful, (ii) deter-

ministic, and (iii) reversible (see Prigogine and Stengers, 1984, p. 60). Once

positions and velocities of the bodies at some time are known, together with

the equations of motion that relate the dynamic forces to which the bodies

are subjected to their acceleration, other states of the system are lawfully

deducible, fully determined, and reversible by an external intervention con-

sisting in a velocity inversion of all the bodies, which makes the system go

‘backward in time’ through its previous states and restore its initial condi-

tions. This inversion is practically impossible to perform precisely in reality,

due to the non-negligible external forces which make the system open—not
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to mention the difficulty involved in dealing with huge numbers of particles.

But if the universe itself is a closed system (the closed system par excellence),

then nothing prevents an extremely powerful being such as Laplace’s demon

from rewinding the tape.

What is causality within this classical framework? The notion of causality

overlaps greatly with that of determination, or necessitation. Metaphysically

speaking, causal relations are relations between states of the system, such

that each state necessitates the state that follows and is necessitated by the

state that precedes along a continuous temporal chain. Under the Galilean

assumption that the book of Nature is written by God in simple mathematical

terms, such relations can be, in principle, known and exploited for explanation

(retrodiction provides a kind of explanation, viz. ætiological explanation),

prediction and intervention (e.g., velocity inversion) (see Israel, 2005).

This reasoning seems to rely on the assumption that legitimate causal talk

depends on there being a metaphysical commensurability, or resemblance,

between cause-and-effect events based on the permanence of the substance

present in each (see Descartes, 1996, p. 28).1 To make sense of the commen-

surability of the states in the determination relation, it must be possible in

principle to adequately describe cause and effect in terms of their intrinsic

properties and to specify the temporal evolution of the system in terms of

universal, deterministic laws. Originally, what had to be commensurable was

matter. Now the view is that it is the complex energy-matter that must be

conserved (see §5.4.4). However, the same reasoning applies to both cases.

It must be stressed that in this classical framework the metaphysical and

the epistemological aspect are reconciled in the figure of Laplace’s demon.

The demon, in fact, represents an ideal of absolute objectivity, of perfect

knowledge of mind-independent, metaphysical relations. And although such

a perfect knowledge is infinitely distant from the partial knowledge of limited

beings like us, according to the classical paradigm this is for practical not

theoretical reasons: our imperfect knowledge—e.g., of causal relations—can

always be perfected ; absolute objectivity—e.g., of causal claims—can be pro-

gressively approximated. Now, after three centuries of Newtonian science, this

ideal of lawfulness, determinism and reversibility appears at least problem-

atic. A unbridgeable chasm seems to separate us from Laplace’s demon.

I will now illustrate how the introduction of ‘complications’ modifies the

behaviour of simple systems, thereby affecting this classical picture. Notice

1For a criticism of this view, see Goldstein (1996, §3.2) and references therein.
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that such complications may all be given an ontological interpretation. How-

ever, in the present context, due to my methodological choice of investigating

causality by looking at models of complex systems, more important are their

epistemic consequences, i.e., the way complexity affects the models’ descrip-

tive adequacy, their capacity to function as tools for surrogative reasoning

about their targets, etc.

1.3 Complications

1.3.1 Nonlinearity

Since Newton’s times, the problem of determining analytically (i.e., by in-

tegration of the differential equations specifying motion) the trajectory of a

system composed of more than two bodies mutually attracting each other has

proved extremely hard to solve. The original problem, the ‘three-body prob-

lem’, consisted in calculating the influence of the Sun on the Moon’s motion

around the Earth. This was later generalised to n-body systems where three

or more bodies interact with one another at whatever size level, also micro-

scopic, and where the nature of the interaction is not limited to gravitational

forces. The apparent impossibility to solve the equations analytically, that

is, without relying on numerical approaches, calls into question the first of

the classical assumptions, that is, the idea that dynamics are always lawfully

deducible. The problem, it is often said, resides in the ‘nonlinear’ character of

the system. As we shall see, nonlinearity is a necessary—but not sufficient—

condition for complexity.

Dynamical systems theory represents all possible dynamics in the phase

space. In it, each possible state of the system corresponds to a point. For

mechanical systems such as n-body systems, the phase space usually consists

of all possible values of position and momentum. More generally, the phase

space can be used to represent the evolution of any variable as a function

of time, e.g., temperature, pressure, concentrations of chemicals in a reac-

tor, gene frequencies in population genetics, electrical activities of neurons,

populations of different species in an ecosystem, etc.

The dynamics of the system, whether linear or nonlinear, is usually de-

scribed by using differential equations, which represent the evolution of sys-

tems in continuous time.2 Among these, one can distinguish between ordinary

2Alternatively, difference equations, or ‘iterated maps’, are employed, which describe the
evolution of the system in discrete time steps (see §1.3.3).
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differential equations (ODEs), which have only time as independent variable,

and partial differential equations (PDEs), which have also other independent

variables, e.g., one or more spatial dimensions.

Linear differential equations can be expressed as a linear combination of

the state variables. They are particularly important because, for them, su-

perposition holds. According to the principle of superposition, if an equation

is linear, the sum of any two solutions is always a solution:

F (x1 + x2 + ...+ xn) = F (x1) + F (x2) + ...+ F (xn) (1.1)

The superposition principle, however, does not generally hold when the

equations are nonlinear. In this sense, the complexity of the three-body prob-

lem consists in the impossibility to reduce motion of the entire system to the

motions of the three bodies in superposition with one another, i.e., to reduce

the differential equation describing the motion of the three bodies jointly

considered to a—solvable—system of linear equations. This is regarded as

one of the paradigmatic examples of the widespread non-reducibility of whole

systems’ behaviours to the behaviours of their parts studied in isolation (see

Casti, 1994, pp. 40-41).3 However, this does not seem sufficient to characterise

complexity for at least two reasons.

First, in certain (though, admittedly, few) cases it is possible to find an-

alytic solutions to nonlinear equations.4 What are, then, the ‘nice’ nonlin-

earities and what the ‘nasty’ ones? There are no sharp boundaries. Besides,

why should we take the (non-)existence of exact solutions as bearing on how

much nature is complex in itself? The problem seems to reside more in our

ability to solve the equations than in some blueprint for complexity in nature.

As we shall see, qualitative methods show that the general behaviour of non-

linear systems is sometimes very simple (e.g. a pendulum) and deterministic

(read: ‘fixed’ by the dynamical laws), although specific states are often non-

determinable (read: ‘non-analytically deducible’ from those laws). So, often

one must rely on numerical analysis or simply wait that the system unfolds

3‘Stability’—i.e. insensitivity of the planetary orbits to small perturbations, which pre-
vents planets from colliding, on the one hand, and flying off in space, on the other—is a
property of the whole which ‘emerges’ from nonlinearities and is irreducible to the parts’
behaviour. For more on emergence and its connections with causality, see §2.2.

4For instance, the superposition principle does not generally apply to nonlinear waves.
However, although there is no general analytical method to find the solutions of the non-
linear equations describing such waves, some of these equations are still solvable, e.g., the
Korteweg-de Vries equation, a third-order (partial) differential equation describing small
amplitude, shallow water waves.
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itself to know what has/had to happen.

Secondly, and more generally, most real systems are nonlinear.5 In fact,

linear systems are typically at or near equilibrium, whereas nonlinear systems

are far-from-equilibrium (see §1.3.3), and far-from-equilibrium systems are

much more common than equilibrium ones. So, if nonlinearity were taken as

the defining characteristic of the complex, almost anything in nature would

count as complex, with the result that the term “complex” itself would not

stand for anything special and worth calling “complex”.

Other ingredients must be added to nonlinearity to get complex behaviours.

1.3.2 Sensitivity to initial conditions

The interstellar three-body problem involves a ‘conservative’, or nearly con-

servative, system. However, most of the systems displaying complex be-

haviour are non-conservative, or ‘dissipative’.

A conservative system is such that its total energy is not dissipated. An

example is an ideal pendulum not subject to friction. In order to find analytic

solutions of the equation describing its motion, textbooks usually reduce the

problem to the study of a ‘simple harmonic oscillator’, that is, a pendulum

subject to a force exactly proportional to the angle of displacement from

its resting equilibrium position. This approximation gives accurate results

when the angle is sufficiently small. Although for large angles the maths

gets complicated, topology, viz. a branch of mathematics, can still describe

the qualitative behaviour of the pendulum for any angle of displacement in

relatively simple terms. In figure 1.1 (top) are represented both the oscillatory

behaviour of the pendulum (along the circles) and the rotatory behaviour

(along the sinusoids). Both behaviours are periodic.

Now, let us add friction so that the pendulum becomes non-conservative

(bottom of figure 1.1). A rotating pendulum will slow down more and more,

‘passing’ continuously from one energy level (a line in the phase portrait of

the conservative pendulum) to the other, until at a given point its motion

will become oscillatory and, eventually, stop. Have we reached the most that

complexity has to offer? Not quite.

In the plane, the only two attractors for the behaviour of non-conservative

systems—that is, the stable limits the system can reach as time advances—

are fixed points (the motion of the pendulum subject to friction terminates

5See examples in (Strogatz, 1994), (Klipp et al., 2009) and (Gilbert and Troitzsch, 2005).
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Figure 1.1: Phase portraits for the motion of a conservative pendulum (top) and

non-conservative pendulum (bottom). Reproduced with permission from (Strogatz,

1994, pp. 170, 173). For systems whose motion can be described by means of one

space coordinate only, such as the angle of rotation θ of a pendulum, all possible

trajectories can be represented in a two-dimensional phase space. In the case of the

pendulum, the two state variables will be θ and v = θ̇.
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Figure 1.2: The Lorenz attractor is—for a suitable choice of the parameters σ, ρ and
β—the limiting behaviour of the following, nonlinear system of differential equations:

dx/dt = −σx+ σy
dy/dt = −xz + ρx− y
dz/dt = xy − βz

here; see bottom of figure 1.1) and limit cycles (which attract the trajectories

nearby the cycle, both inside and outside; this is the case of, e.g., pendula

with an escapement mechanism, which neutralises the effect of dissipative

forces). There is a sense in which, although the quantitative behaviour of a

pendulum may be hard to calculate exactly, it is also very simple: it is either

a fixed point or a limit cycle.

In more-than-two dimensional spaces, instead, there exists another kind

of attractor for continuous dynamical systems, viz. the ‘strange’ attractor.

Strange attractors constitute the limiting behaviour of chaotic systems.6 I

briefly illustrate the properties of chaotic systems with reference to the toy

model of the weather that Lorenz offered to suggest the impossibility of long-

term weather forecasts (see Lorenz, 1993, p. 188). For some suitable choice of

the parameters, the system converges to a ‘strange’ attractor (see figure 1.2).

In general, a strange attractor is structurally stable (small perturbations

6Notice that very few systems are in a chaotic state, although they can be driven to
chaos by fine-tuning some control parameter. For instance, the Lorenz attractor arises only
for some values of the parameters not others (see below). Instead, most complex systems
‘spontaneously’ move from one stable configuration to another, organising themselves ‘at
the edge of chaos’ (see §1.3.3).
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Figure 1.3: Sensitivity to initial conditions in 3-d and time-series. Left: two Lorenz

orbits for 0 ≤ t ≤ 30. The red orbit is one trajectory of the Lorenz system with

(σ, ρ, β) = (10, 28, 8/3) started from the initial point (0, 0, 1). The blue orbit is

for the same parameters but initial condition (0, 0, 1 + ε), ε = 10−5. Right: the

time-series for the z-coordinate of the first orbit and the difference between this and

the z-coordinate of the second orbit.

do not change its topology), aperiodic (no point comes back exactly to where

it was before), and fractal (its orbits are infinitely long but contained in a

finite area, the dimension of which is not an integer, e.g., 2.5 or 3.12).

Strange attractors are such that any two points as close as possible to

one another—but not coinciding—belong to trajectories that diverge at an

exponential rate, that is, more than linearly. This means that chaotic sys-

tems are extremely sensitive to initial conditions, and display the so-called

‘butterfly effect’: small differences in initial conditions, huge differences in

distant future states (see figure 1.3).7 Extreme sensitivity to initial condi-

tions entails that complexity can be the result of very simple processes, and

that systems governed by a few, simple, deterministic equations can generate

unpredictable—hence, complex—behaviour.

Notice, however, that despite this extreme sensitivity there are still mar-

gins for short-term (weather forecasts) and qualitative (climate change) pre-

7A special case of chaotic systems are systems where the basins of attractions, rather
than the attractors themselves, are fractal (see Prigogine and Stengers, 1984, pp. 263-264).
Here, the impossibility to specify the effect of an infinitely small perturbation on a point
nearby the boundary between the two basins depends on the impossibility to specify, by
increasing the resolution to any less-than-infinite degree, whether the point lies in one or
the other basin, that is, whether it belongs to a trajectory that terminates in one or the
other attractor.
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dictions. For any two states sufficiently similar to one another, the evolution

of the system will be sufficiently similar for a while, before the two trajectories

diverge. The idea is that, if today’s weather is sufficiently similar to some

other day’s weather in one’s records, then it is likely that today’s weather

will evolve as the past weather did. This intuition is exploited in several

ways in forecasting practice. For instance, one may look for close similarity

not between two single states of the system—which one cannot compare in

the absence of a good mathematical model of the system—but between two

stretches of a time-series, called ‘motifs’ (see Stewart, 1997, p. 131). In a time-

series, the state of the system is monitored by regularly plotting the value of

one of its variables along one axis against the time of the measurement, as

time progresses, along another axis (see figure 1.3, right). If the points in the

time-series belong to the same, chaotic, attractor, then one can concentrate

on the qualitative ‘texture’ of the time-series. Observation of two similar,

recurring patterns of points at different times is an indicator that the system

is chaotic and the trajectories to which the two patterns belong will be simi-

lar in the short-run. If, instead, one does have a model, one can proceed by

comparing not just single points in the phase space, but groups of points and

their relative distances, by using a method called ‘tessellation’ (see Stewart,

1997, pp. 292-295). The idea is that the forward state A′ of A will bear to

states B′, C ′, D′, etc. which lie in the forward trajectory of A’s neighbour

states B, C, D, etc., the same relation that A bears to B, C, D, etc.

Although complexity and chaos are tightly related notions, there is more

to complexity than chaos. Let us complicate the picture a bit more, then.

1.3.3 Bifurcations and symmetry-breaking

Many systems in nature organise themselves into stable configurations that

are open to the environment enough for them to sustain their autonomy but

not to the point of losing their organisation. In general, the mechanisms that

enable systems to reach these organised states are taken to be the root not

just of complexity but of life itself (with which complexity is often associated),

as they bring about highly differentiated, self-organised and, in some cases,

goal-oriented forms of behaviour. This idea, in turn, is meant to constitute a

crucial shift from traditional thinking, namely from the dogma of reversibility,

which cannot account for how the living arises out of the non-living.

Whereas classical mechanics envisages the states of the system and time it-
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self as reversible, thermodynamics interprets them as irreversible. Also closed

systems, that is, systems that do not exchange energy with the outside world,

but for which temperature is allowed to vary, despite conserving their total

energy, do lose their ability to use this energy to do work because of friction

and heat loss, which results in entropy increase. Entropy can be informally

defined as a measure of disorder of a system, that is, the degree of randomness

in the arrangement of its particles. The universe, however, in patent oppo-

sition to the idea that progress is (just) towards randomness and disorder,

organises itself more and more in highly ordered structures. Paradigmatic

examples of complexity, such as the cells’ metabolism, are forms of organisa-

tion that arise when open systems are far-from-equilibrium, or ‘at the edge

of chaos’. In virtue of what is this process of organisation possible?

The idea is that dissipative systems, that is, open systems that promote

overall entropy increase, can organise themselves at the expense of the envi-

ronment, by using the energy and matter that flow into them to do work and

by getting rid of the excess of entropy by exporting it out of the system in

the form of waste products. In this way, they reduce their internal entropy,

i.e. increase their organisation, by increasing the entropy of the environment.

Given that many systems have more than one attractor, this process also con-

templates a continuous adjustment to changes in boundary conditions. The

resulting self-organisation mechanism need not involve centralised control but

can be, in a sense, ‘spontaneous’. It usually starts with a positive feedback,

such that an initial fluctuation is amplified. Then, after a stable configuration

has emerged, the forces that at first reinforced the positive feedback act in

a negative feedback so that deviations from stability are suppressed. This

phenomenon was observed in many natural systems, from convection cells

to chemical and biochemical systems (e.g. chemical clocks, cells, the brain)

to ecological systems, economic systems, etc. I will first present an example

where ‘fine tuning’ is required for self-organisation, and then generalise to

cases of spontaneous self-organisation.

Let us consider convection cells, first observed by Henri Bénard. Con-

vection is a very general phenomenon that takes place in a large variety of

out-of-equibrium systems, in liquid or gaseous state, at small and large scales.

It can be reproduced by first heating the liquid from below and letting it cool

on the top, and then progressively increasing the temperature at the bottom.

As a result, the lower part becomes less dense and tends to rise towards the

top and, at the same time, the cool liquid at the surface tends to sink towards
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the bottom. Convection arises as these two movements become coordinated

so that hexagonal cells, or ‘rolls’, form, with an upward flow on one side of

each cell and a downward flow on the other side.

Notice that the formation of convection cells is, in a way, fully deter-

ministic, as it can be predicted by knowing dynamical laws and temperature

difference. However, whether liquid molecules in a given region will decide to

move up or down cannot be accounted for in deterministic terms. Symmetry-

breaking involves a ‘choice’ between two possibilities, corresponding to two

different stable configurations. This choice is unpredictable: if one repeats

the experiment many times, whether a particular region will be in a clockwise

cell or in a counter-clockwise cell is a statistical affair. This mechanism can be

represented by means of a ‘bifurcation diagram’. A bifurcation diagram (see,

e.g., bottom of figure 1.4) shows how passage from one stable configuration

(e.g., rest) to another (e.g., a periodic oscillation) depends on two factors: (i)

a change in some control parameter (e.g., temperature) measuring the dis-

tance from thermodynamic equilibrium and (ii) a choice between two new,

far-from-equilibrium configurations (e.g. clockwise or counter-clockwise con-

figuration). The temperature at which convection appears corresponds to a

bifurcation point. Further increase in the control parameter determines more

and more complex spatio-temporal configurations. Other bifurcations occur,

namely, a succession of period-doublings: first a period-two oscillation (one

maximum and one minimum), followed by a period-four (two maxima and

two minima), a period-eight, and so on until a totally chaotic, aperiodic,

regime is reached as the parameter approaches a critical value. This feature

does not just apply to convection cells but is shared by all self-organising

systems whose dynamics depend on some control parameter. Also, the ratio

of convergence between parameter values corresponding to successive period-

doublings is constant among large classes of phenomena. This important

property, originated in the study of phase transition phenomena in statistical

mechanics and later discovered by Feigenbaum in simple ‘iterated maps’, is

called ‘universality’.

An iterated map is a map representing the behaviour of an iterated

function, that is, a function that successively maps values of x onto other

values of x through composition with itself, so that f0(x) = x, f1(x) =

f(f0(x)), f2(x) = f(f1(x)), ..., fn(x) = f(fn−1(x)), etc. Feigenbaum started

by examining the (discrete) logistic equation (see top of figure 1.4):
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Figure 1.4: Logistic map (top right) and bifurcation diagram (bottom) for the

logistic equation. Iterated maps are used to describe the behaviour of the same

function depending on the value of some control parameter. As the parameter r

changes, the system first settles into a fixed point then goes through a period-doubling

cascade until it reaches chaos.
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xn+1 = rxn(1− xn) (1.2)

which is usually employed to represent the growth of some quantity (e.g., this

year’s population with respect to last year) depending on the availability of

some resource (e.g., the carrying capacity of the environment) and he found a

certain convergence ratio. Then he moved on to many other difference equa-

tions and concluded that all functions (provided they all had a one-humped

mapping and the hump resembled a parabola) shared the same convergence

ratio, which is a universal property. Universal properties can be shared by

complex systems governed by different dynamical laws, irrespective of the mi-

croscopic details of their constituents, and may be, to varying extents, used

for prediction, control and explanation.

Phenomena of self-organisation, produced and maintained by interlocking

positive and negative feedback loops, and involving bifurcations, symmetry-

breaking, period-doublings, universality, etc., are widespread in nature: from

chemical systems of autocatalytic reactions (e.g., the ‘Brussellator’, cellular

metabolism) to ecosystems (population dynamics, as described by the logistic

equation or the Lotka-Volterra equations) to economic and financial systems

(e.g., mechanisms relating inflation and unemployment, represented by the

‘modified Phillips curve’, a particular bifurcation diagram). For many of

these systems, self-organisation does not rely on fine-tuning but occurs spon-

taneously. In a sense, these systems adapt on the fly in response to changes

in the environment.

1.3.4 Adaptivity

As shown, microscopic perturbations of the initial conditions are enough to

produce unpredictable effects. In real systems, extreme sensitivity to initial

conditions can obtain not only due to temporal parameter tuning but also

to spatial inhomogeneities in the distribution of the components (reactants

in chemical and biochemical systems, bits of information in socioeconomic

systems, etc.), which result in a space-dependent kind of self-organisation,

typical, for instance, of chemical waves and arguably responsible for, e.g., the

morphogenesis of the embryo (Prigogine and Stengers, 1984, pp. 148-152).8

8Modelling this behaviour makes it necessary to represent spatio-temporal configuration
of components along with variations in aggregate values of variables. For this purpose,
modelling techniques different from differential equations are used, e.g., cellular automata
and agent-based models (see chapter 3).
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Recall the non-ideal pendulum example. Its behaviour is relatively simple

insofar as it stays in one attractor basin. Complex behaviour arises when the

number of agents increases and their interaction produces a more complex

phase space (e.g., coupled pendula). Yet, even if the system fluctuates be-

tween distinct attractors in a unregulated way, not in response to tuning of

control parameters to precise values, there can still be simple features that

emerge out of the underlying complexity. For instance, if one plots the scale of

some complex phenomenon x (e.g., the size of fjords, the number of biological

extinctions, the magnitude of earthquakes) against the frequency F (x) with

which it occurs, one sees that this relationship obeys a power law distribution

(see Bak, 1997, chap. 3):

F (x) = x−α (1.3)

By taking the logarithm on both sides of the equation,

logF (x) = −α log x (1.4)

and then plotting logF (x) versus log x one obtains a straight line, α being the

slope of the line. This means that many complex phenomena are scale-free,

i.e., they have no characteristic size. Those whose power law distribution

has the same exponent are said to belong to the same universality class.

The mechanism responsible for this phenomenon is sometimes called ‘self-

organised criticality’ and the critical state in which the system organises itself

is regarded as an attractor (see Bak, 1997, chap. 2). According to Bak’s

theory, critical events are unpredictable.

An alternative interpretation of self-organisation is based on the notion

of ‘intermittent criticality’ (Sornette, 2002). Here, the system’s organisation

does not depend on a permanent state of chaos, but on an ‘on-off intermit-

tency’ of chaotic and non-chaotic periods, due to the heterogeneity of the

system’s components. The idea originates in the study of earthquakes, and

has been applied to phenomena as diverse as epileptic seizures, child birth

and stock market crashes. In short, heterogeneous (‘disordered’) materials

experience more and more cracks until the critical point is reached when the

main fracture is formed. The threshold to criticality may be calculated by

studying the process of variation of physical quantities (acoustic emission,

elastic, transport, and electric properties). Near global failure, the cumula-

tive elastic energy released follows power law behaviour corrected for presence
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of log periodic modulations, such that the exponent α of the power law is a

complex number. This entails, among other things, that α is non-universal,

but a function of the damage law. Contrary to Bak’s theory, this allows for

prediction by means of the so-called ‘time-to-failure’ analysis, based on the

detection of the acceleration of some signal on the approach to global failure.

Under this interpretation, the critical point is reached not in times of

chaos, but of order, when a higher-than-linear positive feedback is not com-

pensated by an adequate negative feedback, ensuing in instability. Exogenous

shocks are only the trigger of the fracture, the ultimate cause being the en-

dogenous process by which the system gets more and more ordered.

Another way in which the inhomogeneity of the system’s components is

responsible for self-organisation depends not so much on spatio-temporal in-

homogeneities between similar components but on the diversity of the com-

ponents (e.g., genes or proteins in a cell, species of plants and animals in

an ecosystem, investors in the market). These components, or agents, are

highly autonomous, in the sense that they follow their own set of rules. How-

ever, they are also highly connected and interactive with one another—from

which surprising behaviour can arise. Furthermore, agents are complex also

in the sense that they can adapt to changes—which renders the system itself

adaptive. Self-organisation due to adaptation depends on ‘constructive’ inter-

actions with the environment, rather than on some blueprint in the system’s

components.

Ultimately, the source of this kind of complexity is the radical openness of

the system. ‘Radical openness’ is a cousin of ‘holism’, the thesis that every-

thing interacts with everything else. Real, open systems do not just wait to

reach equilibrium within some pre-established phase space. They also actively

respond to outer interactions and exchanges with the environment in which

they are embedded. The action of the environment, which in conditions of

closure or quasi-closure is responsible for driving the system away from equi-

librium, breaking symmetries, etc., can also result in a modification of the

predicted phase space, with the formation of new attractors, each attractor

corresponding to a different stable configuration in a ‘fitness landscape’ (see

Heylighen, 2001). Along this process, the system tends to change its bound-

aries (enlarge or shrink) and adapt so as to find the fittest configuration.

Some go as far as suggesting that radical openness makes the locution

‘complex systems’ an oxymoron—complex systems are only in the eye of the

beholder (see Chu, 2011). Others, instead, only conclude that the identity of
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complex systems tend to be very fragile:

In complex systems, both the definition of entities and of interac-

tions among them can be modified by evolution. Not only each

state of a system but also the very definition of the system as

modelized is generally unstable (Prigogine and Stengers, 1984,

p. 204).

The phenomenon of radical openness can be illustrated with reference to what

happened to an ecological system, Lake Victoria, after the introduction of an

alien predator species, the Nile perch (see Chu et al., 2003). Lake Victoria

used to contain more than 300 different species of cichlid fish, which comprised

about 80% of the biomass of the lake. The Nile perch was introduced because

more suitable to commercial fishing and export trade, with the hope that the

local population could benefit from this. Ecologists predicted that cichlid

fish would be driven to extinction, which in turn would leave perch without

food and cause its own disappearance, with a negative, rather than positive,

impact on the fishing activity. The first consequence occurred as predicted.

However, what ecologists did not predict was the increase in number of other

species, like the prawn and the dagaa, as a result of the disappearance of the

cichlid fish, and the adaptive response of the perch, which modified its diet so

as to incorporate other fish in the light of this sudden change. This resulted

in the settling of the system on a new, unforeseen attractor. Unexpected

were also other, undesired effects on the local economy of the lake area. For

instance, the introduction of the perch determined an overall increase in the

fish in the lake. However, given that the perch is less affordable than cichlids

for the locals, it is exported rather than sold on local markets. The effect

of this was a change in the population’s diet, which in the future is likely to

affect public health and act back on the economy of the area.

Given the inaccessibility of these phenomena to traditional analytical ap-

proaches, other modelling techniques are employed, for instance, agent-based

models. However, no available technique can predict the whole network of

interrelated effects that result from the radical openness of the system.

Conclusion

Although no general definition of complexity is available, it is possible to

identify core features of complex systems that are responsible for phenom-
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ena that are regarded as complex, for some reason or other. Among these

features are nonlinearities, extreme sensitivity to initial conditions, bifurca-

tions and symmetry-breakings, adaptivity. Complex behaviour poses serious

limits to our ability to predict, control and explain. This, in turn, is meant

to constitute a substantial difference from the kind of phenomena studied by

classical, Newtonian, science, and seems to conjure against the meaningful-

ness of causal talk in complex systems. In chapter 2, I argue that complexity

does not make the notion of causality dispensable, but rather prompts a revi-

sion in our notion of causality. This justifies the project of investigating the

meaning of causal claims in complex systems.



Chapter 2

Complex Yet Causal

Sometimes, complexity and causality are presented as incompatible, for sev-

eral reasons, e.g., chaos (in its informal associations with randomness), emer-

gence (as a gap in a causal chain), etc. In the present chapter, with reference

to the characterisation of complexity given in chapter 1, I will dispel the doubt

that causality and complexity might be mutually incompatible. They are not.

My argument will proceed as follows: in §2.1.1 I show that complexity does

not entail indeterminism, hence absence of causality; in §2.1.2 I argue that

complexity does not make the notion of causality methodologically dispens-

able; in §2.1.3 I argue against the view that causal facts in complex systems

are ‘derivative’ with respect to ‘fundamental’, non-causal facts; in §2.2.1 and

§2.2.2 I reject the incompatibility between causality and emergent behaviour

in complex systems.

2.1 Are causality and complexity incompatible?

Complex systems scientists look for causal relations, often explicitly so. This

is true both of systems biology (see Yoo et al. (2002); Blair et al. (2012);

cf. O’Malley and Dupré (2005)) and of computational economics (see Chen

and Hsiao (2010); cf. Tesfatsion (2006)).

Causal relations are often acknowledged as the target of complex systems

scientists’ practice of model building. One prominent advocate of this idea is

Rosen (1985, 1991, 1998). Rosen theorised that the process of model building

in science is best captured by what he calls the “modelling relation” (see

figure 2.1), a relation of encoding of causal structures into formal structures

to derive certain conclusions, and of decoding of the results drawn by the

model with reference to the causal system one started off with. Following

Rosen, the idea that models of complex systems are essentially causal models

has become widespread among complex systems scientists (cf. Casti (1997,

31



§2.1 Are causality and complexity incompatible? 32

Figure 2.1: The modelling relation. Redrawn from (Rosen, 1985, p. 74).

p. 205); Mikulecky (2001, 2007); Louie (2010); Kineman (2011); Wolkenhauer

(2001); Wolkenhauer and Ullah (2007); etc.). Whence the question: What is

the notion of causality at work in complex systems sciences?

Recall the features that were meant to characterise classical science as op-

posed to complexity science (viz. lawfulness, determination and reversibility)

and the doctrine of causal determinism that such features motivated. How

does the discovery of complexity affect the notion of causality? Usually, com-

plex systems scientists claim that complexity demands that we replace one

notion of causality, viz. the Newtonian one, with another, more ‘systemic’ no-

tion (Goldstein, 1996; Mikulecky, 2007; Érdi, 2008). On the face of this, one

might think that the presence of complex phenomena makes causal language

devoid of content, or inappropriate, that the problems with the doctrine of

determinism that complexity brings to light make troubles for the notion of

causality, too. In this section, I consider and reject various reasons that have

been, or could be, advanced for such an incompatibility.

2.1.1 Indeterminism?

Self-organisation, as shown, can be more or less spontaneous, the result of

fine-tuning of some control parameter or of an adaptive process. In any

case, complex behaviour arises out of a process that is regarded as both

deterministic and chancy:

Self-organization processes in far-from-equilibrium conditions cor-

respond to a delicate interplay between chance and necessity, be-

tween fluctuations and deterministic laws (Prigogine and Stengers,
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1984, p. 176).

One may be tempted to conclude that since the behaviour of far-from-equilib-

rium systems is unpredictable, it is also indeterministic—hence a-causal.

Well, this move would be fallacious.

As I said in chapter 1, sensitivity to initial conditions and openness to

outer influences, typical of complex systems like Lorenz’s, Bénard’s, or Lake

Victoria, make it hard to predict their quantitative, long-run behaviour. Does

this mean that the system is indeterministic? Arguably, not. The fact that

the behaviour of certain systems is not analytically deducible (e.g., n-body

problem) need not undermine the belief that their behaviour is also caused,

and that it is fruitful to search for factors responsible for it. Also, non-

deducibility is compatible with the idea that irreversibility is only impossible

in practice, due to our limitations. In fact, irreversibility can in principle be

accounted for in terms of the microscopic, deterministic, processes (whether

known or unknown) that produce macroscopic organisation.

Consider symmetry-breaking as involved in, e.g., Bénard rolls. How does

it arise? If the direction of rotation of the rolls were genuinely indeterministic,

then given all possible information, it would be impossible to predict whether

the rotation of each molecule at the bifurcation point would be clockwise or

anti-clockwise. Admittedly, the model doesn’t tell us this. It deterministically

predicts that rolls will emerge, that successive period-doubling will occur at

a given rate and other macro-features, but it doesn’t specify the direction of

the rotation at each bifurcation. This is un-determined. But lack of deter-

mination or determinability must not be confused with indeterminism (see

Atmanspacher (2002), Auyang (1998, pp. 266-267)). The first is an epistemic

notion. It depends on our limited ability to pin down initial conditions ex-

actly, to specify all interactions with the environment, etc. The second notion,

instead, refers to the way reality is in itself. If reality is indeterministic, then

Nature itself doesn’t ‘know’ how the system will behave from one moment

to the next. This is intrinsically, ontically unspecified. Bénard rolls behave

indeterministically only in the first sense. Additional knowledge, in fact, does

in principle contribute to the prediction of the direction of rotation. It is now

believed that external fields, such as the gravitational field, insignificant at

equilibrium, can affect far-from-equilibrium systems so as to determine pat-

tern selection (see Prigogine and Stengers, 1984, pp. 163-165). Obviously, to

gain predictive, or retrodictive, ability with regard to the behaviour of in-

dividual molecules, one would need to know how gravitation contributes to
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affecting the molecules’ position and velocity as temperature increases, which

is impossible in practice. Furthermore, even if this were known, the system

would plausibly remain extremely sensitive to other fields, vibrations and all

sorts of fluctuations. However, evidence that symmetry-breaking can be so

influenced by external factors seems to reinforce not weaken the belief that

the behaviour of the system is determined, although the knowledge required

to determine this behaviour would be beyond human reach.

The same reasoning applies to adaptive systems, e.g., the lake Victoria.

The open character of these systems makes it even less relevant to attempt to

completely eliminate the source of error deriving from misspecification of ini-

tial conditions. In fact, the system is also continuously involved in responding

to changes in the environment. An external influence (e.g., a new player) can

not just force the system to reach a new equilibrium but also modify the fit-

ness landscape. Even though these changes are, in a sense, totally determined,

they are often unpredictable. In fact, we are bound to represent systems as

closed or quasi-closed (open to a given number of interactions). So, even

if the system’s response to the environment were in fact deterministic, this

response would remain non-determined by the model. This does, in a way,

transcend our representational ability, but does not entail indeterminism.

Complexity (in most cases, at least) need not entail indeterminism. Com-

plex phenomena may well be the result of deterministic processes. How and to

what extent, then, should the apparently deterministic and yet unpredictable

character of complex systems affect our notion of causality?

2.1.2 Methodological dispensability?

Reflections on the identification between causality and determination has

prompted a strand of eliminativist positions on causality, most famously Rus-

sell (1913) and, more recently, Norton (2003).9 Russell (1913) argued that

causality is “a relic of a bygone age”. In short, Russell’s argument can be put

in the form of a dilemma: either causality is interpreted as determination,

or necessitation (‘same cause, same effect’), or it is interpreted as regular

association (‘like cause, like effect’); in the former case causality is either

inapplicable or incoherent; in the latter case it is parasitic on and always

9The doctrine of determinism is called into doubt by our best account on the behaviour of
microscopic particles, that is, quantum mechanics. However, in the following, I will proceed
without relying on the assumption that reality is fundamentally indeterministic—there are
independent reasons why the identification of causation with determination cannot provide
a satisfying analysis of causality in complex systems.
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displaced by scientific laws; either way, the principle of causality in science

is dispensable. The eliminativist claims that science can do away with the

principle of causality, which states that for any event there’s a cause. One

may agree on this but maintain—as I do—that the notion of causality is not

dispensable. The eliminativist may then claim that it is the incoherence of

such a notion rather than its universal applicability that demands elimination.

This objection, too, I will argue, misses the target.

It is worth considering Russell’s argument in more detail, because at-

tempts to deny the meaningfulness and/or the indispensability of causal

claims in complex systems are ultimately rooted in one or the other horn

of Russell’s argument. The first horn is related to a metaphysical problem,

i.e., the problem of identifying causal relations with global, inaccessible, de-

termination relations. As shown in chapter 1, complexity makes this task

extremely difficult, if not impossible in principle. The upshot of the argument

is that if causality means determination, the notion is either in principle inap-

plicable or incoherent—in either case, causality is dispensable. Since I agree

with Russell here, I am not going to take issue with him on this. Rather, I

will consider a generalised version of the first horn, which one finds expressed

by current eliminativists, such as Norton (2003). Whereas Russell’s version

is about the incompatibility between the principle of causality and determin-

ism, the generalised version is about the incompatibility between the principle

of causality and the ‘ultimate structure of reality’—whatever that structure

is. The second horn, instead, has to do with a methodological problem, the

problem of characterising causal relations in a way that renders them both

accessible and non-eliminable. For reasons of exposition, I will consider the

second horn in the present section and leave the discussion of the generalised

version of the first horn to §2.1.3.

Whilst acknowledging that there are many regular sequences in nature,

Russell denies that the aim of science is to discover such sequences (see Rus-

sell, 1913, p. 8). Russell assumes here that the only sensible methodological

interpretation of ‘like cause, like effect’ is in terms of regular sequences of

events which occur with some time-interval between them (Russell, 1913,

p. 4). The existence of a time interval between cause and effect is necessary

to avoid incoherence—even if this runs against the intuition that the efficacy

of a cause depends on its being contiguous with the effect for the possibility of

possible interferences to be blocked. In fact, so Russell reasons, if we demand

(temporal) contiguity we incur a dilemma. Either causes are states involving
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change within themselves, or they aren’t. If they admit changes, presumably

only the causes’ later parts will be relevant to their effects. But since time is

dense (i.e., infinitely divisible) a regress arises: for any putative causal state,

there will be another state within it, viz. its later part, which is contiguous

to the effect. Instead, if causes are static, we would be forced to accept a

strange fact: something static determining a change. What renders the cause

efficacious, and why does the cause become efficacious at some time rather

than an earlier or later time, or at no time at all? Thus, Russell concludes,

cause and effect must be temporally separated. However, against this notion

of causality, Russell maintains that the task of scientific laws is to describe

‘differential’ relations, which are functional relations between continuously

variable quantities, not regularities between disjoint events or states:

There is no question of repetitions, of the “same” cause produc-

ing the “same” effect; it is not in any sameness of causes and

effects that the constancy of scientific laws consists, but in same-

ness of relations. And even “sameness of relations” is too simple

a phrase; “sameness of differential equations” is the only correct

phrase (Russell, 1913, p. 14).

If causality means nothing more than regularity, then proper scientific laws

will make causal claims methodologically dispensable, in the same way the

laws of astronomy displace claims such as ‘The night is the cause of the day’.

Along lines very similar to Russell’s, Wagner (1999) has argued that the

notion of causality cannot be meaningfully applied to complex systems, due

to the presence of nonlinear interactions and the lack of strong regularities.

Wagner’s argument, too, starts with the assumption that the only meaningful

notion of cause is not that of total, or determining, cause but of regular cause.

In fact, if identification of total causes were necessary, this would prevent the

notion from being useful, as the conditions for a state to cause another would

be too unrepeatable. Instead, causes should be interpreted as states that

are regularly followed by effects, when other factors in the background are

stable enough or controlled for. But this is very rarely the case in complex

systems, which, due to nonlinearities, are such that changes in a variable may

result in changes in attractor basin, and consequently in effect. Causal talk

is useful only in the restricted case of linear systems at equilibrium, where

the regularity interpretation is applicable, or in the case of ‘young’ sciences,

where only superficial knowledge of the systems studied is available.
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The efficacy of this second horn of the dilemma depends, more or less

explicitly, on either the conceptual incoherence or the methodological dispens-

ability of a causal interpretation (not in terms of regularities) of scientific

laws.10

First, the conceptual incoherence of a causal interpretation of laws seems

to rest, for Russell, on the following premisses: causes and effects are crude

descriptions of discrete events, whereas laws specify functional relations be-

tween continuously variable quantities; and to analyse causes as temporally

contiguous to their effects—which is what it would take for causes and effects

to acquire the status of the states described by scientific laws—leads to a

conceptually incoherent notion of causality. However, Russell’s argument for

conceptual incoherence is far from conclusive. Chakravartty (2007, chap. 5),

for instance, agrees that if time is dense and quantities can vary continuously

in it—which is what scientific laws presuppose—then picking out a value of

a quantity, that is a particular event, as the cause of another, is an arbitrary,

at most pragmatically convenient choice. There is nothing intrinsic (or ‘sub-

stantial’, in the sense defined in §1.2) to the chosen states that makes them

be ‘the’ cause and ‘the’ effect. Yet, Chakravartty puts the blame not on the

incoherence of the notion of causality itself but on the interpretation of cause

and effect as events rather than properties. Once we take properties as relata,

we may—coherently—understand causal talk as referring more loosely to a

multitude of continuous causal relations between properties.11 Depending on

the context, only some of such properties—the relevant ones—and only some

states—‘the’ cause and ‘the’ effect—will be mentioned as salient. As a result,

we get ordinary causal claims. They are not incoherent, provided one bears

in mind that they are just a shorthand for more complicated, causal stories.

This move allows one to reinterpret the relation between causal claims and

scientific laws: causal claims are not ‘displaced’ by (non-causal) laws; rather,

laws themselves may be causally interpreted; and ordinary causal claims pro-

vide legitimate stories, only more coarse-grained than laws.

This brings me to the second point, viz. the methodological dispensabil-

ity of a causal interpretation of scientific laws. This depends on the implicit

assumption that the discovery, interpretation and use of such laws does not

10Clearly, the second horn depends also on the (non-)viability of regularity accounts of
causality, the criticism of which I postpone to §4.1.

11Chakravartty sees this as an argument in favour not just of the coherence of the notion
of causality, but also of causal dispositionalism. For the purpose of the present argument,
I need not discuss the details of Chakravartty’s position—which I leave to §5.5.2.
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require the notion of causality, which is debatable. For one thing, contrary

to Russell and Wagner, it does not seem that causality is made dispens-

able by a deeper knowledge of the systems studied, as evidenced by complex

systems sciences, where a lot of knowledge is available and yet causal talk

is widespread (e.g.: ‘an increase in greenhouse gases will cause a change in

the climate’; ‘temperature raising causes convection’; ‘the introduction of the

perch drove cichlid fish to extinction’). Admittedly, this argument may not

be strong enough—these are, after all, ‘young’ sciences. But there is more: if

laws of ‘mature’ sciences such as physics are symmetrical, as Russell acknowl-

edges, then how can one select future solutions rather than past solutions for

inference and explanation? Scientists need a way to perform such a selection.

It seems plausible that physicists often apply (at least implicitly) a general

notion of causality, that dictates that causes (e.g., the existence of a star)

precede their effects (e.g., its distant correlated observations) (Frisch, 2012).

This allows them to draw inferences about, and explain, such observations.

If it is true that the asymmetry between cause and effect cannot be reduced

to the laws (which are symmetric) plus some non-causal set of conditions, the

notion of causality is not methodologically dispensable and is here to stay. In

the words of complex systems scientist Auyang:

Causation is not a relic but thrives in scientific reason. When

formulating theories, scientists face open situations with a multi-

tude of entangled events and processes. They must weigh various

factors and judge what to include in their models, thus engaging

in cause-effect analysis (Auyang, 1998, p. 259).

(...) We admit mysteries and brace for catastrophes, but they

are recognizable as such only against a more or less stable back-

ground of causal relations, without which the world would signify

less than sound and fury (ibid., p. 268).

The notion of causality is a useful heuristic principle and a principle of ex-

planation to which scientists regularly appeal in practice. The second horn

doesn’t make causality dispensable.

2.1.3 A ‘derivative’ reality?

The generalised first horn of Russell’s dilemma has it that the legitimacy of

causality depends on the principle of causality being ‘fundamentally true’ to
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some ‘ultimate structure of reality’. The idea is that in order for causality to

be a legitimate, scientific notion, there must be a formulation of the principle

which is both factual and ‘fundamentally true’—meaning: true under the

description of mature sciences, or true under a description whose terms refer

to entities belonging to the fundamental scientific ontology.12 To put the

eliminativist claim in the form of an analogy, “seeking causation in nature

is akin to seeking images in the clouds” (Norton, 2003, p. 32). The analogy

is clear. The image has no fundamental reality: although grounded in the

shape of the cloud, the reality of the image is not backed by any fundamental

property of the cloud, but just depends on us and our interpretation of the

cloud. But what counts as ‘fundamental’ and what doesn’t?

What the eliminativist seems to assume when he argues that “causality”

does not refer or refers at most to facts which have a ‘derivative’ reality is

that causal claims misrepresent, or are incompatible with some ‘literally true’

story about that reality. The issue is clearly reminiscent of the realism vs

anti-realism debate in philosophy of science as construed after van Fraassen

(1980), namely as a debate on which theoretical entities should be assumed

in our ontology in order to make sense of what science says. In the present

context, however, the issue is not on whether causality is, or should be inter-

preted as, a theoretical entity. Despite appearances, (almost) all parties agree

on this. Rather, the issue is on whether or not causal claims—whose relata

may or may not be theoretical entities—are true only to the extent that the

relation(s) referred to by them can be redescribed literally, that is, in terms

of physical laws. Roughly put, physical laws are statements describing the

behaviour of fundamental, theoretical entities. Some add to this characterisa-

tion the requirement that a law describe a behaviour that holds universally;

others add the requirement that the behaviour hold necessarily; and some

add both requirements. So, at bottom, the issue that causal claims are not

fundamentally true is that they are not underpinned by universal and/or

necessary laws.

On the one hand, it is true that complex systems sciences show that

complex phenomena are not subsumable under non-exceptionless laws. So,

for instance, many dynamical ‘laws’ (e.g., kinetics in chemistry and molecular

biology) are regarded not as strict laws, but only as contingent generalisations:

12An argument against the generalised first horn will allow me to ignore the common
claim that given the fundamentally indeterministic nature of reality, there is no causation
anywhere.
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In contrast with close-to-equilibrium situations, the behavior of a

far-from-equilibrium system becomes highly specific. There is no

longer any universally valid law from which the overall behavior

of the system can be deduced. Each system is a separate case

(Prigogine and Stengers, 1984, pp. 144-145).

On the other hand, however, it is not clear why this makes an argument

against causality in general, rather than merely against its interpretation as

necessitation.

My concern with the generalised first horn is that it trades one fundamen-

talism, viz. reality being governed by the principle of causality, for another,

viz. there being a true story on the ultimate structure of reality, a ‘theory

of everything’, with respect to which the meaning of any statement is anal-

ysed as referring to either a ‘fundamental’ or to a ‘derivative’ fact, and such

that causal relations exist if and only if reducible to the laws of this theory.13

This attitude is often—derogatorily—labelled “fundamentalism” by so-called

‘scientific pluralists’ (cf. Stewart (1997, chap. 17), Cartwright (1994), Giere

(2003), Mitchell (2003, chap. 6)). I think there are good reasons to resist the

fundamentalist temptation on pluralist grounds and to investigate causality

in complex systems in its own right, that is, with reference to the local work-

ings of systems of interest rather than to some fundamental reality, whether

global or local, deterministic or non-deterministic. Here, I will summarise

two arguments against fundamentalism, namely Cartwright (1994) and Giere

(2003)’s, which I find particularly convincing.

Giere (2003) argues that claims from different disciplines on different as-

pects of reality are all legitimate, provided they meet some empirical standard.

Clearly, when conflict arises among these claims, unification of the perspec-

tives and solution to these conflicts is desirable. However, Giere maintains,

such a unification process need not be interpreted as driven by the meta-

physical belief that good science depends on the reduction of all perspectives

to a theory of everything, but rather by a sort of methodological maxim,

to be followed when empirical evidence suggests that it is likely to promote

achievement of the goals of scientific inquiry. In Giere’s words: “proceed on

the assumption that there is a single world with a unique structure” (Giere,

13As I see it, this view could lead both to elimination and reduction. The first option
is advanced by the eliminativists. The second option is advanced by those who aim to
reduce informal causal talk to talk about either ‘fundamental’ causal relations (Salmon-
Dowe account) or non-causal ‘X-’ states of affairs (regularities, counterfactual dependences,
probabilistic dependences, etc.) (see chapters 4 and 5).
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2003, p. 17), a “causal” structure (Giere, 2005, p. 158). How can this maxim

be justified with reference to causal claims themselves? The best justification

for taking well-confirmed causal claims as non-derivatively true is pragmatic.

As I said in §2.1.3, the search for causal relations has proved very fruitful so

far. If anything, this should tell us that causal talk is not be eliminated on

the ground of what the ultimate structure of reality looks like.

In a similar vein, Cartwright (1994) argues that we have no reason to

believe that claims—causal claims included—that we have established under

certain special circumstances (controlled, ideal-experiment in fundamental

physics) will always be universally exportable. On the contrary, evidence

suggests that all laws are ceteris paribus, valid in certain domains not in

others. Analogously, models are applicable to certain domains not to others.

But luckily, we don’t need universally valid claims for scientific language to

be able to represent and explain. Accordingly, the scientific enterprise is best

interpreted as the production of a ‘patchwork of laws’ rather than the attempt

to build a ‘theory of everything’.14

One consequence of holding a pluralist position is that there is no incoher-

ence in denying then the truth of determinism whilst admitting the existence

of deterministic systems (cf. Auyang, 1998, pp. 262, 267-268). All that is

required for the latter is portions of reality which are well-representable, for

some time and to a good degree of approximation, by means of deterministic

models. And wherever such models work, talk of causal relations seems per-

fectly legitimate.15 To say that such causal relations have only ‘derivative’

reality will only be convincing to those who believe that all sciences inherit

their legitimacy from fundamental physics, whose stories are the only admit-

ted as fundamentally true. But according to the pluralist, scientific stories

are not ‘fundamentally’ true, not even by the scientists’ own light. Rather,

they are devices, and as such can be better or worse depending on the use we

make of them. Models of complex systems are no exception. They are good

representations of the domains where they do work, but say little about the

domains where they do not. And when they get the story right, the extent to

which they represent cannot be measured independently from the uses that

the representation is put to.16 So, although there may be a true story, or a

14For Cartwright, this argument is meant to buttress the claim that scientific success
is enough to infer to the existence of causal powers, or ‘capacities’. For a discussion of
Cartwright’s views on causality, see §4.3.1, §5.5.1, and §6.3–§6.4.

15This is not to say that causal talk is legitimate only if systems can be modelled deter-
ministically.

16I’m sympathetic towards Morgan and Morrison (1999)’s intepretation of models as
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good model, it makes little sense to demand that a story be ‘fundamentally’

true, or a model ‘literally’ representational.

2.2 Causality and emergence: a difficult liaison?

An objection which may be advanced to undermine the attempt to investigate

the meaning of causal claims in complex systems is that emergence conflicts

somehow with causality. As I am going to argue, this objection is unfounded,

and largely depends on the implicit endorsement of fundamentalist assump-

tions.

The objection can be put as follows: if emergence were to exist (some-

where), its existence would entail absence of causality (at least somewhere).

The intuition here is that emergent behaviour cannot be traced back to spe-

cific causes, hence cannot be causally explained. So, even if we don’t demand

that the notion of causality be universally applicable—as the advocate of the

principle of causality maintains—it may not apply exactly where we would

like causal talk to be meaningful. If complex systems phenomena involve

emergence, this may be bad news for the project of analysing causality in

complex systems. Sometimes the objection is accompanied by the corollary

observation that emergent phenomena would have ‘downward’ causal influ-

ence on their base, and the notion of downward causation makes the notion of

causality problematic: if causation runs both upwards and downwards, then

the asymmetry of causality is lost. An argument is needed in defense of my

project against this objection.

Although there is no agreement on what ‘emergence’ means, my argument

does not rely on the existence of an unanimous definition. Rather, I proceed

by breaking down the problem into sub-problems, each arising from a different

feature of ‘emergence’ that may motivate skepticism about the meaningfulness

of causality in complex systems. In particular, I will only consider prima

facie emergent phenomena that obtain in complex systems, viz. macroscopic

patterns of the system that arise out of the microscopic behaviour of its parts

(plus interactions with the environment) (Humphreys, 2008a). A ‘pattern’ is

understood as a non-random property of the system, which is distinct from

any properties possessed by the initial state of the system. The behaviour that

is responsible for the pattern is characterised by some updating function (e.g.,

‘mediators’, especially towards an inferentialist reading of this view. For more on how my
proposal relates to the referential function of causal language, see §8.1.2.
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difference equations, some suitable algorithm) that transforms each state of

the system into its successive state. In what sense are such patterns emergent?

The meaning of ‘emergence’ has several facets (Humphreys, 2008a,b).

First, one can distinguish ontological emergence, i.e. the appearance of some

novel property, from epistemological emergence, i.e. the impossibility to calcu-

late (or reduce) the emergent property from (to) microphenomena. Secondly,

one can distinguish diachronic emergence, i.e. the emergence that results from

a temporally extended process, from synchronic emergence, where the emer-

gent state and its lower-level base are simultaneously instantiated.

2.2.1 Diachronic emergence

In the case of diachronic emergence (e.g., a chemical clock or an embryo

arising out of microscopic, disordered interactions among molecules), it is

easy to see where the alleged incompatibility with causality could lie. Both

diachronic emergence and causality involve temporally extended, asymmetric

processes. So, it might be that whereas a process leading up to an effect can

also be traced back to its cause, this is not possible in the case of a process that

terminates into an emergent phenomenon. Yet, this seems very strange. After

all, diachronic emergence is the result of a process that starts somewhere. It

may be true that (the selection of) a given starting point is not sufficient

for (predicting) the emergent state—in which case that starting point does

not qualify as a total cause of it. However, as argued in §2.1, causality

need not be identified with determination. That diachronic emergence is not

incompatible with causality in complex systems is best shown by uncoupling

the epistemological and ontological side of the issue.

According to the epistemological-diachronic view (see Humphreys, 2008a,

p. S584), a state or a property instance is emergent with respect to a domain

D iff it is impossible, on the basis of a complete theory of D17, to effectively

predict that entity or to effectively compute a state corresponding to that

feature. A recent, popular way to cash out this idea is the doctrine of weak

emergence. A weakly-emergent property is usually defined with respect to

a model, and need not have ontological implications as regards the features

of real systems.18 In short, the process leading up to the emergent state

17‘Complete’ theories are theories satisfying conditions such as universality (as when D
is physical domain) and closure (as when D is the domain of a well-established science).

18A weakly emergent property can be defined as follows. Assume P is a system’s higher-
level property which is in principle incapable of being possessed by the system’s micro-
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is computationally incompressible, so the only effective way to discover how

the system will evolve is to let the computational model work out its own

development. Most complex phenomena turn out to be emergent in this sense.

This position, however, is not incompatible with treating emergent properties

as causes or effects. We can account for weak emergence in complex systems

in the phase space terminology introduced in §1.3.2. An emergent state,

or pattern, can be interpreted as an attractor (Silberstein and McGeever,

1999; Emmeche et al., 2000). For instance, organisms can be regarded as

consisting of highly complicated attractors for the behaviour of molecules

in a biochemical space. In this interpretation, cell types (around 250) are

attractors for the dynamics of thousands of genes.

The ontological view, instead, regards a property as emergent iff it is

‘genuinely novel’, i.e. a property with novel causal powers with respect to

its emergence base. Such powers are reflected in laws which connect complex

physical structures to the emergent features. Emergent laws are fundamental,

i.e., irreducible to laws characterizing properties at lower levels of complex-

ity, even given complete information on boundary conditions (O’Connor and

Wong, 2009, §3.1). This view is part and parcel of the fundamentalist picture

of a physical world entirely constituted by physical structures, such that the

hierarchy of composite structures corresponds to distinct levels of objects of

increasing complexity, each level obeying its own set of physical laws.

There are two main accounts of ontological-diachronic emergence. One is

the ‘dynamic’ model of emergence developed by O’Connor and Wong (2005),

the other is the ‘fusion’ model proposed by Humphreys (1997a,b). The former

is meant to capture the emergence of conscious states (e.g., visual awareness,

qualia). The latter focusses on quantum entanglement and the directly ob-

servable phenomena due to it (e.g., superconductivity and superfluidity in

helium, spontaneous ferromagnetism that occurs below the Curie tempera-

ture), although one may view ‘interactivist’ (or ‘process’) ontologies as ex-

tensions of this model that target also higher-level phenomena such as the

emergence of autonomous and/or intentional systems (see, e.g., Campbell,

2009). I need not go into the details of these models. It suffices to say that

level constituents, but which is structural, i.e., expressible in terms of (reducible to) such
constituents and their spatial relations. Then P is weakly emergent iff P is a non-random
property of the system, distinct from any property possessed by the initial state of the
system, and derivable from all of the system’s micro-facts but only by simulation. This
is roughly Bedau (1997, 2002)’s definition, with Humphreys (2008a,b)’s addition that the
emergent state be non-random, i.e., its description cannot be shorter than a conjunctive
specification of all the constituent microstates.
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both models rely on the possibility that higher-level properties of the emergent

state change without changes in properties of its lower-level base, in a way

that ultimately depends on the presence of some fundamentally indetermin-

istic process, such that features of the emergence base underdetermine which

among several global states is instantiated. Now, since emergence here seems

to depend crucially on the presence of indeterminism, one may worry that

indeterminism could propagate to higher levels in a way that renders causal

talk inappropriate. But the worry is unfounded. First, it is simply false that

all complex systems phenomena involve genuine indeterminism. On the con-

trary, as shown in chapter 1, many of them can be successfully modelled by

assuming that they are deterministic. Secondly, even if indeterminism were

to sneak in somewhere (e.g., Bénard rolls), this would not ipso facto make the

emergent phenomena uncaused. Most of their determinants can be identified,

so that indeterminacy is narrowed down considerably. This makes causal talk

perfectly legitimate.

Notice that talk of downward causation in the diachronic case is innocu-

ous. Downward causation (e.g., an organism controlling its own metabolism)

can be uncoupled into a constitutional, synchronic, inter-level step (the or-

ganism is made of organs, cells, enzymes, etc.) and a causal, diachronic,

intra-level step (some of the organism’s parts do the causal work, i.e. they

digest, assimilate, etc.) (cf. Craver and Bechtel, 2007). This allows for the

possibility of non-vicious, ‘circular’ causation: the same state type (e.g., a

hunger state) can both cause (more metabolic processes) and be caused (by

insufficient metabolic processes), but at different times, and no token state

can both cause and be caused. Notice that this applies not only to biological

mechanisms but also to social mechanisms (e.g., a bull market is constituted

by positive attitudes of the traders, and such that a raise in an asset’s price

causes traders to buy, which in turn causes the price to rise).19

2.2.2 Synchronic emergence

Let us now consider the case of synchronic emergence. Here the problem is of

a different nature. In this case, ‘emergent’ is usually understood as ‘superve-

nient but irreducible’.20 A higher-level property M (e.g., a mental property)

19For more on social mechanisms, emergence and downward causation in the social do-
main, see Elster (1989, 1998); Hedstrøm and Swedberg (1998); Bunge (2004); Sawyer (2004);
Little (2006). For more on mechanisms and mechanistic accounts of causality, see chapter 5.

20This is usually taken to have both epistemological and ontological implications.
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is said to supervene on P iff, if S instantiates M at t, then necessarily there is

some P such that S instantiates P at t, and anything instantiating P at any

time instantiates M at that time. A higher-level property M is reducible to

P if M and P have identical causal role (cf. Kim, 1999, pp. 10-12). In what

sense is emergence, so defined, incompatible with causality? The worry here

is that higher-level, emergent properties (e.g., the property of the pattern),

are epiphenomenal, that is, have no causal powers, so cannot enter causal

relations. Kim (1999, 2005) has advanced an argument, the ‘causal exclu-

sion argument’ (CEA), that may threaten the causal efficacy of ‘higher-level’

properties, i.e. the properties that special sciences—complex systems sciences

included—talk about.21 If CEA is successful, causal relations in complex sys-

tems are either spurious or ‘derivative’.22 Contrary to this reading, I want to

show that CEA points at most to a tension that derives from the fundamen-

talist’s metaphysical assumptions, viz. that the ontology of reality is layered

and that the objects at each level obey their own set of laws, assumptions

that lurk in the background of almost all the debates over the nature of causal

relations. However, a scientific pluralist (in the sense defined in §2.1.3) need

not endorse such assumptions: the tension disappears, and so do the worries

about the derivative nature of higher-level causal powers and relations.

In short, CEA states that if a higher-level (e.g., mental) property M ‘su-

pervenes’ on a physical property P without being identical with/reducible to

it, the causal work attributed to the supervenient property is already done

by the subvenient property and the supervenient property is causally inef-

ficacious. So, if we want to allow higher-level causation, we must admit

reducibility. How does this translate into complex systems talk? Consider

an emergent pattern (e.g.: a Bénard roll; a chaotic attractor; a ‘glider’ in a

CA), and the microbehaviours that sustain the pattern. Take two higher-level

states, for instance two patterns. If the first pattern causes the second, this

is in virtue of the microconfiguration underlying the pattern doing the causal

job, not in virtue of the property of ‘being such-and-such a pattern’. So, the

latter is reducible to the former.

21CEA was initially proposed to argue that mental properties’ causal powers are reducible
to the properties of their physical substrates. However, CEA generalises to other higher-level
properties (social, biological, etc.), so that their causal powers are preempted by lower-level
physical properties and ‘drain away’ (Block, 2003).

22Notice that CEA motivates a kind of eliminativism which differs from Norton’s (dis-
cussed in §2.1.3). Whereas for Norton prima facie causal facts can be reduced to funda-
mentally non-causal facts, for Kim prima facie (higher-level) causal facts can be reduced
to fundamental causal facts, in the sense of the Salmon-Dowe account (see §5.4.4).
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What does reduction amount to? Two possibilities. First: M is identical

to P and conserved as causally efficacious. Here M causes in virtue of being

P . Second: M is just a designator which is multiply realisable by different

physical kinds. Here M can be construed as logical disjunction of two or more

physical properties, and eliminated. In fact, M causes in virtue of being P1, or

P2, or... Since M does not stand for any specific property which is causally ef-

ficacious, it cannot enter proper scientific laws. Kim seems to think that CEA

only affects multiply realisable properties (e.g., jade, whose instantiations are

samples of either jadeite or nephrite23), but leaves untouched ‘micro-based’

properties. Micro-based properties are properties that do not apply to any

of the parts’ proper subparts, and confer to the whole novel causal powers,

hence qualify as genuinely higher-level properties. For instance, ‘being vis-

cose’, ‘being dense’, ‘being a solvent’, etc. are micro-based properties of the

property ‘being water’, properties that apply to neither hydrogen or oxygen

atoms alone nor to a H2O molecule in isolation. Kim argues that in the case

of micro-based properties, it is reduction itself that stops the causal drainage.

In fact, a series of reductions can be obtained for micro-based properties such

that any of them is identical to its re-description at the lower level, each

property in the series being causally efficacious. For instance, ‘being water’

= ‘having such-and-such micro-based property ML at L’ (i.e., ‘being H2O’)

= ‘having ML−1 ’ (at L− 1) = ‘having ML−2’, etc.

But this move is even more devastating. Micro-based properties are,

in general, multiply composable, or multiply instantiable, i.e., they allow

more than one decomposition, or structural instantiation (see Glennan, 2010,

pp. 375-376). This means, among other things, that they have certain causal

powers in virtue of instantiating different composition relations, or structures.

For instance, patterns are usually multiply-composable, the precise specifi-

cation of their composition being irrelevant to their identity (Humphreys,

2008a). If we follow Kim’s reasoning, multiply composable properties are

not genuine scientific kinds (they are causally heterogeneous) and so must be

eliminated. The reduction demanded by multiple composability results in an

even more fine-grained fragmentation of the higher-level kinds, such that also

properties such as ‘having a certain mass’ are eliminated.24 Ultimately, only

23The idea is that ‘being jade’ can be construed as the disjunction ‘being jadeite OR
being nephrite’. Jade inherits its causal power either from one or from the other, so it can
be eliminated as a genuine kind. Any scientific generalisation is which ‘jade’ appears is true
in virtue of either jadeite or nephrite’s causal powers.

24Perhaps even properties such as ‘being water’ should be eliminated if, as some suggest,
water is not identical, or reducible, to H2O (cf. Weisberg, 2005).
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a few, ‘purely-natural’ kinds would be left. (Wimsatt (2007, p. 287) charac-

terises such kinds as ‘totally aggregative’, such that the mode of composition

of their parts makes no difference to the property of the whole.) However,

science commonly regards multiply-composable kinds (rigidity, temperature,

being water, etc.) as causally efficacious and explains (causally) by invoking

them. This makes Kim’s move a last resort.

If we want to reject Kim’s conclusion, we need an alternative story for

the causal efficacy of higher-level properties. The standard ways to give such

a story are either to deny exclusion, and claim that there is no overdetermi-

nation, or to deny closure, and claim that the bottom level is not causally

closed. However, neither move seems satisfying.

In the case of overdetermination, one should distinguish cases where the

putative causes overlap in space-time (a pattern and its underlying microcon-

figuration with regard to some later state of the system) from cases where

they do not (two stones thrown against a window). Only in the latter case

talk of overdetermination seems legitimate—one could have one cause without

the other being present. This is not the case of supervenient properties since,

by assumption, the higher-level property is such that it cannot be modified

without changes in the lower-level one.

In the case of causal incompleteness, one would need to argue that any

attempt to reduce the higher-level property to lower-level ones necessarily

misses some important aspect, either because the identities that result from

reduction are not exact (Dupré, 1993), or because considering the structure

of micro-based properties (Bechtel and Richardson, 1992) or the mechanistic

organisation in which such properties are embedded (Glennan, 2010) amounts

to attributing causal significance to something which is a level up with respect

to the ‘disembodied’ materials in the structure. However, failed attempts

at precise reductions need not entail that exact identities are unavailable in

principle. Analogously, it is not clear why structural properties or mechanisms

cannot be—in principle—redescribed in the terms of some lower-level theory.

My diagnosis is that the problem requires a more radical solution. It origi-

nates not from endorsing one or the other assumption behind CEA, but rather

from endorsing the more general, fundamentalist assumptions that reality is

layered and exhaustively describable in terms of nomological relations. A

scientific pluralist need not share these assumptions. Irrespective of whether

reality is causally closed, there is no reason to expect that our perspectives

on reality—our models and theories—be closed. Generalisations formulated
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from within a perspective need not have universal scope. Nor is it neces-

sary that for any event its cause be describable by using only the conceptual

resources available to that perspective. Nor is there reason to believe that

unification of perspectives will lead to some ultimate perspective, a sort of

Nagelian ‘view from nowhere’. Higher-level carvings might well be eliminable,

in favourable conditions, to the advantage of more fine-grained carvings. And

yet, if there is no ultimate perspective, fine- and coarse-grained carvings may

be equally legitimate, provided they meet some reasonable standard of em-

pirical adequacy.

Notice that the rejection of the fundamentalist ontology need not commit

one to any deep skepticism as regards the belief that reality is—somehow—

structured, only the structure is messier and more complex than we may

think. Accordingly, the ontology of complex systems may be best envisaged

as ‘tropical’ rather than layered:

(...) a heterogeneous, tropical rainforest, with converging overlap-

ping branches, and patterns of intersecting order, residents, and

connections at a variety of levels, but no single stable foundational

bedrock that anchors everything else (Wimsatt, 2007, p. 12).

In this rainforest of objects and relations, the existence of stable general-

isations is a fortunate phenomenon, not a necessary fact about the whole

of reality. Levels are “local maxima of regularity and predictability in the

phase space of alternative modes of organization of matter” (Wimsatt, 2007,

p. 206). In other words, talk of levels signals the presence of particularly

fruitful classifications and generalisations. However, this presupposes nei-

ther that classifications will map onto neatly distinguishable levels, nor that

generalisations will hold universally. On the contrary, models and theories

may require the resources of other models and theories to account for certain

phenomena—in this sense, our perspective on reality are ‘open’. Levels can

criss-cross each other, since properties that enter generalisations at one level

may be required to explain phenomena at another level.

As a result, we get both ‘upwards’ and ‘downwards’ causation. But this

does not entail any causal ‘symmetry’. In fact, downward causation can be

explained as the higher-level pattern’s local stability and insensitivity to per-

turbations, which can be quite naturally taken as ‘governing’ the behaviour

of the lower-level entities (see Emmeche et al., 2000, p. 29). Here, emergence

makes the relation between lower and higher state robust. When the pattern
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tends to drain many different initial conditions (e.g., in systems that develop

towards equilibrium), it is then quite natural to say that it ‘subsumes’ those

states—it is a type of which the single phase-space points are tokens. How-

ever, in other cases (e.g., systems in a chaotic regime o an intermittency of

chaotic/non-chaotic regimes) emergence makes the relation fragile. In such

cases, talk of ‘downward’ causation is intuitively inappropriate.

In sum, causal claims may legitimately relate kinds belonging to different

levels, provided the inferences to whose correctness they contribute are robust

(see chapter 8). Causal claims relating kinds belonging to the same level tend

to be, but need not be, the maximally robust ones.

Conclusion

I have examined the compatibility of complexity and causality. Complexity

reveals the inadequacy of the Newtonian notion of causality as determination.

Yet, I argued, causality and complexity need not be incompatible. Complex-

ity does not entail indeterminism, only indeterminacy. The notion of causality

is neither methodologically dispensable nor a folk science notion, that applies

to facts with a ‘derivative’ nature. Nor is there an incompatibility between

causality and emergence, whether this is interpreted diachronically or syn-

chronically, epistemologically or ontologically. In particular, the ideas that

causal phenomena have derivative reality and that higher-level properties are

not genuine scientific kinds follow from fundamentalist assumptions, which

one need not endorse. This legitimates the project of investigating the mean-

ing of causal claims in complex systems.



Chapter 3

Modelling Complex Systems

In this chapter I describe the two case studies I’ll use in the remainder of my

thesis to buttress my argument: one from systems biology, viz. apoptosis (the

mechanism by which cells whose DNA is too damaged commit suicide); the

other from computational economics, viz. asset pricing (the mechanism by

which the value of an asset—in finance, e.g., a stock—is determined). I in-

troduce the modus operandi of systems biology and computational economics

in §3.1.1 and §3.2.1. In §3.1.2 and §3.2.2 I describe the mechanisms for,

respectively, apoptosis and asset pricing. In §3.1.3 and §3.2.3 I present mod-

els developed to account for these phenomena. Finally, in §3.3 I argue that

the novel methodologies of systems biology and computational economics are

compatible with the causal interpretation of such models. This triggers the

question I’ll be concerned with in the following chapters, viz. ‘What interpre-

tation of causality suits best the causal claims arrived at with the aid of these

models?’25

3.1 Modelling biological complexity

3.1.1 Systems biology

Living organisms have developed functions that enable them to survive and

reproduce. The goal of systems biology is answering questions such as ‘How

do these properties emerge from the interactions between the molecules that

make up cells and how are they shaped by evolutionary competition with other

cells?’ (Hartwell et al., 1999, p. C47). The novelty of systems biology lies in

the attempt to answer these questions by means of a different methodology,

consisting (among other things) in numerical computations and simulations

of biological processes.

25§3.1.1 and §3.1.2 are based on (Casini et al., 2011, §1 and §3).

51
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The underlying idea is that experimental procedures alone, based on de-

composition of the system into parts, their classification and the study of

their role by knock-down interventions are not sufficient for understanding

the coming about of the phenomenon. For instance, systems biology opposes

simplistic generalisations like ‘one gene one phenotype’, or ‘one protein one

function’. The contribution of no single part is (usually) sufficient to bring

about complex phenomena that take place in, e.g., a cell, the nervous sys-

tem, or a tumour. Understanding and control of complex biological systems

requires an understanding of how parts operate together (Lazebnik, 2002).

The sheer complexity of the biology of a cell is hardly tractable, if not

overwhelming. This is due both to the chemical and physical details of each

individual signaling pathway and to the vast number of interactions taking

place. Different modelling techniques are used to cope with different sources

of complexity.26 Let me give a taste of the details one may want to consider.

First, one can start with the simplifying assumption that reactants are

homogeneously distributed in the reaction space and that the number of col-

lisions between molecules, by means of which chemical reactions take place, is

proportional to the product of the concentrations of the reactants. The kinet-

ics of the reactions can be described by means of ODEs. When a product feeds

back into the reaction and modifies its rate, as in autocatalytic processes, or

several reactions take place together so that more pathways interact, thereby

forming a network, complex behaviour can obtain. Properties responsible for

a variety of effects in need of explanation can ‘emerge’—in the sense that they

are possessed only by the whole not by the individual pathways. The study

of these networks is of primary concern for systems biologists (Bhalla and

Iyengar, 1999), who, often using parameter values derived from experimental

studies, combine several individual pathways and test the resulting models

against available data. This methodology can explain how combinations of

positive and negative feedback can result in, e.g., bistability between steady

states (that is, sufficiently stable equilibria), well-defined input thresholds for

transition between states, prolonged signal output, etc.27

But there are further levels of complexity. We have so far assumed that the

reactants are homogeneously distributed. This, however, is very often not the

26For reviews of modelling techniques used in systems biology and their applications, see
Bhalla (2003); Materi and Wishart (2007); Bedau (2003).

27Bhalla and Iyengar (1999) illustrate this methodology by modelling the signalling net-
works which contribute to LTP (long-term potentiation). In §3.1.3, I illustrate how these
procedures are applied to the study of apoptosis.
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case. Fluctuations due to dishomogeneities and compartmentalisation of the

components in distinct areas of the cell can often play a relevant role (Weng

et al., 1999; Bhalla, 2003). Small fluctuations always lead to differences in

concentrations and thus to diffusion, which introduces a kind of instability

which is not just temporal but also spatial. The dynamics of these spatial

asymmetries may be described by using reaction-diffusion equations, that is,

partial differential equations where the behaviour of the variables depend

not just on time but also on space. However, when the dynamics require

description in arbitrary three dimensional geometries (not confined to, e.g.,

spheres, cubes or cylinders), then reaction-diffusion equations become very

difficult to solve. This makes it necessary to partition the space into fine

grids and apply finite difference or finite element methods. Also, given the

non-homogeneous way in which reactions take place, often stochastic methods

must be employed.

Boolean (or logical) networks (LNs) are used to reproduce the qualitative

behaviour of large networks. A LN consists of a finite number of variables as-

suming discrete values (e.g., ON/OFF), the states of which at each time step

are governed by some logical, or Boolean (AND/OR, etc.), function of the

states of the variables that provide input to them. In their synchronous, de-

terministic, variant, LNs have the property of reaching attractors, either fixed

points or cycles. Their main limitation is that their discrete time steps dy-

namics does not tell whether these properties are indeed biologically relevant

or take place on insignificant timescales. Also, not all simulated trajectories

can actually obtain in real cellular contexts. However, the qualitative study

of LNs (their attractors and basins) can still highlight key design principles

of biological networks. For a detailed example, see §3.1.3.

Another important class of models are cellular automata (CA), which can

be used to model both temporal and spatiotemporal processes using discrete

time and/or spatial steps. CA consist of large numbers of nearly identical

components interacting with one another on a grid. Their states evolve syn-

chronously by following a set of rules according to which the state of each site

is determined by the previous states of the neighbouring sites. Agent-based

models (ABMs) are a variation on the CA model in which objects are hetero-

geneous and capable of motion. ABMs will be described in more detail and

illustrated with reference to the mechanism of asset pricing in §3.2.3.

The complexity of biological systems will be illustrated with reference to

the phenomenon of cancer, and in particular, of apoptosis.
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Cancer is a complex phenomenon, initiated by exposure to DNA-damaging

factors and leading, through a succession of steps, to “unregulated cell growth”

(King, 2000, p. 1). When the DNA is damaged, a well-functioning cell reacts

via defense mechanisms known as ‘DNA repair mechanisms’, which heal the

cell after damage has arrested its cycle. Depending on the kind of damage

(e.g., single-strand, double-strand, mismatch), different enzymes are recruited

to fix the damage. As a last resort, if the damage is serious and cannot be

effectively repaired, the cell either enters an irreversible state of dormancy

(“senescence”) or commits suicide (“apoptosis”). However, when none of the

above strategies is effective, damaged cells keep growing and dividing and, in

so doing, produce mutations, which are the first step towards cancer develop-

ment. Notice that, although DNA replication mechanisms are very precise,

DNA damage due to both internal and external factors can produce a daily

number of lesions high enough to be dangerous (King, 2000, p. 125). This

is why the mechanisms that allow the cell to correct errors before they are

replicated (repair) or prevent mutations (senescence and apoptosis) are so

important. In fact, a mutation can start a cascade of mutations, because of

its capacity to impair the cell’s activities (among which there is the produc-

tion of enzymes needed in DNA repair itself), so that further mutations occur

more easily.

Due to its astounding complexity, cancer has been dubbed a “systems

biology disease” (Hornberg et al., 2006), which needs tackling by means of a

systemic approach, involving the integration of diverse evidence (e.g., scien-

tific and clinical measurements across the entire biological scale, from molec-

ular components to systems, both in vitro and in vivo, and from the genome

to the whole patient) in mathematical and computational models to be used

for generation and confirmation of hypotheses, explanation, diagnostic and

prognostic prediction, and treatment (see §3.1.3).

3.1.2 Apoptosis

Apoptosis is one of the mechanisms on which the cell relies to oppose DNA

damage.28 Apoptosis depends on an intracellular proteolytic cascade medi-

ated by caspases, a family of proteases with a cystein at their active site,

which cleave their target proteins at specific aspartic acids. Caspases are

28The following summary develops discussion in (Weinberg, 2007, chap. 9), and the reader
is referred to this text for a detailed description. A shorter yet clear introduction can be
found in (Klipp et al., 2009, pp. 132-135).
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synthesised as inactive precursors, or procaspases, and become activated by

proteolytic cleavage. Caspases involved in apoptosis are classified as ‘initia-

tors’ (caspases 2, 8, 9, 10) and ‘executioners’ (caspases 3, 6, 7). Caspase

cascades can be triggered in several ways. The literature distinguishes be-

tween the extracellular, or extrinsic, apoptotic pathway and the intracellular,

or intrinsic, apoptotic pathway. The apoptotic signal can also be amplified

via a crosstalk between these pathways.

DNA damage is measured by using expression levels of DNA damage re-

sponse genes, e.g., p53. After noticing the presence of metabolic disorder or

genetic damage, protein p53 can induce cell-cycle arrest, activate DNA repair

proteins (e.g., DNA polymerases), or—if damage is too severe to be cured—

lead to cell death (i.e., apoptosis).29 In a well-functioning cell, ‘wild’ (e.g.,

non-mutant) p53 normally goes through a rapid degradation, due to its be-

ing ‘tagged’ by the Mdm2 (murine double minute) protein and subsequently

‘digested’ by proteasomes. The amount of p53 increases when, e.g., its phos-

phorylation due to genotoxic factors or the phosphorylation of Mdm2 results

in Mdm2 being unable to bind to p53. Interestingly enough, p53 promotes

synthesis of Mdm2, thereby contributing to its own inhibition in a negative

feedback loop. This loop successfully regulates apoptosis unless the gene p53

mutates. In the latter case, mutation of p53 prevents Mdm2 from binding

to p53 and, as per the wild case, this results in an increase of p53. However,

the defective p53 has lost its ability to act as a transcription factor, that

is, is unable to bind to the promoters of genes that synthesise proapoptotic

proteins in the successive stages of the mechanism.

According to available data, gene p53 is mutated in 30% to 50% of com-

monly occurring human cancers (Weinberg, 2007, p. 310). The crucial, causal

role of the protein p53 is explicitly recognised, as is the possibility of build-

ing a mechanistic model around p53 to explain how alarm signals stop the

cell cycle or trigger apoptosis (Weinberg, 2007, p. 316-317).30 In the well-

functioning cell, increased p53 takes part into both the intrinsic and the

extrinsic apoptotic pathways, which I now turn to describe.

Intrinsically, p53 acts as transcription factor for the encoding of proapop-

totic proteins that, by opening the mitochondrial membrane channel, allow

release of cytochrome c. Proapoptotic proteins belong, together with anti-

29Following the lead of the biological literature, I will use here the same name to refer to
a gene and the protein it codes for, and distinguish the former from the latter by italicising
it (e.g., p53 stands for the gene, p53 for the protein).

30For an example of one such model, see Casini et al. (2010, 2011).
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apoptotic proteins, to a family of proteins named the “Bcl-2 family” (after

B-cell lymphoma 2, the first protein found to contribute to regulation of apop-

tosis besides p53), due to their sharing a common coding sequence. Their

balance determines the opening of mitochondrial membrane and the release

in the cytosol of cytochrome c, that binds a protein called Apaf1 (apoptotic

protease activating factor 1) and activates procaspase 9. Caspase 9, in turn,

initiates a cascade of caspases 3, 6 and 7 that results in the disintegration

of the cell. Executioners can be inhibited by IAPs (inhibitors of apoptosis)

proteins, which in turn can be inhibited by another protein, Smac (second

mitochondria-derived activator of caspases), also released by the mitochon-

drion together with cytochrome c. Levels of apoptosis are measured by using

expression levels of caspases 3 and 9 as surrogates.

Let us turn to the extrinsic pathway. This is due to ligands in the ex-

tracellular space (e.g., FasL) belonging to the TNF (tumor necrosis factor)

protein family, that bind to death receptors on the surface of the cell (e.g.,

FasR). This, by prior activation of initiator caspases 8 and 10, triggers another

cascade of caspases 3, 6 and 7; p53 contributes to this process by promot-

ing the expression of the genes encoding the Fas receptor, thereby increasing

the cell’s responsiveness to extracellular death ligands, specifically FasL. The

extracellular apoptotic signal can be amplified by crosstalk between the two

pathways: caspases 8 and 10 cleave Bid (BH3 interacting domain death ag-

onist), which acts as proapoptotic protein that inhibits Bcl-2 antiapoptotic

proteins.

Cancer cells inactivate apoptosis in several ways that enable them to sur-

vive and thrive. They can increase the level of antiapoptotic proteins, change

the gene coding for p53 or its upstream regulators, methylate promoters of

proapoptotic genes, interfere with the release of cytochrome c, inhibit cas-

pases via overexpression of IAPs, etc. On the other hand, overexpression of

proapoptotic proteins or dysfunction of antiapoptotic proteins due to muta-

tions can result into too much apoptosis and cause other pathological condi-

tions, e.g., Alzheimer’s or Parkinson’s disease.

3.1.3 Modelling apoptosis

Models of apoptosis are used for, e.g., identifying key factors responsible for

typical characteristics of the apoptotic signalling cascade, such as bistability

(eventually, the cell is either dead or alive) and irreversibility (once initiated,
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apoptosis leads irreversibly to cell death). This, in turn, can provide useful

indications for the choice of therapeutic targets and development of drugs.

The choice between more quantitative and more qualitative models depends

on a trade-off between computational capabilities and timescales on the one

hand, and level of detail on the other. Usually, ODEs are good for precise

quantitative modelling but current technology can only deal with a limited

number of equations, and thus either small portions of the apoptotic machin-

ery or very rough representations of larger portions. At the other end of the

scale, LNs can comprise a much larger number of variables, hence of path-

ways involved. However, the results they provide are mostly qualitative. The

two methodologies are here illustrated with reference to Legewie et al. (2006)

(ODEs) and Mai and Liu (2009) (LNs).

The bistable and irreversible features of apoptosis are well known. Bista-

bility is thought to require a positive circuit, and so either a positive feedback

or a double negative one. Beyond a certain threshold stimulus, such a circuit

switches from OFF to ON state in an all-or-none fashion. The system dis-

plays hysteresis, i.e., different stimulus-response curves obtain depending on

whether the system started in its ON or OFF state. Sometimes the ON state

is maintained even upon removal of the stimulus, in an irreversible way. Leg-

ewie et al. (2006) offer a model of the intrinsic pathway of caspase activation

(figure 3.1) that purports to show how the interaction between Casp3, Casp9

and XIAP (figure 3.1A) can result in a positive feedback which brings about

bistability and helps generate irreversibility in the caspase activation.

The kinetics of the system comprise the reactions represented in figure

3.1B. Simulations were performed for the system of ODEs corresponding to

such reactions. Results were derived by simulating response times of Casp3

activation upon variation in (total) active Apaf1. Upon weak stimulation

Casp3 cleavage is slower, whereas upon strong stimulation it is faster, the

response time being inversely related to the stimulus strength. Casp3 activity

turns out, as expected, to be bistable and irreversible. The system has three

steady states, two stable and one unstable, and shows hysteretic behaviour,

having low active Casp3 for low active Apaf1 until a threshold point is reached

where active Casp3 switches irreversibly to a high state.

Then, the authors investigate what is responsible for irreversibility in the

presence of bistability. Other simulations showed the crucial role of XIAP

(figure 3.2). Upon weak stimulation most Apaf1-associated active Casp9 is

inhibited by XIAP, whereas above the threshold Apaf1 manages to initiate
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Figure 3.1: (A) Intrinsic and extrinsic pathways. Dotted lines indicate positive

(green) or negative (red) regulation. The regulatory interactions considered in the

model are highlighted in gray. (B) Kinetics in the model (X: XIAP; A*: activated

Apaf1; C3: Casp3; C9: Casp9; C3*: activated C3*; C9*: activated C9*). Repro-

duced with permission from (Legewie et al., 2006, p. 1062).
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Figure 3.2: XIAP-Mediated Feedback. Top left: Casp9 is inhibited by XIAP, so

that Casp3 is inactive. Top right: upon stronger stimulation some Casp9 escapes

XIAP-mediated inhibition and activates Casp3, which then sequesters XIAP away

from Casp9 (redistribution). Bottom right: redistribution results in strong activation

of both Casp9 and Casp3. Bottom left: the system remains in an active state even

if the stimulus is reduced. Reproduced with permission from (Legewie et al., 2006,

p. 1066).
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Figure 3.3: BI = bistable irreversible; BR = bistable reversible. Left: only XIAP

feedback present. Centre: both XIAP and Casp3 feedbacks present. Right: XIAP

is mutated, and binds to Casp3 and Casp9 in a noncompetitive way. Irreversibility

depends on both (non-mutated) XIAP- and Casp3-induced feedbacks. Reproduced

with permission from (Legewie et al., 2006, p. 1067).

Casp3 activation. Active Casp3 then further promotes its own activation

by sequestering XIAP away from Apaf1-associated Casp9. Unless XIAP is

mutated, so that it can non-competitively bind to both Casp3 and Casp9,

this results in an implicit feedback: most of XIAP is bound to Casp3, so is

unable to inhibit Casp9, which is then free to trigger executioner Casp3. Fur-

thermore, Casp3 activity is maintained even if the stimulus is removed: once

activated, Casp3 retains XIAP, thereby preventing full Casp9 deactivation.

The authors conclude that the (non-mutant) XIAP-induced feedback is nec-

essary, alongside the Casp3 positive feedback on Casp9, for the irreversibility

of Casp3 activation (figure 3.3).

ODE models tend to focus on limited parts of the apoptosis network. A

more complete picture involves not only both the intrinsic and extrinsic apop-

totic pathways but also pro-survival pathways, e.g., the growth factor (GF)

pathway. The epidermal growth factor receptors (EGFRs) are cell-surface re-

ceptors that, upon binding of their specific ligands, become active and trigger

signalling transduction cascades that lead to DNA synthesis and cell prolif-

eration. Mutations responsible for EGFR overexpression or overactivity can

result in uncontrolled cell division, which is a predisposition for cancer. To

understand the emergence of system properties in this more complex sce-

nario, Mai and Liu (2009) built a 40-node LN (figure 3.4) and performed

on it extensive statistical analyses. This resulted in the identification of key

network components responsible for the stability of the surviving states and
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Figure 3.4: Boolean network in (Mai and Liu, 2009, p. 762), reproduced with per-

mission. Each edge corresponds to inhibiting or activating connections. The cycles

labelled A, B, I and II indicate connections removed in the knockout experiments. Re-

versing the states of nodes represented as cycles may result in survival-apoptosis tran-

sitions when GF is OFF. Nodes as diamond boxes may result in survival-apoptosis

transitions when GF is ON.

the irreversibility of the apoptotic process.

The LN includes 37 internal nodes representing states of signalling mol-

ecules, 2 input nodes representing extracellular signals, and 1 output node

corresponding to apoptosis (‘DNA damage event’). Interconnections between

nodes are based on literature and databases. The LN models a number of

pathways and interconnections, such as extrinsic and intrinsic apoptotic path-

ways, the pro-survival effect of extrinsic TNF and GF signals, the regulatory

connections at p53, the caspase machinery, and major links and feedbacks be-

tween pathways, e.g., the Bid-mediated crosstalk between signals from TNF

and p53 and the negative feedback that the GF pathway receives from p53.
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Each node can be either ON or OFF at each time step. All nodes apart

from TNF and GF receive inputs from one or more nodes. The state of node

i at t + 1, Si(t + 1), depends on its current state Si(t) and the magnitudes

of the total activating inputs Ai(t) and inhibiting inputs Hi(t):

Si(t+ 1) =


OFF if Ai(t) < Hi(t)

ON if Ai(t) > Hi(t)

Si(t) if Ai(t) = Hi(t)

Simulations were run from 10,000 initial states randomly sampled. Each

simulation run ends when either apoptosis or survival has been reached. This

is judged according to whether the DNA damage event has been ON for 20

successive steps or has not taken place for 200 steps.

To find out key factors responsible for the irreversibility of apoptosis, the

temporal evolutions were monitored under different combinations of input

signals (both GF and TNF in their OFF state; only TNF ON; only GF ON;

both GF and TNF ON) and interruptions of apoptotic signals (by setting and

maintaining OFF selected nodes A, B, I and II, and combinations of them).

Results are obtained as regards the percentage of initial states leading

to apoptosis over the total number of initial states (Apop%). The study

of the varying dependence of Apop% on the external signal combinations

confirms that TNF is a strong promoter of apoptosis. TNF effects, in fact,

can be only partially offset by GF. The authors investigate whether with-

drawing TNF or the mitochondrial signal after apoptosis has started has any

effect on the irreversibility of the process. The results show that apoptosis

is irreversible in both cases in the complete model. Data relative to models

involving deletions of the four feedback connections, both separately and in

combinations, by interruption of nodes A, B, I and II, show that feedbacks

involving B and I (positive feedbacks containing Casp3) play more essential

roles in promoting apoptosis than feedbacks involving A and II—although

knockout of other combinations, too, can have an effect on—loss or degrada-

tion of—irreversibility.

The stability of the surviving states with respect to fluctuations in the

states of the internal nodes is investigated, starting from the ending states,

by systematically reversing the states of the internal nodes, either one-by-one

or two at the time. The time evolution starting from each of the perturbed

states is then followed until apoptosis or survival are, again, reached. There
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are in total 40 final surviving states, associated with different combinations of

input signals. Each surviving ending state was subjected to both single-node

and dual-node perturbations. The authors study the number of perturbations

leading to a survival-to-apoptosis transition for each surviving state. Their

results suggest that although the GF signal does not significantly increase the

overall survival ratio when there is no TNF signal, it can greatly increase the

stability of the final surviving states in this case.

Such results are achieved at the price of large simplifications, e.g., com-

ponents can only be in two states, the dynamics are governed by simple

rules replacing complex molecular processes. Also, it must be noted that

not all the initial states can be realised in real experiments, as the cell could

not survive. Compared with ODEs, LNs are of limited power in approximat-

ing experimental results and making context-specific quantitative predictions.

However, they allow for easier integration of experimental information and

more systematic explorations of the state space. They also provide results

that more readily offer themselves to a variety of statistical analyses.

3.2 Modelling economic complexity

3.2.1 Computational economics

Economics, as opposed to biology, has traditionally been more theory-driven

than data-driven, meaning that general theoretical assumptions have tended

to guide the generation of hypotheses. Computational economics is a branch

of the emerging field of computational, or ‘generative’, social science. Its

roots lie in a discomfort with mainstream, ‘neoclassical’ economic theory,

both with its assumptions and its inability to account for certain empirical

facts (Rickles, 2011; Hommes, 2006), discomfort which has grown stronger

in the light of the recent financial crisis (Buchanan, 2009; Farmer and Foley,

2009).

Neoclassical economics is based on a set of implicit rules or assumptions

(Weintraub, 1993): 1. People have rational preferences among outcomes that

can be identified and associated with a value. 2. Individuals maximise ex-

pected utility and firms maximise expected profits. 3. People act indepen-

dently and fully rationally (they use all available information and do not

make systematic forecasting errors). It is assumed that non (fully) rational

agents and firms will not survive evolutionary competition and will therefore

be driven out of the market (see Hommes, 2006, pp. 1112-1113). These as-
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sumptions concerning individual behaviour add up to the so-called ‘rational

expectation hypothesis’ and give foundations to a general hypothesis about

market behaviour, the ‘efficient market hypothesis’: prices always reflect all

available information in actual markets, that is, they emerge aggregatively

via the consensus amongst perfectly rational agents. Given that at each mo-

ment, in the light of available information, there is just one price that rational

agents should agree upon, i.e., the rational price, the best estimate for the fu-

ture price is the present price, since this price reflects all known information.

For this reason, neoclassical economics focusses on explaining regularities by

aggregating over the agents’ rational behavior. At each time step, what is

crucial for calculating an asset’s price is the identification of the ‘rational ex-

pectation equilibrium’ (REE) reached by aggregation, that is, the solution to

an agent maximisation problem. Any deviation from such a theoretical equi-

librium is due to an exogenous intervention, i.e., a new piece of information,

that changes the price unpredictably.

Neoclassical mathematical finance is based on the assumption that stock

prices exhibit geometric Brownian motion. Let me explain.31 Let us indicate

time with t, 0 ≤ t ≤ ∞, and the value of an asset at the present time t with

p(t). Let us define as (arithmetic) ‘return’ Rτ (t) the relative variation in an

asset’s price in the time interval t to t+ τ , i.e., the rate of price change:

Rτ (t) =
p(t+ τ)− p(t)

p(t)
(3.1)

The time interval τ can be taken as the difference between two successive

trading days, or two periods when dividends are paid, etc. Neoclassical eco-

nomics assumes that, for all non-negative values of t and τ , Rτ (t) is a random

variable which is normally distributed and only depends on the present price.

Given that most assets in finance are non-negative, the log-normal distribu-

tion is used to describe the probability density function of future prices. In

general, a variable is lognormally distributed if its log is normally distributed.

In our case, if returns are normally distributed, the future price is lognormally

distributed (figure 3.5).

According to the standard model, if returns at t are independent of prices

up to t and their log is a normal random variable, the prices p(t) follow

a geometric Brownian motion, or “random walk”.32 From this assumption

31See Ross (2003) for a more detailed exposition.
32The reason why the price sequence is called “geometric Brownian” is that each element

in the sequence is obtained from the previous one by multiplying it by a certain factor, as in
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Figure 3.5: Normal (left) and Lognormal (right) distribution.

it follows that (i) the best estimation of an asset’s future price is its current

price; (ii) the distribution of price changes is Gaussian; (iii) purchases balance

sales (cf. Rickles, 2011, §4).

However, the standard model goes only halfway in explaining financial

complexity, as it cannot account for most of the following, well-known (often

before the formulation of the standard model itself) empirical facts, also called

‘stylised facts’ (cf. Ross (2003, chap. 12), Rickles (2011, §6), LeBaron (2006,

pp. 1191-1192), Samanidou et al. (2007, p. 411)).

Although unconditional distributions of returns at high frequencies (one

day or so) are roughly Gaussian, which entails that the direction of stock

returns is generally unpredictable, unconditional distributions of returns of

assets at lower frequencies (one month or less) are fat-tailed, that is, have too

many observations near the mean, too few in the mid range and too many in

the tails to be normally distributed. Several, alternative distributions have

been proposed to describe fat tails. Among them are power laws, which are

commonly taken as a symptom of underlying complexity (see §1.3.4).33

Also, large (small) price changes tend to follow large (small) price changes,

instead of being uniformly distributed (volatility clustering). Relatedly, asset

returns at different times show a dependency (volatility persistence, or ‘long

memory’): whilst the autocorrelation of returns (i.e., the correlation between

geometric sequences (e.g., 1,2,4,8,16...), with the difference that, in a geometric Brownian
motion, such a factor—which in our case is the return—varies randomly (in analogy with
the sequence of random steps of the particles suspended in a gas, also called “Brownian”),
whereas in traditional geometric sequences this factor is instead fixed.

33Power law distributions, characterised by the cumulative distribution function Pr(X >
x) ∼ ||x||−α, can be used to describe not only stock price fluctuations but also trading
volume and number of trades.
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values of the returns at different times, as a function of their time difference)

decays quickly to zero, providing support for the geometric Brownian motion

hypothesis, the autocorrelation of squared returns decays more much slowly.

Volatility persistence constitutes evidence of some predictability at longer

horizons. Indeed, prediction methods based on such a predictability (e.g.,

the ‘moving average technical analysis’) are returning to fashion.

Finally, the observed trading volume is too high to be consistent with the

efficient market hypothesis. A possible explanation is that volume is driven

by differences in opinion between the agents, who perhaps are not so rational

after all.

Computational economics offers the possibility to search the space of hy-

potheses on the mechanisms responsible for the stylised facts, and tries to

assess their relative plausibility by suggesting some and discarding others. In

general, computational economics tries to reproduce certain macrophenom-

ena from the bottom up, starting from (more realistic) assumptions on the

agents’ microbehaviours. It mostly uses agent-based models (ABMs) (see

§3.2.2), which is why it is often referred to as ‘agent-based computational

economics’ (ACE).

ACE belongs to the wider, emerging, field of bottom-up computational,

or ‘generative’, social science (Epstein, 1999, 2006). According to the genera-

tivist, it is not sufficient to establish that the system, once deposited in some

macroconfiguration, will stay there. Guided by the motto ‘If you didn’t grow

it, you didn’t explain it’, the generativist wants to account for how the config-

uration was attained by a decentralised system of heterogeneous, autonomous,

agents. (Note, however, that the motto’s converse doesn’t hold: growing it

isn’t sufficient, only necessary, to explanation.) Statistics is then used to

estimate the generative sufficiency of a given microspecification. The goal

is to build models with empirically plausible rules that generate empirically

adequate behaviours in order to explain the stylised facts.

ABMs are typically used to ‘grow’ the macrobehaviour. Several features

differentiate ABMs from other modelling techniques (Epstein, 1999). The

agents are heterogeneous, each with proper characteristics and preferences.

They are autonomous, without central, top-down control over their behaviour.

Their states and actions are modelled in an explicit space, or environment,

whose topology is formally specified (e.g., a grid of cells, a network). They

interact locally with their neighbours according to rules, whether merely re-

active or also proactive, that produce behaviour as output of bounded infor-
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mation and computing power.

ACE has several areas of application (Tesfatsion, 2002). When applied to

the study of financial markets, ACE aims to establish microfoundations for

the stylised facts, that is, to validate hypotheses regarding the mechanisms re-

sponsible for them.34 Other obvious—although harder to obtain—desiderata

are prediction and control over the real counterparts of the simulated facts

(see, e.g., Buchanan, 2009).

Distinctions within the field can be drawn between a more physics-oriented

approach (econophysics) and one more inspired to evolutionary biology (econo-

biology) (Rickles, 2011). Accordingly, the economic system can be envisaged

as a self-organising system—along the lines of Nicolis and Prigogine (1989);

Bak (1997); Sornette (2002)—or as a complex adaptive system—along the

lines of Holland (1995) and Casti (1997). In §3.2.3, two ABMs of asset pric-

ing will be presented, one inspired by the econophysics approach, another by

the econobiology approach.

3.2.2 Asset pricing

The stylised facts (fat-tailed distributions of returns, high volatility, large

trading volumes, etc.) demand that we re-interpret the economic agent not

as perfectly rational, that is, capable of taking optimal decisions in the light of

full knowledge of facts, but as boundedly rational (Simon, 2000). This means,

in short, that the agent starts with a set of forecasting hypotheses, none of

which necessarily correct, and then tests and changes them inductively. In

the market, agents’ decisions depend on bounded rationality. Some traders

continuously decide whether to buy or sell by trying to identify price trends

and patterns and guessing what other traders will do; their decisions then

influence the market, which in turn influences their future decisions. Given

the self-referential nature of this process, the agent is never in the position to

deduce what the best decision has to be. Macro-equilibrium, when attained,

emerges ‘ecologically’ rather than as a result of deductive reasoning.

Soros (1987) labels this phenomenon “self-reflexivity”. In general, reflex-

ivity refers to allegedly circular relationships between cause and effect. The

reflexive relation links the thought of the actors involved to the situation they

are part of, either developing toward the equilibrium or generating changes

34For reviews of ABMs of financial markets, see Hommes (2006); LeBaron (2006);
Samanidou et al. (2007).
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and inverting trends. Soros applies this concept to the mutual relations be-

tween the course of the market and its participants’ expectations.

The resulting theory is in opposition with equilibrium theory. The latter,

in fact, stipulates that markets move towards equilibrium and that fluctua-

tions are merely random noise that tend to be corrected quickly. Let us define

the intrinsic, or fundamental, value of an asset (FV) as the discounted sum of

future earnings. This is calculated by summing the future income generated

by the asset (interests), and discounting it to the present value:

DPV =

n∑
t=0

NVt

(1 + i)t
(3.2)

where DPV stands for the discounted present value of the future cash flow,

or FV adjusted for the delay in receipt; NV is the nominal value of a cash

flow amount in a future period; i is the interest rate; and t denotes the time

periods where cash flow occurs. In equilibrium theory, long-run prices reflect

the underlying fundamentals, the allegedly ‘real’ values of the assets, which

are unaffected by current prices.

The theory of reflexivity, instead, states that prices do influence fun-

damentals and that the influenced fundamentals then change expectations,

thereby influencing prices in a self-reinforcing pattern. So, for instance, if

traders believe that prices will fall, they will sell, driving prices down, whereas

if they believe prices will rise, they will buy, driving prices up. Reflexivity

is thus related to feedback mechanisms. Since the pattern is self-reinforcing,

markets tend towards disequilibrium. At a given point, positive (negative)

expectations overcome negative (positive) ones and become self-reinforcing

in the upward (downward) direction, which explains the familiar pattern of

boom-bust cycles.

ABMs can help bridge the gap between individual behaviour and its col-

lective outcomes by, among other things, providing a representation of the

traders’ bounded rationality in an attempt to explain the stylised facts. Si-

mon’s idea of of bounded rationality has been adopted, at least implicitly, by

Arthur et al. (1997), whose model of asset pricing is described in §3.2.3, and in

general by those who envision the market as an evolutionary-adaptive system,

whose participants face self-referential decision problems (cf. Markose et al.,

2007). Also, although Simon is rarely cited in the econophysics literature,

the intuition that the target of the research should be equilibria formation,

starting from a study of the dynamics of agents who lack rational expecta-
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tions and optimisation principles, is widespread. Accordingly, the economy

can be re-interpreted as an out-of-equilibrium system, where self organisation

can emerge spontaneously, without external interventions, and lead to one or

the other among several possible equilibria, sometimes switching from one to

the other when small amounts of noise are introduced (Arthur, 2006).

There is no generally accepted model for the formation of the expecta-

tions of the economic agents. Different models assume different behavioural

rules to reproduce the stylised facts. One way is to group agents into differ-

ent categories, each with a different attitude towards investing, and explain

fluctuations in the market by reference to agents switching from one cate-

gory to another with certain probabilities in response to the situation—as in

the model in (Lux and Marchesi, 1999, 2000). An alternative way is try to

model the agents’s learning process directly, to mimic the way in which they

inductively adapt their trading strategies—as in the model in (Arthur et al.,

1997) and (LeBaron et al., 1999). Usually, ‘genetic algorithms’ (GAs), first

introduced by Holland (1995), are used for this latter task. GAs are employed

to solve optimisation problems, whose task is to find not solutions that max-

imise some utility function common to all agents, but ‘satisficing’ solutions,

i.e. solutions that are ‘good enough’ given the agents’ limited computational

ability and access to information (Simon, 1996, chap. 2).

The first step of the GA modelling procedure is to map the behavioural

rules into a genetic structure, e.g., by coding real-valued parameters as strings

of 0’s and 1’s. Attached to each gene in this population is a fitness value,

representing how well the rule, or solution, has performed in solving the op-

timisation problem. The computer then simulates evolution by searching the

space of the possible genotypes for those of high fitness: it does so by creating

new genotypes from old and evaluating the relative fitness of each genotype

in the population (see Casti, 1997, pp. 158-161). This involves mutation

(random flip of bits in the strings of 0’s and 1’s), crossover (interchange of

subsequences of two genotypes to create two offspring) and selection (fitter

genes are more likely to reproduce than less fit ones, so that a new population

with higher-fitness solutions tends to replace the old one). A run of the GA

can consist in hundreds or thousands of generations, after which one or more

very fit genes are selected, which are then taken to constitute a ‘solution’ to

the original optimisation problem.

In the case of financial settings, genotypes represent agents, or ‘theories’

of the market, whereas single genes stand for trading rules, or strategies.
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Theories evolve and are evaluated on the basis of their performance. Rules

are formed depending on time series information.35 Rules are then assessed

according to how well they, e.g., minimise some forecast-based error measure.

The best performing rules are used to formulate the agents’ forecasts, which

are in turn converted into asset demands using preferences. Finally, new rules

are generated by means of a GA. By using this procedure, it is possible to

evaluate and compare agents based on their forecasting performance.

3.2.3 Modelling artificial stock markets

The first model I describe originates from the study of many-particle systems

in physics and is presented in (Lux and Marchesi, 1999, 2000). The model

describes an asset market with a fixed number of traders which, contrary to

the rational expectation hypothesis, are divided into two main groups: fun-

damentalists, who sell (buy) when the price is above (below) the fundamental

value, and chartists (or ‘technical traders’, or ‘noise traders’), who buy or

sell depending on the other traders’ behaviour and the prevailing price trend.

Chartists, in turn, are subdivided into optimistic and pessimistic. In short,

the system works as follows: traders can switch between different groups; the

number of individuals in these groups determines the excess demand, i.e.,

the difference between demand and supply; imbalances between excess and

demand result in changes in actual price, which in turn affect the agents’

trading strategy. The dynamics of the model are determined by four com-

ponents: the chartists’ switch from pessimistic to optimistic behaviour, and

vice versa; the traders’ switch from fundamentalist to chartist behaviour, and

vice versa; the actual price changes as a result of the endogenous responses

to demand-supply imbalances; changes in fundamental value, governed by a

random process, so as to assure that the resulting stylised facts do not depend

on exogenous factors.

The probability of switches among chartists is governed by the develop-

ment of two noise factors influencing the switch, that is, an opinion index,

representing the average opinion among chartist traders, and the price trend,

i.e. the variation of the actual price in time. Two parameters in the proba-

bility function regulate the sensitivity of the traders to, respectively, opinion

and price trend. The probability of switches between chartists and funda-

mentalists depends on the difference between the momentary profits earned

35In §3.2.3 I describe a method known as ‘classifier system’, used by Arthur et al. (1997)
to convert time series information into trading rules.
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Figure 3.6: Time series of (a) market price and fundamental value, (b) logarithmic

returns (ret), i.e. log changes of the market price: rett = ln(pt) − ln(pt−1), and (c)

log changes of the fundamental value: εt = ln(pf,t) − ln(pf,t−1). Reproduced with

permission from (Lux and Marchesi, 1999, p. 498).

Figure 3.7: Log-log plot of the complement of the cumulative distribution of returns

at different levels of time aggregation: ret(τ) = ln(pτ )− ln(pt−τ ). The distribution’s

decay is close to the exponential decay of the Normal at low frequencies (viz. with

larger time interval τ), whereas it approximates power-law scaling at high frequencies.

Reproduced with permission from (Lux and Marchesi, 1999, p. 499).
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Figure 3.8: Autocorrelations of raw (bottom), squared (middle) and absolute (top)

returns. Reproduced with permission from (Lux and Marchesi, 2000, p. 695).

Figure 3.9: Comparison between the scaling of the fluctuation function of changes

in fundamental value and the scaling of the fluctuation function of, respectively, raw

returns (bottom) and absolute returns (top). Reproduced with permission from (Lux

and Marchesi, 1999, p. 499).
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Figure 3.10: Dependence of time series of returns (top) on proportion of chartists

in the market (bottom). When the fraction of chartists exceeds a critical value,

the system tends to become unstable. Reproduced with permission from (Lux and

Marchesi, 2000, p. 689).
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by individuals in both groups. Chartists regard as profit the realised excess

profits, that is, short-term capital gains due to the price change. Funda-

mentalists, instead, regard as profit the expected excess profits, that is, the

difference between price and fundamental value, which they take as a source

of arbitrage opportunity, to be realised when the future price reverts to the

fundamental value. A parameter in the probability function specifies the sen-

sitivity of the traders to the profits. Price changes are determined by a market

maker, who adjusts the price so that the variation per time is proportional

to the aggregate excess demand of chartists and fundamentalists.

Of the three types of steady states of the system, the one of interest

obtains when the price is at its fundamental value, there is a balanced pro-

portion of optimists and pessimists, and an arbitrary proportion of chartists.

This steady state is repelling (i.e., the system is unstable) when either (i) the

parameters measuring sensitivity to opinion, price changes and profits are

larger than some critical value or (ii), if such parameters are below the crit-

ical value, when the corresponding proportion of chartists exceeds a critical

value. Simulations are performed for parameter values for which the system

is in the repelling steady state, and show how an otherwise stable equilib-

rium can be subject to transient phases of destabilisation, with fluctuations

around the equilibrium that suddenly emerge and quickly die out. This ‘punc-

tuated equilibrium’ generates time series with clusters of excessive volatility

interspersed among long tranquil periods.

The time series of the market price stays close to the time series of the

fundamental value, in agreement with the hypothesis that prices follow a

random walk (figure 3.6a). Still, statistical analyses show the presence of

‘abnormal’ features: contra the standard model, the normally distributed log

changes in fundamental value (and the absence of exogenous shocks) (figure

3.6c) do not result in similarly normally distributed returns, the time series

of returns exhibiting a higher-than-normal frequency of extreme events and

volatility clustering (figure 3.6b).

A study of the complement of the cumulative unconditional distribution

of returns (figure 3.7) shows how the probability of large fluctuations doesn’t

depend only on current price but also on the time interval considered. At

high frequencies (with small τ) the distribution approximates a power-law.

At low frequencies (with large τ), instead, the distribution decays quickly,

approximating the exponential decay typical of the Normal. This agrees with

the observation of financial prices obtained, respectively, at high and low
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frequencies: large price fluctuations at high (daily) frequencies are scarce,

and the tails of the corresponding distributions behave normally; large fluc-

tuations at low (weekly, monthly) frequencies, instead, are more numerous

than Normal, with the tails being better described by a Pareto distribution,

Pr(X > x) = ax−α—which is a power-law distribution.

The study of the conditional distribution of returns shows volatility clus-

tering: against the view that deviations from equilibrium are unpredictable,

periods of quiescence and turbulence tend to cluster together. Use of elemen-

tary statistical techniques shows that whereas raw returns have low autocorre-

lation and fluctuate around zero, which is indicative of short memory, squared

and absolute returns show much higher autocorrelation, which indicates long

memory (figure 3.8). More sophisticated techniques, viz. ‘detrended fluctua-

tion analysis’ (see Kuhlmann, 2011, §3.1), are employed to study the scaling

properties of the average fluctuations F (t) of fundamental values, raw and

absolute returns as a function of the time interval t, and to calculate the

exponents of the corresponding power laws (figure 3.9). The analysis reveals

that the slope of the power law of changes in fundamental price is similar to

the slope of the power law of raw returns, but smaller than that of the power

law of absolute returns, which is a sign of strong persistence in volatility.

The authors conclude that, since these scaling properties are absent in

the behaviour of the exogenous force, viz. the changes in fundamental value,

they are endogenously generated by the interaction (switching) of heterogeous

economic agents. In particular, the authors notice that for a wide range of

parameter values the volatility bursts robustly depend on whether or not the

proportion of chartists in the market exceeds a critical value (figure 3.10).

Hence, they conclude that the volatility bursts are explained in terms of the

switches between groups driven by chartist behaviour (see Lux and Marchesi

(1999, p. 500) and Lux and Marchesi (2000, p. 679)). The resulting punc-

tuated equilibrium is considered analogous to the on-off intermittency found

in many natural systems, where an attracting state may become temporarily

unstable due to a local bifurcation until the system is driven back to stabil-

ity by some endogenous mechanism. The bifurcation obtains when some key

variable surpasses some stability threshold—in the present case, this is the

time-varying fraction of chartists. Interestingly, since intermittency manifests

itself through features proper of chaotic phenomena, such as the scaling be-

haviour of the time intervals of tranquil periods inbetween severe fluctuations

(cf. Smith, 1998, pp. 110-111), finding such scaling properties in real time
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series provides some evidence that the stock market is chaotic as assumed by

the model.

I pass now to describe another model of asset pricing, the so-called ‘Santa

Fe artificial stock market’ (Arthur et al., 1997; LeBaron et al., 1999). In the

market, there is a fixed number of traders who determine endogenously the

price of a stock by aggregation of their demand for the stock, which is directly

proportional to their expectation of future wealth and inversely proportional

to the variance of the asset’s price and dividend. The homogeneous REE is

used as a benchmark to evaluate the agents’ individual strategies and calculate

the clearing price. The model diverges from classical equilibrium economics

in that the expectation formation is heterogeneous rather than homogeneous.

Each agent forms his expectations of the next period’s price and dividend

individually and inductively, by observing the state of the market (which in-

cludes the historical dividend and price sequence) and continually revising his

‘theory’ of the market in order to obtain better and better predictions. Each

theory is made of 100 strategies, or rules. The learning process is modelled by

means of a classifier system that codes rules into sets of predictors, each con-

sisting in a condition part (a bit string of market descriptors) and a forecast

part (a parameter vector)—which is why this classifier system is also referred

to as condition/forecast classifier (cf. LeBaron, 2002). The condition part of

a predictor j contains a 12-bit string of 1’s or 0’s, which can be interpreted as

the current price, respectively, fulfilling a market condition and not fulfilling

the condition. Each bit represents either technical or fundamental informa-

tion. The forecast part contains parameters aj and bj of a linear forecasting

model, namely the expectation function associated with the predictor j, as a

linear combination of price and dividend, Ej(pt+1 + dt+1) = aj(pt + dt) + bj .

The forecast part also contains an estimate of j’s current variance, σ2j .

At the start of the time period the current dividend is posted and observed

by all agents. Each agent checks which of his predictors are ‘active’, i.e.,

match the current state of the market. He then forecasts future price and

dividend by combining statistically the linear forecast of the most accurate

of his active predictors, and given this expectation and its variance calculates

the asset demand and makes the appropriate bid or offer. A price is then

determined for clearing the market. After market clearing, the new price and

dividend are revealed and the accuracies of the active predictors are updated.

At regular intervals, but asynchronously, agents engage in a learning process

for updating their set of rules. When learning takes place, the 20 worst
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Figure 3.11: Time series of actual price (solid line), theoretical price (dotted line),

and difference between the two (bottom line). Reproduced with permission from

(LeBaron et al., 1999, p. 1500).

Figure 3.12: Correlation of squared returns at (t+j) with trading volume at t. Solid

line: mean fast learning; dotted line: comparison series (IBM daily returns, period

1962-1994). Reproduced with permission from (LeBaron et al., 1999, p. 1505).
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Figure 3.13: Technical trading bits under fast learning (1) and slow learning (2).

Reproduced with permission from (LeBaron et al., 1999, p. 1506).

Figure 3.14: Long-run oscillations of technical trading bits. Reproduced with per-

mission from (LeBaron et al., 1999, p. 1507).
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performing rules are eliminated and replaced by new rules formed by means

of a GA with uniform crossover and mutation.

Simulations were run under a variety of conditions. Most importantly,

different parameter values ensuing in different rates of the learning process

were used. Statistical analyses were then performed to study the properties

of the resulting time series (e.g., predictability, trading volume, volatility)

and the features of the learning process that determine them (condition bits

used, convergence of forecast parameters). The general conclusion was that

with slow learning the price series are indistinguishable from what should be

produced in the case of homogeneous REE, whereas with fast learning several

stylised facts are endogenously produced.

First, the actual price series, calculated by letting every agent adjust his

demand according to his own forecasting rules, tracks very closely the theoret-

ical price series, where market prices are calculated assuming homogeneous

agents. Still, the time series of differences between actual and theoretical

price shows the presence of both tranquil periods and wild fluctuations (fig-

ure 3.11). This result is qualitatively very similar to that obtained by Lux

and Marchesi: the price time series contains evidence of underlying chaos.

Secondly, there is evidence of predictability at large horizons: forecasting

models taking into account information that should be of no use in the REE

(e.g., 500 period moving averages), are more successful than simple linear

forecasting models based on the last period’s price and dividend (LeBaron

et al., 1999, p. 1503).

Thirdly, autocorrelation of volatility and trading volumes is lower with

slow learning and higher with fast learning, in this latter case approximating

more closely values from observed time series. Also, volatility and trading vol-

umes are strongly correlated in the case of fast learning, again approximating

observed values (figure 3.12).

A study of the evolution in the use of the condition bits shows that with

slow learning the traders learn that technical bits are of no use and as the

time progresses tend to eliminate them from their trading strategy. With

fast learning, instead, the average use of technical bits does not decay (figure

3.13). Also, there is some evidence that in the long run, although the use

of technical bits eventually stops increasing, it keeps oscillating (figure 3.14).

This marks a potential difference between the Santa Fe market and Lux and

Marchesi’s market: whereas the latter conforms better to Sornette’s model

of on-off intermittency, viz. the system’s dynamics are responsible for both
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chaotic and non-chaotic periods, the former fits better Bak’s model of self-

organised criticality, viz. complex regimes are the stable, ‘ordered’ result of a

system following the path of one, chaotic attractor.

The authors take these results to show that complex regimes may arise

even under neoclassical conditions and in the absence of exogenous shocks.

They explain this fact by reference to the heterogeneous and inductive nature

of the agents’ expectation formation process, ultimately responsible for fast

learning. They notice that when technical trading strategies emerge they

tend to become mutually reinforcing: trend-following strategies are randomly

generated in the population; if random perturbations in the dividend sequence

validate them, they then take their place in the population and change the

market; the changes manifest in the form of increased volatility and volume

and trigger further changes in strategies; this ensues in a complex, mutually

reinforcing behaviour.

3.3 Simulating causal facts

Systems biology and computational economics are sciences that produce and

use their results based on computation and/or simulation of more or less fic-

tional scenarios whose physical realiser is a computer hardware rather than

the system itself. Since the methodologies of systems biology and computa-

tional economics constitute a somehow novel way to test and use scientific

hypotheses, some preliminary discussion on the differences between simulating

causal scenarios and experimenting on them is needed before we can proceed

to discuss to what extent accounts of causality capture the meaning of causal

claims as derived from the models.

Simulation has both disadvantages and advantages with respect to tra-

ditional experiments. The major disadvantage commonly associated with

simulation is that the material which is observed and manipulated is a model

rather than the system itself.

Some (see, e.g., Guala, 2012, p. 611) argue that because of this, although

a simulation may ‘surprise’ us, leading to results that we hadn’t realised

were implicit in the premisses of the model, it cannot ‘teach’ us anything

new. The reason is that, contrary to the design of an experiment, which

is partly ‘opaque’ due to a lack of knowledge of the inner workings of the

experimental system, the design of the model is transparent to the modeller.

But this argument is debatable. Humphreys, for instance, identifies in the
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‘epistemic opacity’ one of the distinctive features of simulations—no human

user can actually understand the process leading from the abstract model to

the output (see Humphreys, 2009, pp. 618-619).

Others, instead, associate the materiality problem with the reliability of

the inferences, the idea being that if the system studied is of the ‘same stuff’

as the target system, it is also conducive to more reliable inferences. However,

as noted by Frigg and Reiss (2009), this is not necessarily the case. There

are many theoretical models applied to experimental systems that are more

reliable than experimental systems applied to non-experimental systems. In

particular, materiality makes no distinctive feature—hence no disadvantage—

for simulations vis à vis traditional experiments.

Be that as it may, simulation also offers undeniable advantages, insofar

as they facilitate inferences in cases where experimental results aren’t avail-

able. Epstein (2008) lists many advantages of simulation, besides prediction.

Interestingly, many of them may be read as having a causal significance:

simulations “explain” (C is a possible cause of E); they “suggest dynamical

analogies” (C may cause E by a process analogous to that by which X causes

Y ); they “bound (bracket) outcomes to plausible ranges” (C may cause E,

but only E′ < E < E′′); they “challenge the robustness of prevailing theory

through perturbations” (C may cause E only across a given range of param-

eter values); they “expose prevailing wisdom as incompatible with available

data” (C could not possibly cause E); they “reveal the apparently simple

(complex) to be complex (simple)” (E may have multiple causes/E may have

a unique cause); etc.

Sometimes scientists stress even more explicitly the causal significance of

simulations. They take simulations to provide causal explanations (Kuipers,

1987). They use them to answer counterfactual questions on qualitative long-

run policy effects and to identify mechanisms relevant to policy decisions

(Dawid and Neugart, 2011). They use them to draw causal conclusions in

cases of non-linearities, feedbacks, heterogeneity and adaptivity of the agents,

various levels of organisation, etc. (Galea et al., 2010). The question, then,

is not whether simulations may in principle deliver causal conclusion but in

what conditions one becomes entitled to such conclusions.

Simulations’ conclusions are, like those derived by other methods, only as

safe as the premisses from which they are derived.36 Assessing the goodness

36Those who believe that simulations are deductions (see, e.g., Epstein, 1999, 2006) will
maintain that the conclusion is only as safe as the weakest of the premisses, considered in
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of the derivations amounts to assessing the ‘validity’ of the inferences. This

involves evaluating the warrant for the premisses, the need to include missing

premisses, the relation between premisses and conclusion, etc. In particular,

the advantages and disadvantages of simulations must be assessed with re-

spect to the two distinct issues of internal and external validity. In scientific

parlance, ‘internal validity’ refers to the correctness of the methodology by

which the hypothesis is tested (or supported, or confirmed); ‘external valid-

ity’, instead, refers to the exportability of the results obtained in the test

situation to some target situation. Before turning to issues of internal and

external validity of simulations, some preliminary introduction to the way

simulations are built and used is needed.

The simulation methodology consists of the following steps (see, e.g., Gil-

bert and Troitzsch (2005, chap. 2), Macal and North (2005)): 1. definition

of the target; 2. gathering of observation of the target for getting parameters

and initial conditions for the model; 3. making assumptions; 4. designing the

model in the form of a computer programme; 5. running the simulation; 6.

verification (i.e., debugging of the programme); 7. validation (ensuring simu-

lated behaviour matches data collected from the target); 8. sensitivity analy-

sis (via randomisation over parameter values and exogenous factors, changes

in the order in which the actions are performed, analysis of the statistical

features of the outcomes of the simulations, etc.).

Steps 6 through 8 raise issues of validity of the simulation, i.e. whether

it succeeds in representing or reproducing some actual or counterfactual sce-

nario. Verification involves internal validity issues (problems with, e.g., the

approximation of numerical solution to actual solutions, truncation errors,

the pseudo-randomisation involved in the sampling process). These are tech-

nical problems, which add to traditional internal validity problems with ex-

periments on real systems. Validation, instead, involves both internal and

external validity issues. Since the test is, strictly speaking, performed on a

computer, the validity of its results as applied to some ‘target’ always involves

an extrapolation, although one may distinguish between an ‘internal extrap-

olation’, where one’s aim is to match the behaviour of simulation and the

test system that was initially observed in steps 1 through 3, and an ‘external

extrapolation’, where one’s aim is to apply the model to non-actual scenar-

isolation (cf. Cartwright, 2007b, chap. 3). Instead, those who believe that the support the
premisses lend to the conclusion depends partly on their number and mutual relation, as in
inductive or abductive arguments, will judge the conclusion only as safe as the conjunction
of the premisses (see, e.g., Winsberg, 1999, 2009).
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ios, viz. the same kind of system under different circumstances, e.g., after an

intervention. There may be several difficulties here: the stochasticity of both

target and model; the sensitivity of the behaviour to chosen parameter values

and initial conditions; the selection of data about the target to validate the

model; etc. Finally, sensitivity analysis aims to overcome both internal valid-

ity problems (missing data on test system/population) and external validity

problems.

3.3.1 Internal validity

Since the model is, strictly speaking, the object of experiment, one has here

the additional problem of verifying that there is no mismatch between model

and test system. As pointed out by Rickles (2009), there is a disanalogy

between experimenting on a system and experimenting on a simulation: in

the former case, we are speculating on whether the intervention may be used

to validate a causal hypotheses; in the latter case, instead, we are using

the simulation to model the dynamics of a complex system, “in a bid to

understand what kind of process might have generated some data” (Rickles,

2009, p. 89). Although Rickles admits that this does not rule out other

potential uses, he claims that “to get a simulation going we must have a causal

model in hand. However, this is precisely what we were aiming to establish, so

we will have reasoned in a circle adopting a simulation-based response” (ibid.).

But this criticism seems too harsh. We normally need causal assumptions to

establish causal conclusions. Provided we are not assuming the very same

relation we are trying to establish, the ‘circle’ won’t be vicious.

True, since—by design—the conclusion depends on an explicit set of pre-

misses, one can’t use the model as a a ‘black box’ that will, by some partially

unknown mechanism, produce the same results in test system and target sys-

tem in virtue of their similarity. Rather, one must ensure, through validation,

that the internal design (principles, rules, laws, etc.) is correct. This is gen-

erally hard. If the design is too realistic, one needs a vast amount and variety

of data. If it is abstract, it will be difficult to interpret and measure in the

target the quantities (variables, parameters, etc.) present in the model (cf.

Cartwright, 2007b, pp. 38-40).

Yet, since the model was explicitly designed, it is transparent to the mod-

eller. With more realistic models, it is easy to interpret the conclusions in

relation to the target, and to judge whether the model is ‘faithful’. With more
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abstract models, instead, one can draw more general conclusions, usually at

the price of a more difficult choice of the data that can validate the model.

However, the transparency of the model also makes it easier to test for the

robustness of the results by means of sensitivity analyses. So, one can still

say that something general is true of a large class of systems, to the extent

that the results do not depend on precise parameter values, initial conditions,

unrealistic assumptions, etc.

A further problem that Rickles (2009) sees in the use of simulations to

establish causal conclusions is that, contrary to complex systems, which are

always open to and entangled with the environment, simulations are in a

clear sense closed, i.e. screened off from exogenous causes not specified by the

model, but which have in reality the potential to amplify or modify causal

effects. But openness and contextuality make problems for any attempt to

draw conclusions with the aid of experiments, and do not affect simulations

only. Also, openness and contextuality make it particularly difficult to export

results rather than establish them. This is more a matter of external validity

rather than internal validity. In this regard, any model may represent well

some test situation but then fail to be exportable to some target situation.

3.3.2 External validity

All methods face the problem of external validity, “since we seldom establish

results in the very population and in the very situation in which we want to

apply them” (Cartwright, 2007b, p. 36). In particular, any experiment on

some test population/system is similar to the target population/system only

in certain respects and degrees. When external validity is concerned, material

similarity is not necessarily more important than other kinds of similarity. For

instance, analogous models, such as the Phillips curve fluid mechanics model

of the economy that one observes in the Science Museum of London, are not

materially similar to their targets, and yet can adequately reproduce some

of their features. Simulations count as experiments in that, when it comes

to export their results, problems of external validity arise as with any other

method (physical models, analogous models, equation-based models, etc.) (cf.

Frigg and Reiss, 2009, p. 597).37

To warrant the exportability of results from the experimental system to

the target system, one should in principle make sure that no confounders and

37Also Guala concurs on this (see Guala, 2012, pp. 610-611).
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no difference in causally relevant respects are present (Guala, 2012, §4.3).

In traditional experiments, one relies on good subject sample and design.

If there are problems with the former, one usually randomises over the test

population. If there are problems with the latter, one may randomise over

diverse situations, where arguably different tendencies and mechanisms are at

work. Alternatively, one may look for the presence of marks of crucial stages,

or ‘marks’, of the mechanism in both test and target (Steel, 2007, chap. 8)

and/or ensure that test results depend on tendency laws, or capacities, that

operate robustly across changes in boundary conditions, not just in experi-

mental conditions. This is because the experiment may be so designed that

although background factors are held fixed, the outcome depends on their

non-additive interaction with the main experimental variables.

What about the external validity of the outcomes of simulations? Quan-

titative conclusions are usually warranted only if model and target system

are similar enough, and values of variables are known. This applies to, e.g.,

complex—but non-chaotic—systems whose interactions with the environment

are well captured by the model. And it applies to chaotic systems, too, al-

though to a lesser degree. For instance, on the assumption of the approximate

linearity of the local dynamics of chaotic systems, ‘tessellation’ may provide

short-term predictions of chaotic behaviour (see §1.3.2).38

Also, contrary to more traditional experiments, even when the conditions

for drawing quantitative conclusions cannot be met simulations may still war-

rant qualitative conclusions, based on the exploration of a wider space of

possibilities. Problems of subjects sample are here constituted by too few

runs, or too little variation in initial conditions. These problems are rela-

tively easy to solve, at least conceptually. Problems having to do with bad

design cannot be solved by randomisation: since the design is the model, and

is unique, there aren’t different situations where different mechanisms are at

work, so randomisation over initial conditions or parameter values alone won’t

do. However, the transparency of the design facilitates performing sensitivity

analyses. If the model can be interpreted in relation to the target, then sim-

ulation, in conjunction with sensitivity analysis, helps establish conclusions

as regards the presence of marks39 and robust capacities, and ameliorates the

38Other cases of quantitative conclusions allowed by chaotic models are those that depend
on non-universal parameters, such as Liapunov exponents, the fractal dimension of strange
attractors, indexes of bifurcation rates (see Smith, 1998, p. 118), or power-law exponents
corrected for the presence of log-periodic modulations (Sornette, 2002).

39This procedure is called ‘benchmarking’, and consists in comparing outputs of the
simulation and known facts about the target (see Frigg and Reiss, 2009, p. 603).
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problem of missing data on the target situation.

For the moment, we need not be concerned with the issue of the validity of

the models presented in this chapter. In chapters 4 through 6, I will proceed

on the assumption that the models faithfully represent causal relations in

the apoptosis and the asset pricing mechanism, that is, they identify salient

features that are causally responsible for, respectively, the irreversibility of

apoptosis, and volatility and crashes. I will then come back to the bearing of

the validity of the models of complex systems in chapter 8, where I illustrate

how my inferentialist account addresses the issue of the objectivity of causal

claims in complex systems.

Conclusion

I introduced aims and methods of systems biology and computational eco-

nomics, as well as two phenomena studied by these disciplines, viz. apoptosis

and asset pricing. I described models built to account for such phenomena.

I defended the possibility of giving a causal interpretation to such models

and to the causal claims derived with their aid. My task will now be to pro-

vide a suitable interpretation of the meaning of these claims. In particular, I

will ask: Which account of causality provides the most adequate analysis of

‘causes’ as occurring in such claims? And how do these considerations affect

our understanding of causality in general?



Chapter 4

Difference-making Accounts of Causality

In this chapter I discuss the so-called ‘difference-making’ accounts of causal-

ity. They are based on the intuition that a cause is something that makes a

difference to the effect. One can distinguish between reductive accounts, such

as the counterfactual account (§4.2) and the agency account (§4.4), and non-

reductive accounts, such as the contextual unanimity account (§4.3) and the

interventionist account (§4.4). Difference-making accounts try to elucidate

the notion of causality in terms of one or the other privileged criterion, or

test condition, which typically grants the inference to the causal claim. Such

test conditions are then usually erected to either truth conditions, relevant

to the obtaining of mind-independent causal relations, or to conceptual anal-

yses, relevant to our understanding of the notion of causality. The appeal

of difference-making accounts in complex systems comes from the fact that

causes are—typically—difference-makers. Yet, difference-making criteria fail

to exhaustively capture the meaning of causal claims in complex systems.

There is more to ‘causes’ than difference making.

4.1 Regularity accounts

Regularity accounts are committed to the following two tenets: (i) causal

relations are general, that is, must be analysed in terms of properties of classes

of events, more specifically facts about regularities among events belonging

to those classes; (ii) causal relations are invariant, regular association being

invariable succession between events in such classes.40

The regularity view of causation is a direct descendent of Hume’s defini-

tion: A causes B iff A is spatially contiguous to B, A is temporally prior to B,

40This distinction is borrowed from Arif Ahmed. Notice that the two tenets can be held
independently. Endorsement of one and rejection of the other result in different (difference-
making) views on causality (see §4.2 and §4.3).
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and all A-type events are regularly followed by (or constantly conjoined with)

B -type events (see Hume, 1968, I.iii.14). The regularist can either maintain

that there is nothing more to causation than regularities (strong version)

or admit that the notion of causality cannot be fully reduced to regulari-

ties (weak version).41 Either way, he maintains that the notion of causation

is best elucidated—whether partially or totally—by reference to the more

transparent notion of regularity, viz. a kind of dependence.

The main troubles with regularity accounts are accounting for relations

involving imperfect regularities, recovering the asymmetry of causation, and

avoiding spurious correlations. Here I evaluate to what extent regularity

accounts can cope with such problems and be applied to complex systems with

reference to Baumgartner (2008)’s version of the regularity theory (in short,

RT), which improves in many respects traditional versions of the regularity

account (most notably Mackie, 1974). In RT, A causes B iff:

[RT1] A is part of a minimally sufficient condition AX1 of B;

[RT2] AX1 is a disjunct in a disjunction AX1 ∨ X2 ∨ ... ∨ Xn (or

“minimal theory” Φ) of other minimally sufficient conditions of B

(n ≥ 2), the disjunction being minimally necessary for B;

[RT3] A is part of Φ and stays part of Φ across all extensions of the

variable set considered;

[RT4] The instances of AX1 ∨ X2 ∨ ... ∨ Xn and B differ and are

spatiotemporally proximate.

RT purports to distinguish genuine from accidental and spurious regularities,

to distinguish causes from effects, and to allow for non-exceptionless regular-

ities to count as causal. I will first illustrate RT and then evaluate to what

extent it is successful when applied to causal claims in complex systems.

41The weak version is embraced by, e.g., Mackie (1974). Here, two further interpretations
of Hume are open to the regularist. First, a skeptical realist reading: there are causal
necessities in nature but the secret connexion that underlies them cannot be reduced to
regularities (Strawson, 1989). Secondly, a quasi-realist reading: there are no necessary
connections in nature (they are the result of a human ‘projection’), although there may be
objective causal relations insofar as there are regular associations (Blackburn, 1990).



§4.1 Regularity accounts 89

As in the Humean regularity account, causes and effects are spatiotempo-

rally distinct yet proximate (RT4).

Minimal sufficiency (RT1) is invoked to overcome the inability of the

Humean analysis to distinguish between genuine and accidental regularities.

Any sufficient set of factors must be non-redundant, i.e. contain no conditions

that just happen to be constantly followed by certain events without making

a difference to them. Redundant factors do not count as causes.

RT2 is imposed to deal with non-exceptionless regularities, to distinguish

causes from effects, and to distinguish spurious from genuine regularities.

First, not all causes are regularly associated with effects. For instance,

DNA damage causes increase in p53, which in turn causes synthesis of proapop-

totic proteins. However, p53 increase is not always associated with synthesis

of proapoptotic proteins. This may depend, among other things, on whether

the gene that codes for p53 is mutated. Similarly, in the stock market the

traders’ sensitivities to opinion, price changes and profits being below some

threshold prevents crashes. However, sensitivities below the threshold are

regularly associated with absence of crash only if the proportion of chartists

does not exceed a critical value. RT explains why a cause is (or is not) fol-

lowed by the effect in terms of whether the other conjuncts are instantiated.

In general, causal relations among two conditions are relativised to depen-

dences in complex sets of conditions. In this way, RT inherits the merits

of Mackie’s account. For Mackie, not only total causes but also causal fac-

tors, that is insufficient but non-redundant parts of unnecessary but sufficient

(INUS) conditions, count as causes. Non-exceptionless regularities may count

as causal, since INUS conditions are not sufficient for the effect.

Secondly, on the assumption that in complex nets of causal factors the

cause overdetermines the effect but not vice versa, regularities suffice to dis-

tinguish causes from effects. This should allow for there being at once nomo-

logical dependence between cause and effect (since any disjunct in Φ is suffi-

cient for B, the presence of the effect can be inferred provided the presence

of some of its causes) and inferential asymmetry (since B is only sufficient

for the whole disjunction, not for any particular disjunct, the presence of a

specific cause cannot be inferred from the presence of the effect).

Thirdly, by imposing minimal necessity, too, RT2 ensures that spurious

regularities are excluded via the exclusion of redundant disjuncts. This makes

RT superior to Mackie’s account. Consider the following structure, where A

(the sounding of the hooter in Manchester) and B (the London’s workers
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leaving from work) are the effects of a common cause C (a certain time of the

day), D is a further cause of A, and E is a further cause of B. Since AD is

minimally sufficient for B and part of a necessary condition for B, such that

(AD ∨ C ∨ E) ↔ B, then AD would count as a cause of B. RT avoids this

by imposing that necessary conditions, too, be minimal. C ∨ E is minimally

necessary for B (there are no instances of B without either C or E), but

AD ∨ C and AD ∨ E are not (there are instances of B without instances of

AD ∨ C and AD ∨ E).

Finally, RT3 guarantees that if some A is a genuine cause of B in an

incomplete theory Φ of B (such that, e.g., A and C are sufficient for B, but

B is not sufficient for A∨C), then A is not made redundant by the discovery

of other conditions for B (i.e., there is no X that is sufficient for B, and such

that B is sufficient for X ∨ C).

However, RT is not well suited to analyse the meaning of causal claims

in complex systems. To begin with, one may question the role of the number

of variables and Φ’s extensions. Incomplete knowledge of regularities grants

causal inference only by assuming that the cause stays part of Φ across all

extensions of Φ. Since there is no way to actually test all possible extensions,

it seems that the criterion legitimates causal inference only at the price of

trivialising the analysis. But let us assume that attempts to test causality

against large variable sets are enough for practical purposes. Still, the role

of regularities in such attempts does not serve the purpose of conceptual

reduction, as RT maintains. This point can be illustrated by reference to

the LN in (Mai and Liu, 2009). LNs are a very natural way to encode and

study regularities in large variable sets. However, Mai and Liu (2009)’s LN

is useful not because it allows one to bootstrap causal relations from pure

regularities, but because it helps to study macro-dependences on the previous

assumption of causal relations among individual variables, in turn based on

literature and expert knowledge. In short: no causes in, no causes out. Also,

for the model to provide significant statistics, even assuming a good deal of

causal knowledge, a vast amount of data must be available. Since databases

from empirical studies are too small to provide a representative sample, the

model’s conclusion must rely on random samplings of initial conditions and

simulations. In other words, the regularities employed to test causal relations

are not actual but artificially produced. This is not to say that the model is

useless. However, the larger the variable set, the less informative the reduction

of causation to observed regularities.



§4.1 Regularity accounts 91

But there is more. In RT, the possibility of distinguishing genuine from

accidental and spurious regularities, and causes from effects, depends on the

existence of complex structures of regularities. Given any two factors, the

complexity of the context—that is, the regularities amongst many factors—

should determine whether a causal relation obtains between them, and if so,

which factor is the cause and which is the effect. However, the number of

variables is not the only determinant of complexity. Crucial are also the

nature of the variables and their mutual relations. Such features make RT

inadequate in complex systems.

For instance, chaotic behaviour (e.g., Lorenz system, the markets in §3.2.3)

depends on the way a few non-linear interactions result in a strange attractor.

If the system is chaotic, the relata may not be subsumable under a regularity.

Two are the possibilities: either the relata are specific states of the system,

or one (the cause) is a set of parameter values and the other (the effect) is a

class of similar events, or motifs. If the relata are states, any two same-time

states, however close, lie on diverging trajectories, so ‘like cause, like effect’

claims are false: the less proximate the effects, the greater the difference. If

the cause is any of the sets of parameter values determining chaos, this is

responsible for all sorts of motifs, and there is no clear sense in which such

sets are regularly associated with the motifs. Furthermore, in chaotic systems

RT cannot recover the asymmetry of causation from the inferential asymme-

tries between causes and effects. In fact, here the complexity depends not

on the number of variables—in particular, the existence of several sufficient

causes—but on the sensitive dependence to initial conditions that result from

the (non-linear) way the variables are related to one another. Even leaving

chaos aside, there are further problems with RT.

In general, RT should be able to deal with imperfect dependences due to

the non-linear interactions among the variables, common to complex systems.

However, non-linearities often result in the absence of regularities. Even as-

suming that genuine causal relations between variables can be identified, and

that non-linearities don’t give rise to chaotic behaviour, non-linearities can

make the direction of the effect sensitive to the values of the other variables

(see Wagner, 1999, p. 95). In short, the larger the number of non-linear inter-

actions, the larger the number of possible attractors, and the more sensitive

the regularities to variations in context. And the greater this kind of context

sensitivity, the less applicable the ‘like cause, like effect’ principle. In fact,

for the direction of change to be specified in terms of regularities, results of
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changes in one variable must be specified with respect to all possible com-

binations of values of all variables. Assume one starts with no model of the

system, only with data, and tries to discover causal relations by identifying

regularities. If each causal relation depends on the specification of regular

changes, the regularities may be so fine-grained that they will be judged ei-

ther causal by fiat, because trivially exceptionless, or non-causal, since any

sample is too small to be representative.

Last but not least is the issue of determinism. RT works on the default

assumption of universal determinism, which entails that for each effect there

is always at least one set of sufficient conditions for it. Although there may

be instances where it is appropriate to conceive of causes as sufficient (or ne-

cessitating) conditions (see §2.1.3), there may not always be such conditions,

so one should not rely on their existence to analyse causality. Since complex

systems phenomena may be the result of—at least partially—indeterministic

processes (e.g., superconductivity, ferromagnetism), one should better not

build determinism in the analysis of causality, on pain of making it unneces-

sarily restrictive.

In the light of these problems, one may attempt to modify the difference-

making analysis by abandoning either one or the other tenet to which regu-

larity accounts are committed, viz. generality (§4.2) and invariance (§4.3).

4.2 Counterfactual accounts

Need causal claims be general? Why should the truth of a ‘this causes that’

claim depend on what happens at other places and times? It might well be

the case that there are causal claims which are generally true, e.g., strict

laws. Yet, one may argue that this fact depends on the local conditions

which link cause and effect in each instance of the regularity. Based on this

‘singularist’ intuition,42 the counterfactual account abandons the requirement

of generality whilst maintaining invariance.

Besides the regularity definition, Hume offers also a second, different def-

inition: C causes E iff “if the first object had not been, the second never

had existed” (Hume, 1975, §7.ii.60).43 The most renowned development of

this idea is Lewis’ counterfactual dependence account of causation—only for

42This intuition is also common among mechanistic accounts, for which it is the productive
nature of what happens between the relata that makes a relation causal (see chapter 5).

43Interestingly, Hume failed to notice the difference and took the two definitions to be
equivalent.
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Lewis the relata are events rather than objects.

An event, for Lewis, is a property, or class, of spatiotemporal regions.

Properties of regions that are genuine events are intrinsic, in the sense that

they ‘supervene on’ the region alone, and do not depend on extrinsic fea-

tures of the world. Causation supervenes on the totality of events (intrin-

sically considered) and fundamental matters of fact (whether deterministic

or indeterministic) holding at a world. Causation is defined as ‘transitive

counterfactual dependence’, in two steps.

First, Lewis characterises ‘causation’ in terms of ‘causal dependence’—of

which causation is the ‘ancestral’. Causation between events is defined as

transitive causal dependence along a chain of events:

event c causes event e iff either e depends on c, or e depends on

an intermediate event d which in turn depends on c, or... (Lewis,

1986, p. 242).

That is, causation between c and e depends on whether the causal dependence

between c and e is either direct or mediated by a chain of events such that each

pair of successive events in the chain stand in a relation of causal dependence.

For Lewis, transitivity is necessary for causation. This is to cope with cases

of symmetric preemption. Here is an example: A and B are both sufficient

for C; however if A operates, B does not, and vice versa; in the actual case A

operates, thereby preempting B and causing C; however, C does not causally

depend on A. Lewis solves this problem by requiring that there be a chain of

events between the cause and the effect. Since C transitively depends on A,

and not B, A is the cause.

Then, Lewis reduces (direct) ‘causal dependence’ to ‘counterfactual de-

pendence’:

Causal dependence is counterfactual dependence between distinct

events. Event e depends causally on the distinct event c iff, if

c had not occurred, e would not have occurred—or, at any rate,

e’s chance of occurring would have been very much less than it

actually was (Lewis, 1986, p. 242).

The counterfactual dependence between events in implication- or mereological-

relation with one another is excluded as non-causal by imposing that the

events in the causal relation be distinct, i.e., they cannot be properties of
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the same region or of overlapping regions (see Lewis, 1986, pp. 256, 259).

The clause about chance is meant to help the account to deal with non-

deterministic, or chancy, causal relations.44 In sum, the counterfactual de-

pendence (CD) account reads:

[CD] C causes E iff there is transitive counterfactual dependence

between C and E.

Counterfactual dependence holds, strictly speaking, between families of in-

compatible propositions describing relations between possible events. The

truth conditions for such propositions are defined over a possible-worlds se-

mantics (Lewis, 1986, pp. 163-166), such that, for any two propositions C

and E describing events c and e, ‘C2→E’ (i.e., ‘e depends counterfactually

on c’) is true iff some c-world where e holds is closer to the actual world than

is any c-world where e does not hold. Notice that the left-hand-side must

hold non-vacuously, that is, c-worlds must exist. Whether a given counter-

factual is true in the actual world depends on similarity relations between

the actual world and other possible worlds, so that ‘had c not been, e would

not have been’ must be true in all closest worlds to the actual one. Possible

worlds and their ordering with respect to their similarity are objective and

mind-independent. We have ‘access’ to such similarity relations by means of

a judgement of comparative similarity, based on the following criterion: the

more similar are the laws in a possible world to those holding in the actual

world, and the more similar is the antecedent complete state of a possible

world to the antecedent state of the actual world, the closer is such a possible

world to the actual world. For Lewis, the similarity relation is “primitive”

(i.e., it cannot be further analysed) and vague, yet “familiar” to all of us

(Lewis, 1986, p. 163). In the case of complex systems, a way to judge simi-

larity/closeness of worlds is by reference to models which specify the distance

between any pair of possible events at any given time (in all worlds where

laws are fixed and the same as in the actual world) in terms of, e.g., distance

of points that represent those events in the phase space.

The counterfactual account can be illustrated by means of a simple causal

structure, a ‘fork’ of three events, namely a common cause P and its effects

B and R. The classical example, to which I’ll refer for ease of exposition,

44For more on Lewis’ treatment of chancy causation, see Lewis (1986, pp. 175-184).
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involves the relation between pressure (P ), barometer reading (B) and rain

(R). However, it is easy to make the example more relevant to complex

systems, by thinking of P as measuring p53 expression, and B and R as two

effects of the regulatory activity of p53, e.g. apoptosis and DNA repair (see

§3.1.2), measured respectively in terms of levels of caspases (Casp3 or Casp9)

and DNA polymerases (Polδ or Polε), and neither one causing the other.

So, let P1 be the proposition ‘pressure falls at t’, B1 be the proposition

‘the barometer says “rain” at t′’, and R1 be the proposition ‘it rains at t′′’.

And let P2 be the proposition ‘pressure rises at t’, B2 be the proposition ‘the

barometer says “fine” at t′’, and R2 the proposition ‘it does not rain at t′′’.

And let p1, p2, b1, b2, r1, r2 stand for the corresponding events. According to

the counterfactual account: (i) P causes B and R, since the counterfactuals

‘P12→B1’ and ‘P22→B2’, and ‘P12→R1’ and ‘P22→R2’, are true; but (ii) B

does not cause R (nor does R cause B), since the counterfactuals ‘B12→R1’

and ‘B22→R2’ (respectively, ‘R12→B1’ and ‘R22→B2’) are false.45 That

is, the relation between barometer reading and rain is ruled out as spurious,

since the counterfactuals ‘hadn’t the barometer said “rain”, it wouldn’t have

rained’ and ‘hadn’t the barometer said “fine”, it would have rained’ are false.

In fact, one can imagine that the closest possible world to the actual one is

one where all matters of fact—including those relating pressure to rain—are

the same, with the only exception that the barometer is broken or biased.

In that case, the counterfactuals are false, hence the corresponding causal

dependence relation between barometer reading and rain does not obtain.

How does the counterfactual account get the temporal asymmetry of

causal dependence right? Lewis’ idea is that there always are counterfactual

asymmetries between antecedent and consequent states of causal relations.

It is a contingent fact that at any time the set of events which are jointly

sufficient for the occurrence of some later event is smaller than the set of the

events which are jointly sufficient for the occurrence of some earlier event.

The former overdetermine the latter, not vice versa. Accordingly, only a small

and local miracle in the past light cone of an event is sufficient for the non-

occurrence of the event to be counterfactually dependent on such a miracle.

45Notice that Lewis does not allow ‘backtracking’ reasoning to enter the judgement on
causal relations. This means that we are not allowed to consider counterfactuals such as ‘if
b1 had not occurred, it would have to have been the case that p1 did not occur, in which
case r1 would not have occurred’. Only non-backtracking counterfactuals may be employed,
i.e. counterfactuals that hold the past fixed up until the counterfactual antecedent event.
Lewis proposes that non-backtracking counterfactuals are distinguishable from backtracking
counterfactuals based on their greater similarity to actuality.
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Instead, many, non-local miracles in the future light cone of the event would

be needed for the event to counterfactually depend on them. For instance,

take the event of rain in a given place at a given time. Only a local change

in the pressure at some previous time in the vicinity of that region—viz. the

cause of rain—is sufficient, so the story goes, to counterfactually affect rain.

Instead, many later, non-local events such as maintenance of the local ecosys-

tem, production of hydroelectric power, crop irrigation, etc.—viz. the effects

of rain—would be needed to make a counterfactual difference to rain.

Does Lewis’ counterfactual analysis succeed in capturing the meaning of

causal claims in complex systems? Not completely. To begin with, one may

object that Lewis’ possible-worlds semantics is too vague and ambiguous for

the notion of counterfactual dependence to really illuminate the concept of

causality. How can one decide what counts as a ‘small’ miracle? And, since we

have no contact with possible worlds, how do we know what world is closest

to actuality? For instance, it is well-known that our causal judgments are

sensitive to the way the events are individuated. We will judge the truth of

‘The camper’s lighting of the fire caused the forest’s destruction’ differently,

depending on whether we contrast the antecedent event with one where the

camper doesn’t light the fire at all, or one where the camper lights the fire in a

slightly different manner or at a slightly different place or time. (Lewis, 2004)’

most recent view is that the problem depends on linguistic indeterminacy

and there is no principled way to solve it. However, complex systems show

that even with respect to models where the possible-worlds semantics can be

interpreted unambiguously the counterfactual account is inadequate.

Consider models of chaotic systems, for which the notions of similarity

and miracles can be made precise. In analogy with the distinction introduced

in §4.1, one can distinguish between two possible interpretations of c, as

either a fragile state or sequence of states (a motif), or as a non-fragile set

of parameter values. In the former case, where the chaotic model is taken

to represent literally, there is no possible c-world besides the actual world.

Here the counterfactual is true (the closest non-c world is a non-e world), but

trivially so (all possible worlds are non-c). In this case, the criterion is too

strict to be informative.46 The latter case is even more interesting, as it leads

46Another case are chaotic systems where the sensitive dependence depends on initial
conditions belonging to a fractal basin of attraction (see fn. 7). Here, although there are
c-worlds besides the actual one, if the model is interpreted literally, i.e., there is a physical
state corresponding to each point in the phase space, it is conceptually impossible to try
to find the closest non-c world: between any two initial conditions—however close—ending
up in the same final state, there is another one leading up to a different final state. So, it
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to neither triviality nor undecidability, but rather shows that causality need

not entail counterfactual dependence. If we take c to be a set of parameter

values, the model can be interpreted as representing more loosely : the exact

details and timing of the states of the system are irrelevant. Then, it is false

that the closest non-c world is a non-e world. Take Lux and Marchesi’s market

(§3.2.3) and consider the actual world to be one where sensitivities above the

threshold cause a crash. Since the occurrence of crashes is robust across

changes in parameter values, the closest non-c world (where the parameters

are slightly different, e.g., one or more are below the critical value) is such that

sooner or later the proportion of chartists will exceed the critical value and

cause a crash. So, there can be causation and no counterfactual dependence.

Either way, no matter what our intuitions are, CD is inadequate.

Nor need one rely on the special case of chaotic systems to come to these

conclusions. There are, in fact, other cases such that there is causation but

either (i) the counterfactual account does not say what causes what or (ii)

there is no transitive counterfactual dependence. To the first class belong

cases of symmetric overdetermination. For instance, p53 and TNF are (ce-

teris paribus) individually sufficient to affect Casp3. In the circumstances,

they act together. Does Casp3 counterfactually depend on both of them, or

only one of them? It is not clear how the account can deliver a verdict on

what causes what.47 To the second class belong cases of non-symmetrical

overdetermination (e.g., chancy preemption), where there is no dependence,

and cases where causes and/or effects are absences (e.g., double prevention),

where there is no transitivity.

I illustrate non-symmetrical overdetermination with reference to a chancy

preemption case in complex—but non-chaotic—systems. Chancy preemp-

tion is such that there are two processes, one preempting the other, which

lead to the effect with different probabilities; in the circumstances, the low-

probability process preempts the high-probability process but, nevertheless,

produces the effect. As a result, the preempting cause is the actual cause even

though the effect does not counterfactually depend on it, and the preempted

cause is not the actual cause even though the effect does counterfactually

depend on it. To illustrate the chancy preemption case, one may consider

is in principle undecidable whether the closest non-c world is an e or a non-e world.
47Notice the use of the ceteris paribus clause, which signals that the causal dependence

crucially depends not only on putative cause and effect and inbetween events but also on
the presence of suitable boundary conditions. I discuss the role of ceteris paribus condi-
tions below, when I show that causal relations are contextual, not intrinsic—against Lewis’
intuition.
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the study of the LN network, where perturbations on internal nodes are per-

formed to study the changes in the chance of an otherwise surviving state, that

is, whether the survival-to-apoptosis transition becomes more or less likely.

In the absence of the TNF signal, GFON would lead to survival with high

probability. Setting GF to OFF makes survival less stable, i.e., it raises the

probability of survival-to-apoptosis transitions. But as it happens, GFOFF

ensues in a configuration that, although preempting the higher-probability

process for survival, still results in survival. Here, survival does not counter-

factually depend on the preempting lower-probability process, which is the

actual cause; instead, it counterfactually depends on the preempted higher-

probability process, which is not the actual cause.

Let me turn to counterexamples involving absences. As mentioned, Lewis

requires transitivity to avoid symmetric preemption. The problem is that

in other cases—e.g., late preemption and double prevention—causal depen-

dences involve no chain of events, that is, they are not transitive.

In the late preemption case, both X and Y are sufficient to cause Z.

Y is such that it operates only if X does not. In the circumstances, X

operates, preempts the later process Y , and causes Z. However, Z does not

counterfactually depend on X. The counterfactualist might deal with this

problem by appealing to the intrinsic resemblance of the actual scenario to

another scenario where there is transitive counterfactual dependence between

cause and effect and the preempted alternative is absent.48 The idea is that

only events, i.e. essential properties of specific spatiotemporal regions, can be

causally efficacious. The absence of Y is not a genuine event, but a disjunctive

fact: either this event is instantiated, or that event is, or... For Lewis (1986,

pp. 172-173), although there is nothing in the XY Z region which makes X

be the cause of Z, X still qualifies as the cause, in virtue of its intrinsic

resemblance to other X-events that cause Z in the absence of preempted

causes Y . Actual processes that don’t exhibit counterfactual dependence are

‘causal by courtesy’, i.e., they exhibit ‘quasi-dependence’, in virtue of their

intrinsic resemblance to the comparison case.

48Lewis (1986, Postscripts to ‘Causation’) and Menzies (1996) go this way. In particu-
lar, Menzies offers a ‘folk theory’ of causation, where causation is defined as a theoretical
entity in a theory of platitudes about the concept of causation: causation is an intrinsic
relation between events; it is ‘typically’ accompanied by counterfactual dependence; etc.
Here, causation is not defined reductively as such-and-such a relation, but functionally, as
whatever worldly relation occupies the role the theoretical entity has in the theory. This
strategy, however, is unsuccessful because the modified account does not apply to all cases
of causation, e.g., double prevention (see below).
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However, the appeal to intrinsic resemblance does not help elucidate the

meaning of causal claims in complex systems. To begin with, the resulting ac-

count goes against the intuition that causation can involve omissions/absences

and the common practice of scientists of explaining by ascribing causal role to

absences and disjunctive kinds.49 One might think: too bad for the intuition.

But the account has further problems. First, since the account violates the

requirement that the actual world is one where the counterfactual dependence

is instantiated, it fails to constitute a reduction of causation to counterfactual

dependence. Secondly, and more importantly, the account doesn’t apply to

double prevention cases.

In double prevention cases, contrary to late preemption cases, there is

no connecting process between cause and effect, so transitivity fails. For

instance, Apaf1 and XIAP both cause Casp9—more precisely, Apaf1 promotes

Casp9, whereas XIAP inhibits Casp9—which then causes Casp3. Casp3, in

turn, promotes its own activation, for instance by preventing XIAP from

preventing Casp9 to cause Casp3. Casp3’s high level causes more Casp3

activation. However, there is no connecting process between Casp3 binding

to XIAP and Casp9 promoting Casp3—part of the spatiotemporal region

between the two events is not occupied by a chain of events that serves as a

connecting process. Here the relation is causal not in virtue of the transitivity

of the counterfactual dependence, but in virtue of the contextual features that

make it possible for the effect to still causally depend on the cause, even in the

absence of a causal chain. In general, double prevention cases show that causal

responsibility is attributed not on the basis of their intrinsic resemblance to

cases where there is transitive counterfactual dependence, but rather on the

basis of the context, viz. features extrinsic to the putative cause and effect and

what is between them. The ceteris paribus clause is meant to describe exactly

such contextual features. This shows that causation need not entail transitive

counterfactual dependence. And since the sort of context sensitivity typical

of double prevention cases is widespread in complex systems, it is all the more

implausible to analyse the meaning of causal claims in complex systems in

terms of (their intrinsic resemblance to) relations of transitive counterfactual

dependence.

Finally, it is not true that counterfactual dependence is sufficient for cau-

sation. This can be shown by considering how the counterfactual account

49Structural equation accounts (see Menzies (2009, §4.2) and Hitchcock (2010, §4.1))
attempt to solve this problem whilst trying to remain faithful to the intuition that causation
is counterfactual dependence. More on this in §4.4.
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handles the asymmetry of causation in terms of asymmetry of miracles. There

are two classes of cases the account must deal with, depending on whether

the laws are deterministic or not. If laws are deterministic, since they are

stated in terms of necessary and sufficient conditions, they are symmetric.

In this case, it is as true that a small change in the consequent state de-

termines a change in the antecedent state as is true that a small change in

the antecedent state determines a change in the consequent state. There is

no way to tell which is which unless (perhaps) by considering the locality of

antecedent and consequent states. For Lewis, in fact, prior determinants are

localised, whereas later determinants are not. But not always this criterion

can be employed, for instance if the laws are non-deterministic. Here, the

usual counterfactualist move is to claim that facts about entropy increase

make it the case that later determinants are more sensitive to prior deter-

minants than vice versa. However, it is controversial whether this reply is

successful (cf. Elga, 2000). At least in self-organising systems such as Bènard

rolls, where many coordinated events result in some emergent phenomenon,

the dependence of the emergent phenomenon on the microstates is robust, or

non-sensitive: a change in one of the many prior determinants does not result

in a major change in the effect, only in a change in the effect’s exact mag-

nitude and/or timing, etc. The markets in §3.2.3 count as self-organising in

this sense. In self-organising systems, it is false that the miracle that changes

the effect (e.g., a crash) by changing its prior determinant(s) (e.g., a change

in the individual behaviour of the traders) is smaller than the miracle that

changes the cause by changing its later determinant(s) (e.g., a forced suspen-

sion of trading due to the excessive drop in asset prices). Also, the change in

the later determinant may be as local as, or more local than, the change in

the prior determinants. Here we do have counterfactual dependence—in the

effect-to-cause direction—and yet no causation—since the asymmetry goes in

the wrong direction.

4.3 Probabilistic accounts

Need causal relations hold invariantly, as in regularity and counterfactual

accounts? Let us consider cases where we have positive evidence of genuinely

indeterministic causation, e.g., radioactive decay. In these cases, our best

theories suggest that no further knowledge can help determine whether or

not a given phenomenon will necessarily obtain after another. What does
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causality mean in these contexts? An obvious alternative is to analyse causal

claims in terms of probabilities. Probabilistic accounts envisage causal claims

as non-invariant, contrary to regularity and counterfactual accounts, and—

usually, but not necessarily—as general.50 In probabilistic accounts, a cause

is an event type, or property, that makes a probabilistic difference to another

event type, or property, viz. the effect. In general, probabilistic analyses

consist of two steps: first, a characterisation or analysis of the notion of

causation in terms of probability, and then, an explication of probability in

terms of, e.g., relative frequencies, degrees of belief, etc. I will here assume

that the second step has been dealt with and focus on the first step.

Probabilistic accounts can be categorised into (i) accounts based on the

intuition that a cause makes a positive difference to the effect (probability-

raising accounts), and (ii) accounts that do not require this. In both cate-

gories one finds both conceptually reductive accounts and non-conceptually

reductive accounts.

Let us indicate with uppercase letters variables and with lowercase letters

values of variables, so that C and E stand for, respectively, the cause variable

and the effect variable, and c1 and c0 (respectively, e1 and e0) stand for,

respectively, the obtaining and the non-obtaining of the cause (the effect).

(Here, C and E are binary variables.) All probability-raising accounts assume

the following, probability-raising condition (PR):

[PR] C causes E iff P (e1|c1) > P (e1|c0).

PR alone, however, is not sufficient to analyse causation, because it does not

deal with asymmetries and spurious correlations. First, probability raising is,

in itself, symmetric: P (e1|c1) > P (e1|c0) iff P (c1|e1) > P (c1|e0). Thus, PR

alone does not determine whether C is the cause of E or vice versa. Secondly,

take the case where B (level of mercury in a barometer) and R (occurrence of

rain) are both caused by P (pressure). In that case, it may be that P (r1|b1) >
P (r1|b0) even if B does not cause R. In the light of these considerations, two

main strategies have been pursued to salvage the probabilistic account. The

50A single-case—as opposed to a generalist—probabilistic analysis of causality may re-
quire an intensional, counterfactual semantics to analyse the notion of propensity (see, e.g.,
Fetzer, 1970, 1981). Alternatively, one may have a single-case analysis in terms of rational
degrees of belief. Generalist analyses, instead, are usually based on an extensional semantics
and a frequency (whether long-run or limiting frequency) interpretation of probability.



§4.3 Probabilistic accounts 102

first is to merely characterise causality in terms of probability raising, rather

than reduce the former to the latter (§4.3.1). The second is to focus on the

notion of probabilistic difference and try to build a probabilistic account—

whether conceptually reductive or not—around this notion (§4.3.2). Both

strategies face problems, and neither applies well to complex systems. In

both cases, the failures have led, for quite separate reasons, to modify the

probabilistic analysis so as to account for the meaning of causal claims not

in terms of probabilities alone, but in terms of the probabilities generated by

the result of interventions (see §4.4).

4.3.1 Probability-raising accounts

Let me start with modifications to PR. Cartwright (1979) offers an analysis

of the mutual constraints of causal laws and laws of association (CC):

[CC] C causes E iff c1 increases the probability of e1 in every

situation otherwise causally homogeneous with respect to E.

CC is a non-reductive analysis of ‘causes’, because causation isn’t reduced to

probability raising alone (to recover causal asymmetry, temporal ordering is

assumed), and the word “causal” appears in the analysis itself (although not

to characterise the relation between the two variables of interest). Yet, at

the level of specific causal claims CC provides a sort of conceptual reduction:

given temporal ordering and a causally homogeneous background, all there is

to causation between two target variables is probability raising. A causally

homogeneous background is described as one of the possible conjunctions

ki = ∧± ci of factors causally relevant to E. CC says that, C causes E iff c1

is positively relevant to the probability of e1 across all possible combinations

of such factors (excluding C and any intermediate causal factor between C

and E).51 For instance, CC says that holding fixed the context, but not

the values of p53 and its downstream effects, if (high, or wild) p53 always

increases the probability of apoptosis, then p53 causes apoptosis. However,

consideration of causes with dual capacities, which operate along different

paths, and of interacting capacities, which produce their effect depending on

51For the emphasis on positive probabilistic relevance in all causally relevant contexts,
this criterion is usually referred to as ‘Contextual Unanimity Theory’.
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their mutual interactions or interactions with the context, led Cartwright to

abandon CC.

For instance, p53 has a dual capacity: it can promote apoptosis, by pro-

moting synthesis of proapoptotic proteins, and prevent apoptosis, by promot-

ing DNA repair.52 How could one determine whether or not p53 is positively

relevant to apoptosis across all contexts, thereby being a cause of apoptosis?

Holding fixed the context at the time p53 level is measured and then checking

that ∀i P (apop|p53 ∧ ki) > P (apop|ki) won’t do. In fact, one cannot distin-

guish whether an increase in apoptosis obtains in virtue of p53 triggering

synthesis of proapoptotic proteins or in spite of p53 activating DNA repair.

What one should do is determine whether p53’s effect on the death of cells

which wouldn’t have died were it not for p53 is—always—greater than p53’s

effect on the death of cells which wouldn’t have been repaired were it not for

p53 (cf. Cartwright, 1989, p. 101).

Usually, one tackles the problem by holding fixed the value of intermediate

causal factors along all paths between C and E except the path where one

wants to calculate C’s relevance to E, for all ki. For instance, assuming the

existence of only two paths from p53 to apoptosis, one via Casp9 and the

other via Polδ, to check the relevance of p53 along the Casp9 path one first

holds fixed Polδ at the time p53’s effect on apoptosis is measured and then

checks whether ∀i P (apop|p53 ∧ ki ∧ Polδ) > P (apop|ki ∧ Polδ).

However, there may be contexts such that the influences of p53 and ki

on Casp9 are not independent of one another, in which case what matters is

their joint effect, and not that of p53 alone. For instance, p53 and ki may

(nonlinearly) interact with one another so that their joint effect on apoptosis

is positively relevant, although conditional on Polδ and ki, p53 is negatively

relevant. Yet, it seems legitimate to claim that p53 is causally relevant to

apoptosis even if it does not raise its probability across all contexts. Im-

portantly, such interactions are very common in complex systems, where the

probabilistic relevance of causes on effects is often sensitive to the context,

due to the presence of many factors and nonlinear interactions among them,

as evidenced by the apoptosis and asset pricing cases. So, CC is not necessary

to causation in complex systems.

52The original example discussed by Cartwright (1989) involves the dual capacity of con-
traceptives to prevent thrombosis, via the prevention of pregnancy, and promote thrombosis,
via the release of a harmful chemical in the bloodstream (Hesslow, 1976).
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Causal relations are population relative, or context sensitive: a factor

which makes a positive difference to another in one case may make a neg-

ative difference, or be neutral, in another case.53 On the face of this, one may

still want to maintain that a factor that can make a probabilistic difference

counts as ‘causal’ across all such contexts, viz. it is a ‘promoter’ in certain

contexts and a ‘preventative’ in other contexts. Then, the question is: In

virtue of what is the factor causal across contexts, even though it does not

always raise the probability of the effect?

A way to go is to say that for something to count as a cause it is enough

that it raises the overall probability of the effect. In line with this interpre-

tation is the average causal effect criterion for causality, which is a weaker

criterion than CC: the positive difference the cause makes in some populations

outruns the negative difference it makes in other populations. According to

this interpretation, the positive difference will manifest itself if the putative

cause is appropriately manipulated, for instance by a randomised control trial

(RCT). An RCT establishes that a factor is causal if, after randomisation and

partition of the population into two subpopulations, an intervention on the

putative cause in the test population makes a difference to the value of the

putative effect, such that the values of the effect variable in the control pop-

ulation and the test population are different. Since in this interpretation the

meaning of causal claims depends not so much on observed probabilistic dif-

ferences, but on results of interventions, I postpone discussion of this proposal

to §4.4, where manipulability accounts are presented.

An alternative way to fix the probabilistic account is to regard something

as a cause if it makes a probabilistic difference (whether positive or negative)

to the effect, with respect to a causal model, which is often conceived as a

Bayesian network causally interpreted.

4.3.2 Bayesian-networks accounts

A causal model consists of a set V of variables and two mathematical struc-

tures defined over V, namely a DAG and a probability distribution satisfying

the Markov Condition (Pearl, 2000; Spirtes et al., 1993). A DAG is a directed

acyclic graph, i.e. a set of directed edges among variables in V such that there

53For Cartwright, this means that singular causal facts—facts about the putative cause’s
“capacities” with respect to the putative effect—are primary, and cannot be reduced to
generic ones if we want to pick out the right regularities at the general level. More on this
in §5.5.1.
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are no loops, i.e., it is not possible to start from a vertice and, by following

a path along the directed edges, come back to it. A variable X in the graph

is the ‘parent’ of another variable Y just in case there is an arrow from X to

Y , and is an ‘ancestor’ of Y (and Y is a ‘descendant’ of X) just in case there

is a ‘directed path’ from X to Y . Associated to the graph is a probability

distribution that satisfies the Markov Condition (MC):

[MC] For any X in V and every set Y of variables in V\DE(X),

P (X|PA(X)&Y) = P (X|PA(X))

where DE(X) is the set of descendants of X and PA(X) is the set of par-

ents of X. The condition reads: for any variable, the probability of the

variable given its parents is independent of the set of its non-descendants.

When DAGs are associated with probability distributions that satisfy MC

they are called Bayesian Networks (BNs). BNs are a special kind of graph

whose nodes represent variables in the domain of interest, and whose arrows

represent probabilistic dependences and independences among the variables.

When the variables are causally interpreted, MC is called Causal Markov

Condition (CMC) and BNs are called causal Bayesian Networks (CBNs).54

CMC generalises Reichenbach’s principle of the common cause (PCC) (see

Reichenbach, 1956, p. 163): If A and B are probabilistically dependent, so

as to satisfy the relation P (a1b1) > P (a1)P (b1), either A causes B, or B

causes A, or there exists a common cause C such that P (a1|c1) > P (a1|c0),
P (b1|c1) > P (b1|c0), and the correlation between A and B is ‘screened off’,

that is, A and B are probabilistically independent given C (more formally:

A ⊥⊥ B|C). CMC implies the following version of PCC:

54BNs can be interpreted as either providing a probabilistic characterisation of causality
or as providing a reduction of the notion of causality to the notion of probability. Some
(e.g., Spohn, 2002; Pearl, 1988) take BNs to provide an analysis, causal relationships being
just the charts of the independences satisfied by probability distributions which meet MC.
Instead, others (e.g., Williamson, 2005) regard BNs as a useful way to represent a causal
structure, such that many—but not necessarily all—of its relations can be inferred from
and in turn produce, probabilistic dependences and independences.
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[PCC] If variables A and B are probabilistically dependent, either

one causes the other or there is a set U of common causes in V

that screens off A and B, i.e., A ⊥⊥ B|U.

PCC involves an inference from probabilities to causality, and is meant to

ensure that BNs can deal with spurious correlations: when a probabilistic

relation is observed, we can infer to the presence of a causal relation.

One condition that is usually imposed is that the variables be not distinct

for logical or semantic reasons (e.g., mean and variance of the same quantity,

or ‘bachelor’ and ‘unmarried man’), in which case their dependence is obvi-

ously non-causal. For instance, consider mixing of populations with different

traits, e.g., a population of cancerous cells, which respond to GF by growing

and dividing in an uncontrolled fashion (g1) and in which p53 phosphoryla-

tion does not result in apoptosis (a0), and a population of healthy cells with

opposite features. In the mixed population, growth and division (G) is corre-

lated with apoptosis (A): P (g1|a0) > P (g1|a1). However, neither one causes

the other: G and A are the outcomes of different pathways. And although

conditioning on whether cells are healthy or cancerous (H) does screen off

G from A, it cannot be interpreted as the common cause of G and A: H is

partly defined in terms of G and A, it does not cause G and A. In this case,

arguably the correlation is screened off by variables that aren’t logically or

semantically related to G and A.

There are several problems with the BN approach. To begin with, not

all causal relations may be represented by DAGs, for instance homeostatic

mechanisms based on loops of interlocking positive and negative relations.

One example is p53 self-regulation, based on p53 promoting Mdm2, which

then inhibits p53. Intuitively, the two relations take place at the same time

and are both causal. However, DAGs are so designed that the formalism

cannot, as it is, account for them.55

55Various solutions are available to model mechanisms involving loops (Casini et al., 2011,
fn. 14). One strategy is to leave out a node (e.g., Mdm2), provided the node in question
is not a common cause of other variables. Alternatively, one may combine the values (e.g.,
a1, a2, b1, b2) of two variables (A and B) that are connected by a causal loop, into a single
variable (AB, taking the possible values a1b1, a1b2, a2b1, a2b2). Either way, the relations in
the loop are not represented by the DAG. Another strategy is to time index the variables,
as in dynamic BNs (DBNs) (see, e.g., Friedman et al., 2000). This allows one to say that
A causes B and vice versa, however not at the same time.
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A further issue is that PCC delivers correct conclusions only on the as-

sumption that the set of common causes is complete, otherwise common causes

may fail to screen off their effects. Consider the case where two common

causes are present, for instance GF and p53 (respectively C and D) caus-

ing cancer (A), by promoting or inhibiting uncontrolled cell division, and

cell survival (B), by influencing, whether negatively or positively, apoptosis.

However, only C is known. With respect to this causal structure, it may be

that P (a1b1|c1) > P (a1|c1)P (b1|c1), that is, C fails to screen off A and B, due

to the residual effect of D. In such a case, PCC simply delivers the wrong

conclusion, viz. that C is not a cause of A and B. This is a problem whenever

it is implausible to assume knowledge of all common causes, which is often

the case in complex systems, where many causes may be in operation.

Furthermore, sometimes looking for common causes is simply the wrong

thing to do. Not all probabilistic dependences are underpinned by relations

that satisfy PCC. For instance, consider the case of time series with the

same trend (e.g., Venetian sea levels and prices of bread in Britain). They

are (positively) correlated (increase of one is correlated with increase of the

other), and yet neither one causes the other nor do they have a common cause

(Reiss, 2007). They just happen to be monotonically increasing time series

which are influenced by totally different causes. This is not the case of the re-

lations obtaining in the systems described by the models in chapter 3, simply

because each of them is meant to describe the operations of one mechanism

(in statistical parlance, of one ‘data generating process’), whose quantities’

correlations are, by assumption, non-spurious.56 However, PCC fails when

applied to series of events which are not the result of the same mechanism,

e.g., the series of numbers of cell death events in a biological organism and

of crashes in the market. Both series are monotonically increasing, but their

correlation is non-causal, since they are the result of independent mecha-

nisms. Importantly, understanding when PCC applies and when it doesn’t

presupposes causal knowledge, that is, the very same knowledge that PCC is

meant to deliver.

As I said, CMC involves an inference from probabilities to causality. An-

other crucial assumption of the BNs approach—viz. causal faithfulness—

involves a inverse inference, from causality to probabilities: whenever the

DAG correctly identifies causal relations, the operation of the system the DAG

56As Cartwright (2004) would have it, such models represent the operation of ‘regimented
systems’, responsible for the repeated instantiation of certain events, or states, whose cor-
relations can be causally explained.
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represents generates probabilistic dependences and independence as repre-

sented by the DAG. Otherwise, probabilistic dependences could not be taken

as representative of the underlying causal structure, and one could not use

CMC to infer causality. However, causal faithfulness is not always met, for

instance when causes with dual capacities have opposing tendencies that can-

cel out. Consider again the case of p53’s dual capacity to promote apoptosis

via the synthesis of proapoptotic proteins, and to prevent apoptosis via DNA

repair. If the capacities along the two pathways cancel out, there may be no

probabilistic difference, whether positive or negative, on apoptosis. Usually,

the advocates of the BNs approach reply to objections involving violations of

faithfulness by appealing to the role of interventions to produce the appropri-

ate probabilistic differences. Since this modified probabilistic account relies

crucially on the notion of intervention, I discuss it in §4.4.

4.4 Manipulability accounts

Manipulability accounts are nowadays the most popular amongst difference-

making accounts. They try to exploit the conceptual connection between

‘causing’ something and ‘manipulating’ something. Their appeal in complex

systems comes from the fact that causal claims in complex systems are often

accompanied by claims to the point that the effect can be manipulated by

intervening on the cause and/or some control parameter, when some other

conditions are met (e.g., holding the background context fixed, or eliminating

confounding factors).

Manipulability accounts can be categorised into agency accounts, which

aim to conceptually reduce the notion of causality to that of manipulations,

and interventionist accounts, which only aim at characterising causality in

terms of manipulations. The advantage of manipulability accounts is that

they provide a natural way to recover the asymmetry of causality: in a means-

end relation, the end obviously depends on the means but not vice versa. The

traditional worry with manipulability accounts is that they may be unable to

avoid circularity (‘manipulating’ is a causal notion) and/or anthropocentricity

(causality depends on manipulations performed/performable by humans).

4.4.1 Agency accounts

Agency accounts are not well suited to analyse the meaning of causal claims in

complex systems. This can be illustrated with reference to Menzies and Price
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(1993)’s agency account (in short, AG). Causality is “something analogous

to a secondary quality” (Menzies and Price, 1993, p. 189), like colours: to be

‘causal’ is to trigger some sort of response in an agent in standard conditions,

just like to be ‘red’ is to have the disposition to look red to a normal observer

under standard conditions. The analysis reads as follows (see Menzies and

Price, 1993, p. 187):

[AG] Event A is a cause of a distinct event B iff bringing about

A would be an effective means by which a free agent could bring

about B

In this way, Menzies and Price hope to reduce the notion of causation to the

more familiar notion of free manipulation. Realising a causal relation between

A and B means increasing the probability of B by means of bringing about

A.57 The purported advantage of AG is to account more easily for spurious

relations: If A raises the probability of B under manipulation, arguably the

relation is not spurious; conversely, if the correlation between A and B (e.g.,

barometer reading and rain) is spurious, arguably manipulating A makes the

probability-raising dependence between A and B disappear.58

Menzies and Price claim that their account is non-circular because the

notion of manipulation is understood with reference to our direct experience

of acting as agents doing one thing in order to achieve another, without a

prior understanding of the notion of cause. Also, they propose to define

‘causes’ in the presence of causality by ostension, in a way analogous to the

way we would define ‘red’ in the presence of a patch of red, by pointing to

it. However, it is debatable whether AG succeeds in avoiding circularity and

anthropocentricity.59

57The probabilities in question are called “agent probabilities”, i.e., “conditional probabil-
ities, assessed from the agent’s perspective under the supposition that antecedent condition
is realized ab initio, as a free act of the agent concerned” (Menzies and Price, 1993, p. 190).
Notice that Menzies and Price disagree on the interpretation of the agent probabilities:
Price holds that the probabilities in question are evidential; Menzies, instead, believes they
represent objective conditional chances. As a consequence, arguably they also disagree as
to whether their account merely specifies subjective assertibility conditions for causal claims
(cf. Price, 1998) or also objective assertibility conditions (read: truth conditions), like other
difference-making accounts. For more on Price’s position in relation to the inferentialist
account, see §7.2.2.

58For a criticism of this claim, see Woodward (2008, §4).
59Woodward (2003, p. 125), for instance, argues that Menzies and Price avoid non-

anthropocentricity only at the price of circularity.
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In particular, even assuming that the notion of agency can be non-circularly

used to analyse the notion of causing, AG may not be very illuminating as

regards the meaning of causal claims in complex systems, and more generally

the meaning of ‘causes’ in scientific contexts. The problem, is that analysing

causal relations and experiencing or denoting them are two different things,

in the same way that analysing the meaning of ‘red’ and experiencing or de-

noting red are different. So, our ‘first-person’ understanding of ‘red’ might

well be linked to our own experience of redness but does not say much about

the relation between the wavelength of the light emitted by the objects and

our sensory apparatus. The latter may be more informative than the former

with regard to the meaning of ‘red’. Analogously, the phenomenal experience

of bringing about is not enough to analyse the meaning of ‘causes’. First-

person experiences, such as experiencing pressure, are not very informative

as regards the meaning of ‘causes’ in, e.g., ‘p53 causes Casp3’ or ‘chartist

behaviour causes volatility’. In these cases, talk of p53 ‘activating’ Casp3 or

chartist behaviour ‘destabilising’ market prices seems more informative.

As a result, AG fails to reduce ‘causes’ to non-causal notions. We need cri-

teria which are more informative and more faithful to scientific practice than

first-person experiences on the basis of which causal claims can be inferred.

4.4.2 Interventionist account

To overcome the above objections, the interventionist account was devel-

oped. This account takes inspiration from the literature on causal discovery

and inference (Spirtes et al., 1993; Pearl, 2000) and has been developed into

a philosophical account of the meaning of causal claims by Hitchcock (2001)

and Woodward (2003). I will, from here onwards, mainly refer to Wood-

ward’s version of the interventionist account, in short INT, where the notion

of causality is characterised in terms of ‘ideal’ interventions.

A causal relation between variables Xi and Xj is characterised with re-

spect to a causal model, defined by the ordered couple < V,E >, where V is a

set of causal factors, V = {X1, X2, ..., Xn}, and E stands for a set of n struc-

tural equations describing the structure in which the variables are embedded.

Usually one distinguishes between ‘endogenous’ factors X, whose value is set

by mechanisms in the structure, and ‘exogenous’ factors U , which stand for

outer influences (e.g., interventions) and/or error terms, and whose value is

not set by mechanisms in the structure. Then, the model is defined by the
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triple < U, V,E >, where E indicates the value of endogenous variables as a

function of variables in both U and V . A causal structure is so represented:60

X1 = U1 (4.1)

X2 = f2(X1) + U2 (4.2)

X3 = f3(X1, X2) + U3 (4.3)

... (4.4)

Xn = fn(X1, X2, ..., Xn−1) + Un (4.5)

Causality between a r.h.s. variable and a l.h.s. variable is analysed in terms of

‘interventionist counterfactuals’, whose antecedent stands for the event where

the value of the r.h.s. variable is set by an ‘ideal’ intervention:

[INT] Xi causes Xj iff an ideal intervention on Xi would make a

difference to Xj .

A relation is causal iff an ideal intervention on the cause would make a dif-

ference to the effect. ‘Ideal interventions’ are defined as follows. Let Xi, Xj

and I indicate variables, the former two being endogenous, and the latter

exogenous. An ideal intervention I on Xi with respect to Xj is such that (cf.

Woodward, 2008, §6):

[INT1] I must be the only cause of Xi;

[INT2] I must not cause Xj via a route that does not go through

Xi;

[INT3] I should not itself be caused by any cause that affects Xj

via a route that does not go through Xi;

[INT4] I leaves the values taken by any causes of Xj—except those

that are on the directed path from I to Xi to Xj—unchanged.

60Notice the analogy of this kind of representation with the BN-style representation of
causal structures as systems of equations of the form Xi = f(PAi, Ui) (see §4.3.2).
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Conditions INT1–INT4 ensure that any change in Xj following to the inter-

vention is to be ascribed to Xi: I disrupts the causal relationship between Xi

and its previous causes, so that the value of Xi is set entirely by I; I has no

direct effect on Xj ; I is not caused by any of Xj ’s causes that are not on the

route tested; I does not affect causes of Xj that are not on the route tested.

INT purports to deal with both circularity and anthropocentricity. First,

notice that INT does not provide a conceptual reduction of causality, since

interventions are defined in causal terms. Yet, INT provides a non-circular, in-

formative characterisation of any target causal relation in non-causal terms—

causal terms are only used with reference to other causal relations. With

respect to the above model, the relation between variables Xi and Xj taking

certain actual values Xi = c@ and Xj = e@ is causal iff it is ‘invariant’ under

some interventions, i.e., e@ = f(c@) and there is an intervention Xi = cint

which fulfils conditions INT1–INT4 and changes the value of Xj to some

eint = f(cint).
61 So, as was for CC, at the level of specific causal claims INT

does provide a sort of conceptual reduction. Secondly, although INT mentions

interventions, the account is non-anthropocentric, since causality is defined

in terms of interventions that need not be carried out by humans—the values

of the variables may be spontaneously modified by Nature itself—ideal inter-

ventions only need to be ‘in principle’ possible for the counterfactual claim

to be true.

The interventionist account has the virtue of making clear the connection

between causation and one specific kind of intervention. Still, it has limita-

tions when used as an analysis of the meaning of causal claims in complex

systems. In general, it is not clear whether INT is to be interpreted as a

conceptual analysis—telling how ‘causes’ is or ought to be used (Woodward,

2003, pp. 7, 132)—or a methodological criterion—telling how one is to find

out whether causal relations obtain (Woodward, 2003, pp. 8, 22, 114). Either

way, the account has weaknesses: if the criterion is methodological, it doesn’t

apply to non-ideal settings, so it is not an all-encompassing regulative prin-

ciple; if the criterion is conceptual, it does not capture the meaning of causal

61Analogously, in the BN terminology, one may think of an intervention that sets the
value of Xi to some Xi = cint, fulfils conditions INT1–INT4, and changes the probability of
Xj to some P (Xj |Xi = cint) 6= P (Xj). As mentioned in §4.3.2, the advocates of the BNs
approach appeal to interventions to deal with violations of faithfulness. The basic idea is
that, although the probabilistic difference does not show up in the original graph, it does
in the graph where one sets the value of the variables one by one by intervention and then
observes what happens (Pearl, 2000) or considers an augmented graph where intervention
nodes on all the variables of the original graph are added (Twardy and Korb, 2004; Korb and
Nyberg, 2006). In this sense, INT counts as a modified probabilistic account of causation.
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claims in cases of unmanipulable causes, so it does not provide an exhaustive

analysis.

First horn first. Woodward argues against Lewisian versions of the coun-

terfactual account: judgements of similarity based on Lewis’ possible-world

semantics are both unintuitive and imprecise, and this makes causal ascrip-

tion often problematic (Woodward, 2003, pp. 137-139). In contrast, the inter-

ventionist account purports to be intuitive and precise: counterfactuals are

evaluated based on judgements about actual or hypothetical experiments, in

line with scientific practice. However, under several respects his account has

no clear or strong link with methodology.

To begin with, INT offers no all-encompassing criterion for testing causal

relations. For instance, it is often not satisfied in complex systems. These

are characterised by a lot of interactions—or ‘couplings’, using the complex

systems scientists’ jargon—both amongst their parts and between the parts

and the environment. Hence, there may not be interventions that modify Xi

without also modifying Xj either directly or indirectly.

Consider the case of apoptosis. Apaf1 promotes apoptosis by activating

Casp9, which then activates Casp3. Above a threshold, stimulation of Apaf1

makes the Casp3 activation irreversible. Below the threshold, instead, Apa1-

associated active Casp9 is inhibited by XIAP and unable to trigger Casp3.

So, XIAP typically inhibits Casp3 activation. However, XIAP also promotes

Casp3 activation, by contributing to irreversibility. This is because XIAP has

a dual capacity: it can also bind to Casp3 (figure 3.3). When Casp3 binds

to (non-mutant) XIAP, XIAP cannot bind to, and inhibit, Apaf1-associated

Casp9, which is then free to trigger Casp3. Therefore, not only does XIAP de-

crease Casp3 by inhibiting Casp9; it also increases Casp3, by inducing the im-

plicit positive feedback of Casp3. However, there is no intervention on XIAP

by which we could modify Casp3 along the latter path without also affecting

variables (Casp9) along the former path, hence without violating INT2 and

INT4. Notice that, depending on the context (e.g., Casp3>Casp9>XIAP),

the second activity may be negligible with respect to the first. However, even

if we fix the context so that the net effect on Casp3 is either negative or

positive, there still are—strictly speaking—two activities in operation (figure

3.2, bottom left). Also notice that Legewie et al. (2006) do consider the effect

of an intervention that mutates XIAP so that it non-competitively binds to

both Casp3 and Casp9. As a result, (mutant) XIAP affects Casp3 without in-

terfering with Casp9. But this intervention, too, violates INT2 and INT4. In
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fact, it produces two different species, namely XIAP-BIR2, with the capacity

to bind to Casp3 only, as well as XIAP-BIR3, with the capacity to bind to

Casp9 only. So, the intervention has effects on both Casp3 and Casp9.

Nor is INT very useful when it comes to use causal knowledge which

one has acquired by means of ideal interventions. Cartwright and Efstathiou

(2007), for instance, agree with Woodward that invariance is sufficient to

establish causation. If one can perform an ideal experiment where, thanks

to background causal knowledge, one is able to control for confounders and

test a single dependence relation, one can tell reliably whether the relation

is causal. Yet, knowledge of invariant relations so acquired can hardly be

used. Nothing guarantees, in fact, that changes in the causal structure of the

system have not occurred from the time of the experiment. This Cartwright

and Efstathiou dub the problem of ‘unstable enablers’.62 Consider the asset

pricing mechanism. Let us assume there is a way to intervene on frequency

of updating of trading strategies, or on chartist behaviour, to affect volatility.

Or let us assume that there is a handle, e.g., ‘network connectivity’ (Anand

et al., 2011), on which it is possible to intervene to prevent crashes in the light

of ‘precursory fingerprints’ (Sornette, 2002). If we are lucky, these interven-

tions may be successful. Still, due to reflexivity, they would also modify the

system, so that the exploited functional relation would not remain invariant.

In Cartwright’s words, “our actions can undermine the very structure that

gives rise to the causal principles we rely on to predict the outcomes of our

actions” (Cartwright, 2007b, p. 40). Economists themselves admit that social

policies inevitably trigger changes in structure that demand revision of our

knowledge of the structure and possible policies. They regard ‘ideal’ policies

not as interventions that leave the relations invariant, but as interventions

that manage to achieve short-term goal, in spite of the evolving nature of the

system (see Kirman, 2010, pp. 526-527). Accordingly, they do not search for

optimal solutions, viz. solutions of the kind ideal interventions allow, but for

‘satisficing’ solutions, and then adapt their policies on-the-fly to changes in

structures (cf. Simon, 1996, chap. 2). In the light of this, INT is of scarce

utility for policy, hence not methodologically necessary.

But perhaps the criterion in INT should not be so strictly interpreted.

62Assuming also modularity (i.e., that each direct relationship among variables can be
intervened upon without disturbing the others), as Woodward does, guarantees good pre-
dictions in the system tested, that is, internal validity. However, assuming modularity may
be bad for scope: modularity may not hold across systems, or even for the same system at
different times—which is a problem of external validity.
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So far, it has been assumed that the right causal structure is known, with

the exception of the causal relation to be tested. In fact, knowledge of the

right causal structure is required to perform surgical experiments and con-

trol for confounders. In practice, however, one doesn’t have this knowledge.

Given this difficulty, one often has to rely on other tools and assumptions,

e.g. RCTs. Couldn’t one interpret ideal interventions in INT as a (merely)

“regulative ideal” (Woodward, 2003, p. 114)? On this reading, what Wood-

ward may be saying is not that ideal interventions are a sort of all-or-nothing

criterion for causation, but rather that the more ideal the intervention, the

more warranted the causal claim. For instance, INT may be approximated

by an average causal effect criterion (§4.3).63 This criterion, common in the

statistics literature (see, e.g., Holland, 1986), says that a cause raises the

overall probability of the effect, in the sense that if the putative cause is

appropriately manipulated positive differences in some populations outrun

negative differences in other populations. RCTs could be interpreted as at-

tempts to approximate ideal interventions. Take two populations of traders

which, by randomisation, are alike in all respects but the value of some con-

trol parameter Xi, which is set by a (non-surgical) intervention in the test

population and left unchanged in the control population; even in the absence

of knowledge of the exact causal structure, provided the confounding effect of

B on Xj has been eliminated by randomisation, any probabilistic difference

on Xj can be ascribed to the causal effect of Xi.

The problem with this interpretation of INT is that for an RCT to estab-

lish causation, INT1–INT4 need not be satisfied. Stability under (non-ideal)

interventions, viz. robustness across changes in context, is enough to establish

causation. For Woodward, stability matters (only) to the scope of the causal

claim, that is, to whether a causal claim counts as a causal ‘law’: ‘Xi causes

Xj ’ is a causal law if the counterfactual dependence of Xj on Xi holds across

a range of values B of other variables in the background, Xj = f(Xi, B);

invariance, he maintains, is necessary for the relation to count as causal. But

in a well-conducted RCT, it is overall probability raising that matters; in-

variance over each unit is methodologically unnecessary. —For instance, a

treatment that violates INT4 but makes a net difference to the effect, still

63The causal effect on Xj of a change in Xi from Xi = x@ to Xi = xint (against a
stable background context of values of the other variables) is defined as the counterfactual
difference between the value that Xj would take under the intervention Xi = xint (viz. the
counterfactual value of Xi) and the value that Xj would take under the intervention Xi = x@

(viz. the actual value of Xi).
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counts as a cause.64 So, Woodward’s regulative ideal is not a good guide in

all circumstances.

If the above objections are sound, there is more to causality than envisaged

by INT. These and other limitations have led some (e.g., Cartwright, 2007b)

to complain that the interventionist account is too often unable to represent

causal relations, so cannot constitute a complete analysis of causality. The

interventionist account is, like the other accounts reviewed in chapters 4 and 5,

‘mono-criterial’: it privileges one criterion for causation over other criteria.65

Woodward thinks that this mono-criterial character is a problem for INT only

if there are realistic cases in which INT and other criteria conflict and where it

is clear that the causal judgements supported by these other criteria are more

defensible than those supported by INT (Woodward, 2008, §14). However,

contrary to Woodward, I believe that the tenability of INT does not depend

on the existence of cases of causation such that some other monistic analysis

is more suitable than INT to account for them. It suffices that there are cases,

such as the aforementioned apoptosis and asset pricing examples, where our

intuitions converge on the judgement that there is causation and that one or

more of the assumptions in INT fails—irrespective of the availability of an

alternative analysis.

Let us now address the other horn: to what extent does INT provide a

conceptual analysis of causality? A widely-held view on meaning is that the

meaning of a concept depends on its contribution to the truth conditions of

the sentences in which the concept appears. So, on the implicit assumption

that whatever provides truth conditions constitutes a better conceptual anal-

ysis than what doesn’t, Hiddleston (2005) and Psillos (2004) argue that laws

provide a better analysis of causal claims than INT: whereas laws provide

truth conditions66, interventionist counterfactuals provide at most test con-

ditions. In fact, what interventions count as ideal depends on the invariance

of the relation; invariant relations, in turn, are defined in terms of counterfac-

tuals; thus, so they argue, if counterfactuals are ultimately reducible to laws,

the meaning of causal claims can be analysed in terms of laws only, without

64Cartwright offers a similar remark to the point that neither invariance nor other test
conditions are necessary to use causal claims for the task of prediction. What matters is
the relation’s stability across contexts (see Cartwright, 2007b, p. 50).

65In contrast, Cartwright (2007b) favours a pluralist account over monistic, or mono-
criterial, accounts. A pluralist believes that a variety of distinct criteria may be relevant
depending on the causal claim at issue (see chapter 6).

66Notice that laws are not the only candidate. An alternative is to take mechanisms as
truth-makers of causal relations (see chapter 5). For more options, see Strevens (2007).
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reference to interventions. Woodward’s reply is that this objection relies on

the unjustified assumption that one can give a reductive account of laws (or

mechanisms) in non-counterfactual terms (Woodward, 2008, §14).

I agree with Woodward on this. However, the moral I’d like to draw is

more general, and extends to the concept of causation as well: we should

not try to reduce ‘causes’ to other concepts, only limit ourselves to point to

its connections with other concepts. That INT cannot function as a concep-

tual analysis of causation is shown by illustrating its limitations in dealing

with cases where we have no clear intuition on the objective conditions for

the outcomes of hypothetical experiments. Large attention has been drawn

to outcomes which depend on logical/conceptual possibilities that involve vi-

olation of laws. Take the claim ‘The position of the moon influences the

tides’, discussed by Woodward (2003, pp. 130-131). Changing the position

of the moon by doubling, for instance, its orbit without affecting the tides,

in a way or another, would require a violation of physical laws. And what is

the outcome of such experiments—and the truth value of the corresponding

counterfactual claims—in a world where not only initial conditions but also

laws are changed? However, no sufficient attention has been drawn to the fact

that violations of laws are far from being the only case where we lack clear in-

tuitions. In many cases (e.g., apoptosis and asset pricing), the non-intuitive

character of the outcomes of the experiments depends not on violations of

laws but rather on the complex and sensitive nature of the relations among

the causal factors.

An alternative is to read INT as providing an analysis of our causal intu-

itions not of causal relations themselves. Woodward claims that the function

of INT and of thought experiments in cases where the intervention is only

logically-conceptually possible is to “give us a purchase on what we mean or

are trying to establish when we claim that X causes Y ” (Woodward, 2003,

p. 130). So, it seems plausible to interpret him as giving a criterion for

meaningfulness not truth conditions: the relation between two variables is

conceivable as causal iff we can devise a thought experiment in the form of an

ideal intervention on one variable by which to modify the other variable. This

interpretation is considered by Psillos (2004, p. 301), too, who then discards

it for the following reason: although it is plausible to take INT as providing

sufficient conditions for meaningfulness of causal claims, it is doubtful that

it also provides necessary conditions. Take the moon-tides case again. The

meaningfulness of the causal claim does not seem to rely on the existence of
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clear intuitions as regards what counts as a conceptually ideal intervention. In

fact, it is unclear which interventions are conceptually legitimate and which

aren’t. As a result, it is unclear how INT can decide which causal claims are

meaningful and why.

In general, for Woodward INT is informative on the meaning of causal

claims as long as it provides a “principled basis” to answer counterfactual

questions about what would happen to the value of some variable if an inter-

vention were to occur on another variable (Woodward, 2008, §6). However, it

is not clear whether the counterfactuals that are relevant to the meaning of

causal claims must always be understood in terms of interventions—whether

explicitly or implicitly. As Woodward himself admits,

as we make the relevant notion of “possible intervention” more

and more permissive, so that it includes various sorts of contra-

nomic possibilities, we will reach a point at which this notion and

the counterfactuals in which it figures become so unclear that we

can no longer use them to illuminate or provide any independent

purchase on causal claims (Woodward, 2008, §11).

An analogous reasoning applies to a causal claim involving two successive

states of the entire universe where one is supposed to cause the other. Here,

like in the case of two successive states of a system which is completely isolated

from outer influences, interventions are in principle impossible. However, in-

terventions in the universe case are impossible for a more fundamental reason,

namely not only because the system is totally shielded from what is outside,

but also because there is nothing outside the causative state which could be

used to realise an intervention on such a state. Woodward (2008, §12) reads

this as an indication that INT applies more naturally to small worlds, where

exogenous interventions are possible. Additionally, one may draw the follow-

ing conclusion (C): The larger the world considered, the less the meaning of

a causal claim has to do with interventions. Instead, Woodward concludes

(C’): The larger the world, the less a causal claim is meaningful. But I see

no reason why we should prefer C’ over C. On the contrary, assume one is

presented with two causal claims, one about two successive states of the uni-

verse and one about two successive states of an isolated system. Intuitively,

it makes as much sense to say that a state of the universe causes a later state

of the universe as it makes sense to say that a state of an isolated system

causes a later state of the system. Furthermore, the legitimacy of the causal
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intuition in the former case seems independent from considerations involving

the possibility, whether practical or conceptual, of interventions.

In general, the more often INT is not useful or illuminating, the less

plausible it is that INT provides an exhaustive account of causation. One

is then left to wonder what makes causal claims causal, i.e. what is their

meaning, when INT is not clearly applicable. In such cases, it seems more

plausible that causal claims get their meaning from the analogy they bear

with other claims, from considerations of simplicity and coherence, etc. rather

than from the existence of ideal interventions that meet INT1–INT4, or from

judging on how much real interventions approximate ideal ones.

4.5 The contextuality of causality

Discussion of difference-making accounts supports the conclusion that the

meaning of ‘causes’ is not reducible to necessary and sufficient conditions.

Although each account has virtues, and is clearly informative in some do-

mains, it does not apply so well to other domains. For instance, RT is typi-

cally informative where causal relations happen to be embedded in complex

nets of linear relations; not so informative when effects are sensitive to initial

conditions or determined by many nonlinear interactions. CD is typically

informative in the presence of clear intuitions about possible worlds, and in

the absence of chaos, overdetermination or preemption; not so informative

otherwise. BNs are typically informative when probabilistic dependences are

either intuitively causal or some set of causally relevant variables happen to

screen them off, and when causal relations in turn faithfully generate prob-

abilistic dependences and independences; not so informative when there are

loops, and PCC or causal faithfulness are violated. INT is typically infor-

mative when INT1–INT4 are satisfied; not so informative where relations are

intuitively causal even though one or more of INT1–INT4 are violated.

In sum, the conditions from which a causal claim can be legitimately

inferred, or test coditions, and the consequences that a causal claim entitles

one to infer, or use conditions, may vary from context to context. Accordingly,

the notions which best serve to explicate the meaning of ‘causes’ vary as well.

The problem with complex systems is that, in addition to the general issue of

contextuality as domain sensitivity, here the meaning of ‘causes’ is not only

domain-relative but also claim-relative. Even if we focus on this one specific

domain (in fact, on only two mechanisms), no analysis seems well-suited to
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describe causal relations in it. What moral should be draw from this?

In the following, I argue that one should not take contextuality as entailing

that no informative analysis of the meaning of ‘causes’ is possible, or that

causal claims are irreducibly subjective. The detailed argument is given in

chapters 6 through 8. Here is a sketch of my argumentative strategy.

First, the context-sensitivity of the meaning of ‘causes’ is not incompat-

ible with the possibility that all instances of ‘causes’ be instances of a com-

mon concept (see chapter 6). However, this possibility need not rely on the

reducibility of the meaning of ‘causes’ to necessary and sufficient truth condi-

tions. A claim to the contrary, on the mere ground that an anti-reductionist

view about causality is uninformative, is question-begging (cf. Carroll, 2009,

p. 290). Nor is the truth-conditionalist analysis of meaning the only game in

town. Here is an alternative, which I investigate in chapter 7: the meaning

of causal claims, and the word “causes” in such claims, comes not from their

correspondence with mind-independent facts, whether causal or non-causal,

but from their functional role in the language game, that is, on their being

(parts of) premisses or conclusions of arguments (Harman, 1999; Dummett,

1991; Brandom, 1994b).

Secondly, the contextuality of causal claims is not incompatible with their

objectivity, provided ‘objectivity’ is not identified with ‘mind-independence’

of truth conditions, but with ‘entitlement’ to the claim on the basis of prac-

tice, both linguistic and non-linguistic. Objectivity, so construed, is partly

a matter of linguistic rules and norms, and is not reducible to some alleged

realm of facts describable in mind-independent terms. I leave to chapter 8 the

task to justify the view that, although in a sense causal claims are sensitive

to the context of their use, in another sense they have a force which goes

beyond such a context.

To pursue this argumentative strategy, I will resort to an inferentialist

analysis of the meaning of causal claims. As I will argue, inferentialism allows

one to make sense not just of the contextuality of causal claims (their meaning

varies from context to context) but also of their objectivity (relative to the

context, one claim is more or less appropriate).

Conclusion

Difference-making accounts provide useful test conditions for causality. Yet,

they do not constitute exhaustive analyses of the meaning of causal claims
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in complex systems. On the one hand, difference-making criteria are not

always satisfied, due to sensitivity to context and initial conditions. On the

other hand, due to their almost exclusive focus on test conditions, difference-

making accounts disregard the role of use conditions in establishing meaning.

The first take-home message of the chapter is that the meaning of ‘causes’

has different connotations in different contexts. A satisfactory account of

causality in complex systems should both acknowledge and explain such a

contextual aspect: on the one hand, it should say what ‘causes’ means in cases

where specific difference-making criteria do not apply; on the other hand, it

should explain the relevance of difference-making criteria where/when they

do apply. The second take-home message of the chapter is that analyses

of the meaning of causal claims in terms of necessary and sufficient truth

conditions may be wrongly-headed. It is time to try something different.

Before turning to my positive proposal, however, I need to show that other

accounts of causality are not well suited either to explicate the meaning of

causal claims in complex systems, namely mechanistic accounts (chapter 5)

and pluralist accounts (chapter 6).



Chapter 5

Mechanistic Accounts of Causality

In this chapter, I discuss the so-called ‘production’ accounts of causality.

These accounts are based on the intuition that a cause is something that pro-

duces, or brings about, the effect. The explication of the notion of causality

in such accounts goes via the identification of the truth-maker of the relation,

whether a process, a disposition, a mechanism, or else. My main focus here

will be the mechanistic account developed by Glennan (1996, 2002), since this

is explicitly meant to fit the complex systems case. In §5.1, I introduce the

reader to the motivations for the mechanistic approach in philosophy of sci-

ence and in the analysis of causality. In §5.2 and §5.3 I present, respectively,

Glennan’s account and some objections against it. In §5.4 and §5.5, I dis-

cuss the prospects of the mechanistic account. In particular, I argue that the

account cannot be salvaged by drawing on conceptual resources from other

production accounts, viz. process-based accounts and power-based accounts.

I conclude with a remark on the possibility to give a non-representationalist

interpretation to models of mechanisms and to the causal claims describing

the mechanisms’ workings (§5.6).

5.1 Mechanistic causality: whys and wherefores

‘Complexity’ and ‘mechanism’ are deeply intertwined notions: understanding

complexity requires an understanding of the mechanisms which produce and

sustain it, and many mechanisms are—at least prima facie—complex. It is

no surprise, then, that talk of mechanisms is ubiquitous in complex systems

sciences. Upon realising that a given model applies well to a given class of

systems, scientists tend to say that the systems belonging to the class instanti-

ate the same—or, at any rate, a similar—mechanism. Also, complex systems

sciences are often cross-disciplinary, since features common to a class of, say,

biological systems may be shared by certain social systems as well. Indeed,

122
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what scientists often realise is that, surprisingly, abstract mathematical or

computational models which apply well to a class of systems are ‘exportable’

to prima facie very different systems. For instance, the applicability of net-

work models (Newman et al., 2006) ranges from protein-protein interactions

to the world wide web; models of self-organisation (Nicolis and Prigogine,

1989; Kauffman, 1993) can be applied to phenomena as diverse as convection

and magnetisation on the one hand, and market behaviour on the other hand;

genetic algorithms (Holland, 1995) can be used to model biological evolution

as well as the evolution of decision-making strategies, e.g., in minority games;

and so on and so forth. In such cases, scientists (and philosophers, too) find

themselves asking what mechanism, if at all, is shared by two different classes

of systems which makes the transfer from one class to the other successful.

Since talk of causal relations in complex systems sciences is usually associ-

ated with descriptions of mechanisms, a plausible working hypothesis is that

causal relations in complex systems have somehow to do with mechanisms

and that a satisfactory account of causality in complex systems should be

informative as to the connection between mechanisms and causal relations.

And clearly, even if existing mechanistic accounts of causality are not satis-

factory for one or the other reason, it is desirable to understand why it is so,

and build a better account from there.

At the same time, philosophers interested in scientific methodology, in par-

ticular scientific explanation, are more and more focussing on understanding

the nature of mechanisms. Besides, some philosophers have come to conceive

causal relations themselves as ‘requiring’ mechanisms.67 In general, philoso-

phers wishing to offer a mechanistic account of causality have to consider at

some point the role that complexity plays in shaping causal relations. This

is all the more true if the mechanistic account of causality is explicitly meant

to fit complex systems causation, as is the case of Glennan (1996, 2002).

The reason for this interest in mechanisms in the causality literature is that

mechanisms are considered crucial to satisfy the following two desiderata: (i)

to provide the (causal) explanation of phenomena; and (ii) to elucidate the

concept of causality by identifying the truth-makers of causal claims.

Mechanistic accounts of causality purport to meet the first, explanatory

requirement by showing how mechanisms provide the thread between putative

causes and effects. The idea is that the effect happened because certain

67Here, ‘requiring’ may be read in several ways, viz. as ‘being instantiated in’, or ‘being
analysable in terms of’, or ‘being explainable in terms of’, or what have you.
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conditions and a certain mechanism were in place. The explanation is usually

supposed to avoid appeal to magic or action-at-a-distance. It is thought that

magic or action-at-a-distance don’t provide the desired explanation, whereas

mechanisms ‘open the black box’.

The second requirement, instead, concerns the informativeness of the ac-

count. Even if the aim of the mechanist is not to give a conceptually reductive

analysis of causation, he still wants to produce an informative characterisation

of causality, by saying what all causal relations have in common—although

this characterisation may be in terms of notions with causal content (e.g.,

‘produces’, brings about’, ‘inhibits’, etc.).

The mainstream view on what a mechanism is rests on the definitions in

(Machamer et al., 2000; Bechtel and Abrahamsen, 2005; Glennan, 2002). De-

spite differences, all parties agree that mechanisms consist of entities/parts,

their activities/interactions, and their organisation, which are together re-

sponsible for the production of the phenomenon. For the sake of precision,

other characterisations should be added to the above list.68 Most characteri-

sations, however, either constitute mere variations on the same theme, or are

less relevant to the case of complex systems causation. Thus, with the excep-

tion of the interventionist account of mechanisms (§5.3), the Salmon-Dowe

account (§5.4.4), and Cartwright’s ‘nomological machine’ account (§5.5.1),

they will not be discussed in the present context. Indeed, I will mainly focus

on Glennan’s account, since it is the only mechanistic account which explicitly

purports to be an account of causality and to apply to complex systems.

5.2 Glennan’s mechanistic account of causality

Glennan (1997, 2011) adopts a ‘singularist’ view (cf. §4.2): the obtaining of

the causal relation is local to the occurrence of cause and effect and what

is between them. Causal laws are to be understood as descriptions of, and

derivative from, singular facts about the local workings of mechanisms. This

68For instance, Salmon (1997, pp. 462, 468) and Dowe (1995, p. 323) characterise mecha-
nisms in terms of processes and interactions where physical quantities are conserved (§5.4.4).
Woodward (2002, p. S375), in line with his interventionist account, defines a mechanism
as a structured set of parts such that its behaviour is describable by means of generalisa-
tions which are invariant under ideal interventions. For Bunge (2004, pp. 189, 191, 193),
mechanisms are processes in material systems; processes, in turn, are sequences of states,
or strings of events. Cartwright (1999, p. 50) holds that mechanisms are a sort of ‘nomo-
logical machines’, that is, arrangements that tend to produce the regularities described by
scientific laws. Elster (1989, 1998), Hedstrøm and Swedberg (1998) and Steel (2004) offer
other characterisations which are meant to be tailored to social systems.
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view is incompatible with analyses of causation based on generalist criteria,

e.g., regularity and probabilistic dependence accounts.

According to the mechanist (see, e.g., Glennan (1996, p. 64), Bunge

(2004)), a relation between two events is causal only if it is underwritten

by some mechanism which connects them. It is well known, however, that

there are all sorts of mechanisms between any two event types. For instance,

between sunlight and cancer there are mechanisms that bring about cancer

(excessive sun exposure) as well as mechanisms that prevent it (given that,

trivially, the whole of life depends more or less directly on sunlight). The

problem, then, is how to pick the appropriate mechanism, that is, the mech-

anism that explains and provides the truth-maker for the relation. Glennan’s

first attempt to achieve these goals by spelling out the notion of mechanism

resulted in the following definition:

A mechanism underlying a behavior is a complex system which

produces that behaviour by the interaction of a number of parts

according to direct causal laws (Glennan, 1996, p. 52).

However, given the absence of regularities unanimously accepted as laws in

complex systems sciences, he later changed this definition so as to avoid ref-

erence to the universality commonly associated with laws:

A mechanism for a behavior is a complex system that produces

that behavior by the interaction of a number of parts, where the

interactions between parts can be characterized by direct, invari-

ant, change-relating generalizations (Glennan, 2002, p. S344).

The general idea behind the above definitions is that not all systems will

count as mechanisms, but only those which are stable (e.g., watches, cells,

organisms, social groups), made of parts which are themselves stable, and

whose interactions produce a robust behaviour, as opposed to an ephemeral

one (see Glennan, 2002, p. S345).

The change from the former to the latter definition constitutes a shift

from analysing causation in terms of laws, that is, counterfactual-supporting

generalisations (see Glennan, 1996, p. 54), to regarding such generalisations

only as a way to describe the relation between facts about (ideal) interventions

and facts about outcomes of these interventions.69 The requirement that they

69This shift was anticipated by (Glennan, 1997), where any (non-fundamental) law,
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be ‘direct’ is meant to avoid intervening causal factors along the pathway from

cause to effect.

Following Woodward, Glennan says a relation is causal when there is a

possible intervention that by modifying the value of a variable (which cor-

responds to the property of one part) brings about a change in the value of

another variable (which corresponds to the property of another part) without

altering the values of the other variables (see Glennan (2002, pp. S344-S345),

Glennan (2011, §4) and Woodward (2003, p. 98)). Such an intervention helps

identify generalisations which are ‘change-relating’, i.e. functionally relating

changes in the cause and corresponding changes in the effect, and ‘invariant’,

i.e. stable across a range of values of the other variables. This, in turn, helps

distinguish causal relations from accidental correlations or spurious relations

between effects of a common cause.

Glennan’s account differs from Woodward’s, however, because causation

is not analysed in terms of interventions. Interventions provide test condi-

tions rather than truth conditions. What makes the relation causal is the

mechanism linking the cause and the effect, not facts which merely exploit

the existence of this mechanism. In Glennan’s own words, “The manipula-

bility account emphasizes procedures for discovery, prediction and control.

The mechanical account provides (...) a metaphysical underpinning of the

manipulability approach” (Glennan, 2011, p. 802).

The account is prima facie attractive since, as I said, it purports to provide

a characterisation of causal relations in complex systems. Also, it appears to

have the resources to achieve this goal, as it is cashed out in terms of notions

which complex systems scientists themselves use, namely, parts, interactions,

‘complex’ systems, etc. As we shall see, however, it suffers from problems and

ambiguities which arise when the notion of mechanism is used to characterise

causal relations.

5.3 Problems with the mechanistic account

Glennan’s characterisation of mechanism goes via the notion of counterfactu-

als. Against his proposal the objection could be levelled that it gives rise to

circularity and/or regress, both of which may result in damaging the infor-

mativeness of the account.

e.g. Mendel’s second law, is characterised as “just a description of how a particular type of
mechanism behaves” (ibid., p. 622).
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Mechanisms that underpin causal relations are characterised in terms of

a particular kind of counterfactuals, namely interventionist counterfactuals,

which are used to produce change-relating generalisations. Each generali-

sation, in turn, describes the operation of another mechanism. So, the ac-

count seems conceptually circular—causality being analysed in terms of mech-

anisms; mechanisms in terms of counterfactuals; counterfactuals, in turn, in

terms of mechanisms; and so on and so forth. Notice that this need not be a

problem in itself. As was the case of non-reductive analyses of ‘causality’ in

terms of probabilities and ideal interventions, here, too, the analysis may be

informative, provided the circular connection between ‘mechanism’ and ‘in-

tervention’ is virtuous. (One obvious difference is that, whereas in the proba-

bilistic and interventionist analyses the analysans provides a direct analysis of

‘causality’, in the mechanistic account it provides an indirect analysis, since

the link to ‘intervention’ goes via the notion of ‘mechanism’.) Circularity is a

problem, however, if the circle fails to shed light on the analysandum. Prob-

abilistic and interventionist analyses fail to be informative in cases where the

conditions they postulate are not met. The analysis of ‘mechanism’ in terms

of ‘intervention’ fails to be informative when it presupposes knowledge that

the intervention is testing a relation which—actually, or plausibly—belongs

to the mechanism. The more one lacks clear intuitions on what the relevant

mechanism is, the more ‘causality’ inherits the vagueness of ‘mechanism’.

This is often the case in complex systems, where there are no neat/known

boundaries between system and environment, and so many operations take

place at the same time whose relevance, if any, to the mechanism is unknown.

In addition, between mechanisms and counterfactuals there seems to be

an asymmetry (see Psillos, 2004, p. 310). Each mechanism is recursively de-

composable into parts, each part being a further mechanism, until the system

cannot be decomposed anymore into parts. Mechanisms ultimately bottom

out in ‘brute’ counterfactuals, which are therefore more fundamental than

mechanisms: (i) fundamental level interactions can only be explained coun-

terfactually (‘if this part were to change, that part would change’), not mech-

anistically, so the above circle bottoms out in brute counterfactuals, which

are the ultimate explainers; (ii) the truth-makers of causal claims, whether

themselves causal (e.g., Salmon-Dowe processes and interactions) or not, are

ultimately not mechanisms. Here, the worry is that the account leads to a

metaphysical regress as regards the identification of the truth-makers: a mech-

anism at level n is identical to one or more mechanisms at level n− 1, which
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are in turn identical to one or more mechanisms at level n−2, and so on and so

forth until some fundamental level is reached, if such a level exists.70 Notice

that Glennan (1996) takes pain to stress that each mechanistic decomposition

has a certain autonomy. That is, the further mechanisms a mechanism can

be decomposed into are mechanisms for other behaviours, hence they do not

provide an explanation for the original phenomenon that we wanted to ex-

plain. This may salvage the explanatory function of mechanisms, but doesn’t

address the issue of truth-makers. In fact, case by case, it would still be true

that coarse-grain phenomena, although explainable in terms of coarse-grain

mechanisms, obtain in virtue of fine-grain mechanisms—and ultimately in

virtue of brute counterfactuals.

And there are other problems, too, concerning Glennan’s notion of mech-

anism. On the one hand, the identification of ‘mechanism’ with ‘system’ leads

to unintuitive consequences. According to Glennan, the relata of the causal

relation are events. Events, in turn, are (causally) related by a mechanism,

which is a complex system. A complex system, in turn, is a stable arrange-

ment of parts, which is arguably an object. Hence, events would be related

by an object. But this sounds implausible. Intuitively, events are mediated

by something dynamic, e.g. a process of change, not something static, e.g. an

object. How can a system, i.e. an object, provide the thread between two

events? As it is, Glennan’s notion of mechanism doesn’t seem the sort of

thing in terms of which causation can be analysed. On the other hand, the

characterisation of mechanism seems too restrictive. Two objects gravita-

tionally attracting each other, for Glennan, do not count as a mechanism in

the sense of a complex system: their interaction is “brute” (Glennan, 1996,

p. 50). Between events involving such interactions, the causal relation is char-

acterised in terms of brute counterfactual dependence not a mechanism, since

no further decomposition is possible. However, it isn’t clear why we have no

mechanism here. We do have a system, (two) parts, interactions, etc. This

limitation is all the more striking if we consider prima facie genuine cases of

complex systems, e.g., double pendula, which would not count as a complex

system in Glennan’s sense. A double pendulum is a complex system whose

initial conditions can determine a chaotic behaviour just in virtue of the po-

sition of the two masses. This seems a legitimate mechanistic explanation,

although it does not refer to the operations of further parts. Legitimate seems

70If one finds problematic the idea of a ‘regress’ that could stop somewhere rather than
go on forever, one may want to re-label this problem the “bottoming-out problem”, viz. the
truth-makers at the bottom level, wherever that level is, are not Glennan’s mechanisms.
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also claiming that the chaotic behaviour is caused by the initial position of the

masses. However, a double pendulum would not count as a complex system

in Glennan’s sense, so his account cannot explicate the causal claim. Thus,

Glennan’s notion of mechanism leaves out too much.

What Glennan would need is a more solid notion of mechanism, which

allows to avoid the above mentioned problems, viz. conceptual circularity,

metaphysical regress, the unintuitive appeal to objects to mediate between

relata, the inapplicability of the notion to two-part mechanisms. In §5.4,

I evaluate the prospects of the mechanistic account as applied to complex

systems, in the light of more recent developments of Glennan’s view as well

as considerations of my own.

5.4 The prospects of the mechanistic account

5.4.1 A virtuous circularity?

Recently, Glennan (2011, §4) has advanced the thesis that counterfactuals

and mechanisms really are on a par—both conceptually and metaphysically:

The mechanical approach relies on the counterfactual approach

because there is no way to define interactions between parts of

mechanisms except by appeal to counterfactual-supporting gener-

alizations. The counterfactual approach relies on the mechanical

approach because the truth-conditions for counterfactuals depend

upon the structure of mechanisms (Glennan, 2011, p. 806).

Glennan grants to Psillos that the mechanical approach cannot eliminate

counterfactuals, hence it cannot provide a reductive analysis of causal claims.

Yet, he rejects Psillos’ asymmetry claim on the grounds that the truth con-

ditions of interventionist counterfactuals depend—more or less explicitly—on

the structure of mechanisms. That is, one has to mention the mechanism in

which the counterfactual relation is embedded in order to provide the truth

conditions of the causal claim, hence one cannot do away with mechanisms

either. However, this reply is not, in my opinion, satisfactory.

Leaving aside the regress problem for the moment, which I address in

§5.4.3, the (symmetric) interplay between mechanisms and counterfactuals

fails to illuminate the meaning of causal claims in complex systems. Here is

why. Woodward defines a ‘mechanism’ as



§5.4 The prospects of the mechanistic account 130

(i) (...) an organized or structured set of parts or components,

where (ii) the behavior of each component is described by a gen-

eralization that is invariant under interventions, and where (iii)

the generalizations governing each component are also indepen-

dently changeable (Woodward, 2002, p. S375).

Depending on how one reads Woodward, one may ascribe to Glennan a

stronger or a weaker view on the conditions for interventionist counterfac-

tuals to provide the semantics of causal claims.

Under the strong intepretation modularity must hold for something to

count as a mechanism, i.e., it must be possible for a change in a property

C of one part to bring about a change in the property E of another part

without (1) affecting E directly or indirectly or (2) altering any of the other

functional relationships in the mechanism (see Woodward, 2003, p. 329). This

interpretation is supported by other statements of Woodward’s, e.g.:

the components of a mechanism should be independent in the

sense that it should be possible in principle to intervene to change

or interfere with the behavior of one component without neces-

sarily interfering with the behavior of others (Woodward, 2002,

p. S374).

It seems that Glennan needs modularity for his analysis to work. His require-

ment that the interactions between the parts be ‘direct’ (§5.3) is intuitively

satisfied by a modular system, but makes little sense if independence is not

imposed between the relation tested and other equations.

However, since it is not always clear whether Woodward (2003) does in fact

claim that causality requires modularity, one may interpret him as making

the weaker claim that at least (1) must be met. In line with this, he states

that “components of mechanisms should behave in accord with regularities

that are invariant under interventions” (Woodward, 2002, p. S374).

So Glennan could be interpreted as making either one of the following

two claims: (a) ‘mechanism’ is analysable in terms of ‘intervention’ whenever

mechanisms are modular; or (b) ‘mechanism’ is analysable in terms of ‘inter-

vention’ whenever all causal relations in the mechanism are invariant under

intervention. However, (1) is often not met in complex systems (§4.4.2): due

to the many couplings among the variables, complex systems are often such

that there are no interventions that modify E just in virtue of modifying C,
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without also modifying E either directly or indirectly. As a result, the seman-

tics of causal claims in such cases remains unclear, since no other criterion

besides intervention is offered to distinguish genuine from spurious relations.

5.4.2 What is a mechanism?

In an attempt to elucidate the relation between (mechanical) system and

(mechanical) process, Glennan says:

“Mechanism” is used to describe two distinct but related sorts of

structures. First, mechanisms are systems consisting of a collec-

tion of parts that interact with each other in order to produce

some behavior. So, for instance, a car’s engine is a mechanism

containing many parts whose interaction produces the motion of

the drive shaft. Second, mechanisms are temporally extended

processes in which sequences of activities produce some outcome

of the mechanism’s operation. For instance, photosynthesis is a

mechanism which, by a series of activities involving water, car-

bon dioxide, and energy from light produces oxygen and sugar.

There is a natural relationships between processes and systems,

for the operations of systems give rise to processes. Photosynthesis

can, for instance, be conceived of as the activity of a system—the

chloroplast—whose operation is a mechanical process (Glennan,

2008, p. 376).

But this still leaves unclear what a process is71 and the exact relation between

process and object. In this latter regard, Glennan states, quite epigrammati-

cally, that “the operations of systems give rise to processes”. However, in the

case of complex systems this is not obviously so. It is true that—in a sense—

relatively stable systems give rise to processes. In another sense, however,

it is processes that give rise to systems (and their operations). In fact, un-

derneath the system’s relative stability, there are parts growing or shrinking,

entering or leaving the system, etc.

This is true not only for the cell, where processes of metabolism and pro-

tein synthesis take continuously place, thereby changing the parts’ number

and identity. It is true for the market, too. Here, agents may enter and leave

71Notice that, as I argue for in §5.4.3, one cannot appeal to the Salmon-Dowe process
theory, arguably the most influential account of causal processes, to characterise complex
systems’ processes. This ultimately leaves Glennan’s notion of process undefined.
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the system, that is, start and stop trading. Or they can change their attitude

towards a given asset, by becoming fundamentalist (expecting the price to

follow the ‘fundamental value’ of the asset, according to the efficient market

hypothesis) or chartist (trying to identify and exploit ‘charts’, viz. trends and

patterns), pessimistic or optimistic (Lux and Marchesi, 1999). Or they can

adapt their trading strategy on the basis of the asset’s performance, contin-

uously hypothesising and refining their expectational models (Arthur et al.,

1997). Or... The macro-features associated with asset pricing fluctuations

are the result of such micro-processes. Take, for instance, the fat-tailed dis-

tribution of returns (which indicates that extreme events, viz. bubbles and

crashes, obtain more frequently than if returns were normally distributed) and

the volatility persistence of asset returns at different times (which, against the

‘random walk hypothesis’, display substantial dependences). These statisti-

cal features can be reproduced by, e.g., modifying the agents’ perception of

trend direction and of other agents’ profits (Lux and Marchesi, 1999) or by

modifying the rate of change of the agents’ process of expectation formation

(Arthur et al., 1997).

In both cases—the cell and the market—it seems equally legitimate to say

that it is processes that give rise to systems, by continuously maintaining and

re-shaping them. This, in turn, would fit better with the idea that the relata

of the causal relation are events, and that between events there are processes

not objects.

5.4.3 Where are the truth-makers?

The unclear status of mechanisms makes the mechanistic account vulnerable

to the regress objection. How should we understand the nature of the truth-

makers of causal claims? Recently, Glennan (2010, 2011) has expressed two

distinct views on this issue.

Glennan (2010) argues that there are two notions of cause, namely causal

production and causal relevance:72 there can be production without relevance

(e.g., overdetermination); and there can be relevance without production

(e.g., omissions). He articulates this view by having the production/relevance

dichotomy to track the events/properties distinction and the singular/general

distinction. Causation is characterised as a relation between events. Events,

in turn, are instances (or occurrences, or exemplifications) of properties. Ac-

72The dichotomy between production and relevance is reminiscent of Hall (2004)’s two-
concept view (§6.3).
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cordingly, a causal claim has the following form:

Event c causes e (in background conditions B) in virtue of prop-

erties P (of c, e, or B) (...) [e.g.:] Bob’s coughing (c) caused Carol

to wake up (e) in virtue of cough’s loudness (P) (Glennan, 2010,

p. 364).

Causal production holds between causally related events and is not a coun-

terfactual notion. Causal relevance, instead, holds between causally related

properties and is a counterfactual notion. But production and relevance are

not in opposition, since they serve different purposes. Causal relations obtain

thanks to mechanisms and are explained by them, but in virtue of different

aspects of the mechanisms involved. In fact, although mechanisms provide

both truth-makers and explanation for causal relations, they do so by rely-

ing on different notions of cause: (i) whether c causes e depends on whether

there is a causal process from c to e (“To say that one event produced an-

other is to say that in fact the causative event is connected to the effect via a

continuous chain of causal processes” (Glennan, 2010, pp. 365-366)); (ii) why

C -type events cause E -type events (of which c and e are instances), instead,

depends on some causally relevant feature P of the mechanism, its parts and

organisation, and its background condition. So, it seems that whereas differ-

ence making is relevant to causal explanation, production (processes) is what

contributes the truth-makers—which prompts the question: how should we

understand ‘process’, exactly?

Next to this general thesis on production and processes, Glennan (2011)

has another, more specific thesis on the truth-makers of causal claims in-

volving bottom-level interactions, which purports to solve the regress, or

bottoming-out, problem. Here Glennan favours a dispositionalist view, by

suggesting—although not articulating—the view that singularism leads to

interpret bottom-level interactions in terms of the manifestations of ‘powers’:

[the singular determination view] holds that there are genuine

interactions between parts at the bottom of the mechanistic hier-

archy, but that these parts are not governed by laws. In calling

these interactions genuine, I am suggesting that the relationship

is a modal one. We can express the modality of the relationship

counterfactually: When a change in a produces a change in b,

it follows (with the usual caveats about overdetermination, etc.)
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that if a had not changed, b would not have changed. But the

counterfactual locution should be understood not as a claim about

non-actual worlds, but a claim about the determining power of a

in this world (Glennan, 2011, p. 812).

Now, if Glennan wants to illuminate the meaning of causal claims by

reference to their truth-makers, he must make clear the relation between the

two views above.73 The following options are open to him.

He could embrace a pluralist view: processes, however defined, provide

truth-makers for claims involving higher-level causal relations, whereas dis-

positions provide truth-makers for bottom-level causal interactions. However,

there are reasons why it seems implausible to read the mechanist account in a

pluralist way. To begin with, ‘process’ and ‘power’ fall in the same conceptual

category, namely ‘production’. If production is metaphysically fundamental,

as the mechanist claims, it should apply across levels, and to all mechanisms.

Also, consider the case of two-part systems and causal claims describing inter-

actions between their parts. Either one says these are not mechanisms (§5.3)

or, since for any causal claim there is one truth-maker not two, there must

be some connection between powers and processes. What is this connection?

In any case, the account is incomplete.

An alternative to pluralism is to develop the mechanistic account into one

or the other monistic view, by either reading the thesis on powers as a thesis

on processes, in which case one gets a process-based account, or the other way

round, so as to get a power-based account.

Building on Glennan’s latest view on powers, an obvious alternative for us

to explore is whether a dispositionalist story can help make sense of Glennan’s

general idea that mechanisms are systems/processes ultimately grounded in

the dispositions of their parts, and to develop this idea into an account of

causality in complex systems. For one thing, in fact, it would be nice to

have a coherent story that explains the relation between powers/dispositions

on the one hand, and processes on the other. For another, the existence of

such a relation could also explain the nature of fundamental level interactions

and allow for the extension of the notion of mechanism to two-part systems.

Just to recall the problem: Why aren’t ‘simple’ two-part systems whose parts

73Glennan maintains (personal communication) that his views on powers and processes
are not in opposition, but rather complement each other: at the bottom of the hierarchy
there is a brute set of powers, whereas further up the hierarchy and with further extension
in time between events, there are mechanically explicable processes. Yet, the pluralism
suggested by this view does not sit well with the mechanistic project, as I explain below.
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interact locally mechanisms? Even if no explanation by further decomposi-

tion is possible, if the notion of production is metaphysically fundamental,

shouldn’t it apply across levels, and to fundamental level interactions as well?

At least, this the kind of take one would expect from a dispositionalist. In

line with Glennan’s recent view that mechanisms and interactions are under-

pinned by their parts’ dispositions, I will first try to re-interpret Glennan’s

theory in a dispositionalist framework and then test the re-interpreted theory

against examples of causal relations in complex systems.

Before, however, let me briefly digress to show what Glennan’s mecha-

nisms are not to be identified with, viz. Salmon-Dowe processes—which will

prove that one of the two alternatives, viz. the reduction of powers to pro-

cesses, is not viable.

5.4.4 Mechanisms are not SD processes

One may try to reduce powers to processes, so as to analyse mechanisms in

terms of processes. The success of this move requires that one specify what

counts as a causal process, as opposed to a non-causal process, otherwise one

has not even a metaphysical account of non-bottom-level causation. In order

to do this, one has to rely on some available account of causal processes or

develop an alternative. As I argue below, our current understanding of causal

processes, as described in Salmon-Dowe process theory (henceforth, SD), does

not fit complex systems mechanisms. To be fair to Glennan, it must be said

that he himself at various times has pointed out that his account of causality

is different from SD (Glennan, 2002, 2011). It is worth stressing, however,

the reasons why complex systems mechanisms are not SD processes.

In short, SD is based on the following definitions (see Dowe, 1995, p. 323)74:

[SD1] A causal interaction is an intersection of world lines which

involves exchange of a conserved quantity.

[SD2] A causal process is a world line of an object which possesses

a conserved quantity.

The details of the account do not matter for the present purpose. What is

74Salmon’s version (see Salmon, 1997, pp. 462, 468), which relies on the notion of ‘trans-
mission’ rather than ‘conservation’ of quantities, is slightly different.
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important is that SD is meant to apply to physics, and to whatever quanti-

ties physics says are conserved (e.g., momentum, mass-energy, charge). Since

all levels of complexity for Glennan arise out of bottom physical interactions

among fundamental particles, one may want to say that Glennan’s mecha-

nisms just are SD processes and interactions. The problem is that this move

wouldn’t do in complex systems.

To begin with, Glennan himself discards the hypothesis that complex sys-

tems mechanisms may just be SD processes, based on the following reasoning.

A SD mechanism is a causal ‘structure’, or ‘nexus’, a sort of web of processes

and interactions. Since in SD an ‘object’ is a ‘process’, one could (mistakenly)

think that the marriage between Glennan and SD works as follows: Glennan’s

parts are objects; objects are SD causal processes; and the interactions be-

tween these parts are intersections in causal processes that introduce changes

to the persistent structure of these processes, that is, changes to the prop-

erties of the parts (see Glennan, 2002, p. S346). However, Glennan rejects

this hypothesis on the ground that ‘Glennan-objects’ are not ‘SD-objects’: an

object for Glennan is a stable configuration of parts, whereas an SD-object

need not have parts and can be an ‘ephemeral’ process. For instance, take

the case where throwing a ball causes a window’s breaking. Between the two

events there is a process (the motion of the ball) which then interacts with

another (the window at rest) so that mass-energy and momentum are globally

conserved. But the ball-plus-window complex is not a stable system such as

a cell or the market. In Glennan’s words:

The difference between the process theory and the mechanical

theory lies in their rather different conceptions of what a mecha-

nism is. For the process theorist, a mechanism just is a process

of the sort described by their theory. To the mechanical theorist,

however, a mechanism is a system (Glennan, 2011, p. 798).

In this sense, the SD notion of mechanism is too permissive. Therefore, we

should not identify ‘SD-processes’ with ‘Glennan-objects’, or systems.

But there are further reasons why the marriage would be inappropriate.

In another sense, in fact, the SD notion of mechanism is also too strict, as

many prima facie complex systems would not count as mechanisms.

First, the identity conditions of a complex system need not depend on

conservation of quantities, which is what defines an object in the SD sense.

The SD notion of mechanism is of narrower applicability than Glennan’s
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(it only applies to physics). The requirement that an object be identified

by conservation of quantities such as mass-energy is not met by complex

systems, which maintain their identity through time in spite of, e.g., their

growing or shrinking (e.g.: cells grow; agents enter and leave the market).

Nor would considering features of the environment (e.g., resources, waste

products) as ‘parts’ of the mechanism itself serve to re-establish the identity

between Glennan- and SD-objects. On the one hand, (to a large extent, at

least) a complex system is such-and-such an object in spite—rather than

in virtue of —its surroundings. True, the system needs embedding in the

environment to survive. However, it does survive across a large range of

environmental conditions which, intuitively, do not all need mentioning for

the identification of the system itself. On the other hand, even if (certain/all)

features of the environment were included in the description of the mechanism,

this would not by itself capture the ability of the system to change and adapt

along with changes in such features and at the same time remain the ‘same’

system. Unlike SD objects, whose identity is fixed by the quantity being

conserved, the boundaries between a complex system and the environment

would need re-tracing along the evolution of the system-plus-environment

complex.

Secondly, ‘Glennan-interactions’ are not ‘SD-interactions’: for one thing,

Glennan’s interactions are anything which can be characterised by direct,

invariant, change-relating generalisations (a general, tolerant, counterfactual

criterion), whereas SD’s are exchanges of conserved quantities governed by

conservation laws (a much narrower, physical, non-counterfactual criterion);

for another, complex systems interactions are continuous changes in prop-

erties of parts that affect each other, whereas SD’s are more like discrete

spatiotemporal intersections—a ‘nexus’—of processes.

For all the above reasons, a marriage between the mechanistic account

and SD would not suit complex systems. Let us to turn, then, to evaluate

whether the marriage between the mechanistic account and dispositionalism

would be more successful.

5.5 A dispositionalist route to causality in complex systems?

An alternative to a process-based mechanistic account is to cash out mech-

anisms in dispositionalist terms. As we shall see, however, recent versions

of causal dispositionalism seem unable to illuminate the meaning of causal
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claims in complex systems. These considerations suggest that the disposi-

tionalist project is not as promising as it might at first appear.

5.5.1 When are capacities efficacious?

To understand the job that dispositions should do in the mechanistic account,

it is instructive to start from a discussion of the view that Glennan himself

expresses in an earlier paper, namely Glennan (1997). There, Glennan tries to

develop an account of capacities (i.e., a sort of dispositional properties) alter-

native to Cartwright (1989)’s and compatible with his mechanistic account.

Glennan claims that capacities cannot be characterised as properties that op-

erate across contexts, along the lines of Cartwright’s CC condition (§4.3.1).

This, as Cartwright herself acknowledged, does not square with the fact that,

due to the existence of dual and interacting capacities, some capacities are

not invariably connected to their manifestation. Glennan’s diagnosis is that,

to do justice to the primacy of singular facts over universal facts—to which

both Cartwright and Glennan subscribe—capacities should not be charac-

terised in terms of probabilistic relations among classes of events involving

populations. Instead, they should be understood as properties of individuals,

whose identity is (with the exception of fundamental capacities) mechanically

explicable (see Glennan, 1997, p. 617). On this view, capacities are not new

metaphysical kinds, but properties that individuals possess in virtue of their

structure, and which are effective when their constitutive mechanisms are.

However, there are two problems with this understanding of capacities.

First, and more obviously, fundamental capacities have no place in Glennan’s

mechanistic account, so one cannot explicate causal relations taking place at

the bottom of the mechanistic hierarchy in mechanistic terms. If structural

capacities are accorded no special (metaphysical?) role, and ‘inherit’ their

powers from the arrangements of the individuals’ parts, the mechanistic ac-

count is still vulnerable to the regress objection. Secondly, Glennan’s account

of structural capacities is not satisfying either. In fact, this view does not say

what makes for the manifestation of one capacity on one occasion but not

on another, even if the underlying structure is the same on both occasions.75

75Notice that a mechanistic account of explanation need not address this issue: for
the purpose of explanation, it is usually enough to say that the phenomenon is—ceteris
paribus—the result of a given collection of parts being arranged in such-and-such a way:
the parts operate whenever they are arranged in the proper way. In contrast, a disposi-
tionalist account of causality, whether mechanistic or not, must say what determines the
manifestation of the disposition in order to provide the truth maker of the causal relation.
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One would expect that the mechanistic account be informative on this is-

sue, at least outside the domain of brute interactions. Following Cartwright,

Glennan states that a capacity will manifest itself depending on how it inter-

acts with other capacities. However, Glennan has no account of interactions

tailored to complex systems.76 As a consequence, he has no account of what

makes capacities efficacious, i.e., of their relevance—hence, the relevance of

mechanisms—to causality: Why does a causal relation obtain in virtue of a

mechanism on some occasions, but it does not obtain on other occasions, in

spite of the presence of the same mechanism? To solve the problem, one

must modify the account of dispositions somewhere.

Recently, Cartwright has tried to make sense of the universality of ca-

pacities whilst maintaining the primacy of singular causal facts, by making

the link between capacities and their exercise “analytic” (Cartwright, 2007a,

p. 20). She offers a twofold interpretation of causal claims as either capacity

claims, expressing facts about potentials for exercise (e.g.: ‘Smoking has the

capacity to cause cancer’; ‘Aspirins have the capacity to relieve headaches’)

or causal laws, expressing facts about manifestations (e.g.: ‘Smoking causes

lung cancer’; ‘Aspirins relieve headaches’). A true capacity claim is true

across contexts, in the sense that it refers to the link between the capacity

and its “potential for exercise”, not between the capacity and its manifesta-

tion (cf. Cartwright and Efstathiou, 2007). A true causal law, instead, is true

only ceteris paribus, as it describes the operation of mechanisms, or ‘nomo-

logical machines’, whose operation tends to produce regularities, but may be

hampered, neutralised, etc. A nomological machine is defined as

a fixed (enough) arrangement of components, or factors, with sta-

ble (enough) capacities that in the right sort of stable (enough)

environment will, with repeated operation, give rise to the kind of

regular behaviour that we represent in our scientific laws (Cart-

wright, 1999, p. 50).

So, causal claims are true in virtue of the repeated operation of mechanisms,

which in turn depends on the operation and manifestation of the capacities of

their components. This view commits one to a “metaphysically heavy” posi-

tion, viz. a trichotomous distinction between presence-exercise-manifestation

76Glennan says that a characterisation of interactions needs to make reference to physical
theory, and mentions approvingly Salmon’s treatment of interactions (Glennan, 1997, p. 612,
fn. 3). However, it is clear that this move won’t do, because of the incompatibility between
‘SD interactions’ and ‘complex systems interactions’ (§5.4.3).
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(see Cartwright, 2007a, pp. 19-21, 24): whenever a capacity is present and/or

properly triggered, it will operate (the presence-exercise link is necessary);

however, a capacity may or may not manifest itself, depending on how it in-

teracts with other capacities (the presence-manifestation link is contingent).

The pay-off of this position should be that, by postulating capacities, one

can more easily bridge testing and use of causal relations, viz. explain the

evidence (i.e., the obtaining or non-obtaining of phenomena) and act upon

it (i.e., devise ‘effective strategies’ that bring about changes by triggering or

inhibiting the individuals’ capacities). But there are reasons why an appeal

to capacities is not very illuminating in the case of complex systems.

Establishing what a capacity does comes in two steps. First, one calcu-

lates how the capacity works in isolation, e.g., by eliminating or calculating

away everything that can interfere with the production of the effect in exper-

imental conditions where we know which factors are present and how they

operate (see Cartwright, 2007a, pp. 2-3). In the absence of the possibility

of controlled experiments one can rely on, e.g., a well-conducted RCT. In

this way, one establishes a capacity claim. However, making use of a capac-

ity claim requires knowledge that the corresponding causal law is true. This

second step requires calculating the contribution to the effect in target, non-

experimental conditions. To this end, knowing that the effect may occur is

not enough, one should also know that it will occur, and will do so with some

particular strength. This presupposes knowledge of how the other capacities

operate and the way they interact with one another and with the one whose

contribution we want to calculate. Sometimes, there are nice rules that al-

low one to infer true causal claims from capacity claims. One example are

the textbook problems of classical mechanics where the systematic difference

produced by a cause (its contribution) can be calculated by means of an ad-

ditive rule. Unfortunately, the case of complex systems is not one of these

lucky cases. Due to nonlinear interactions, sensitivity to initial conditions

and openness to the environment, knowledge of the presence of a capacity is

not so informative as to how it will interact with other (possibly many) ca-

pacities present, which capacity will manifest itself, and with what strength

it will contribute to the effect.

So, one may agree with Cartwright that capacities operate across contexts.

However, anything has the capacity, in principle, to bring about, or prevent,

almost anything else, in suitable conditions. Thus, the informativeness of

the capacity claim is parasitic on the specification and generality of such
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conditions. The more complicated the conditions, the less informative the

capacity claim. As a result, in complex systems the appeal to capacities

proves less illuminating than in other, more convenient cases.

Notice that the lack of informativeness of dispositions in cases of causation

in complex systems is not limited to Cartwright’s account of the relation be-

tween causality and capacities, but applies to other dispositionalist accounts

of causality, too. I’ll only mention one such account, namely Chakravartty

(2007)’s.

5.5.2 What fixes the identity of the truth-makers?

Chakravartty (2007)’s dispositionalist account purports to elucidate the con-

nections between (causal) processes, dispositions, events and properties. As

such, it seems to offer the resources to develop Glennan’s mechanistic ac-

count into a power-based mechanistic account. Yet, as I argue below, one

cannot adopt Chakravartty’s notion of disposition to fix the problems with

the mechanistic account.

In Chakravartty’s view, properties are primitive, and individuals (objects,

events and processes) are derivative from them. Individuals are bundles of

properties, some bundles being more stable, other bundles being less stable

(see Chakravartty, 2007, chap. 6). For instance, having molecular structure

H2O and being drinkable are (quite) stably related. Instead, being a Bcl2

protein and promoting a caspase cascade are less stably related, and so are

being an increasing time series of an asset’s price and being a determinant

of a crash. In particular, “[a] causal property is a property ‘conferring’ to

particulars that have it dispositions to behave in certain ways when in the

presence or absence of other particulars with causal properties of their own”

(Chakravartty, 2007, p. 108). The identity conditions of a causal property are

fixed by what Chakravartty calls the “dispositionalist identity thesis” (DIT):

“what makes a causal property the property that it is are the dispositions it

confers to the objects that have it” (Chakravartty, 2007, p. 129).

What gives dispositions causal efficacy? The ‘de re necessity’ of causal

connections that follows from DIT (see Chakravartty, 2007, pp. 113-114, 121).

DIT entails a holistic, mutual determination of causal laws and identity of

causal properties, which Chakravartty dubs “ontological circularity”:

not only (...) causal laws comprise relations between causal prop-

erties, but also (...) knowing such laws allows one to distinguish
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and identify properties as well. A causal property can be iden-

tified as the property that it is in virtue of its relations to other

properties. The conjunction of all causal laws thus specifies the

nature of all causal properties (Chakravartty, 2007, p. 123; see

also p. 140).

Let us imagine that at a certain world a certain number of properties exist.

By being there in place, they all at once co-determine their own identity, that

is, the dispositions for behaviour they confer to the individuals that possess

them. Also, by being there in place, the properties co-determine the relations

they have with one another. Such relations are of ‘natural necessity’: of ‘natu-

ral’, or de re—as opposed to ‘metaphysical’—necessity, because the necessity

need not hold across possible worlds; and yet of ‘necessity’, because at this

world the relation between any two given properties is fixed by DIT. Take,

for instance, a given distribution of, e.g, Apaf1, pro- and anti-apoptotic pro-

teins, procaspases 9 and 3, Smac, XIAP, etc. This makes it possible that the

mitochondrion releases cytochrome c, cytochrome c binds to Apaf1 thereby

forming the apoptosome, the apoptosome activates procaspase 9, Smac in-

hibits XIAP, XIAP inhibits Casp9, Casp9 activates procaspase 3, etc. At the

same time, in turn, the latter relations fix the identity of the properties, that

is, determine the disposition(s) for behaviour they confer to the individuals

that possess them. For instance, pro- and anti-apoptotic proteins are classi-

fied as belonging to the same class in virtue of their function of regulating

apoptosis via the regulation of the release of cytochrome c.

Notice that the necessary relation between the properties does not entail

that the relations have to give rise to certain (relations between) manifesta-

tions, or events. Whether a given relation between event c and event e obtains

will depend not just on properties C and E of the events in questions, but

also on other properties of (the events that we label) c and e, on what is

between c and e, as well as what is at other places. This follows directly from

the holism with which the properties co-determine each other.

This dispositionalist view has both advantages and disadvantages with

respect to the goal of characterising causality in complex systems.

One advantage of endorsing this picture is that it gives a more coherent

story on the relations between powers, processes, events and objects, hence

a possible ontological foundation to the mechanistic account. Processes are

linked to dispositions (or powers) by being the (continuous) manifestation of
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the exercise of such dispositions. Manifestations, in turn, whether events or

processes, are grounded in the interactions among properties. The interac-

tions among the properties determine, at once, all particulars, i.e., objects,

processes and events. Causal phenomena are the result of continuous pro-

cesses of interaction among particulars (i.e., objects, processes and events)

with causal properties (Chakravartty, 2007, pp. 108-109). Causation itself

is a (continuous) relation taking place between properties (or property in-

stances), and only derivatively between events. Relations between (discrete)

events are just epiphenomena, which we pick out of the field of “continuous

processes of interaction” for reasons of salience. In particular, the realist’s

talk of events as relata, although convenient, is only elliptical for descriptions

of “aspects” of such processes.

This account can also tell a story on how a mechanism can be both an

object and a process: it is an object insofar as a given bundle of properties

is relatively stable; it is a process insofar as one or more of these properties

change through time, either in virtue of the interactions among the parts of

the system, or in virtue of influences coming from the environment.77

A final advantage is that it becomes (more) plausible to treat two-part

systems as genuine mechanisms. Given that the boundaries of the systems

are to an extent conventional/artificial, strictly speaking no system has three

parts any more than it has two or ten. What matters is the strength of the

couplings. A system will be identified by strong(-er) couplings among its

‘parts’ and weak(-er) couplings with the ‘environment’. In general, whether

we can call a given system a mechanism will depend on how flexible is our

definition of mechanism.

However, there are also disadvantages in embracing this picture, having to

do with the holistic baggage that comes with Chakravartty’s dispositionalism.

What is the truthmaker of a causal claim? According to Chakravartty,

it is a consequence of DIT that networks of causal properties have

a holistic nature. This furnishes a more radical solution to the

problem of truthmaking than it is generally appreciated. The

existence of any one causal property is a sufficient truthmaker for

counterfactuals about all possible relations applicable to the world

77Notice that, contra Glennan, on this picture function is as important as structure: it
is both true that a property’s identity determines (structurally) the causal relations that
property is involved in and that the causal relations determine (functionally) the property’s
identity.
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in which that property is found (Chakravartty, 2007, p. 146).

Chakravartty’s dispositional holism seems incompatible with Glennan’s lo-

cality requirement. If Chakravartty is right, it is not possible to identify the

truth-maker of any one causal relation without at the same time having to

mention, strictly speaking, all other causal relations. If so, no causal relation

is strictly speaking local: whether a causal relation between any two events

holds depends on the complex result of all the causal relations present at a

given world. This will depend on whether the—many—processes that enable

the obtaining of the relation are not hampered by the—very many—processes

that can in principle prevent it. Relatedly, Chakravartty’s dispositionalism

is silent on what (local) factors are more relevant than others to the truth of

causal claims.

When evaluating what features of the mechanism are responsible for the

causal relation, what one is normally interested in are not the parts’ disposi-

tions themselves but rather the way in which they give rise to their manifes-

tations. Moreover, one is normally interested in the local not global determi-

nants of these manifestations. Finally, one is interested in the thread between

one event and another. Does buying this stock cause a bubble? What is the

truth-maker of ‘Switching of fundamentalists into chartists caused the bub-

ble’? What explains a specific event (e.g., a bubble) or a general pattern (e.g.,

fat tails, volatility clustering, volatility persistence)? Dispositionalism should

prove, if not sufficient, at least particularly useful to answer these questions.

Unfortunately, there is only so much that Chakravartty can say about this:

what one is often most interested in are the ways in which the

states of objects evolve. States change, but explaining precisely

how such change occurs is something that one can only say so

much about. This is to concede Hume’s point that ultimately

one has nothing like a “picture” of what is happening when one

thing brings about another beyond that which is observable or,

one might add, detectable. That is why the demand for a causal

mechanism cannot be fully satisfied (Chakravartty, 2007, pp. 111-

112).

However, as I argue in §5.5.3, in complex systems not only this demand

cannot be fully satisfied by an appeal to dispositions; it cannot be satisfied

in important respects.
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5.5.3 Dispositions are not enough

There are general reasons why the above dispositionalist strategies fail in

fixing the mechanistic account and in delivering a better understanding of

causality in complex systems.

First, dispositions are insufficient for identifying the truth-makers of causal

claims. For instance, one cannot infer from DIT alone the direction of the

causal relation. Once all properties are in place, global de re necessity (in

Chakravartty’s sense) among any two of them is holistically fixed. Yet, there

is no clear sense in which DIT can deliver a verdict on the direction of the

relation between particular events which emerges out of the continuous pro-

cesses of interaction among the properties.78 One could argue that there is

an intrinsic directionality between properties which stand in a causal rela-

tion. Intuitively, smoking causes cancer, not vice versa, irrespective of other

relations. However, holism challenges this—very intuitive—idea: change the

context in the appropriate way and the directionality of the relation changes

as well. Due to phenomena of ‘reverse causation’, at different times in dif-

ferent contexts something can both cause and be caused by something else.

For instance, p53, responsible for promoting the synthesis of pro-apoptotic

proteins, also promotes synthesis of Mdm2. The latter protein, in turn, ‘tags’

p53 and makes it digestible by proteasomes. By means of this negative feed-

back loop, p53 regulates itself, thereby regulating apoptosis in general. So,

depending on the context, it is both true that a change in p53 level causes a

change in Mdm2 level and that—vice versa—a change in Mdm2 level causes

a change in p53 level. Analogously, in the asset pricing mechanism, a bubble

can cause one to buy, which in turn, can reinforce the bubble. So, knowledge

of dispositions is insufficient to determine whether ‘this’ causes ‘that’.

Secondly, dispositions may be also unnecessary, if it were possible to ‘by-

pass’ them and always infer occurrent (i.e., non-dispositional) properties from

other occurrent properties without postulating, and referring to, underlying

dispositions.79 At this point, the dispositionalist usually objects that dispo-

78Usually, one decides on the direction of the causal relation with the aid of pragmatic
considerations such as salience or manipulation, not in virtue of knowledge of dispositions
alone. However, since Chakravartty is concerned with ontic not pragmatic issues, the latter
have no definite place in his account of causality. All the more reason to believe that
dispositions alone are insufficient.

79This leads to envisaging dispositions as a sort of ‘inference tickets’. Although Chak-
ravartty does contemplate this possibility, he then discards it because incompatible with
causal realism (see Chakravartty, 2007, p. 124). Interpreting causes as inference tickets goes
towards the approach I develop in chapter 8 (although my proposal has no eliminativist pre-
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sitions are still useful, on the ground that only dispositions can give counter-

factual claims their modal strength. For instance, the truth of ‘If XIAP level

were to change, Casp3 level would change’ must depend on something like

the disposition of XIAP to inhibit/promote Casp3. The problem is that the

dispositions of individual parts in complex systems shed only little light on

the obtaining of causal relations. Let me explain.

In general, due to the many couplings inside and outside complex sys-

tems, knowledge of dispositions of the individual parts is not as informative

as knowledge of geometrico-structural features of the whole—which need not

be stably attached to specific individuals (cf. Goldstein (1996), Smith (1998,

chap. 7) and Kuhlmann (2011)). For instance, although the dispositions of,

say, XIAP, Casp3 and Casp9 are somehow important, they are also context-

dependent. XIAP’s binding to Casp3—which is something that would ‘nor-

mally’ prevent apoptosis—can also promote apoptosis. Structural features

of the context (e.g., relative concentration of the reactants, their position,

etc.) may be more informative than the reactants’ dispositions. This context

sensitivity is even more obvious in the case of asset pricing. Here, knowledge

that the disposition of an individual trader to buy a stock can promote a

bubble tells very little, because depending on the context it may also have

the opposite disposition, viz. it can prevent the bubble. More informative are

system parameters (e.g. thresholds for the normal-to-chaotic transition, rate

of change in the traders’ attitude and/or trading strategies, etc.).

Furthermore, since identity and function of individual parts can change

during the process, dispositions need not be stably attached to them. Funda-

mentalists may become chartists, optimists may become pessimists. Expla-

nation by reference to the chartist behaviour of individual agents misses the

important fact that the agents’ chartist disposition may depend on contextual

reasons, not on their ‘intrinsic’, chartist nature. Analogously, in the apop-

tosis mechanism caspases are synthesised as inactive and become active by

proteolitic cleavage. One may say that caspases just are procaspases disposed

to become active. However, explanations in terms of procaspases’ disposi-

tion to become active are limited. In fact, in certain contexts XIAP prevents

apoptosis and procaspases become caspases, in other contexts XIAP promotes

apoptosis and procaspases fail to become caspases—without either behaviour

being explainable just in terms of XIAP and procaspases’ dispositions.

tension). Notice, however, that whether inferentialism commits one to causal anti-realism
is an open issue, which may depend on the way inferentialism itself is interpreted.
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To sum up, although it may well be true that C ‘disposes towards’ E, in

complex systems whether C ‘causes’ E hinges more on the context than on

the disposition. Depending on the context, C may either promote or prevent

E, and—vice versa—E may either promote or prevent C. Not much of an

indication as to what causes what. What we have, then, is a superabundance

of ‘analytic’ facts about dispositions, using Cartwright’s jargon, and too little

knowledge about their possible manifestations (i.e., knowledge of the form: in

context X, disposition C would bring about effect E) for the dispositionalist

account to be really informative about the meaning of causal claims.

5.6 Mechanistic models and causality

In §4.5, I expressed reservations towards the idea that the only viable the-

ories of meaning are in terms of truth conditions. Here, I want to make a

parallel point with reference to the view that the only viable interpretation

of the way causal models represent is based on the similarity or isomorphism

between models and their target systems—viz. the so-called ‘semantic view’

(van Fraassen, 1980; Giere, 1988; Suppe, 1989). Although arguing against

the semantic view goes beyond the scope of this work80, I do want to stress

here that it is such a view that implicitly motivates the attempt of certain

causal realists to account for the meaning of causal claims by reference to

their truth-makers.

As Chakravartty notices, the idea that a particular understanding of how

theories and models represent may justify or ‘facilitate’ realism about the en-

tities such theories and models talk about has recently gained some currency

among certain proponents of the semantic view. However, Chakravartty ar-

gues, this idea is a non-starter (see Chakravartty, 2007, part III). One may

extend Chakravartty’s considerations from the way the proponents of the se-

mantic view appeal to the success of models for justifying the existence of

theoretical entities to the attempts to explicate the success of causal models

by reference to causal relations. My point is that the idea that the meaning

of causal claims derivable from models of complex systems is best explained

in terms of the truth-makers that ground the success of such claims follows

directly from the more general idea that successful representation is consti-

tuted by a correspondence or similarity relation between a class of relations

in the model and a class of worldly states of affairs. And since we don’t need

80For recent criticisms of the semantic view, see, e.g., Suárez (2003) and Frigg (2006).
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to buy the latter idea, we don’t need to buy the former either.

Interestingly enough, the attitude described by Chakravartty can be as-

cribed to Glennan, too. Parallel to his account of causation, Glennan (2000,

2005) has developed an account of ‘mechanical’ models, which explicitly relies

on the semantic view. Ultimately, on this account the notion of mechanism

as the substrate of causal relations is explicated in terms of the conditions

under which the model with respect to which the causal claim is formulated

is a faithful representation of its target system. For Glennan, whether the

model represents a mechanism depends on whether variables and functional

relations in the state space are interpretable in terms of, respectively, property

of parts and relations among them (see Glennan, 2005, pp. 447-448).

The thing is that, since this representationalist interpretation of mecha-

nisms depends directly on Glennan’s conceptual explication of ‘mechanism’,

it is not very enlightening as regards the meaning of causal claims in complex

systems. Luckily, the semantic view is not the only game in town to explain

scientific representation. Inferentialism may constitute a viable alternative.

Although inferentialism is primarily a theory of meaning, there is a growing in-

terest with regard to the applicability of inferentialism to issues such as scien-

tific representation (Suárez, 2004; de Donato Rodŕıguez and Zamora Bonilla,

2009a) and explanation (de Donato Rodŕıguez and Zamora Bonilla, 2009b).

This motivates an attempt at a reinterpretation of the issue of the ground-

ing of the truth and explanatory power of a causal claim in terms of the

conditions under which a causal model represents (inferentially) its target,

which ultimately depends on whether the claims that the model licenses are

correctly assertible or not.

Conclusion

Glennan’s mechanistic account of causality is explicitly meant to fit complex

systems. However, it is threatened by problems of circularity and regress,

which it does not fully solve. Such problems arise because the account con-

tains ambiguities as regards the notions of mechanism and interaction, which

are meant to help account for the truth-makers and the explanatory power

of causal relations. Various routes to make the account coherent are blocked,

e.g., the manipulationist route and the SD process route. The ambiguities

that vitiate Glennan’s account may be eliminated by reference to a disposi-

tionalist metaphysics, towards which he himself has lately gestured. However,
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reference to dispositions of specific parts with stable identities and functions

for providing truthmakers of causal relations in complex systems and explain-

ing complex systems’ behaviour proves less appropriate vis-à-vis reference to

structural features of the arrangement. In the next chapter, I will argue that

pluralist accounts of causality give us no good insight into the meaning of

causal claims in complex systems, and that inferentialism need not entail any

strong pluralism on the concept of causality.



Chapter 6

Pluralist Accounts of Causality

As a response to the failure of monistic accounts, the view that causality is

a diverse notion is becoming more and more popular. After describing the

spectrum of pluralist positions (§6.1), I present the monist’s main objection

against the pluralist (§6.2): How can we reconcile the idea that causation

is diverse with the fact that the label “causal” is used to denote all these

relations? Is there (not) something they all share? I argue that both ‘de-

terminate’ pluralism (§6.3) and ‘indeterminate’ pluralism (§6.4) are unable

to answer these questions satisfactorily. I then move on to address semantic

pluralism, a position recently advocated by (Reiss, 2011), in opposition to a

merely epistemic pluralism (Williamson, 2006). Reiss explicitly appeals to

inferentialism to justify his semantic pluralism. After sketching the inferen-

tialist approach to semantics (§6.5), I interpret the debate between evidential

and semantic pluralist in inferentialist terms (§6.6). Finally, I argue that

inferentialism can account for the monist challenge (§6.7). In particular, I

argue that inferentialism can explain why the concept of causality is at once

monistic in one sense, and pluralistic in another sense. As such, inferen-

tialism offers itself as an ideal framework for discussing both the prospects

of conceptual monism and the meaning of causal claims in specific areas of

inquiry, complex systems sciences included.81

6.1 A plurality of pluralisms

The label “causal pluralism” has been recently attached to a variety of po-

sitions, all sharing the idea that there are distinct kinds of causal relations,

and no single feature that makes all of them causal—from which it follows

that no monistic account is possible. In Nancy Cartwright’s words:

81§6.1–§6.2, and §6.5–§6.7 are reproduced, with minor modifications, from (Casini, 2012).
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Under the influence of Hume and Kant we think of causation as a

single monolithic concept. But that is a mistake. The problem is

not that there are no such things as causal laws; the world is rife

with them. The problem is rather that there is no single thing of

much detail that they all have in common, something they share

that makes them all causal laws (Cartwright, 2004, pp. 813-814).

But underlying this one, shared idea is a plurality of positions, which can

be classified along two dimensions, viz. (i) determinate vs indeterminate plu-

ralism (Williamson, 2006), and (ii) evidential vs semantic vs metaphysical

pluralism (Reiss, 2011).

Causal pluralism is determinate if it maintains that there is a finite num-

ber of distinct (i.e., irreducible to one another) characterisations of ‘causa-

tion’, such as difference-making and production. It is indeterminate when it

appeals to the (Anscombian) view that there is an indefinite number of no-

tions of cause, viz. as many as there are causes, and that pushings, pullings,

breakings, bindings, etc. are substantially different from one another and

share no common truth-maker (Anscombe, 1971). According to the latter

view, these various causings are best rendered by ‘thick’, or ‘content-rich’,

causal verbs (Cartwright, 2004). This view I label “thick-concept view” (§6.3).

In the determinate camp are those (Hall, 2004; Longworth, 2010) who

argue that “causes” has essentially disjunctive meaning, i.e., it either means

x, or y, or... Counterexamples and objections, however, have been offered to

undermine determinate articulations of pluralism (cf. Longworth (2006) on

Hall (2004), and Cartwright (2010) on Longworth (2010)).

In the indeterminate camp, instead, the positions (Psillos, 2010; Cart-

wright, 2004; Reiss, 2011; Godfrey-Smith, 2009) range from holding that

there is a substantial diversity among the token cases of causation to ad-

mitting the existence of a—more or less strong—family resemblance among

them, which may amount to a sort of weak, or “nebulous” (Williamson, 2006,

p. 74), monism. But the various facets of the indeterminate views are harder

to disentangle.

In fact, orthogonally to the determinate vs indeterminate distinction, one

may further distinguish between evidential, semantic (or conceptual) and

metaphysical pluralism. An evidential pluralist (Russo, Williamson, Psillos)

is pluralist in the minimal sense that he acknowledges that evidence of more

than one kind contributes to establish a causal claim. A metaphysical pluralist
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evidential metaphysical semantic
determinate Russo, Williamson Hall, Longworth Hall, Longworth

indeterminate Psillos Cartwright (I) Reiss

Table 6.1: spectrum of pluralist positions

(Cartwright) maintains that the truth-makers of causal claims are different

kinds of causings (e.g., although pushings and pullings are both causings,

they also differ from one another). A semantic pluralist, finally, claims that

there are various notions of cause—whether determinate (Hall, Longworth)

or indeterminate (Reiss). Whilst metaphysical and evidential pluralism are in

principle compatible with conceptual monism, semantic pluralism is clearly

not (§6.6).

Table 6.1 shows how the various pluralist positions can be classified along

these two axes. Notice that in this table Cartwright figures as a metaphysi-

cally pluralist, insofar as she (often) claims that causings are essentially dif-

ferent, and best characterisable by thick concepts. However, as I am going

to explain, she seems to hold also a ‘weakly-monist’ view (table 6.2) which

I label “inference view” (in short, INF), since it appeals to broadly inferen-

tialist considerations. I clarify what INF consists in §6.2 and §6.5. For the

moment, it is just important to stress that TC and INF are distinct and can

be held independently. Since both Reiss (2011) and Williamson (2005, 2006),

as it turns out, hold INF, a natural question to ask is whether, in virtue of

holding such a view, one should be semantically or just evidentially pluralist.

I address this question in §6.6 and §6.7.

6.2 The monist’s challenge

Against all pluralisms—except the evidential one—the monist (Williamson,

2006; Russo and Williamson, 2007) maintains that, although causal claims

may be supported by distinct evidential criteria, there is just one notion of

cause. This position is in line with the epistemic view of causality (Williamson,

2005, 2006), according to which a causal relation is the inference relation

drawn by an ideal, fully rational and informed agent.82 Since the epistemic

82It is worth clarifying in what sense the epistemic view can both count as pluralist in one
sense and monist in another: contra ‘traditional’ monistic analyses, the epistemic view is—
minimally—pluralist as it doesn’t erect any test condition to the status of truth condition;
at the same time, it also maintains that there is something all causal relations have in
common, namely their essentially being ideal inference relations—which is a thesis about
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view purports to say what causality ‘really’ is, it is a metaphysical view.

However, insofar as it defines the concept of causality in terms of inferences,

it also counts as a position on the semantics of causal claims, namely a sort

of inferentialism. Only the latter aspect, and not the details of the epistemic

view, is relevant to the present discussion. In fact, I will only be concerned

with the objection raised by the epistemic monist against pluralism, and in

particular with its implications with regard to Reiss’ semantic pluralism. Ac-

cordingly, my argument will only concern the semantics, not the metaphysics

of causality.83

The monist objects to the pluralist that he cannot explain why, depend-

ing on the circumstances, he appeals to one or the other criterion (contra

indeterminate pluralism), or to several/all criteria (contra determinate plu-

ralism). Why in most cases do several, or even all, criteria apply equally

well? And what principled reasoning, if any, is behind the choice of one

criterion rather than another in a given context? If one believes these are

philosophically interesting questions, then one will demand that a theory of

causality provide answers to them. Notice that whether these questions de-

serve a philosophical—rather than, say, a historical—answer is a matter of

controversy.84 In §6.7, I endeavour to show that an interesting, philosophical

story can be given, viz. an inferentialist story.

According to the monist, one will judge pluralist accounts as more or less

adequate or desirable depending on how well they approximate the informa-

tiveness of a monistic account. At the uninformative end of the spectrum lies

indeterminate—or “nebulous”, as Williamson also dubs it—pluralism:

[The] nebulous variety of pluralism is a last resort. If one can’t say

much about the number and kinds of notions of cause then one

can’t say much about causality at all; this stance should only be

adopted if there is no viable alternative (Williamson, 2006, p. 72)

truth conditions.
83This is not to say that inferentialism is incompatible with giving causal talk a referential

value, or being ‘realist’ about causality. Only this is not my concern here (for more on this,
see §8.1.2). As regards the point I wish to make in this chapter, one may be anything from
eliminativist (like, e.g., Psillos, 2010) to Anscombian pluralist (à la Cartwright).

84Psillos (2010) and Reiss (2011) have on different grounds claimed that there is no deep
answer to be given, since there is no deep fact of the matter behind the use of the common
label ‘causal’. In particular, Psillos maintains that the answer cannot be deep because no
deep metaphysical story can be given—there isn’t any “one single, unique fully definite,
etc. truth-maker for all causal truths”. One may agree on this, and still disagree that the
answer cannot be deep, provided one does not require that ‘deep’ answers be in terms of
metaphysical essences, or truth-makers.
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The family-resemblance view associated with Cartwright’s TC clearly counts

as nebulous in this sense. At the more informative end are monist positions.

One such position is, as I said, epistemic monism. Another, as I argue in

§6.7, is the version of causal inferentialism I sketch in §6.6, which envisages

causality as one, vague cluster concept.

Curiously enough, Cartwright herself points to the possibility to inter-

pret causal claims in inferentialist terms (Cartwright, 2007b, p. 46): what

makes the plurality of different kinds of causal relations ‘causal’ is not some

special relation in the world but some unified features of the representations

themselves, where ‘representation’ is understood in inferentialist terms, i.e.,

scientific theories and models represent in virtue not of some alleged similar-

ity or isomorphism they bear with the portion of reality they aim to repre-

sent, but in virtue of the inferences they license about it (Suárez, 2004). For

Cartwright, this proposal is particularly appealing in the case of the represen-

tational meaning of causal claims, due to the traditional connection between

the concept of causation and a particular kind of inferences, viz. inferences

about the result of interventions. An inferentialist approach would then lead

naturally to the project of ‘making explicit’ (using Brandom’s jargon) the

concept of causality in terms of inferential connections (see chapter 7).

That inferentialism may have monistic implications is suggested by Cart-

wright herself who, after pointing to the possibility to interpret causal claims

as inference licenses (cf. Cartwright, 2007b, p. 46), states: “What we should

be looking for is a theory of causality, in much the same way as we have a

theory of the electron” (Cartwright, 2007b, p. 52). It is now commonplace

that there are no necessary and sufficient conditions that define theoretical

terms; still, we have theories that give one story about them. Cartwright

seems to think—here, at least—that the same reasoning applies to causality.

In particular, a theory of causality should be tied to the strategies to hunt

causal relations on the one hand, and to the strategies to use them on the

other (see Cartwright, 2007b, pp. 48-49).85

To the inferentialist camp belong, besides Cartwright, also Godfrey-Smith

(2009) and Reiss (2011). Yet, they define their inferentialism differently—so

that only Godfrey-Smith but not Reiss can be associated with the sort of

weak, conceptual monism I am arguing for in this chapter (§6.7.2). Although

85At other times, however, Cartwright is skeptical about the chances to come up with
such a ‘theory’ (cf. Cartwright, 2010, p. 327)—which seems the reason why she merely
points to the inferentialist alternative, without exploring it.



§6.3 Determinate vs indeterminate pluralism 155

metaphysical semantic
nebulous Cartwright (II), Godfrey-Smith, Psillos

determinate Williamson Williamson

Table 6.2: spectrum of monist positions

all of them envisage causality as a cluster concept, they interpret the cluster

differently. Table 6.2 classifies the various monistic positions.

Interestingly, what the advocates of both epistemic monism (Williamson,

2005, 2006) and inferentialism (Reiss, 2011) have in common is that they

tend to characterise the cluster in terms of inferential relations (§6.6). Reiss,

in particular, explicitly draws his pluralist conclusion from an inferentialist

approach to the semantics of causal claims. So the question arises as to

whether endorsing inferentialism need to commit one to semantic pluralism

(Reiss) or not (Williamson). As I argue in §6.7, inferentialism need not entail

a strong semantic pluralism.

I will now review the various pluralist positions and evaluate them ac-

cording to how well they account for the monist’s challenge, viz. why is the

same label “causal” used to denote apparently different relations?

6.3 Determinate vs indeterminate pluralism

Let us consider determinate varieties of pluralism first. The best known

pluralist account is the two-concept account offered by Hall (2004): C causes

E iff (C produces E) or (E depends on C). This account regiments the

dichotomy of intuitions which has been used to distinguish between the two

broad categories of monistic accounts presented in chapters 4 and 5.

However, it has been suggested that there are cases that do not fall under

either disjunct (Longworth, 2006, pp. 59-60). E.g.: A and B can prevent C,

which would otherwise prevent E. In the circumstances, A prevents C, and E

obtains. There’s no mechanism involved here: it is an absence that causes E.

And there’s no dependence either: were it not for A, B would have prevented

C, so E would have obtained anyway. The counterexample purports to prove

that in cases like this our intuitions converge on the judgement that there

can be causation without either production or dependence.86 Rather than

dismissing pluralism altogether, Longworth (2010, p. 314) suggests that the

86For a different counterexample, see Schaffer (2000).
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analysis be replaced by a longer disjunction—which I will call the ‘disjunctive-

concept’ analysis (DC). For instance, C causes E iff between C and E there

is manipulability and probability raising, or locality and transference, or

counterfactual dependence:

[DC] C causes E iff (i) INT & PR ∨ (ii) SD ∨ (iii) CD.

Notice that Longworth does not explicitly endorse this modified proposal,

only suggests that some longer disjunction or other will fix the problem with

Hall’s two-concept analysis. For instance, DC does not account for cases

involving neither dependence nor production, because it forgets about other

disjuncts, e.g., ‘C is morally responsible for E’ (Longworth, 2006, S5). But

the idea is that some disjunction exists such that for any given causal relation

(i) the obtaining of one or the other disjunct is sufficient to make the relation

causal (if the state of affairs involving C and E satisfies one disjunct, then

there is causation between C and E) and (ii) the whole disjunction is necessary

(for any causal relation, the features that make it causal must be listed, i.e.,

the disjunction is exhaustive).

Longworth then proposes to measure the causal content of a causal con-

cept (its ‘thickness’) by reference to the number of disjuncts it entails: the

more disjuncts, the greater the content. Take the claim ‘The carburetor

feeds gasoline and air to a car’s engine’. Suppose its truth entails the truth

of a corresponding locality-cum-transference claim. Then, ‘feeds’ has more

causal content than ‘causes’ as appearing in ‘The carburetor causes gasoline

and air to be present in the engine’, since ‘feeds’ entails information about

locality-cum-transference, that is, a specific disjunct, whereas ‘causes’ entails

no specific disjunct.

Against DC, Cartwright (2010) argues for an indeterminate pluralist view

that revolves around two main ideas, namely TC and INF. First, the ‘thin’

verb ‘causes’ picks out a variety of different kinds of relation (each relation has

“its own peculiar truth makers” (Cartwright, 2004, p. 817)) and has a variety

of different uses (each use can be correct, depending on the context/purpose).

The various kinds of relation and uses have little in common. They only bear

a loose family resemblance to one another. In contrast, ‘thick’ causal verbs

(e.g., ‘pushes’, ‘pulls’) are more informative than ‘causes’. However, they

are not reducible to traditional accounts of causality, or disjunctions of them.
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They have some extra causal content which isn’t captured by them. Secondly,

the usefulness of the thin concept ‘causes’ derives not from its—allegedly

unique—meaning but rather from the formalisms in which it figures. The

assumptions which come with a formal system specify the conditions that

(thick) causal laws must satisfy to obtain in some system. If the assumptions

are satisfied, then they license a number of inferences of crucial importance

for scientific practice. But there is no all-encompassing formalism that fits all

systems (cf. Cartwright (2004, p. 818) and Cartwright (2007b, pp. 46-52).

It is worth stressing that the the two views can be held independently. In

particular, it is possible to reject TC whilst endorsing INF, which is what I’ll

suggest one should do to give a satisfying account of the meaning of causal

claims. As regards TC, this is best summarised in Cartwright’s own words:

All thick causal concepts imply ‘cause’. They also imply a number

of non-causal facts. But this does not mean that ‘cause’ + the

non-causal claims + (perhaps) something else implies the thick

concept. For instance, we can admit that compressing implies

causing +x, but that does not ensure that causing +x+ y implies

compressing for some non-circular y (Cartwright, 2004, p. 817).

Cartwright’s point parallels a point made by the opponents of the so-called

‘two-component analysis’ of thick ethical concepts, e.g., ‘cruel’ (see Putnam,

2002, pp. 34-38). The advocate of the analysis maintains that ‘This is cruel’

is factorable into a descriptive component, e.g. ‘This causes deep suffering’,

and an ‘attitudinal’ component, expressing some emotion/volition towards

the fact in question, e.g. the speaker’s disapproval of the cruel act. Since the

attitudinal component isn’t factual and is always attached to the descriptive

component, the meaning of thick concepts is reducible to facts.

The opponent of the distinction agrees that ethical statements have (also)

factual content, but argues that factual and ethical content are entangled :

one cannot properly account for the meaning of ‘cruel’ without making use

of ‘cruel’ or other ethical concepts. For instance, if ‘causing deep suffering’

is taken as having only factual value, a surgeon that cannot make use of

anesthesia causes deep suffering but isn’t cruel. Nor is cruelty reducible to any

alleged factual component of ‘causing suffering’, e.g. ‘causing pain’, if ‘causing

suffering’ is taken to have ethical value, too. Causing pain is not necessary for

causing suffering—nor, a fortiori, for cruelty: a parent that prevents his son

from fulfilling some talent causes suffering without causing pain. Thick ethical
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concepts aren’t reducible to factual descriptions. Analogously, Cartwright

argues that thick causal concepts are not reducible to non-causal ones.

In the above quote, x stands for the non-causal facts (e.g., regularities

among the variables in DAGs or structural equations), and y stands for the

non-causal differentia which is supposed to make such facts causal (e.g., BNs’

axioms, Woodward’s invariance). If one indicates with “t” thick causal verbs

and with “c” the thin ‘causes’, TC reads:

[TC] (i) ∀t∃x[t→ c∧x]; (ii) ¬∃t∃x∃y[(t→ c∧x)→ (c∧x∧y → t)].

Now, bearing in mind the above sketch of Longworth and Cartwright’s

accounts, let us come back to the debate between them. Longworth (2010,

pp. 312-313) raises two objections against Cartwright’s TC.87 First, Cart-

wright would give no argument in support of the thesis that there is no non-

causal x such that c + x implies t. (Or, to stick to our previous formulation:

there are no x and y such that c + x + y implies t.) Second, she would

not show that the extra (y-) content of t is actually extra causal content,

rather than some non-causal ‘nuance’ (cf. Hitchcock, 2007). Such a nuance,

admittedly, gets lost when the word “causes” is used instead, but because it

is not a causal nuance it need not be part of a theory of causation. That is,

the nuance need not belong to the analysis of the causal content of the thick

description. So, we can replace thick concepts with DC. In the carburetor

example, the nuance added by ‘feeds’ to the description of the locality-cum-

transference fact is non-causal: (the causal content of) ‘feeds’ is exhausted by

(the causal content of) ‘causes’. If so, then it is false that ‘causes’ + x + y

cannot imply ‘feeds’. Furthermore, this opens the possibility that the causal

content of ‘feeds’ is implied by locality-cum-transference facts only—y having

the role of the non-causal nuance. As a result, DC would have the advantage

over TC to reduce each case of causation to some clear set of conditions, with

no extra, unspecified (“mysterious”) causal content.

87Reiss (2011, fn. 3) takes pains to stress that Cartwright’s pluralist view is best envisaged
as a theory of physical causation not as a theory of the meaning of causal claims. Because
of this, TC would not be subject to criticisms against pluralist theories of meaning. But
there would be a tension, then, in Cartwright’s position. If TC really is about physical
causation only, then her criticism of DC would misplaced. If, instead, her theory is (also)
about meaning of causal claims, as suggested by the above quote as well as by her debate
with Longworth, then my own criticism against TC (§6.4) is well founded.
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Remember that, for Cartwright, c and x are entangled. So, t’s aren’t

reducible to any x alone. Why? She does not say explicitly. However, this

could be, among other things, because the thick causal fact can obtain in a

variety of ways, depending on the context. Just as there are contexts where

sufference obtains in the absence of pain, there are also contexts where thick

causal facts obtain in the absence of x. To all these contexts correspond

different conditions (for which we may or may not be able to spell out for-

malisms). If so, then ‘feeds’ may not (always) imply x. It could imply other

non-causal facts. So, the causal content of ‘feeds’—generally conceived, not

just as applied to the carburetor case—cannot be reduced to x. This seems

right. Consider ‘p53 promotes apoptosis’. This claim is true if—but arguably

not only if—the following causal and non-causal facts obtain. The causal

facts may be:

p53 promotes synthesis of Mdm2 and p53 is phosphorylated or

Mdm2 is and gene p53 is not mutated and...

The non-causal facts, instead, may be encoded by, e.g., the following proba-

bilistic relationship:

Prob(pro-apoptotic proteins | Mdm2) > Prob(no pro-apoptotic

proteins | Mdm2) and...

If such facts obtain, p53 promotes apoptosis. But is the following claim true,

too?

If p53 promotes apoptosis then Prob(pro-apoptotic proteins |
Mdm2) > Prob(no pro-apoptotic proteins | Mdm2)

This claim may or may not be true, depending on the context. For instance,

we know that p53 has not just the above mentioned, direct role in the intrinsic

pathway, but also an indirect role in the extrinsic one, where it contributes

to increase the cell’s responsiveness to extracellular death ligands via the

promotion of the expression of Fas-encoding genes. So, promotion of apoptosis

due to p53 need not go through increase in Mdm2-induced synthesis of pro-

apoptotic proteins; it can, instead, go through increase in Fas expression.

So, ‘promotes’ has extra content with respect to the probabilistic relation

obtaining in the intrinsic pathway.
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However, is this enough to address Longworth’s point? Notice that Long-

worth’s claim was that t can be reduced to (i.e., entails) one or more disjuncts,

the nuance being non-causal. This clearly allows for the possibility that t is re-

alised in multiple ways. So, one may grant to Cartwright that the implication

from ‘causes’ + x to ‘promotes’ doesn’t hold in general. Consider ‘promotes’

and ‘catalyses’ as referring to the activity of a protein with respect to another

protein. Both ‘promotes’ and ‘catalyses’ entail ‘causes’ and, arguably, prob-

ability raising. However, they do so in different ways. A protein promotes

production of another protein by, say, binding to the promoters of the gene

expressing it. Instead, a protein catalyses production of a protein by provid-

ing an alternative reaction pathway for the production of the protein. Facts

about causation plus probability raising are not sufficient to decide whether

promotion or catalysis takes place. So, the former notions do not exhaust the

meaning of the latter. However, for Longworth’s argument to go through it

is enough that the implication from ‘causes’ to the thick concept holds true

in each particular case for some x or other. Let us consider again the ‘p53

causes apoptosis’ example. If we focus on the single not the general case, then

arguably ‘p53 causes apoptosis’ plus the probabilistic fact plus facts about

the context do imply ‘p53 promotes apoptosis’, not ‘p53 catalyses apoptosis’.

Also, by stressing that the obtaining of causation depends on the thick de-

scription satisfying the non-causal conditions, Cartwright seems to support—

not contradict—Longworth’s thesis that for each causing the job of specifying

what makes the relation causal is done by the non-causal facts. If Longworth

is right that the label “causes” attached to the re-description of the thick fact

that satisfies x either doesn’t add any content, being merely parasitic on the

content of x, or adds something which is however mysterious, why shouldn’t

we drop it, and replace it with “clear and explicit” conditions (Longworth,

2010, p. 313)? Perhaps there really is some exhaustive disjunction such that

‘x or y or ...’ implies (any) t, and the latter is reducible to the former?

Let me turn to the part of Cartwright’s reply which I find most persuasive.

Against DC, Cartwright believes that there is no such exhaustive disjunction.

Pushing, pulling, promoting, inhibiting, etc. are kinds of causing. Each can

in principle obtain in indefinitely many different ways depending on the con-

text. And if there really are indefinitely many different relations referred to

by the label “causal”, ‘causes’ can only be analysed as an open-ended dis-

junction. This, in turn, makes the disjunctive strategy pointless. Even if one

could in principle reduce specific instances of causation to either this or that
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set of conditions, one would not thereby get closer to having an analysis of

‘causes’.88 Causality is at most analysable as a cluster concept, such that

for large clusters of relations more or less the same cluster of conditions is

satisfied. But, contra Longworth, no reductive analysis is possible: causality

has an excess content with regard to the cluster of conditions. (I will refer to

this view as the ‘excess content thesis’.)

For Cartwright, however, this is not a problem. For an account of causa-

tion to be informative, in spite of the diversity of the thick causal relations, it

must be possible to group the t’s as causal in some principled way. This does

not depend on the possibility to analyse causality “as a (possibly very long)

disjunction” (Cartwright, 2010, p. 327), but rather on a loose family resem-

blance among the t’s. To this, one could add that spelling out the respect in

which the (meaning of the) t’s resemble each other would surely contribute

to make causation less mysterious, and TC more appealing. However, as I

argue in the next section, the details of Cartwright’s reply bring to light not

just the weakness of determinate pluralism, but also of—the thick-concept

variant of—indeterminate pluralism.

6.4 What is a cluster concept?

Let us grant that causation is, in some sense, pluralistic. Still, I think that

DC and TC suffer from the same, crucial problem, provided one agrees that

the monist’s challenge deserves a philosophical answer: Why do different

notions, whether determinate or indeterminate, all count as causal notions?

What makes the relations referred to by the these notions, in spite of their

diversity, all causal relations?

Consider DC. What’s the rationale behind the disjunctive strategy? To be

fair to Longworth, DC allows that there be criteria shared by several disjuncts,

so overlapping (or clustering) between the various concepts is possible (see

Longworth, 2010, p. 314).89 But even if there is as a matter of fact such an

overlapping, whether partial or total, DC does not explain—let alone justify—

in a principled way the being causal of all those relations by reference to the

88Also, as I explain in chapter 7, a particular inference from x to c may be correct, without
c being reducible to x. In fact, due to non-monotonicity, the inference may turn incorrect
given some appropriate strengthening of the antecedent.

89Actually, DC also allows that there be a set of criteria (in the sense of INUS conditions)
shared by all disjuncts, hence necessary for causation itself. That is: IF (AX∨BX . . .↔ C),
THEN (C → X). What Longworth, being a pluralist, does not allow is that X be also
sufficient for causation.
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criteria they have in common.

A similar objection can be levelled against TC. If we believe an account of

causality should explain why different sorts of causal relations are all causal,

TC does not provide a sound alternative to DC. We may, then, be lead to—

develop, if it is not on offer—a ‘more sophisticated’ form of causal monism,

viz. inferentialism. First, however, let me explain what is wrong with TC.

Let us consider the way Cartwright motivates her version of indeterminate

pluralism. “If there is no universal account of causality to be given, what

licences the word ‘cause’ in a law? The answer (...) is: thick causal concepts”

(Cartwright, 2004, p. 806). And what, in turn, grants the family resemblance

among the thick causal concepts? Answer: the fact that (the cluster of)

thick descriptions often implies (a cluster of) similar features characterising

the conditions under which causal laws work (see Cartwright, 2010, p. 327).

Which I interpret as follows: the thick causal concepts all imply causation

(i.e., are all causal) because when they are correctly applied a cluster of

conditions is typically satisfied that, as a matter of fact, is also satisfied

when the thin concept ‘causes’ is correctly used. Not much of an explanation.

First, since for TC each thick verb refers to a different kind of relation, family

resemblance may be too weak to explain why the thick verbs form one cluster.

Secondly, and more importantly, family resemblance among thick concepts

does not say why certain concepts are inside the cluster and other concepts

are outside. But perhaps Carwright’s reply wasn’t meant to explain, only to

describe the family resemblance. Either way, as I am going to argue, this

leaves the indeterminate pluralist’s position open to the monist attack.

Let us assume that the correct applicability of thick causal descriptions

can be—typically, if not always—decided on the basis of a unique cluster. If

the reason why the thick concepts are all causal is that they typically involve

the same cluster of criteria, it is not clear why the thick concepts themselves

are so indispensable. If all thick concepts typically entail causation plus

the same cluster, it would seem that what makes causation special is the

cluster itself. So, why not reduce causation to the cluster, bypassing the thick

concepts? Now, whilst I do agree with Cartwright that ‘causes’ as well as

thick concepts cannot be analysed in terms of if-and-only-if truth conditions,

I think a defense of this conclusion requires an argument not based on TC

itself, but on the way a cluster concept is best analysed.

As I said, for Cartwright as well as many other indeterminate pluralists,

‘causes’ is a cluster concept. I agree on this. But how should a cluster
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concept be analysed? I propose that the cluster be analysed in inferential

terms. Before explaining how this could be done, some clarification is needed

as regards the notion of ‘cluster concept’. I follow Godfrey-Smith (2009) in

drawing an analogy between a cluster concept and a ‘jumble’ of tools (or

criteria, or test conditions). When applying a cluster concept, “[d]ifferent

people are free to weight different tests differently, and free to use different

weightings on different occasions” (ibid., p. 331). There is a clear sense in

which a cluster may both constitute a diverse and a vague concept: it can

be diverse insofar as its correct application is guided by a jumble of criteria;

and it can be vague due to the vague applicability of many, if not all, criteria

that belong to the jumble. Still, so Godfrey-Smith claims, the cluster can

be one because, even if the criteria sometimes pull apart, they ‘typically’

don’t—although the typicality itself, arguably, comes in degrees. The above

observations parallel more general considerations on the nature of concepts,

considerations usually invoked to undermine the ‘classical’ view that concepts

have a definitional structure, explicable in terms of necessary and sufficient

conditions (Laurence and Margolis, 1999, §2). On the one hand, the unclear

applicability of the criteria in the cluster and the lack of clear intuitions

on how to judge instances that satisfy some criteria but not others make it

sometimes hard to decide what belongs to a cluster and what doesn’t. In this

sense, ‘causes’ is vague, or ‘fuzzy’.90 On the other hand, the judgment that

an instance belongs to the cluster comes in degrees of typicality, depending

on how many criteria are jointly satisfied. The fact that many relations are

such that several criteria are jointly satisfied makes them act as ‘prototypes’,

or conceptual core, with respect to which the belonging to the cluster of

borderline relations is evaluated.

I leave to §6.7, after the introduction in §6.5 of the inferentialist frame-

work, the discussion of whether these criteria are best interpreted as evidential

conditions, which make the cluster concept vague, as Godfrey-Smith suggests,

or as distinct concepts, which make the cluster concept unspecific, and only

its applicability conditions vague, as argued by Reiss. In the remainder of this

section, I argue against Cartwright’s view that clustering is best interpreted

as family resemblance among distinct kinds of physical causation, each kind

being more informative than ‘causes’.

Are ‘thick’ concepts more or less informative than, or equally informative

90This kind of vagueness should be distinguished from the vagueness of concepts prone to
figure in a sorites series due to the unclear applicability of one criterion, e.g., observational
concepts such as ‘bald’ or ‘red’. More on this in §6.7.1.
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as, the ‘thin’ notion of cause? In what respect and to what extent do they

resemble each other? These questions cannot be easily answered. In general,

this depends on the use the various concepts are put to. In order to evaluate

this, we cannot just take into account the conditions under which it is ap-

propriate to infer the causal claim. We must also consider the consequences

that ensue from the appropriate application of the claim.91 Intuitively, we

can regard a claim as more or less informative depending on the number and

kind of claims which are entailed by it and are incompatible with it. As far as

causation is concerned, what we expect from knowledge of causal relations,

whether thin or thick, is that they enable correct predictions, explanations

and interventions.

Let us assume, as is plausible, that to conclude that a thick fact takes place

one needs different evidence from that required to conclude that causing takes

place. So, in a given case we may know that there is transference of conserved

quantities, probability raising, counterfactual dependence, a mechanism, etc.

This typically legitimates the inference to the causal claim. Still, we wouldn’t

know whether it is pushing, or pulling, or breaking, or binding, or buying, or

selling, or. . . that takes place. Additional knowledge is required. Sometimes

this knowledge can be observational—in the case of, e.g., pushing and pulling

among objects. More often, it is domain-specific—in the case of, e.g., breaking

and binding among biochemical reactants, or trading among economic agents.

That is, in most cases we need to know the typical modes of interactions

among the entities in a given domain, e.g., that economic agents typically buy

and sell whereas biochemical reactants typically break and bind. However,

this only establishes that thick concepts can be appropriately used in different

circumstances, not that they have more causal content than ‘causes’. To

the latter end, one must also show that thick concepts allow more correct

predictions, explanations and interventions than ‘causes’.

Assume we have established the thick claim ‘p53 promotes apoptosis’,

and that this establishes the thin claim ‘p53 causes apoptosis’, too. To what

use can we put the two claims? As I said, knowledge of causal relations

91It is important to stress the significance of this move. Drawing attention to conse-
quences of appropriate application, too, results in a further shift in the discussion on the
meaning of causal claims. The first shift, from the search of truth conditions to the search of
test conditions, was made necessary by the observation that monocriterial analyses do not
exhaust the meaning of causal claims, but provide at best evidence for causal claims. This
second shift, instead, consists in enlarging the class of claims which are constitutive of the
meaning of causal claims, so as to include claims that follow from the correct application of
a causal claim. As I explain in §6.5, this amounts to endorsing an inferentialist semantics.
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should enable correct predictions, explanations and interventions. How does

knowledge of thick facts fare with respects to these goals, vis-à-vis knowledge

of thin facts? Arguably, if we know that p53 promotes apoptosis, we can

expect p53 to raise the probability of apoptosis. But this expectation may

be as reasonable as the expectation that p53 will not raise the probability of

apoptosis, provided further background information is provided. For instance,

if we know that p53 is mutated, we will expect that the internal pathway to

apoptosis won’t work properly. Instead, if we (only) know that p53 causes

apoptosis, we know that p53 has the disposition to cause apoptosis, although

we cannot be certain on whether this disposition will be manifested. However,

if we know more about the context, we may have more reasons to expect

one outcome rather than another. In sum, the two claims may be equally

informative—depending on what else we know.

Nor is it too far-fetched to think that in suitable contexts—in the presence

of the right premisses—thin talk may be more informative than thick talk.

In such cases, we rely on collateral reasons to apply, or not to apply, the

claim to a broader class of circumstances. For instance, we often realise that

claims, or models, which work well in certain circumstances, are successfully

exportable to other circumstances. The reason why we notice this is that

we draw an analogy between the kind of situation in which the claim was

initially formulated and the kind of situation to which we want to export

it. The analogy may be well founded, based on, e.g, evolutionary grounds

(same/different ancestors), geometrical reasons (same/different topologies),

or else. If the analogy is plausible, we then proceed by rephrasing the claim

and modifying the context description in the terminology appropriate to the

target situation. Crucially, such a move is sometimes facilitated by the use of

thin talk, and wouldn’t be regarded as equally plausible if thicker descriptions

were used instead. Hence, the use of the less committal and more general

‘causes’ can prove not only equally informative, but also more informative, if

it suggests inferences that thick notions do not suggest.

Let us consider once again the claim ‘p53 causes apoptosis’. If this can,

in some circumstances, be conducive to more numerous and/or more success-

ful inferences than ‘p53 promotes apoptosis’, then the TC tenet that thick

concepts are always more informative than ‘causes’ is undermined in complex

systems. In general, thick causal verbs seem to have a more intuitive content,

but also narrower applicability. The scope of ‘pushes’ and ‘pulls’, for example,

is usually limited to one-off activities. ‘Promotes’, ‘inhibits’, etc. tend to have
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larger applicability, since they refer to more complex activities, that may take

some time for completion, involve several intermediary steps, etc. The more

general and less committal ‘causes’ may have even larger applicability. In fact,

although ‘causes’ may not be as informative as thick verbs as regards, e.g.,

the net effect of the relation (whether it is positive or negative) or its strength

(e.g., ‘boosts’ seems stronger than ‘causes’), when used in context ‘causes’ is

flexible enough as to acquire such connotations, the description of the context

determining whether the causal effect is positive or negative, strong or weak,

etc. Since contextual factors are of crucial importance for the coming about

of complex phenomena, TC is not so illuminating when applied to disciplines

such as system biology or computational economics. Here, the semantics of

causal claims is better explicated by reference to test criteria—which grant

the correct applicability of the claim—as well as use criteria—which suggest

how to apply it once it has been warranted. So, although the cluster-concept

view is in principle compatible with Cartwright’s metaphysical pluralism, I

see no advantage in holding this latter position with respect to the task of

explicating the meaning of causal claims in complex systems.

Let me summarise the results of my discussion so far. First, it is desirable

to find a way to analyse causation not as an exhaustive disjunction of concepts

but rather as a cluster concept. Secondly, we may want to do so by linking

the concept of cause to the other concepts it is related to without reducing

it to—or identifying it with—them, in other words, by preserving its status

of cluster, of object with vague and flexible boundaries. Thirdly, an appeal

to the loose family resemblance among the various causings, as characterised

by thick causal notions, is not likely to help in characterising the cluster. I

have suggested that significant progress can be achieved if we enlarge the set

of propositions which are constitutive of the meaning of causal claims so as

to account not only for the conditions in which it is appropriate to infer the

causal claim but also for the consequences of its appropriate application. This

amounts to endorsing INF, viz. the inferentialist approach to causality.

6.5 Causality as inference

I propose that the cluster be analysed in an inferentialist framework, where

the question ‘How should the cluster concept be analysed?’ translates into

the other question, ‘Under what conditions are inferences to and from claims

involving the cluster concept warranted?’
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The question ‘How should the cluster concept be analysed?’ is by no

means the only question that we may expect inferentialism to answer. Other,

more specific questions arise, such as: Is it possible to order the causal content

of the concepts in the cluster? What, if anything, characterises the cluster

that applies to causation in complex systems? I discuss the details of my

inferentialist proposal in chapters 7 and 8. Here, I limit myself to argue that

an inferentialist analysis of causality need not be strongly pluralist.

Inferentialism is an approach to semantics (Harman, 1999; Dummett,

1991; Brandom, 1994b) rooted in the pragmatist tradition (Sellars, 1953;

Wittgenstein, 1978). Brandom’s own version of inferentialism—to which I’ll

make reference in the following—explicates the meaning of linguistic expres-

sions in terms of “what can both serve as and stand in need of reasons”

(Brandom, 2007, p. 654), that is, in terms of inferential relations between

circumstances of appropriate application (premisses of inferences) and ap-

propriate consequences of application (conclusions of inferences).

Expressions derive their meaning from the rules of inference they obey

(see Brandom, 2007, §1-§3). In particular, subsentential locutions derive their

meaning not from their referential function but from the sentences in which

they occur92; and sentences, in turn, derive their meaning not from their

truth conditions but from their inferential role (cf. Sellars, 1962, 1968). The

meaning of a sentence (e.g., a specific causal claim such as ‘X causes Y ’) as

well as the content of a concept are analysed in terms of meaning-constitutive

inferences that, respectively, warrant the applicability of the sentence/concept

and are warranted by it. Following Reiss (2011), I call the sentences that

warrant the claim ‘inferential base’ and those warranted by it ‘inferential

target’.93 We needn’t be too concerned with the details of the inferentialist

semantics for the moment, only bear in mind that the inferentialist has a

machinery to get the meaning of words (e.g., ‘causes’) out of inferences.

Now, if one endorses inferentialism about meaning, what should one say

about the meaning of causal claims? Arguably, the meaning of causal claims

92The former approach is adopted by ‘conceptual atomism’, a theory of meaning which
extends to all concepts Kripke’s account of the meaning of proper names in terms of direct
reference; the latter approach, instead, is embraced by so-called ‘classical-’, ‘prototype-’ and
‘theory-’ theories of concepts (Laurence and Margolis, 1999).

93In particular, the class of inferences must comprise not just the logically correct ones
but also the materially correct ones, and not only language-to-language inferences, but also
inferences involving non-inferential circumstances of appropriate application (observations)
and non-inferential appropriate consequences of application (actions) (see Brandom, 2007,
pp. 657-658).
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Figure 6.1: Causality as inference

is constituted by and analysable in terms of inferential relations between evi-

dence of experiments, results of RCTs, observational studies, simulations, sta-

tistical analyses, etc. (together with theoretical and background assumptions)

on the one hand, and possible explanations, predictions and interventions on

the other (figure 6.1). But is this sufficient to say what ‘causes’ means?

Problems may arise here (§6.6), having to do with identifying the meaning-

constitutive inferences of, respectively, a particular causal claim and ‘causal-

ity’ simpliciter (i.e., ‘causes’ as occurring in all causal claims). At the root

of these problems is a traditional trouble for inferentialism, viz. semantic

holism: If the meaning of linguistic expressions is inference, and inferences

are all related to one another, then the meaning of any one linguistic ex-

pression depends on all inferences (Quine, 1951). How can one isolate the

meaning-constitutive inferences from the non-meaning-constitutive ones?

In the case of causality, the problem may be particularly acute. Intu-

itively, holism is easier to address in the case of observational statements and

expressions, which are ‘low-level’, viz. closer to the observational contexts in

terms of which their meaning can be made explicit.94 But ‘causality’ is (often)

‘high-level’, and related to observational contexts only ‘indirectly’, through

many other inferences. All the more reason to believe that ‘causes’, whether

in a specific claim or simpliciter, is so entrenched in our conceptual apparatus

that its meaning-constitutive inferences are too ‘distributed’ to be isolated.

Now, whether the inferentialist approach is in general successful depends

on whether a general response to holism is successful. The inferentialist may

94Yet, it seems possible to define inferentially logical vocabulary (Dummett, 1991).
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claim that meaning is fixed by the counterfactually robust inferences (Sellars,

1948), or by canonical introduction and elimination rules, and the possibility

to justify other inference rules by reduction to such rules (Dummett, 1991), or

that communication is possible in virtue of similarities rather than identities

of inferential role (Harman, 1999), or the distinction between one’s commit-

ments and the commitments attributed to others (Brandom, 1994b), etc.

Depending on one’s favourite take, there’s either a sharp distinction between

meaning-constitutive and non-meaning-constitutive inferences (non-holists,

such as Sellars and Dummett) or a blurry one (holists, such as Harman and

Brandom). Which approach one should choose depends, among other things,

on whether one can make use of the distinction between confirmational and

semantic holism (Cozzo, 2002). Here I don’t commit to any of the stronger

replies, I only limit myself to observe that there are only few examples of al-

legedly successful reductive analyses, and the intuitions such analyses rely on

are seldom shared among all philosophers (Margolis and Laurence, 2012, §2.1,

§5.2). The failure of monistic and determinate pluralist analyses of causal-

ity suggests that sharp distinctions may not be available for all concepts.

Accordingly, in the following I will only assume that some weak response is

available such that semantic holism may be ‘contained’, at least for a class of

concepts, or for some concepts better than others. On this assumption, we

still need an additional argument to the point that causality is among those

concepts for which an inferentialist analysis is informative. Providing such

an argument is apparently harder because of the centrality of the notion of

causality in our conceptual apparatus. Still, I want to argue that there is

room for a weak form of semantic monism.

I will now present in some more detail the evidential and the semantic ver-

sions of pluralism and their connections with inferentialism, before discussing

whether and to what extent they follow from the inferentialist approach to

meaning (§6.7).

6.6 Evidential vs semantic pluralism

Should we endorse only evidential pluralism (Williamson, 2006; Russo and

Williamson, 2007) or also semantic pluralism (Reiss, 2009a, 2011)? For the

evidential pluralist, traditional monistic accounts offer at most evidence for

causal relations, i.e., test conditions, not exhaustive analyses, i.e., truth con-

ditions. Provided one rejects such accounts, this claim is quite straightforward
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and uncontentious. More contentious is whether these different analyses iden-

tify distinct notions of cause. The debate has an obvious bearing on whether

the attempt to provide a monistic account of causality is well-founded.

On the one hand, in line with his epistemic view, Williamson claims that

different kinds of evidence for causal claims do not presuppose different con-

cepts of causality. The evidence gathered by using the various criteria, which

‘typically’ apply together, is evaluated depending on how well it conduces to

successful uses—viz. successful predictions, interventions and explanations—

so as to univocally constrain rational belief in what causes what.

On the other hand, Reiss suggests the following identity condition for the

meaning of ‘causes’:

Suppose the term ‘cause’ is used on two different occasions and

it is not known whether it has the same meaning on both occa-

sions. Two such claims would have the form ‘X α-causes Y ’ and

‘Z β-causes W ’. We can then say that ‘α-causes’ has the same

meaning as ‘β-causes’ (on these occasions) to the extent that ‘X

α-causes Y ’ is inferentially connected to the same kinds of proposi-

tions regarding the relation between X and Y as ‘Z β-causes W ’

is inferentially connected to propositions regarding the relation

between Z and W (Reiss, 2011, pp. 923-924).

This condition relativises the meaning of a token causal claim to both kind

and number of criteria the claim is inferentially related to—where ‘criteria’

stands here for both test conditions (base criteria) and use conditions, or pur-

poses (target criteria). One thing, in fact, is to say what ‘causes’ simpliciter

means, quite another thing to say what ‘X causes Y ’ means when applied

to population P1 as opposed to population P2, since, e.g., mechanisms or

probabilities by which the effect is brought about as well as criteria used to

establish the claim may be different in P1 and P2.

For this reason, the meaning of any causal claim—e.g., in epidemiology,

‘exposure to aflatoxin causes liver cancer’—is population-relative:

in general, when the causal claim concerns the toxicity of a sub-

stance, language users are entitled to inferences about a given

population only when the inferential base contains evidence claims

about just that population (Reiss, 2011, p. 917).
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To this consideration, one may add that identity depends not only on same-

ness of kinds of sentences, or (formal) criteria, but also on sameness of con-

tents of sentences, or ‘propositions’. This further condition seems implied by

what Reiss himself elsewhere states: “[t]here is a definite set of propositions

with which any causal claim is inferentially related” (Reiss, 2011, p. 924).95

Notice that this applies even when the same relata, hence the same causal

claim type (as in, e.g., ‘X α-causes Y ’ and ‘X β-causes Y ’), are concerned.

That is, meaning depends not just on base and target criteria but also on

the specific content of base and target sentences. Indeed, the content of the

sentences need not coincide with the content of the criteria. For instance,

one thing is to say how a randomised control trial (RCT) is inferentially re-

lated to a causal claim, i.e., how it is to be conducted to provide support

for the claim. Another thing is to specify how the meaning of ‘exposure to

aflatoxin causes liver cancer’—whether applied to different populations (e.g.,

mice and humans) or to the very same population—depends on the particular

way the RCT is conducted, i.e., the specific individuals on which the RCT is

performed (each, arguably, instantiating slightly different mechanisms), the

result of the randomisation in a specific trial, etc. So, even on the assumption

that the criteria are the same, meanings may end up different depending on

the different circumstances in which tests are performed and on the different

actions taken—described, respectively, in base and target.

Now, since meaning of both criteria and contents is to be defined inferen-

tially, it is easy for pairs of inferential webs to differ somewhere. No surprise

that Reiss takes inferentialism to entail conceptual pluralism: the concept of

cause is “unspecific rather than ambiguous” (Reiss, 2011, p. 914), and should

be replaced by a plurality of well-defined—or well-definable—concepts.

Who is right? In spite of the disagreement, both Williamson and Reiss

maintain that causality has to do with inference. Shouldn’t we expect from

inferentialism itself to deliver an answer on the monism-vs-pluralism debate?

Well, things are not so easy. Two readings, in fact, are available.

According to a first reading, clearly adopted by Reiss, ‘causes’ is ambigu-

ous and differs from claim to claim, depending on the particular base and

target. That is, tokens of ‘causes’ used in claims established by different

methods and licensing different inferences have different meanings.

95Admittedly, the content of base and target sentences may not count, for Reiss, as
part of the identity conditions for ‘causes’. Indeed, that he intends to impose this further
condition is denied by him (private communication). Still, pace Reiss, his argument for the
unspecificity of ‘causes’ presupposes this condition (§6.7.1).



§6.6 Evidential vs semantic pluralism 172

A second reading, instead, has it that the premisses from which causal

claims are entailed, and the conclusions that causal claims entail, only differ as

to the weight of the different kinds of inferences which, respectively, warrant

the claims and the claims warrant. Causality is only ‘moderately’ diverse:

criteria employed in different circumstances, although weighted differently,

are similar enough to legitimate a strong clustering among the various tokens

of ‘causes’. This second reading, for which causality is one ‘cluster concept’,

is closer to Williamson’s position.

The issue is all the more relevant insofar as, according to one’s favourite

reading of the inferentialist take on meaning, evidential and semantic plu-

ralism give two different answers to the question of what, if at all, is the

philosophically interesting fact that explains the use of “causal” to denote

all kinds of causal relations. As mentioned, for Reiss there is no fact of the

matter: whether different criteria ‘typically’ coincide is an empirical not con-

ceptual matter, “much like discovering that various symptoms of a disease

typically co-occur” (Reiss, 2009a, p. 33) (cf. Psillos, 2010); “why we have

come to call the different kinds of relationships causal is a matter of histori-

cal, not philosophical, inquiry” (Reiss, 2009a, p. 37). For Williamson, instead,

there is one fact of the matter: different criteria typically coincide because

they all provide evidence for the same (kind of) relation; we have come to

call all these relations ‘causal’ because they all share the role of licensing

inferences. Which answer is correct?

The issue largely depends on whether ‘causes’ is to be regarded as vague,

as the monist can maintain, or unspecific, as Reiss claims. If ‘causes’ is vague,

there can be one cluster. In this case, vagueness is semantic. If ‘causes’ is

unspecific, instead, there are irreducibly many notions. On this view, the

‘vagueness’ is epistemic, i.e., it concerns ignorance on which of many distinct

notions is employed in each case: “True, we might not always have a very

clear idea of what [the meaning-constitutive sets of propositions] are. But

this is a question of epistemology, not of semantics” (Reiss, 2011, p. 924).

One way to tackle the issue is to look at the foundations of the inferentialist

project itself. As mentioned, even granting that holism can be contained,

we still need an argument to show that ‘causality’ is liable to be analysed

inferentially.

More specifically, holism generates two further problems: (i) the (in)stabil-

ity of conceptual contents under change of belief and commitment to the

properties of various inferences; and (ii) the (im)possibility of communication
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between individuals who endorse different claims and inferences. But, then,

how can a change in one belief not result in a change in all other beliefs?

And how can two speakers’ whose beliefs differ somewhere ever talk about

the same thing?

When it comes to causality, the inferentialist needs an argument to guar-

antee, in the face of the holistic nature of meaning, (i) the relative stability

of conceptual content of ‘causes’ and (ii) the possibility of successful com-

munication on causal claims. In §6.7, I show that, if these two goals can be

achieved, holism can be contained in a way that makes room for ‘causes’ being

one and vague rather than unspecific. I offer two arguments to this point, one

for the vagueness of the notion of cause—the ‘argument from (in-)stability of

content’—another for its uniqueness—the ‘argument from communication’.

6.7 Causality as one, vague concept

6.7.1 Argument from (in-)stability of content

To begin with, notice that Reiss’ argument for semantic pluralism trades

on an ambiguity between (i) analysing meaning in terms of different sets of

(token) sentences and (ii) analysing it in terms of sets of different kinds (or

types) of sentences within those sets.

On the first interpretation, strong semantic pluralism follows straightfor-

wardly. To each inferential base and target of (token) sentences there corre-

spond a different meaning. However, this would make it strictly speaking im-

possible for linguistic expressions to share the same kind of meaning—unless

some similarity criterion is allowed, that is, unless one opts for the second in-

terpretation. Intuitively, it must be possible and legitimate to group linguistic

expressions depending on their similar inferential roles. Analogy of inferential

roles could then be used to make meaning of kinds of linguistic expressions

explicit. Otherwise one would be stuck with (meaning of) single-case claims

and unable to formulate general claims.

The second interpretation is surely more attractive. Here, strong seman-

tic pluralism follows only on the assumption of a ‘double standard’ for the

semantics of ‘causes’ and the ancillary notions (e.g., ‘depends’, ‘produces’)

that help make ‘causes’ explicit. That is, if one wants to distinguish between

kinds of sentences—which is plausible—and still draw the same pluralist con-

clusion on the meaning of causal claims, one must have a similarity criterion
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that legitimates the clustering of sentences in base and target of the ancillary

notions but prohibits the clustering of sentences in base and target of ‘causes’.

For instance, the criterion will dictate that the circumstances that entail and

are entailed by ‘probabilistically depends’ are similar enough to make one

cluster, whereas those that entail and are entailed by ‘causes’ are not. As a

result, ‘probabilistically depends’ counts as one concept, whereas ‘causes’ is

an unspecific term that subsumes a plurality of specific concepts. But this is

problematic, as I am now going to show.

For the inferentialist, language is essentially dynamic. This means that

any codification or theoretical systematization of the uses of (...)

vocabulary-kinds by associating with them meanings that deter-

mine which uses are correct will, if at all successful, be success-

ful only contingently, locally, and temporarily (Brandom, 2008b,

p. 5).

Drawing on this insight, the thesis of the argument from (in-)stability of

content (Sta) is that the respect in which different meanings differ cannot be

made fully explicit not only for epistemic but also for semantic reasons:

Sta.1. Communication can be unsuccessful not only because of the igno-

rance of the speakers but also because language is a dynamic network of

concepts.

Sta.2. If so, then the meaning of ‘x -causes’ can be specified only on-the-fly

by successful use.

Sta.3. But, at any time, also the meanings of the ancillary notions that

should make ‘x -causes’ semantically explicit is specified on-the-fly.

Sta.C. Hence, the meaning of ‘x -causes’ can be—semantically—only par-

tially specified, or specifiable. That is, it is not only semantically unspecific

but also semantically vague.

To claim otherwise would mean to accept the double standard: meaning of

ancillary notions is vague whereas meaning of ‘causes’ is unspecific. But how

could this be justified?

True, the meaning of ancillary notions may be easier to make explicit.

In inferentialist terms, their tokens are easier to group as belonging to the

same kind on the basis of their inferential role. For instance, the mean-

ing of ‘probability raising’ or ‘counterfactual dependence’ can be (following

Brandom)formally fixed in terms of necessary (target) and sufficient (base)

conditions. However, holism applies to such concepts, too: when it comes



§6.7 Causality as one, vague concept 175

to applying the formally-defined concept to non-formal circumstances, it is

still left to us to decide whether the formal notion applies or not—whether

‘X raises the probability of Y ’ or ‘Y counterfactually depends on X’, etc.

Strictly speaking, no concept can be totally isolated from the other concepts.

And if one applies to the ancillary notions the same strict identity condi-

tion which is applied to ‘causes’, one ought to conclude that distinct tokens

of the ancillary notions (e.g., ‘α-probabilistically raises’ as occurring in ‘X

α-probabilistically raises Y ’ as opposed to ‘β-probabilistically raises’ as oc-

curring in ‘Z β-probabilistically raises W ’) have distinct meanings, since their

inferential role is fixed by distinct sets of sentences. Token sentences in base

and target are different for each claim—whether involving the concept of

cause or other concepts.

So Reiss’ argument for unspecificity generalises in principle to the ancil-

lary notions: one cannot say there are many distinct, unspecified concepts

of causality without at the same time saying that there are many distinct,

unspecified concepts of probability raising, counterfactual dependence, etc.

From which it follows that if we want the meaning of the ancillary notions to

be semantically vague on similarity grounds, then we should allow causality

to be vague as well, on the same grounds.

Admittedly, one could object to this analysis that the vagueness of ‘causes’

is of a different kind from that of the ancillary notions, ‘causes’ being more

like a multiply-realisable concept (e.g., ‘bird’, realised by distinct species of

bird), the ancillary notions more like non-multiply-realisable concepts (e.g.,

‘bald’). But even granting that this is so, we don’t deny that there is one,

legitimate concept of ‘bird-ness’.96 So why deny that there is one concept of

‘causality’?

Now, a serious problem may arise, having to do with the possibility of

meaningful communication. If the identity of meaning depends on the in-

ferences in terms of which the meaning is analysed, and is only partially

fixed/fixable, how can meaning be stable enough to allow us to discuss about

the same things? In particular, how can meaning be stable enough so that

we can make it explicit in communication, by clarifying the inferential pre-

suppositions and implications of what we say, so as to resolve controversies

on what claims to endorse?

96To reiterate a point made earlier (see fn. 102), I am not concerned here with metaphys-
ical issues, such as whether or not there is an object-type the concept refers to, whether
bird-ness is a ‘natural’ kind, whether causal relations are ‘real’, etc.
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Clearly, due to holism, conceptual/propositional content cannot be totally

transparent to the speakers (see above). Yet, much of what we say, in par-

ticular many of the implications of our commitments, must be transparent

to us—otherwise communication wouldn’t be possible. Granted that holism

can be contained, there must be a ‘semantic level’ at which meaning of many

notions that we use in communication is stable enough. Arguably, that is the

level at which meaning is vague enough for the speakers to take it as one and

treat its possible applications as similar enough. That is the level at which, I

claim, there is a unique concept of causality. But here we need an argument

to the point that we can legitimately talk of one vague notion of causality, as

opposed to many vague notions.

6.7.2 Argument from communication

Before presenting the argument, it is crucial to point out the source of the dif-

ference between Reiss and Williamson in the unity-vs-disunity debate, namely

the different weight they ascribe to base and target.

On the one hand, Williamson places more weight on the target. All kinds

of evidence are required, in principle, to establish a causal claim (Russo and

Williamson, 2007). This is because, ultimately, their role is helping maximise

the target’s success. The meaning-constitutive inferences are (only) claim-

to-target inferences (see Williamson, 2006, p. 78). And since the target is

a unique class of claims, namely explanations, predictions and claims about

results of interventions, there is one notion of cause. That is, the unity of

purpose(s) is what fixes the meaning of ‘causes’ and blocks the fragmenta-

tion. Here, inferentialism is used to explain philosophically the uniqueness of

meaning.

On the other hand, Reiss places more weight on the base: “whereas

the meaning of an expression is given by its inferential connections (...),

its method of verification determines what these inferential connections are”

(Reiss, 2011, p. 923). And since we have many ways to establish a causal

claim, i.e., many appropriate base-to-claim inferences, we have many concepts

of cause as well (see Reiss, 2011, p. 924). Nor does an appeal to purposes

(target) help unify. Rather, purposes disunify, by pulling apart the role of

causal claims. So, an epidemiologist may be interested in explaining whether

the population-level correlation between aflatoxin exposure and liver cancer

is due to the carcinogenicity of aflatoxin; a policy maker in knowing whether
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controlling aflatoxin is an effective way to reduce mortality; someone exposed

to aflatoxin in predicting whether this exposure will result in a higher chance

of liver cancer. To the three purposes there correspond different criteria to

establish the causal claim, hence different concepts of cause (see Reiss, 2011,

§3-§5)—even within the very same discipline.97 The fact that different rela-

tions are all called ‘causal’ has no philosophical significance. Inferentialism is

only invoked to describe the fragmentation, not to explain the way this came

about, which is a contingent, historical matter.

Here, it is worth contrasting Reiss’ position with Godfrey-Smith (2009)’s.

For Godfrey-Smith, a cluster concept is an “amiable jumble” of criteria, such

that its criteria sometimes pull apart but ‘typically’ don’t. Causality is pecu-

liar because the jumble is “cantankerous”, not amiable (Godfrey-Smith, 2009,

p. 331). By this, he means that causality is partly an “essentially contested

concept” (ECC) and partly low-level, or uncontentious. It is ECC, because

it is not just hard to work out when the conditions of applica-

tion are met, but (...) the conditions for application themselves

are, given the concept’s role, permanently susceptible to being

challenged and renegotiated (Godfrey-Smith, 2009, p. 335)

However, it has also low-level, uncontentious uses, where disputes with respect

to boundaries and criteria for application can be resolved. Terms with both

ECC and low-level uses acquire their role when

their successful application has significant downstream conse-

quences, but their domain is complex in ways that involve the

absence of sharp boundaries that function as attractors to usage.

[In the case of causality], an accepted set of exemplars and a sense

of shared purpose behind diverse uses prevent a fragmentation into

distinct concepts. These ideas might be linked to tools developed

in recent ‘inferentialist’ philosophy of language (...) (Godfrey-

Smith, 2009, p. 336)

In virtue of such a shared sense of purpose, unity prevails over disunity. This

97Reiss (2009a, §6) articulates this idea as applied to economics: (i) when the purpose is
prediction, causal talk usually refers to a property of time series such that one is a good
predictor of the other (‘Granger causality’, see (Granger, 1969)); (ii) in policy claims, causal-
ity is best interpreted as stability of the relation between two variables under intervention
(Haavelmo, 1943); (iii) causality as used for explanation has mostly a mechanistic sense
(Elster, 1998).
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conclusion, partly reached by invoking inferentialism, is in obvious disagree-

ment with Reiss, for whom an appeal to purpose does not prevent fragmen-

tation.

How should one decide between evidential and semantic pluralism? To

answer this question, partly drawing on Godfrey-Smith’s distinction between

ECC and low-level uses, I employ the argument from communication (Com):

Com.1. For distinct concepts of causality to exist there have to be dif-

ferent communities using the same word with different meanings, and yet

either (i) never successfully communicating by using the word, viz. never

agreeing whether implicitly or explicitly on its rules of ‘correct’ appli-

cation; or (ii) communicating by using the word but never discover-

ing the disagreement on such rules.

Com.2. The second option is clearly implausible, as evidenced by the ex-

plicit, semantic disagreements among both scientists and philosophers.

Com.3. The first option is implausible, too: true, often different commu-

nities don’t discuss subject-specific causal claims; but sometimes they do;

plus, sometimes they engage in high-level semantic reflections; in both cases,

they can reach semantic agreement.

Com.C. Therefore, ‘causes’ can be—in a sense to be qualified—one concept.

This argument agrees with Williamson that—in a sense—purposes contribute

to unify, whilst conceding to Reiss that—in another sense—they don’t. What

exactly are the two senses can be illustrated in terms of different semantic

levels, i.e., different contexts in which purposes play their role in fixing the

meaning (see below). Depending on the level, we may have either unity (un-

contentious uses) or disunity (contentious uses). In both low- and high-level

cases, a shared purpose—together with the taking of our linguistic expres-

sions as committing us to certain consequences98—tends to generate a shared

commitment on meaning. That is, several speakers/communities that given

some accepted base agree on endorsing a claim ought to agree on the claims

that follow from it and the claims that are incompatible with it—that is,

they ought not deny (respectively, endorse) the claims that follow from it

(are incompatible with it), once they are made aware of them.

First, I agree with Godfrey-Smith that unity is possible at the subject-

specific, low level of token, ‘C causes E’ claims. This may not be the case

when, say, distinct claims (e.g., ‘X causes Y ’ and ‘Z causesW ’) are concerned.

Here, different purposes can easily produce low-level variability. However,

98This is usually referred to by the inferentialist as the ‘normativity of meaning’ (Peregrin,
2012).
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take the same claim, e.g. ‘exposure to aflatoxin causes liver cancer’, and

distinct communities holding some commitment (not necessarily the same)

towards the claim, e.g., community A endorsing the claim in the light of an

RCT in mice, community B not endorsing it, in the light of an observational

study in humans. Here, disunity is possible only provided findings of one

community about the claim, obtained by using one criterion and ensuing in

certain consequences, once communicated to the other community do not

at all affect their commitment to the claim. But this sounds implausible.

For instance, it is implausible that A’s evidence for the causal connection

between aflatoxin and liver cancer in mice has no bearing on B’s belief that

aflatoxin causes liver cancer in humans. Reasoning from analogy, especially

on evolutionary grounds, is common in science. And the possibility of an

RCT in mice and not in humans doesn’t seem to be reason enough for the

meaning of ‘causes’ in the two claims to be of different kinds.

On the contrary, whenever scientists coming from different backgrounds

interact, for instance in interdisciplinary projects, they must agree on the

interpretation of their results as well as accept the bearing of each others’

methods on such results. The outcome of their research is very often the

formulation of causal claims. When urged by philosophers to say what they

mean by ‘C causes E’, scientists may well disagree—this largely depends

on how their training shapes their methods and purposes. However, they

also need to come up with a coherent story. After all, the causal claim is

the result of a collaborative effort, shared methodology, assumptions, results’

interpretation, etc. There must be something they all mean by ‘C causes E’,

at least in that context.

One instance of such interdisciplinary projects is EnviroGenoMarkers.

This project is driven by the success of past epidemiological studies in identi-

fying the risk of environmental exposures (e.g., air pollution and passive smok-

ing) with respect to the onset of chronic diseases (e.g., cancer and coronary

artery disease). The current project, whose methodology comprises both ex-

periments on biological samples and observational studies, aims at “the iden-

tification of both biomarkers of exposure (e.g. dietary components, environ-

mental pollutants) and of markers of early damage (e.g. early disease-specific

metabolic changes), notably for carcinogenesis” (Chadeau-Hyam et al., 2011,

p. 84). The team includes chemists, molecular biologists, epidemiologists,

statisticians, etc. Due to such a diverse composition, one would expect a

clash of intuitions on what counts as causal. In spite of this, there is agree-
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ment in interpreting previous studies on environmental exposures as providing

evidence for causal claims: “biomarkers (...) have contributed to make the

association more plausibly causal” (Vineis et al., 2009, p. 54). And with re-

gard to their own study, the team maintains that “the finding that preclinical

biomarkers shown to be related to particular exposures in prospective stud-

ies are also elevated in certain subclasses of disease would strengthen causal

links between exposures and disease” (Chadeau-Hyam et al., 2011, p. 85). At

the same time, the connection between purposes is implicitly acknowledged:

“intermediate biomarkers can provide important mechanistic insight into the

pathogenesis of environmental diseases” (Vineis et al., 2009, p. 54). That

is, a successful prediction provides at least some explanation. This supports

my unity-over-disunity claim: to the extent that there is some connection

between purposes, successful communication is conducive to low-level unity,

not fragmentation.

Secondly—here I part with Godfrey-Smith—unity may be possible also

at the non-subject-specific, high level where speakers discuss the meaning of

a word, e.g., ‘causes’ (now treated as a type), and agree on the formal criteria

that are ‘typically’ associated with it. In science, such ‘abstract’ discussions

may not take place frequently, but they do take place sometimes. Instead, in

areas of discourse such as philosophy they take place on a regular basis. Now,

whenever they take place between any two speakers A and B, provided the

(counter-)examples used by A, who adopts certain rules for the use of some

expression, are regarded by B as informative on the correctness of B’s rules of

application for that expression, the possibility of some unique concept—that

is, a shared core of rules—that A and B are referring to is presupposed.

This largely depends on the existence of a stable class of interrelated pur-

poses. In particular, the class must be stable enough, so that discussions

on the appropriate tools to achieve the purposes, in the light of past conse-

quences of the tools’ application, can take place. And the purposes must be

interrelated enough, so that the success with regard to one purpose, driven

by the application of one tool, affects to some extent the other purposes as

well. These two conditions seem both well satisfied in the case of causality.

Here the class of purposes, i.e., prediction, intervention and explanation, is

traditionally very stable. And, although meaning is in principle flexible, such

a class seems—although this is just my best guess on the way our linguistic

practice will evolve—very unlikely to change. Also, the purposes are strongly

interrelated. So, it is hardly the case that a good explanation (say, a mech-
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anistic explanation of how aflatoxin causes liver cancer) has no bearing on

successful prediction, when the appropriate circumstances are in place (when

the individual instantiates the mechanism); and it is unlikely that a success-

ful prediction (a preclinical biomarker predicting, in the presence of some

exposure, the onset of the disease) tells us nothing on possible interventions

(either directly, if the biomarker is itself a cause, or indirectly, if disease and

biomarker are effects of a common cause); etc. If the above reasoning is cor-

rect, then making explicit the meaning of this unique, high-level concept is in

principle possible. Causality need not be essentially contested. Unity can be

achieved and, although it is ultimately dependent on variations in tools and

purposes, is likely to remain stable.

Conclusion

I examined the various forms of causal pluralism, and found them unable to

satisfactorily answer the monist challenge, viz. to explain what the different

relations have in common, and why we use only one word to denote them.

Inferentialism, in contrast, seems to have the resources to face the challenge.

The same label “causal” is applied to many, seemingly-different relations in

virtue of their sharing the feature of licensing inferences about predictions,

interventions and explanations. Endorsing inferentialism need not lead to

a strong pluralism on the notion of cause. Although what inferences are

licensed in each case may depend on the context as well as the purpose of

the enquirer, ‘causes’ can still have one—although vague—meaning across

contexts and purposes: as far as our tools and purposes are stable enough (so

that we can make them explicit) and related to one another (so that there is

something to make explicit), there is, as a matter of fact, one, vague cluster of

criteria that helps us best achieve those purposes. Inferentialism encourages

unification—not fragmentation—of meaning, and helps us understand to what

extent we are using the same concept, e.g., to what extent the endorsement

of ‘C causes E’ in one context should carry over to another context. In this

sense, inferentialism can support a ‘weak’ form of conceptual monism.



Chapter 7

The Inferentialist Account of Causality

In this chapter, I will be concerned with developing an inferentialist account

of causality. The leading idea of the chapter is that the meaning of ‘causes’

is to be interpreted not in terms of the contribution to the truth conditions

of the sentences where ‘causes’ appears, but in terms of the contribution to

the correctness of the arguments where ‘causes’ is part of the premisses or

the conclusion. More simply put, the meaning of ‘causes’ has to do with the

inferences it licenses. Accordingly, the account I propose answers the question

‘What does ‘causes’ mean?’ by answering ‘What inferences are licensed by

causal claims?’ After presenting the inferentialist framework (§7.1), I address

this question by making explicit the meaning of ‘A causes B’ claims—where

the meaning of ‘causes’ is relativised to specific relata—as well as the meaning

of ‘causes’ simpliciter—as this appears in all causal claims, irrespective of the

relata (§7.2). Once the general features of the concept of causality have been

spelled out, I will be in the position to address the more specific question

‘What is special about (the meaning of) causal claims in complex systems?’

(see chapter 8). I conclude by discussing how the inferentialist account allows

one to deflate the issue of identifying the ‘secret’ connection underpinning

causal relations (§7.3).

7.1 Preliminaries

7.1.1 Incompatibility semantics

One finds the idea that ‘causes’ is an inference license already in Sellars:

I shall be interpreting our judgement to the effect that A causally

necessitates B as the expression of a rule governing our use of the

terms ‘A’ and ‘B’ (Sellars, 1949, fn. 2, p. 136).

182
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According to Sellars, ‘A causes B’ is the expression of a rule. For the in-

ferentialist, modal expressions (‘causes’ included) have the expressive role of

inference licenses, and inference licenses are a sort of rules (Brandom, 2000,

p. 76). Now, why ‘expressive’, and why ‘rules’? Because inference licenses

allow us to express in the object language beliefs about relations obtaining

in the ‘natural space’, but are themselves to be analysed in the ‘space of

reasons’, that is, the language of linguistic norms and rules (deVries, 2010,

p. 399). For instance, ‘A causes B’ is an object-language statement that

describes the relation between A’s and B’s. The analysis of the meaning of

‘causes’ in the statement requires the resources of another language to talk

about the object language. And since ‘causes’ is a ‘rule’, the analysis must be

in normative not just descriptive terms. In Brandom’s jargon, the analysis

requires the vocabulary of ‘commitments’ and ‘entitlements’.

In order to be more precise on how ‘causes’ should be analysed in infer-

entialist terms, some qualifications are needed as regards the particular na-

ture of the metalanguage and the relation between metalanguage and object-

language in the inferentialist semantics. I will from here onwards mainly refer

to Brandom’s own way of developing Sellars’ insights, which Brandom calls

“analytic pragmatism” (Brandom, 2008a,b). Analytic pragmatism unites

pragmatism (‘meaning is use’) with (a kind of) formal, modal semantics.

The novelty resides in that semantic analysis is in terms not only of direct

relations between vocabularies (e.g., definability, translatability, reducibility,

supervenience), but also of ‘pragmatically mediated’ relations, i.e., relations

between vocabularies mediated by linguistic practice, so that relations to lin-

guistic practice become part of the analysis itself.

A paradigmatic example of a pragmatically-mediated relation is the rela-

tion of being a pragmatic metavocabulary, which holds between one vocabu-

lary (the metavocabulary) and another (the object-language vocabulary) in

virtue of some set of practices. More precisely, this relation allows one to say

in the metavocabulary what one must do in order to count as saying the things

expressed by the object-language vocabulary (Brandom, 2008b, p. 8). For in-

stance, the normative vocabulary of commitments and entitlements acts as a

pragmatic metavocabulary with respect to the modal vocabulary, by allowing

one to specify how to use terms such as ‘necessity’, ‘possibility’, ‘causality’,

etc. Example: the modal necessity in ‘Donkeys are necessarily mammals’ can

be analysed in terms of sentences of the form ‘If I were committed to ‘My first

pet was a donkey’, I would not be entitled to ‘My first pet wasn’t a mam-
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mal’ ’. Most fundamentally, for Brandom the vocabulary of commitments

and entitlements allows one to specify how to use ‘incompatibility’; in turn,

the vocabulary of incompatibilities is a pragmatic metavocabulary that al-

lows one to specify how to use the incompatibility-entailment relation, which

becomes the basic relation in terms of which to provide any other semantic

analysis, whether of logical or of non-logical concepts.99 In particular, since

‘causality’ belongs to the modal vocabulary, it must be analysed in terms of

incompatibility entailments.

Incompatibility entailments are a sort of counterfactual-supporting, mod-

ally robust inferences. The idea is that commitments and entitlements can

produce incompatibilities: to say that if one were to be committed to p, one

would not be entitled to q amounts to saying that p and q are incompatible.

Brandom’s key idea is that semantics is to be based not on the notion of truth,

but on the notion of incompatibility—which is why Brandom’s semantics is

called “incompatibility semantics” (in short, IS). That is, the meaning of a

linguistic expression has to do with what ought to be excluded by the appro-

priate use of the expression, rather than with some alleged correspondence

between the expression and certain mind-independent facts. This move is

supposed to do justice to the normative dimension of meaning, as something

that belongs to the space of reasons, not the natural space.

The inference relation underwritten by incompatibilities is the following:

Incompatibility entailment: p incompatibility-entails q iff everything in-

compatible with q is incompatible with p.

This can be informally understood as saying that p incompatibility-entails q

iff were one to be committed to p, one would not be entitled to deny q.

Following Brandom (2008a, chap. 5), incompatibility entailment may be

formally defined after defining an incoherence property Inc over the sentences

of a language L, and an incompatibility function I over sets of sentences. Inc

is a subset of the collection of finite subsets in L that is upward closed, i.e. if

X ⊆ Y , then if X ∈ Inc then Y ∈ Inc. Inc generalises inconsistency to

the case of non-logical properties, so that if a set is incoherent it remains

99Notice that it is Brandom’s strategy to prove that it is possible to use the incompatibility
vocabulary as the most basic one, and to develop one formal version of analytic pragmatism
based on incompatibility, viz. the ‘incompatibility semantics’ (see below). In the following,
I assume that Brandom’s strategy is well justified and use his semantics. This involves no
commitment on my part on whether this is the only way or the best way of developing the
programme of analytic pragmatism.
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incoherent when further sentences are added to it. I between sets X and Y ,

viz. X ∈ I(Y ), is defined as that function such that the union of the two sets

is incoherent, viz. X ∪ Y ∈ Inc. Now, let us indicate the incompatibility-

entailment relation with “�Inc”, and the incompatibility set of a sentence p

with “I({p})”. Then, incompatibility entailment is defined as:

p �Inc q iff I({q}) ⊆ I({p})100 (7.1)

Since Inc applies also to non-logical properties, and I is an incompatibility

of a non-logical nature, the above definition must be understood as a way

to cash out the Sellarsian notion of ‘material’ inferences (Brandom, 2007,

p. 657). Material inferences are inferences of the form ‘F(a). Therefore P(a)’,

e.g. ‘Lightening now. Therefore, thunder shortly’ (Sellars, 1953, p. 323). They

are non-enthymematic, i.e., their validity does not rely on the possibility to

make the argument deductive by adding implicit premisses, e.g. ‘All lighten-

ings are followed by thunders’. In other words, they are valid not in virtue of

their logical form but in virtue of the content of premisses and conclusions.

Also, they are non-monotonic (Brandom, 2008a, p. 106): p may commit one

to q, but p&r may not (more on this in §7.1.2).101

The propositional content expressed by a sentence p (i.e., its semantic in-

terpretant) may be represented by the set of sentences q that express propo-

sitions materially incompatible with p, viz. its incompatibility set :

Cont(p) = {q|{q} ∈ I({p})} (7.2)

100Since IS takes ‘incompatibility’ not ‘truth’ as basic, in the above definition ‘inference’ (or
‘entailment’) is interpreted not as ‘truth-preservation’ but as ‘compatibility-preservation’.
In this way, the inferentialist reverses the traditional order of analysis, from explicating
‘inference’ as ‘truth-preservation’ to explicating ‘truth’ as ‘what is preserved by inference’
(see Brandom (2000, p. 161) and Peregrin (2008, §3)). Also notice that ‘inference’ and ‘in-
compatibility’ are interdefinable, although whether ‘inference’ or ‘incompatibility’ is chosen
as more basic varies from semantics to semantics (Peregrin, 2008, §4). Brandom (2008a)’s
own choice is to take incompatibility as basic.
101One may wonder why �Inc is non-monotonic, i.e. it is possible to turn a correct inference

into an incorrect one, but Inc is upward-closed, i.e. it isn’t possible to turn an incoherent
set into a coherent one. A possible counterexample are abductive inferences, which are
apparently such that p1, . . . , pn 6�Inc c but p1, . . . , pn+1 �Inc c. So, {p1, . . . , pn, c} ∈ Inc but
{p1, . . . , pn+1, c} /∈ Inc. This is particularly relevant to the case of causal claims, where
one criterion alone often does not grant the inference, but several criteria together do. A
possible way to account for this is by thinking of abductive inferences as always involving
some replacement—and not just an addition—of premisses, viz.: p1, . . . , pk, . . . , pn 6�Inc c
but p1, . . . , p

∗
k, . . . , pn+1 �Inc c. Intuitively, the inference becomes correct only after making

the context description more precise.
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The rationale behind the above characterisation is not to reduce the content

of a sentence to some fixed set of other sentences with which the sentence is

in some special relation, but rather to take it as useful to model the content

as being so reducible.102 So, an inferentialist analysis is to be interpreted as

a sort of conceptual explication, rather than a conceptual reduction. Accord-

ingly, the equality sign signals that whatever is on the right-hand side of the

analysis conceptually explicates, not reduces, what is on the left-hand side.

Since the incompatibility set of a sentence is fixed by the incompatibility

set of other sentences, and so on and so forth, IS is holistic (Brandom, 2008a,

p. 134). The meaning of compound sentences cannot be computed by looking

at the semantic value of their components only, i.e., IS is non-compositional.

Nonetheless, the meaning of compound sentences is still computable, their

semantic value being recursively determined by the values of—many—less

complex sentences.

7.1.2 The role of counterfactuals

Before interpreting the meaning of the causal modality, it is important to

clarify the nature of the relation between causality and counterfactuals. This

will allow me to reinterpret in an inferentialist perspective the failure of ac-

counts that try to explicate the meaning of causality in terms of one or the

other privileged inference—not only the counterfactual account (this section),

but also other accounts (§7.2.1).

Recall that incompatibility entailments, which occupy a fundamental role

in IS, are a sort of counterfactual claims. Yet, this does not mean that they

can be used to reduce causality to counterfactual dependence. Very shortly

put, this is because counterfactuals of the form ‘If one were committed to

p, one would not be entitled to q’ belong to the metavocabulary, not to

some object-language vocabulary with which ‘causes’ stands in a reducibility

relation. Let me explain.

In IS, two sentences have identical meaning iff one can be substituted

for the other salva inferentia (Brandom, 2000, chap. 4)—in other words, iff

they have the same inferential role across all possible contexts, which is a

matter of counterfactual dependences. Take two sentences p and q. They

have the same meaning iff: if p (resp. q) follows from some inferential base,

102For an analogous remark with regard to the relation between inferentialist semantics
and classical model-theoretic or possible-worlds semantics, see Peregrin (2008, pp. 100-101).
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so does q (resp. p), and if p (resp. q) grants, together with certain collateral

commitments, some inferential target, so does q (resp. p), together with the

same collateral commitments. In terms of incompatibilities: p and q have

the same meaning iff they are incompatibility-equivalent, viz. were one to

endorse something that incompatibility-entails p (resp. q), one could not deny

q (resp. p); and were one to endorse p (resp. q) and have certain collateral

commitments, one could not deny whatever is incompatibility-entailed by q

(resp. p) in conjunction with the same collateral commitments.

Now, both IS and Lewis’ possible-worlds semantics (PWS) analyse the

meaning of modal claims, causal claims included, in terms of counterfactually

robust inferences. Yet, they do so in different ways.

In PWS, establishing the meaning of ‘A necessitates (or raises the proba-

bility of, or causes, or...) B’ goes via establishing truth conditions: the actual

world is an A- and B-world, and the closest non-A world is a non-B world.

This presupposes the possibility of evaluating counterfactual robustness in a

way which is not theory- or language-relative, by reference to the intrinsic

nature of A and B (no matter how they are described) and what happens at

this and other worlds. In particular, for all possible A’s and B’s, ‘causality’

is—for Lewis—reducible to ‘(transitive) counterfactual dependence’.

In IS, instead, counterfactual robustness has to do with correctness of

material inferences. This is a normative matter, which depends on context-

dependent, collateral commitments, and the way they affect one’s entitle-

ments: whether B ought to be inferred from A depends on whether the rules

of the game are such that other speakers have reasons to socially sanction

one if one claims that A and also claims that, or acts as if, non-B.103 The

evaluation of such inferences cannot but be theory- and language-relative. In

fact, the number and kind of collateral commitments may vary depending

not only on epistemological factors, such as the availability of some type of

evidence in a given context, but also on semantic factors, such as expansions

of the theory or language frame. Due to non-monotonicity, any change of

the latter kind results in a change in the counterfactuals on which mean-

ing, holistically, depends. Whilst epistemological reasons make it difficult

in practice to evaluate all counterfactuals involved, semantic reasons make

103Notice that correctness is not reducible to the fact that one is, on a given occasion,
sanctioned or not. Rather, it is a consequence of the scorekeeping practice as a whole: a
move is correct if it contributes to the ‘harmony’ of the practice, and wrong otherwise (see
§8.1.1).
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it impossible in principle to evaluate all possible counterfactuals.104 Thus,

meaning, which is made explicit in terms of commitments and entitlements,

and the counterfactuals they induce, is not thereby reducible to them. Still, a

change in theory/language need not ipso facto entail a substantial change in

meaning. In fact, not all counterfactuals may be equally relevant. Meaning

depends on ranges of counterfactual robustness (Brandom, 2008a, p. 108):

two sentences share the same meaning to the extent that they have the same

inferential role in a range of contexts, that is, to the extent that they meet

the aforementioned, counterfactual criterion for the identity of meaning.

How is the criterion applied to the meaning of causal claims? Counterfac-

tuals help assess to what extent the inferential roles of ‘A causes B’ and some

other linguistic expression X (e.g., ‘transitive counterfactual dependence’)

overlap. To be sure, counterfactuals may also be used to assess whether ‘A

causes B’ and X have the same meaning (e.g., whether ‘causality’ is ‘transi-

tive counterfactual dependence’). But doing so results in undermining rather

than supporting reductive analyses such as the counterfactual account, as I

now turn to explain.

Let us extend the above identity criterion from sentences to sets of sen-

tences. Two sets C and X have the same meaning iff they have the same

semantic interpretant:

C ≡Inc X iff ∀Y [Y ⊆ I(C)↔ Y ⊆ I(X)] (7.3)

where “≡Inc” indicates incompatibility-equivalence. Next, let “C” stand for

‘A causes B’, and “A” and “I(A)” (resp. “B” and “I(B)”) for ‘A obtains’

and ‘A does not obtain’ (resp. ‘B obtains’ and ‘B does not obtain’). Since

C is about some modal relation between the A’s and the B’s, the following

condition must hold for X to count as conceptually equivalent to C:

C ≡Inc X iff ∀A∀B[A ∩ I(B) ⊆ I(C)↔ A ∩ I(B) ⊆ I(X)] (7.4)

In other words, ‘A causes B’ is incompatibility-equivalent to X iff ‘A and non-

B’ is incompatible with ‘A causes B’ in all and only the cases in which ‘A and

non-B’ is incompatible with X. In terms of commitments and entitlements:

104Accordingly, the use of the ceteris paribus clause among one’s collateral commitments
is to be understood as the acknowledgement that counterfactual statements have potential
defeaters, not as an attempt to survey all possible defeaters (Brandom, 2008a, p. 107).
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C is incompatibility-equivalent to X iff, were one to be committed to C one

would not be entitled to ‘A and non-B’ iff were one to be committed to X one

would not be entitled to ‘A and non-B’. This amounts to a sort of normative

adequacy condition for X to count as a reductive analysis of C.

Now, let us substitute ‘B counterfactually depends on A’ for ‘X’. What

we get is not the counterfactual account itself, but a statement on what it

would take for the counterfactual account to be generally correct. However,

some reflection shows that the counterfactual account is not generally correct,

so doesn’t exhaust the meaning of causality. As evidenced by the counterex-

amples in §4.2, there are relata and (this-wordly) scenarios such that com-

mitment to the causal claim does not entail entitlement to the counterfactual

dependence claim (e.g., overdetermination), and vice versa, commitment to

the counterfactual dependence claim does not entail entitlement to the causal

claim (e.g., chancy preemption). So, ‘is caused by’ and ‘counterfactually de-

pends on’ do not have identical meaning.

Importantly, the failure of the counterfactual account is shown from within

IS itself, in terms of incompatibilities not in turn interpreted in terms of truth.

In the above analysis, meaning is not analysed descriptively, in terms of direct

relations between vocabularies, but normatively, in terms of pragmatically

mediated relations, which go from vocabulary to vocabulary through a set

of practices that the mastery of language institutes. The incompatibility is

not between claims as such (true or false) but between normative attitudes

towards the claims (endorsed or not endorsed). Whether the counterfactual

account ought to be accepted doesn’t depend on whether it represents the

world as it is, but on the speakers’ ability to avoid social sanctioning by pro-

viding reasons when challenged. The speakers’ attitudes towards the relation

between ‘facts’ (e.g., their causal intuitions) and the correctness of linguistic

practices (e.g., the way ‘causality’ as well as other concepts ought to be used)

is key to demonstrate the adequacy of an explication. So, from the inferen-

tialist point of view, the issue is not that the counterfactual account is false,

period; rather, it is an example of an analysis that is inappropriate because

non-pragmatically-mediated.

By applying the same strategy we can pinpoint the problems of other

accounts that rely, in a way or another, on the isolation of some privileged

inference to elucidate the meaning of causality (see §7.2.1 and §7.2.2).
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7.2 The meaning of ‘causes’

An inferentialist account of causality should help address the following two

issues: (i) what kind of inferences causal claims license; and (ii) in virtue of

what. The first issue can be—partly—addressed by discussing what class of

meaning-constitutive inferences can make explicit, in the face of holism, the

meaning of ‘causes’ (this section).105 However, a satisfying account must also

provide a justification for employing a privileged class of inferences to decide

whether or not a causal claim ought to be endorsed. If holism can at most

be contained not eliminated, an analysis that makes meaning explicit may

be informative but never exhaustive. How can one make sense, in spite of

this, of the objectivity of causal claims? I make some general points in this

section and leave the discussion of the objectivity of causal claims to chapter 8.

7.2.1 Setting the stage

All claims license inferences. How can one distinguish causal claims from

non-causal ones? What inferences are constitutive of the meaning of causal

claims? The most prominent accounts of causality have been reviewed and

criticised already in chapters 4–6. Here I discuss why the accounts that

rely on the identification of some privileged inference are inadequate by the

inferentialist’s own light. This will help me point to the kind of analysis that

causal claims require—which is the analysis I offer in §7.2.3.

Difference-making accounts tend to reduce the meaning of causal claims

to truth conditions, which in turn are identified with some privileged test

condition, such that the satisfaction of the condition is meant to exhaustively

characterise causality. However, no such condition seems to exist. As argued,

causality has excess content with respect to difference-making criteria (see

§6.3). Now we are in the position to rephrase the excess content thesis in IS

terms. Let us indicate with “C” and “X”, for whatever couple of relata A and

105It must be pointed out that the Brandomian, normative-functionalist variety of infer-
entialism that I favour differs from causal-functionalist varieties, such as the folk theory of
causation mentioned in fn.48. According to the former, strictly speaking only inferential
rules not inferences can be meaning-constitutive. In contrast, the latter focus on the causal
role of expressions, viz. the causal relations that underwrite—actual—inferences to and from
the expressions (cf. Peregrin, 2012, fn. 2). Causal-functionalist analyses of causality may be
subject to the following objection: if functional role is causal role, as functionalist theories
of mind have it, a theory of ‘causes’ is necessarily circular. Normative-functionalist vari-
eties, instead, are immune to such an objection: meaning has to do with the inferences that
ought to be drawn, not those that are actually drawn. Reference to actual inferences is only
envisaged as useful to model, or make explicit, the underlying inference rules (cf. fn. 102).
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B, respectively ‘A causes B’ and ‘The relation between A and B satisfies test

condition X’. Difference-making accounts (DM) are committed to something

along the following lines:

[DM] C ≡Inc X

Such an incompatibility equivalence translates ‘C iff X’ into the IS jargon:

if one were to be committed to X, one would be committed to C, and—vice

versa—if one were to be committed to C, one would be committed to X.

But the counterexamples in chapter 4 show that there is no X which satisfies

the equivalence for all causal claims. So, if anything, this should teach us

that formulating the analysis in incompatibility-equivalence terms is not a

promising route. We need something weaker than that.

Other analyses either emphasise the role of base-to-claim inferences (BC)

and downplay the role of claim-to-target inferences (CT), or vice versa. I

believe that Reiss (2011)’ pluralist account represents well the former attitude,

whereas Price (1998)’s expressivist position represents well the latter. Since,

like me, neither of them is in the business of providing truth conditions, but

rather of accounting for meaning as use, I will consider their proposals in

terms for how well they accommodate the meaning of causal claims in terms

of their inferential role. Before doing this, however, I need to introduce the

framework in which my analysis will be conducted.

Recall that IS takes as the content of a sentence the set of sentences

that express propositions materially incompatible with it (cf. §7.1.1). Thus,

strictly speaking, the various proposals should be rephrased in terms of sen-

tences that belong to the incompatibility set of the target sentence, viz. the

sentences with which the target sentence stands in a relation of primitive

incompatibility. How can one get a grip on what the incompatibility set of

a causal claim is? Here is an idea: make explicit the content of the claim

in terms of the commitments that ‘causes’ institute, their relation with en-

titlements and lack thereof. This can be done by analysing the meaning of

the causal claim in terms of incompatibility entailments—rather than prim-

itive incompatibilities—between the claim and other claims. And since a

causal claim is generally compatible or incompatible with other claims only

in conjunction with other, collateral commitments, the relevant incompatibil-

ity entailments will be multi-premiss arguments, where the conclusion follows
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only in the presence of a complex set of commitments. More precisely, a typ-

ical analysis will be in terms of the tuples of sentences whose elements belong

to the causal claim’s inferential potential (cf. Peregrin, 2008, §3-§4).

From here onwards, let us denote with “c” a specific causal claim (e.g.,

‘Smoking causes lung cancer ’), relative to a specific couple of relata < A,B >

(e.g., <smoking, lung cancer>), as opposed to the class C of all causal claims;

and let us denote with “C<A,B>” the class of the c’s relative to < A,B >,

i.e., ‘causes’ relative to < A,B > (e.g., ‘C<smoking, lung cancer>’). The infer-

ential potential of a sentence c, in short cip, can be defined as the set of c’s

downstream potential, in short c↓, and upstream potential, in short c↑:

cip = {c↓, c↑}106 (7.5)

The downstream potential of c is the set of sentences p from which c follows:

c↓ = {p | p �Inc c} (7.6)

The upstream potential of c is the set of tuples comprising the sentences r

which follow from c and the collateral premisses q which aid the inference

from c to r:

c↑ = {< q, r > | q, c �Inc r} (7.7)

A typical analysis, or conceptual explication, will have C<A,B> as the

explicandum, and the tuples comprising the downstream and upstream po-

tential of c, that is the contexts (or context descriptions) that fix the correct

use of c, as the explicans:107

C<A,B> = {< p, q, r > | p ∈ c↓, < q, r > ∈ c↑} (7.8)

Now, let us bear in mind that the context descriptions such that c is inferrable

from p and grants inference to some rk (k = 1, . . . , w) are typically conjunc-

tions of sentences not single sentences. Accordingly, the analysis should be

modified to allow for multi-premiss arguments where c and rk follow from con-

junctions of, respectively, p’s in c↓ and q’s in c↑—in short ∧pi (i = 1, . . . , u)

and ∧qj (j = 1, . . . , v):

106From here onwards, I will introduce downstream and upstream potential by using the

labels “ c↓ ” and “ c↑ ”.
107“C” stands here for a particular (binary) predicate. However, the inferentialist analysis

schema is in principle the same for all concepts.
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C<A,B> = {< ∧pi,∧qj , rk > | ∧ pi ∈ c↓, < ∧qj , rk > ∈ c↑} (7.9)

Notice that the explicans comprises occurrences of “c”, which in turn com-

prise occurrences of “C<A,B>”. However, since c is different from C<A,B>,

no circularity arises. In line with the inferentialist strategy to explicate the

meaning of subsentential locution in terms of the meaning of sentences (not

vice versa), here the meaning of ‘C<A,B>’, viz. the predicate ‘causes’ as occur-

ring in c, is explicated in terms of more basic incompatibilities between c and

other sentences. Obviously, evaluating such relations presupposes a grasp, or

mastery, of C<A,B> on the part of the participants in the language game. But

this is besides the point: one thing is to grasp, or master, the meaning of a

linguistic expression; another thing is to make it explicit.

Also notice that the meaning of ‘C<A,B>’ is fixed by all possible incom-

patibilities which underlie the correct use of c, including those that are not

transparent to the speakers, but to which they are nonetheless bound by the

rules that their normative attitudes institute. No explication will be exhaus-

tive unless the totality of inferentially connected sentences, both actual and

potential, are identified. But this is not a problem for my project, which has

no reductive pretensions. My task, in fact, is to make explicit meaning in

terms of commitments and entitlements which are acknowledged as relevant,

not to reduce meaning to such commitments and entitlements.

7.2.2 Base vs target?

Back to Reiss and Price. Reiss first. For Reiss, the meaning of a causal claim is

given by its inferential connections with other propositions, and its method of

verification determines what these inferential connections are (see Reiss, 2011,

p. 923). Verification conditions, although not providing an exhaustive analysis

of ‘causes’, still largely determine what ‘causes’ means (Reiss, 2012, §3.1). The

most straightfoward interpretation of Reiss’ view is that the meaning of each

causal claim is fixed by its verification method, which naturally leads to the

view that there are at least as many distinct meanings as there are methods

of verification. Each method can be identified with the inferences actually

drawn by some community (K), on the basis of their theoretical background

and the evidence available to them (X). What counts as evidence here clearly

depends on K’s standards of verification. The consequences of c, viz. c↑, will

be limited to the sort of circumstances of c’s appropriate application, viz. c↓,
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in line with the fragmentation of purposes suggested in (Reiss, 2009a, 2011).

Very roughly put, this means that if c was ‘retrospectively’ established in

the context of providing an explanation, the consequences of its appropriate

application will be other explanations (E), in analogous contexts; if c was

established in the context of predicting possible effects of putative causes,

the consequences of its appropriate application will be predictions (P ), in

analogous contexts; and if c was established in the context of an intervention,

the consequences of its appropriate application will be claims about the result

of possible interventions (I), in analogous contexts.

How should this translate into IS terms? Let us indicate conjunctions

of base sentences with “∧xi” (i = 1, . . . ,m) and target sentences with “ej”

(j = 1, . . . , n). Here is one possible way to cash out BC relative to K,

corresponding to the case where the target is E:

[BCK,E] C<A,B> = {< ∧xi, ej > | ∧ xi ∈ c↓, < ∧xi, ej > ∈ c↑}

That is, the meaning of C<A,B> is made explicit by the pairs < ∧xi, ej >,

such that if a member of K were to be committed to ∧xi, one would be

committed to c as well as the sort of claims that (according to K) ∧xi allows

in the BC context, in this case ej . Notice that, if the meaning of C<A,B>

is—literally—the method of its verification, arguably ∧xi and c is equivalent

to ∧xi. As a result, one may correctly infer ej from ∧xi only, and drop c from

the premisses without any loss. Also notice that the method of verification

could as well have entitled one to P or I, in which cases the corresponding

analysis would have been, respectively, BCK,P and BCK,I . But in line with

Reiss’ idea that purposes disunify meaning, for any method arguably only one

amongst E, P , and I is the appropriate target. Now, BCK,E (respectively,

BCK,P or BCK,I) provides the correct analysis if the meaning of C<A,B>

is—nothing but—the method of its verification. Two problems arise here.

On the one hand, the first clause of BCK,E is too strong: it does not allow

for the possibility that K is mistaken, and beliefs need revising in the light

of new commitments. For instance, K could think that the relation is causal

on the basis of one method, but the method is not suited to spot spurious

relations in the context in which evidence was gathered. In general, K remain

committed to a set kind of consequences, by the light of their own verification

standards, no matter what external input comes in, from other communities,
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their different background knowledge, and their different methods to establish

the claim. The problem is that the identity between meaning and verification

places too strict a constraint on meaning. To solve the problem, one would

need to make room for the possibility that a larger variety of evidence is

allowed. But if meaning is verification, enlarging the inferential base beyond

X, that is, the evidence acknowledged as relevant by K, would render the

material inference automatically incorrect.

On the other hand, the second clause of BCK,E is too weak: the analysis

limits the applicability of c to the sort of claims allowed by X, namely the

claims that are appropriate to the context in which c was first established.

For instance, if ∧xi describes the context of an RCT on mice, from ∧xi it

follows only that some net positive effect will be observed in a population

which is as similar as possible to that of the experiment (e.g., a randomised

population of mice, not a cohort of humans). So, K may think that c is only

safely applicable to base contexts allowed by ∧xi, whereas in fact it has the

potential to carry over to different target contexts, populations, etc., based

on studies carried out by other communities, by means of other methods, and

more generally on other theories and hypotheses. This is, once again, the

excess content thesis: the meaning of (many) causal claims is not reducible

to their inferential base, or test conditions, i.e. features of the context of their

appropriate application.

Now, to the extent that Reiss’ aim is not to reduce C<A,B> to ∧xi, he

seems to implicitly acknowledge this. So, one may interpret him as saying

that, although ∧xi largely determine C<A,B>, C<A,B> has excess content

with respect to ∧xi, and ∧xi&c together may have broader consequences

than ∧xi alone. In IS terms: something incompatible with the target may

be incompatible with ∧xi without being incompatible with c itself. Still, the

fact remains that the only kind of consequences of c are those that follow

in the BC context, whereas the analysis should have allowed for the target’s

scope being broader. But to the extent that meaning is tied to verification

conditions, the inference target, too, cannot be enlarged: no consequences can

be drawn from c that weren’t actually verified according to K’s standards.

Instead, if one allows collateral commitments to be meaning-constitutive so as

to enlarge the target of C<A,B>, one thereby abandons the view that meaning

and verification method are (so) strictly related—and one comes closer to the

sort of inferentialism I have in mind.

An alternative is to go the opposite direction, viz. emphasise CT (use
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conditions) and downplay BC (test conditions). This is what Price does. For

Price, causality is one of those concepts for which only ‘usage conditions’

can be provided (cf. §4.1, fn. 28), along the following, expressivist lines: the

utterance “X is R” is prima facie appropriate when used by a speaker who

experiences response R in the presence of X, that is, when he is in some psy-

chological state φ (see Price, 1998, §2). More precisely, for Price c is granted

by a particular response experienced by the agent, namely his being in the

psychological state of believing ‘I can freely manipulate A to effectively bring

about B’ (R). And arguably, for Price, the consequences of the appropriate

use of c are claims about the results of interventions, i.e., claims of the form

‘Intervening on A is an effective means to bring about B’ (I). How can we

put this into IS terms?

We may interpret ‘being in the psychological state φ’ as sufficient to ‘being

committed to c’. In other words, the endorsement of c is the subject’s own

way to respond to φ by committing himself to the belief that c.108 That this

reading is in line with Price’s expressivism is suggested by his remark that the

usage condition provides subjective assertibility conditions (see Price, 1998,

§2). Analogously, we could interpret the psychological state of believing in

the causal relation as binding one to I. As a result, the response-dependent

analysis of causality can be cashed out as follows:

[CT] C<A,B> = {< ∧ri, ij > | ∧ ri ∈ c↓, < ∧ri, ij > ∈ c↑}

where “∧ri” (i = 1, . . . ,m) stands for conjunctions of base sentences and “ij”

(j = 1, . . . , n) stands for target sentences.

But the analysis is wanting. To begin with, the BC step relies on a sort of

psychological response, or experience. But this does not constitute a satisfying

explication of the rational process of acceptance of scientific hypotheses.109

Moreover, the analysis does not explicate properly the CT step, either. As

said in §4.1, the agency account suffers from the problem that many causal

108Commitment to the response does not presuppose that the subject be aware of his
response, only that he ought to commit to the claim ‘I have (had) the response’, if he were
made aware of it.
109Menzies and Price (1993) do offer an analysis of causality in terms of manipulability and

resulting probability raising relations; however, according to the expressivist reading of the
agency theory, the notions of manipulability and probability raising enter the picture only
to provide use conditions, not test conditions (by which the claim is rationally endorsed).
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relations are not manipulable. Here, c commits one to ij , so the analysis

is inadequate. Take the causal claim ‘Friction between continental plates

causes the earthquake’. This is supposed to incompatibility-entail ‘Interven-

ing on the friction between continental plates is an effective means to affect

the earthquake’. However, there being no way to effectively manipulate the

plates, which is incompatible with me being able to affect the earthquake by

manipulating the plates, is not incompatible with friction causing the earth-

quake. There is more to (the upstream potential of) causal claims than the

possibility of effective manipulation, namely all those objective facts that fol-

low from the claim but do not involve facts about agency. More generally, the

inferential target is too narrowly conceived. Besides I, other consequences,

namely E and P , follow from c. So the analysis is at best incomplete.

The usage condition seems to miss a crucial aspect of the meaning of causal

claims, viz. their objective dimension. Aren’t there objective assertibility

conditions, too, besides subjective assertibility conditions? Not only is Price’s

expressivism deflationary about reference and truth conditions, it offers no

tool to interpret our discussion about them as rational. A good analysis

should account for the fact that we regard causal language as referential and

causal claims as true or false.

A final consideration should be made as regards both of the above analy-

ses. A crucial point that hasn’t emerged so far, but is implicitly presupposed

by the inferentialist approach, is that the target of a sentence comprises all

the claims that the sentence in question contributes to warrant. In the case of

causal claims, this means that the CT step should not be limited to inferences

where claims involving one relatum are granted (i.e., explained or predicted,

in actual or counterfactual circumstances) by claims involving the other re-

latum, together with the causal claim and collateral premisses. It should

comprise all the inferences that the causal claim contributes to warrant. The

causal claim may—and typically does—entitle one to other inferences, namely

inferences to claims not involving one or the other relatum. To make a triv-

ial example, ‘smoking causes lung cancer’ entitles one not only to infer lung

cancer in the presence of smoking, certain hereditary features, etc., but also

to infer shorter life expectation, when the collateral commitment ‘lung cancer

shortens life expectation’ is added to the premisses.
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7.2.3 The meaning of causal claims

Let me recap the argument so far. Following Sellars’ observation that ‘causes’

is an inference license governing the use of the relata, I’ve suggested that the

meaning of ‘causes’ should not be analysed in terms of the contribution of

‘causes’ to the truth conditions of causal claims, but in terms of the infer-

ential role of the sentences in which ‘causes’ appears. To put it in a slogan:

the meaning of ‘causes’ depends on its contribution to the correctness of argu-

ments involving the use of one relatum or both relata. (How this contribution

is to be characterised is an issue I leave to chapter 8.)

Let me also briefly recap the main points that have emerged from §7.2.2:

(1) incompatibility-equivalence analyses are inadequate; (2) the inferential

base should not be limited to information made available on the basis of one

verification method; (3) it should be in principle possible for the target to

be broader than the set of sentences which have been used to support c, and

which c, if successfully employed, would in turn support; (4) the target should

contain not just claims about interventions but also claims about predictions

and explanations; (5) the target should comprise all the claims that the causal

claim contributes to warrant. Accommodating 1 is straightforward.

A way to deal with 2 and 3 at once is to prevent that the target be limited

to the sort of consequences that follow from the base X, by allowing collateral

commitments Y , based on other evidence and theoretical knowledge, to play a

role in CT. As a result, the target can generate extra evidence and theoretical

knowledge, which may then become part of X. The reason for distinguishing

X and Y is that the commitments that are relevant to establishing c and

those that are relevant to using it need not be the same. Often, in fact, the

contexts of correct application of c itself (laboratory experiments, RCTs, and

controlled environments in general) are different from the contexts of correct

application of its consequences (natural, or non-controlled, environments). As

Cartwright would put it, a good theory for “hunting” causal claims is not ipso

facto a good theory for “using” them, and vice versa (see Cartwright, 2007b,

pp. 48-49). So, a good analysis ought not collapse the two. In particular,

it seems reasonable to impose the following two constraints, namely that Y

be—minimally—(i) compatible with X but less restrictive than X (for the

causal claim to have wider applicability than its base), and (ii) compatible

with c itself. These constraints are intuitively met if X �Inc Y (figure 7.1).

To deal with 4 and 5, we should consider all the claims that c licenses. In
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fact, the meaning of c is determined by all its possible uses. Accordingly, c

must be analysed in terms of all the inferences that ensue from it.110 Among

them are, minimally, inferences that on the basis of knowledge of actual or

possible causes aim to—respectively—predict actual effects (actual scenar-

ios) and possible effects (counterfactual scenarios); and there are inferences

that on the basis of knowledge of actual or possible effects aim to retrodict,

respectively, actual causes (actual scenarios) and possible causes (counterfac-

tual scenarios), thereby providing causal explanations.111 This ensures that

both directions of inference, viz. cause-to-effect and effect-to-cause, are con-

sidered. Furthermore, as pointed out at the end of §7.2.2, the claim helps

warrant other claims as well. I will label with “Z” the set of all consequences

that follow from the causal claim.

Let us indicate conjunctions of base sentences with “∧xi” (i = 1, . . . , u),

conjunctions of collateral commitments with “∧yj” (j = 1, . . . , v), and target

sentences with “zk” (k = 1, . . . , w). What follows is a proposal which spells

out more formally the view first introduced in §6.5. The meaning of claims of

the form ‘A causes B’ (relativised to specific relata A and B) is—minimally—

characterised in terms of their inferential potential (INF):

[INF] C<A,B> = {< ∧xi,∧yj , zk > | ∧ xi ∈ c↓, < ∧qj , zk >∈ c↑}

According to INF, the meaning of ‘C<A,B>’ is made explicit in terms of

the contribution of ‘C<A,B>’ to the correctness of the arguments in which

“C<A,B>” appears. More precisely, ‘C<A,B>’ is made explicit by the tuples

< ∧xi,∧yj , zk >, such that ∧xi commits one to the application of c, and

∧yj entitles one to use c to infer zk. INF satisfies the intuition that causal

claims may have broader or narrower scope (figure 7.1). This depends on the

(meaning of the) base, or test conditions X, and the relation between collat-

eral commitments, or use conditions Y , and consequences Z. The dynamics

between commitments and entitlements are such as to allow for ‘conserva-

tive’ revisions of the meaning of C<A,B>, by modification of < ∧xi,∧yj , zk >
110The exact form of target claims will depend, besides the commitment to c itself, on the

Y that best suits a given context. More on this below and in chapter 8.
111Notice that inferring the cause given the effect amounts to an ætiological explanation of

the effect in terms of the cause. From here onwards, I take it that retrodiction, or ætiological
explanation, is the sort of explanation that causal relations entitle one to. This excludes
other sorts of explanations, e.g., teleological, constitutive, explanation by unification, etc.



§7.2 The meaning of ‘causes’ 200

Figure 7.1: (In)compatibility relations among C, X, Y and Z. I(C) belongs to

I(X) and overlaps with I(Y ). I(Y ) belongs to I(X). I(Z) belongs to I(C ∪Y ). The

relations among C, X, Y and Z may change, depending on changes in commitments

and entitlements, which in turn depend on changes in beliefs and/or changes in the

language L.

(more on this below). The vagueness of ‘causes’ is illustrated in terms of the

sets’ boundaries being fuzzy (cf. §6.4), which in turn depends on borderline

material inferences being neither definitely correct not definitely incorrect.

I will now illustrate INF by reference to a claim involving a cause of apop-

tosis, ‘XIAP feedback promotes irreversibility of Casp3 activation’, in short c1,

as discussed in (Legewie et al., 2006). Here INF should deliver an explication

of ‘C<XIAP feedback, irreversibility>’. Background knowledge is used to identify

relevant interactions in the intrinsic pathway after release of cytochrome c

from the mitochondrion: Apaf1’s activation of Casp9, Casp9’s cleavage of

Casp3, Casp3’s cleavage of Casp9, XIAP’s inhibition of Casp3 and Casp9

(figure 3.1). Quantitative study of the kinetics by means of ODEs strongly

commit to the claim: in cases of bistability, the feedback induced by XIAP’s

competitive binding is necessary for irreversibility (BC step; see figure 3.3).

More precisely, the following inference is part of ‘C<XIAP feedback, irreversibility>’:

c↓ given Casp3 feedback, XIAP feedback is regularly associated with ir-

reversibility; irreversibility counterfactually depends on XIAP feedback;

switching off XIAP feedback affects irreversibility; ... �Inc c1

In turn, adding the claim to suitably chosen sets of premisses entitles to

narrow-scope, precise inferences as regards the possible way in which Casp3
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Figure 7.2: Dependence of different qualitative behaviours on the presence of dif-

ferent species and concentrations (from Legewie et al., 2006, p. 1067).

activation may obtain in the cell (figure 7.2). Among such inferences are

explanations as well as predictions, whether about the actual course of events

or about the result of interventions. In both cases, the inferences do not

necessarily comprise claims regarding the obtaining of one relatum as the

conclusion. Below are examples of prediction.

c↑ c1, XIAP competitive binding, Casp3 feedback, XIAP & Casp9 > Casp3

�Inc bistability and irreversibility (BI); c1, Casp9 > XIAP & Casp3 �Inc

monostability & gradual activation (MG)

Notice that information regarding the relative concentrations of the reac-

tants, which is included in the collateral premisses and was not present in the

inferential base, is crucial for the correctness of the predictions.

Examples of explanation are:

c↑ c1, bistability & irreversibility (BI) �Inc XIAP competitive binding; c1,

bistability & reversibility (BR) �Inc no Casp3 feedback; c1, monostability

& no activation (MN) �Inc XIAP > Caspases

A number of issues deserve some discussion. Does INF commit one to the

view that the meaning of C<A,B> reduces to regularities between antecedents

and consequents? That is, does INF reduce to a regularity view of causality?
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No. INF makes explicit ‘C<A,B>’ in terms of commitments leading to entitle-

ments or lack thereof. The relation between commitments and entitlements is

often such as to produce regular enough associations between endorsement of

antecedents and (successful) endorsement of consequents. Yet INF allows that

in some contexts, e.g., indeterministic scenarios, chaotic or context-sensitive

scenarios, etc. material inferences turn out incorrect more often than in other

contexts. This is because the boundaries between the meaning-constitutive

sets are fuzzy. In borderline cases, one should expect no regular association

between antecedents and consequents. Yet, it remains rational to have a (less-

than-maximal) commitment to the consequent given the antecedent. What

inferences are—in spite of this—meaning-constitutive depends on a balance

between simplicity and fruitfulness of our commitments.

Need a causal claim always entitle one to the same kind of claims that war-

ranted its correct application? No. For instance, one may establish a causal

claim on the basis of an intervention. However, the intervention may modify

the context so that one cannot infer from the claim that a similar intervention

will produce a similar effect. So, there is a sort of asymmetry between test

and use conditions. This shows that ‘causes’ is not always ‘harmonious’ in

Dummett’s sense. For Dummett (1991, chap. 9), harmonious concepts are

such that introduction (BC) and elimination (CT) rules are function of one

another. Rule modifications shouldn’t entitle one to draw conclusions that

were not warranted by the methods of arriving at the premisses. In formal

theories, the addition of predicates, functors, axioms, etc. may (and typically

does) make it possible to prove statements one could not express in the old

theory. But this should not make it possible to prove statements express-

ible in the original vocabulary that were not provable in the original theory.

This reasoning, for Dummett, should extend to natural languages: additions,

or modifications (e.g., weakening of introduction rules, or strengthening of

elimination rules), of expressions E are inadmissible if E make it possible

to derive consequences expressible in the old language that could not have

been derived otherwise, without E. However, it is not clear that in natural

languages harmony should be interpreted in this way. For instance, in science

it is common that the addition of theoretical terms allows one to draw new

conclusions expressible in the old language, but this merely shows that the

new terms carry substantive content, not that there is something wrong with

their rules of application (see Brandom, 2000, p. 71). There are reasons to

believe that ‘causes’ works more like a theoretical term than a logical term.
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Whereas logical concepts, e.g. ‘or’, are definable in terms of introduction and

elimination rules such that side assumptions (e.g., collateral commitments

in Y ) that figure in them aren’t meaning-constitutive, causality is a concept

whose rules are less clear-cut, and whose content is fixed by a larger base of

concepts and cannot be totally isolated from them. This is in line with the

so-called ‘theory-theory’ of concepts (Laurence and Margolis, 1999, §4).112

Do explanations, predictions and interventions necessarily belong to the

target? Whereas c1 does entitle one to interventions (in a non-ideal sense),

other causal claims don’t, e.g., ‘the gravitational attraction exerted by the

moon causes tides of such-and-such a magnitude’. In that case, the counter-

factual cause-to-effect inference cannot be interpreted as a claim about the

result of a physically possible intervention. Nonetheless, it may still be the

case that Y and c entitle us to the counterfactual claim, provided this de-

picts a scenario where the relation between antecedent and consequent fits

particularly well with Y . For instance, the moon-tides system can be re-

garded as a limiting case, which stands in an analogical relation with other

systems—whose behaviour depends on the same forces, same configuration of

the component parts, etc.—where interventions are possible. So the moon-

tides counterfactual may, if one wishes, be interpreted as a claim about the

result of an intervention which is ‘possible by extension’. However, it need

not be so interpreted. The analogy among the systems in the class, which

is itself identified in terms of similarity of inferential role, is what makes the

counterfactual inference (materially) correct. Whether or not some scenario

counts as a limiting case in the above sense depends on the content of our

previous commitments, theories, etc. This is not an all-or-nothing affair, but

rather a matter of degree: the weaker the analogies and intuitions, the weaker

the entailments. One may interpret the analogy as justifying the assumption

that the moon has such-and-such a capacity, or that it obeys such-and-such a

law, or... and in turn the commitment to the stability of the capacity, or the

law, or... as justifying the inference. In any case, what matters is not whether

explanations, predictions and interventions belong to the target. “Expla-

nation”, “prediction” and “intervention” are themselves labels we attach to

forward- and backward-looking, actual and counterfactual inferences. Their

being explanations, predictions or interventions does not depend on anything

intrinsic, but rather on the value they assume for us. Saying that a causal

112This view need not be in opposition to the view that ‘causes’ has a ‘prototypical’
content. More on this in §7.2.4.
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claim qualifies as such only if its target comprises explanations, predictions

and interventions is just shorthand for saying that a causal claim is an in-

ference license that entitles one to correct forward- and backward-looking,

actual and counterfactual inferences. The range of inferences in the target

may actually vary from claim to claim.

Notice the difference with AG and INT. In AG, unmanipulable relations

count as causal in virtue of the resemblance between their intrinsic proper-

ties and those of some analogous situation where interventions are possible.

In INF, instead, the being causal of all relations, whether manipulable or

not, depends on their being inference licenses. What matters is not similar-

ity of intrinsic properties, but similarity of inferential role. In INT, a rela-

tion is causal in virtue of the existence of ideal interventions which would—

counterfactually—result in a change in the effect. Relations which don’t allow

for physically possible interventions are causal iff ideal interventions are pos-

sible in a logical or conceptual sense. INF, instead, demands neither that

causal claims be analysed in terms of ‘ideal’ interventions nor that there be a

fact of the matter as to the correctness of our intuitions on what interventions

count as logically or conceptually possible. In either case, although similarity

of inferential role is ultimately judged in terms of closeness to the inferential

role of some ‘prototypical’ notion of cause (see §7.2.4), which also allows for

inferences about the result of interventions, nothing prevents that a relation

which cannot be manipulated is closer to the prototype that one that can,

provided other conditions are met, e.g., the claim can be inferred from more

test criteria, it allows for better prediction and explanation, etc. Upshot:

the meaning of causal claims is not reduced to manipulability relations, but

analysed in terms of a cluster of criteria (one of which is manipulability) that

all contribute to licensing certain inferences.

How can INF guarantee the requirement of causal asymmetry? Since

causal relations are asymmetric, the content of ‘C<A,B>’ also contains a dis-

tinction between which of the two relata is the cause and which is the effect.

According to INF, there is nothing intrinsic in A and B that makes one be

the cause of the other, but not vice versa. On the contrary, both C<A,B> and

C<B,A> may be correctly applicable, only to different contexts. Their cor-

rect applicability presupposes distinguishing forward-looking from backward-

looking counterfactuals, which in turn presupposes assuming the direction of

time as given. Which of the facts described by the premisses and conclusion

come first and which come later belongs to the background knowledge of those
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who endorse the inferences and commit themselves to the claims. This move

is often blamed on the ground that it prevents the possibility to explain (non-

circularly) the directionality of time as supervening on causal facts. However,

one need not exclude the possibility that time globally supervenes on facts

about causal relations, whilst at the same time maintaining that temporal

information contributes locally to the meaning of a causal claim, relative to

some specific context. In fact, in addition to background knowledge (e.g.,

other causal relations on which the target relation depends) and knowledge

of the context (presence or absence of other causally relevant factors), one

may need temporal cues (time of events, values of variables at specific times,

etc.) to say what causes what, information that may be unnecessary in the

case where knowledge of the entire state of the universe is available.

Finally, as I mentioned, INF allows for ‘conservative’ revisions of meaning.

So one may wonder: what about non-conservative revisions? What happens

if BC inferences or CT inferences are mistaken? One may think that all revi-

sions fall neatly into either the conservative category or the non-conservative

category. As a result, either we get a shift in meaning or we don’t. This will

seem uncontroversial to those who reduce meaning to truth conditions: either

something bears on the truth conditions or it does not; whence, either it is

relevant to meaning or it is not. If it does not bear on truth conditions, it

leaves the relation between truth conditions and c unchanged; if it does, it

either strengthens or weakens the relation, by contributing to spell out more

clearly the truth conditions. However, those that are sympathetic to the idea

that meaning is inferential role and is holistically fixed will be led to different

considerations. Whenever one’s language or theory changes, we get some shift

in meaning (see Brandom (2008a, p. 108); cf. Harman (1999, pp. 134-137)).

So, what really matters is not whether there is a shift, but how relevant the

shift is. Conservative revisions result in a shift that does not shake the mean-

ing of C<A,B>: the relation remains causal, there is only a slight change in

c’s inferential potential. Non-conservative revisions, instead, result in a shift

that leads to major changes in meaning. Two important issues now arise, and

need to be distinguished. On the one hand, there is the issue of evaluating

the magnitude of the shift in meaning, and in so doing, deciding whether or

not the belief that a particular relation is causal should be amongst one’s

commitments. What makes for a minor shift and what makes for a major

shift is discussed in chapter 8 in the context of providing a criterion for eval-

uating the objectivity of the causal relation. Just to anticipate, this will be
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done by providing some general guidelines on how to assess the contribution

of ‘C<A,B>’ to the correctness of the arguments in which “C<A,B>” appears.

On the other hand, there is the issue of identifying the conditions for a rela-

tion to count as ‘causal’. If one rephrases the issue concerning the relations as

an issue concerning the predicates describing such relations, the question be-

comes: Which predicates stand for causal inference licenses, and which stand

for non-causal inference licenses? It is on this second issue that the rest of

this section is focussed.

7.2.4 ‘Causes’ simpliciter

INF constitutes an analysis of the meaning of causal claims of the general

form ‘A causes B’, or, to put it better, an analysis schema, that can be filled

differently depending on the claim in question. I will now turn to the issue

of determining, given the meaning of the sentences in which ‘causes’ appears,

the meaning, if any, of the subsentential locution ‘causes’ itself.

This issue is important for the following reason. So far, the leitmotif of this

chapter has been that ‘causes’ should be interpreted as an inference license

governing the use of the relata ‘A’ and ‘B’. However, one may interpret all

binary predicates as inference licenses of one sort or another. What makes a

predicate belong to the class of causal predicates? What makes an inference

license be a causal inference license? To answer one needs to characterise

the meaning of ‘causes’ simpliciter, so as to distinguish how ‘causes’, as well

as other ‘causes’-like predicates, as opposed to non-‘causes’-like predicates,

contributes to the correctness of the arguments in which it appears. This

is to allow one to decide whether or not a predicate belongs to the general

category of ‘causes’—with some caveats.

Let us assume that ‘causes’ itself is, by default, at the centre of the causal

cluster. What else does belong to the cluster, and what doesn’t? It is rea-

sonable to expect from the criterion that relations such as ‘contributes’, ‘in-

hibits’, ‘promotes’, ‘prevents’, etc. turn out causal. At the same time, the

criterion should exclude other relations from the cluster. To the non-causal

category should surely belong semantic, logical or mathematical relations,

such as those holding of the pairs <bachelor, unmarried man>, < a, non-a >,

<cat, mammal>, <mean, variance>, etc. Among the non-causal predicates

one also expects to find predicates describing empirical relations that have

very little, or nothing, to do with causality, e.g., ‘to the right of’, ‘higher
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than’, etc. What is not reasonable to expect is that the criterion always de-

liver yes-no verdicts. If causal content is measured in terms of inferential role,

‘being causal’ may not be a yes-no issue, but a matter of degree. A predicate

may have causal content in one context, not in others. How much causal

content it has depends on how similar it is to the prototype ‘causes’, viz. on

the extent to which one can be substituted for the other salva inferentia. So,

the question becomes: How close is the license to the centre of the cluster?

The final product of the analysis will in this case be a set of ‘canonical’

introduction (BC) and elimination (CT) rules, in line with the so-called ‘pro-

totype’ theory of concepts (see Laurence and Margolis, 1999, §3). This is not

to claim, along with (Dummett, 1991, chap. 10), that ‘indirect’ ways of intro-

ducing or eliminating causal claims are meaning-constitutive only if reducible

to ‘direct’, canonical rules. Although, as a matter of fact, such a reduction

is often possible, typically for instances of C that lie closer to the centre of

the cluster, it need not always be so. For each token concept C<A,B>, the

boundaries of the sets in INF are fuzzy, corresponding to cases where correct

application cannot be decided based on clear-cut rules, but needs reference to

a larger base of concepts so that a larger number of side assumptions (both

in the inferential base and in the collateral commitments) become meaning-

constitutive, in line with the theory-theory of concepts. Notice that the two

views need not be in opposition (Laurence and Margolis, 1999, §7): different

theories may in fact illuminate different aspects of conceptual content, the

prototype theory explaining quick categorisations and typicality judgments,

the theory theory explaining more considerate inferences and reasoning. With

these caveats in mind, let us proceed.

What has inferentialism to say about the meaning of ‘causes’ simpliciter?

Is there something that all causal claims have in common, irrespective of their

relata and contexts of application? If there is, this is probably something

thinner than envisaged by traditional monistic accounts. To the plurality of

contexts and relata corresponds a plurality of low-level meanings of ‘causes’.

Still, isn’t there something to be said about the high-level meaning of ‘causes’?

In chapter 6, I argued for the existence of one, vague notion of causality, but

left open the issue of identifying this one, vague meaning. It is now time

to address this issue by using the tools of IS. As I am going to show, there

are some uncontroversial features, or ‘typicalities’ about the use of ‘causes’

to which everybody is committed. These typicalities help safely place some

predicates outside the cluster and others closer to the centre of the cluster.
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Recall that sentences have identical meaning iff one can be substituted

for the other salva inferentia. The same substitutional principle applies to

the case of subsentential locutions: “two subsentential expressions (...) share

a semantic content just in case substituting one for the other preserves the

pragmatic potential of the sentences in which they occur” (Brandom, 2000,

p. 130). Predicates, in particular, are characterised by the following two

features: syntactically, they are ‘substitution-structural frames’; semantically,

they have ‘asymmetric substitution-inferential significance’. Let me explain.

Syntactically, the expressions ‘p→ r’ and ‘q → r’ are substitutional vari-

ants of each other, that is, they belong to the same substitutional-structural

frame ‘α → r’. Predicates are the particular substitutional sentence frames

formed when singular terms are substituted in them. For instance, ‘a causes

b’ and ‘x causes y’ are two substitutional variants of the same sentence frame

‘α causes β’. Semantically, two expressions have the same meaning if one

can be substituted for another, whilst preserving the status of all the ma-

terial inferences in which they appear. That is, their frames have the same

inferential significance. Singular terms are such that they can share the same

meaning across all contexts. When this is the case (i.e., they stand for the

same thing), substitution of one for another yields reversible material infer-

ences. For instance, ‘Benjamin Frankin’ and ‘the first postmaster general of

the United States’ have the same inferential significance. Both the inference

from ‘Benjamin Franklin invented bifocals’ to ‘the first postmaster general

of the United States invented bifocals’ and its reverse are materially correct.

The thing is different with predicates: the inference from ‘Benjamin Franklin

walked’ to ‘Benjamin Franklin moved’ is a good one, but its reverse is not.

The inferential significance of predicate frames is asymmetric:

That is to say that some predicates are simply inferentially weaker

than others, in the sense that everything that follows from the

applicability of the weaker one follows also from the applicability

of the stronger one but not vice versa (Brandom, 2000, p. 135).

For instance, the circumstances of appropriate application of ‘α walks’ form

a proper subset of those of ‘α moves’. Now, let us indicate the meaning of

‘causes’ simpliciter with “C<α,β>”, where α and β stand for any two singular

terms. How do the above considerations apply to the analysis of ‘C<α,β>’?

Like other predicates, C<α,β> is a substitution-structural frame with its

own particular asymmetric substitution-inferential significance. Syntactically,
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it corresponds to the frame ‘α causes β’. Semantically, such a frame is (among

other things) asymmetric. As per other predicates, there are two inferential

asymmetries that are constitutive of its meaning, namely its downstream

potential, or base-to-frame inferences (BF) and its upstream potential, or

frame-to-target potential (FT).

Let us consider BF first. Let us denote with “Xi,<α,β>” (i = 1, . . . , u)

the (binary) predicates that stand for test criteria, viz. those predicates from

whose correct application ‘causes’ typically follows: ‘regularly followed by’,

‘counterfactually depends on’, ‘raises the probability of’, etc.113 What is the

relation that C<α,β> bears to the criteria Xi,<α,β>? According to the excess

content thesis (§6.3), although there is no Xi,<α,β> such that Xi,<α,β> and

C<α,β> are incompatibility-equivalent, satisfaction of Xi,<α,β> does typically

entail C<α,β>. Let us indicate the sentence frame ‘< α, β > satisfies some

Xi,<α,β> or other’ with the disjunction “∨Xi(α, β)”. Then, ∨Xi(α, β) ∈ c↓.

Let us now consider FT. The target of all causal claims comprises expla-

nations, predictions and interventions and other claims (whose content varies

from one causal claim to another). So, given ‘A’, a particular ‘A causes B’

may entitle one to ‘A is to the right of B’ as well as to ‘B’. However, whereas

all causal claims entitle to explanations, predictions and interventions, not

all causal claims entitle to ‘to the right’ claims, so only the former belong to

the target of C<α,β>. Let us indicate the sentence frames ‘α obtains’ and ‘β

obtains’ with, respectively, “O(α)” and “O(β)”, and let us index α and β to

times θ and τ , such that θ is prior to τ . Then, < O(αθ), O(βτ ) >∈ c↑.

If BF and FT are put together, ‘C<α,β>’ (that is, ‘causes’ simpliciter, in

short SIM) can be—minimally—characterised as follows:

[SIM] C<α,β> = {< ∨Xi(α, β), O(αθ), O(βτ ) > | ∨Xi(α, β) ∈ c↓, <
O(αθ), O(βτ ) >∈ c↑}

That is, if one were committed to some test condition or other being appli-

cable to some unspecific couple of relata < α, β >, then one would typically

be committed to ‘causes’ being applicable to < α, β >; and if one were com-

mitted to c and the obtaining of one relatum, then one would typically be

113Notice the shift from talking of sentences in X to talking of criteria in X. The possi-
bility of distinguishing between ‘sentences in X’ and ‘criteria in X’ was indicated in §6.7.1
as a desideratum of a plausible account. In the inferentialist account, this distinction is
performed by the same procedure that is here used to distinguish ‘C<A,B>’ from ‘C<α,β>’.
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committed (although to different extents) to the obtaining of the other rela-

tum. Consider the claim ‘Throwing the ball causes the window shattering’.

‘Causes’ in this claim is very close to SIM. Several test criteria are typically

satisfied. That is, balls, throws and windows are typically such that throws are

quite regularly followed by shatterings, shatterings are probabilistically and

counterfactually dependent on throws, changes in throws’ strength or direc-

tion result in changes in shatterings, shatterings depend on the arrangement

of balls. And several target criteria are typically satisfied. That is, throws

(resp. shatterings) often suffice to correctly infer shatterings (resp. throws)

given some minimal knowledge of the context. As a result, the claim works

as an exemplar, or attractor for the use of other claims. Its ‘typicality’ is

measured in terms of the number of contexts (or the simplicity of the con-

text descriptions) that make the material inferences correct. The larger the

number of contexts, the closer the claim to the centre of the cluster.

Notice the difference between SIM and INF. First, SIM’s base includes

a disjunction of all test criteria. The more disjuncts are satisfied, the closer

some token C<A,B> is to the centre of the cluster. This amounts to saying

that at the centre of the causal cluster is a ‘prototypical’ notion of cause,

which is correctly applied only if all test criteria are satisfied; further away

from this prototype are other instances of causal predicates, which need not

meet this requirement, and count as causal to a lesser extent—they still be-

long to the cluster but lie somewhere between the centre and the periphery.

Notice the difference with DC (§6.3): in SIM, too, the more disjuncts are sat-

isfied, the larger the causal content; however, causal content is not reduced

to such disjuncts. Secondly, SIM’s target includes the consequences that all

causal claims have in common, namely the inference to the obtaining of one

relatum granted by the claim plus the obtaining of the other relatum. This is

what keeps together the various C<A,B>. In particular, SIM does not specify

what Y collateral commitments must be among the premisses that grant FT

inferences. The reason is that the appropriate Y may change from case to

case. The mastery of C<α,β> only presupposes the ability to infer the effect

given the cause and vice versa. SIM rules that the prototypical notion at the

centre of the cluster is such that c↑ contains collateral commitments which al-

low both both forward- and backward-looking inferences, whilst guaranteeing

(among other things) the inferential asymmetry of C<α,β>. Other instances of

‘causes’ and other predicates will be more or less distant from this prototype

depending on how much their upstream potential differs from the upstream
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potential of the prototype. Let me now discuss the virtues, if any, of SIM. If

SIM is to provide an adequate criterion for a predicate to count as causal, it

should be both flexible and informative.

First, the criterion should be flexible enough as to accommodate the va-

riety of low-level, context-specific claims with an obvious causal significance

that one encounters in everyday as well as scientific parlance. In particular,

scientists are often reluctant to use explicit causal vocabulary, and they rather

talk of ‘promoting’, ‘activating’, ‘inhibiting’, etc. For instance, as regards the

result of their study, Legewie et al. (2006) state that ‘XIAP-mediated feed-

back cooperates with Casp9 cleavage by Casp3 to bring about bistable and

irreversible Casp3 activation’ (ibid., p. 1068, emphasis mine). SIM correctly

rules that the claims describing such relations have causal content: for any

< α, β >, the predicates that describe the < α, β > relations would follow

from X-contexts, and would commit to inferring β given α and vice versa.

Closer to the centre of the causal cluster one typically finds predicates that

meet the above constraints in a number as large as possible of contexts. No-

tice that a lot of predicates will turn out causal according to SIM. But this

is nothing to worry about. On the contrary, it confirms why an inferentialist

analysis of ‘causes’ is appropriate: the non-causal vocabulary which could be

used to give a reductive analysis of ‘causes’ may be too limited. Indeed, the

‘sparse base’ argument is one of the main motivations for an anti-reductionist

position about causality (see Carroll, 2009, pp. 285-286).

Secondly, at the same time the criterion should provide an informative

analysis of ‘causes’ simpliciter, viz. of the high-level meaning of ‘causes’. In

order to do this, the criterion shouldn’t be too flexible. This means, among

other things, that it should say something on what ‘causes’ does not mean,

so that certain predicates are ruled out as non-causal. The inferences in SIM

involve relata that stand in an asymmetric relation, fixed by indexing them

at different times. Since semantic, logical and mathematical predicates ap-

ply to same-time relata, they automatically turn out non-causal. Predicates

describing empirical relations with little, or no causal content, such as ‘to

the right of’ or ‘higher than’ are non-causal because they would not typically

follow from the correct applicability of X predicates. And then there are in-

between cases, viz. predicates whose meaning overlaps with ‘causes’ but also

differs from it in important respects. One example are predicates that indi-

cate constitutional relations, e.g., ‘constitutes’, as applied to the pair <two H

atoms and one O atom plus their structural relations, an H2O molecule>. For
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relata obtaining at the same time, ‘constitutes’ is usually non-causal. An ex-

ception may be homeostatic mechanisms where the micro-level configuration

continually sustains the macro-level equilibrium, e.g., a limit cycle. In such

cases, it seems appropriate to say the the former causes the latter—but in a

way that need not involve any vicious circularity (§2.2.1). Instead, for relata

obtaining at different times, so that the composition at one time is respon-

sible for the whole at some other time, ‘constitutes’ is typically causal. In

complex systems, the asymmetries between the description of microstates and

of macrostates are often crucial for predicting or explaining their behaviour.

In all such cases, ‘constitutes’ has an obvious causal content. A final class of

in-between cases are the predicates that correspond to traditional, monocri-

terial analyses of the meaning of ‘causes’, such as ‘is regularly followed by’

or ‘raises the probability of’. Since in this case the target predicate Xi also

appears in c↓ of SIM, one must rely on (lack of) incompatibility equivalence

between ‘causes’ and Xi to pinpoint the differences in meaning, along the lines

of 7.1.2. Instead, to show the similarities in meaning one can remove Xi from

c↓. Then, the applicability of the remaining predicates does typically entail

the applicability of Xi in the same circumstances in which it does entail the

applicability of ‘causes’. And there are differences in FT inferences, too: the

applicability of Xi does typically—but not always—entitle one to the same

forward- and backward-looking inferences to which ‘causes’ entitles. This is

enough to show that there is no perfect overlapping, hence no Xi provides an

exhaustive analysis of ‘causes’ simpliciter.

Importantly, the informativeness of the inferentialist account depends not

on the fulfillment of conditions as strict as those imposed by reductive ac-

counts, but on the satisfaction of several criteria, which are weighted dif-

ferently depending on the situation and on the claim’s coherence with our

background commitments. This makes of SIM an instance of ‘cluster-concept

account’ of causality. For Woodward, in such accounts ‘causes’ is “vague”

and its application “contestable” (Woodward, 2003, p. 91). Although I con-

cede this much to Woodward, I deny that this prevents one from telling an

illuminating story on why the criteria in the cluster are grouped together and

we have one notion of cause. The inferentialist story goes like this: ‘causes’

is one—although vague—concept in virtue of its role of licensing inferences

about predictions, explanations and interventions, and test criteria which

make ‘causes’ explicit are grouped together because they all contribute to

licensing such inferences. That the story is informative is illustrated by com-
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paring SIM and DC. Whereas DC accounts for counterexamples by adding

disjuncts to the analysis ex post, but without explaining what makes them

genuine instances of the concept, SIM explains their belonging to the cluster

in terms of similarity to base and/or target criteria. For instance, SIM may

be used to justify that relations which involve neither difference-making nor

production may still count as (borderline) instances of causation provided

they, e.g., satisfy all target criteria. So, SIM proves more explanatory and

less ad hoc than DC.

7.3 The secret (?) connexion

A worry may be that, if one retreats to analysing causation in terms of in-

ferences drawn by language users, one stops asking the important question

‘What is causation?’ and contents oneself with the more modest—and philo-

sophically less relevant—question ‘How do we use the notion of causation?’

In other words, one gives up on the attempt to identify the secret connection

that underpins the causal relation.

Let us step back for a moment. Recall that it is the search of the secret

connection which has led to many of the analyses rebutted in chapters 4–

6. An inferentialist may observe that the symptom of the problem is that

all parties for which the secret connection issue is relevant tie the meaning

of causal claims to the possibility to experience, or define, the necessity of

the connection, and that the skepticism on causality is the result of failed

attempts to identify such a necessity. Here is an inferentialist diagnosis: the

issue arises from a bad intuition on what counts as meaning of something

and the—implicit—adoption of one or the other non-inferentialist semantics

as applied to ‘causes’. Needless to say, the inferentialist rejects both non-

inferentialist semantics and the intuitions that motivate them.

One such semantics is semantic empiricism. This is, roughly speaking, a

theory of meaning based on the Humean distinction between concepts that

derive from ‘impressions’ and those that don’t (e.g., ‘causal connection’): only

to the former category there correspond existents. The implicit adoption of

semantic empiricism may explain certain attempts—both realist and anti-

realist—to reduce causal talk to a basic ‘impression’ of force, or pressure.

Now, one may grant that it is legitimate to infer some causal relations on the

basis of impressions. The point is that the low-level causal relations we can

have an impression of (e.g., your push causing me to move) do not seem to
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be the same causal relations science talks about (e.g., p53 causing apoptosis,

chartist behaviour causing crashes). No wonder then that it is hard to find

out the secret connection in the latter case. And no wonder that attempts to

explain causation as involved in higher-level causal laws in terms of basic, low-

level causal relations leaves the secret connection mysterious. But this, for the

inferentialist, doesn’t show anything on the nature of the ‘secret’ connection,

only illustrates the inadequacy of representationalism.114

A similar consideration applies to another theory of meaning which seems

implicitly presupposed by much of the philosophical debate on the meta-

physics on causality, namely verificationism. For the verificationist, the mean-

ing of a statement is reducible to the set of observations which either verify

or falsify it. Corollary: if causal claims are to be meaningful, then they

must have necessary and sufficient verification conditions. However, it is well

known that the verificationist criterion has been abandoned as a meaning-

fulness criterion after realising that claims containing theoretical terms are

not reducible to sets of observations which are necessary and sufficient to

verify or falsify them—there are no such sets. So, why is verificationism still

implicitly presupposed by philosophical explications of ‘causality’, which is

arguably further away from observation than theoretical concepts?115

This old-style verificationism is nowadays replaced by the view that mean-

ingful claims have (at least) necessary and sufficient assertibility conditions

(Dummett, 1991), e.g., canonical ways of being introduced (verification con-

ditions) and eliminated (use conditions). Although meanings of expressions

are not typically reducible to sets of observations but are fixed by reference to

same-order expressions, meanings stand in a relation of partial ordering, such

that any non-canonical way of verifying an expression contributes to meaning

only insofar as it is reducible to a canonical one. If this partial ordering is

possible, one may still neatly distinguish between meaning-constitutive infer-

ences and non-meaning-constitutive inferences. Neo-verificationism is subject

to the following criticism. Borderline concept instances constitute ‘anomalies’

with respect to the conceptual core fixed by the canonical rules. Their con-

tent cannot be explicated by reference to canonical rules only. This hampers

the possibility of neatly distinguishing meaning-constitutive (canonical) uses

from non-meaning-constitutive (non-canonical) one.116

114For Sellars’ critique of the Humean theory of meaning, see Sellars (1962, pp. 50-ff.).
115Reiss (2009b) offers a very similar argument to the same point.
116For Brandom’s own concerns about verificationism, see Brandom (2000, pp. 63-66).
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In the light of this diagnosis, the inferentialist can also recommend a cure,

based on the rejection of semantics which reduce meaning to representational

relations or verification conditions. When inferentialism is embraced, the

secret connection need not be ‘secret’ anymore, and can be made explicit

as any other part of language. What is special about causality is that its

meaning must be made explicit via more inferences and in a less intuitive way

than in the case of other concepts. The cure can be accompanied by some

argument to the point that (causal) language has a referential function after

all. Only reference follows from the theory of meaning rather than grounding

it (see 8.1.2). Once we realise that there is no secrecy in the connection,

the puzzlement deriving from the attempt to understand what makes the

connection necessary disappears, too. For the inferentialist, the necessity has

to do with the normativity of the inferences. This sort of necessity is—for

those who embrace analytic pragmatism—easier to grasp and accept.

Conclusion

The task of providing a satisfying account of causality is very challenging.

In this chapter, I have shown that an inferentialist account has the resources

to face the challenge. It can make room for the contribution of both test

conditions and use conditions to the meaning of causal claims. It can be

flexible enough as to accommodate the variety of nuances that causal talk

takes on in different areas of inquiry, thereby accommodating the idea that

causality is, in a sense, multi-faceted. And it can be informative enough as

to point to the core features that all causal claims have in common, thereby

doing justice to the idea that, in another sense, causality is one, although

vague, concept. In the next chapter, I apply this framework to the analysis

of causality in complex systems.



Chapter 8

Causality in Complex Systems

In this chapter, I discuss the meaning and the objectivity of causal claims in

complex systems sciences. First, I consider how the inferentialist can talk of

causal relations as being more or less objective. I do this by reinterpreting

the objectivity of the causal relation in terms of the correct assertibility of

the corresponding causal claim (§8.1). Then, I turn to discussing the meaning

and the objectivity of causal claims in systems biology (§8.2) and computa-

tional economics (§8.3). Finally, I discuss whether the inferentialist notion of

objectivity as based on normativity is suitable to account for the objectivity

of causal claims presupposed in everyday and scientific discourse (§8.4).

8.1 The objectivity of causal relations

8.1.1 Objectivity as correct assertibility

How should one explain one’s judgement that certain causal claims are—

to some extent, or to a good extent—true? And how should one explain

one’s judgement that certain models get the causal story right, or correctly

represent the mechanism responsible for the behaviour?

For the representationalist, the meaning of an expression, e.g. ‘causes’, is

its contribution to the truth conditions of the sentences in which the expres-

sion appears. Correspondingly, what is signified by the expression, e.g. the

causal relation, is objective to the extent that it contributes to the state of

affairs that makes the sentence true. In other words, causal relations are

objective if causal claims represent the world as it is, i.e., is, if ‘causes’ is ref-

erential and causal facts belong to the ontological furniture of the world. Here

‘objective’ has an ontological meaning, viz. it concerns a mode of existence

of a class of entities or the world as a whole.

In contrast, for the inferentialist reference is not what grounds objectiv-

216
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ity, but rather a consequence of it.117 Objectivity, in turn, is interpreted as

having to do not with truth-making relations between claims and states of

affairs,118 but with correct assertibility, that is, correct use of the claims as

premisses or conclusions of arguments. More precisely, ‘objective’ has a se-

mantic meaning, concerning the basis for distinguishing between what seems

to be correct and what is correct in the application of assertive content (see

Skovgaard Olsen, 2012, §1). The correctness of the assertions cannot be ad-

judicated from outside the space of reasons, but involves a self-correcting

process—both epistemically and semantically constrained—within the space

of reasons. The epistemic constraints (priority of observational knowledge, re-

sults of actions) allow that any claim may be put in jeopardy, only not all at

once. The semantic constraints (the rules internal to the game, viz. compat-

ibilities and incompatibilities between claims) fix what one ought to endorse

or is entitled to endorse. In practice, this process tends to remove or alleviate

disagreement and lead to ‘harmony’, which may be informally characterised

as a sort of reflective equilibrium between introduction and elimination rules,

which obtains when successful extra-linguistic navigation and lack of intra-

linguistic disagreement on commitments and entitlements make the rules en-

trenched (cf. Brandom, 2000, pp. 72-76).

So, when it comes to causality, whether a causal relation is objective

becomes a matter of semantic justification, a matter of having reasons for

endorsing the corresponding causal claim in the arguments where it appears.

This entails answering the question ‘Is the causal relation objective?’ by

answering the question, ‘Is the causal claim correctly assertible?’ And since

causal relations are context-sensitive, the more fine-grained questions to ask

become: Is c correctly assertible in such-and-such a context? To what extent

is the assertibility of c context-sensitive?

Since causal relations are contextual, no general answer can be given. The

reasons that justify the assertion of one causal claim in one context differ not

only from the reasons for asserting another causal claim, but also from the

reasons for asserting the same causal claim in another context. This is be-

cause the justificatory relation between such reasons and the claim itself is

a matter of content of what is asserted by, respectively, the reasons and the

117For more on the consequences of the inferentialist account with regard to the represen-
tational force of causal claims and models, see §8.1.2.
118Among traditional criteria for objectivity are not only truth conditions, but also epis-

temically constrained notions of truth, such as belief in the long-run (Peirce), belief that
remains satisfactory (James) or credible (Goodman), rational belief (Putnam), etc. (see
Skovgaard Olsen (2012, §1) and references therein).
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claim. More specifically, the goodness of the inferences from the evidence

to the causal claim, and from the claim (together with the collateral com-

mitments) to its possible consequences, depend on material conditions, not

just formal conditions. That is, such inferences do not obey any ready-made

logic by which their validity can be ‘calculated’ by simple consideration of the

sentences that stand in the entailment relation. So, one can’t formulate fully

general assertibility conditions that do not depend on the specific relata and

context of application. And this is not a special fact about causal claims, but

a general fact about all non-logical claims. Ultimately, one is always left with

a decision on whether or not to endorse the claim on a given occasion. But

this does not mean that the conditions for correct assertibility are arbitrary.

The existence of objective conditions of assertibility presupposes a space for

the rational evaluation of the decision to endorse or not to endorse as more or

less justified. More precisely, it presupposes having the resources to vindicate

such a decision in some principled way, an issue to which I now turn.

Understanding what having such resources amounts to requires drawing

a distinction between a first-person perspective and a social perspective on

correct assertibility, and the different tools available to the speakers from the

two perspectives. On the first-person perspective, the objective assertibility

of c depends on commitment to c (given available evidence) and entitlement

to c (given collateral commitments). Obviously, whether or not one takes c

to be assertible, one may be mistaken. The grounds for the evaluation of

the correctness of the assertion are not private, but public. The evaluation

takes place in the social space that commitments and entitlements institute

(Brandom, 2000, chap. 5). To use an analogy with games, this evaluation

works as follows: a participant in the game makes a move; if other participants

in the game disagree with his move, they can challenge him and ask for

reasons; it is then up to him to provide such reasons, possibly reasons such

that the other participants, too, are committed to them, so that they cannot

deny the correctness of his move. During the game, the players keep track of

each other’s ‘score’, viz. the commitments and entitlements that their use of

the language presupposes. The possibility for them to do so, in spite of their

different sets of beliefs, rests on the possibility to discuss the propositional

content of the assertions by using two different modes of ascription, viz. de

dicto and de re.

De dicto ascriptions are introduced by ‘that’ clauses. They makes explicit

what part of the commitment is attributable to the attributee. For instance,
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Andy can ascribe to Bob the belief that the Earth is flat, whilst not believing

it himself. Andy can express this by saying ‘Bob claims that the Earth is

flat’. De re ascriptions, instead, are introduced by ‘of’ clauses. They make

explicit the part of the commitment that is adopted by the scorekeeper. Bob

may or may not believe that if one were to sail West one would not return to

where he started his journey. However, this is what his belief that the Earth

is flat commits him to. Andy can express this by saying ‘Bob believes of the

Earth that it is so shaped that if one were to sail West one would not return

to his starting point’.

The de dicto/de re distinction is what grounds reference, which is some-

thing that language permits by providing us with the resources to talk of

things from within a social perspective. It is in virtue of this social dimen-

sion that, for Brandom, propositional content is necessarily representational

content. This is because communication presupposes the possibility to agree

or disagree on the objects of our beliefs on the basis of sets of commitments

attributed or undertaken (see Brandom, 2000, p. 183).

For instance, both Andy and Bob believe that the Earth is a planet.

Although they have different theories, or ‘conceptions’, of the Earth, they

can discuss about the same thing, ascribing to each other beliefs either de

dicto or de re. The ascriber will use the de dicto mode if he has positive

reasons not to believe, or has no reason to believe—and wants to remain

neutral on—the content of the proposition he is ascribing. He will use the de

re mode if he wants to emphasise his commitment to something, whether he

agrees on what he ascribes (e.g., that the Earth is a planet) or not (e.g., that

the Earth is flat).

Although playing the language game presupposes that the speakers are

committed to the idea that there is a fact of the matter as to whether their

assertions are true or not, and what the Earth is like, at no point of the game

truth assessment need involve the attribution of a truth property. What goes

on, for the inferentialist, is continuous scorekeeping, giving and asking for

reasons, articulating distinctions between what is correct and what seems to

be correct.119 In Brandom’s own words:

The practical navigational capacities that are made explicit in de

re specifications of the contents of ascribed propositional com-

mitments express the standing commitment each of us has to

119The reader interested in the details of Brandom’s machinery is referred to (Brandom,
1994a, chap. 8).
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their being one set of inferential roles that bind all interlocutors:

those, namely, determined by multipremise inferences in which the

collateral commitments supplying auxiliary hypotheses are true

(Brandom, 2007, p. 670).

It is in this sense that speakers with different concepts of ‘causes’ or ascribing

different meanings to the same causal claim are nonetheless bound to the

same rules, or criteria, for the assessment of their correct applicability. I give

a characterisation of the criteria invoked in the assessment of the objectivity

of causal relations in §8.1.3. I introduce this topic by describing in §8.1.2

how inferentialism can be usefully applied to account for the objectivity of

scientific claims—of which causal claims constitute an important instance.

8.1.2 The (inferential) rules of science

Scientific reasoning—more precisely, the rules that regulate the acceptance

of scientific hypotheses—can be interpreted along inferentialist lines. One

attempt to do so is in (Zamora Bonilla, 2006). Here, scientific rules are clas-

sified as ‘argumentation rules’ (viz. language-to-language rules), ‘entry rules’

and ‘exit rules’. They have the function to introduce, evaluate, modify and

put to use the ‘deontic scores’ of scientific claims. Deontic scores measure the

recognition that the scientific claim receives from the community. Zamora

Bonilla interprets this recognition as the aggregation of two components: an

‘internal’ score, that measures how the claim follows from the inferential rules

and previous commitments of the community; and an ‘external’ score, that

measures how the claim coheres with the community’s inferential practice.120

Argumentation rules change a deontic score into another (e.g., add or re-

move a commitment). Entry rules determine how deontic scores are affected

by events (e.g., evidence gathering, authority reports). Exit rules determine

how the claims included in the deontic score transform into obligations to per-

form or abstain from performing certain actions (e.g., allocation of resources,

experiments). Together, these rules generate a loop, comprising perceptions,

120Zamora Bonilla suggests that number of favourable citations and of published papers
be used as indicators of, respectively, internal and external scores (see fn. 10). It should
be noted, however, that although the distinction is in principle useful, in practice there
may not be a sharp divide between the reasons that bear on internal and external scores.
For instance, a citation, where the cited claim appears as a conclusion reached by other
means, may contribute to the internal score, too. And a publication, such that the claim
is particularly coherent with the referee’s commitments, contributes to the external score,
too. So, it may well be that the same reason can affect the two scores at once.
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Figure 8.1: A normative inferentialist view of rational action. Redrawn

from (de Donato Rodŕıguez and Zamora Bonilla, 2009a, p. 105) (cf. figure 2,

Zamora Bonilla, 2006, p. 194).

the resulting doxastic and practical commitments and the outcomes of ac-

tions, which determines the acceptability of the claims (figure 8.1).

This framework allows the inferentialist to account for the representa-

tional force of scientific claims, including the causal ones. This force, for a

community of scientists helping themselves to the concepts of ‘causal relation’,

‘complex system’, ‘mechanism’, etc., is constituted by the conceptions, or the-

ories, corresponding to such concepts. Such conceptions may vary to some

extent from one scientist to another, and from one community to another.

Also, these conceptions may be incompletely or incorrectly specified. Incom-

pletely, because only part of this meaning is actually made explicit by way of

models and relations depicted therein. Incorrectly, because certain parts of

this meaning may depend on incompatible commitments, or less-than-optimal

(both extra- and intra-linguistically) commitments. Either way, the concep-

tions that make explicit the meaning of causal claims may not include all

meaning-constitutive inferences. Still, there is a sense in which such infer-

ences are part of the concepts, insofar as the speakers are committed to them

by their use of the language, whether or not they are aware of them.

With this framework in place, one can give a (hopefully more illuminat-

ing) answer to the question: Does ‘causes’ refer? As said, for the inferentialist
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reference of ‘x’ is grounded in the possibility to communicate about x in de

re mode, e.g. ‘S believes of x that φ(x)’ in a way that promotes ‘harmony’.

So, we may say that a concept ‘x’ refers if its ‘conception’, or theory φ, is

harmonious. In this respect, ‘causes’ is a peculiar case (cf. §6.7.2). On the one

hand, the relative stability of kinds of purposes (Z) unify φ(‘causes’) in a way

that makes of causality a pivotal concept in our conceptual apparatus. Causal

claims are often successful licenses to predictions, explanations and interven-

tions. Agreement on typical exemplars of causal relations promotes harmony,

and make ‘causes’ referential. On the other hand, the diversity of contexts of

application (X and Y ), on which the existence of more or less numerous or

successful consequences seem to depend, disunify φ(‘causes’). The resulting

difficulty in making explicit the boundaries between causal and non-causal

facts makes harmony difficult, and ‘causes’ only vaguely referential.

A nice case can be made for an inferentialist understanding of the rep-

resentational force of models of complex systems. Recall Rosen’s modelling

relation, mentioned in chapter 1.3.4. The complex systems scientist subscrib-

ing to Rosen’s picture envisages modelling as a complex practice, “the art of

bringing entailment structures into congruence. That is, the formal descrip-

tion, encoding, implication and decoding must be congruent withe the causal

events being modeled in the real world” (Mikulecky, 2001, p. 346). However,

the complex systems scientist understands this ‘bringing into congruence’ not

in terms of some näıve one-to-one correspondence relation taking place out-

side the space of reasons, but in context, from within the perspective of the

scientist who builds and uses the model. A model is interpreted as a for-

mal surrogate of portions and aspects of reality with the essential function of

aiding the modeller’s reasoning. It acquires meaning only in the context in

which it is interpreted and used. So, if one wants to understand the relation

between models and systems and what the models can tell about the causal

relations in their targets, one must have a prior understanding of the mod-

elling relation, as a complex relation between targets, formal structures and

modellers.

This complex, intrinsically context-dependent entanglement among model,

system and the modeller’s activity is well captured by an inferentialist ac-

count of scientific representation (Suárez, 2004; de Donato Rodŕıguez and

Zamora Bonilla, 2009a). This characterises scientific models as tools for sur-

rogative reasoning (figure 8.2). First some features of interest are selected

from the target system and translated into a formal structure, which can be
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Figure 8.2: The three steps in the making of inferences with the aid of mod-

els. T = target; R = representation. Redrawn from (de Donato Rodŕıguez and

Zamora Bonilla, 2009a, p. 103).

anything from a mental model to a map to a mathematical model. This step,

called ‘immersion’, corresponds to what complex systems scientists call ‘en-

coding’. Then, the behaviour of the formal system is derived. Finally, the

derived behaviour is translated back onto the target system to check whether

the derivation faithfully mimics the physical operation that goes on in the sys-

tem. This final, third step is called ‘interpretation’, and corresponds to the

complex systems scientist’s ‘decoding’. Importantly, de Donato Rodŕıguez

and Zamora Bonilla (2009a, p. 103) explicitly state that the inferences drawn

within the model often aim to reproduce the causal connections between the

real events occurring in the target system—although their model is general

enough as to include systems, such as maps, in which it is not the causal

structure that the model aims to reproduce.

Now, in what sense is this an inferentialist account of representation?

Why can’t one say that all there is to the meaning of the model is its ca-

pacity to map successfully onto the system’s structure, a fact which is only

incidentally dependent on whether or not the scientists happen to stumble on

the right model? In other words, why should one regard the meaning of the

model as a three-place relation between model, target and modeller, rather

than a two-place relation between model and target only? The reason, for the



§8.1 The objectivity of causal relations 224

inferentialist, is that if one fails to consider the role that the model plays in

the life of those who produce and use it, one misses a crucial aspect of what

confers to it its representational force. To account for what gives the model

such a force, the inferentialist offers a more complex story that tells (in the

metalanguage) how the model helps the agents relate to their environment,

according to the rules described above and depicted in figure 8.1.

On this account, commitments and norms of agents and communities

evolve. As a consequence, also the meaning of the claims caught up in the

modelling loop evolves. ‘Good’ scientific models will be those that lead to

‘satisfactory’ results, or better results than other models: first, the model

should increase the ratio of successful inferences; secondly, it should increase

the number and variety of inferences we were able to draw from the rest of our

commitments; thirdly, it should reduce the cognitive or computational costs

of the activity of drawing consequences. Does the model refer? The degree

of ‘realism’ of the model is explained in terms of the ranges of circumstances

where the representans can be substituted for the representandum to draw

inferences by means of the model rather than a black box. So, the reality of

a complex system is weaker than that of, say, a chair. The contextuality of

complex systems, that is, the sensitivity of their identity and their behaviour

to the context, is accounted for and made explicit in terms of features of the

meaning (as inferential role) of the models by which we refer to them.

I now turn to characterise in more detail the ‘rules’ by which causal claims

are judged satisfactory (read: correctly assertible). The reader is invited to

interpret such rules as a characterisation of the reasons that bear on the

aforementioned deontic scores in the case of causal claims as explicated in

§7.2.3.

8.1.3 Characterising objectivity

In what follows, I will describe general criteria that underlie the correct assert-

ibility of causal claims and characterise the objectivity of the causal relations

described therein. Correct assertibility depends on two normative statuses

and their interactions, namely commitment and entitlement:

1. Ought one be committed to c given X? To what extent do changes in

X affect entitlement to c?

2. Is one entitled to z given Y and c? To what extent do changes in Y or

c affect entitlement to z?
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Since there are two normative statuses on which correct assertibility de-

pends, there are also two dimensions along which correct assertibility should

be characterised, namely commitment and entitlement to certain conclusions

given certain premisses. Along both dimensions one should consider what

makes for the plausibility of the material inferences, that is, the reasons that

make an assertion put forward as prima facie correct, or as seemingly correct,

actually correct, or justified.

Commitments first: What commitments grant commitment to the con-

clusion? If c is correctly assertible, the argument in which it appears should

ideally remain correct if there is some change in the premisses (i.e., substitu-

tions, enlargements, shrinkages) and c is kept fixed, whether as a premiss or

as a conclusion. The intuition behind this criterion is that if an argument is

success-conducive if certain premisses are included, and whether or not cer-

tain other premisses are, then one will assume that the former not the latter

make the argument correct in the circumstances in which this has a bearing.

Let us first consider the case where c appears as a conclusion, viz. the

downstream potential of the causal relation. Here c should robustly follow

across changes in the premisses. One can interpret this as a requirement that

c follow from independent tests, or tests performed on different populations,

in different contexts, etc.:

X1 �Inc c (8.1)

X2 �Inc c (8.2)

X3 �Inc c (8.3)

. . . (8.4)

So, ‘smoking causes cancer’ should belong to the set of one’s commitments if

the association is significant among humans, irrespective of gender, age, diet,

ethnicity, etc., if the relation is confirmed by animal studies over different

species, etc. Having the claim among one’s commitments allows one to make

sense of a variety of observations, and makes a good candidate inference ticket,

which can then be spent in a variety of circumstances.

The other case is where c is one of the premisses, viz. the upstream po-

tential of the relation. Here z should robustly follow from c across changes in
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the set of collateral commitments Y , despite the non-monotonicity of �Inc:

c, Y �Inc z (8.5)

c, Y, a �Inc z (8.6)

c, Y, b �Inc z (8.7)

. . . (8.8)

So, if the claim (e.g., ‘smoking causes cancer’), together with the occurrence of

the cause as well as background knowledge, allows one to infer a given causal

effect (e.g., incidence rate of lung cancer), and the inference remains success-

conducive even when the influence is ignored of other, potentially causally

relevant factors, or confounders, present in the situation, we have reasons to

believe that the success of the inference depends on the claim, which is an

inference ticket worth having.

Let me now turn to the entitlements: What lack of commitments removes

entitlement to the conclusion? If c is correctly assertible, the arguments

should ‘ideally’ turn incorrect if the other premisses are kept fixed but c is

removed from the set of the premisses:

c, Y1 �Inc z (8.9)

c, Y2 �Inc z (8.10)

. . . (8.11)

but

Y1 2Inc z (8.12)

Y2 2Inc z (8.13)

. . . (8.14)

This criterion demands that c be included in the premisses if one wants to

be entitled to z given Y . In other words, given Y , assuming c is necessary to

infer z. So, for instance, it would not be possible to design effective policies on

smoking habits to decrease the incidence of lung cancer in a given population,

if it were not for the knowledge that smoking causes lung cancer, and in that

population it does so by way of certain intermediary steps, contributory or

inhibiting factors, etc.
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In sum, objectivity can be characterised as robustness of the meaning-

constitutive inferences.

8.1.4 Challenging objectivity

Since there are several ways in which a causal relation may be objective, there

also are several ways in which such an objectivity may be challenged, namely

by challenging the role of c as a premiss or conclusion in the arguments in

which c appears.

The case to which most attention has been devoted in the philosophical

literature is the case of the validity of the arguments where a conclusion as

regards the obtaining of the causal relation is established. In this case, ques-

tioning the objectivity of the relation amounts to questioning one’s grounds

for taking the causal claim as warranted.

In science, this issue is traditionally associated with the internal validity

of the arguments warranting scientific hypotheses, namely with the correct-

ness of the methodology by which the hypotheses are tested (or supported, or

confirmed). Consideration of this scientific fact has typically given rise to the

more philosophical task of identifying the test conditions of the hypotheses

being established with their truth conditions. Lurking in the background was

the idea that the non-controversial conditions X used to establish a claim

about the existence of some controversial object C (e.g.: theoretical entities

such as electric charge; or causal relations; or...), could also be used to re-

duce the objectivity of the controversial object C to the objectivity of the

non-controversial one (e.g., the voltage measured by a meter attached to a

conductor; the probability raising of the effect by the cause). In this way, not

only is the inference from X to C part of what it takes for C to be objective,

but so is the inference from C to X.

However, scientific practice need not be so interpreted. On the contrary,

it is more faithful to scientific practice to distinguish the kind of objectivity

involved in issues of internal validity from the objectivity involved in issues

of external validity, which concerns the exportability of the results obtained

in test situations, by means of some method, to some target situation. In

Cartwright’s words, “the inferences that are licensed from that method are

tied to the populations and situations in which the evidence is obtained and

license to go beyond those must come from somewhere outside that method”

(Cartwright, 2007b, pp. 38-39). So, internal and external validity obey dif-
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ferent ‘logics’. The only thing that they have in common is that a failure

depends either on a lack of entitlement preventing another entitlement, or on

a commitment removing an entitlement.

Challenges to the assertibility of c in claims of internal validity are of the

following kinds:

• entitlement to c only if x ∈ X, but no entitlement to x;

• commitment to x, and no entitlement to c if x ∈ X.

Instead, challenges to the assertibility of c in claims of external validity

take different forms:

• entitlement to z only if y ∈ Y , but no entitlement to y;

• commitment to y, and no entitlement to z if y ∈ Y .

In general, a failure of external validity is such that for some reason one of

the facts that was observed in the context of application of c, and granted

the correct applicability of c, fails to manifest in the context of using c. For

instance, one may expect that, since probability raising granted c in some test

situation, c will in turn entitle to infer to probability raising in some target

situation. Yet, something goes wrong. Let us indicate with d the claim that

one relatum makes a difference to the other. The issue of external validity is

that c is insufficient to draw conclusions on d. More formally put:

X, d �Inc,Ktest c (8.15)

but

c, Y 2Inc,Ktarget d (8.16)

There are two main reasons why external validity fails, and the inference

to the target situation goes wrong. First, there is the difference between

the test population and the target population. For instance, one can take

the claim ‘Smoking causes lung cancer’ as well established on the basis of

an RCT on mice, after observing an overall probability raising of cancer

across the population that was assigned to treatment (injection of tar in

the lungs, or the like) with respect to the control population. One may

then ask whether the difference-making relation that was observed in the

test situation will also be observed in some target population, following to,

say, a policy that is meant to exploit the tested relation. For instance, one
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may ask whether banning smoking in some target population of humans will

result in a decreased incidence of cancer with respect to the cancer level that

would have been observed in the same population had the policy not been

enforced.121 Here the inference may go wrong due to the context sensitivity

of the relation, such that c contributes to the correctness of the inference only

when Ktest ≈ Ktarget, not when Ktest 6= Ktarget.

The second reason for the failure of external validity has to do with the

faithfulness of the relation. In spite of Ktest ≈ Ktarget, the difference-making

relation shows up in test situations (via patterns of regularity, or counterfac-

tual dependence, or probabilistic difference, etc.) not in target situations, due

to multiple or neutralising capacities, redundancies and back up mechanisms,

etc. Suppose one has established that contraceptives prevent thrombosis via

the prevention of pregnancy. And suppose that, besides this component ef-

fect, contraceptives have another component effect on thrombosis, namely the

release of a harmful chemical in the bloodstream, which promotes thrombosis.

Here, one can fail to observe a decrease in thrombosis among women who take

contraceptives if the former component effect is neutralised by the latter, so

that the net effect is null. Or suppose one has established that gene 1 causes

a disease. And suppose that the operation of gene 1 normally trumps the

operation of gene 2, which also has the capacity to bring about the disease if

gene 1 does not operate. Here, trying to eliminate the onset of the disease by

a knock out of gene 1 won’t do, because gene 2 will act as a back up. Failures

of faithfulness are such that x ∈ X but x /∈ Z.

A third case, still having to do with the upstream potential of a causal

claim, and which has been largely neglected in the philosophical literature,

involves the capacity of the causal claim to assist in inferences whose conclu-

sion does not concern the obtaining of one or the other relatum, but some

other state of affairs, e.g. another causal claim or claims on the obtaining of

something which is not a relatum. One may view this as having to do with

the external score of the claim, rather than its internal score. The more often

c contributes to the correctness of such inferences, the more appropriate it

seems to assign to C a stable place in our set of commitments. Correspond-

ingly, the more often c fails to make a difference to other inferences, and

to cohere with them (by being isolated, or ‘disconnected’, from them), the

less useful it is to include C among our commitments. Here, the failure of

121This counterfactual value can be estimated by looking at past values in the same pop-
ulation, or by looking at values in populations which are as similar as possible to the target
one, etc.
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objectivity depends on c being unnecessary or insufficient for z given Y :

• unnecessary, if given Y , z follows irrespective of c

c, Y �Inc z and Y �Inc z (8.17)

• insufficient, if given Y , c does not grant inference to z

c, Y 2Inc z (8.18)

The insufficiency case generalises the case of failure of external validity to

inferences where z does not concern the obtaining of one relatum. The non-

necessity case, instead, points to a problem of a different nature: given Y ,

c is a useless inference ticket. For instance, given the operation of gene 1,

knowledge of the causal effect of gene 2 contributes nothing, or very little, to

the inference to the insurgence of the disease.

8.1.5 Improving the causal picture

The procedure by which the community question and modify their causal

beliefs is, roughly put, the following. One typically starts with some set of

commitments implicitly shared with the other participants in the language

game, and observes some failure in the inferences that he takes to be con-

stitutive of the meaning of ‘causes’, which triggers a deliberation process as

to whether the endorsed inference patterns are correct. A failure may be,

for instance, the observation of the conditions described by the premisses but

not of those described by the conclusion. However, unsuccessful predictions

or actions are not the only trigger. Reasons of ‘internal economy’ in one’s in-

ferential activity, such as the easiness with which the inferences are drawn, or

the usefulness of having a larger or smaller variety and number of inferences

that can be drawn from the rest of our commitments, are other, legitimate

grounds for revising the meaning of ‘causes’ (cf. de Donato Rodŕıguez and

Zamora Bonilla, 2009a, pp. 106-107). In any case, the following choices are

open to the participants in the game.

First, one may continue to endorse the inference, viz. take c as correctly

applying to the circumstances in which the failure was observed to obtain. Af-

ter all, a causal claim is not an inference license which gives a 100% guarantee

of success, but a license that describes a modality which, although stronger

than mere possibility, is weaker than necessity.
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Secondly, one may blame the other premisses, and proceed to some sub-

stitution, addition, or shrinkage to restore correctness. This results in a more

fine-grained specification of the conditions for the correct applicability of c. If

the set of circumstances in which c is correctly assertible is shrinked, this may

eventually and gradually lead to abandoning the commitment in the relation

being causal.

Thirdly, one may blame c itself for the failure. This choice is motivated

by the observation that any modification to the collateral premisses which

restores correctness also results in c being unnecessary to the inference. One

simple case is when the conclusion would follow if only c were removed, and

the other premisses were left untouched.

In general, if commitment to the existence of the causal relation is aban-

doned, this is usually done on the ground that, given available knowledge,

success and failure of the inferences which were taken as belonging to the

meaning of ‘causes’ are best accounted for by modifying our causal picture,

in any case by removing c from the arguments in which it used to figure. This

should result in a global improvement of all the inferences.

As it happens with other claims and concepts, such as laws or kinds of

superseded theories, the modification can be either local or global. Sometimes

some local fixing is enough: one need not make major adjustments, only re-

place the claim in the arguments where it appears with one or more other

claims, or simply remove it. At other times, the modification must be more

global: claims and concepts to which the causal claim was inferentially con-

nected are too dependent on each other, and must be substituted en masse.

For instance, one may abandon the concepts that stand for the relata, if the

relata’s identity is too closely dependent on their role in the causal relation

in question, and not enough on their role in other relations. In the latter case

the abandonment of the causal claim may also drag the abandonment of the

concepts that identify its relata.

Biological and economic kinds make interesting cases. Biological kinds

are both functionally and structurally defined. For instance, to be a Bcl

protein is, largely, to play such-and-such a promoting role with regard to

apoptosis. So, finding out that the Bcl family contains not just proapoptotic

but also antiapoptotic proteins may lead to abandoning the kind. However,

‘Bcl protein’ is also structurally defined. Genes that code for proteins in

the Bcl family share a common coding sequence. The kind ‘Bcl protein’ is

eventually retained, in spite of the failures of ‘Bcl promotes apoptosis’ to be
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a good inference license, because the pay off of having the concept is larger

than the advantage of getting rid of it. So, although the removal of a causal

claim in biology can in principle determine a big shift in the meaning of

biological kinds related by the claim, usually there are independent reasons

why the kinds are entrenched enough, irrespective of the goodness of the

claim. This is what gives us the impression that causal relations have a

sort of second-order reality with respect to that of their relata. But due to

semantic holism, the difference is only of degree. In principle, it is as possible

to abandon the commitment to the existence of a relatum as it is to abandon

the commitment to the existence of the relation. In both cases, the objectivity

depends on the robustness of the meaning-constitutive arguments. So, if the

sharing of a common coding structure were not sufficient, or not necessary,

for the belonging to the Bcl class, or if the belonging to the Bcl class failed

to be relevant, whether positively or negatively, to apoptosis, then probably

the kind itself would be abandoned together with the causal claim.

This becomes even more evident in the case of economic kinds. These

are often only functionally defined. As I argue below, model variables such

as learning speed, being fundamentalist or chartist, network connectivity,

etc. are harder to interpret in relation to the system, and may refer to quan-

tities that have a precise meaning only in the model. This weakens the objec-

tivity of the causal relations in which they take part. If the assertibility of the

causal claims outside the domain of the model turns out to be too fragile, this

makes the kinds related by them fragile, too. And if the claim is abandoned,

the kinds are easily abandoned, too.

It is important to stress that which choice is eventually made is not some-

thing which is forced on the participants of the game. Since neither high-level

rules of scientific reasoning nor low-level rules governing the meaning of claims

and concepts obey a context-independent logic, but depend on material con-

ditions, they cannot be interpreted as always leading to clear yes-no answers,

so argumentation and deliberation never become dispensable. In Zamora

Bonilla’s words,

individual behaviour is often not fully determined by commit-

ments. There are many reasons for this indeterminacy: agents

can be entitled to choose between several options; commitment

usually comes in degrees; someone can be committed to perform

two incompatible actions; and agents can decide to break their

commitments sometimes. In all these cases, there is some room
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for ‘strategic’ choice (Zamora Bonilla, 2006, p. 190).

I now turn to illustrate how to assess the objectivity of causal relations in

systems biology and computational economics with reference to examples of

causal claims from the case studies.

8.2 Causality in systems biology

What is special about the meaning of causal claims in systems biology with

respect to the meaning of ‘causes’ simpliciter? To answer this question, one

should investigate how the rules that govern the correct assertibility of causal

claims are applied in systems biology. Systems biology is characterised by

the joint use of difference-making and mechanistic criteria to establish causal

claims, and the substantive weight of new methods, e.g. simulation, both to

establish and to draw conclusions from causal claims.

In §7.2.3, I illustrated the meaning of ‘C<XIAP feedback, irreversibility>’ as es-

tablished by Legewie et al. (2006), in terms of the inferential potential of

‘XIAP feedback causes irreversibility of Casp3 activation’, in short c1. Be-

low, I make explicit the meaning of ‘C<TNF, irreversibility>’ as established by Mai

and Liu (2009). The authors investigate whether TNF causes irreversibility

of DNA damage, that is, whether and to what extent the claim ‘TNF causes

irreversibility of DNA damage’, in short c2, is correctly assertible. They take

evidence of difference making as warranting the causal claim, and the claim,

in turn, as entitling to a number of qualitative, robust conclusions:

c↓ TNF makes a difference to irreversibility and there is a plausible mech-

anism �Inc TNF causes irreversibility

c↑ Predictions: TNFON & apoptosis �Inc irreversibility; TNFON & GFOFF

& survival �Inc apoptosis. Explanations: TNFON & reversibility �Inc ION;

TNFON & stable survival �Inc GFON

“ION” indicates XIAP feedback, as studied in (Legewie et al., 2006). More

precisely, it stands for the correct functioning of the Casp3 inhibition of XIAP,

which makes is possible for XIAP to establish an implicit positive feeback

mechanism, responsible for the irreversibility of apoptosis.
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8.2.1 Warranting the claim

In the absence of large databases to investigate regularities and/or probabil-

ities, in the absence of clear intuitions about counterfactual scenarios, and

in the absence of the possibility of surgical interventions, computation and

simulation are more and more used to support causal conclusions. What is

special about systems biology vis à vis more traditional molecular biology is

that difference making established by means of computation and simulation

constitutes evidence in its own right, not merely a useful heuristic device.

Although systems biologists usually stress that in vitro and in vivo studies

are necessary to establish their hypotheses, they also interpret in silico exper-

iments as having a crucial role in testing such hypotheses (Kitano, 2002a,b;

Westerhoff and Kell, 2007). This is acknowledged by philosophers of biology:

Once a model has been developed to an appropriate level of com-

plexity, it can be run repeatedly by a computer and function as a

high-throughput hypothesis tester. Ultimately, the results of sim-

ulations must confront more traditional real-world experimenta-

tion, although the proportion of such tests reduces bench exper-

imentation to a supplement or safeguard (O’Malley and Dupré,

2005, p. 1272).

On the one hand, models providing some plausible mechanism (or struc-

ture, or network, or the like) are usually necessary to back causal conclusions

in systems biology. This is especially true of conclusions drawn with the aid

of ‘bottom-up’ models, which make use of a greater level of mechanistic de-

tail (cf. Bruggeman and Westerhoff, 2006), and c1 and c2 are no exception.

But this observation must be carefully interpreted. Systems biologists often

emphasise that the quantitative dimension is essential to the emergence of

systemic properties. So, although the plausibility of the mechanism is nec-

essary to establish a causal claim, it is far from sufficient. Knowledge of the

amount and concentration of reactants, the affinities, the speed of reactions,

etc. that make a difference to the obtaining of the effect is essential.

On the other hand, studies that establish their conclusions by produc-

ing difference-making evidence lend themselves more naturally to a causal

interpretation. But here, too, some care is needed.

First, causal conclusions never come without some prior, causal assump-

tions. Without including a given causal relation in the base, or without as-
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suming the existence of a plausible mechanism, the conclusion on the target

causal relation would not follow. For instance, Mai and Liu (2009) model the

regulatory node I, and study the dependence of apoptosis and survival on the

state of this node, based on the assumption that Legewie et al. (2006)’s study

resulted in the identification of XIAP feedback’s causal role in establishing

irreversibility. Mai and Liu (2009) find that setting I=OFF results in “notice-

able degradation in the irreversibility of the apoptosis process” (ibid., p. 765),

but does not stop apoptosis. Without this and other causal assumptions, they

would not be able to establish that TNF causes irreversibility.

Secondly, causal claims in systems biology are often established in the

absence of the satisfaction of each and every condition postulated by tradi-

tional analyses. True, the evidence that supports the claim can consist of,

or be interpreted as, a regularity, a probability-raising relation, a counterfac-

tual relation, etc. Sometimes the evidence can be interpreted in agreement

with all difference-making intuitions. At other times, only some intuitions

are satisfied, not others. In any case, for difference-making evidence to grant

the causal claim, the satisfaction of all conditions assumed by reductive ac-

counts of causality is not necessary. For example: given the presence of Casp3

feedback, presence of XIAP feedback may be regularly associated with Casp3

irreversibility, and yet the association may break down upon expansions of

the factor frame or changes in the underlying mechanism; presence of Casp3

irreversibility may counterfactually depend on XIAP feedback in one context,

defined by the model where c was established, and not in another context,

defined by another model where, e.g., TNF is ON. This is why ceteris paribus

clauses are added, to alert that test criteria must be used cum grano salis.

In sum, the widespread use of difference-making evidence does not support

the claim that what scientists mean by ‘causes’ is reducible to some difference-

making criterion or other.

8.2.2 Using the claim

The criteria to establish the objectivity of causal relations are not limited to

the criteria to assess whether the causal claim is warranted. Systems biology

shows that assessing whether causal claims entitle one to certain conclusions

is as important as assessing whether the causal claim itself is supported by

the evidence or not. One may agree that a commitment to the causal claim

would follow from a commitment to certain evidence, and take at face value
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most of the causal conclusions found in the literature, but still question the

endorsement of such conclusions on the ground of what does or does not

follow from them. Pointing to cases where c does not warrant the inference

to some z—which comprises the cases falling under the second and third

categories mentioned in §8.1.4—is another way to challenge the objectivity of

the relation. Correspondingly, ensuring that c does warrant the inference to

a range of consequences is a way to vindicate the objectivity of the relation.

The peculiarity of systems biology vis à vis traditional molecular biology is

that novel tools are employed to this end.

Before turning to illustrate how these tools are used, it is instructive to

compare the case of systems biology with that of economics. Cartwright

(2007b, chap. 16) laments that the counterfactuals that are useful to eco-

nomic policy are not the counterfactuals with which economists are typi-

cally concerned. Economists focus on establishing whether the cause makes a

counterfactual difference to the effect in ‘implementation-neutral’ conditions,

such as RCTs, or ‘epistemically convenient’ conditions, such as controlled

experiments. Such counterfactuals, Cartwright argues, are informative on

how much the effect variable would change in the case of implementation-

neutral changes in the cause variable or in the case of modular systems,

where the effect can be independently manipulated by changing the cause

and keeping the background fixed. However, they are not so informative

for policy, where one wants to know how much a cause contributes to the

effect in non-implementation-neutral or non-epistemically-convenient condi-

tions. Cartwright concludes that traditional methods in economics do not say

much on this, in particular on “how our methods for hunting causes can com-

bine with other kinds of knowledge to warrant the uses to which we want to

put our causal claims” (ibid., p. 175). She herself can only offer some general

recommendation to the point that “the exact details matter” (ibid., p. 241)

and that one must ensure that the causal contribution carries over from test

to target context (ibid., p. 257).

Systems biology, in contrast to traditional economics or molecular biology,

makes use of simulation to address these issues. In systems biology, the role of

simulation to determine the consequences of a causal claim is even more rele-

vant than its role for testing the causal claim. In fact, whereas testing requires

evidence of the cause’s capacity to make a difference in some implementation-

neutral or epistemically convenient circumstance, using a claim requires ev-

idence that the cause will make the right amount of difference in the target
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circumstance. The latter kind of evidence is harder to gather than the former,

whence the utility of simulation.

This, too, can be illustrated by reference to c1 and c2. These are claims

that the systems biology community regards as well-established and that,

arguably, do not suffer from problems of internal validity. Still, that may fail

to robustly entitle one to certain consequences (see below) depending on what

collateral premisses are endorsed. Whether or not they do entitle and what

they entitle to is evaluated either by simulating the cell’s possible behaviour

in different contexts or, in the absence of a model to perform a simulation,

by imagining (with the aid of background knowledge) what the most likely

behaviour would be, which is a sort of simulation, viz. a thought experiment.

In particular, the robustness of C<XIAP feedback, irreversibility> depends on

assumptions as regards C<TNF, irreversibility>, and vice versa. As I explain

below, conclusions with regard to certain consequences of c1 would not be

warranted were it not for the collateral commitment to c2 and to the state

of TNF being ON or OFF; nor would conclusions with regard to certain

consequences of c2 be warranted were it not for the collateral commitment

to c1, and the state of XIAP feedback, which is represented as either ION

or IOFF. Of the two conclusions, only the latter is actually arrived at by

simulation; the former, instead, is drawn with the aid of knowledge on the

causal role of TNF.

Let me begin with a failure of c1 to successfully entitle to the presence of

XIAP feedback, based on knowledge of irreversibility of caspase activation.

Example 1: C<XIAP feedback, irreversibility>

1. Hypothesise: irreversibility & c1 �Inc XIAP feedback

2. Observe: irreversibility & no XIAP feedback

3. Diagnose: c1 is insufficient; TNFOFF is necessary, too

4. Modify: c1 & irreversibility & TNFOFF �Inc XIAP feedback

5. Verdict: no entitlement to TNFOFF

In the light of the observation, three choices are available, namely judge

the argument OK as it is, blame c1, and blame other premisses. In the

circumstances, it seems reasonable to opt for the third choice: something

more is needed for the entitlement to the conclusion. In general, entitlement

to either bistability or TNFOFF is necessary for the conclusion. If bistability
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were present, then XIAP would arguably be observed. So, assuming the

absence of bistability, the failure of the inference is best explained by reference

to TNF. One can then modify the inference pattern accordingly, and blame

the lack of entitlement to TNFOFF for the failure. Since the inference turns

out sensitive to premisses other than c1, and the conclusion is less robustly

inferrable based on c1 and irrespective of other premisses, this decreases the

objectivity of C<XIAP feedback, irreversibility>.

A similar reasoning may be shown to apply to the case of a failure of c2

to successfully entitle to ION based on knowledge of TNFON and reversibility.

Example 2: C<TNF, irreversibility>

1. Hypothesise: c2 & TNFON & reversibility �Inc ION

2. Observe: TNFON & reversibility & no ION

3. Diagnose: c2 is insufficient; Casp3 feedback is necessary, too

4. Modify: c2 & TNFON & reversibility & Casp3 feedback �Inc ION

5. Verdict: no entitlement to Casp3 feedback

Here, too, one may decide that the argument is good as it is, blame c2,

or blame other premisses. In the circumstances, one may reason as follows:

knowledge that Casp3 feedback is present was necessary, too, for the conclu-

sion. However, one was not entitled to this additional premiss. Also in this

case, the fact that a conclusion turns out less robustly inferrable from the

causal claim makes the relation less objective.

The above examples show that the semantics of different relations may

depend on the interplay between the corresponding claims, since one claim

can appear in the base, or the collateral commitments, or the target of the

other. So, a claim which is established in one context can serve as a reason

for another claim in another context.122 This is in line with the inferentialist

idea that, due to semantic holism, endorsing or rejecting one commitment is

often a matter of endorsing or rejecting other commitments.

In sum, in systems biology, too, causal claims can, and do, serve the

function of inference licenses. However, whether the license leads to successful

122In this regard, notice that there is no contradiction in claiming that the existence of one
relation reduces the local objectivity of another and that the two relations together increase
objectivity globally. It may be that, although the objectivity of one relation decreases if
the assertibility of the corresponding claim is sensitive to another relation, postulating the
two relations allows that the two claims mutually reinforce each other, so that the set of
inferences in which the two appear is globally strengthened.
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uses depends on—possibly many—other commitments. In general, the correct

assertibility of causal claims in systems biology tends to be very sensitive to

the context of their application. This is due not only to the complex character

of the context itself, but also to the ability of the model to work as a good

surrogative tool for reasoning about that context. As a result, the sensitivity

by which causal claims contribute to the correctness of the arguments where

they figure makes the relations referred to in the claims less objective, too.

8.3 Causality in computational economics

Let me now come to the meaning of causal claims in computational economics,

which I illustrate by reference to the meaning of ‘C<switching, volatility>’, made

explicit in terms of the inferential potential of ‘switching causes volatility’ (c3)

(Lux and Marchesi, 1999, 2000), and the meaning of ‘C<learning speed, volatility>’,

made explicit in terms of the inferential potential of ‘learning speed causes

volatility’ (c4) (Arthur et al., 1997; LeBaron et al., 1999).

8.3.1 Warranting the claim

I will start by discussing the downstream potential of causal claims in compu-

tational economics. The downstream potential of c3 and c4 is, respectively:

c↓ switching makes a difference to volatility �Inc switching causes volatility

c↓ learning speed makes a difference to volatility �Inc learning speed causes

volatility

Causal claims involving causes of crashes in the stock market seem less

warranted than the claims involving the causes of apoptosis. Why? This has

to do with the conditions for being committed to there being warrant for the

claims.

Both models answer the question ‘what causes volatility in the stock mar-

ket?’, and more generally, ‘what causes the stylised facts?’ in terms of the

heterogeneity of the agents in the market and their interactions. These two

factors give rise to an endogenous self-reinforcing process, viz. a positive feed-

back not adequately counterbalanced by a negative feedback. One model de-

scribes the mechanism as based on a self-reinforcing fundamentalist-chartist

switch, driven by imitation. The other model describes the mechanism as
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based on chartist strategies becoming mutually reinforcing, due to the ob-

servation of prices and the others’ profits. In either case, the outcomes are

high volatility, (temporary) bubbles and crashes, and other stylised facts.

Causal responsibility for these phenomena is ascribed to, respectively, irra-

tionality (i.e. non-fundamentalist behaviour) of a high proportion of agents

at some time, or reflexivity (i.e. inductive-adaptive behaviour) of all agents

at all times. While these analyses are instructive as to what commitments

would generate commitment to c3 or c4, it is not clear in what conditions one

would be entitled to assert c3 or c4, since it is not clear how one can become

entitled to the warrant for c3 and c4.

Consider C<switching, volatility> first. The problem here is not so much

with the assumption that the stock market is chaotic. One may reconstruct

the shape of a chaotic attractor, thereby providing some evidence that the

stock market is chaotic, even in the absence of tests on a precise theoretical

model123—which is hard to produce when we don’t know what the relevant

observables are. And one can take scaling laws as providing further evidence

for the underlying chaos. Nor is the problem with the assumption that quanti-

ties be continuous, necessary for the sensitivity to the initial conditions. One

may admit that this aspect of the model misrepresents the system, whilst

maintaining that it correctly captures the ‘stretching and folding’ of the dy-

namics in a confined region, which is essential to chaotic behaviour (Smith,

1998, chap. 3).

Rather, the problem is with the mechanism which is supposed to generate

chaotic behaviour and scaling laws. The mere isolation of scaling laws in the

data may constrain the inference to the underlying mechanism (e.g., by ex-

cluding processes that generate Gaussian distributions) but is not sufficient

for it (Rickles, 2011, §9).124 What we need is evidence that a plausible mech-

anism has been identified. In the case of Lux and Marchesi’s model, however,

it is not clear what the commitment to there being difference making between

switching and volatility amounts to. Although at some abstract level it makes

sense to talk of more or less chartist or fundamentalist behaviour, at a more

concrete level it is harder to figure out what the switching from being chartist

to being fundamentalist is like. Ultimately, the warrant for c3 depends on the

123To this end, one can take the time series of one observable, displace the time value to
obtain two or more ‘fake’ observables, then plot them in space and study their evolution to
see whether they approximate the shape of a chaotic attractor (Stewart, 1997, pp. 172-178).
124Nor is the theory of self-organised criticality sufficient to demonstrate the existence of

such a mechanism if, as some maintain (cf. Frigg, 2003), this is only a group of models
united by a ‘formal analogy’—which, as such, don’t explain.
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goodness of the analogy between switching in the market and phase transition

in many-particle systems, and this analogy has both virtues and limitations.

A virtue of the analogy is that in both cases the individuals’ interaction

is crucial for the emergence of the behaviour. Lux and Marchesi’s model cap-

tures an important aspect of human decision making: traders change their

strategy based not only on the observation of price series but also on imita-

tion, here modelled as observation of moods and profits of the other traders.

However, the analogy has also limitations. Contrary to particles, agents are

‘intelligent’. The model does not open the black box of the process of forma-

tion and evolution of their forecasting strategy. More importantly, it treats

agents as neatly groupable as particles in different states, whereas the repre-

sentation of their heterogeneity may need more fine-graining. The model pos-

tulates the existence of unintelligent behaviour and fully rational behaviour,

which is obviously a gross simplification and idealisation. On the one hand,

also ‘unintelligent’ noise traders should learn from ‘mistakes’. However, learn-

ing should be conceived not as a switch to a fully rational behaviour, only

as an attempt to improve on actual strategies not to incur in the same fore-

casting failures. On the other hand, one’s intelligent trading should not be

identified with full knowledge of the expectations of both noise traders and

fundamentalist traders, one’s own expectations included. This is because if

heterogeneity amongst traders is assumed, the use of a deductive expectation

formation process would generate a regress (cf. §3.2.2).

As far as the main goal of the model is concerned, these details may not

matter much. The model only aims at showing that non-classical conditions,

if instantiated, would be sufficient for the emergence of the stylised facts.

Yet, in the absence of a strong analogy between the mechanism underlying

bubbles and crashes and the mechanism underlying phase transition, it is hard

to identify the cause of the macrobehaviour, which is a necessary condition

for the transfer of warrant from premisses to conclusion to take place. A

symptom of this is that, contrary to the many-particle case, in the stock

market the quantities postulated by the model have no clear counterpart. As

a result, it is hard to become entitled to c3.

In the case of C<learning speed, volatility>, too, it is hard to become entitled to

the assumptions in the model. The Santa Fe model explains stylised facts not

in terms of phase transitions, but in terms of evolutionary changes. Under the

assumption of the agents’ heterogeneity and bounded rationality, changes in

market regime are explained as the emergence of mutually-reinforcing induc-
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tive behaviours ultimately produced by learning and adaptation. However,

the Santa Fe model, too, has problems.

Some of these problems are more of a technical nature, e.g., the assump-

tion that wealth does not affect share demand, the lack of a quantitative

match of the results to actual financial data, etc. Another problem is the

use of the classifier system to map past information into trading strategies.

Although this is a useful metaphor for learning, it is clearly not so realistic.

Even on the assumption that the above problems may be fixed, or are not

significant, there are more significant limitations. First, the model does not

account for the fact that learning agents are capable of finding an equilibrium,

by adjusting their learning pace. The model cannot explain this coordination

process. In the model, there is no social learning between agents, the only

learning is via the observation of prices. Secondly, changes in regime depend

on a unique parameter, viz. learning speed, whose role in terms of real market

mechanisms is unknown. LeBaron himself, one of the creators of the Santa

Fe model, observes: “If a single parameter for which we know little about

in reality can change the outcome so dramatically then we may always be

in a state of uncertainty concerning potential model predictions” (LeBaron,

2002, p. 14). Giving a realistic account of the agents’ process of expectation

formation is—notoriously—extremely complicated (cf. Simon, 1996, pp. 36,

39). This is not to say that the Santa Fe model says nothing interesting. On

the contrary, it does identify in the agents’ process of expectation formation

a crucial determinant of volatility. However, without a better grip on how

this process is instantiated, it is hard to become entitled to a claim whose

assertibility depends on such a process.

In sum, the phase transition analogy and the evolutionary biology analogy

give at best a partial story. Neither Lux and Marchesi’s model nor the Santa

Fe model provide a particularly plausible psychological mechanism. Besides,

we know that the heterogeneity on which their results depend may concretise

in many different ways, not just as a difference in forecasting strategy with

regard to the next period’s price and dividend, but also as, e.g., a disagree-

ment on the time required for the price to converge to the fundamental value,

an asymmetry of knowledge about the fundamental value, a difference in the

investment horizon for different investors, etc. (Markose et al., 2007). Finally,

neither model accounts for the obvious causal relevance of the network struc-

ture proper of the stock market, which is arguably characterised by agents of

different kinds—not only individuals, but also firms, banks, regulatory insti-
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tutions, etc.—and non-symmetric interactions (Thurner et al., 2010). So, we

have both positive and negative reasons to believe that we may not become

entitled to the premisses that would entitle us to the correct assertibility of

c3 or c4.

More instructive is to take the two models in combination, as jointly sup-

porting the more general conclusion ‘systemic instability causes volatility’,

where “systemic instability” stands for any endogenous mechanism respon-

sible for destabilising the system, e.g., switching, inductive learning, some

feature of the network’s ‘connectivity’ (Kirman, 2010), etc. Although the

two models describe very idealised mechanisms, they show that also in the

absence of external shocks (big changes in fundamental value) volatility and

crashes obtain robustly, not only upon relaxation of assumptions in the model

(variations in parameter values within the same mechanism)125 but also upon

variation in the underlying mechanism (distinct mechanisms lead to the same

results)126. In this case, it is the two models themselves that entitle us to

the conclusion that systemic instability—no matter how instantiated—causes

high volatility and crashes:

c↓ switching makes a difference to volatility; learning speed makes a differ-

ence to volatility �Inc systemic instability causes volatility

This way of using the two models is in line with the first criterion for ob-

jectivity in 8.1.1, viz. independent derivations drawn from distinct sets of

assumptions contribute to the robustness of a conclusion. If distinct models,

relying on different assumptions as regards the nature of the heterogeneity of

the individuals, support the same conclusion, this is good evidence that the

conclusion is plausible.127

8.3.2 Using the claim

A separate issue is whether C<switching, volatility> and C<learning speed, volatility>

are objective in the sense that the conclusions drawn from c3 and c4 are

robust. Among the inferences granted by c3 and c4 are, respectively:

125Behind this procedure is the maxim that Smith labels ‘trust the robust’, that is “take
as seriously representational what is reasonably stable as precisification vary” (Smith, 1998,
p. 128).
126This interpretation of model building is in line with Wimsatt’s idea that even unrealistic,

or ‘false’, models can be means to ‘truer’ theories (see Wimsatt, 2007, pp. 100-106).
127Indeed, there is evidence that similar outcomes are produced by a variety of models

which make more realistic assumptions either on the nature of the heterogeneity of the
individuals (Follmer et al., 2005) or on the market’s network structure (Anand et al., 2011).
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c↑ Predictions: sensitivities> threshold �Inc volatility; sensitivities< thresh-

old & chartists > fundamentalists �Inc volatility. Explanations: volatility

& random change in FV & sensitivities < threshold �Inc switching; volatil-

ity & sensitivities < threshold & no switching �Inc large change in FV

c↑ Predictions: fast learning �Inc volatility. Explanations: volatility & ran-

dom change in FV �Inc fast learning; volatility & slow learning �Inc large

change in FV

Here the contribution of c3 and c4 is evaluated in terms of their role as pre-

misses of arguments. The problem with drawing consequences—especially

predictions—from c3 and c4 is that one is entitled to such consequences only

provided he is entitled to the premisses, and for this to be possible the set

of premisses must be ‘appropriate’, i.e., such that there are circumstances in

which one can become so entitled. Two issues arise. First, it is hard to imag-

ine how one could become entitled to the premisses involving the parameters

that measure the putative causes, viz. switching and learning speed, taking

on some value. Secondly, if one does not rely on the possibility to become

entitled to such premisses, it is hard to find some suitable, additional premiss

to be added to c3 or c4 to derive z from the other collateral premisses.

The first issue concerns the possibility to interpret the quantities in the

model with respect to the target. Since it is hard to concretise the idealised as-

sumptions in the model, it is also hard to use the model to draw conclusions

with regard to some target (cf. de Donato Rodŕıguez and Zamora Bonilla,

2009a, p. 114). Yet, there are other inferences whose correctness does not

rely on the entitlement to the particular state of the switching process or

the agents’ learning speed, only on the existence of the corresponding mecha-

nisms. Here, although one may have no particularly good reason to describe a

particular situation by means of c3 rather than c4, there are consequences that

follow robustly from c3 and c4 irrespective of the exact details of the mecha-

nisms behind C<switching, volatility> and C<learning speed, volatility>. Arguably, in

fact, if c3 and c4 can be derived from the models, this is only because ex-

ogenous shocks aren’t strictly necessary to produce volatility, an endogenous

process being in principle sufficient. This is enough to at least use c3 and c4

to cast doubt on claims such as ‘Crashes are necessarily caused by exogenous

shocks’. Let us indicate with “ci” any claim to the point that systemic insta-

bility is sufficient to generate high volatility, e.g., c3 or c4. Then, at least one

backward-looking inference is possible to whose premisses we may become
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entitled, so that the we are also entitled to the conclusion:

c↑ Explanation: ci & crash & random change in FV �Inc systemic instability.

The second issue concerns the possibility to add to the premisses a claim

on how to measure instability without relying on the possibility to concretise

the specific mechanisms postulated by the models. One way to do this is by

means of another mechanism, for instance one based on an interpretation of

the network’s connectivity in terms of some measurable feature of the target

system (Anand et al., 2011), so as to open the black box of the mechanism

generating instability in the target system. Another way is by measuring some

‘surface’ feature of the—partially unknown—mechanism for volatility, e.g.,

the acceleration of price variation near the critical point as measured by the

time-to-failure analysis (§1.3.4), so as to use the existence of the mechanism

as a black box. If one or the other strategy succeeds, then also some forward-

looking inference may become possible of the form:

c↑ Prediction: ci & random changes in FV & systemic instability �Inc crash.

Obviously, it is very hard to become entitled to such an inference, but we

should not think it is impossible. What one needs are reasonable—although

defeasible—reasons. Such reasons may come in the form of both positive rea-

sons (viz. collateral premisses) to which we may be entitled, and are entitled

in the circumstances, and negative reasons, to which we may also be entitled,

but are not entitled in the circumstances. The resulting complex of positive

reasons and lack of negative reasons should make it more plausible to infer

‘crash’ rather than ‘no crash’. Notice that the correctness of the inference

depends not on the ‘sameness’ between the system in which the claim was

tested and the system to which it is exported, or on the ‘resemblance’ between

model and target system, but on the external validity of the claim.

Although the objectivity of the relations is not construed in representa-

tionalist terms, whether a relation is objective or not, and to what degree,

is non-arbitrary. An analogy between, say, a crash and a phase transition

phenomenon may partly be the result of a ‘creative’ act. We do know in

advance that a good theory of crashes need not have the same inferential role

as a good theory of phase transition, in the same way that a good model

of the Phillips curve, such as a fluid mechanics model, does not have the

same inferential role of the phenomenon it aims to represent. There are, in
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fact, inferences that are correct when applied to one, but turn incorrect when

applied to the other. However, there is also an objective component to the

analogy: whether the success-conducive use of the notion of ‘instability’ to

predict transitions in many-particles systems can be extended to the stock

market case is largely an empirical matter, which depends on the inferential

fruitfulness of the analogy for the causal claims in question.

However, as shown, the analogies at work in the above examples have sig-

nificant limitations. As a result, with respect to the causal claims in systems

biology, causal claims in computational economics (at least the ones consid-

ered here) tend to score lower in terms of assertibility: it is harder to become

entitled to the premisses that warrant their application or to the consequences

of their application, or the circumstances in which we may become so entitled

are fewer. Since the range of circumstances in which the claims contribute to

correct inferences is smaller, the objectivity of the causal relations described

in such claims is weaker.

8.4 Grounding objectivity in normativity

For the representationalist-inclined, whether a causal claim is objective de-

pends on whether it represents the world as it is, or its truth conditions are

satisfied. For the inferentialist, instead, reference to the ‘world as it is’ (out-

side the space of reasons) and to truth-makers as unexplained explainers plays

no substantial, explanatory or justificatory role for the correctness of our as-

sertions. Whether a causal claim is correctly assertible depends on the gram-

mar, or meaning, of the word ‘causes’ as well as the other words in the claim

(the claim’s or the model’s assumptions are ones we are strongly committed

to, for reasons of, e.g., internal coherence), together with some privileged epis-

temic role of observations and actions (e.g., predictions corresponds closely

to our observations) (see de Donato Rodŕıguez and Zamora Bonilla, 2009a,

p. 109). The objective status of a claim depends on the harmony which re-

sults from the (normative) process of challenge and revision of commitments.

Applied to science,

inferentialism does not attempt to find out what [the] ‘right’ ways

of doing science are, but it helps to justify the objectivity of science

by making us recognise that the epistemic claims to which we

are finally committed are not necessarily the ones we would have

wanted to defend in the first place, but the ones our reasoned
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dialogues have led us to accept in the end (Zamora Bonilla, 2006,

p. 198).

When deciding on endorsing a certain causal claim, we employ entrenched

rules (SIM), that is, the most robust rules that have survived the process of

challenge and revision, and treat case by case problematic claims, to which

such rules do not apply so well. Claims to which several, or all, test criteria

apply, and from which a broad range of conclusions follow, will be more

straightforwardly accepted. Claims such as those involving complex systems,

which satisfy test criteria less strictly, and are conducive to less successful

conclusions, trigger a deliberation process that involves both epistemic and

semantic considerations. That is, we do not only ask how successfully the

claim is confirmed (how many criteria are satisfied and to what extent) and

used (how many correct predictions, interventions, explanations the claim

makes possible). We also ask how our concept of causality is and should be

used (whether and why we should apply it to the problematic context, too).

Indeed (for the semantic holist) the two kinds of consideration cannot be

neatly distinguished.

Is this enough to guarantee the objectivity of the causal relations referred

to in the claims, irrespective of what is actually inferred by the speakers?

The above seems at most a sort of ‘coherentist’ criterion, and one may still

question the ability of the account to distinguish between an assertion that

seems correct and one that is correct. Isn’t there something more to ob-

jectivity than intersubjective agreement? It seems, so the objection goes,

that the account needs—and does not have—a sort of ‘independent handle’

on correctness, that is, a way of adjudicating what assertions are correct—

and not merely pointing to the existence of a meaningful distinction between

what is correct and what seems to be correct. It is evident that relying on

inferences actually drawn by an entire community, on the basis of criteria

arrived at by conventional agreement and evolution, won’t do. In fact, the

satisfaction of these criteria may be insufficient (the criteria may be only

accidentally satisfied) or unnecessary (the criteria’s authority may be later

questioned, on the ground that they are not exhaustive, or not consistent,

etc. (see Zamora Bonilla, 2006, pp. 194-195)). Alternatively, one may appeal

to inferences that ought to be drawn, or inferences which are ‘better’ than the

actual ones. But how can one specify what count as better/worse inferences

without an independent handle on what is correct?



§8.4 Grounding objectivity in normativity 248

Needless to say, addressing this debate in a satisfactory way would require

an argument which goes beyond the scope of this thesis. Here, I only want

to point to some reasons why the inferentialist should avoid to answer the

question of what grounds the objectivity of causal claims by appealing to

independent handles and standards of correctness external to the practice. I

will do this by clarifying how the inferentialist should understand the nature

of the relation between normativity and assertibility, and the standards of

correctness by which to evaluate (systematic) mistakes. The resulting notion

of correctness, I maintain, is good enough to understand the objectivity that

is aimed for in science when, e.g., establishing and using causal claims.

First, what is the relation betweem normativity and assertibility? On the

one hand, the inferentialist cannot but admit that one ought to obey the

actual rules of the game when one infers the causal claim and uses it to infer

other claims. On the other hand, the inferentialist maintains that one may be

justified in refusing to obey a rule on how to use ‘causes’ on a given occasion,

if he provides a good reason. Assertibility depends on a complex interaction

between language users and the world, in which linguistic rules play a regu-

latory role, fully fixed by neither the world nor us. For instance, Brandom

wants to allow for a notion of correctness which is attitude-transcendent (see

Brandom, 2000, pp. 189-190). To this end, he relies on his ‘normative fine

structure of rationality’, that is, the space of reasons that commitments and

entitlements institute. The idea is that, once instituted by the speakers, this

structure acquires a sort of autonomy and authority on matters of correctness

on the speakers who instituted it (see Brandom, 2000, p. 203). How should

we understand this? It is instructive to refer to a notion recently introduced

by Peregrin (2012), viz. the notion of ‘true normatives’, something in between

indicative sentences—which provide and stand in need of reasons—and nor-

mative sentences—which establish commitments and entitlements. We may

think of causal claims as a sort of true normatives.

Although all meanings are normative, some seem ‘more normative’ than

others. Analytic claims are more on the descriptive side, expressing (widely

accepted) rules on the use of logical vocabulary or of notions that have sim-

ply been defined as “such-and-such” by stipulation. Observational claims are

close to analytic in the sense that, due to the uniformity of human physi-

ology, the use of the words involved is relatively uncontroversial. The more

one moves to the other end of the spectrum, the more one finds normatively-

loaded claims, involving theoretical, modal and moral vocabulary. The class
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of true normatives lies somewhere in the middle. For instance, thick moral

claims such as ‘This is cruel’ may count as true normatives. On the one hand,

‘This is cruel’ describes facts about deep suffering as well as the speaker’s dis-

approval, so that inferences such as ‘If such-and-such is done to somebody, it is

cruel’, and ‘If this is cruel, I won’t do it to anybody’ are meaning-constitutive.

On the other hand, ‘This is cruel’ contributes to enforce inferences such as ‘If

this is cruel, you ought not do it to anybody’. Analogously, but to a lesser

extent, also causal claims such as ‘XIAP feedback causes irreversibility’ or

‘Systemic instability causes volatility’ have a normative component: if one is

committed to the claims, one ought not deny that some predictions, expla-

nations and interventions follow from them. When predictions, explanations

and interventions fail, one ought to find what additional commitments may

be compatible with such a failure before giving up on using the causal claim.

This is not to say that true normatives are conventional, and one is at liberty

to endorse or reject them no matter what:

First, normatives must be anchored in the existing practices with

existing rules and though they may, and usually do, go beyond

them, they can do so only to such an extent that it makes sense

to say that they are exercisings of the existing rules. Second, if a

normative aims at a modification or an extension of the existing

practices, it counts as a proposal, which can be taken as estab-

lished only if it survives any occurring criticism and if it comes to

be generally accepted (Peregrin, 2012, p. 94).

So, one should obey existing rules for the use of “causes”, e.g. SIM. If one

wants to change the rules, one cannot modify them arbitrarily but must

provide reasons why specific contexts demand that one neglect them. Such

reasons will involve not just evidential considerations (on why certain test

criteria are more relevant than others, etc.), but also changes in opinion re-

garding core inferences (on why some test/target criterion should be added,

or eliminated, etc.) which are made necessary to maximase the efficiency and

the coherence of our other commitments.

True normative are ‘true’ in the sense that,

though we can say that this stepwise development of rules amounts

to a creation, it is usually understood as a case of discovery. To

explain this peculiar feature of rules, compare their status with
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the status of certain objects of mathematics. On the one hand, it

is acceptable to say that it was Cantor who devised sets, or that

it was Galois & comp. who invented groups. But on the other

hand, these mathematical objects were devised as entities which

exist timelessly, and as such cannot have been brought into being.

Thus, once we devise them, we must look at them as having been

discovered by us, while having been here all along (ibid.).

When certain rules are in place, one’s choices regarding the applicability con-

ditions of a concept and the possible modifications of the rules that govern its

correct use are constrained. In this sense, norms—scientific norms included

(cf. Zamora Bonilla, 2006, p. 197)—are both instituted by us and binding us,

like “the principles formulated by judges at common law, intended both to

codify prior practice (...) and to have regulative authority for subsequent

practice” (Brandom, 2000, p. 76). This seems the strongest notion of objec-

tivity open to the inferentialist. If one feels he needs another, stronger story,

perhaps he must look elsewhere. Be that as it may, this notion of objectivity

seems strong enough for the scientists’ needs.

Let me now come to the second point: What are the standards of cor-

rectness for adjudicating systematic mistake? Where do they come from?

Correctness, for the inferentialist, does not presuppose a perspective from

outside the practice, as the advocate of truth-conditional semantics has it, or

some global perspective on the scorekeeping practice (a group of experts, or

the whole community) under actual or ideal conditions (see Brandom, 1994a,

pp. 594-595, 600-601). Questions such as ‘Is our whole conceptual apparatus

appropriate?’ or ‘Is the causal claim really true?’ are the expression of a

view from nowhere. And since we are somewhere, not nowhere, the infer-

entialist does not (should not) attempt to answer these questions, on pain

of giving up on his inferentialism altogether.128 In fact, any answer to these

questions would make the inferentialist position descriptive after all: there’s a

language- or practice-free standpoint (ideal conditions, dispositions, or what

have you) from which to assess correctness.129 The next question is then:

128This is, of course, not to say that the questions are meaningless. However, what their
meaning is, whether they need answering, etc. is another story.
129Notice that Brandom (1994b) explicitly rejects the interpretation of correct inference

as the inference one would be disposed to draw in ideal conditions. So, if his position is bad,
this must be for some other reason, e.g., he’s unable to make sense of correctness without
appealing to ideal conditions. Brandom’s story on how dispositions get into the picture is
that they are crucial to grant certain claims, e.g. observational reports, but are only prima
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Why bother with practice and not just talk about the thing itself? Outcome:

inferentialism is unnecessary, let’s go representationalist.

So, the standards of correctness which adjudicate systematic mistake must

be construed as internal to the practice. But how exactly? Here is a fruitful

way to address the issue. If we construe the standards of correctness as

internal to the practice, the relevant question to ask is: whose practice? And

the question must be answered from within some practice, by appealing to

sets of rules that indicate how to challenge each other for our failures to latch

on to the world. It is only from within a practice that the issue of objectivity

acquires sense. In Zamora Bonilla’s words,

evaluating a scientific argument from an external perspective amounts

to putting the following question: what would have been a more

correct way of doing it, according to you? (Zamora Bonilla, 2006,

p. 198)

Two are the cases: (1) a language user, or community, is systematically

wrong in its use of the concept; (2) the whole community is systematically

wrong in its use of the concept.

In case (1), we do have communication between two or more parties; the

parties utter the same words (e.g. “causes”); and they disagree on the rules

of application of the word (on whether a causal claim is well established,

or can grant other claims). Two possible outcomes: either (i) the parties

agree they are using different concepts after all, or (ii) they agree they are

using the same concept but disagree on the rules of its application. (ii) is the

most interesting case. Reaching agreement here amounts to renegotiating the

meaning, by weighing reasons against each other’s commitments. Mistake can

only be evaluated ex post, from the point of view of the reached agreement:

one party wrongly took itself as committed or entitled to the claim, but the

material inferences on which it implicitly relied were wrong. (If no party

admits the mistake, this is an instance of (i).) Commonly this is not an all-or-

nothing affair: both parties end up revising their sets of commitments.

facie reliable: although they generate quite uniform responses, they are still subject to a
default-and-challenge model of belief revision. Meaning of no concept, e.g. ‘red’, is reducible
to assertibility in ideal conditions. This would presuppose some ideal standpoint from which
to assess how exactly “red” contributes to the truth conditions of “red-” claims. Which
in turn presupposes the possibility to spell out the ceteris paribus clauses that accompany
inferences to and from “This is red” so as to make such inferences necessarily correct.
Requiring this much, for Brandom, amounts to trivialising the notion of objectivity.
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In case (2),there is no communication between parties—there are no dis-

agreements on the use of the same concept, so there are no parties as such.

Also here I see two possibilities: (i) nobody is aware of using the concept

differently from the others, and although there is a lot of talking of “x”, some

massive coincidence makes it possible that there is no disagreement on ‘x’;

more realistically, (ii) the whole community think to be using the concept in

the same way and correctly. Either way, the issue is: What are the standards

of correctness to blame the whole community? That is, on what principled

ground can one say everybody is wrong, whether for different reasons of for

the same reason? The inferentialist can offer no language-free standpoint to

answer this question. Actually, he will say that he does not understand what

the question means: As soon as you ask it, you side with some against others,

or believe you’re right and everyone else is wrong (cf. the above quote from

Zamora Bonilla). This presupposes we are, after all, in case (1).

Conclusion

In this chapter, the inferentialist account developed in chapter 7 was applied

to the analysis of causal claims in complex systems sciences. I discussed how

the inferentialist can make sense of the objectivity andthe referential func-

tion of such claims in terms of the normative conditions that make for their

assertibility. I characterised the objectivity of causal claims in inferentialist

terms. I then illustrated my proposal with reference to claims on the causes

of, respectively, apoptosis and asset prices’ volatility. The sense in which the

identified causal relations are objective was examined along the two distinct

dimensions of warrant for the claim and warrant for its use. Finally, I dis-

cussed in what sense the inferentialist can claim to have offered a notion of

objectivity which is attitude-transcendent, and suitable to capture the notion

of objectivity at work in scientific practice.



Conclusion

Complexity calls into doubt the adequacy as well as the relevance of our

armchair intuitions about causality. More specifically, it makes it implausible

to analyse causality in terms of fully objective, mind-independent facts, and

demands that we investigate the meaning of causal claims in a way which is

more faithful to the practices where they are produced and used.

A satisfying account of causality in complex systems should, for one thing,

explain how causal talk is employed by the scientists themselves in their

specific areas of inquiry, and for another, provide some story on how their

notion of causality is related to other notions of causality, as employed in

other areas of discourse.

Inferentialism allows one to do just that. It reverts the traditional order

of analysis, by taking our activities of agents as the raw material in terms of

which to account for the obtaining of causal relations. Causality becomes a

‘category’ that the knowing subject employs to ‘mediate’ between himself and

the world. In inferentialist terms, this mediation is the result of the concept

of cause figuring in a network of inferences, used in our practice of gathering

evidence and using it to explain, predict and intervene.

The meaning of ‘causes’ as relative to specific relata is made explicit in

terms of the inferential potential of the claims where the causal relation is

described, that is, in terms of the claims’ contribution to the correctness

of the arguments where the claims figure as premisses or conclusion. By

an analogous reasoning, the meaning of ‘causes’ simpliciter is made explicit

(whether in complex systems or other areas of discourse) as an inference

license which can be typically inferred from a given cluster of criteria and

which in turn entitles to inferences involving the obtaining of the relata.

By means of this process of explication, inferentialism promotes the iden-

tification of the contexts which we implicitly take to warrant the inference to

the claim, and the jobs that we implicitly want the claim to do for us, that is,

the entitlements that we expect the claim to provide us with and the purposes

that we expect the claim to help us satisfy. In this way, inferentialism can

both account for variability of the meaning of ‘causes’ depending on context
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and subject matter, and encourage discussion on the one set of inferential

rules that all speakers ought to follow when using the word “causes”. Com-

petent speakers, in fact, can/should ascribe to each other commitments on

the same subject (e.g., a causal relation), praise and blame their inferential

success on the basis of such commitments, and refine their own set of com-

mitments accordingly, by (among other things) removing inconsistencies that

become manifest along the process.

As evidenced by the study of complex systems, contrary to ‘ordinary’

concepts whose meaning is more stable and easily identifiable, ‘causality’ is a

peculiar concept. In complex systems, extra-linguistic success granted by the

application of causal claims and intra-linguistic agreement on the rules of their

correct application become harder to get. By challenging our ability to achieve

such goals, hence by making the mediating role of ‘causes’ more difficult,

complexity also helps highlight its status of ‘contested’ and context-sensitive

concept. The context-sensitive nature of causality makes the inferentialist

approach particularly appropriate—more than in the case of other concepts.

Inferentialism, in fact, allows one to formulate a flexible analysis, without at

the same time endangering its informativeness.

Should one be a global or only a local pragmatist? Relatedly, should one

analyse all concepts inferentially, or only the concept of causality? In my view,

one may consistently hold that pragmatism about meaning is an attitude that

should be endorsed globally, whilst maintaining that an inferentialist seman-

tics is best regarded as a tool and, as such, as more or less useful. Reductive

analyses may be (locally) more or less successful. Whenever they prove less

successful—as is the case of, e.g., causal, modal and moral vocabulary—one

should better turn to inferentialism to provide a more adequate analysis.

One reasonable question to ask is: On what grounds can an inferential

analysis of ‘causes’ be correct? Is the (dis-)agreement among scientists or

philosophers enough to settle the issue? The answer is a qualified ‘no’. Science

provides a material that needs interpretation. By looking at science, first

and foremost we acknowledge that science may have more-fine grained tools

to understand reality so as to achieve goals that are common to the laymen,

too. In this process, both scientists and philosophers should make explicit the

connections between tools and goals. This results in a continuous clarification

of what we mean and/or ought to mean.

What about the observation that we do have different intuitions, after

all, and constantly produce counterexamples against one another’s analyses?
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What moral should we draw from this? Now, failures and counterexamples

could be interpreted in several ways. Sometimes they show that the question

is wrongly-headed, or that we should change ‘research programme’. When

‘causality’ is concerned, the central role that the notion plays in our con-

ceptual apparatus demands that we don’t dismiss the question. As long as

the purposes with which causal talk is associated are stably related to one

another, then it makes sense to ask what it is that makes them so. At the

same time, the troubles of available accounts to deal with complexity does

motivate a sort of change of research programme. Inferentialism provides the

resources to re-interpret an intuition or a supposedly exhaustive analysis into

one of the premisses from which the causal claim can be ‘typically’ inferred

and/or one of the conclusions which can be ‘typically’ inferred from it. So

the issue of whether or not the analysis is correct translates into the issue

of understanding the weight of one criterion against another in a particular

case (e.g., the counterexample) allowing that all criteria may be ‘typically’

inferentially related to the concept of causality.

The picture that emerges is one where the concept of causality is more

dynamic and flexible than philosophers use to think. It takes on different

nuances in different domains, and adapts to the features of the phenomena

by adjusting the weight of the criteria that constitute its meaning. The issue

of what ‘causes’ means cannot be settled once and for all, by either scientists

or philosophers. If our concepts are dynamic, only partly constrained by our

practices and Nature’s inputs and outputs to such practices, we can only

try to interpret concepts on-the-fly. Their meaning—‘causes’ included—must

be called into question, made explicit and renegotiated, in a never-ending

‘virtuous’ circle. There is no ultimate court and no ultimate judge. In the

case of causality, one (I) can only hope that meaning can be made explicit

enough, core inferences identified, and vagueness contained.
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