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Abstract

Multispectral imaging (MSI) is a novel, non-invasive technique, which can detect tissue re-

flectance and deliver information regarding tissue oxygenation. The application of spectral

imaging in medical care, can lead to development of early-stage diagnosis and monitoring

of vascular diseases, such as Peripheral Arterial Disease. Although MSI is known to be

widely applicable with a high functionality, many techniques have not been fully validated

and require bulky, non-intuitive setup and analysis, hence more research and clinical trials

are required. This thesis presents the first step of the development cycle in collaboration with

the National Health Service, to create a low-cost, portable device for use in a clinical setting

and that can also be transported to housebound patients.

The system uses a four-lens multispectral camera and 16 attachable filters available in the

visible range of 500 nm - 650 nm, with an LED medical lamp to collect images of a foot before

and during arterial occlusion, using a blood pressure cuff inflated at 180 mmHg. A MATLAB

program was created and used for calibration, processing of images and implementation of

Beer-Lambert function; which delivered the oxygen saturation value. Four wavelengths were

chosen as best fit: 520 nm, 540 nm, 610 nm, 640 nm, out of which 520 nm represents the

isobestic wavelength, where no variation is seen between the image with and without cuff

occlusion. Whereas, the other three wavelengths represent the opposite.

The system created and the final results can provide proof of principle regarding the

feasibility of the technology presented. Although, the results of the preliminary four filters

were not highly conclusive, the methodologies developed provide a promising platform for

future optimisation.



Chapter 1

Introduction

The method presented in this research uses multispectral imaging (MSI) for detection of

tissue oxygenation, while also attempting to improve the technical aspects of the camera,

making it more portable, cost effective and easily transportable to patients.

The following chapters will explain the process created, starting with a brief literature

introduction and continuing with the technical set-up of the method, the development of the

image processing program and the analysis of the final results, whilst also presenting various

future perspectives.

1.1 Peripheral Arterial Disease

1.1.1 Function of the arterial system

The circulatory system as a whole, has the task of assisting main functions such as transporta-

tion of oxygen and nutrients, balance of extracellular fluid, and it also plays an important

part in a number of physiological functions.1 These functions can vary from contributing to

hormonal control to helping in regulating the body temperature.1

Blood is transported through the body via two circulation pathways; systemic and pul-

monary.1,2 The pulmonary circuit describes the transport of blood from the right ventricle of

the heart to the lungs, from where it returns to the left ventricle of the heart and continues

to be transported to the rest of the body through the systemic circuit. The latter consists

of arteries, which carry oxygenated blood through the body before splitting into smaller ves-

sels; and of veins which have the task of returning blood with less oxygen back to the heart,

including carbon dioxide and other waste products.1,2

Both veins and arteries share more or less similar structural characteristics. Although
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they are both blood supply vessels, arteries have to resist the higher pressure of the blood

being expelled from the heart and further transported through the body. Hence, arteries

consist of a thicker internal muscle and elastin layer than other blood vessels, also aiding in

maintaining a suitable blood flow through the expansion of the vessel walls. Arteries display

a smaller diameter, which benefits in controlling the pressure of blood as it travels through

the vessel.1,2

Blood pressure has an important role in the circulation of blood. Systemic arterial blood

pressure varies according to the cardiac cycle, meaning that it will be recorded as two val-

ues: systolic (maximum) and diastolic (minimum) pressure. The systolic pressure represents

the rate at which blood is being ejected from the heart during the ventricular contraction.

Diastolic pressure represents the arterial pressure during the relaxation of the ventricle. The

greater blood pressure out of the two recorded is the systolic pressure, as the rate at which

the blood is ejected into the systemic arteries is higher than during relaxation of the ventri-

cle.1,2 Following these fluctuations, a pressure wave is formed, resulting in a pulse that can

be perceived at various parts of the body.1

Blood vessels possess a characteristic called compliance. This indicates the ability of a

blood vessel to expand in order to adjust blood flow oscillations without a great resistance or

an increased blood pressure.2 Unlike veins, arteries do not have a high compliance, thus in the

presence of a vascular disease they cannot expand as much resulting in increased resistance

to blood flow and higher pressure.2

Therefore, the difference in the structural components of blood vessels aids in the trans-

port of blood through the body and to extremities, by maintaining an adequate level of blood

flow and pressure.1,2

1.1.2 Formation of Peripheral Arterial Disease

The normal function of the arterial system can unfortunately be disrupted by disorders of the

cardiovascular system, such as arteriosclerosis. Arteriosclerosis is characterised as “hardening

of the arteries”, when compliance of the vessel decreases.2

One type of arteriosclerosis is atherosclerosis, a condition that forms when a buildup of

fatty, calcified deposits, called plaques, block the arteries and hinder blood flow, Figure 1.1.2–4

When arteries are half or fully blocked, the blood flow to the rest of the body decreases –

this is known as ischemia. Ischemia will eventually create hypoxia, which occurs when there

is not enough oxygen supply to the tissue.2
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Figure 1.1: Plaques that form
inside blood vessels, leading to
atherosclerosis.2

Atherosclerosis in the lower extremity of the body leads

to Peripheral Arterial Disease (PAD). Depending on the

severity of the disease, PAD can manifest in two ways:

asymptomatic or symptomatic.3 Symptoms of PAD range

from intermittent claudication, when any pain felt during

effort will subdue with rest, to critical limb ischemia (CLI).

CLI is caused by severe occlusion of arteries and it can be

presented either as resting pain and/or ulcers of the lower

limbs.3 Unfortunately, critical limb ischemia will frequently

result in amputation of the affected areas and patients have

a higher risk of premature death.3,5

There are multiple risk factors that can lead to peripheral arterial disease. These factors

can range from cigarette smoking to hypertension and elevated fibrinogen levels. However,

this type of lower limb disease is particularly common in people diagnosed with diabetes

mellitus.3

In cases where diabetes is prolonged and not regulated accordingly, it can lead to an irre-

versible nerve and tissue damage.6 The presence of such damage births diabetic neuropathy

which can decrease or even lose the performance of sensory and autonomic functions related

to the lower limbs. These losses display themselves through insensitivity, limited mobility of

specific areas, callus development, excessive pressure etc., eventually producing more extreme

conditions such as ulcers.6,7 Studies have found that around half the patients with diabetes

suffer from PAD.5 Thus, diabetes patients with neuropathy are inclined to also exhibit PAD

although due to the nerve damage, they will more likely be asymptomatic therefore increasing

the difficulty in detection and monitoring.5

A report from the UK Diabetes Annual Conference 2017,8 indicates that individuals that

are affected by diabetes have a 25% chance of also forming a foot ulcer and that approximately

86,000 individuals in the UK suffer from diabetic foot ulcers concurrently. In Europe and

USA, diabetic foot infections form about a quarter of diabetes hospital admissions. Of these,

up to 85% of lower limb amputations were caused by ulcers.

Despite diabetes being a frequent generator for PAD, as described above, this is not the

only cause of it. In fact, guidelines point out that the overall chance of developing PAD for

patients that suffer from diabetes is closely resembling that of smokers.5

Even though the risks of PAD are alarming, the majority of people are asymptomatic
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and only 1-3% patients in 5 years will advance to critical limb ischemia from intermittent

claudication.5 However, when a patient becomes affected by CLI, studies show that the

survival rate is lower than for some cancers. Research expresses that individuals are exposed

to a 30% chance of limb amputation over one year and a 50% mortality risk over five years.5,9

An observational study also concluded that mortality rate for patients that had to endure

limb amputation was two times lower than for patients who were not subjected to such

procedure.5,10

1.1.3 Contemporaneous detection methods

The chances of lower limb amputation could be drastically reduced if the detection and

monitoring techniques available could provide more information regarding the evolution of

the disease. In terms of investigating and detecting PAD, a variety of non-invasive methods

are used by clinicians.

A common method to examine patients at risk is taking pressure measurements. Ankle-

brachial index(ABI) and toe-brachial index(TBI) are measurements that use the differences in

the systolic blood pressure between brachial - upper arm artery - and ankle/toe to indicate

the presence of PAD.4 Although these methods can offer valid indications and are not as

costly, Grimaldi et al. 11 and Barshes et al. 12 point out the limitations of ABI in cases where

individuals also exhibit vascular stiffness, as this can yield erroneous results such as false-

negatives. The blood vessels in the far extremities, such as toes are not prone to stiffening,

hence TBI may become a more favourable approach.

There are other existing blood pressure assessments that aid in the diagnosis of peripheral

arterial disease. Such measurements can include transcutaneous partial pressure of oxygen

(TcPO2). TcPO2 delivers an indirect estimate of arterial flow by measuring the level of

oxygen underneath the skin.11 Another measurement is skin perfusion pressure (SPP). This

involves controlled minimal arterial occlusion and is also considered to be preferable when

assessing PAD in comparison to ABI, TBI and TcPO2, due to a higher sensitivity rate.8,11,12

Research regarding the use of TcPO2 has concluded that, although the technique involves a

higher cost and demonstrates a slightly lower precision than TBI and SPP, its use can still

be beneficial if other methods are not accessible.12

Similarly to TcPO2, there is a method of detecting the oxygen saturation level by using

pulse oximetry. A pulse oximeter monitors the oxygenation of the blood, by examining the

ratio between the absorption of light in oxyhaemoglobin and deoxyhaemoglobin in blood, at
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a specific location.13,14 Pulse oximetry is widely used in an intensive care environment as it is

considered to be cost-effective.15 However, the method is not included in the initial PAD as-

sessment. Although some studies have concluded that pulse oximetry could be useful together

with other presumptive tests16, there are other research that disputes this theory, mainly due

to the instrument proving to lack the sensitivity needed for early PAD detection17,18; but

also due to the false results that can yield when tested close to arterial blockage.19

As an addition to these assessments, walking tests can be performed by clinicians while

also applying a fair test to it. That means that the patients will have to exercise for a

specific period of time but one or more of the above measurements would have been executed

before and after the activity. This test is considered inadequately controlled and subjective

according to certain studies; some variables such as speed or distance, have not been taken

into consideration.4,11,20

The general investigation of peripheral arterial disease also includes Doppler ultrasonogra-

phy. This is a non-invasive procedure and it is displayed as a continuous wave in conjunction

with a sound signal based on the fluctuations created by the flow of the blood in the arter-

ies.4 Combining the Doppler system for blood flow display with the ultrasound imaging for

vessel visualisation, results into a technique called duplex scanning. The method can provide

valuable data, although it seems to be somewhat inadequate for detecting disease in the lower

extremities.4,11,20

Besides the pulse and pressure measurements performed, ultrasonography is one of the

most frequently promoted non-invasive technique to be used during PAD investigation.4,20

However, although many health care professionals use a Doppler instrument during patient

assessment, there is a lack of access to duplex scanning.20,21 The reasons for this, firstly

consist of the high cost that such equipment represents; and secondly, the practitioner using

the equipment has to be highly trained. Moreover, an assessment can take up to two hours,

which can be inconvenient especially since patients have to be on site to be examined.20

On the other hand, albeit the use of a simple Doppler system can still be costly and

require adequate training, it can still provide a strong indication during an assessment. Fur-

thermore, the portable function of the instrument permits at-home assessments, which is

highly beneficial for patients. However, although non-invasive, the use of a Doppler requires

direct contact of the probe with the skin, which is not possible if the skin is ulcerated or has

other skin disorders.4,20

In addition to this, there are other more complex imaging techniques that can provide
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extra information regarding the development of the disease. Of these, one imaging technique

would be angiography11, which is based upon X-ray visualisation of the blood vessel after

they had been injected with a contrast medium. It is a common imaging method, however

it has its drawbacks as well. Not only it is an invasive procedure executed under radiation

exposure, but it can also produce further complications and it is an expensive procedure.11,12

Other similar and more costly imaging techniques are available, such as magnetic reso-

nance angiography (MRA) or computed tomographic angiography(CTA). However, they both

have their limitations as well, particularly with the high cost and with excluding certain type

of patients. Due to the magnetic field involved in MRA any patients with claustrophobia,

pacemakers or other implants cannot be assessed.11 CTA involves all the risks already stated

above for angiography but it also exclude patients with renal insufficiency, hence it can end

up excluding individuals with diabetes.11

These complex imaging techniques are mostly used in high-risk cases, like critical limb

ischemia and ulcers.8 Guidelines indicate the usage of certain screening tests, mostly involving

methods that are not as costly, such as pressure measurements and Doppler ultrasonography.8

Although there have been studies11,12 disputing pressure measurements such as ABI due to

its limitations, guidelines given to the NHS by the National Institute for Health and Care

Excellence22, are advising the use of ABI and Doppler probe during PAD assessment.

Therefore, only procedures that have certain limitations are used at the early start of the

investigation, producing a high risk of PAD development in a short time, without leaving

much possibility for action to be taken.

1.2 Skin Optics

Tissue optics and the way light interacts with biological tissue is a subject that has been thor-

oughly researched along the years. Tissue optics has aided particularly in the development

of medical imaging technologies and treatments.23–25

When a medium such as skin is exposed to light, the latter can be reflected or transferred

through the surface of the skin. The interaction between skin and light causes the light to be

propagated in a different direction, reflecting it back into its original medium. Light reflection

from skin surface is highly dependent on different refractive indices and the light’s angle of

incidence. These structural differences are also involved in the type of reflection produced,

either specular or diffuse reflection.26,27

When light penetrates the skin it experiences absorption and scattering as it travels.
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However the process is proportional to the ability of the tissue to perform said events.23–27

Figure 1.2: Skin layer diagram, displaying the vascu-
lar tissue present in the dermis and the hypodermis.2

Skin is formed of multiple layers and

each layer contains components distributed

across the tissue that have different optical

characteristics. As observed in Figure 1.2,

the outer skin is mainly formed of epider-

mis, dermis and hypodermis. It is mainly

the dermis and hypodermis that contain

the vascular tissue.1,2,13,25

Chromophores are any elements from

within the tissue that have the ability to

absorb light.24 Depending on which skin

layer they are part of and the wavelength region they interact with, some chromophores will

be stronger than others.23,24,28 For the purpose of this research, the wavelengths used and

analysed are part of the visible (VIS) wavelength region.

For the visible range the strongest chromophores in the skin are melanin and haemoglobin.

Melanin is part of the outer layer of the skin, the epidermis, being present in the top 50-100 µm

of the layer, but its absorption is known to be higher in the UV (ultraviolet) region.13,26,28,29

Blood however, is predominantly found in the middle layer, the stronger chromophore being

haemoglobin and therefore delineating the optical absorption characteristics of skin dermis.

Haemoglobin can be found in the dermis as oxygenated haemoglobin (oxyhaemoglobin) and

deoxygenated haemoglobin (deoxyhaemoglobin), at generally 50-500 µm underneath the epi-

dermal surface.13,26,28,29

Although the following would need their own specific section to be fully understood, there

are other less significant chromophores for the VIS region, such as carotene and bilirubin,

lipids etc. It is also worth mentioning that in the visible region, water does not contribute

substantially to the absorption of light. Water and lipids are strong chromophores in the near

infra-red wavelength ranges in the dermis, where less scattering occurs, therefore facilitating

a higher depth of light penetration.13,26–28

Studies on the absorption and scattering coefficients of skin layers have demonstrated

that the epidermis presents a higher level of scattering than the other skin layers, due to

melanin exhibiting higher optical properties.13,26–30 In the VIS range in dermis, it was shown

that haemoglobin is the main chromophore, with a rapid decline in absorption after 600
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nm.26,30,31 Scattering is also a factor which highly influences and can limit the depth of light

penetration. High scattering and absorption levels can limit the penetration depth of light,

therefore wavelengths under 600 nm (such as blue and green) do not tend to surpass 2 mm

in depth. In the VIS range haemoglobin display absorption peaks in the blue and green

wavelengths.26,27,31

Figure 1.3: Absorption spectra of oxygenated
haemoglobin (O2Hb) and deoxygenated haemoglobin
(Hb). Data tabulated and figure created by Prahl,
1999.32

Absorption spectra between fully oxy-

genated haemoglobin (O2Hb) and fully de-

oxygenated haemoglobin (presented here as

Hb, however the rest of the thesis will re-

fer to it as HHb) has been recorded and

tabulated as shown in Figure 1.3.26–28,31,32

The spectra illustrates the wavelengths at

which there is no change in the absorp-

tion coefficient of haemoglobin, namely the

isobestic wavelengths; versus the wave-

lengths that display a range of differ-

ences between the two extinction coeffi-

cients.31,32

Skin is considered a heterogeneous tissue that displays optical spatial variations across its

structure. Therefore whenever light encounters one of these differences in the refractive index,

high optical scattering takes place.23,24,33 Most light that is not absorbed, will be reflected of

the surface of the skin through multiple scattering.23,26–28 The reflectance level, will therefore

be in strong correlation with the amount of light that is absorbed by chromophores, leading

to various options of imaging techniques for reflectance detection.23

1.3 Hyperspectral and Multispectral Imaging

1.3.1 Significance

Both hyperspectral (HSI) and multispectral (MSI) imaging, are methods used to measure the

reflectance of the surface of interest; this is determined by collecting the spectral information

given by the reflected incident light of a surface.6,23,33–35 Hyperspectral and multispectral

imaging are the result of the combination of digital imaging and spectroscopy, collecting

two-dimensional images in series over certain wavelengths.23 The set of images generated is a

8



three-dimensional dataset known as a hypercube. A hypercube provides spatial and spectral

information, forming a spectral signature for every pixel in the image, each being connected

to their neighbours.6,23,34

The difference between HSI and MSI, resides simply in the number of bands used, however

both techniques have been used in medical imaging. MSI creates two dimensional images for a

preselected number of specific wavelengths, whereas HSI collects data for a larger, continuous

wavelength range.6,35–37

Figure 1.4: Figure generated by
Aboras et al. 37 , displaying a com-
parison between the multispectral
and hyperspectral imaging meth-
ods.37

Figure 1.4 displays a general side by side comparison

between HSI and MSI and how the spectrum for each

pixel is depicted.37 HSI presents a continuous spectrum

at each wavelength from the chosen range, therefore be-

ing more sensitive to changes, whereas MSI produces data

on a limited number of chosen spectral bands, hence focus-

ing only on the data obtained from the applicable wave-

lengths.6,35–37

Hyperspectral imaging was initially mostly used in re-

mote sensing applications, such as soil mapping and mon-

itoring38, and only later it was investigated by other fields

of study.39,40 HSI now has application in many other departments, such as the pharmaceuti-

cal industry39, food industry41, forensic science39,42, cultural heritage43, medical science and

others.23,39

The application and research of HSI/MSI in medical science has been branching out in

various sectors of the field, particularly due to the ability to collect data with an increased

precision and produce a non-invasive diagnosis. However, even though research in the field

has increased in the last decade, the technique is new and requires additional validation before

applying it to a real work environment.

Surgery is considered to be a dangerous procedure that depends mostly on the skills and

expertise of a surgeon. Hyperspectral imaging has been found to be extremely helpful when

used in surgery to visualise tissues. HSI/MSI does not only have the ability to provide clearer

images, but can also potentially present images that cannot be visualised under the naked

eye as they are under blood.44 It has been proposed that the technique has the capacity

to support the surgeon in finding and making a distinction between veins, arteries and any

anomalies present.45
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Other than surgical guidance, hyperspectral imaging has been applied for the identifica-

tion of residual tumours during surgery. This is highly beneficial for cases where the tumour

has been resected, without being able to examine the possibility of any residual left.23,46 In

Panasiuk’s46 research, the technique not only identified and differentiated tumours but also

other different types of tissue, such as muscle, connective tissue and blood vessels.23,46

The application of HSI during surgery has the ability of increasing the rates for complete

resection, and lead to a better preservation of the organ as well as a better health condition

for the patients.23 The majority of research involving this technique has been done for surgery

guidance or even focused on identifying dental carries, although this has not been investigated

enough to be validated.40 However, most of the research regarding HSI/MSI is non-invasive

and focuses on skin optics and tissue oxygenation.

As mentioned previously, when light enters a biological tissue, it will absorb but also scat-

ter across the tissue. Blood and melanin are known to be significant chromophores for visible

wavelengths. Variables observed in optical properties of the skin can be investigated through

its reflectance signal, which is affected by the structural and biochemical characteristics of

the tissue.23 Therefore, the light absorbed, transmitted and reflected from the tissue will

change if a disease is present and advancing. Hyperspectral/multispectral imaging is capable

of monitoring those changes and acquire data about the tissue pathology.23,31

The dominant chromophore in blood is haemoglobin, which has the role of carrying oxygen

across the body. Oxygenated haemoglobin (oxyhaemoglobin) can be affected by certain

diseases in such a way that it will make the oxygen detach itself from the haemoglobin

(deoxyhaemoglobin), leading to changes in the optical absorbance and reflectance properties.

Recording the tissue oxygenation at more wavelengths, will determine the level of blood flow

within the area and present more information about these changes.23,31 Being able to detect

changes of the blood flow within the vascular system, can eventually lead to early diagnose

of diseases such as PAD.

1.3.2 Application of MSI and HSI in Tissue Oximetry

As mentioned previously, the hypothesis of which MSI and HSI are based on, consists of an

oxygen saturation (SO2) measurement of the tissue area in interest. In order to measure the

SO2, the oxygenated haemoglobin (O2Hb) and the deoxygenated haemoglobin (HHb) have

to be known.31,47 The SO2 calculation is based on Beer-Lambert’s Law at two wavelengths,

out of which one represents the isobestic point, where there is no change in the reflectance
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between O2Hb and HHb; whilst the other represents the wavelength with the highest ratio

between O2Hb and HHb. However most research and instruments were performed within a

large range of wavelengths, mostly depending on the depth of the tissue.23,31,40,47,48

The fundamental form of the equation used to determine SO2 is:

SO2 =
CO2Hb

(CO2Hb + CHHb)
(1.1)

where CO2Hb and CHHb are the concentrations of the oxygenated haemoglobin and the

deoxygenated haemoglobin.49–52

From Equation 1.1, there are other derivatives that can be formed, taking into considera-

tion the extinction coefficients of O2Hb and HHb and their known or unknown values. This

is specifically dependent of the type of research that is conducted and the final aims.47

HSI and MSI have a large literature background for a variety of applications. The spec-

tral range used is fundamental for further research, however there are also many variables

influencing the range used, such as tissue depth, the instruments used and the final objectives

(Table 1.1). Table 1.1 illustrates a summary of some of the ranges used in literature. The

’Isobestic λ’ and the ’Largest Difference λ’ are shown if the respective study has stated the

wavebands or graphically displayed them.

HSI/MSI has an immense potential for further development and implementation in the

medical field. In the past decades, there have been some novel, state of the art devices

and techniques with HSI/MSI produced. HyperMed Inc, USA53 has produced a portable,

hand-held imaging instrument, which determines oxygen saturation through the use of HSI.

Currently, there are studies that have used the instrument to validate its functionality in

the medical environment with successful conclusions.6,54–57 However, due to the components

used to build the device, its novel state and the cost-benefit relationship, the instrument is

unlikely to be procured by the NHS.

Secondly, advances have also been seen when combining HSI with other imaging meth-

ods. An example of this consists of the studies that have been made, when using optical

coherence tomography with HSI for a more in-depth tissue information and topography.58,59

Furthermore, another portable novel device was created, which uses the same tissue oxygena-

tion principles as a printed organic reflectance oximetry configuration that can measures the

reflected light from the tissue.60

From the short overview of the contemporaneous methods used in medical care (Section

1.1.3), it can be easily seen that new detection methods are needed. Methods that are not as
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costly, non-invasive, provide real-time data, more time effective and that clinicians can use in

the clinic as well as for any home visits. HMSI requires more clinical research for validation,

together with an instrument that can fulfill the previous requirements.

The research described during this thesis, focuses on creating a new MSI instrument that

is portable, hand-held, less costly and which has the ability of early stage detection and

monitoring of vascular diseases in the lower limb.
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Table 1.1: Short summary of some wavelength ranges used in literature for tissue oximetry and their applications. ’Isobestic λ’ represents the point with no change in
reflectance between O2Hb and HHb; whilst the ’Largest Difference λ’ represents the opposite. If known, the values were taken from the respective studies together with
the waveband range. Some studies only mention the range used.

Study
Spectral Range

(nm) Application

Isobestic λ
Largest

Difference λ
Range

Wang et al. 47 573 - 550 - 1000 Blood vessel imaging
Akbari et al. 45 - 650 - 700 400 - 1000 Blood vessel imaging

Rubins et al. 51 450 - 500 650 - 700 450 - 800
Oximetry changes during

vascular occlusion

Bruins et al. 61 - - 400 - 600
Oximetry changes during

vascular occlusion
Bashkatov et al. 13 - 410, 540, 575 500 - 2000 Tissue oximetry
Gillies et al. 62 - 560 500 - 600 Shock and resuscitation

Chin et al. 63 - -
500 - 660

every 15 bands
Irradiated tissue oximetry

Yudovsky et al. 64 - -
550 - 660

every 15 bands
Diabetic foot ulcer

Akbari et al. 65 - - 450 - 950 Prostate cancer

Clancy et al. 66 - -
500 - 620

every 10 bands
Bowel oximetry

13



Chapter 2

Method Development

2.1 Instrumentation

The multispectral greyscale camera used was developed in collaboration with Buzzard Cam-

eras Limited, Figure 2.2. The camera has four lenses on top of which a filter mount can be

attached. The mount acts as a filter holder for each of the filters available, making the filters

interchangeable. The connection between the camera and a computer was easily achieved by

four HDMI cables. The four-band camera has a spectral range from 500 nm to 650 nm, with

a full-width-at-half-maximum (FWHM) of 10 nm.

Figure 2.1: Heavy duty extendable camera
stand, for image collections.

A heavy load capacity camera stand was used

to support the camera, as it can be observed in

Figure 2.1.

The camera set-up has 16 attachable filters

available in the visible range: 500 nm, 510 nm,

520 nm, 532 nm, 540 nm, 550 nm, 560 nm, 568 nm,

580 nm, 589 nm, 600 nm, 610 nm, 620 nm, 632 nm,

640 nm and 650 nm. These are the wavelengths at

which the images were collected for further analy-

sis.

The light source used for the acquisition of the

images was a magnifier lamp with 90 white light-emitting diodes (LED) and an intensity of

1600 mcd/LED.

During initial tests the lamp was illuminating the sample from an oblique angle, whereas

for the following trials the lamp was attached to the camera by removing the magnifying
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(a) Camera.

(b) Camera with filters detached. (c) Camera with filters and cables.

Figure 2.2: 2.2a Camera developed with Buzzard Cameras Limited. 2.2b Each of the four cylinders
attached to the bottom green frame is a lens, with an individual rotating mechanical focus ring. The
filters are attached to the lens with the green filter mount displayed next to the camera. 2.2c There
are four HDMI cables that connect to each camera lens, while the other side connects to the computer.

glass from its centre. This set up can be observed in Figure 2.3.

After the presumptive tests, in order to be able to achieve different oxygenation results,

arterial occlusion was performed. This was used as a method to imitate the effects of PAD

on the arteries, and therefore reduce the oxygenation levels during occlusion.

The apparatus used for the arterial occlusion was Welch Allyn Durashock DS66 Sphygmo-

manometer. The sphygmomanometer is a manual aneroid blood pressure metre, that utilises

an adult cuff and a gauge display with an inflation bulb. For the presumptive tests, a UV-

visible spectrometer has been used together with Fisherbrand� Polystyrene Macro Cuvettes

for Visible Wavelengths. Blanks were run between each trial.
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Figure 2.3: Instrument set-up used
to acquire images for offset calibra-
tion, initial and final samples.

XIMEA CamTool V2.07 was the software used for his-

togram extraction of the presumptive tests in addition to

the image acquisition of all trials. Images were initially

captured with the default exposure setting of the software,

while the final sets collected had a set exposure of 43.74

ms. Images were exported in a TIF and BMP format. For

all the calibrations, image processing related analysis and

resulted graphs, MathWorks MATLAB ver. R2019a was

used.

2.2 Preliminary Tests

One of the first hypothesis considered was concerning the different illumination environments

and the effects that these could potentially have on the data collected by the camera. On

the grounds that in real life clinical illumination backgrounds are extremely unpredictable,

the commencement of the initial tests was performed in a dark room. Acquiring data in a

dark room implies a controllable environment at the start, which opens the possibility of

a lighting system, that during the beginning of the trials aids in controlling any lighting

variables. After using a dark room for the preliminary tests, the environment setting can

gain more lighting variables, such as testing the data collection in a laboratory environment

and then outdoors, until finally reaching a real-life clinical environment. That being said,

the fact that all samples cannot be collected concomitantly, leaves space for variables to arise

between sample collections, such as change in illumination and in the position of the sample,

hence potentially decreasing comparability.

The hypothesis for which the preliminary tests are based on, was to examine the function-

ality of the camera in conjunction with the filters. Figure 2.4 display the process taken to test

and calibrate the camera. The first procedure consisted of the preliminary tests, which have

the objective of confirming that the camera can detect reflectance by comparing it against

the absorbance spectra of the same samples. Secondly, the image offset for the four cameras

was calibrated and the then the images were flat-field corrected. The calibration setting and

method are explained in the following section.

The tests were carried out using distilled water and five different food colours as samples.

The food colours used were from PME’s range Concentrated Natural Food Colouring: red,

green, blue, yellow and orange. For the test samples to be produced, a 1:100 dilution of each
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Figure 2.4: Schematic process for the preliminary camera test and calibration. Starts with the pre-
liminary tests, which confirm the ability of the camera to detect tissue reflectance. Secondly, the
calibration tests were performed.

colour with distilled water was performed. Images were then acquired of each colour with all

the different filters. The filters were grouped in an ascending order, starting with the 500 nm

wavelength and ending with 650 nm. They were then swapped after each image was collected

by removing the filter mount of the camera and replacing the filters with the following batch.

Figure 2.5: Diagram showing absorption and re-
flection of light depending on surface.

Examining the functionality of the cam-

era and testing its limits, started by look-

ing at how the samples used absorb or re-

flect light. The ability of the surface, in this

case the coloured liquids, to absorb or reflect

light is of paramount importance for the fi-

nal results. Light can be absorbed, transmit-

ted or reflected.23 Depending on specific chro-

mophores contained by the surface in ques-

tion, light at a certain wavelength will be ab-

sorbed by the sample, whereas other wave-

lengths will be reflected. The colour perceived

by the camera is the reflected light.23,24 This

process is schematically explained in figure 2.5.

As a result of this, two methods were used to analyse the coloured liquids. First method

uses the image acquisition software to collect the images of the liquid from the Petri dish and

extract the histograms needed for pixel intensities. Hence, through this type of analysis, the
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measurable element is reflection.

Due to the camera having four lenses which overlap on a certain region in the images

collected and the offset not being calibrated yet, only the area of interest that appears in

each image was chosen. This area has the following coordinates: x-axis = 498, y-axis = 367,

205 x 185 (width x height). The extracted values from this previously defined area, consisted

of the greyscale intensity value for each pixel within it. The values were then multiplied and

all the results added together, producing the total intensity value of the area selected for that

particular wavelength. In this case the pixel intensity represents the total reflectivity for that

particular region.

The repository link for the raw images of the coloured liquid can be found in Appendix

.1.

The second technique examines the absorption of the same samples with the use of UV-

VIS, in a continuous range of 400-700 nm. The spectra resulted from the UV-VIS analysis

was incorporated together with the data collected from the pixel intensities.

Figures 2.6 and 2.7 display all the final profiles of absorption and reflectivity data for

each color. Each colour is absorbed at a certain wavelength, where its reflected fraction will

drop significantly. This is to be expected based on the theory explained above. If light is

absorbed, then it will not be reflected as much and vice versa.

As depicted in figures 2.6 and 2.7 below, the reflectance and absorption spectra compat-

ibility, confirmed the high functionality of each wavelength filter, making them suitable for

the continuation of the project.
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(a) Blue colouring profile.

(b) Green colouring profile.

(c) Orange colouring profile.

Figure 2.6: Absorption and reflection profile of blue, green and orange liquids. It can be seen how
whenever there is an increase in the absorption peak, the reflectivity in the same wavelength drops.
The blue dots represent the absorbance, whilst the red stars represent the reflectance profile from the
pixel intensities.
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(a) Red colouring profile.

(b) Yellow colouring profile.

Figure 2.7: Absorption and reflection profile of red and yellow. It can be seen how whenever there is an
increase in the absorption peak, the reflectivity in the same wavelength drops. The blue dots represent
the absorbance, whilst the red stars represent the reflectance profile from the pixel intensities.

2.3 Calibration

Calibrating the operating instruments used in any study has an outstanding importance

in diminishing all analysis imprecisions and errors, thus culminating into a notable higher

instrumental performance.

The previous section examined the performance of the camera with the filters, proving its

functionality in detecting reflectance. The rest of the practical work regarding the calibration

process was executed in the dark room as well. Three different calibration methods were

discussed initially in order to achieve the best results, as seen in Figure 2.4: image offset and

overlay, pixel calibration and wavelength calibration. The latter was already performed by

the distributor, with a result of Full–Width-at-Half-Maximum (FWHM) of 10 nm.
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2.3.1 Pixel Calibration

The pixel calibration was performed using two approaches: bright and dark field corrections.

This aided in visualising the pixel response and saturation for the specific environment,

making sure any non-uniformities were eventually corrected.

In order to calibrate using bright field correction, multiple images were taken of a white

A3 paper sheet, using the camera with no filters attached. The control room was illuminated

normally and the lamp was turned on as well, but it should be mentioned that the light was

not pointed directly at the sample to avoid any over saturation.

Figure 2.8: Pattern used when images for Bright
field correction were acquired.

The A3 paper sheet was virtually divided

into 12 parts, hence each of the four cameras

has collected 12 images. The diagram from

Figure 2.8 presents the pattern that was fol-

lowed when acquiring the calibration samples.

Subsequent to the collection of the images,

MATLAB was used to plot the intensities of

each bright field image, which was later used

to correct the data of the first trial samples.

Figure 2.9: Code for performing an average on bright-
field data.

The 12 images from each camera

were collected and their pixel intensi-

ties were imported into arrays, making

it eventually easier to develop mean val-

ues. The following steps (observe Figure

2.9 for code) consisted of summing each

pixel value in the array for each camera and then divide the result by the number of pictures,

hence an average value for pixel was obtained.

The values for each individual image, as well as the intensities for the resulted averaged

image were plotted in a surface plot (Figure 2.10). A few spikes are visible in each camera,

with the highest ones in camera one, indicating dead pixels, which will later be corrected

with the help of these averages. However, the overall response of the pixel values recorded

is in concordance with the environment from which the images were taken, a highly bright

sample.

The individual images and their respective surface plots can be found through the link in

Appendix .2.
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(a) Camera 1. (b) Camera 2.

(c) Camera 3. (d) Camera 4.

Figure 2.10: Multiple bright-field images were collected for each camera. The mean intensity value of
pixel response from the images of each camera was recorded and displayed through surf plots.

Additionally, the darkfield images were collected using the camera, although the lens

caps were attached. The dark images were collected with the lens caps on, in the dark room.

Due to the camera being an experimental model and its sensitivity also being tested by the

manufacturers, no extra analysis was performed for the dark-field images at this point.

2.3.2 Image Offset

As mentioned previously, the Buzzard multispectral system is formed from four different

cameras (Figure 2.2b) next to each other. This indicates a slightly different field of view for

each of them, thus requiring a method of correction in order to be consistent and achieve

best results. The overlay of the four cameras with each other can be seen in Figure 2.11.

As observed, there is an overlap area between the four cameras, which ultimately becomes

the global region of interest for any subsequent analysis. The objective for this calibration

part is to eliminate any parts from the analysis region that are not overlapped by all four

cameras.
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Figure 2.11: Visualisation of the over-
lap of the four camera lenses. Each
colour and number represents a lens on
the camera and their respective field of
view. The overlap in the middle shows
the only mutual area within the field
of view for all four lenses, whilst the
corners show the regions that belong to
only that particular camera.

Starting with this part of the calibration, the fol-

lowing sample acquiring and processing occurred out

of the dark room. The dark room was used for ini-

tial experiments before migrating to a open laboratory

environment, without controllable lighting, for a closer

step towards real life clinical application.

This part of the calibration process involved the

employment of a 1x1 cm grid on a A3 paper sheet.

Using the set-up displayed in Figure 2.3, images were

again acquired without the filters attached to the cam-

era lenses. One image was collected with each camera

from the fix positioned grid. The images are available

in Figure 1 from Appendix .3.

These four images were then evaluated and processed in such a way that the resulted

method could be further applied in the initial development of any successive samples. The

grid images were subjected to a MATLAB procedure called translation. This function has

the role of yielding a product image from an original set of coordinates by assigning each

pixel with respect to its original axis coordinates.67,68 To clarify, in this case, the image from

Figure 1a (from Appendix .3) was appointed as the main and original set of coordinates.

Figure 2.12: Pixel chosen for offset
calibration at intersection of the four
squares, numbered as displayed.

The position of one pixel was noted and then the

relative distance to that pixel was established in the

rest of the grids, hence finding the offset distance and

resulting into a clipped output image.

The location of the pixel selected from the original

grid image was arbitrarily chosen from one of the inter-

sections between the squares of the grid. Figure 2.12

depicts the location of the chosen pixel on the grid of the first camera. The pixel has the

cartesian coordinates of 732 on the x-axis and 555 on the y-axis, C1(732, 555). The next

step involved the detection of the location of the pixels found at the same intersection in the

other grids, followed by locating their coordinates.

For the second camera (Figure 1b) the location on the x-axis is 523 and on the y-axis

is 544, C2(523, 544). The pixel of the third camera’s grid (figure 1c) has the coordinates

C3(739, 346), while on the fourth grid (1d) it has the coordinates C4(525, 342).
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Figure 2.13: Code used to perform
translation on the camera overlay and
isolate the global region of interest us-
ing the offset data.

With this in mind, the distances required to reach

the values of C1 in both axes were calculated for C2,

C3 and C4. Figure 2.13 depicts how the translation

function was used in order to acquire the offset calibra-

tion.

As explained above, the ’imtranslate’ image trans-

lation function, will displace each pixel by a specific

given distance in both x and y axes until it reaches

the original coordinates, C1(732, 555). Thus, values

were added or subtracted for each X-axis and Y-axis

(C(X,Y)) as seen in Figure 2.13.

Finally, all four images were cropped in order to discard any regions that are not being

overlapped by all four cameras. The last line from the code in Figure 2.13 illustrates the

method used to crop only the image overlap needed.

The following section further explains how these calibration methods were applied to the

test samples prior to image processing.

2.4 Sample Acquisition

2.4.1 Preparation for Sample Acquisition

A formal ethical approval was sought, following the institution’s standard procedures. As the

only sample used at this stage in the process was the author’s foot, a full application wasn’t

considered necessary. For any further clinical testing an ethical approval would be needed.

Therefore, the sample used for all tests was the author’s foot, having no previous or current

known disease or illness, particularly with no effect on the cardiovascular system.

In order to be able to imitate the impact of a peripheral arterial disease, a Sphygmo-

manometer was used to obstruct the blood supply in the artery.51,52,56,61,70Arterial occlusion

temporarily replicates the oxygen deficiency that would normally result in patients affected

by the disease. With this in mind, it was important to identify the pressure at which there

is no blood supply through the lower extremity arteries.

The occlusion pressure is based on an individual process not exceeding a certain artery

pressure due to safety. Cuff occlusion leads to no blood being transported after the point of

the obstruction, which in turn leads to the absence of pulse. Therefore, in order to achieve
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the lack of pulse, the pressure point needed to be established.

[h]

Figure 2.14: Dorsalis
Pedis artery.69

Figure 2.15: Posterior
Tibial artery.69

Information regarding the guidelines for safe pressure limits

when using a blood pressure cuff, has been discussed before in

literature with the conclusion that the cuff should be inflated by

minimum 30 mmHg extra after the cut off point of the pulse71.

Additionally, inflated cuffs can be kept on the subject for even up

to two hours in certain circumstances, without leaving any long

term affections72.

Being able to use a Doppler ultrasound for the correct arteries

was crucial, not only due to it having implications in the results of

the pressure points, but also in the images that were subsequently

acquired, as the focus had to be on the correct arteries. The ar-

teries in question can be observed in the Figures 2.14 and 2.15.

The aforementioned figures illustrate the positions of the most relevant arteries for which

pulsations can be accurately determined in the lower extremities69. These particular arter-

ies, together with the tip of the toes, are commonly used by qualified professionals in PAD

investigation.

Carrying out this examination required the use of the Sphygmomanometer and of an

ultrasound Doppler instrument; both of which were controlled by a specialist podiatrist from

the National Health Service UK.

The right leg was positioned on a chair in a 90◦angle to the body, the cuff of the Sphyg

was attached to the calf of the leg and the Doppler was used on the relevant arteries. Initial

examination of the arterial pulse started before the pressure was applied; this confirmed the

arterial flow was in a desirable condition. With the Doppler still in position the cuff was

firstly inflated to 120 mmHG, after which small increments were added until it reached 135

mmHg. At this point, the pulse started to slowly decrease in intensity. By the time the

pressure reached 150 mmHG, the pulse stopped completely for both flexed and non flexed

knee. Hence, the pressure used was 180 mmHg.

2.4.2 Sample Acquisition

Concomitantly with the acquisition of the grid images, the first test sample images were also

collected, which helped keeping a consistent instrumental set-up as seen in Figure 2.3 and

2.16. In Figure 2.17, a schematic representation of the acquisition process for the samples
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Figure 2.17: Schematic process of the acquisition of the initial samples, using cuff occlusion at 180
mmHg.

acquired is shown.

Figure 2.16: Laboratory set-
up for image acquisition, as
depicted schematically in Fig-
ure 2.3. Buzzard camera and
lighting system were attached
to the camera stand. A chair
and stool were used for po-
sitioning the foot under the
camera. The computer used
to acquire the images was
present as well and manually
controlled from the chair us-
ing the keyboard.

The first samples were collected, following the pressure point

determined previously, with a cuff inflation of 180 mmHg. The

images acquired were with the artery termination in the tip of

the toes and the Dorsalis Pedis artery. The reason for this being

that, with the current set-up (Figure 2.3), the tibial artery was

not visible for analysis.

The camera was firstly focused on the toes of the subject

however, the focus and therefore the field of view for these tests,

was kept constant. In order to be able to also capture the Pedis

artery in focus, the leg was raised by 8 cm whilst still being sup-

ported. As soon as each image was collected, it was then also

exported in a TIF format to an external folder from XIMEA,

from which it was subsequently imported into MATLAB. It is

worth mentioning that the recommended saving format for spec-

tral imaging is an uncompressed format.31 Therefore both TIF

and BMP can be used, however MATLAB’s saving of matrices

can sometimes slightly change pixel intensity values between for-
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mats. Both TIF and BMP will be used in this research, with TIF being a preferable option.

The initial set of samples further contributed to the development of an appropriate anal-

ysis technique.

All images acquired for all filters can be seen through the link in Appendix .5.
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Chapter 3

Image Analysis

As the absorption spectrum changes, scattering of light will be influenced according to those

changes. Measuring the tissue oxygenation through spectral imaging, is based on the applica-

tion of Beer-Lambert Law(BLL) in a digital setting, hence detecting the light scattered back

from skin, rather than absorbance. Establishing and applying the pixel intensity of a sample

image into BLL, leads to recording the reflectance given by the skin in a specific area.23,31,40

When the image analysis technique is achieved, it determines the oximetry of a tissue in

an automatic way, which aids in reducing human error processing and also becomes less time-

consuming when subsequent testing is performed. In order to determine the oximetry, four

wavelengths which display the smallest (isobestic wavelength) and biggest difference between

the cuffed and without cuff images, need to be determined.

This chapter will describe all the code written in MATLAB as part of the method devel-

opment phase of the research and its automatization. The first section of the chapter focuses

on refining the images collected previously and subsequently have them undergo a series of

processing and analysis procedures, which are explained in the later section of the chapter.

Figure 3.1 illustrates the image pre-processing and image processing procedures explained

throughout this chapter and the following one.

3.1 Image Pre-processing

Image pre-processing has a pivotal role in the successful completion of any further investiga-

tion and analysis. It encases certain procedures that are implemented during the initial steps

of image processing. The aim of these techniques is to calibrate and process data in such a

way, that it ultimately yields a refined output image ready to be further analysed according

to its aims.73,74
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Figure 3.1: Representation of the image pre-processing and processing applied to the samples. Bright-
field images were firstly imported into MATLAB and analysed regarding flat-field correction. The
sample images were than imported into the software and the correction was applied for each image.
The calibration process then continued by application of the offset data from Section 2.3.2. The
images were then aligned again through an automatic MATLAB function for a more accurate overlay.
During image processing the ROI were selected and analysed, leading to establishing four preliminary
filters for further testing. Two oximetry methods were then performed, however only one reached an
analysis point.
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3.1.1 Image Import

It was unequivocal from the start of the process that many individual scripts, marking each

analysis step, would be necessary in order to achieve the goal set. However, having to run

many scripts one by one to complete the analysis procedure, would have been an unnecessary

system that can also introduce human error. Thus, a central script was created to operate

similar to a portal and execute each code program when required. The code in question can

be seen in Appendix .4, Figure 2 and it illustrates the final version of the main code created

with all the scripts and functions, generated throughout the image processing analysis in

MATLAB. Using a title abbreviation, this main program will be further referred to as the

NIPAD script.

The first script constructed for the processing of the samples performed a seemingly

easy task, however it is of high importance for the following programs. The code focuses

on importing all the images collected into MATLAB and it has the same general approach

irrespective of the type of images that need importing, as long as it follows certain standards.

This is significant as the first process that took place before any other analysis, was to

prepare the bright field images for flat field correction. Thus prior to importing the first set of

samples, the images acquired for bright field calibration were also required. As a consequence

of this, the written script for image import was operated for both sets of samples, starting with

the calibration samples and then continuing with the cuff test samples. Although section 2.3.1

from the previous chapter described the approach used to analyse and process the calibration

images, it did not highlight the process of importing and saving the data into MATLAB. The

description of the following code will emphasise this procedure as well.

When executed, the code simply opens up a user interface window that allows the indi-

vidual in charge to choose the folder that contains the data. Then it proceeds to search for

all the files in the folder, that have a specific extension and an identifiable name.

Figure 3.2: Image import based on the file format
given.

As mentioned previously, this is a

generic code, hence it can be transferred

and used for similar or different scopes.

However, the process of the Image Import

function is still based mainly on the man-

ner in which the images in question were

saved as in the chosen folder, after being acquired. In this case, all the images acquired using

XIMEA CamTool, were saved as .TIF files. Once these were found the data was saved as a
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structure array. Figure 3.2 depicts the lines of code for the preceding statement.

When the pixel calibration images were acquired, they were named in respect to the

camera used to collect them. As explained in Chapter 2, each camera procured 12 images

for flat field correction. Therefore, the name given to each image started with the number

of the image (1-12), continued with the letter ’c’ and ended with a number between 1-4 to

identify the camera. For example, the first image collected with the first camera was titled

’1c1’, followed by ’2c1’ for the second image from the first camera, and so on.

On the other hand, when naming the images from the cuff trials, the process became

slightly more complicated as none of the identifiable markers from this file, had to match

with the ones from the calibration folder. The images captured could be virtually divided

into four sets of samples: toes without cuff occlusion, toes with cuff occlusion, pedis artery

(foot) without cuff occlusion and pedis artery (foot) with cuff occlusion. In addition to this,

each one of these sections was repeated for all of the 16 filters.

With this in mind, the denomination for the samples commenced with the letter ’f’ or ’t’,

indicating which part of the foot the data is focused on; the pedis artery (foot) or the toe

(t). It then mentions the wavelength of the filter for that specific image, proceeding with the

letter ’b’ (instead of ’c’) and with a number between 1-4, which specifies the camera. This is

different than previously to avoid any error or data overwriting during the execution of the

code. The title finished with the presence of letter ’s’ or the lack thereof. This letter shows if

cuff occlusion was performed or not for that particular sample. Again, the letter appointed

for the indication of cuff presence, is not ’c’ due to it being used for the bright field images.

To demonstrate, an image of the toes acquired at 500 nm from the first camera, with and

without cuff occlusion, was therefore named: t500b1s and respectively t500b1.

It may seem irrelevant and ineffective to explain the nomenclature of any of the sam-

ples gathered, however it becomes extremely meaningful when expounding the lines of code,

specifically aiding in repeatability. Because the code is used for importing both pixel cali-

bration image and trial tests, as long as the marker in their names and their file extensions

is identifiable, the data will be able to import and save accordingly.

Part of the loop used in the script to instruct the order of election during sample importing,

is illustrated in Figure 3.3. Once the folder is chosen by the user, the code guides the software

to choose the files that contain the letter ’c’ in the title, characteristic to bright field images.

Otherwise, if the letter does not exit, it will proceed to search for any files that have the

letter ’b’ in their name - specific for the test samples.
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Figure 3.3: Loop used for image selection, depending on file nomenclature.

The last part of the script (Figure 3.3) was assigned to distribute the images into cate-

gories, simplifying data access for further analysis.

However, prior to this a specific task was operated for the test trials - if ’b’ was present

in the file name, the letter was eventually replaced with ’c’. The reason for this lies in the

way subsequent scripts were written, but also in the fact that it was easier for data saving in

MATLAB.

After this was accomplished, images were split into channels based on the camera they

were collected with. The names for each channel were also given in relation to the camera

used: C1pos represented all the images collected with the first camera, C2pos represents the

second camera and the same for C3pos and C4pos together with their corresponding cameras.

The full script can be seen through the link in Appendix .4.

3.1.2 Flat-field Correction and Image Offset

Once the bright field images have been imported into MATLAB, the process explained in

section 2.3.1 was pursued. The previous chapter depicted the development of a pixel cali-

bration process, which was subsequently applied to the acquired bright field images in order

to achieve a data correction control for the trial tests. After the bright field images were

imported and the surf plots were created (Figure 2.10), the Image Import function was exe-

cuted again. This time, the folder containing all the trial samples was chosen to be imported

into MATLAB.

Following this, the results from the mean bright field data of each camera, were applied to

all the images gathered during the sample cuff tests. The process in essence was considerably

straightforward. For each channel created, namely for the images of each camera used, the
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procedure seen in Equation 3.1 was employed.

ImageP ixelCorrected =
ImageP ixel

max(MeanBrightfieldP ixel)
MeanBrightfieldP ixel

; (3.1)

where ’ImagePixel’ represents each pixel in the sample image, ’MeanBrightfieldPixel’

represents the intensity of the pixel in the final averaged bright-field data and ’ImagePixel-

Corrected’ is the flat-field corrected output.

The maximum value from the mean intensity data of bright field images, was divided

by the intensity of each pixel in every position of that specific mean bright field data. The

result of this division was then further used to perform a flat field correction on all the sample

images collected. The intensity of each pixel’s position from each image, was therefore divided

by the result of the above-mentioned division, leading to correction of any over-saturation

present. Flat field correction also removes any camera to camera variance that might exist,

hence normalising the acquired data from all four cameras.

Figure 3.4 illustrates the before and after images of two images collected, one for toes and

one for the foot area. The left image is the original one, while the right image represents the

corrected one. It can be seen how the code slightly corrected the over-exposure of the image,

normalising the data.

Following the correction, the resulted images were saved for additional analysis. However,

during this final step an issue was encountered. When saving an image from MATLAB

externally, regardless of its extension or the type of processing performed in the software, the

pixel intensity of that particular image increases. While searching for a reason and means

to overcome this concern, it became apparent that the change in intensity occurs when the

image is saved externally from MATLAB and then imported back into the software.

Therefore, the decision was made to create a structure array and save the data within

MATLAB as well. When verifying the pixel intensity variation it was found that there was

no increase in the intensity value. Thus, as long as the image was stored within MATLAB

and for any further procedures the data used was the one from the software, then the samples

were safe of any automatic altering of its values. For the purpose of this thesis, the method

development process was not affected much by this, with the exception of having to create

the data storage space within Matlab. However, this could have an effect on any subsequent

research, particularly if additional software would be needed in conjunction with Matlab and

if data exports would be required.

At this point during pre-processing, the sample images have been flat field corrected
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(a) Image taken at 640 nm with cuff.

(b) Image taken at 610 nm with cuff.

Figure 3.4: Before (left images) and after (right images) flat-field correction image comparison. The
correction in the exposure is visible in the areas that were very bright.

and stored in an array in MATLAB. To complete the calibration process, the image offset

explained in section 2.3.2 was applied to the test trials. No adjustments were made to the

method used, besides the fact that the sample images were the ones being corrected instead of

the 1x1 cm grids. The data from images aligned with the offset correction was also exported

in the MATLAB array, as well as being saved externally for visualisation purposes.

The full script can be seen through the link in Appendix .4.

All images that were flat-field normalised and calibrated for the offset, for all filters, can

be seen through the link in Appendix .5.

3.1.3 Further Alignment

When examining the data from the cuff tests, it immediately became apparent that the po-

sition of the foot throughout the images was not the same. An instinctual movement of the

foot was occurring whenever there was cuff occlusion involved, making it impossible for the
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person who is cuffed to keep the foot completely still. Therefore, although the images under-

went a certain degree of alignment through the offset calibration, there was a prerequisite for

additional adjustment.

There is an overall lack of overlay, which could have potentially become a challenge when

processing the samples. The misalignment can be seen in Figures 3.5 and 3.6, which depict

images from the tests, taken one after the other, with and without cuff occlusion, after the

application of calibrations. As a consequence, it was decided that the application of a different

form of adjustment was necessary.

(a) Image collected at 640 nm without cuff. (b) Image collected at 640 nm with cuff.

(c) Image collected at 650 nm without cuff. (d) Image collected at 650 nm with cuff.

Figure 3.5: Four consecutive toe images are shown, after flat-field and offset correction, exhibiting the
current misalignment.

MATLAB has a variety of in-built functions regarding image processing, hence the deci-

sion was made to attempt the application of one of its inherent attributes.

At this point during the pre-processing method, the images were stored in an array within

MATLAB, hence they had to be extracted from it, in the correct order, for the alignment

function to perform accordingly. That being the case, the code commences with introducing

and sorting the data available in a feasible manner.
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(a) Image collected at 640 nm without cuff. (b) Image collected at 640 nm with cuff.

(c) Image collected at 650 nm without cuff. (d) Image collected at 650 nm with cuff.

Figure 3.6: Four consecutive foot images are shown, after flat-field and offset correction, exhibiting
the current misalignment.

Figure 3.7 illustrates the for loop used to extract the necessary images from the array

and for further distribution. Strfind searches through all the files in the S1 array - where

images were stored, and isolates all images whose first position in the name is occupied by

the letter ”f” (posF = strfind(S1(k).name(1),’f’);”, where ’1’ indicates the position in

the file name), refering to images that depict the Pedis artery. In case the position does not

have the aforementioned letter, it will be occupied by the letter ”t”, indicating the data with

the images focused on the arteries ending in the toes.

The code then continues to go through the toe data, whilst instructing the software, using

the nomenclature method mentioned above, to separate all the toe images with cuff occlusion

from the ones without cuff occlusion. After distributing the two, the target moved on towards

the remaining files and proceeded to perform the same technique in order to separate the

pedis artery images with cuff occlusion from the ones without.

Concomitantly, for each set imported, the particular series of images were allocated in a

cell array for higher accessibility. In Figure 3.7, the indexing expression (:,1)==0,1 instructs
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Figure 3.7: Loop used for image extraction, depending on file nomenclature and further used for
further alignment.

Table 3.1: Allocation of data into the array, where m is the number of the column.

m 1 2 3 4

Toe without
cuff

Toe with
cuff

Foot without
cuff

Foot with
cuff
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the import of the toe files without cuff into the first column of the cell array, whilst making

sure no values could be overwritten while exported. As it can be seen subsequently, each

series of files were eventually assigned into their own array column. Table 3.1 captures a

better visualisation of how the data was allocated into the array.

Hereafter, the alignment functions imregconfig and tformSimilarity were applied on

the existing files. The MATLAB intrinsic functions have the main attribute of performing

an intensity-based registration of images with particular configurations.75,76

The exact function used to create the configurations needed to execute the image regis-

tration is illustrated in Figure 3.8.

Figure 3.8: The function the optimises the registration
configuration.

The input data was set as ’multi-

modal’, which indicates that the images

have different origins and different vi-

sual properties: contrast and illumina-

tion. The ’optimizer’ and ’metric’ param-

eters are then output as configuration methods during the follow-up registration. The ’metric’

parameter creates an image similarity metric between the analysed images, while the ’opti-

mizer’ parameter develops a method for enhancing the similarity metric.75,76 These configu-

ration parameters are then employed during tformSimilarity function for image intensity

registration.

Figure 3.9 depicts the function used in a more uncluttered manner for simplicity purposes.

The image registration occurs at this stage, where A1 is the reference image and A2 is

attributed to the following ones. As mentioned above, the process is simply an intensity

based registration; the software gathers the first image from the set (toe or foot) and it uses

the image as a coordinate for the rest of the data. It continues by trying to centre the rest of

the images in respect to the previous form registered, hence theoretically leading to a more

consistent position of the sample in all the output images. The method uses the obtained

configuration parameters, while examining its similarity and eventually translating (explained

in section 2.3.2) the image until it reaches a satisfactory geometrical transformation.

Figure 3.9: Function used for image registration.

Unfortunately, the functionality of

the system proved to have its drawbacks

as well. After a few executions of the code

it was noticed that the registration was

applied to only one of the data sets. At
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each iteration the function was either completely missing the foot artery data or yielding re-

sults in which the images were almost fully cropped. The reason for this being that the images

containing the toes possess a more defined shape with various structural patterns, making

it easier to detect, whereas the images displaying the foot area, such as the ones in Figure

3.6, can only offer an outline for registration. Therefore, using the default configurations, the

software was not able to recognise the patterns.

To assess the reliability of the default configuration parameters and to determine the ex-

tent to which they influenced the results, a modified optimisation approach was attempted.

Not only the shape of the sample in the image posed an issue, but also the fact that light inten-

sity was more uniform due to the consistent shape. Increasing the brightness thus meant the

image optimisation could be improved. Although increasing image brightness could normally

lead to increased pixel intensity, which would have been extremely unfavorable considering

the main approach of this method development is based on the intensity of the pixels, the

method was only altering the data during the process of the registration using imadjust,

after which the original brightness was recovered and the data was saved accordingly.

However, even with a modified optimisation the initial results for the foot data were

unsuitable. The output images were returning with no valuable information present, as most

of the images were translated and cropped outside of the foot’s outline. As a result, the code

in this section was subsequently altered to only further align the data that contains the toes

and skip any images that are part of the foot without or with the cuff occlusion. This decision

was taken due to time constraints as the code in question would need more attention for a

higher efficiency, but also as its performance can be vastly influenced by the sample set-up

and sample acquisition methods.

Figure 3.10 depicts examples of before and after images picked from the toe data. It

can be seen how the imaged were picked and positioned in a more aligned manner as before.

It needs to be mentioned that the automatic alignment does not interfere with the pixel

intensity values.

Therefore, the images were taken forward for the next steps, whereas the foot images used

were result of offset alignment. The foot data and toe data were not analysed to eventually

be compared, therefore the extra overlap for toe did not affect the global results.

The overlay technique was based on the assumption that the foot was always pointed up-

wards facing the camera at the same angle, in an identical position. However, the positioning

was impossible to control perfectly, hence the automated alignment was implemented.
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(a) 540 nm without cuff image, before alignment. (b) 540 nm without cuff image, after alignment.

(c) 640 nm with cuff image, before alignment. (d) 640 nm with cuff image, after alignment.

Figure 3.10: Two before and after examples of how the toe images were aligned using MATLAB
automation. The colours magenta and green indicate the areas of misplacement between the previous
image used as reference. The after images show how the two colours are now closer to each other in
placement.

Although the alignment has aided in the placement of the sample, they were still not in

the exact same position, as can be seen in Figure 3.10. This is visible from the images in

Figure 3.10b and 3.10d, where there is a disparity in the alignment. This has most likely

resulted from the inconsistency in the positioning of the foot. There were 9 other filters

used between the 540 nm and the 640 nm one, inevitably leading to misplacement between

the image collections. However, having the samples more aligned with each other helped in

the following section. Moreover, the placement may slightly affect the values reflected, under

different light conditions. Nevertheless, many of the illumination consequences that may have

occurred, have been mitigated by the flat-field adjustment.

After the code was generated, the images were saved externally but also in arrays. All

the automatic alignments for all the toes images can be seen from Appendix .5.

The full script can be seen through the link in Appendix .4.
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3.2 Image Processing

This section will introduce the procedures and methods used during the image processing

phase, focusing on the coding components of the method development. This part of the code

seeks to isolate areas of interest within the images collected and then continue with processing

these regions for more information regarding oxygen saturation.

The aim for this particular processing is to eventually determine, through the explo-

ration of these regions of interest, a preliminary set of visible wavelengths relevant in oxygen

saturation detection.

3.2.1 Region of Interest

From the images captured during sample acquisition, only specific parts are of interest for

further analysis. As explained in section 2.4 the areas that hold the most information are

the pedis artery, located on the upper side of the foot, and the tip of toes, where the arteries

end. Due to the nature of the acquisition type, the images contain a considerable amount

of unnecessary background information, hence automatic features were employed to isolate

the vital data from the sample. Being able to extract only the pixels that represent the

artery placement from the image, was crucial for the following processing of the data, but

the results can also help with the project development direction regarding any future work

and improvement.

The code for this part was built as a function that feeds into the main script, following

the pre-processing application. As displayed in Table 3.1, the data was divided according to

the sample type and was stored in an array. Therefore, for loops and if statements were

used to separate the four data groups and appoint towards the desired category. As the code

was generated, it was firstly focused upon creating a region of interest (ROI) for the toe

images. Due to the nature of the sample, these images contain four target areas rather than

one global region of interest. Taking this into consideration and the shape of those areas, it

was decided that the most appropriate MATLAB function to adopt was drawellipse, which

constructs an elliptical ROI that has customizable properties.

Drawellipse was applied to all the images in question, starting with the first image of the

first column in the array: toe image at 500 nm without arterial obstruction. As the code is

generated, it firstly opens the image and the function allows the user to construct the ROI ob-

ject. This was applied using the following line of code:

e = drawellipse(’Label’, ROInames(i,:)), where each ROI was labeled with sequen-
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tial numbering. The same function was then used to synchronize the features of the object,

namely to ensure that the original coordinates and properties of each ROI in the first image

are imported in all the following ones. This implies that after its creation, the same size ROI

object will be employed for the rest of the data. However, due to the position of the sample

in the image not being constant, the ability to manually move the ellipse was enabled without

changing any of the original dimensions.

When using the function, the ellipse elements that were in focus were the: ’SemiAxes’,

which appoints the lengths of the semi axes; ’AspectRatio’ of the ellipse; ’Center’, which

delivers the coordinates of the centre of the ellipse; and ’RotationAngle’ for the clockwise

angle of the ellipse.77 The values for both the rotation angle and the centre of the ellipse, are

dependent upon the position of the ROI object. When the ROI is relocated and rotated in

order to encapsulate the correct area, their respective values change accordingly, nonetheless

the size of the ROI remains the same and was therefore used for the rest of the data.

Due to inherent software functionality, creating the elliptical regions of interest proved

to be accessible, therefore making the user interface easy to navigate. Once the process is

generated and the first ROI created, the code runs through a wait function and allows the

user to double click or press the Shift key to proceed to the next ROI, after saving the

dimensions as reference.

Figure 3.11a shows the image at which the ROI selection occurred for this data group.

As mentioned before, this image is the first in the array for the toe data and it represents

the image captured at 500 nm from camera 1. The size of these ellipses were therefore taken

as reference for the following images. In Figure 3.11, three additional images are presented

from the same data group for comparison purposes. These images were randomly selected

and it exhibits the visible disproportion between the position of the samples, but also the

consistent size of the ROI object throughout the image cluster.

In order to be able to produce and save the information inside the ellipse, a binary mask

was created. The ability to create a mask is an inherent MATLAB function from its Image

Processing Toolbox. It creates a mask over the ROI created in the image by setting all the

pixels inside the ROI mask to 1 and the outside pixels to 0. Although these pixels are changed

in the mask, the original ROI and the pixels inside it remain the same and the information

extracted from the ROI was not affected. As a result of this, characteristics important for

the results of this section were extracted and saved in a array in MATLAB. The parameters

extracted from each region of interest were the mean and range of the pixel intensity, the
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(a) Drawing the initial ellipse. (b) 500 nm with cuff.

(c) 510 nm without cuff. (d) 510 nm with cuff.

Figure 3.11: ROI selection for toe data, where the blue colour indicates the reference region for the
rest of the images, whilst the red ellipses are the consecutive ROI selected.

minimum and maximum values and the standard deviation of the pixel intensity.

After delineating the regions of interest for these two image groups, the focus was directed

towards the final two image clusters, which contain information regarding the artery at the

top of the foot. A similar process was followed for this set of data as well. Due to the

nature of the sample and the fact that the area of observation is substantially larger than the

previous ones, the most appropriate ROI shape was a rectangle. The same principle followed,

the object created has the same size all throughout the image set, however it has been moved

with the position of the foot, so as to follow the same area for each image. The function used

to construct the region of interest was drawrectangle, which is another in-built MATLAB

function for image processing, hence it has the same functionality regarding user interface as

drawellipse did.

As explained in the previous section, this image group did not undergo any further align-

ment aside from offset calibration. Therefore, the discrepancy between the position of the

sample in each image is more noticeable. Figure 3.12 depicts four images with the rectangular

ROI drawn, where a) is the image at 500 nm and was the first to be processed, thus the ROI
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(a) Drawing the initial rectangle. (b) 500 nm with cuff.

(c) 510 nm without cuff. (d) 510 nm with cuff.

Figure 3.12: ROI selection for foot data, where figure 3.12a indicates the reference region for the rest
of the images.

from this sample was used as reference. Although the object created was moved considerably

between images, the region-to-region comparison is still highly reliable due to the manual

shift of the object. Moreover, as an initial method development, the main purpose was to be

able to yield a substantial amount of information out of these chosen areas to confirm the

theoretical performance of the system, and then focus on optimising the approach.

The rectangular ROI function was more accessible regarding data extraction, as it was

not necessary to create a binary mask prior to it. In order to isolate the region, a function

that crops the image was used. While the ROI was created, MATLAB registered the position

of the object for each image, thus using its coordinates as a variable, the function imcrop was

applied and the ROI object was isolated from the image. Afterwards, the same parameters

extracted from the ellipse object were also obtained for the cropped rectangular ROI.

Due to the size of this ROI, it was decided that to increase the accuracy of the resulting

information from the regions created, it would be beneficial to divide the area into six smaller

segments with two columns and three rows. The exact pattern in which the main ROI was

divided and saved as, is displayed in Figure 3.13. The reason being that for such a large ROI,
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the data might yield false results for the pixel intensity calculations.

Figure 3.13: Diagram display-
ing the segmentation pattern of
the main foot ROI. Dividing the
ROI aids in the developments of
a tissue oximetry sensor for the
6 segments. This is important
as it provides a higher sensitiv-
ity and specificity for the output
data, particularly when the ROI
is large.

In order to execute this, the code was written using the

coordinates, the length and width of the rectangle and the

numbers of rows and columns wanted. No visible outcome

resulted through this function, specifically there was no im-

age displaying only the segmentation created as this was exe-

cuted automatically within the software. The localisation of

the axes of each segment in the rectangle was performed, a

temporary ROI was created with the coordinates of each seg-

ment and data parameters were extracted accordingly. The

same parameters as for the main rectangle were obtained for

the six segments as well. Then the values were saved in the

MATLAB array, awaiting further analysis.

Once all the regions of interest were produced and all the

parameters needed were extracted and saved accordingly, it

was first necessary to create a visual representation of the data to identify the essential

filters. Using MATLAB, scatter plots of the mean pixel intensity were created for each

ellipse, rectangle and segmented rectangle for both with and without cuff images, with the

y-axis of pixel intensity and the x-axis of wavelength. Error bars were included in the graphs

produced, displaying the range with the minimum and maximum values and the standard

deviation on the y axis and the Full Width at Half Maximum on the x axis. FWHM was set

by the manufacturer as being 10 nm, hence 5 nm on each side of the mean.
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(a) Toe ROI 1 range for each filter.

(b) Toe ROI 1 standard deviation for each filter.

Figure 3.14: The resulted graphs for ROI1 of the toe samples. Mean pixel intensity of each image for
the specific ROI is shown for all filters. Both standard deviation and range are displayed, as error
bars, together with the 10 nm FWHM.
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(a) Foot main ROI range for each filter.

(b) Foot main ROI standard deviation for each filter.

Figure 3.15: The resulted graphs for the ROI of the foot samples. Mean pixel intensity of each image
for the specific ROI is shown for all filters. Both standard deviation and range are displayed, as error
bars, together with the 10 nm FWHM.
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As it can be seen from Figures 3.14 and 3.15, the range for the regions of interest seem

to be higher the the overall standard deviation. This could mean that there are outliers and

extreme values, however the spread of data around the mean value was not as extreme.

The pixel intensity values from the foot area are lower than the ones from the toe area,

indicating that the foot ROI might have not experienced as much reflectance as the toes do.

The graphs can be hard to decipher simply by visualising them, which is why a significance

test was developed in order to choose the best fit filters.

All graphs for each ROI are available for visualisation through Appendix .5. The entire

code for this section can be seen through the link in Appendix .4.

3.2.2 Significance Test

The final section of this chapter, will focus on the method used to determine the preliminary

four most appropriate wavelengths for tissue oxygenation.

As outlined above, each wavelength had two images acquired, with and without cuff.

Plotting the mean pixel intensity value for each ROI against the respective filter, allowed for

a visualisation of the difference in intensity between the cuffed, deoxygenated regions, and

without cuff, oxygenated regions, for each wavelength.

Achieving the purpose of this operation, required to examine the region of interest results

and try to highlight the wavelengths for which there is a distinct difference between O2Hb

and HHb, as a result of the arterial obstruction. Additionally, a wavelength for which the

difference between the two points was minimum across the whole range of filters, was also

determined. This is an isobestic point in the data obtained, where little to no change occurs

in the reflectance of O2Hb and HHb for that wavelength. The incentive for choosing an

isobestic wavelength consists in having a filter that acts as the calibration point. Along the

process of adjusting and improving the techniques used, certain possible issues can appear,

such as non-uniform illumination pattern or just illumination changes, that can affect the

pixel intensity culminating in false results. Therefore, always setting one of the four filters

at the isobestic wavelength, can assure the same response from the camera regardless of the

tissue oxygenation. The data from the rest of the filters would therefore be relative to the

isobestic one.

The theory of choosing a minimum and maximum difference between oxygenated and

deoxygenated tissue, has a strong literature back-up and it has been known to function as

expected with both, absorption and reflection of light.23,31,47,48
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At this particular point, the main question was not only focused on determining the op-

timal filters from the ROI graphs, but also on the steps that needed to be taken to reach the

final aim of determining the four filters. Having to chose only four filters out of the 16 for

further testing, imposes some limitations, particularly when some of the values seem to be

closer together. Evidently, when visually assessing the pixel intensity graphs (Figures 3.14,

3.15 and Appendix .5), there are few assumptions which can be made regarding the range of

the filters across each wavelength. Moreover, the pixel intensities have different levels depend-

ing on the sample in question. For the toes, the intensity range between oxygenated (without

cuff) and deoxygenated (with cuff) resides between 120 - 240 a.u., whilst the intensity range

for the foot resides between 80 - 120 a.u.. The foot ROI has an overall lower pixel intensity,

which can be explained by the larger size of the ROI and may also be due to variations in

lighting. A common point to observe is that the differences between the oxygenated points

and the deoxygenated points do not exhibit extensive and considerable variations.

Nonetheless, there is a large quantity of data available, with each point representing the

mean intensity and the error bars clearly displaying outliers. In the most simplest manner, the

method could have only focused on the mean values and determine the required wavelengths

in this fashion, nonetheless this would have been innacurate as the spread of data is unknown.

Thus, the most appropriate approach was to automate the whole process in MATLAB by

performing a statistical test, in order to be as consistent as possible and to validate the final

results to a certain degree.

Considering the fact that each of the sample has known standard deviations and means,

it was decided that the most suitable test to study the two groups of data was the z-test. A

z-test compares the means of two sets of data, similarly to a t-test, however it is based on

known standard deviations.

The written code for this section, given the name of Significance Test, was firstly generated

by importing the parameters of the regions of interest, that were created during the previous

section. This was again based on the array from Table 3.1, while also referring to the number

of regions present.

After making sure that the script recognised the data developed up to that point, the code

starts focusing on the each group of data, while indexing the means and standard deviations

required to perform the z-test.

The code used for importing the data necessary to process a z -test can be seen in Figure

3.16. The part illustrated belongs to the first few lines of code and form the first array. As

49



Figure 3.16: Code used to build an array with the information needed for performing a z-test. It
shows the extraction of mean pixel intensity values and the standard deviation of each ROI from each
image.

it can be seen, the code firstly generates the information for m==1, namely for the toe images

without cuff occlusion. The parameters were extracted and stored in a column position within

the array. The first column indexed the 16 filters, the second column displays the mean pixel

intensity value of the regions of interest without arterial obstruction, while the third column

stored the standard deviation of the same data.

The code then continued by moving to the next group of data, m==2, which was the toe

images with cuff occlusion. Next, it identified the wavelengths stored in position one, in

order to match the wavelength with its data. The following three lines proceeded to arrange

the mean pixel intensity value of the regions of interest with arterial obstruction and the

standard deviation of the data, in column positions four and five, respectively. The sixth

column represents the z-score resulted after the application of the z-test on the means and

standard deviation of the two samples for each wavelength. As mentioned earlier, this was

generated for each region of interest. The produced array was then exported as an Excel file

with all the data available for each region. However, before moving the data externally, the

rows within were sorted by increasing numerical value of the z-score. Hence the top rows

displayed the smallest difference between the two data points, whilst the bottom rows show

the highest difference.

The same code as in Figure 3.16, was adjusted for the main region of interest and its six

segmented areas from the top of the foot. They were also exported externally. Appendix .6

contains all the arrays exported for each region of interest, starting with the toe data for ROI

1 and continuing with each region for each set of data.

The z-test formula is displayed in Equation 3.2, where x1 and x2 represent the means of

the two samples, µ1 and µ2 are the means of sample population, σ1 and σ2 are the standard

deviations, and n1 and n2 is the sample size.78,79
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z =
((x̄1 − x̄2)− (µ1 − µ2))√

σ2
1

n1
+

σ2
2

n2

(3.2)

The z-score is an indication of how close the oxygenated value is to the deoxygenated

value for each wavelength at each region of interest. The smaller the z-value, the closer the

two points are together, hence the filter with the lowest z-value was considered the isobestic

filter. However, the filter that was needed, was the one that was most consistent across all

regions for each sample set, for both the isobestic and larger difference points. The reason

for this is that the camera used has a limited number of 4 filters that can be performed at a

time, hence the chosen wavelengths had to be the most accurate.

Figure 3.17: Toe filter wave-
lengths (nm) displayed in or-
der of z-score for each ROI.
Starting from the top with
the lowest z-score and moving
down to the bottom of the ta-
ble, with the highest scores.
The rows in light red indi-
cate the minimum and max-
imum four z-scores for each
ROI. They are also the areas
in which the scoring method
for finding the most common
wavelength, has been applied.

During the code execution as the loop progresses, it com-

pletes the array and after each export iteration, a rank system

was included in order to be able chose and validate the best fit

filter for both samples, toe and top of foot.

An inner function, within the current function, was built to

establish the most common filters and to help classify them. The

manner in which this was accomplished, was by giving the code

a command in which it only focuses on the top four and bottom

four filters from the z-value arrays created previously (Appendix

.6).

The code scans through the compiled data structure and se-

lects the most frequently occurring filters, using the function

mode, across all regions of interest for each type of sample.

In order for a wavelength to be suitable and for the process

to continue, the number of occurrences in the data had to be

higher than 1. The function created allowed for the code to

start recording the wavelengths that appeared more than once.

The first filter found was then stored and the scan continued

until the number of occurrences was registered. Once the total

number of iterations for the filter was found, the function was

cleared and the scan continued for the rest of the wavelengths.

Altogether, this segment of the function delivers the number of repeats for each wavelength

that occurs more than once, across the top four z-values for all regions of interest, from both

foot and toe sample sets. The reason for operating this in an automatic fashion, was due to
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the ranking system that followed after. In order to be able to score the filters and classify

them correctly, it was necessary to find the ones that occur to most, therefore not having to

apply to process on all the filters available.

Once this has been acquired, the function scans through the most frequent wavelengths

chosen, for both smallest and largest difference, and it assigns a score to each filter, depending

on their position in the array column. The score was assigned based on minimum to maximum

z-value, however if the respective filter was not present in one of the columns, it received a

zero score. The closer the score is to the desired point, minimum or maximum, the better fit

the filter represents.

Figure 3.18: Foot filter wavelengths (nm) displayed in
order of z-score for the main ROI and its segmentation.
Starting from the top with the lowest z-score and mov-
ing down to the bottom of the table, with the highest
scores. The rows in light red indicate the minimum and
maximum four z-scores for each ROI. They are also the
areas in which the scoring method for finding the most
common wavelength, has been applied.

Figure 3.17 shows a table which con-

tains all 16 filters in increasing value,

for all four regions of interest extracted

from the toe images. The areas high-

lighted in light red, represent the part

of the columns in which the generated

code scanned for the most frequently oc-

curring filters and then assigned each a

score. For example, the filters with the

wavelengths of 540 nm, 600 nm and 640

nm repeat 3 times across the regions for

maximum z-value. When applying the

classification system the process devel-

ops as it follows: filter 540 nm appears

in the first column on position 3 from minimum to maximum, in the second column it is not

present, in the third column it appears in position 3 again and in the fourth column it resides

in position 4. Each of these positions represent the score number associated with the filter.

When added together, the filter receives a score of 3+0+3+4 = 10. The same system leads to

filter 600 nm and 640 nm to score a value of 5 and 9, respectively. Therefore, the filter with

the highest score, 540 nm, was chosen as best choice for the largest difference filter, across

the regions of interest from the toe data. Same classification took place for lower z-value

filters, only fitted for the isobestic point.

Eventually, after the scoring system for each data set took place, the code generated and

exported a data file with all the final information within. Figure 3.18, similarly to Figure
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Table 3.2: Filters determined by the automatic Significance Test for all areas of interest.

Largest Difference
Filter

Isobestic
Filter

Toes 540 nm 520 nm
Foot 610 nm 560 nm
Foot

Segmentation
610 nm 620 nm

3.17, presents all the 16 filters for the global region of interest, from the top of the foot, and

its six segments.

The results from scanning and classifying all the filters, can be seen in Table 3.2, where

the determined filters for toes, large foot ROI and foot segmentation where exported by the

’Significance Test’ script. Therefore the filters that, according to the current data, seem to

demonstrate best suitability for the toe samples are: 520 nm for isobestic wavelength and 540

nm for the wavelength displaying the most difference between oxygenated and deoxygenated

data. Whereas for the main foot region, the filters are 560 nm for its isobestic point and

610 nm for the wavelength that shows the largest variation. Values for the foot segmentation

were also produced: 620 nm and 610 nm for the isobestic and variation points, respectively.

When looking at the results of the top of the foot data (see Figure 3.18), seeing as

wavelength 610 nm appears at the end of the column for three of the segmentations, but also

for the global region of interest, it becomes understandable why the system classified 610 nm

as being the best fit in this point for both. It is also encouraging because it validates the test

used, as it is expected to have filters that match, particularly for the same samples.

However, when examining the foot segmentation filter columns more in depth, it could be

argued that 610 nm only covers half of the region. Although the major region of interest also

has 610 nm as the maximum difference, when looking at the divisions made within the foot

area and how they were split (Figure 3.13), it can be seen that only the left side of the region

sports a predominant 610 nm wavelength, whilst the right side has different wavelengths in

the first positions and the 610 nm filter climbs closer towards the centre of the column.

This particularly shows a lot of continuity for one side of the foot area, however the fact

that the main region of interest still has 610 nm in the highest position, might indicate that

the right segments don’t substantially affect the outcomes, at least for this intersection point.

When directing the attention towards the isobestic fiters at the top of the columns, the

left side of the region, formed by segments 1, 3 and 5 (Figure 3.13), does not have the first

position as consistent with the filters it displays. Furthermore, when manually performing
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the ranking system only for the left side of the whole region, the only filters that repeat more

than once are 520 nm and 550 nm. They occur twice and both have a ranking score of 5,

therefore they do not particularly indicate a best fit filter for them. This may come down to

a flaw within the ranking system, which would be that there is not enough fidelity involved

when the process is applied.

The automatic rank system determined the filter for the segmentation to be 620 nm, which

is understandable as it occurs in four out of the six segments. Out of the four occurrences,

three of them belong to the right side of the main area of interest. Thus, as opposed to

the other side of the column that was mentioned previously, this shows more variety in the

results.

The isobestic wavelength chosen for the global region of interest was 560 nm, which is

distinct to its segmentation, as in most of them the 560 nm filter is closer to the centre of

the column.

When observing all of the first wavelengths in each column (Figure 3.18), it can be seen

that other than between the first two segments (named here as ROI1 and ROI2), there is a

constant oscillation occurring. It is very possible that certain filters may have been omitted

due to the high fluctuations between the values in each segment.

Fluctuations were however expected, mainly due to the differences between each area of

the foot. The global region of interest is large enough to present dissimilarities from one side

to another. In Figure 3.12 from the previous section of this chapter, it can be seen the size of

these regions and since they were split in six equal parts, each part can elicit distinct results.

This is due to the way the sample foot is positioned in the light and the spectral reflection

that may take place on different sides of the foot.

Although it is early in the method development for the segmentation of the regions of

interest, the main reason for segmenting a large ROI is to eventually be able to decide on

certain parts that can provide best results and continue extracting more data from them. For

example, the second segment, which is the one in the top right side, will always present a

certain degree of shading due to the natural position of the foot and the camera arrangement,

hence expectations of extremely accurate results from this part would be low.

On the other hand, when observing the filters belonging to the toe samples (Figure 3.17

and Table 3.2) the situation, interestingly, becomes reversed. There was no doubt that 520

nm was the most appropriate wavelength regarding the isobestic filter for this data. This

is also endorsed by the mean pixel intensity scatter plots created (Appendix .5) for the toe
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regions of interest, that are also the foundation of the current results. Compared to the top

of the foot area, this regions are much smaller, therefore it can provide a more stable result

for now, due to lack of wide data range. However, the sample was subjected to the same

collection technique and it could still be affected by external factors, such as illumination.

Although the 520 nm filter is located in the first position for the first three regions of

interest, in the fourth column the filter is found in the third position. This still provides

enough valid information to prove the suitability of the filter as the isobestic wavelength.

Nonetheless, having ROI4 yield different results was anticipated, mainly due to the low

quality of the captured area. The nature of the sample made this particular location to be

slightly out of focus in certain images and it can also presents shading in particular areas,

contributing to its poor results.

When examining the isobestic data for both foot and toes, it is clear that the toes provide

a more stable and consistent information, whereas the foot regions produced a wide variety

within the results. It was also necessary to take into consideration the fact that the left side

of the foot, might be more uniform in the delivery of its results. Regions 1, 3 and 5 of the left

side of the foot display the 520 nm wavelength relatively close to the isobestic points, in the

columns. As mentioned before, this is most likely due to the shading that occurs on the other

side of the ROI, which falls in line with the results from the toes data. When looking at the

Significance Test results from Appendix .6, it becomes noticeable how similar the oxygenated

and deoxygenated points are, particularly for the standard deviation. Combining this with

how conclusive the toe data is, resulted in the decision to only use 520 nm as an isobestic

filter for both sets of data. This decision was also taken with the advice of a NHS podiatrist,

which confirmed that due to the digits being the furthest away from the heart, they have

more vascular sensitivity and can therefore provide more valid information. Having the same

isobestic filter for both samples also signified that, due to the limitation in the number of

filters that can be chosen, there would be extra possibility to test other filters that could

prove distinct contrast between oxygenated and deoxygenated data.

Interestingly, when following the data from toe ROI, 520 nm and 540 nm were chosen as

opposite poles by the system, however the are extremely close wavelengths. The reasoning

behind this might be related to the fourth ROI again.

The wavelength for the larger variation points was selected to be 540 nm. Knowing that

ROI4 has the potential of yielding false results, the ranking system was manually applied

again for the first three regions only. When rating the most frequently occurring filters, it
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Table 3.3: Final filters that were chosen for further testing for all areas of interest.

Largest Difference
Filter

Isobestic
Filter

Toes 540 nm/640 nm 520 nm
Foot 610 nm 520 nm
Foot

Segmentation
610 nm 520 nm

was shown that without taking the last ROI into consideration, the filter which would have

scored the highest value would have been 640 nm, with a score of 9, whilst 540 nm ended

with a score of 6. An interesting point to observe, is the contradictory reversion of the 640

nm filter in ROI4, where it is positioned in the first place, namely isobestic. This also proves

that certain data collected may have not been in best conditions.

The position of 540 nm across all regions is relatively high, hence making it a favourable

filter. However, due to the condition of ROI4 recorded, the 640 nm filter should not be

disregarded. When adding all of these hypothesis together, it was decided to try both filters,

540 nm and 640 nm. They both have highest z-values and are in the top of the list. The

premise for these decisions came from the position that, depending on the results of the

subsequent data, each filter position might need to be optimised. The results of the toes data

was promising to begin with due extra consistency, therefore both filters should be tested

regardless.

All in all, there are several different decisions that could be made, mainly due to the

variety in the results, however drawing all inferences from data from one individual was not

conclusive enough. These results were based on one data point, thus extra data and testing

is required in order to fully validate the filters. Moreover, acquisition of data sets under

different conditions, with different skin pigmentation would also be useful.

Hence, the filters that were chosen and were used in the following tests can be seen in

Table 3.3. These wavelengths will, therefore be used for the application of Beer-Lambert Law

for tissue oxygenation and in any ensuing tests for more insight regarding further method

optimisation.

This code was created in order to determine the filters that should be tested subsequently.

Therefore, this script was not included in the main call function. It is not a script that will

be part of the clinical process once the test start. Clinical application of this system will

already have fixed filters that can deliver the functionality needed, without having to change

them. The reason for having fixed wavelengths relates to the fact that the camera can only
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hold 4 filters and to the need for a simplified system.

With this in mind, this function remains separated from the main script and can only be

generated individually, when necessary.

When the final results of this section are observed in perspective to the literature wave-

lengths from Table 1.1, it can be seen that although the wavelengths chosen fit into almost

all the ranges tested in the literature, the specific isobestic wavelength and the wavelengths

sensitive to changes, exhibit some variations. Comparing specific wavelengths to a literature,

which uses mostly ranges of wavebands due to higher specificity instruments, creates some

limitations in determining highly accurate wavelengths for the points needed.

The isobestic wavelength determined here of 520 nm, although it is close to the ones given

by Rubins et al. 51 , it is still outside the range by 20 nm. For the wavelength susceptible to

change, Akbari et al. 45 and Rubins et al. 51 define a close range to the 640 nm established

here, whilst Bashkatov et al. 13 determines it to be 540 nm, which matches one of the filters

chosen previously for the toe data.

There clearly are limitations and a lack of high specificity with the process of determining

the wavelengths at the moment. However the only valid method of improving the process

would be through repeated tests and further clinical trials, which are not available during

this stage of the research.

The entire code for this section can be seen through the link in Appendix .4.
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Chapter 4

Oximetry Map Development

Tissue oxygenation has been heavily researched in the past, particularly the application of a

modified Beer-Lambert Law (BLL) towards oxygen saturation.23,31 As mentioned in Section

1.3.2, the oxygen saturation is calculated (Equation 1.1) based on the ratio between O2Hb

and HHb, from which different variations of the formula can be created depending on the

aim of the research.

There have been studies in which the extinction coefficients for both O2Hb and HHb are

unknown, hence certain algorithms have to be put in place as well.47

Furthermore, the method also carries some limitations, which can be accounted for and

adjusted. The challenges mainly concern the other chromophores, which may have an effect

on the optical reflectance of the blood vessels.31 There are less significant chromophores, such

as carotene, bilirubin or lipids, whose influence is not normally considered in tissue oximetry

methods.13,28,31

However, there is one important pigment chromophore for the visible wavelength range,

which has been investigated and considered in oximetry, melanin.23,31 Melanin is one of the

main absorber of light in the epidermal tissue51 and if distributed abundantly it can cause

substantial alterations to the MSI oximetry.28,31 Therefore, melanin has been accounted for

in studies, by taking into consideration its extinction coefficients and implementing them

within the formula.31,51

Recognising and implementing the melanin factors is extremely important, particularly

when studies involve clinical trials. However, for this stage of the discussed research, the

foot sample used belongs to only one individual. Hence, the melanin coefficients are constant

throughout the study. The implementation within the formula has been performed by multi-

plying with the melanin coefficients factor51, therefore in this case the factor would be 1. For
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the next sections the melanin will not be considered due to the consistency motive, explained

above.

This chapter investigates two approaches of Beer-Lambert Law for the development of

oximetry maps, to identify the resulting relation between the visible wavelengths used and

the tissue oxygenation. Although two methods were examined, only one was carried forward

due to its suitability to a clinical environment.

Both methods were applied through MATLAB and the scripts created for the application

are explained in the following sections. The same code was subsequently executed for the

next sets of images acquired.

4.1 Dual-Wavelength Oximetry Map

4.1.1 Beer-Lambert Law

The Beer-Lambert Law applied for this method, is based on two wavelengths: isobestic wave-

length and the wavelength which exhibits the highest sensitivity the change between O2Hb

and HHb. It operates particularly well when the extinction coefficients are known, due to the

fact that it functions by looking at the proportion between oxygenated haemoglobin (O2Hb)

and deoxygenated haemoglobin (HHb), based on the location of the isobestic point.47,48

The equation47 used to measure the oxygen saturation of the tissue can be seen below:

SO2 =
ελ1
HHb(

ελ2
O2Hb − ελ2

HHb

) × ∆Aλ2

∆Aλ1
−

ελ2
HHb(

ελ2
O2Hb − ελ2

HHb

) (4.1)

Where λ1 represents the isobestic wavelength and λ2 represents the wavelength with the

biggest variation. ελHHb and ελO2Hb serve as the extinction coefficients of HHb and O2Hb at

each wavelength, whilst ∆Aλ is the total reflectance for the specific wavelength λ.

The application of the formula depends on the data that is extracted. In this case,

applying the formula using only the mean value for each ROI, would only result in comparing

the regions of interest with each other, leading to a more generalised approach. Blood vessels

would be more difficult to visualise in a large region, hence it was decided to apply the formula

on each pixel of the regions, producing a pixel by pixel comparison and oxygen saturation

(SO2) colour maps as well.

However, the limitations of this method consists of the fact that it combines the pixels

from the O2Hb and HHb regions creating a new image with the SO2 displayed. A practical

clinical version of this suggests that patients would have to undergo arterial occlusion, in
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order to acquire both coefficients, which is not feasible for real world application.

The equation was input into MATLAB as a separate function, which was later called in

the oximetry map script below.

The code for the equation can be seen through the link in Appendix .4, under the title of

’BeerLambertLaw1’.

4.1.2 Oximetry Map

A function was created in order to be able to apply the Beer-Lambert Law on each pixel

within the regions of interest and therefore create an oximetry map.

For this, it was necessary to create variables for each wavelength that was going to be used

during this process. Due to the camera only having four lenses and being able to accommodate

only four wavelengths at once, it was necessary to identify the ones that could deliver the

functionality needed for the system to be used in a clinical environment. This meant using

the wavelengths that can provide accurate data when focusing on the relation between the

visible wavelength range used and the tissue oxygenation. The only filters used at this point,

were the ones decided upon in the previous chapter, Table 3.3. These wavelengths had to be

exported inside this script in order to be of usage. As the camera has a filter limitation of

four wavelengths, they were manually hard-coded inside the main NIPAD script (Appendix

.4, Figure 2) as variables. Following that, the wavelengths were invoked into the oximetry

map function and remained in use throughout.

Variables for each parameter needed were also created at the start of the function. This

included: oxygenated haemoglobin (O2Hb) and deoxygenated haemoglobin (HHb) for the

second wavelength (λ2), followed by IsoO2Hb and IsoHHb for the isobestic wavelength (λ1).

Due to the toe data having two wavelengths as λ2 (Table 3.3), a condition was introduced

at the beginning of the first for loop that assures the code will be executed for both sets of

toe filters.

The same principle as in the ’Significance Test’ script, was followed at the beginning of

the code. The data import inside the code, was again based on the array from Table 3.1.

First, extraction of the individual pixels out of the ROI was performed. The initial concept

was to attempt to isolate the regions of interest, overlay them (λ1 and λ2) for their respective

filters and then create a mask for those regions, which would have eventually resulted in the

oximetry map. However, whilst the ROI do have the same size, there were certain areas that

were not aligned perfectly. There is still enough movement between each sample present, that
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Figure 4.1: Fragment of code used for re-drawing ellipses, finding and importing the pixel coordinates
for BLL application.

when superimposed on top of each other, the regions simply do not fully match. Therefore,

the most appropriate method was to use part of the code from the region of interest script

(Chapter 3, Section 3.2.1) in order to determine their locations here.

Fragments of how this was completed are shown in Figure 4.1. Starting with m==1, the

large difference oxygenated filter for the toe data, the exact same line used in the ROI script

to draw ellipse was brought in. The ROI locations were imported from the ’Region of interest’

creation code (Section 3.2.1), together with the binary masks that were formed. Due to their

circular shape, some difficulties are expected when extracting data and finding the locations

of each pixel. However, through the binary mask created, each pixel coordinate was found

for the mask, on the image. After finding each pixel’s coordinate, each of these were stored

in position 1 for both x and y axes. These positions are very dependent on the images it

correlates with, hence they are each stored in a different position number, depending on their

image of origin.

The code continued to execute the same commands for the oxygenated isobestic filter

from the toe data. Once it ended, it progressed to m==3 (Table 3.1), for both the oxygenated

foot filters. For these samples, isolating the data was performed by cropping the region of

interest out of the image, using the four known corner coordinates from the previous ROI

script. For the deoxygenated data of both toes and foot, the same process explained above

was carried out: a binary mask was created and pixel coordinates were extracted, isolating

the data needed.

For the foot segmentation, similarly to when the regions were created, temporary ROI

were formed with the known pixel positions and the system continued accordingly; the shape

and the size of the segments remaining the same as in the original segmentations constructed.

Once the pixel coordinates from each region of interest were stored, Beer-Lambert Law

61



Figure 4.2: Fragments of the function used to apply BLL on each pixel in every region of interest.

(BLL) was applied. For this, an inner function was created, which calls in the Beer-Lambert

Law displayed in Equation 4.1.

The function used a loop to separate the foot and the toe data in two sections, as it can

be seen in Figure 4.2. Starting with the foot data, the code was directed to index every pixel

in the regions of interest, on both axes and then apply Beer-Lambert Law (Equation 4.1).

For the data containing the toe regions, the method applied was slightly changed. Most of

the dissimilarities that appear during this process between the toe and foot data, is based on

the fact that ellipse functions have more complex parameters compared to rectangles. Hence

why extracting data becomes more challenging.

While the BLL function was being generated, an issue developed regarding the sizes of the

ellipses. The MATLAB array created while the ROI were assigned, was double checked again

and there was no apparent difference in their size. However, due to the constant displacement

of the ellipse around each image, some of the pixels situated in the extremities of the circular

object, seemed to have been changed. Therefore, some of the ROI objects were not of same

coordinates with each other anymore.

Figure 4.3: Process of cropping the ellipse binary mask
for better visualisation, where the white dot represents
the ellipse mask and its movement.

The situation was corrected and ad-

justed, by firstly converting the arrays

into cells, making the values needed

more accessible. The minimum total

number of coordinates among all regions

was found and the extra pixels in each of the other images were removed. This way every

single value was successfully indexed, without exceeding the boundary conditions. Albeit,

removing pixels is not ideal and there is a chance of having an effect on the intensity of the

pixels for said region, however the written code also implemented a limit so that only the

marginal pixels and the minimum amount necessary were removed.

The ROI masks were then cropped out of the whole image, to be able to have an aestheti-
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cally pleasing shape, which was also zoomed in for better visualization. Figure 4.3 displays the

cropping process and the necessary effect it had on the image. After the ellipses were brought

to an equal size among all, the BLL inner function was applied to each pixel coordinate inside

it.

The BLL function was applied pixel by pixel, on all regions of interest and for all filters.

Due to the nature of the method, each dual-wavelength set creates a new image. The program

imports the pixel value from the same position from each region of interest needed and

combines the value through the Beer-Lambert Law formula, developing a new image. The

new image displays the oxygen saturation of each pixel in that region of interest. In order

to generate them visually, the MATLAB inherent function imagesc was implemented. The

command applies a colour chosen to each pixel value in the array formed. In this case the

colourmap colour vary from blue to red, the latter showing the highest oxygenation.

The entire code for this section can be seen through the link in Appendix .4, under the

title ’Oximetry Map 1’.

4.2 Minimum/Maximum Pixel Oximetry Map

4.2.1 Beer-Lambert Law

The elementary standard form of measuring arterial oxygen saturation is by looking at the

ratio between oxygenated haemoglobin and deoxygenated haemoglobin, using two wave-

lengths representing the different oxygenation levels. The saturation is defined by the equa-

tion:31,49,50,52

SO2 =
O2Hb

(O2Hb+HHb)
(4.2)

where O2Hb is the oxygenated haemoglobin and HHb is the deoxygenated haemoglobin.

When applied in image processing, the formula examines the range within the area chosen,

from minimum pixel value to the maximum. Thus, the equation was used for each image

collected, with and without arterial obstruction, resulting in a final oximetry map for each

oxygenated and deoxygenated image in part. O2Hb represents the maximum pixel intensity

from the region of interest, whereas HHb is the minimum pixel intensity value from the same

region of interest.

The assumption made was that any changes between the total reflectance of oxygenated

and deoxygenated areas, are in a 1:1 ratio. This may not be the case, however further
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testing specifically regarding the background illumination and the affects it can have on both

oxygenated and deoxygenated reflectance, is required for optimum development. To maintain

the range, the isobestic wavelength data was applied as a normalisation factor.

This was put into practice by identifying a norm value from the isobestic data and applied

it to the oxygen saturation. In order to make the resulted values comparable, the same

normalisation factor was used across each image group, one for the foot image group and one

for the toe group. Namely, from the first set of images that were to be taken, the mean pixel

intensity value across all the regions of interest, for both foot and toe, was calculated. This

resulted in one average value for toe data and one for the foot data, which were then divided

by 255, the maximum intensity a pixel can have. Dividing the mean by 255, normalises the

intensity range between 0 and 1 as a percentage value.

Figure 4.4: Isobestic normali-
sation values for both toe and
foot data.

The final values used as the normalisation factor can be seen

in Figure 4.4, where ’IsoMeanNormT’ is the constant applied to

the toe data and ’IsoMeanNormF’ is the constant for the foot

data. As aforementioned, these values were applied throughout

the whole process that followed. Hence, the SO2 equation was

changed to implement the normalisation:

SO2 = SO2 + SO2

(
IsoMeanNorm− IsoMean

255

)
(4.3)

SO2 is the oxygen saturation resulted from Equation 4.2. ’IsoMean’ represents the mean

of the specific region of interest for which the equation was applied, also normalised by 255.

For example, if the code is generated for the cuffed foot main region of interest at λ = 610nm,

then IsoMean would be mean intensity value of the cuffed isobestic wavelength, λ = 520nm.

The isobestic value was then multiplied with the saturation, as it represents a percentage of

the initial saturation level and then added to the oxygen saturation.

This equation was applied on each region of interest with the isobestic calibration. The

code was written in a separate script, which was subsequently called in the oxymetry map

function, explained in the following section.

The entire code for this section can be seen through the link in Appendix .4, under the

title ’Beer-Lambert Law 2’.

64



4.2.2 Oximetry Map

The script created for this method was applied independently of the central NIPAD program

(Appendix .4, Figure 2), mainly due to the fact that the analysis on the data was performed

already whilst generating the dual-wavelength method (Section 4.1). Hence, in order to

not execute the whole script again, a standalone function based on the processed data was

constructed, for an automatic import.

To achieve this, an additional script was used. Throughout Chapter 2 which focused

on method development, it has been explained how all the data obtained at each step, was

formerly saved externally of MATLAB and also within a cell array in MATLAB. The main

reason for also exporting the arrays with the data externally, was so that it can be used

subsequently, if needed. Hence, an additional script was developed, which has the function

of importing the data arrays in any other script that is independent of the main program.

The main reason for this script not being unified with the central NIPAD experiment, was

primarily due avoiding any errors that might have been incurred within the main program

execution. The operation of the whole code requires a substantial amount of time and would

have made the process of establishing and clearing any flaws quite demanding and time

consuming.

After automating the import of each data folder, from each former step, the focus was di-

rected towards isolating the necessary values for the application of the updated Beer-Lambert

Law.

Figure 4.5, illustrates the code used to extract the values needed from toe images without

and with arterial occlusion (Table 3.1). Hence, the data obtained was the minimum and

maximum values from each ROI of the filters chosen for the toe images, followed by the

minimum, maximum and mean values of each region of interest belonging to the isobestic

filter. The same code was executed again for the foot data and its segmentation.

After each value was obtained, the Beer-Lambert Law discussed in the previous section

was applied, resulting into a singular oxygen saturation value for each region of interest of

each image acquired. The raw values were exported in a spreadsheet friendly format. They

can be displayed in any application such as Microsoft Office Excel.

In order to visualise the oxygen saturation, similarly to how it was developed previously

for the dual-wavelength method, oximetry maps were created. The method used for creating

these colour maps, is the same as explained in Section 4.1.2. The ROI code was used to be

able to obtain pixel coordinates for each ellipse and the pixel coordinates of the rectangle
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Figure 4.5: Code written to extract the values needed for the application of BLL on each ROI.

regions.

Specifically for the ellipses, the reason it was necessary to be drawn again, was so that

the binary mask could be generated. Creating the mask signified that pixel positions can be

established and having the coordinates meant that BLL can be applied upon each pixel within

the region, leading to an oximetry map for each image. As explained during the previous

colour map code, for the foot data, localising the coordinates was much easier, due to the

shape of the region having corners. Therefore, the areas needed were cropped and BLL was

applied accordingly.

Once the pixel coordinates from each region of interest were stored, BLL was applied. The

same function as in section 4.1.2 that ensures sizes match, was created for the application of

the formula per pixel. The size conversion for ellipses was applied, as well as the isolation

process highlighted in Figure 4.3.

The main disparity in the BLL equation, resided in the inputted values. When applying it

pixel by pixel, the result produces a SO2 value for each pixel in the region, as opposed to the

value that was generated earlier per each region, whilst using the minimum and maximum

intensities of the ROI.

Therefore, the equations (Equations 4.2 and 4.3) were changed slightly for the production

of the maps. O2Hb became the specific value of the pixel for which BLL was applied, whereas

HHb continued to represent the minimum pixel intensity value from that region of interest.

The isobestic constants remained the same and ’IsoMean’ was exchanged with the specific

pixel intensity value of the relevant isobestic region. Table 4.1 offers a formula visualisation

of the different values automatically introduced for both SO2, per region of interest and pixel

by pixel.

After the BLL function was applied pixel by pixel, on all regions of interest and for all

filters, the colour maps were created. Contrary to the first mapping technique, this method

creates a cuffed and without cuff oximetry map image for each filter. Hence, each single ROI
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Table 4.1: The values used for the production of SO2 per ROI and pixel by pixel for the colour maps.
The second column indicates the values used for BLL, whilst the third exhibits the ones applied from
the isobestic filter for normalisation.

Average SO2

per ROI
Pixel by pixel

SO2

Beer-Lambert
Law

O2Hb = Maximum
pixel value in ROI
HHb = Minimum
pixel value in ROI

O2Hb = Pixel value
at the specific location
HHb = Minimum
pixel value in ROI

Isobestic
Filter λ

normalisation

IsoMeanNorm = Constant
IsoMean = Mean pixel

value of ROI

IsoMeanNorm = Constant
IsoMean = Pixel value
at the specific location

forms a new image ROI after the application of BLL, displaying the oxygen saturation of

each pixel.

The entire code for this section can be seen through the link in Appendix .4, under the

title of ’BatchOximetryMap2’.
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Chapter 5

Clinical Application

MSI is considered to have an outstanding potential regarding the enhancement of current

medical techniques and instruments. Acquisition of spectral data through MSI, can deliver

real-time information about the oxygenation of skin tissue.23,31

The studies investigating HSI/MSI and its abilities to collect spectral data and detect

tissue oxygenation have yielded incredibly promising results.6,54–57,64 Arterial occlusion to

mimic vascular diseases was used in past research where clinical trials were not available,

leading to reliable conclusions, however further studies need to be conducted in order to

improve accuracy.51,52,56,61,70

The experiments demonstrated that HSI/MSI is useful in measuring and determining

oxygenation changes in the vascular tissue, whilst also being reproducible.31,51,52,56,61 Never-

theless, these studies also emphasised the importance of approaches that combine HSI/MSI

together with other reliable techniques, such as thermal imaging,52,70,80 pulse oximetry or

other approved presumptive pulse tests and imaging techniques; in order to increase accu-

racy and repeatability.23,31,56

The method presented in this research uses MSI for detection of tissue devascularisation,

whilst also attempting to improve the technical aspects of the device, making it less bulky,

low-cost and portable.

After creating the algorithm for the extraction of tissue oximetry data, further testing

was required to assess the performance of the filters with real-world examples that exhibit

unpredictable changes in the background illumination.

This chapter will aim to discuss the efficiency of the software implementation, whilst

analysing the data collected with the four filters: 520 nm, 540 nm, 610 nm, 640 nm.
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5.1 Final Tests

Having discussed how the analysis method was constructed and the four wavelengths were

chosen, the next step was to perform multiple tests on the filters to determine their validity.

Testing the filters meant that the code created could be employed and investigated for further

improvement.

Figure 5.1: Outdoors image acquisition set-up.

Collecting real-world samples was bene-

ficial, not only for the filter testing, but also

for the ability to observe any similarities

between different environments. Hence,

data was procured indoors, where artificial

lighting dominates in the background, but

also outdoors, where natural lighting dom-

inates in the background.

The instrumental arrangement was

kept identical to the structure shown in

Figure 2.3. The system used for the im-

ages collected in the laboratory can be seen

in Figure 2.16, whereas the setup used for

the outdoors samples, is displayed in Fig-

ure 5.1. The latter set of images was collected on a cloudy summer afternoon, without the

sun rays hitting the sample directly. For the purpose of this research, only daytime tests were

carried out.

The four filters used (520 nm, 540 nm, 610 nm, 640 nm) were inserted into the camera

slots and after the camera system was set, no other changes were made regarding the setup.

The parameters, including focus and distances from sample to filter, remained constant all

throughout image collection. For each environment, 15 sample sets were collected. Each set

contained one image taken with arterial occlusion and one taken without the occlusion, for

each filter. Hence, each set gathered contained eight images.

Similarly to the trial samples used for the code development, the XIMEA CamTool soft-

ware was operated for the acquisition of images. The process was completed successfully,

however there were a few dissimilarities within the software execution during image collec-

tion, that need to be considered.

Firstly, during the initial trial collection, the images for all the filters were saved as
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Figure 5.2: Before (left image) and after (right image) flat-field correction comparison for image
collected during the initial trial, at 640 nm without arterial occlusion.

a TIF format. However, when the current 30 sets of data were created, the images were

automatically exported as a BMP format. Unfortunately, the difference was noticed later in

the filter testing, when the code program was being executed. Although both extensions are

specific for uncompressed formats with large arrays, the two types of files were analysed to

ensure there was no significant difference.

In order to verify the difference in pixel value of the two formats, two identical images of

a corner of a room were captured in a controlled illumination setting. One of the images was

saved as a TIF and the other as a BMP format. When processed, the average pixel intensity of

the TIF image was 172.5537, with a pixel standard deviation of 16.5541. Whereas, the BMP

image had an average of 172.2950 and a standard deviation of 16.5333. The in-built MATLAB

function setdiff was also applied, which returns the number of pixel differences between the

two images. The set difference between the two images was of 92 pixels, accounting for the

small variation in their averages. Moreover, considering the 1280x1024 image size, the set

difference constitutes 0.01% of the total pixels. Therefore, the deviation from TIF to BMP

had no impact on the final results regarding the pixel intensity. Hence, no major changes

were applied to the code other than extending the recognition pattern towards a BMP format,

alongside TIF. Moreover, the fact that all images collected for these final trials were batch

saved as BMP, signified that any change would be consistent across all results, thus the pixel

intensity fluctuation would still be visible accordingly.

The second inconsistency compared to the original images, was the difference in camera

exposure. As it was seen in the first trial images (Appendix .5), there were a few wavelengths

for which the images exhibit reflection from the light system, that was not greatly reduced

even after flat-field correction, particularly for the toe images. Figure 5.2 shows an example
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of such image from the initial trials, by comparing the image collected at 640 nm before

and after flat-field correction. In this example, the reduction in the exposure is visible, but

not fully corrected. A reason for this is due to the fact that the XIMEA software setup for

exposure was left on automatic mode, to help compensating for all images.

Similarly, when the current samples were collected some of the images also appeared very

bright, hence displaying an abundance of reflectance, mainly due to over-exposure. During

the image capture, when the exposure level was monitored within the software, the automatic

exposure was at 100.04 ms. This was for the whole image, before any image processing took

place.

A normal effect from the pixels that are over saturated, is an increase in intensity values,

which would inevitably give false results. To avoid any over-exposure, whilst also trying to

remain consistent with the image capturing process, the exposure level was set to 43.74 ms

across all acquisitions. Attempting a lower value than 43.74 ms appeared too dark, however

a higher value seemed to still deliver a large amount of reflection. Therefore, the exposure

was set to 43.74 ms for every image.

Applying the same exposure across all images, should still produce the same range of

differences, assuming the sample is not over or under exposed. Exposure is environmental

dependent, hence it is important that all images compared are of a similar exposure. The-

oretically, only the initial images should be affected by the automatic exposure as in this

instant, all images were taken at once with a unified exposure and gain. The effects the

exposure change had on the images is explained more in-depth within the next section.

Following the completion of sample acquisition, a compressed version of the complete code

program created was executed. The functions applied can be seen in Figure 5.3 and they

focus on yielding results regarding the reflected intensity of each wavelength used. Hence,

the ’Significance Test’ script was not required to be enforced anymore.

Each set of samples, from each batch collected, indoors and outdoors, was subjected to the

program created. The outcomes contain two sets of results regarding the oxygen saturation

produced: one for the first method described in Chapter 4, and one for the second method.

Both sets of trial results for both BLL methods, including the images captured, data

pre-processing and processing, can be visualised in Appendix .7.
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Figure 5.3: Updated MATLAB process applied to both final trials.

5.2 Results and Discussions

This section presents and discusses the principal findings of the application of the program

upon the final test samples.

The first dual-wavelength BLL method mentioned in Section 4.1 focused on the applica-

tion of BLL on the ROI selected, by using the extinction coefficients of the two wavelengths:

isobestic and the one which exhibits a larger difference between O2Hb and HHb. Although

the results for this method were generated as well, due to the fact that it was not suitable

for the aim of this research, only the second BLL (Section 4.2) was analysed.

The results of this method can be seen thorough the link in Appendix .7, within the ’SO2’

file for each trial from both environments.

The dual-wavelength method combines through Beer-Lambert Law the reflectance value

of both images, with and without arterial obstruction from each wavelength, leading to an

oxygen saturation value that represents both images. The purpose of the initial trials was

to prove that there are differences between the intensities of cuffed and without cuff images.

However, the first equation used requires for both oxygenated and deoxygenated coefficients

to be known. Hence, translating this into a clinical version suggests that patients would

have to undergo arterial occlusion, in order to acquire both coefficients. This would clearly

be undesirable and unpractical, as the predominant functionality was for practitioners to be

able to use the camera in a simpler manner. In real clinical environment, the ideal system is

to be able to produce an oxygen saturation result immediately after image capture, instead

of creating two oxygenation profiles, before and after arterial obstruction.
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Therefore, the minimum/maximum pixel BLL method explained in Chapter 4, Section

4.2 was preferred and then adopted as the best formula of operation, having the entire focus

directed towards enhancing this technique. The simplest form in which the data could be

observed, was to examine the range of pixels, which is the intensity from the minimum

to maximum point. This was subsequently adapted and normalised to provide the oxygen

saturation. To make the data readable, the intensities were converted to a percentage range

between 0 and 1, as explained in sections 4.2.1 and 4.2.2.

Each set of images has been processed accordingly, and the resulted regions of interest

were subjected to BLL to obtain an oxygen spectrum. In addition to the pixel by pixel oxygen

saturation colour maps that were created, the mean SO2 values per each region of interest

were averaged for each environment, indoors and outdoors. These values were then plotted

for each filter, in order to be able to globally compare different oxygenation states from the

data.

The results of the analysis provided by the toe data, are presented in Figure 5.4, where

the final plots for each filter used are shown. The values seen are dependent on the average

SO2 value within the area of interest. Hence, the expected trend consisted of having a higher

SO2 value for the O2Hb regions compared to HHb.

When examining the data from Figure 5.4a, it became evidently that the expected trend

was not followed for the 540 nm filter. The first ROI has a higher mean SO2 value for

its oxygenated image, however the second and third regions display a higher SO2 for the

HHb images. Interestingly, for the fourth ROI the two switch again, however as explained

in Section 3.2.2, the data within this region was not promising, due to environmental and

experimental set-up variations. The values are also very close to each other, particularly for

the second and fourth regions. The second ROI experiences overlap at a 48% SO2.

Moving on to the second filter used for the toes, the results in Figure 5.4b exhibit some

variation compared to the first wavelength. Keeping in mind that this filter was chosen as an

alternative due to the high discrepancy within the fourth region of interest (section 3.2.2), the

results displayed are more consistent and applicable to the initial filter deductions. The first

three toe ROI present a higher SO2 value for the O2Hb images. As opposed to the previous

wavelength, the fourth ROI reverses with a lower SO2 value for its O2Hb image and higher

for the HHb.

The 640 nm wavelength clearly displays a consistent difference between O2Hb and HHb,

and although there is a shift in the fourth ROI, it was expected due to the quality of the
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(a) Images collected indoors at 540 nm. (b) Images collected indoors at 640 nm.

(c) Images collected outdoors at 540 nm. (d) Images collected outdoors at 640 nm.

Figure 5.4: Average SO2 values for the toe data, representing filters 540 nm and 640 nm, for all regions
of interest, in both environments. Each individual value was calculated using the isobestic wavelength
(520 nm) values, together with one of the two wavelengths mentioned above. In each graph, the red
points represent the images without cuff occlusion, hence the oxygenated values (O2Hb), whilst the
blue stars represent the images with cuff occlusion, hence the deoxygenated values (HHb). The error
bars on each plot represent the standard deviation of the data from each point.

area. Hence, it can be inferred that this filter produced more reliable results in comparison

to 540 nm, however the range of difference between oxygenated and deoxygenated needs to

be considered as well.

Turning now to the data from the images collected outdoors in natural lighting, in Figure

5.4c the averaged SO2 values at 540 nm are depicted for each region. All four regions of

interest show a higher averaged oxygen saturation for the images with cuff (HHb), leading

to the decision that the filter does not function as desired, particularly in an uncontrolled

environment. The reason why the outdoors environment produced slightly different HHb

being higher, could be due to the fact that the sample may have had excessive background

illumination, whilst the controlled environment had a more fixed illumination. The four ROI

(Figure 5.4c) express a small variation between O2Hb and HHb, with the largest being of
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approximately 1% in the fourth region. The other differences are of less than 1% and the

same overlap present in ROI 2 for the indoors 540 nm plot, is seen here as well only at 48%

SO2.

Figure 5.4d has a slightly higher SO2 value for O2Hb in ROI 1, however for the other

three ROI HHb is higher. The same almost-perfect overlap for ROI 2 is present here as well.

There is a clear trend for the second region of interest, where the oxygenated and deoxy-

genated values seem to be extremely close. Moreover, the 540 nm filter is inconclusive as

there is no clear consistency between O2Hb and HHb trends. The reason for this could be

due to the conflicting relation between the 540 nm filter and the isobestic filter of 520 nm,

as they are very close to each other but were subjected to a formula that functions based

on a larger ratio between its components. This signifies that the 540 nm - 520 nm filter

combination, is simply not suitable for detecting the tissue oximetry at this point. If values

continue to overlap, there is no clear delimitation between oxygenated and deoxygenated and

having a definite reading is necessary for clinical applications.

Out of the two filters, the images collected in the laboratory at 640 nm, provide the best

consistency, however the same filter presented some changes when used outdoors. This can

simply say that having a controlled environment is most suitable when using this filter for

the toes, however it also implies that its performance is not sufficient or that the technique

needs further optimisation, for each step. However, testing the same process again, but on

smaller regions of interest for better specificity, could also produce more accurate results.

As it can be seen in Figure 5.4, the error bars express the spread of the data for each filter.

The deviation for all points are large, indicating a higher data variability from the mean value.

The SO2 values on the graphs draw attention to the predominantly low difference between

cuff and without cuff images, which is also supported by the standard deviation bars overlap.

The spread of data across the ROI seems to be relatively similar, demonstrating that the

range of data is also close to each other for the filters used.

The data is mainly based on the mean pixel intensity of each ROI and the mean SO2 per

each region. On average results seem to exhibit similar intensities per each set, however it is

also important to examine these fluctuations within the regions chosen.

In Appendix .8, Figures 3, 4, 5 and 6 depict the oximetry maps for all four regions of

interest of the toe data, oxygenated and deoxygenated, collected with the 540 nm and 640

nm filters. The images shown in Figures 3 and 4 are from the sets collected indoors, in an

environment with artificial lighting, whilst the maps from Figures 5 and 6 belong to the sets
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collected outdoors, in an environment with natural lighting. As mentioned before, 15 image

sets were acquired for each environment, however only 10 sets were used for yielding the final

data. The reason being that, coincidentally, the created code program, resulted in errors for

5 image groups out of the 15 collected. The justification for this error is discussed further in

the section.

Each O2Hb - HHb pair displayed in Appendix .8, was selected out of the 10 image series

from each environment. Hence, there are other 9 pairs left from each group. The sets from

each environment are extremely similar to each other, which indicates the filters can produce

repeatable results, even though there are other influencing factors. All the colour maps for

each group of images, can be seen through the repository link in Appendix .7.

The colour maps only confirm the results from the graphs in Figure 5.4, as the lack of

variation between the oxygenated and deoxygenated is also visible on the maps. Hence,

similarities can be linked between the averaged SO2 plots and the SO2 colour maps. When

examining Figures 5.5a and 5.5b (also avaialble in Appendix .8), it can be seen how similar the

two are, with the O2Hb region experiencing a slightly higher oxygenation. This matches the

averages from Figure 5.4, however it is important to keep in mind that these maps represent

only one of the sets made, whereas the mean SO2 values indicate the oxygenation level

across all image groups. More exactly, each map represents one of the 10 points used for each

average SO2 in the final plots (Figure 5.4), hence any changes that are seen on the maps of the

individual O2Hb and HHb are singularities. However, when combined together, the average

resulted value for all sets can be somewhat different to the individual sets. Additionally, due

to oxygenation levels being so similar, the maps offer limited ability to visualise differences.

As aforementioned, filter 640 nm (Figure 5.4b) seemed to exhibit the most accurate and

consistent information. However when looking at Figure 4 in Appendix .8, where the regions

are observed individually, the dissimilarities between O2Hb and HHb seem almost impercep-

tible, which brings back the observations made earlier regarding the colour maps representing

only one of the sets acquired, whereas the mean SO2 values indicate the oxygenation level

across all image groups.

The samples collected outdoors, such as the regions displayed in Figure 5.5c and 5.5d

(all regions available in Appendix .8, Figure 5 and 6), exhibit more variation across the

regions. It is noticeable for both filters how the pixels higher in SO2 are more dispersed

in comparison to the samples collected in the laboratory. This is more likely due to the

fact that the illumination the foot receives outdoors was more scattered, whilst the lighting
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(a) O2Hb region of interest 1. (b) HHb region of interest 1.

(c) O2Hb region of interest 1. (d) HHb region of interest 1.

Figure 5.5: SO2 oximetry colour maps (540 nm - isobestic 520 nm) for ROI 1 of the toe images,
collected indoors (5.5a and 5.5b) and outdoors (5.5c and 5.5d), at 540 nm.

inside the laboratory was more localised. Surprisingly, although extra illumination and pixel

dispersion occurs, when observing the final plots from Figure 5.4, it can be seen how for all

data collected outdoors (Figure 5.4c and 5.4d), the SO2 levels are lower by approximately

10% in comparison to the data collected inside the laboratory (Figure 5.4a and 5.4b).

The explanation might reflect into the initial pixel intensity used for BLL, which also

leads to the level of exposure that the images were subjected to. However, when looking

at the initial average pixel intensity resulted from each ROI before BLL application and

displayed in Figures 7 and 8 from Appendix .8, it can be seen that the mean pixel intensity

for the samples collected indoors is overall lower than for the ones collected outdoors. When

examining the 540 nm and 640 nm wavelengths in both environments, it can be seen that the

difference in pixel intensity between the outdoors ROI have an intensity closer to and over

100 a.u., whilst the ROI collected indoors have an overall pixel intensity closer to 50-60 a.u..

The plots from both figures display all four ROI from the second trial of each environment,

indoors and outdoors. All the trials specific to each environment are seen to follow the same

trend that appears in Figures 7 and 8 (Appendix .8), hence only one set for each environment
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is displayed. The pixel intensity values of each ROI in each trial can be seen through the link

in Appendix .5.

Therefore, the pixel intensity values did not factor into the fact that the average SO2

values for the outdoors images were lower than for the images collected indoors. The reason

for this final trend seems to derive from the BLL formula application and it could be the

consequence of either the isobestic mean used, or the SO2 equation (Equation 4.2). The

latter could have had an effect due to the minimum and maximum intensity values that the

formula used, indicating the difference between the spread of data between the oxygenated

and deoxygenated. Hence, the SO2 ratio between the samples collected outdoors and indoors

was affected by the pixel intensity data spread within each region of interest.

(a) Main foot ROI collected indoors. (b) Segmentation of ROI collected indoors.

(c) Main foot ROI collected outdoors. (d) Segmentation of ROI collected outdoors.

Figure 5.6: Average SO2 values at 610 nm, for the main foot ROI and its segmentation, in both
environments. Each individual value was calculated using the isobestic wavelength (520 nm) values,
together with the data from 610 nm. In each graph, the red points represent the images without cuff
occlusion, hence the oxygenated values (O2Hb), whilst the blue stars represent the images with cuff
occlusion, hence the deoxygenated values (HHb). The error bars on each plot represent the standard
deviation of the data from each point.

Moving on to the final sets of images focusing on the foot artery, the results of the analysis
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are presented in Figure 5.6, where the final average SO2 plots for the 610 nm filter and the

520 nm isobestic filter are shown.

The expected trend was the same for these samples as well, with a higher SO2 value for

the O2Hb regions compared to HHb. However, similarly to the previous results for the toe

data, the outcome did not follow the trend.

Figures 5.6a and 5.6b display the average SO2 values for both oxygenated and deoxy-

genated ROI from the foot images across all sets, collected in a controllable environment

at 610 nm. Across all the sets collected indoors, the main foot ROI exhibits a higher SO2

average (Figure 5.6a) for the deoxygenated image than for the oxygenated one, with a small

difference between the two. This is also demonstrated in Figure 5.6b, where the segmented

ROI have a higher deoxygenated SO2 value as well.

Additionally, when looking at the six divisions, a visible separation can be seen between

the left side of the main region and the right side. The dissimilarities between the two

sides appeared mostly due to the larger size of the ROI and the natural position of the

foot, leading to more shading on one side and more variation for the pixel intensity values.

These differences were also discussed before when the final four filters were chosen, hence

the resulted SO2 values reinforce these differences. Segments 1, 3 and 5, which represent the

left side of the rectangle region are closer in SO2 value at an approximate of 62% saturation;

whereas segments 2, 4 and 6 display a SO2 value closer to 68 - 70%.

On the other hand, Figure 5.6c which represents the average SO2 values at 610 nm in an

uncontrollable environment, exhibits a higher oxygen saturation for the oxygenated, without

cuff, image. However, the difference between O2Hb and HHb of 0.01% is so small, that

producing significant results becomes unlikely. Moreover, when examining the average values

for the segmented version in Figure 5.6d, it can be seen how all divisions are almost per-

fectly overlapping, therefore yielding no conclusive results. Similarly to the sample collected

indoors, the segmentation for the outdoors data is also clearly defined between left side and

right side of the rectangle. Segments 1, 3 and 5 are closer in SO2 value at an approximate of

50% saturation; whereas segments 2, 4 and 6 display a SO2 value closer to 70 - 75%.

Although these results prove the dissimilarities between various regions and also within

the regions it must be noted that, similarly to the toe data, there is a lack of significant

SO2 difference between oxygenated and deoxygenated values. This is also reinforced by the

overlap of the error bars in each graph, which represent the standard deviation. The spread

of data seems to also be similar between the indoors and outdoors samples, particularly for
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the main ROI and the two sides of the segmented rectangle.

As can be observed in Figure 5.7, the examination of the pixel by pixel saturation maps

found no significant differences between O2Hb and HHb, complying with the results found

in the average SO2 graphs from Figure 5.6 and similarly to the toe data maps.

(a) O2Hb ROI of the foot image,
collected indoors.

(b) HHb ROI of the foot image,
collected indoors.

(c) O2Hb ROI of the foot image,
collected outdoors.

(d) HHb ROI of the foot image,
collected outdoors.

Figure 5.7: SO2 oximetry colour maps (610 nm - isobestic 520 nm) for the main ROI of the foot data,
collected in both environments at 610 nm, with cuff occlusion (deoxygenated - HHb) and without cuff
occlusion (oxygenated - O2Hb).

Each set collected in both environments has an individual O2Hb and HHb colour map

for each ROI, hence only the maps from the first trial from each environment are shown.

Moreover within each setting, the resulted SO2 maps are extremely similar with each other,

which demonstrates the lack of variability between the oxygenated and deoxygenated SO2

values seen in Figure 5.6. The maps from all trials can be visualised through the link in

Appendix .7.

Figure 5.7 (also available in Appendix .8, as Figure 9) displays the oxygenated and de-
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oxygenated SO2 colour maps associated with the main foot ROI from the first set, collected

in each environment, indoors and outdoors. The segmentation colour maps of the regions

shown in Figure 9 can also be found in Appendix .8, where Figures 10 and 11 represent

the left (ROI 1, 3 and 5) and right (ROI 2, 4 and 6) sides of the ROI image collected in a

controllable environment, whilst Figures 12 and 13 display the left and right side of the ROI

image collected in an uncontrollable environment. All the colour maps shown, have been

set to a upper quartile limit of 75% to avoid extremely high values, with a range of 0 - 1

for the SO2 percentage values. The samples collected outdoors (9), appear to exhibit more

dispersion across both oxygenated and deoxygenated regions. However, the SO2 values are

similar with no clear and conclusive separations between them.

In summary, these results show a certain functionality regarding the camera and the pro-

cessing method, however it can be argued that the four chosen filters were not suitable for the

final aim. The whole process has many variables that need to be taken into consideration. To

start with, the most noticeable aspect concerning the final filter results explained previously,

is the lack of difference between the oxygenated and deoxygenated SO2 values. Other than

the isobestic filter, which was purposely chosen as a wavelength with no change in reflectance

between O2Hb and HHb, the other three wavelengths: 540 nm, 640 nm and 610 nm, have to

exhibit a clear difference between the two in order to draw conclusive results regarding the

oxygen saturation of the tissue. The final SO2 values for both sample areas (Figures 5.4 and

5.6), showed that the variations within all four filters were inconsistent with the initial aim.

The differences between O2Hb and HHb are at an approximate 1%, sometimes experienc-

ing complete overlap or having the deoxygenated image display a higher SO2 level than the

oxygenated one.

The explanation for the similar SO2 levels, is mainly based on the exposure used during

the acquisition of the images. Looking at the overall project there are two points to consider,

one being the original data which the code was created for and also used to isolate the final

four filters, whilst the other being the second tests collected to help yield and interpret extra

findings for further optimisation.

When the initial images were acquired, the exposure setting within the software was

automatic and some of the images collected seemed to be over-exposed in certain areas.

Nevertheless, as explained above in Section 5.1, when the test images with the final filters

were acquired they appeared even more over-exposed, hence the exposure was lowered and set

to 43.74 ms. However, after the images were collected and examined they appeared dimmer
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and under-exposed. It might be that the reason for perceiving the images during acquisition

differently, is based on elements regarding the software display window. This requires further

testing of XIMEA, the image acquisition program. Therefore, by trying to set an exposure

limit to suit the areas of interest, the images ended being under-exposed.

Under-exposing the images has also had an effect on some of the trials taken in both

environments. During the previous section of this chapter, it was explained how 15 trials

were performed for each environment, however only 10 were used. Coincidentally, 5 trials

out of the 15, in both data sets have resulted in errors when the algorithm was generated.

This is due to the fact that the resulted oxygenated and deoxygenated SO2 values for each

ROI were so close together, leading to a lack of distinguishable differences and preventing

the production of an SO2 value. Moreover, the fact that the images were not subjected to

enough exposure can induce pixel intensity loss, which can create the lack of differences.

As mentioned previously, spectral reflection due to over-exposure was seen for the initial

images collected (Appendix .5) and the selection of the four filters was based on that data,

which will automatically created a change in pixel intensity, leading to an inaccurate exposure

process altogether. This is part of an exploratory process and whilst it does confirm software

limitations, there is a clear possibility of further optimisation.

Moreover, the fact that the isobestic wavelength, 520 nm, was not displaying a consistent

lack of variation between O2Hb and HHb across all sets (Figures 5.4 and 5.6), confirms that

the wavelength was not accurately selected for its purpose. The isobestic wavelength was

meant for normalisation and comparison purposes between image sets, hence it should yield

the same intensity values.

Nonetheless, even if 520 nm is the correct isobestic wavelength or if the other filters can

potentially deliver conclusive information, it is uncertain at this point mainly due to the

over/under exposure and the background illumination affecting the pixel intensity.

When observing the wavelengths used in literature (Table 1.1), it can be seen that they fit

into most ranges, however it is difficult to choose a specific waveband, when most studies are

performed within a hyperspectral range or using a commercial device. Therefore, considering

the algorithm method was completed, although it still needs further optimisation, the most

appropriate method of inspecting and re-selecting the filter choices, would be to repeat the

process of testing the entire wavelength range available. Whilst doing so all variables should

be taken into consideration, including exposure and improving illumination. LED lighting was

used as the illumination system due to the fact that these types of lamps are more commonly
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found in a medical practice. However, the effects this might have on the image collection, with

the current set up, are unknown. The light spectrum of the LED light can aid in optimising

any variations in the spectral characteristics of the illumination used. Therefore, the spectral

profile of the LED lamp used should be acquired as it could help increase uniformity and

comparability between samples.

On the other hand, there could be that certain filters are better for specific environmental

light, however considering that the camera is limited to 4 wavelengths, which in a real-life

scenario means that they cannot be changed, multiple testing would need to be performed.

The main issues that appeared, were based on certain assumptions that were taken in

order to be able to create an algorithm for tissue oxygenation, produce results and then

further optimise. The first variable issue was for the exposure and spectral reflectance created,

which was automatic initially and most likely ended up creating false results. Taking this into

consideration could mean that a manual approach might be beneficial, particularly at this

stage in the research until the automatization can be optimised appropriately. Handling

experimental tests manually, could signify higher ability to control and optimise certain

settings and parameters step-by-step, therefore leading to a higher consistency when acquiring

and analysing data.

Secondly, another issue would be the assumption that all samples were collected at the

same time. As a result of the initial instrumental and technical set up, it was not possible for

the data to be collected concomitantly, leaving space for variables to arise between sample

collections, such as change in illumination and in the position of the sample, hence decreasing

comparability.

Although the samples have been subjected to alignment process for a precise overlap,

because of the notably natural movement of the foot during the cuffing process, the overlap

was not exactly intact. Moreover, not having a flawless overlap, lead to challenges with the

ROI selection and placement.

For each trial, every ROI had to be created and moved in order to match toe/foot area

needed. This can cause issues with pixel intensity, as it is highly unlikely to be able to place

the ROI manually in the same location for toes/foot. Hence, it can become a challenge with

ellipses in particular, regarding losing or gaining pixels. In Chapter 4, it was discussed how

marginal pixels in ellipses were lost in order to apply BLL. The reason for this was the overlap

of the sample, as it required displacement of ROI, therefore changing their rotational angle

and axes. Thus, the assumption was made that, although there has been pixel loss the ellipses
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still ended at an equal size.

Despite results not being completely satisfactory at this stage due to different variables

and assumptions, there is a clear conclusion regarding the functionality of the camera and the

detection of reflectance, making it promising for further development. The method generated

not only has applicability in the medical industry, but it is also repeatable and with the new

code created, the following tests and trials can reveal more potential and abilities in creating

a low-cost, portable spectral imaging device.
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Chapter 6

Future perspectives and conclusions

The application of spectral imaging in medical care, can clearly lead to development of early-

stage diagnosis and monitoring of vascular diseases. Hence, this research is trying to not only

advance towards making HSI/MSI into a recognisable technique in medical care, but also

deliver, a cost-effective, portable technology suitable for clinical delivery.

The research presented has developed a technical set-up, acquired images with and with-

out arterial obstruction, created an entire code for the image processing in order to select

four preliminary wavelengths (520 nm, 540 nm, 610 nm, 640 nm) and performed multiple

trials in two different environments with the selected filters.

There are many existing variables that still need to be examined and corrected. Starting

with the light exposure, which would require further testing using XIMEA, the software for

image acquisition, but also looking into alternative lighting systems that may have a better

light selectivity than the LED lights used here. Another issue with XIMEA, is that at the

moment the software only allows one image to be collected at a time, hence each image

with and without cuff is acquired one after the other, decreasing comparability. Due to time

restraints, this was not amended at this stage, however a script can be written within the

software, to a allow for collection from all four lenses at the same time.

Secondly, a way to overcome foot displacement for better ROI overlap needs to be in-

vestigated. Keeping the foot still in real clinical scenarios is not a solution, however when

it comes to isolate the ROI, the same pixels must be selected. Hence, the code should be

updated with a particular alignment automatisation, which needs to be implemented.

Thirdly, the ranking system used for selecting the four filters could be enhanced to have a

higher specificity. However, not all the images from which the filters were chosen were exposed

perfectly, thus it may be that the reason why the filter selection was inconsistent was because
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of the exposure settings. The main method of improving the filter selection process, is to

simply perform more tests, particularly clinical trial tests. Clinical trials would result in a

slight change of BLL by implementing the extinction coefficients of other chromophores, such

as melanin, extending the sensitivity of the technique. Having a larger data set of patients, in

more variable conditions, would steer towards an improvement in establishing the limitations

of the technique and could lead to answers regarding the influence that different patients, ages,

skin types or even environmental parameters could have on the final results. However, before

performing clinical trials, the method should undergo extra testing with a tissue phantom

with known absorption properties as well. This could aid in the consistency during data

acquisition and analysis.

The whole process, including the written code, requires more optimisation by testing the

limitations of the camera and the process used. The system is not perfected yet and all

the variables mentioned before, as well as the code, can create issues; nevertheless both the

camera and the system have a high testing limit and there are many more trials that need to

be performed for a full optimisation. Unfortunately, it may be that at this stage the technique

does not have the sensitivity needed, however testing further filters will eventually reach it.

An additional step that should be considered in future developments is the applicability of

non-visible wavelengths, as they may provide a better understanding of the technique and

final results.

It can therefore be suggested that multiple tests should be performed again with all the

filters, whilst paying attention to all the variables that were disregarded during the first trials.

There will always be some variability until the system is accurately enhanced. Although the

process of optimisation is gradual and it prerequisites certain steps to be achieved, an entire

program has been completed for the project. Thus the future procedures for augmenting the

system will be more accessible regarding data collection and less time consuming.

Other future perspectives include the use of MSI together with another technique that

measures tissue oximetry, such as pulse oximeter. Using an instrument that is on the market,

even in contact with skin such as the pulse oximeter, would be beneficial in measuring and

controlling the oxygenation.49 Another option would be to investigate the hypoxia state

caused by holding breath temporarily and its opposite, hyperoxygenation, that could be

achieved by rapid breaths in quick succession, and compare the results against the ones from

arterial occlusion or with a tissue phantom. Moreover, the applicability of thermal imaging

together with MSI has been studied before, with successful outcomes.52,70,80
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The technical set-up will also be changed in order to become easily portable. This includes

creating a hand-held camera support and also finding an alternative for the long and heavy

HDMI cables that are currently in use. In the distant future, enhancement regarding the

use of the software program should also be discussed, such as developing a graphical user

interface and maybe even using a neural network, which can input the written program to

improve applicability and repeatability.

All in all, the system created and the results yielded can provide proof of principle re-

garding the feasibility of the technology presented. The detection of oxygenated and deoxy-

genated haemoglobin with MSI is already known to offer a reliable way to detect PAD.23,31

The preliminary tests performed with coloured liquid, confirm the camera’s high proficiency

in distinguishing tissue reflectance. Although, the results of the preliminary four filters (520

nm, 540 nm, 610 nm, 640 nm) were not highly conclusive, the method still opens an opportu-

nity for the performance of further system optimisation. The development of a multispectral

imaging device, that not only is non-invasive, but also light weight and low-cost, can deliver

a reproduceable method in order to detect and monitor tissue oxygenation in clinics and at

the patient’s residence.
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.1 Preliminary Tests

Raw images of the colored liquid can be found in repository: Coloured liquid images.

.2 Pixel Calibration

The individual images collected for flat-field correction, by each camera, and their respective

surf plots, can be seen in repository: Brightfield images and surf plots.

.3 Image offset calibration

(a) Camera 1. (b) Camera 2.

(c) Camera 3. (d) Camera 4.

Figure 1: Grid images collected with no filters on the cameras, at the a distance of approximately 76
cm from the camera lens to the sample support.

.4 Image processing
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Figure 2: Main code that generates the processing functions.

The entire code, with every complete function, is available in BitBucket through the

following link: MATLAB codes used for image processing.

.5 Test samples

All the images collected for all filters can be through the following link: Images collected with

all filters.

Before and after comparison of all images for flat-field correction are available through

the following link: Flat-field corrected images.

The results of the Image Offset code applied on all images, can be seen in the repository

through this link: Results of image offset calibration.

All toe images after they have been further aligned can be seen through the following

link: Further alignment toe images.

All regions of interest selected for the toe data and foot data can be visualised through

the following links: Toe Regions of interest. and Foot Regions of Interest. The resulting pixel

intensity graphs for each ROI can be seen through the following links: ROI Toe Graphs. and

ROI Foot Graphs.
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.6 Significance Test

Table 1: Z-test value results for the main Region of Interest of the foot area.

Oxygenated
(no arterial occlusion)

Deoxygenated
(arterial occlusion)

Filter
(nm)

Mean pixel
intensity

Standard
deviation

Mean pixel
intensity

Standard
deviation

Z-test
score

560 79.64856169 9.372486716 79.56423272 11.14253588 0.005791743078
580 86.06305585 13.32080613 85.46300109 10.61803676 0.03522509918
640 99.40979722 17.85346597 98.09831974 16.01413298 0.05468294418
620 101.5536383 19.74372904 98.17730411 18.2810214 0.1254795547
632 110.602914 15.78139878 114.331213 19.04905945 0.1507175046
600 108.0391447 14.92399791 104.3412599 13.90278519 0.1813008533
589 99.69277714 10.85329971 103.9944342 13.01523427 0.2538345881
650 98.92177915 17.09310673 105.5933095 18.70373578 0.2633034738
550 97.84554344 9.507401299 93.67472658 11.44266234 0.2803533091
520 84.60345636 10.20675806 79.47719195 10.2234733 0.3548481707
540 88.53288119 12.59712282 80.84518011 13.4727137 0.4168006284
510 108.7890801 13.10899725 99.89129645 9.26041324 0.5543805938
568 89.39039339 11.37245908 99.88635203 12.73100011 0.6148497471
500 98.77531581 7.632984546 90.11502757 9.513766693 0.7100166299
532 105.0354061 13.41519661 92.43837376 11.53415586 0.7120215273
610 95.00367014 15.39455556 112.9962351 18.69603075 0.7429276418

Table 2: Z-test value results for the first segmentation of the ROI belonging to the foot area.

Oxygenated
(no arterial occlusion)

Deoxygenated
(arterial occlusion)

Filter
(nm)

Mean pixel
intensity

Standard
deviation

Mean pixel
intensity

Standard
deviation

Z-test
score

620 110.9082863 7.625464518 112.0731952 5.842049739 0.121267566
520 73.73939109 7.570383625 75.0905838 6.562449474 0.134865658
640 96.83038293 8.026962156 94.68669178 7.925030387 0.19004367
580 93.5386064 7.100055069 91.18443189 7.260268348 0.23182614
500 94.0274639 8.414581269 96.90423729 6.498434859 0.270582374
550 99.31861268 9.12001786 102.9578782 7.327389032 0.311076339
532 87.89758318 11.04440449 82.87589454 8.889598525 0.35419923
510 95.06481481 12.35458438 100.8168236 10.15855003 0.359618643
650 92.51949153 8.527399243 97.51208412 8.548037053 0.413493798
540 95.58939109 5.680625364 92.02696171 4.864536076 0.476333767
600 100.1620841 9.121205533 107.5580038 8.77585823 0.584311666
560 73.45342122 7.157097095 79.26082863 5.992887902 0.622123556
589 102.4575643 9.313257982 112.6299749 9.316326269 0.77221051
632 114.4790333 9.040306956 126.9225047 9.07335604 0.971515081
568 74.36428123 9.105164598 91.91070308 9.398559663 1.340879742
610 91.87460766 7.8675876 118.3836158 6.549529886 2.589540008
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Table 3: Z-test value results for the second segmentation of the ROI belonging to the foot area.

Oxygenated
(no arterial occlusion)

Deoxygenated
(arterial occlusion)

Filter
(nm)

Mean pixel
intensity

Standard
deviation

Mean pixel
intensity

Standard
deviation

Z-test
score

620 77.90018832 16.29695264 78.06738858 18.53880943 0.00677375
632 94.35925926 16.33521831 94.54070935 19.20454556 0.007196923
640 77.31848713 15.4565175 78.13807282 14.60917255 0.038535924
600 91.61497175 12.74298037 89.98038293 12.91682885 0.090086587
568 85.78571877 7.432504624 87.90662272 11.56025075 0.154321439
589 94.99231011 11.8724799 98.3210295 15.02914986 0.173797729
580 74.29993723 10.71398667 77.4396108 10.15651961 0.212672648
650 77.62774639 13.25505396 83.09274953 17.15049787 0.25212578
560 71.73427495 8.239632097 67.33386692 10.36975789 0.332237896
540 78.52419962 11.6323039 70.46384181 13.05006217 0.46107042
520 76.42215945 8.785188334 68.81155053 9.946578193 0.573485609
610 76.85621469 11.803686 89.10831764 16.3141276 0.608453112
550 97.97332078 10.72905677 87.73273697 12.42928934 0.623684367
500 98.64441306 9.388056809 88.67259887 12.19264167 0.648017725
532 98.17777778 10.32877469 82.15772128 9.936746672 1.117738
510 118.5229127 8.922224932 100.5295041 11.30725546 1.249240707

Table 4: Z-test value results for the third segmentation of the ROI belonging to the foot area.

Oxygenated
(no arterial occlusion)

Deoxygenated
(arterial occlusion)

Filter
(nm)

Mean pixel
intensity

Standard
deviation

Mean pixel
intensity

Standard
deviation

Z-test
score

510 102.7908977 10.61622217 103.2157878 7.576285934 0.032577596
550 102.7634024 8.048009051 102.126177 6.752123584 0.060657431
520 86.48132454 6.16610902 85.53844947 4.864239454 0.120053796
600 114.2934714 8.900185927 115.9661645 7.666759856 0.142392948
640 108.9664783 7.533612062 106.6645637 8.238252669 0.206199764
589 107.1352793 8.013718123 112.2911802 9.599035644 0.412325418
560 84.1888575 6.01141581 87.60546139 5.24702603 0.42818619
650 105.6034212 8.577840886 111.890113 11.01973959 0.450183172
580 99.98534212 4.880383871 95.7329253 6.1761353 0.540219593
532 104.1932517 9.413722852 96.65775267 7.263660929 0.633752444
500 100.5927809 5.704495258 95.57812304 4.4692243 0.691988162
632 121.8511613 9.340446924 130.6230069 8.468635935 0.695736309
620 118.9501255 5.742337752 112.537037 6.478675475 0.74077811
540 100.1780917 4.996795922 92.76443817 5.212951387 1.026679705
568 86.26120527 8.251226867 104.6322034 8.721358215 1.530147199
610 105.6661645 5.965288074 127.9836472 7.051769111 2.416238875
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Table 5: Z-test value results for the fourth segmentation of the ROI belonging to the foot area.

Oxygenated
(no arterial occlusion)

Deoxygenated
(arterial occlusion)

Filter
(nm)

Mean pixel
intensity

Standard
deviation

Mean pixel
intensity

Standard
deviation

Z-test
score

640 92.07131199 14.1584744 93.27150031 15.06149721 0.058060038
632 106.1414313 14.71885586 104.3134965 17.66863223 0.07948855
620 89.16939736 15.96597406 87.15125549 16.08381423 0.089050957
589 98.5017263 10.91098622 101.3501883 13.00233929 0.167815059
560 78.81635279 8.646101343 75.25743879 10.52728569 0.261248194
580 78.34315756 11.2462943 82.88512241 11.39633198 0.283675895
568 95.32689893 6.561836694 99.85922787 11.13971033 0.350563851
600 104.9759573 12.75043613 98.32404269 11.85268514 0.382104827
650 93.84428751 12.12952501 102.8503139 16.9388946 0.432277439
540 81.59610797 11.94730888 73.08509102 12.00752578 0.502460474
550 98.63358443 9.699173321 89.16173886 10.82808878 0.651572577
520 86.29453861 8.184589752 77.01858129 10.00121618 0.717769695
610 87.96748274 12.57898624 102.842059 15.53626788 0.744094892
500 101.4737602 7.944003379 88.60486503 9.483554745 1.040235545
532 111.5493095 9.091032838 92.52922159 10.59710693 1.362246976
510 121.4925612 6.752352446 101.6865348 10.11431277 1.628630946

Table 6: Z-test value results for the fifth segmentation of the ROI belonging to the foot area.

Oxygenated
(no arterial occlusion)

Deoxygenated
(arterial occlusion)

Filter
(nm)

Mean pixel
intensity

Standard
deviation

Mean pixel
intensity

Standard
deviation

Z-test
score

589 102.2728186 6.819750547 102.7968927 7.252738713 0.052641866
560 89.27510986 4.854233215 90.20238544 4.711424518 0.137075737
550 97.40549278 6.222779868 95.18411802 5.692187915 0.263398787
632 120.4661959 6.203821476 123.1624922 6.787584624 0.293216531
650 117.6871626 7.538320078 121.7315443 8.284461018 0.361078789
510 102.0075016 7.448145088 96.3477715 5.853861356 0.597443027
520 94.55561833 5.042625726 89.86271186 4.201289304 0.715005801
600 122.2534212 8.27870205 114.1972065 6.285396818 0.775054909
640 119.565882 4.687325519 113.6994036 5.18414875 0.839384813
532 111.7462021 7.861780279 102.8633396 6.01886285 0.897147635
580 94.07561205 4.557895857 86.16751412 4.918070045 1.179369957
568 94.83750785 7.552681223 110.9821092 8.021944561 1.465303758
500 99.53003766 4.623414894 90.03873195 4.436311549 1.481266766
620 117.7140301 4.324863258 108.0105461 4.749277067 1.51064594
540 96.51465788 4.457373455 86.68411802 4.420821035 1.565900025
610 113.3978343 5.202474333 129.0892341 6.02109002 1.971940289
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Table 7: Z-test value results for the sixth segmentation of the ROI belonging to the foot area.

Oxygenated
(no arterial occlusion)

Deoxygenated
(arterial occlusion)

Filter
(nm)

Mean pixel
intensity

Standard
deviation

Mean pixel
intensity

Standard
deviation

Z-test
score

632 106.6394852 16.29080624 106.7669178 15.65592966 0.005640051
640 101.9298807 16.56038557 102.3723478 13.09393346 0.020958531
620 94.92708726 17.24502314 91.44723792 15.28855361 0.150994018
560 80.53735091 7.53578313 77.88245449 9.558096702 0.21812414
580 76.28512241 10.92387048 79.54522913 9.155135402 0.228731579
589 93.01161331 10.59163776 96.8128688 12.4356275 0.23270819
568 99.91867546 6.659172549 104.2311676 10.65129314 0.34330665
650 106.5053045 15.85758585 116.7661017 15.76722246 0.458845449
550 91.18327056 8.72729209 85.08788449 9.676970162 0.467757092
540 78.97915882 10.38764683 70.17576899 10.90948563 0.584404386
610 94.43822976 12.5155339 110.8343063 16.35901005 0.796023786
600 115.1783741 12.10228859 100.2655995 13.23572855 0.831508599
520 90.2524796 6.051782859 80.68075957 7.617083596 0.983882771
510 113.0144068 6.271810375 96.94350282 7.358897201 1.662111331
500 98.52661645 6.331693784 81.05881984 7.796291736 1.739208745
532 116.8324545 6.934623508 97.73311362 8.187307528 1.780086425

Table 8: Z-test value results for ROI 1 belonging to the toe area.

Oxygenated
(no arterial occlusion)

Deoxygenated
(arterial occlusion)

Filter
(nm)

Mean pixel
intensity

Standard
deviation

Mean pixel
intensity

Standard
deviation

Z-test
score

520 161.4593575 21.99227408 161.8512657 23.56793611 0.012157773
620 153.222263 19.94501953 153.6746502 18.91366862 0.016458273
580 163.318956 26.47963861 165.0649861 26.83986311 0.046309568
610 244.4234055 7.464186305 243.4354069 8.923331175 0.084926524
650 119.663068 18.80302469 117.1017766 19.19017984 0.095333493
532 161.5388082 23.60670302 167.470468 23.35491607 0.17862487
560 160.8279964 18.31153961 156.0292438 17.99925125 0.186892381
589 182.7341858 31.22336927 191.6705099 32.5446656 0.198142513
500 115.7642157 17.54417068 123.9742152 19.86783451 0.309749826
632 111.6228709 17.13980069 118.5787957 13.32818324 0.320371584
510 130.3116713 20.72096758 120.7230753 20.18406564 0.331478879
568 176.4049578 23.73507756 159.8194539 24.76832226 0.483473828
550 188.4883916 24.04152993 172.7057282 18.77759614 0.517368923
600 227.094125 22.58639227 205.3407054 28.39943228 0.599499181
540 175.4626068 19.25527073 157.934647 17.34691139 0.676316378
640 171.5969813 29.48528344 141.280174 25.02985397 0.783855003
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Table 9: Z-test value results for ROI 2 belonging to the toe area.

Oxygenated
(no arterial occlusion)

Deoxygenated
(arterial occlusion)

Filter
(nm)

Mean pixel
intensity

Standard
deviation

Mean pixel
intensity

Standard
deviation

Z-test
score

520 182.3554063 18.89845307 181.3246122 18.39310459 0.039087379
580 187.5201482 18.23410465 186.3422819 20.52163283 0.042906176
650 108.3493976 12.80790481 107.3687746 12.296779 0.055229653
532 166.7302616 18.25224428 170.8998381 18.5776414 0.160099368
500 134.940727 15.39457741 139.0588099 17.26950922 0.178002164
560 196.1451687 16.51867374 191.3446681 12.52017058 0.231602721
620 172.9587677 13.86909464 165.7433403 12.40950211 0.387709117
589 182.2927281 16.79769548 195.7792178 20.38273778 0.510610694
632 120.8276581 9.039944016 112.9036368 9.418067901 0.606994284
510 138.6114841 15.77463468 124.0530215 14.98012002 0.669226874
550 202.7845585 14.85573411 188.9081656 11.24817863 0.744693818
540 211.5379103 18.16406507 195.3680315 11.36327835 0.75469816
568 181.5552473 17.35661353 161.3652556 12.97051106 0.931804342
600 242.1871386 8.04658546 223.5297385 18.15713784 0.939434704
640 183.9798424 18.68456296 153.114663 16.95824794 1.22321575
610 235.2030997 2.359916569 239.8984031 1.69636876 1.615532421

Table 10: Z-test value results for ROI 3 belonging to the toe area.

Oxygenated
(no arterial occlusion)

Deoxygenated
(arterial occlusion)

Filter
(nm)

Mean pixel
intensity

Standard
deviation

Mean pixel
intensity

Standard
deviation

Z-test
score

520 168.4162593 23.92553672 168.425521 22.89111478 0.000279703
560 173.0929032 24.86491273 173.2999743 24.60156505 0.005919939
500 121.7571392 18.97228788 124.1427836 18.9175547 0.089042524
589 159.6425806 16.52874699 163.3491124 19.02530544 0.1470705
532 144.5739645 20.35365533 139.0074608 20.76327664 0.191449947
650 95.22451613 10.6667608 92.35197114 9.868436373 0.197676492
580 179.2332903 19.26840707 168.9156162 21.40715062 0.358231497
610 226.9233548 2.779381987 229.777377 6.056371231 0.428295361
550 169.5331613 18.39237211 156.1852328 18.40641598 0.512973961
568 146.9267097 20.91340787 129.8747106 19.59976415 0.594929994
510 119.2099305 17.67339906 103.52354 16.51503822 0.648499486
620 168.4113548 14.36230101 154.5037362 15.31917738 0.662302936
600 229.0270968 17.8548857 207.9166452 25.66104176 0.675284346
640 166.955871 18.60900548 148.1314094 15.10564857 0.785392463
540 193.2794839 20.38657572 169.0385902 22.27003055 0.802886941
632 113.0477419 8.89088214 99.8840505 9.215866117 1.027974372
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Table 11: Z-test value results for ROI 4 belonging to the toe area.

Oxygenated
(no arterial occlusion)

Deoxygenated
(arterial occlusion)

Filter
(nm)

Mean pixel
intensity

Standard
deviation

Mean pixel
intensity

Standard
deviation

Z-test
score

640 135.6001006 18.58999915 135.0822055 16.53604733 0.020815475
610 211.9844064 13.24981524 211.3056112 18.05218966 0.030313051
520 142.4784569 17.90173122 143.7800601 19.76320804 0.048811999
500 105.1317635 13.64916747 106.8892786 13.65790401 0.091020433
532 116.0731463 15.82306541 113.7209419 16.13817411 0.104074741
589 138.4537223 13.10384047 145.0270541 19.19857913 0.282793645
580 162.1996982 17.27857502 153.5871743 23.4813898 0.295420195
650 72.13732394 10.94460881 79.11679198 10.0366693 0.470001372
600 204.1851107 22.53055023 185.5470942 27.00967107 0.529893825
560 154.6146881 13.53620325 144.6533066 11.87421737 0.553217314
510 99.39028056 11.45429559 90.39278557 10.42729519 0.58087128
550 152.5875252 15.85950912 139.6127255 10.79578233 0.676291165
620 155.4406439 12.92257543 139.3887776 15.93276059 0.782463391
632 100.8410463 7.245958098 88.57894737 8.75006096 1.079335365
568 123.9642857 11.54164152 104.9609218 10.10542999 1.238775396
540 177.8622244 15.94914752 152.1202405 11.29254685 1.317252214

.7 Final test samples

The trial results for the ’indoors’ images, including the images captured, data pre-processing

and processing, can be seen through the following link: Data collected indoors, the image

processing results and final oximetry maps.

The trial results for the ’outdoors’ images, including the images captured, data pre-

processing and processing, can be seen through the following link: Data collected outdoors,

the image processing results and final oximetry maps.

.8 Results and Discussions

A filter limit from 0 to 75% of the data was applied over each oximetry map presented in this

appendix, for both toe and foot data, using the third quartile of the data. It was implemented

in order to avoid extreme high values, but to still maintain the spread of data from 0 to 75%.

If the limit was to be set for the highest number, the colour resulted would be mostly blue,

hence ’diluting’ the values as most of them were lower. A fidelity for such high values was

therefore not needed. Both axes provide a reference of the size of the region shown in cm.

The colour bar varies from blue to red (0 - 1), the latter showing the highest oxygenation.
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(a) O2Hb region of interest 1. (b) HHb region of interest 1.

(c) O2Hb region of interest 2. (d) HHb region of interest 2.

(e) O2Hb region of interest 3. (f) HHb region of interest 3.

(g) O2Hb region of interest 4. (h) HHb region of interest 4.

Figure 3: SO2 oximetry colour maps (540 nm - isobestic 520 nm) for all four regions of interest of the
toe images, collected in a controlled environment, at 540 nm.
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(a) O2Hb region of interest 1. (b) HHb region of interest 1.

(c) O2Hb region of interest 2. (d) HHb region of interest 2.

(e) O2Hb region of interest 3. (f) HHb region of interest 3.

(g) O2Hb region of interest 4. (h) HHb region of interest 4.

Figure 4: SO2 oximetry colour maps (640 nm - isobestic 520 nm) for all four regions of interest of the
toe images, collected in a controlled environment, at 640 nm.
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(a) O2Hb region of interest 1. (b) HHb region of interest 1.

(c) O2Hb region of interest 2. (d) HHb region of interest 2.

(e) O2Hb region of interest 3. (f) HHb region of interest 3.

(g) O2Hb region of interest 4. (h) HHb region of interest 4.

Figure 5: SO2 oximetry colour maps (540 nm - isobestic 520 nm) for all four regions of interest of the
toe images, collected in an uncontrolled environment, at 540 nm.
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(a) O2Hb region of interest 1. (b) HHb region of interest 1.

(c) O2Hb region of interest 2. (d) HHb region of interest 2.

(e) O2Hb region of interest 3. (f) HHb region of interest 3.

(g) O2Hb region of interest 4. (h) HHb region of interest 4.

Figure 6: SO2 oximetry colour maps (640 nm - isobestic 520 nm) for all four regions of interest of the
toe images, collected in an uncontrolled environment, at 640 nm.
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(a) ROI 1 collected indoors. (b) ROI 1 collected outdoors.

(c) ROI 2 collected indoors. (d) ROI 2 collected outdoors.

Figure 7: Mean pixel intensity for the first and second ROI belonging to the second set of toe data,
from both environments.

(a) ROI 3 collected indoors. (b) ROI 3 collected outdoors.

(c) ROI 4 collected indoors. (d) ROI 4 collected outdoors.

Figure 8: Mean pixel intensity for the third and fourth ROI belonging to the second set of toe data,
from both environments.
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(a) O2Hb ROI of the foot image,
collected indoors.

(b) HHb ROI of the foot image,
collected indoors.

(c) O2Hb ROI of the foot image,
collected outdoors.

(d) HHb ROI of the foot image,
collected outdoors.

Figure 9: SO2 oximetry colour maps (610 nm - isobestic 520 nm) for the main ROI of the foot data,
collected in both environments at 610 nm, with cuff occlusion (deoxygenated - HHb) and without cuff
occlusion (oxygenated - O2Hb).
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(a) O2Hb Segment 1 of foot region. (b) HHb Segment 1 of foot region.

(c) O2Hb Segment 3 of foot region. (d) HHb Segment 3 of foot region.

(e) O2Hb Segment 5 of foot region. (f) HHb Segment 5 of foot region.

Figure 10: SO2 oximetry colour maps (610 nm - isobestic 520 nm) for the oxygenated and deoxy-
genated segmentation 1, 3 and 5, belonging to the left side of the main foot ROI, presented above in
Figure 9. All maps displayed in this figure are from images collected in a controlled environment at
610 nm.
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(a) O2Hb Segment 2 of foot region. (b) HHb Segment 2 of foot region.

(c) O2Hb Segment 4 of foot region. (d) HHb Segment 4 of foot region.

(e) O2Hb Segment 6 of foot region. (f) HHb Segment 6 of foot region.

Figure 11: SO2 oximetry colour maps (610 nm - isobestic 520 nm) for the oxygenated and deoxy-
genated segmentation 2, 4 and 6, belonging to the right side of the main foot ROI, presented in Figure
9. All maps displayed in this figure are from images collected in a controlled environment at 610 nm.
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(a) O2Hb Segment 1 of foot region. (b) HHb Segment 1 of foot region.

(c) O2Hb Segment 3 of foot region. (d) HHb Segment 3 of foot region.

(e) O2Hb Segment 5 of foot region. (f) HHb Segment 5 of foot region.

Figure 12: SO2 oximetry colour maps (610 nm - isobestic 520 nm) for the oxygenated and deoxy-
genated segmentation 1, 3 and 5, belonging to the left side of the main foot ROI, presented in Figure
9. All maps displayed in this figure are from images collected in an uncontrolled environment at 610
nm.
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(a) O2Hb Segment 2 of foot region. (b) HHb Segment 2 of foot region.

(c) O2Hb Segment 4 of foot region. (d) HHb Segment 4 of foot region.

(e) O2Hb Segment 6 of foot region. (f) HHb Segment 6 of foot region.

Figure 13: SO2 oximetry colour maps (610 nm - isobestic 520 nm) for the oxygenated and deoxy-
genated segmentation 2, 4 and 6, belonging to the right side of the main foot ROI, presented in Figure
9. All maps displayed in this figure are from images collected in an uncontrolled environment at 610
nm.
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