
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Resource Management for MEC Assisted
Multi-layer Federated Learning Framework

Huibo Li, Yijin Pan, Huiling Zhu, Peng Gong and Jiangzhou Wang, Fellow, IEEE

Abstract—In this paper, a mobile edge computing (MEC)
assisted multi-layer architecture is proposed to support the
implementation of federated learning in Internet of Things (IoT)
networks. In this architecture, when performing a federated
learning based task, data samples can be partially offloaded to
MEC servers and cloud server rather than only processing the
task at the IoT devices. After collecting local model parameters
from devices and MEC servers, cloud server makes an aggre-
gation and broadcasts it back to all devices. An optimization
problem is presented to minimize the total federated training
latency by jointly optimizing decisions on data offloading ratio,
computation resource allocation and bandwidth allocation. To
solve the formulated NP hard problem, the optimization problem
is converted into quadratically constrained quadratic program
(QCQP) and an efficient algorithm is proposed based on semidef-
inite relaxation (SDR) method. Furthermore, the scenario with
the constraint of indivisible tasks in devices is considered and
an applicable algorithm is proposed to get effective offloading
decisions. Simulation results show that the proposed solutions
can get effective resource allocation strategy and the proposed
multi-layer federated learning architecture outperforms the con-
ventional federated learning scheme in terms of the learning
latency performance.

Index Terms—Federated learning, mobile edge computing,
cloud radio access network, resource allocation, SDR method.

I. INTRODUCTION

W ITH a rapid increase of Internet of Things (IoT)
devices, artificial intelligence (AI) can be enabled to

provide intelligent IoT applications, such as smart city and
smart home [1]. Many machine learning (ML) techniques are
applied to exploit the significant data generated by IoT devices
to make IoT applications more effective [2]. Conventionally,
ML schemes require distributed devices to send collected
data to a central data center for processing [3]. However, the
transmission of massive data results in unacceptable latency
for some real-time applications. To overcome these concerns,
federated learning framework which is one of the most
promising distributed learning algorithms has been introduced

Manuscript received xx, xx; revised xx, xx. This work was supported
in part by the National Natural Science Foundation of China under Grants
No.62001107 and No.62073039, and the Research Fund of National Mobile
Communications Research Laboratory, Southeast University (No.2023A03).
This research work is also supported by the Big Data Computing Center of
Southeast University. (Corresponding author: Yijin Pan, Peng Gong.)

H. Li and P. Gong are with the School of Mechatronical En-
gineering, Beijing Institute of Technology, Beijing 100081, China (e-
mail:lijanebit@gmail.com, penggong@bit.edu.cn).

Y. Pan is with the National Mobile Communications Research Laboratory,
Southeast University, Nanjing 211111, China (email:panyj@seu.edu.cn).

H. Zhu and J. Wang are with the School of Engineering, University of Kent,
Canterbury CT2 7NT, U.K. (e-mail: h.zhu@kent.ac.uk, j.z.wang@kent.ac.uk).

[4]. In federated learning, IoT devices cooperatively train a
shared common ML model and conduct the training process
simultaneously with local data samples. Then devices send
trained model parameters, e.g, the gradients of model, to the
central data center for aggregation. For example, the traffic
flow prediction is based on the data samples collected from
sensors scattered in a given area, e.g, from mobile phones,
cameras, radars, etc. Instead of sending all data samples to
the central data center for processing, IoT devices only send
the updated the gradients of model for aggregation [5]–[7]. As
a result, federated learning leads to a more powerful AI model
by combining training model parameters from different kinds
of devices.

To get high-precision model parameters, federated learning
still requires a large number of global iterations between
local devices and the central data center. During the global
iterations, the transmission of local training results inevitably
generates communication latency. Therefore, small latency
is the key performance measure and challenge for feder-
ated learning. So far, research efforts have been focused on
improving the learning efficiency of federated learning [8]–
[10]. However, all these methods suffer from low training
accuracy under training time budget. Because the computing
ability of IoT devices is limited and local training results have
to experience long transmission distance. To address these
issues, mobile edge computing (MEC) has been regarded as
a promising solution. Many computation-intensive and delay-
sensitive tasks can be offloaded from devices to nearby MEC
server [11]–[14]. By applying MEC server at edge to assist
federated learning, the computing and storage capabilities [15]
of MEC server are leveraged to boost model training process
[16].

When considering MEC assisted federated learning, most
researches utilized MEC server as a central node to aggregate
model parameters and solved the resource allocation problem.
In [17] and [18], the authors aimed to achieve low-latency
federated learning by optimizing communication resource al-
location and training parameters in an MEC server assisted
aggregation architecture. [19] explored a bandwidth allocation
strategy between IoT devices and the associated MEC edge
server to minimize the total energy consumption of devices
in federated learning. [20] proposed user selection and uplink
resource block allocation scheme to minimize the federated
learning training loss by considering packet errors and the
availability of wireless resources.

However, local training is only conducted when the partic-
ipants are in charge and with good WiFi connection in order
to reduce the impact on battery lifetime of mobile devices.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

To solve this problem, MEC can be used not only as a
central aggregation node but also to train data samples with
its powerful computing ability. Although federated learning is
intended for the privacy preserving application, partial local
datasets which are not privacy-sensitive can be offloaded to
the MEC for further computation [21], such as autonomous
driving and mobile surveillance. Local devices can decide the
offoaded data samples they want to share and further improve
the model performance [22], [23].

Therefore, leveraging MEC servers for training is envi-
sioned to improve the model performance for the federated
learning in the IoT networks. More training iterations can be
achieved and a higher precise training results can be obtained
under limited time budget. Nevertheless, one disadvantage
of MEC-based FL is the limited number of clients each
server can access, leading to inevitable training performance
loss. While considering multiple MEC servers in federated
learning scheme also needs to experience new challenges to
tackle. When MEC servers are not responsible for aggregating
model parameters but training data, reasonable allocation of
computation resources becomes a key issue affecting learning
efficiency and accuracy. In addition, when MEC servers play
roles as distributed nodes to assist training model, aggregating
these distributed model parameters needs to be considered.

Inline with this idea, we consider a multi-layer MEC-
assisted federated learning architecture including devices,
MEC servers and cloud server. Due to the centralized ability
and powerful computing capability, cloud server has abilities
to serve as the central node for training data samples and
aggregation. This kind of multi-layer can divide a global
model into some subgroups to train multiple features. In
[24], the authors proposed a multi-layer personality federated
learning model to learn students’ habit within the online
classes. However, the distribution of data samples in each layer
will affect the training and transmission delay. Another key
issue affecting the learning delay is that training results from
different devices cannot reach the cloud server at the same
time. Distributed training process in multi-layer scheme needs
to be analyzed. These challenges have not been addressed in
MEC-assisted multi-layer federated learning architecture.

In this paper, a multi-layer architecture is proposed for
performing federated learning based tasks. In this multi-
layer federated learning architecture, the mobile devices, MEC
servers and cloud server are designed as the base layer, the
middle layer and the top layer, respectively. Data samples can
be offloaded to each layer to be trained distributely under a
strict encryption rule to protect data privacy. After training,
IoT devices and MEC servers need to transmit the model
parameters to cloud server for aggregation. Then, based on the
architecture, the data offloading procedure for one global train-
ing iteration is analyzed. Furthermore, when collected data
samples are trained as a whole data package, a data offloading
procedure is also considered in this multi-layer architecture.
Our target is to minimize the total federated learning delay
by optimizing the computation and communication resource
allocation.

The contributions of this paper are summarized as follows,
• We propose an MEC assisted multi-layer architecture

MEC server

Edge training

MEC Server

Layer

MEC server

Edge training

Cloud server

Cloud training&

Central aggregation

Camera

Local training

UAV

Local training

Radar

Local training

Device

 Layer

Partial traffic data

and local

parameters

Wireless

communication

Traffic flow model

Partial traffic data

and local

parameters

Partial traffic data

and local

parameters

Cloud Server

 LayerBroadcast

Fig. 1. MEC assisted federated learning in traffic flow prediction

to achieve data training of IoT devices in federated
learning. Data samples collected from IoT devices can be
partially offloaded to MEC servers and cloud server for
joint training. The training results will be uploaded and
aggregated in the cloud server. Based on the synchronous
training method, we also construct offloading and joint
training procedure of each layer within one global train-
ing iteration. Then, an optimization problem is formulated
to minimize the total federated learning latency by jointly
optimizing data offloading ratio, computation resource
allocation in MEC servers and bandwidth allocation in
wireless transmissions.

• To solve the optimization problem which is NP hard,
we reformulate and transform it into quadratically con-
strained quadratic program (QCQP) format. We then
propose an efficient algorithm based on semidefinite re-
laxation (SDR) method to solve this challenging problem.
We recover feasible offloading decisions from the relaxed
solution and get the approximate solution by applying
Gaussian randomization way.

• We extend the original problem to the total offloading
scenario. A solution to get an efficient data offloading
scheme with the constraint of indivisible tasks is pro-
posed. We perform numerical simulations to evaluate the
proposed algorithms. The simulation results show that
applying the proposed MEC assisted multi-layer archi-
tecture in federated learning can significantly reduce data
training latency compared to the conventional federated
learning scheme.

The rest of the paper is organized as follows. The system
model is described and the optimization problem is formulated
in Section II. The transformation of the optimization problem
and a feasible solution are given in Section III. The scenario
with the constraint of indivisible tasks is further studied in
Section IV. Simulation results are shown and discussed in
Section V and the conclusions are drawn in Section VI.

II. SYSTEM MODEL

Consider a multi-layer MEC architecture, which can utilize
the federated learning to support various IoT applications
spreading across wide areas, e.g. traffic flow analysis and
congestion prediction. As shown in Fig. 1, this multi-layer
architecture includes device layer, MEC server layer and the
cloud server layer. In the device layer, multiple distributed

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

Access Point (AP)

Device1

Device j

Device J

AP

 MEC Server-1

 MEC Server-m

 MEC Server-M

Device2

Wireless link

Fiber link

Machine Learning

Return global model parameters

Cloud

Computing

Cloud

Server

Edge TrainingLocal Training

Cloud Training &

Aggregation

Data samples

Training outcomes

AP

Fig. 2. Multi-layer MEC assisted federated learning architecture

IoT devices, such as cameras and unmanned aerial vehicles
(UAVs), need to collect the traffic data samples. MEC server
layer provides computation service for training data offloaded
from nearby IoT devices. The cloud server can also train
received data samples and achieve the central aggregation for
local model parameters from all distributed nodes including
IoT devices and MEC servers. After aggregation, the cloud
server will broadcast updated global traffic flow model pa-
rameters to all distributed nodes. Fig. 2 shows the details
of training process in the MEC assisted multi-layer federated
learning.

A. Federated learning process in MEC assisted multi-layer
architecture

The multi-layer architecture consists of a set of devices,
a set of access points (APs) equipped with MEC servers
and the central cloud server. These MEC servers can process
data samples and also can transmit data samples to the
cloud server through wired fiber link with high transmission
rate. J = {1, 2, · · · , J} is defined as the set of devices.
M = {1, 2, · · · ,M} presents as the set of MEC servers
locating in corresponding wireless APs.

As shown in Fig 2, the devices can offload part of data
samples to the MEC servers and the cloud server. After
training local data samples through machine learning, devices
and MEC servers will send local model parameters to the cloud
server. The cloud server will train the received data samples
and make an aggregation after collecting all distributed local
model parameters. Finally, the cloud server returns the global
model parameters to all devices to complete the federated
learning task. This round of task processing is called one
global iteration.

As described above, the data samples generated from the
devices have three task processing choices which are training
at local device, training at corresponding MEC server and
training at cloud. Define uD

j , uM
j and uC

j as the ratios of data
samples to the total amount of data samples, which are trained

at local devices, MEC server and the cloud server, respectively.
We have

uD
j + uM

j + uC
j = 1, ∀j ∈ J , uD

j , uM
j , uC

j ∈ [0, 1]. (1)

In the following, the learning process in each layer of MEC
assisted multi-layer federated learning is described.

1) Device layer
In device layer, the data sample set collected by the device

j is defined as Dj . One data sample d, d ∈ Dj , is described as
(xd, yd), where xd is the raw data vector, and yd is the label.
The federated learning target is to train the proper set of model
parameters ωj , which can output the label yd according to the
input xd through linear regression iterations. Loss function
fd(ωj ,xd, yd) is introduced to evaluate the prediction perfor-
mance for data sample d, which is determined by learning
tasks [25]. For example, fd(ωj ,xd, yd) =

1
2 (x

T
dωj − yd)

2 is
applied in a federated learning task. If the set of data Dj is
processed at the local device, the task loss function at device
j is denoted as

Lj,a(ωj) =
1

NjuD
j

Nju
D
j∑

n=1

fd(ωj ,xd, yd), (2)

where Nj denotes the total number of data samples collected
by device j, i.e. Nj = |Dj |. Then, the learning objective is to
find optimal ω∗

j to minimize Lj,a(ωj) which is given by

ω∗
j = argminLj,a(ωj). (3)

In the federated learning procedure, stochastic gradient
descent (SGD) method with intensive iterations is applied at
each device to solve the problem in (3). In each iteration round
n, each device j will compute ωj

(n) as follows,

ωj
(n) = ωj

(n−1) − α∇Lj,a(ωj
(n−1)), (4)

where α denotes the learning rate, and ∇Lj,a(ωj
(n−1)) rep-

resents the gradient of loss function Lj,a(ωj).
Generally, to compute the local model parameters ωj , it

needs multiple local iterations to obtain an accuracy of θ
which means the local solvers achieve f(ωj) − f(ωj

∗) ≤ θ.
Therefore, the computation time at devices depends on the
number of local iterations. In federated learning tasks, the
upper bound of the number of local iterations is O(log(1/θ))
for entensive iterative algorithms such as coordinate descent or
gradient descent [26] [27]. As a result, it requires more itera-
tions to get more accurate local model parameters. Assuming
that one local iteration time is denoted as T ite

j =
Nju

D
j cj

fj
,

where cj is denoted as the number of central processing unit
(CPU) cycles to compute one data sample at device j for one
iteration. fj is denoted as the CPU frequency of device j. The
computation time of one global iteration is T ite

j · log(1/θ).
Then, to obtain the optimal set of local model parameters
ωj

(n), the computation latency at device j is given by

tcomp
j = T ite

j · log(1/θ) =
Nju

D
j cj

fj
· log(1/θ). (5)

At the same time, devices will offload the remaining data
samples which are not privacy-sensitive to the MEC servers

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

and the cloud server. It is assumed that each device is served
by its nearest AP which is equipped with a MEC server due to
the consideration of channel conditions and data privacy. The
set of devices that are served by MEC server m is represented
by Um. Each device accesses to one MEC server via a uniquely
allocated channel with adaptive channel bandwidth Bj,m, so
that there is no interference among the devices. Spectral
efficiency between device j and MEC server m is given by

rj,m = log2(1 +
pj |hj,m|2

σ2
N

), ∀j ∈ Um, m ∈ M, (6)

where pj is denoted as the transmit power of device j. hj,m =

gj,md
−δ/2
j,m represents the channel gain between device j and

MEC server m. gj,m is the small scale fading, which follows
Rayleigh distribution. dj,m is the distance between device j
and MEC server m, and δ is the path loss exponent. σ2

N is the
variance of the additive white Gaussian noise.

After finishing the computation for training data samples,
device j uploads the local model parameters to the cloud
server for aggregation. q is denoted as the size of local model
parameters, which is much smaller than the size of data
sample. Denote rm,c as the transmission data rate between
MEC server m and the cloud server in the cloud center. The
latency for transmitting model parameters from device j to
MEC server m is obtained as

toutj =
q

Bj,mrj,m
+

q

rm,c
. (7)

Due to the limited system bandwidth, we assume∑
j∈Um

Bj,m ≤ Bmax
m , where Bmax

m is the maximum
bandwidth allocated to MEC server m. Therefore, the latency
from the local data samples arriving at the cloud is

tdevicej = tcomp
j + toutj

=
Nju

D
j cj

fj
· log(1/θ) + q

Bj,mrj,m
+

q

rm,c
.

(8)

2) MEC servers layer
The data samples offloaded from device j need to be

transmitted to the MEC server m based on the strict encryption
rule. The transmission time is given by

ttranj,m =
Njs(u

M
j + uC

j)

Bj,mrj,m
, (9)

where s represents the bit size of one data sample.
After receiving data samples from the associated devices,

the MEC servers start to train learning model. It is assumed
that the MEC server adopts a space sharing strategy in its
internal task processing mechanism and process multiple tasks
simultaneously [28]. Each MEC server trains data samples
received from connected devices according to the loss function
as follows,

Lj,m(ωj) =
1

NjuM
j

Nju
M
j∑

n=1

fd(ωj). (10)

Given the SGD method, the computation time in the MEC
server is given by

tcomp
j,m =

Nju
M
j cj

fj,m
· log(1/θ), (11)

where fj,m represents as computation resource allocated to
device j at server m. The computation resource allocated
to devices should not exceed each MEC server’s maximum
computing capacity which means

∑
j∈Um

fj,m ≤ fmax
m .

After finishing computation, MEC server m needs to upload
the training results to the cloud server. The uploading time is
given by toutj,m = q

rm,c
. Therefore, the total latency of data

samples trained in the MEC server is

tmec
j = ttranj,m + tcomp

j,m + toutj,m

=
Njs(u

M
j + uC

j)

Bj,mrj,m
+

Nju
M
j cj

fj,m
· log(1/θ) + q

rm,c
.

(12)
3) Cloud server layer
Data samples offloaded to the cloud server will experience

wireless transmission from device to the associated MEC
server and wired transmission from MEC server to the cloud
server. Therefore, the transmission time is given by

ttranj,m + ttranj,m,c =
Njs(u

M
j + uC

j)

Bj,mrj,m
+

Njsu
C
j

rm,c
. (13)

The cloud server will train data samples of device j by using
the loss function

Lj,c(ωj) =
1

NjuC
j

Nju
C
j∑

n=1

fd(ωj). (14)

Then, the computation time for computing model parameters
in the cloud server is

tcomp
j,m,c =

Nju
C
j cj

fc
· log(1/θ), (15)

where fc represents computation resource of the cloud which
has unlimited computation capacity.

Since the whole federated learning is performed by three
layers, the global loss function is given by

F (ωn) =

∑J
j=1 Nj(Nju

a
jLj,a(ωj) +Nju

m
j Lj,m(ωj) +Nju

c
jLj,c(ωj))∑J

j=1 Nj

=

∑J
j=1 Nj

∑
d∈Dj

fd(ωj)∑J
j=1 Nj

.

(16)
It can be proved that the global loss function (16) is the same
as that of conventional federated learning based on the average
federated approach [29]. To minimize the global loss function,
the cloud server combines and aggregates all devices’ training
results to get a global model parameters in the n th iteration
ωn as

ωn =

∑J
j=1 Njωj

n∑J
j=1 Nj

=

∑J
j=1 Nju

a
jωj

n +Nju
m
j ωj

n +Nju
c
jωj

n∑J
j=1 Nj

.

(17)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Device1

MEC server 1

Cloud

Device j

MEC server m

Cloud

Transmitting data samples

Computing data samples

Uploading outcomes

Combining outcomes

Aggregation and Return

Tlim

Tlim

(a)

(b)

Fig. 3. A whole implementation progress of federated learning in multi-layer
architecture

The latency of combination and aggregation can be ne-
glected. Therefore, latency for getting results trained in the
cloud server is

tcloudj = ttranj,m + ttranj,m,c + tcomp
j,m,c

=
Njs(u

M
j + uC

j)

Bj,mrj,m
+

Njsu
C
j

rm,c
+

Njcju
C
j

fc
· log(1/θ).

(18)
After aggregation, the cloud server will broadcast the updated
global model parameters to all distributed nodes in the down-
link. Due to the small size of global model parameters, the
return time can be neglected compared to the data transmission
time in the uplink.

B. Convergence Analysis

Assuming that the federated learning algorithm achieves
global accuracy η, the optimum solution of model parameter
needs to satisfy

F (ω(n))− F (ω∗) ≤ η(F (ω(0))− F (ω∗)) (19)

Because loss function such as linear or logistic loss function
has been widely applied in federated learning, the following
assumptions are assumed, (1) Fj(ω) is L-Lipschitz which
means Fj(ω) ≤ LI , (2) Fj(ω) is γ-strongly convex, i.e.
Fj(ω) ≥ γI . The values of γ and L are determined by the
loss function. From [30], the multi-layer federated learning
converges to achieve the global accuracy. It has proved the
convergence rate which means that the number of iterations n
are ruled as follows,

n ≥
2L2

γ2δ log(1/η)

1− θ
(20)

to realize F (ω(n))−F (ω∗) ≤ η(F (ω(0))−F (ω∗)). Therefore,
in order to achieve convergence, the latency of one global
iteration has a upper bound tbudget

n , where tbudget represents
the total latency limitation.

C. Problem formulation

An iteration of federated learning is shown in Fig. 3. The
widely adopted synchronous update scheme is considered so

that all devices start a new global training round simultane-
ously. In addition, all the devices are initialized by the same
initial global parameters which is from last iteration updates.
However, the computation and communication delay from
different devices may be different. As shown in the case (a)
of Fig. 3, the total delay depends on computation time spent
in cloud server. However, it can be observed from the case
(b) that the MEC server is the bottleneck for the total delay.
Therefore, the total latency Tlim can be formulated as

Tlim = max
j∈J

{tdevicej , tmec
j , tcloudj }. (21)

Our goal is to minimize the total learning latency in this
multi-layer scheme by jointly optimizing the data samples
offloading decision uj , the computation resource allocation
fj,m and the bandwidth allocation Bj,m. The optimization
problem can be formulated as follows,

min
uj ,{fj,m},{Bj,m}

Tlim (22a)

s.t. uD
j + uM

j + uC
j = 1, ∀j ∈ J , (22b)

uD
j , uM

j , uC
j ∈ [0, 1], ∀j ∈ J , (22c)∑

j∈Um

Bj,m ≤ Bmax
m , ∀m ∈ M, (22d)∑

j∈Um

fj,m ≤ fmax
m , ∀m ∈ M, (22e)

Tlim ≤ tbudget
n

. (22f)

Constraint (22b) means that training tasks can be jointly
executed on different layers and constraint (22c) guarantees
data samples can be partially offloaded. Constraint (22d)
means that the bandwidth between MEC servers and the
associated devices is limited. Constraint (22e) is the maximum
computational capacity constraint of MEC servers. Constraint
(22f) means the upper bound of the latency of one global
iteration to achieve convergence.

III. JOINTLY OPTIMIZING OFFLOADING DECISIONS AND
RESOURCE ALLOCATION SOLUTION

A. Problem statements

It can be seen that problem (22) is an unbounded knapsack
problem which is NP-hard problem [31]. The offloading ratios
can be considered as the number of knapsack. Bj,m and fj,m
can be considered as the weight constraints and latency cost
by data samples can be considered as the profit. There also
exists a strong coupling caused by limited communication and
computation constraints {fj,m} and {Bj,m} in MEC servers
making the problem for offloading decisions complicated.
Therefore, it is a challenging problem to solve. The objective
is first equivalently transformed by introducing the auxiliary
variable. To solve the optimization problem, we then transform
the optimization problem into QCQP format. The second step
is to present our proposed solution based on SDR approach to
relax the original problem. Then, we can obtain the offloading
decisions and resource allocation scheme from the recovered
solution.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

B. SDR method based jointly optimizing offloading decisions
and resource allocation solution

For the transformation of QCQP, constraint (22c) can be
rewrite as follows,

0 ≤ us
j(1− us

j) ≤ 1, s = {D,M,C}. (23)

To solve the problem (22), the delay term can be moved from
the objective to the constraints by introducing an auxiliary
variable T . Defining Aj = Njcj log(1/θ), Q = q

rm,c
,

Sj = Njs, the optimization problem (22) is equivalent to the
following problem

min
uj ,{fj,m},{Bj,m},T

T (24a)

s.t. 22(b), 22(d), 22(e), 22(f), (23),

Aju
D
j

fj
+

q

Bj,mrj,m
+Q ≤ T, (24b)

Sj

Bj,mrj,m
(uM

j + uC
j) +

Aju
M
j

fj,m
+Q ≤ T, (24c)

Sj

Bj,mrj,m
(uM

j + uC
j) + (

Sj

rm,c
+

Aj

fc
)uC

j ≤ T. (24d)

It can be observed that the problem (24) is non-convex
due to the nonconvexity of the formulation (24b) ∼ (24d).
The following steps show the optimization problem (24) can
transformed into a QCQP problem.

First, in order to transform (24b)∼(24d) into quadratic form,
we introduce additional auxiliary variables Dd

j , Da
j and Df

j .
Constraints (24b)∼(24d) can be equivalently replaced by the
following forms,

Aj

fj
uD
j +Dd

j +Q ≤ T (25)

Da
j +Df

j +Q ≤ T (26)

Da
j + (

Sj

rm,c
+

Aj

fc
)uC

j ≤ T (27)

Besides, the auxiliary variables should satisfy that
q

Bj,mrj,m
≤ Dd

j (28)

Sj

Bj,mrj,m
(uC

j + uM
j) ≤ Da

j (29)

Aj

fj,m
uM
j ≤ Df

j (30)

Next, to transform the problem (24) into a vectorial form,
a new decision vector wj is defined as follows,

w0 = [T, T −Q,01∗6]
T , (31)

and

wj = [uD
j , uM

j , uC
j , Bj,m, Dd

j , D
a
j , fj,m, Df

j]
T , ∀j ∈ J ,

(32)
where w0 contains the optimization objective and wj contains
all decision variables of device j. Then, the optimization
objective (24a) can be rewritten as

min

J∑
j=0

bT
j wj , (33)

where b0 = [1,01∗7]
T and bj = [01∗8]

T .
In the following, we present each constraint in problem

(24) into a corresponding matrix form. The offloading ratio
constraint (22b) can be converted as

(bE
j)

Twj = 1, ∀j ∈ J, (34)

where bE
j = [1, 1, 1,01∗5].

The bandwidth resource constraint of (22d) can be written
as ∑

j∈Um

(bN
j)Twj ≤ Bmax

m , (35)

where bN
j = [0, 0, 0, 1, 0, 0, 0, 0]T .

Similarly, the computation resource constraint of (22e) can
be written as ∑

j∈Um

(bM
j)Twj ≤ fmax

m , (36)

where bM
j = [01∗6, 1, 0]

T . The latency for convergence
constraint (22f) can be written as

∑J
j=0 b

T
j wj ≤ tbudget

n .
The constraint (23) of the offloading ratio range can be

rewritten as

0 ≤ wT
j diag(ei)

Twj − (ei)
Twj ≤ 1, j ∈ J , i ∈ {1, 2, 3},

(37)
where each ei is a 8∗1 standard unit vector with the ith entry
being 1.

The constraints of (25)∼(27) can be rewritten as

J∑
k=0

(bs
jk)

Twk ≤ 0, j ∈ J , s ∈ {d, a, f}, (38)

where

bd
j0 = ba

j0 = [0,−1,01∗6]
T ,

bf
j0 = [−1,01∗7]

T ,

bd
jj = [

Aj

fj
, 0, 0, 0, 1, 0, 0, 0],

ba
jj = [0, 0, 0, 0, 0, 1, 0, 1],

bf
jj = [0, 0,

Sj

rm,c
+

Aj

fj,c
, 0, 0, 1, 0, 0],

bs
jk = 0, s ∈ {d, a, f}, k ̸= {0, j}.

The constraint of (28) can be rewritten as

wT
j A

g
jwj ≤ −(bg

j)
Tbg

j , j ∈ J , (39)

where

Ag
j =

03∗3 0 0 03∗3
01∗3 0 −0.5rj,m 01∗3
01∗3 −0.5rj,m 0 01∗3
03∗3 03∗1 03∗1 03∗3

 ,

bg
j = [q,01∗7]

T , bg
j = [1,01∗7]

T .

The constraints of (29) and (30) can be rewritten as

wT
j A

v
jwj + (bv

j)
Twj ≤ 0, j ∈ J , v ∈ {c, p}, (40)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

where

Ac
j =

03∗3 03∗1 03∗1 03∗1 03∗2
01∗3 0 0 −0.5 01∗2
01∗3 0 0 0 01∗2
01∗3 −0.5 0 0 01∗2
02∗3 02∗1 02∗1 02∗1 02∗2

 ,

Ap
j =

 06∗6 0 0
01∗6 0 −0.5
01∗6 −0.5 0

 ,

bc
j = [0,

Sj

rj,m
,
Sj

rj,m
,01∗5]

T , bp
j = [0, Aj , 0,01∗5]

T .

After the above transformations, we define a new variable
xj = [wj , 1]

T and j ∈ J∪{0}. The optimization problem can
be converted into the QCQP formulation as

min

J∑
j=0

xT
j Gjxj (41a)

s.t. xT
j G

E
j xj = 1, j ∈ J , (41b)∑

j∈Um

xT
j G

N
j xj ≤ Bmax

m , (41c)∑
j∈Um

xT
j G

M
j xj ≤ fmax

m , (41d)

0 ≤ xT
j G

I
ixj ≤ 1, j ∈ J , i ∈ {1, 2, 3}, (41e)

J∑
k=0

xT
kG

s
jkxk ≤ 0, j ∈ J , s ∈ {d, a, f} (41f)

xT
j G

g
jxj ≤ −(bg

j)
Tbg

j , j ∈ J , (41g)

xT
j G

v
jxj ≤ 0, j ∈ J , v ∈ {c, p}, (41h)

J∑
j=0

xT
j Gjxj ≤

tbudget
n

, (41i)

xj ≥ 0, j ∈ J ∪ {0} (41j)

where

Gj =

[
0 1

2bj
1
2b

T
j 0

]
,Gg

j =

[
Ag

j 0

0 0

]
,

Gπ
j =

[
0 1

2b
π
j

1
2 (b

π
j)

T 0

]
, π ∈ {E,N,M},

GI
i =

[
diag(ei) − 1

2ei
− 1

2 (ei)
T 0

]
, i ∈ {1, 2, 3},

Gs
jk =

[
0 1

2b
s
jk

1
2 (b

s
jk)

T 0

]
, s ∈ {d, a, f},

Gv
j =

[
Av

j
1
2b

v
j

1
2 (b

v
j)

T 0

]
, v ∈ {c, p}.

The optimization problem (41) is equivalent to the original
problem (22), since all constraints have one-to-one corre-
sponding matrix representations. Thus, it is still a non-convex
and NP-hard problem in general. To solve problem (41), we
further apply SDR approach to relax the problem as many
practical applications have proved that SDR approach can

obtain accurate and near optimal solutions [32]–[34]. Defining
Xj = xjx

T
j , we have

xT
j Gjxj = Tr(GjXj), (42)

where the rank of matrix Xj equals one. We can relax problem
(41) by dropping the rank constraint rank(Xj) = 1 as follows,

min

J∑
j=0

Tr(GjXj) (43a)

s.t. T r(GE
j Xj) = 1, j ∈ J , (43b)∑

j∈Um

Tr(GM
j Xj) ≤ fmax

m , (43c)∑
j∈Um

Tr(GN
j Xj) ≤ Bmax

m , (43d)

0 ≤ Tr(GI
iXj) ≤ 1, j ∈ J , i ∈ {1, 2, 3}, (43e)

J∑
k=0

Tr(Gs
jkXk) ≤ 0, j ∈ J , s ∈ {d, a, f}, (43f)

Tr(Gg
jXj) ≤ −(bg

j)
Tbg

j , j ∈ J , (43g)

Tr(Gv
jXj) ≤ 0, j ∈ J , v ∈ {c, p}, (43h)

J∑
j=0

Tr(GjXj) ≤
tbudget

n
, (43i)

Xj ≥ 0, j ∈ J ∪ {0}. (43j)

The optimization problem (43) has been converted into a
semidefinite programming (SDP) problem after relaxing the
rank constraints. It can be efficiently solved in polynomial
time since the problem is also a convex problem. We can get
the optimal solution denoted as X∗

j by applying some convex
optimization methods and toolboxes, such as interior point
method. However, the problem (43) is a SDR relaxed form of
problem (41). The optimal solution X∗

j may not be feasible for
the original problem (22) since the contraint of rank(Xj) = 1
has been removed. If the solution X∗

j is of rank-one matrix,
it is exactly the optimal solution of the problem (22) since
the problem (43) is the convex problem. On the other hand, if
the rank of X∗

j is larger than 1, we need to extract a feasible
vector x∗

j from it in an efficient manner for problem (22).
Generally, the relaxed problem may not lead to a rank-

one solution. Therefore, we need to recover the approxi-
mate solution from the relaxed solution obtained from (43).
Gaussian randomization method is considered as an efficient
method to recover the approximation solution from the relaxed
solution obtained from (43) based on [32]. We firstly generate
a random matrix ξj following Gaussian distribution with
zero mean and covariance X∗

j , i.e. ξj ∼ N(0,X∗
j). Then,

we choose the optimal solution candidate ξ∗j which satisfies
ξ∗j = argmin ξTj Cξj

. After obtaining the optimal ξ∗j , we
need to normalize the first three elements ξ∗j (1), ξ

∗
j (2), ξ

∗
j (3)

which have to satisfy the offloading ratio constraints. Based
on the reasonable offloding ratio solutions, we can solve
the convex problem to get communication and computation
resource strategies.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

To solve the latency optimization problem (22), the main
complexity results from the iteration in semidefinite program-
ming (SDP) problem (43). We can notice that SDP problem
can be mathematically solved by the interior point method.
Within the precision ϵ, the computation complexity of the
proposed algortihm is O(J3.5 log(1/ϵ)) [35].

IV. OFFLOADING SCHEME WITH INTEGER OFFLOADING
CONSTRAINTS

In some IoT applications, there may be correlation between
data samples. For example, IoT devices collect data to learn
daily behavious of people. Data samples collected at different
time need to be trained together to get a whole behavious
model. Therefore, these kind of data samples cannot be
partially offloaded. In this section, the optimization problem
of minimizing federated learning latency with the constraint
of indivisible tasks is considered. In other words, data samples
only can be offloaded into one place in the proposed multi-
layer federated learning architecture. It means the offloading
decisions is given by

uD
j + uM

j + uC
j = 1, ∀j ∈ J , uD

j , uM
j , uC

j ∈ {0, 1}. (44)

This constraint of indivisible tasks can be replaced by

us
j(u

s
j − 1) = 0, s ∈ {D,M,C}. (45)

Similar to Section III, we can formulate the latency for
training results of local data samples arriving at cloud as

tdevicej = (tcomp
j + toutj)uD

j

= (
Njcj
fj

· log(1/θ) + q

Bj,mrj,m
+

q

rm,c
)uD

j .
(46)

The total latency of data samples trained in the MEC server
is

tmec
j = (ttranj,m + tcomp

j,m + toutj,m)uM
j

= (
Njs

Bj,mrj,m
+

Njcj
fj,m

· log(1/θ) + q

rm,c
)uM

j .
(47)

Latency for getting results trained in cloud is

tcloudj = (ttranj,m + ttranj,m,c + tcomp
j,m,c)u

C
j

= (
Njs

Bj,mrj,m
+

Njs

rm,c
+

Njcj
fc

· log(1/θ))uC
j .

(48)

Similar to Section III, we can introduce a variable T̃ to
represent the value of max{tdevicej , tmec

j , tcloudj }. Since data
samples only can be offloaded to one place, the optimum
objective can be transformed into

max{tdevicej , tmec
j , tcloudj } = tdevicej + tmec

j + tcloudj . (49)

Therefore, the constraints of (25)∼(27) can be converted into
one constaint as

tdevicej + tmec
j + tcloudj ≤ T̃ . (50)

By introducing additional auxiliary variables Dd
j , Da

j and Df
j ,

constraint (50) can be equivalently replaced by the following
forms:

(
Aj

fj
+Q)uD

j +Dd
j +Da

j +Df
j +QuM

j +(
Sj

rm,c
+
Aj

fc
)uC

j ≤ T̃ .

(51)

With the constraint of integer offloading, the optimization
problem is

min
{uj},{fj,m},{Bj,m},T̃

T̃

s.t. (22b), (22d), (22e), (22f), (45), (51)
(52)

Because uj is a binary parameter, offloading decision of
data samples will be a finite number of choices. A globally
optimal solution to problem (52) can be obtained by exhaustive
search among 3J possible offloading decisions. However, the
complexity increases exponentially with the number of users
and thus the globally optimal solution is impractical. We still
choose SDR method to obtain the resource allocation solution.

In order to transform the problem into vectorial form, the
variable wj which contains all offloading decisions is still need
to be introduced. The constraint of (45) can be rewritten as

wT
j diag(ei)

Twj−(ei)
Twj = 0, j ∈ J , i ∈ {1, 2, 3}, (53)

where each ej is a 8∗1 standard unit vector with the ith entry
being 1. We still need to introduce the variable xj = [wj , 1]

T

and j ∈ J ∪ {0}. The convertion of QCQP is given by,

xT
j G

I
ixj = 0, j ∈ J , i ∈ {1, 2, 3}, (54)

where

GI
i =

[
diag(ei) − 1

2ei
− 1

2 (ei)
T 0

]
.

Furthermore, the constraint (51) can be rewritten as
J∑

k=0

(bp
jk)

Twk ≤ 0, j ∈ J , (55)

where bp
j0 = [−1,01∗7]

T , bp
jj = [

Aj

fj
+ Q,Q,

Njs
rm,c

+
Aj

fj,c
, 0, 1, 1, 0, 1]T , and bp

jk = 0, k ̸= {0, j}. Rewriting the
constraint (55) into QCQP format, we have

J∑
k=0

xT
kG

p
jkxk ≤ 0, j ∈ J , (56)

where

Gp
jk =

[
0 1

2b
p
jk

1
2 (b

p
jk)

T 0

]
.

Similar to Section IV, we still define Xj = xjx
T
j where the

rank of matrix Xj equals one. The SDR transformation for
the optimization problem and constraints are listed as follows,

min

J∑
j=0

Tr(GjXj) (57a)

s.t. 43(b) ∼ 43(d), 43(g) ∼ 43(i), (57b)

Tr(GI
iXj) = 0, j ∈ J , i ∈ {1, 2, 3}, (57c)

J∑
k=0

Tr(Gp
jkXk) ≤ 0, j ∈ J , (57d)

Xj ≥ 0, j ∈ J ∪ {0}. (57e)

To solve the problem (57), we can first apply the similar
method in Section III which is utilizing traditional CVX

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

toolbox to get optimal solution X∗ after relaxing rank con-
straints. Because the solution is still obtained by relaxing
SDR problem, we still need to find feasible solution from X∗.
Similar to Section III, the values of X∗

j (9, i) can be used to
recover the offloading decisions xj(i) for device j because we
have defined that xj = [wj , 1]

T . However, the final solution
cannot be obtained directly by X∗

j (9, i) = xj(i) with the
constraint of integer offloading decisions. Therefore, we need
further step to get binary offloading decisions and resource
allocation decisions.

It can be observed that the first three elements in xj

are offloading decisions uD
j , uM

j , uC
j . Therefore, we can use

xj(9, i), i = {1, 2, 3} to recover the binary offloading deci-
sions. Due to the constraints of (57c) and (57e), the values of
xj(9, i), i = {1, 2, 3} belongs to [0, 1]. Then, the offloading
decisions can be obtained from xj(9, i), i = {1, 2, 3} by map-
ping its elements to binary number. We utilize the rounding
down function which is floor(xj(i)) to decide the offloading
decisions. The rounding down results guarantee that constraint
(44) can be satisfied strictly [36].

After getting the feasible offloading decisions, we still need
to obtain communication and computation resource allocation.
The remaining optimization problem is

min
{fj,m},{Bj,m},T̃

T̃ .

s.t. (22d), (22e)
(58)

It can be seen that problem (58) is a convex optimization
problem. By applying the standard convex optimization meth-
ods and toolboxes we can obtain the final communication and
computation resource allocation decisions. The computation
complexity consists of two parts: solving the relaxed problem
by SDR method and recovering the offloading ratio to the
binary numbers due to the constraint of integer offloading.
The complexity from SDR method is O(J3.5 log(1/ϵ)). The
complexity from second part is O(J). Then, we can conclude
that the total complexity of problem (57) is O(J3.5 log(1/ϵ))+
O(J) = O(J3.5). However, there are at most O(3J) choices
in exhaustive search to find the optimal solution with binary
offloading constraint.

In order to garantee the optimized problem has the feasible
solution, there still has requirements need to be satisfied. For
the worst case, all data samples will be trained locally which
means uj = {1, 0, 0}. When FL achieving convergence, it
needs to satisfy tdevice ≤ tbudget

n and the optimization problem
is always feasible.

V. SIMULATION RESULTS

In this section, we present the performance of the proposed
multi-layer MEC assisted architecture in federated learning. It
is assumed that 10 IoT devices are randomly distributed in a
circular area of which radius is 500m. 4 wireless APs are uni-
formly distributed around the circle and equipped with MEC
servers. The path loss model is 128.1 + 37.6 log 10(d) and d
means the distance in km between devices and APs. Each IoT
device has image classification learning tasks. Computation
and communication parameters of training tasks are presented
in Table I.

TABLE I
THE SIMULATION PARAMETERS

Parameters Value
The number of data samples Nj [30000 50000]
Data sample size 20kbits
Required CPU cycles [2*104 4*104] cycles
Maximum CPU capacity of MEC servers 20GHz
Maximum Bandwidth of AAU 20MHz
Wired transmit data rate 1Gbps
Noise power 10−8Watt
Transmission power [8 10]Watt

For performance comparison, we consider three cases as
benchmark schemes, 1) Traditional learning scheme: all data
samples are trained on local devices and parameters are ag-
gregated at cloud server. It also can be regarded as traditional
client-server mode, 2) Cloud assisted learning scheme: data
samples can be trained on both the devices and the cloud
server. The aggregation will be implemented at the cloud
server, 3) Central learning scheme: all data samples are sent
to cloud server to train and model parameters are aggregated
at the cloud.

A. Performance of multi-layer MEC assisted architecture in
federated learning

Fig. 4 shows the average learning latency of different learn-
ing schemes versus different achieved local training accuracy.
When the value of accuracy is smaller, the trained model is
more accurate. It can be seen from the figure that total training
time increases with the value of training accuracy decreasing.
However, within the same training time, the proposed archi-
tecture can achieve more accurate training progress than the
other schemes. In addition, the proposed SDR method has
a close performance with the approximate optimal solution
by applying Gaussian randomization method. For the cloud
assisted training scheme, it always has a worse accuracy
performance than the proposed architecture which has more
resources on the edge. For the traditional learning scheme,
when it needs to achieve high accurate training, the latency
is higher than the cloud training because the computation
resource of devices is very limited. However, when the value of
accuracy is larger than 0.1, the latency gap between centralized
training and traditional learning scheme is smaller. The reason
is that devices can handle less computing tasks to achieve
less accurate learning process while the centralized learning
scheme has a large latency on communication.

Fig. 5 shows the achieved global accuracy under different
total learning time budget. It can be observed that the proposed
scheme can achieve more accurate global model parameter
compared with the traditional learning scheme under the same
time budget. Furthermore, different local training accuracy can
affect the total training time. More accurate local training
generates longer training latency with the same global accu-
racy requirement for both schemes. The proposed multi-layer
scheme has a lower latency compared with the traditional
learning under the same local and global accuracy require-
ments. Therefore, the obtained resource allocations from the
proposed solution can help reduce the total latency.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

Local training accuracy

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

A
v
er

a
g
ed

 t
o
ta

l
la

te
n

cy
 f

o
r

fe
d

er
a
te

d
 t

ra
in

in
g
(s

ec
) Traditional learning scheme

Centralized learning scheme

Cloud assisted learning scheme

The proposed scheme,SDR

The proposed scheme,Gaussian

Fig. 4. Average training latency versus training accuracy

10 20 30 40 50 60 70 80 90 100

Total time budget(s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
lo

b
a
l

A
cc

u
ra

cy

The proposed scheme,local accuracy = 90%

Traditional scheme,local accuracy = 90%

The proposed scheme,local accuracy = 95%

Traditional scheme,local accuracy = 95%

Fig. 5. Achieved global accuracy versus the total learning time budget

Fig. 6 shows the average latency performance versus the
bandwidth of the APs. It can be observed that the training
latency decreases with the APs’ bandwidth increasing. When
the bandwidth is limited, such as bandwidth equals 10MHz,
the latency of the proposed scheme and the cloud assisted
scheme is close to the device training. The reason is that
more data samples will be trained on devices since the latency
of communication between devices and the MEC servers is
large. For the centralized learning mode, when the bandwidth
is smaller than 20MHz, it has a higher latency than local
training since all data samples are offloaded to remote cloud.
More data samples will be offloaded from devices to MEC
servers and the cloud server when the bandwidth is sufficient.
When the bandwidth becomes large enough, the change of
latency becomes flat. That is reasonable because the latency
will depend on computation delay when the latency cost on
communication is small.

Fig. 7 shows the average training latency and data offloading
ratio versus the ratio of MEC server computation resource to
the cloud server resource where the number of devices is 10
and the number of MEC servers are 3, 4 and 5 respectively.
We set the total computation resources of MEC servers and
the cloud servers as a constant. When the ratio of MEC
server computation resource to the cloud server equals zero
which means there is no resource in the edge, the total

10 12 14 16 18 20 22 24 26 28 30

Bandwidth (MHz)

3

4

5

6

7

8

9

10

A
v
er

a
g
ed

 t
o
ta

l
la

te
n

cy
 f

o
r

fe
d

er
a
te

d
 t

ra
in

in
g
(s

ec
)

Traditional learning scheme

Centralized learning scheme

Cloud assisted learning scheme

The proposed scheme

Fig. 6. Average training latency versus the bandwidth of APs

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

fm/fc

2.5

3

3.5

4

4.5

5

5.5

6

6.5

A
v
er

a
g
ed

 t
o
ta

l
la

te
n

cy
 f

o
r

fe
d

er
a
te

d
 t

ra
in

in
g
(s

ec
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v
er

a
g
ed

 o
ff

lo
a
d

in
g
 r

a
ti

o

Latency,M=3

Latency,M=4

Latency,M=5

Ratio,M=3

Ratio,M=4

Ratio,M=5

Balance point

Fig. 7. Average training latency and data samples offloading ratio versus the
ratio of MEC server computation resource to cloud server resource

latency is high. With the resource in the edge increasing, the
total latency decreases obviously because partial data samples
can be offloaded and trained in the MEC servers. Hence it
can be observed that the offloading ratio will increase at
first. However, when the resource in the edge continues to
increase, the learning latency does not linearly decrease with
the increase of fm. This is because the computation resource
in cloud server is reduced which affects the total latency and
offloading ratio obviously. There exists a balanced point of
computation resource ratio which can achieve the best latency
performance. The change of balance point varies according to
different resource allocation for MEC servers and cloud server.
Furthermore, when the number of MEC servers increases
which means computing resources become more distributed,
the total latency will decreases.

Fig. 8 shows the average training latency versus the ratio
of devices computation resource to the total computation
resource. For our proposed scheme and cloud assisted training
scheme, the total training latency decreases when the com-
puting ability of devices becomes more powerful. However,
when the computing capacity of devices’ CPU continues to
increase, the gap among three learning schemes becomes
smaller. Because devices have enough computing ability which
leads to more data samples to be trained at the local to save
communication latency. Centralized training gives a stable

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

0.05 0.1 0.15 0.2 0.25 0.3

fd/f

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

A
v
er

a
g
ed

 t
o
ta

l
la

te
n

cy
 f

o
r

fe
d

er
a
te

d
 t

ra
in

in
g
(s

ec
)

Traditional learning scheme

Centralized learning scheme

Cloud assisted learning scheme

The proposed scheme

Fig. 8. Average training latency versus the ratio of device computation resource
to total resource

0.05 0.1 0.15 0.2 0.25 0.3

fd/f

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
er

a
g
ed

 t
o
ta

l
o
ff

lo
a
d

in
g
 r

a
ti

o

6 Devices-the proposed scheme

8 Devices-the proposed scheme

10 Devices-the proposed scheme

6 Devices-cloud assisted scheme

8 Devices-cloud assisted scheme

10 Devices-cloud assisted scheme

Fig. 9. Data samples offloading ratio versus the ratio of device computation
resource to total resource

latency performance as it can not be affected by the computing
ability of devices. But when the computing ability of devices
is very small, centralized training with powerful computing
ability can have a better performance than traditional learning
scheme even if training at cloud needs to experience a long
distance.

Fig. 9 shows the data offloading ratio versus the device
computing ability under different number of devices. It can
be seen that offloading ratio in the proposed training scheme
and cloud assisted training scheme decreases as the computing
ability of devices increasing. The reason is that devices have
more computation resources to allow more data samples to be
trained on devices to save latency. With the same computing
ability of devices, the proposed training scheme has a higher
offloading ratio than that in cloud assisted scheme since
the proposed scheme can offload data to MEC servers to
improve training efficiency. Due to the same local computation
resource, when the number of devices is small, devices will
have more sufficient computing ability and more data samples
will be trained at local. Therefore, it can be observed that
the offloading ratio increases with the number of devices
increasing.

Fig. 10 illustrates the changes of average latency with
different numbers of devices. It is observed that when the

4 5 6 7 8 9 10 11 12

Number of devices

3

3.5

4

4.5

5

5.5

6

6.5

A
v
er

a
g
ed

 t
o
ta

l
la

te
n

cy
 f

o
r

fe
d

er
a
te

d
 t

ra
in

in
g
(s

ec
)

Traditional learning scheme

Centralized learning scheme

Cloud assisted learning scheme

The proposed scheme

Fig. 10. Average training latency versus the number of devices

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5

Number of data samples
×10

4

3

3.5

4

4.5

5

5.5

6

6.5

7

A
v
er

a
g
ed

 t
o
ta

l
la

te
n

cy
 f

o
r

fe
d

er
a
te

d
 t

ra
in

in
g
(s

ec
) FRA for cloud assisted scheme

ERA for cloud assisted scheme

Cloud assisted scheme

FRA for the proposed scheme

ERA for the proposed scheme

The proposed scheme

Fig. 11. Average training latency versus the number of data samples

number of devices increases, the total training latency in-
creases since the total computing capacity in MEC servers
and cloud server is set to be constant. When the number
of devices continues to increase, the gap between traditional
learning scheme and the proposed scheme becomes smaller.
Because the computation resource in MEC allocated to devices
becomes smaller while the computing ability of devices is
constant. Latency performance of centralized learning scheme
also becomes worse with the number of devices increasing
because the communication and computation resources are
both limited. That means each device will be allocated smaller
bandwidth and computation resources. When the number of
devices is more than 10, the proposed scheme still has the
best latency performance than other three schemes of which
performance is similar with each other.

Fig. 11 shows the changes of average training latency with
different resource allocation methods. We define fractional
resource allocation as ’FRA’ which means bandwidth and
computation capacity are allocated according to the offloading
ratio. Equal resource allocation is defined as ’ERA’ which
means each device gets average reource. It can be observed
that the training latency linearly increases with the number
of data samples increasing for all schemes. As shown in
the figure, FRA has the same performance as the optimized
solution and ERA has a worse latency performance than

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

5 10 15 20 25 30

fm(GHz)

4

4.5

5

5.5

6

6.5

A
v
er

a
g
e

to
ta

l
la

te
n

cy
 f

o
r

fe
d

er
a
te

d
 l

ea
rn

in
g
 (

se
c)

Traditional learning scheme

Centralized learning scheme

The proposed scheme

The optimal strategy

Fig. 12. Average training latency versus the computation resource of MEC
server

10 12 14 16 18 20 22 24 26 28 30

Bandwidth (MHz)

3

4

5

6

7

8

9

10

A
v
er

a
g
ed

 t
o
ta

l
la

te
n

cy
 f

o
r

fe
d

er
a
te

d
 t

ra
in

in
g
(s

ec
) Traditional learning scheme

Centralized learning scheme

The proposed scheme

The optimal strategy

Fig. 13. Average training latency versus the bandwidth of APs

the FRA. This is because the total latency of multi-layer
federated learning depends on the maximum value of each
layer. Allocating resource based on the value of offloading
ratio can reduce the difference of latency among devices to
minimize the maximum value of each layer.

B. Performance of multi-layer MEC assisted architecture with
the constraint of indivisible tasks

In this section, we evaluate the latency performance of
the proposed scheme with the constraint of invisible tasks.
Traditional learning scheme and centralized learning scheme
are still considered as comparisons. The optimal strategy
obtained by exhausted searching is additionally added as a
benchmark.

Fig. 12 and Fig.13 illustrate the changes of average training
latency with different computation resource and communica-
tion resource of MEC servers when there is a constraint of
binary offloading decisions. It can be seen from Fig.12 and
Fig.13 that when the bandwidth or CPU resource is limited,
latency performance of the proposed scheme is the same as
the traditional local training since devices tend to train locally
to save latency. It can be observed from Fig.13 that except
the traditional learning scheme which is affected by band-
width slightly, other schemes have better performances with

larger bandwidth. The optimal strategy obtained by exhausted
searching can achieve the best training latency performance.
The multi-layer learning scheme with the proposed resource
allocation strategy has a close performance to the optimal
strategy. However, when the number of devices increases,
the evaluation time to obtain the final solution by exhausted
searching will increase exponentially because of the 3J com-
puting complexity. Therefore, we can get the approximate
optimal resource allocation strategy by saving evaluation time.

VI. CONCLUSION

In this paper, a MEC assisted multi-layer federated learning
architecture for IoT devices has been investigated to achieve
an efficient joint training procedure. In the proposed learning
scheme, the offloading decisions, the computation resource
allocation and the bandwidth have been optimized jointly to
minimize the total federated learning latency. In addition, we
have investigated an optimum resource allocation scheduling
with the constraints of indivisible tasks. Simulation results
have verified the effectiveness of the proposed training scheme.
The following conclusions can be drawn:

• The proposed multi-layer MEC assisted federated learn-
ing architecture can significantly improve the perfor-
mance of learning latency. Furthermore, our proposed
learning architecture can achieve more efficient training
process than the traditional federated learning method
under the same accuracy requirement.

• Resource allocation strategy from our proposed solution
based on SDR method has significant improvement on
latency performance. Under a limited total computation
resource, there exists a reasonable resource allocation
ratio between MEC servers and the cloud server to
achieve the best latency performance.

• When considering the scenario with the constraint of
indivisible tasks, the resource allocation from the recov-
ery solution with shorter evaluation time has the close
performance to the exausted searching method.

REFERENCES

[1] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward
an intelligent edge: Wireless communication meets machine learning,”
IEEE communications magazine, vol. 58, no. 1, pp. 19–25, 2020.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–44, 05 2015.

[3] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
2019.

[4] P. Li, J. Li, Z. Huang, T. Li, C.-Z. Gao, S.-M. Yiu, and K. Chen,
“Multi-key privacy-preserving deep learning in cloud computing,”
Future Generation Computer Systems, vol. 74, pp. 76–85, 2017.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167739X17302005

[5] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated multi-
task learning,” in Proceedings of the 31st International Conference on
Neural Information Processing Systems, ser. NIPS’17. Red Hook, NY,
USA: Curran Associates Inc., 2017, p. 4427–4437.

[6] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge
ai: Intelligentizing mobile edge computing, caching and communication
by federated learning,” IEEE Network, vol. 33, no. 5, pp. 156–165, 2019.

[7] W. Saad, M. Bennis, and M. Chen, “A vision of 6g wireless systems:
Applications, trends, technologies, and open research problems,” IEEE
Network, vol. 34, no. 3, pp. 134–142, 2020.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

[8] Y. Zhou, Q. Ye, and J. Lv, “Communication-efficient federated learning
with compensated overlap-fedavg,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 1, pp. 192–205, 2022.

[9] Z. Yang, W. Bao, D. Yuan, N. H. Tran, and A. Y. Zomaya, “Federated
learning with nesterov accelerated gradient momentum method,” arXiv
preprint arXiv:2009.08716, 2020.

[10] H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Blockchained on-device
federated learning,” IEEE Communications Letters, vol. 24, no. 6, pp.
1279–1283, 2020.

[11] S. Luo, X. Chen, Z. Zhou, X. Chen, and W. Wu, “Incentive-aware
micro computing cluster formation for cooperative fog computing,”
IEEE Transactions on Wireless Communications, vol. 19, no. 4, pp.
2643–2657, 2020.

[12] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, 2015.

[13] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: On-demand accelerating
deep neural network inference via edge computing,” IEEE Transactions
on Wireless Communications, vol. 19, no. 1, pp. 447–457, 2019.

[14] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Transactions
on Wireless Communications, vol. 16, no. 3, pp. 1397–1411, 2016.

[15] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[16] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646,
2016.

[17] J. Ren, G. Yu, and G. Ding, “Accelerating dnn training in wireless
federated edge learning systems,” IEEE Journal on Selected Areas in
Communications, vol. 39, no. 1, pp. 219–232, 2020.

[18] G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for
low-latency federated edge learning,” IEEE Transactions on Wireless
Communications, vol. 19, no. 1, pp. 491–506, 2020.

[19] Q. Zeng, Y. Du, K. Huang, and K. K. Leung, “Energy-efficient radio
resource allocation for federated edge learning,” in 2020 IEEE Inter-
national Conference on Communications Workshops (ICC Workshops).
IEEE, 2020, pp. 1–6.

[20] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Transactions on Wireless Communications,
vol. 20, no. 1, pp. 269–283, 2021.

[21] C. W. Zaw, S. R. Pandey, K. Kim, and C. S. Hong, “Energy-aware
resource management for federated learning in multi-access edge com-
puting systems,” IEEE Access, vol. 9, pp. 34 938–34 950, 2021.

[22] W. Xu, Z. Yang, D. W. K. Ng, M. Levorato, Y. Eldar, and M. Debbah,
“Edge learning for b5g networks with distributed signal processing:
Semantic communication, edge computing, and wireless sensing,” 06
2022.

[23] N. Yoshida, T. Nishio, M. Morikura, K. Yamamoto, and R. Yonetani,
“Hybrid-fl for wireless networks: Cooperative learning mechanism using
non-iid data,” in ICC 2020 - 2020 IEEE International Conference on
Communications (ICC), 2020, pp. 1–7.

[24] Y.-W. Chu, S. Hosseinalipour, E. Tenorio, L. Cruz Castro, K. Douglas,
A. Lan, and C. Brinton, “Multi-layer personalized federated learning for
mitigating biases in student predictive analytics,” 12 2022.

[25] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
efficient federated learning over wireless communication networks,”
IEEE Transactions on Wireless Communications, 2020.

[26] J. Konečnỳ, Z. Qu, and P. Richtárik, “Semi-stochastic coordinate de-
scent,” optimization Methods and Software, vol. 32.

[27] C. Ma, J. Konečnỳ, M. Jaggi, V. Smith, M. I. Jordan, P. Richtárik,
and M. Takáč, “Distributed optimization with arbitrary local solvers,”
Optimization Methods and Software, vol. 32, no. 4, pp. 813–848, 2017.

[28] J. Fang and A. Ma, “Iot application modules placement and dynamic task
processing in edge-cloud computing,” IEEE Internet of Things Journal,
2020.

[29] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y.
Arcas, “Communication-Efficient Learning of Deep Networks from
Decentralized Data,” in Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, ser. Proceedings
of Machine Learning Research, A. Singh and J. Zhu, Eds., vol. 54.
PMLR, 20–22 Apr 2017, pp. 1273–1282. [Online]. Available:
https://proceedings.mlr.press/v54/mcmahan17a.html

[30] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in ICC 2020-2020 IEEE International
Conference on Communications (ICC). IEEE, 2020, pp. 1–6.

[31] R. Andonov, V. Poirriez, and S. Rajopadhye, “Unbounded knapsack
problem: Dynamic programming revisited,” European Journal of Opera-
tional Research, vol. 123, no. 2, pp. 394–407, 2000. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0377221799002659

[32] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,” IEEE Signal Processing
Magazine, vol. 27, no. 3, pp. 20–34, 2010.

[33] A. Mobasher, M. Taherzadeh, R. Sotirov, and A. Khandani, “A near
maximum likelihood decoding algorithm for mimo systems based on
semi-definite programming,” in Proceedings. International Symposium
on Information Theory, 2005. ISIT 2005., 2005, pp. 1686–1690.

[34] W.-K. Ma, C.-C. Su, J. Jalden, T.-H. Chang, and C.-Y. Chi, “The
equivalence of semidefinite relaxation mimo detectors for higher-order
qam,” IEEE Journal of Selected Topics in Signal Processing, vol. 3,
no. 6, pp. 1038–1052, 2009.

[35] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms
in convex programming. SIAM, 1994.

[36] G. Zhang, S. Zhang, W. Zhang, Z. Shen, and L. Wang, “Joint service
caching, computation offloading and resource allocation in mobile edge
computing systems,” IEEE Transactions on Wireless Communications,
vol. 20, no. 8, pp. 5288–5300, 2021.

Huibo Li received the BS degree, MS degree and
Ph.D. degree in the School of Mechatronical En-
gineering from Beijing Institute of Technology in
2016, 2019 and 2023, respectively. Her research
interests include wireless network simulation and
emulation, mobile edge computing and resource
management in wireless systems.

Yijin Pan is an associate professor in the School of
Information Science and Engineering at Southeast
University. She was selected as a Newton Fellow
by the Royal Society of the United Kingdom from
2019 to 2021. Dr. Pan Yijin serves as a reviewer and
the TPC member for prestigious international jour-
nals and conferences including IEEE Transactions,
Globecom, and ICC, etc. Her research focuses on
key technologies for the future communication net-
works, especially for the edge intelligence enhanced
communication schemes.

Huiling Zhu received the B.S degree from Xidian
University, China, and the Ph.D. degree from Ts-
inghua University, China. She is currently a Reader
(Associate Professor) in the School of Engineering,
University of Kent, United Kingdom. Her research
interests are in the area of wireless communications.
She was holding European Commission Marie Curie
Fellowship from 2014 to 2016. She received the
best paper award from IEEE Globecom 2011. She
was Symposium Co-Chair for IEEE Globecom 2015
and IEEE ICC 2018, and Track Co-Chair of IEEE

VTC2016-Spring and VTC2018-Spring. Currently, she serves as an Editor for
IEEE Transactions on Vehicular Technology.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

Peng Gong received the BS degree in Mechatronical
Engineering from Beijing Institute of Technology,
Beijing, China, in 2004, and the MS and Ph.D.
degrees from the Inha University, Korea, in 2006
and 2010, respectively. In July 2010, he joined
the School of Mechatronical Engineering, Beijing
Institute of Technology, China. His research interests
include link/system level performance evaluation
and radio resource management in wireless systems,
information security, and the next generation wire-
less systems such as 3GPP LTE, UWB, MIMO,

Cognitive radio and so on.

Jiangzhou Wang (Fellow, IEEE) is a Professor with
the University of Kent, U.K. He has published more
than 400 papers and four books. His research focuses
on mobile communications. He was a recipient of
the 2022 IEEE Communications Society Leonard
G. Abraham Prize and IEEE Globecom2012 Best
Paper Award. He was the Technical Program Chair
of the 2019 IEEE International Conference on Com-
munications (ICC2019), Shanghai, Executive Chair
of the IEEE ICC2015, London, and Technical Pro-
gram Chair of the IEEE WCNC2013. He is/was the

editor of a number of international journals, including IEEE Transactions on
Communications from 1998 to 2013. Professor Wang is a Fellow of the Royal
Academy of Engineering, U.K., Fellow of the IEEE, and Fellow of the IET.

