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Abstract

In recent work, we presented the construction of a family of difference equations associated with the
Stieltjes continued fraction expansion of a certain function on a hyperelliptic curve of genus g. As well
as proving that each such discrete system is an integrable map in the Liouville sense, we also showed
it to be an algebraic completely integrable system. In the discrete setting, the latter means that the
generic level set of the invariants is an affine part of an abelian variety, in this case the Jacobian of the
hyperelliptic curve, and each iteration of the map corresponds to a translation by a fixed vector on the
Jacobian. In addition, we demonstrated that, by combining the discrete integrable dynamics with the
flow of one of the commuting Hamiltonian vector fields, these maps provide genus g algebro-geometric
solutions of the infinite Volterra lattice, which justified naming them Volterra maps, denoted Vg.

The original motivation behind our work was the fact that, in the particular case g = 2, we could
recover an example of an integrable symplectic map in four dimensions found by Gubbiotti, Joshi,
Tran and Viallet, who classified birational maps in 4D admitting two invariants (first integrals) with a
particular degree structure, by considering recurrences of fourth order with a certain symmetry. Hence,
in this particular case, the map V2 yields genus two solutions of the Volterra lattice. The purpose of this
note is to point out how two of the other 4D integrable maps obtained in the classification of Gubbiotti
et al. correspond to genus two solutions of two different forms of the modified Volterra lattice, being
related via a Miura-type transformation to the g = 2 Volterra map V2.

We dedicate this work to a dear friend and colleague, Decio Levi.

*Work begun while on leave from School of Mathematics, Statistics & Actuarial Science, University of Kent, Canterbury
CT2 7NF, UK.
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1 Introduction

This short article consists of some recollections of our colleague Decio Levi (in section 2 below), followed by
a brief update on our recent results about integrable maps in four (and higher) dimensions, which provide
algebro-geometric solutions of differential-difference equations of Volterra type [10]. Decio was one of the
pioneers in the theory of integrability for differential-difference equations, especially in the construction of
integrable lattices from Bäcklund transformations for continuous systems [13, 15], and the programme of
applying the symmetry approach to the classification of such lattices, which he initiated with Yamilov [14].
Thus we like to think that Decio would have appreciated the results being presented here.

After presenting a few memories of Decio, in section 3 we begin by giving a brief overview of the 4D
integrable maps which were classified by Gubbiotti et al. [7]. We then proceed to review our construction
of integrable maps obtained from the Stieltjes fraction expansion of certain functions on hyperelliptic curves
[10], and explain how it reproduces one of the examples from [7], denoted (P.iv), in the particular case of
genus two curves. Sections 4 and 5 are devoted to the maps (P.v) and (P.vi), respectively: we show how each
of these maps is related to a different form of the modified Volterra lattice, and present explicit formulae
which relate their solutions to the solutions of (P.iv) via a transformation of Miura type. We end with some
very short conclusions in section 6.

2 Memories of Decio Levi

Andrew Hone writes: I first met Decio in Warsaw in September 1995, when I was a PhD student participating
in the 1st Non-Orthodox School on Nonlinearity and Geometry [23]. Decio was one of the lecturers, along
with Orlando Ragnisco, and it was thanks to extended conversations with Orlando that I resolved to apply for
postdoctoral funding to work with him when I finished my PhD. After receiving a grant from the Leverhulme
Trust two years later, I finally got to be a researcher at Roma Tre, where Orlando and Decio were both
professors in the Dipartimento di Fisica.

For approximately the first six months of my time in Rome, there was no available office space for
postdocs, which meant that I had to share an office with Orlando. Far from being a negative aspect of my
experience, this situation had many positive benefits for me, and not just scientific ones. By working in
close proximity with Orlando, it meant that I was privy to the regular visits from the neighbour in the office
next door, namely Decio, his long-time friend and collaborator. Apart from the pleasure of getting to know
Decio, and learning many wonderful ideas about integrable systems from him, there was the fact that, by
default, he would chat to Orlando in Italian, which helped me to rapidly improve my grasp of the language
in those first few months. The strong bond of friendship between Orlando and Decio created a very happy
atmosphere, and I have extremely fond memories of those times.

In subsequent years, I would see Decio fairly often at various international conferences, or during return
visits to Rome. He had an amiable manner and a warm, cheerful smile. It was always enjoyable to talk to
him, whether about technical problems, sharing family news, or just musing about life in general. Talking
with Decio would leave me feeling reassured, that all was right with the world, and I liked his gentle way of
concluding a long conversation with “Vabbè in somma”.

It is an honour to be able to remember Decio here, both for his contributions as a scientist, and as a
wonderful human being.

Federico Zullo writes: The first time I met Decio was in 2003: I was a student at the Dipartimento di
Fisica of Roma Tre University and needed an advisor for my last examination for my laurea triennale (bach-
elor’s degree). I asked Orlando Ragnisco who, at that time, was very busy. He accompanied me to the
office next door, where Decio was, and I asked him for a theme for my short dissertation. He very heartily
introduced me to the subject of solitons, that I never heard about before, giving me books and kind advice.
Later, during my laurea magistrale (master’s degree), and during my PhD studies, I followed different classes
taught by Decio, some with very few students. The familiar atmosphere and natural mildness of Decio’s
classes fostered my learning, and I’m greatly indebted to him for having taught me many topics used in
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mathematical physics, like group theory, symmetries of differential equations, physics of nonlinear systems,
qualitative and quantitative analysis of solutions of differential equations and others. For my own teaching,
I still use some of the material that I collected from his courses.

For a period just before 2014, I was hosted by Decio in his office as a researcher. I remember the talks
on disparate subjects, like religion, literature, politics, society and, obviously, our research. The talks would
then continue during the lunch break, usually in Via Marconi, with Orlando and the other members of
the very stimulating group of young researchers that was gathered at Roma Tre in that period, including
Fabio Musso, Matteo Petrera, Christian Scimiterna, Danilo Riglioni, Riccardo Droghei, and later Giorgio
Gubbiotti and Danilo Latini, all led by Decio and Orlando. I’ll always keep these beautiful memories with
me.

3 The map (P.iv) and the geometry of its solutions

Discrete integrable systems can be constructed by applying an appropriate discretization procedure to con-
tinuous ones, and historically this is how many examples of discrete integrability were first discovered [13, 20].
However, from both a theoretical point of view and a practical one, it is important to have a notion of inte-
grability for discrete systems that does not require making reference to some underlying continuous system,
whether this be for lattice equations [14], or for integrable maps [2, 16, 22]. While integrable maps in two
and three dimensions lead to families of invariant curves (as the level sets of first integrals), the case of four
dimensions can lead to new features, namely invariant tori of dimension two.

In [7], Gubbiotti et al. presented a classification of four-dimensional birational maps of recurrence type,
that is

φ : (w0, w1, w2, w3) 7→
(
w1, w2, w3, F (w0, w1, w2, w3)

)
, (3.1)

for a suitable rational function F of the affine coordinates (w0, w1, w2, w3) ∈ C4, where the map φ is required
to be invariant under the involution ι : (w0, w1, w2, w3) 7→ (w3, w2, w1, w0), and to possess two independent
polynomial invariants, H1, H2 say, with specific degree patterns (degw0

Hj ,degw1
Hj ,degw2

Hj ,degw3
Hj) =

(1, 3, 3, 1) and (2, 4, 4, 2) for j = 1, 2, respectively. The result of this classification was six maps with
parameters, labelled (P.i-vi), together with six associated maps, denoted (Q.i-vi) respectively. Each of the
“Q” maps arises from a corresponding “P” map, as a discrete integrating factor for linear combinations of
the first integrals, so they are dual to one another in the sense of [17].

As described previously, first in [11] and then [6], the original motivation for classifying such maps was
to understand autonomous versions of the fourth-order members of hierarchies of discrete Painlevé I/II
equations from [5]; but, aside from the latter connection, the “P” in this nomenclature has nothing to do
with the usual labelling of continuous Painlevé equations. From our point of view, the most interesting cases
are the maps labelled (P.iv), (P.v) and (P.vi), since (from Table 1 in [7]) these are the only ones arising from
a discrete variational principle (Lagrangian), leading to a non-degenerate Poisson bracket in four dimensions,
such that the two first integrals H1, H2 are in involution; this means that in the real case the Liouville tori
are two-dimensional. Subsequently, Gubbiotti obtained these 4D integrable maps via an alternative method,
by classifying fourth-order difference equations with a discrete Lagrangian structure [8].

Here we begin with the case of (P.iv), which is the birational map given in affine coordinates by the
recurrence

wn+4wn+3wn+2 + wn+2wn+1wn + 2w2
n+2(wn+3 + wn+1)

+wn+2(w
2
n+3 + wn+3wn+1 + w2

n+1) + w3
n+2 + νwn+2(wn+3 + wn+2 + wn+1) + bwn+2 + a = 0.

(3.2)

This map has three essential parameters a, b, ν (in the formulae from [7] we have set the parameter d = 1,
which can be achieved by a simple rescaling), and it is of the form (3.1), with

F = −w0w1w2 + w1w2w3 + w2
1w2 + w2w

2
3 + 2w1w

2
2 + 2w2

2w3 + w3
2 + ν(w1w2 + w2w3 + w2

2) + bw2 + a

w2w3
;
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this F is the rational function of w0, w1, w2, w3 obtained by solving for w4 in (3.2) with n = 0.
The first integral denoted IP.iv

low in [7] is given in affine coordinates by

H1 = w1w2

(
w2w3 + w0w1 − w0w3 + (w1 + w2)

2 + ν(w1 + w2) + b
)
+ a(w1 + w2). (3.3)

The latter has the degree pattern (1, 3, 3, 1). In particular, it is linear in w3, which implies that, on each
three-dimensional level set H1 = h1 = const, the map (3.2) reduces to a birational map in three dimensions,
given by the recurrence

wn+3wn+2wn+1(wn+2 − wn) + wn+2w
2
n+1wn + wn+2wn+1(wn+1 + wn+2)

2

+ν wn+2wn+1(wn+1 + wn+2) + bwn+2wn+1 + a (wn+1 + wn+2) = h1.

A second independent invariant for (3.2), with degree pattern (2, 4, 4, 2), is given by

H2 = w1w2

 w2
0w1 + w2

3w2 + w0w3(w1 + w2) + w0(w
2
2 + 2w2

1) + w3(w
2
1 + 2w2

2)
+ 3(w0 + w3)w1w2 + (w1 + w2)

3

+ν
(
w0w3 + (w0 + w3)(w1 + w2) + (w1 + w2)

2
)
+ b (w0 + w1 + w2 + w3)


+a

(
w0w1 + w3w2 + (w1 + w2)

2
)
.

(3.4)

This differs slightly from the second invariant presented in [7], which is IP.iv
high = H2 − νH1.

The nondegenerate Poisson bracket between the coordinates, which was obtained in [7] by making use of
a discrete Lagrangian for (3.2), is given by

{wn, wn+1 } = 0, {wn, wn+2 } =
1

wn+1
, {wn, wn+3 } = −wn + 2wn+1 + 2wn+2 + wn+3 + ν

wn+1wn+2
, (3.5)

for all n. So (3.1) is a Poisson map, in the sense that {φ∗G,φ∗H } = φ∗{G,H } for all functions G,H
on C4. The two independent invariants given in [7] are in involution with respect to this bracket, which is
equivalent to the involutivity of functions (3.3) and (3.4), that is to say

{H1, H2 } = 0.

Hence the four-dimensional map defined by (3.2) is integrable in the Liouville sense.
Computing the Hamiltonian vector field for the first flow, generated by H1, we find that this takes the

form
dwn

dt
= wn(wn+1 − wn−1) (3.6)

for n = 1, 2. However, since (3.2) is a Poisson map that commutes with this flow, it follows that the relation
(3.6) extends to all n ∈ Z. Thus the combined solutions of the map and the flow, which are compatible
with one another, generate a sequence of functions

(
wn(t)

)
n∈Z satisfying (3.6), which is the Volterra lattice

equation, first considered by Kac and van Moerbeke [12]. Hence, in a certain sense that can be made precise,
these will turn out to be genus 2 solutions of this lattice hierarchy.

The complex geometry of the solutions of the map defined by (3.2) is related to a family of hyperelliptic
curves of genus 2, given by the Weierstrass quintic

Γ : y2 = (1 + νx+ bx2)2 + 4a(1 + νx+ bx2)x3 + 4h1x
4 + 4(h2 + νh1)x

5. (3.7)

On any genus 2 curve Γ of the above form, we take the meromorphic function F given by

F =
y + P(x)

Q(x)
=

R(x)

y − P(x)
, (3.8)

where P,Q,R are polynomials in the spectral parameter x, given by

P(x) = 1 + p1x+ p2x
2, Q(x) = 2 + q1x+ q2x

2, R(x) = r1x+ r2x
2 + r3x

3, (3.9)
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which are required to satisfy
P(x)2 +Q(x)R(x) = f(x), (3.10)

with f(x) = (1+νx+ bx2)2+4a(1+νx+ bx2)x3+4h1x
4+4(h2+νh1)x

5 being the quintic on the right-hand
side of (3.7). Then the key to the construction in [10] is to expand the function F as a continued fraction of
Stieltjes type (S-fraction), that is

F = 1−
w1x

1−
w2x

1−
w3x

1− · · ·

, (3.11)

and by iterating from one line of the fraction to the next we find that we obtain a recurrence for the
coefficients wj . More precisely, the non-trivial coefficients of the polynomials (3.9) are given in terms of wj

and the parameters by

p1 = 2w0+ν, p2 = 2w0(w1+w0+w−1)+b, 1
2q1 = w0+w1+ν, 1

2q2 = w0w−1+w1w2+(w1+w0)
2+ν(w0+w1)+b,

and r1 = −2w0; there are similar (but slightly more unwieldy) expressions for r2 and r3, which are omitted
here, but are easily obtained from the relation (3.10). With these identifications, the iteration of the S-
fraction (3.11) for F becomes precisely the map (P.iv) in terms of the affine coordinates wj , as given by
(3.2).

In [10] it was also shown that each iteration of the continued fraction is equivalent to the discrete Lax
equation

L(x)M(x) = M(x)L̃(x) ,

where

L(x) :=

(
P(x) R(x)
Q(x) −P(x)

)
, M(x) :=

(
1 −w1x
1 0

)
.

Furthermore, we found that each generic common level set of the two invariants H1, H2 is isomorphic to an
affine part of the Jacobian of the associated spectral curve Γ (or rather, of its completion), and each iteration
of the map corresponds to a translation on the Jacobian by the divisor class [(0,−1)−∞]. Thus, in addition
to being integrable in the Liouville sense, the map (3.2) is an algebraic completely integrable system, being
a discrete analogue of an a.c.i. system (see [1, 21]).

The map (3.2) can also be rewritten in terms of tau functions τn, related to wn via

wn =
τnτn+3

τn+1τn+2
.

These tau functions satisfy a Somos-9 recurrence, that is

α1 τn+9τn + α2 τn+8τn+1 + α3 τn+7τn+2 + α4 τn+6τn+3 + α5 τn+5τn+4 = 0, (3.12)

with coefficients αj that depend on a, b, ν and the values of H1, H2 along each orbit of (3.2); for details see
Proposition 2.1 in [10]. Using the S-fraction (3.11), we were also able to write explicit Hankel determinant
formulae for these tau functions τn, analogous to results for Somos sequences in genus 1 [3], and other
Hankel determinant formulae for solutions of the Volterra lattice [4]. Furthermore, we found a Miura map
relating the solutions of (P.iv) to one of the maps derived from J-fractions in [9], using the classical method
of contraction of continued fractions due to Stieltjes [19] (see also [18]), which in this case turned out to
provide solutions of the infinite Toda lattice.

In what follows, we will present analogous properties for the maps (P.v) and (P.vi), and point out how
they are closely connected to (P.iv).
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4 The map (P.v)

The map (P.v) is given by the recurrence

wn+4w
2
n+3w

2
n+2 + w2

n+2w
2
n+1wn + w3

n+2(wn+1 + wn+3)
2 + ν̃w2

n+2(wn+1 + wn+3) + c̃wn+2 + ã = 0, (4.1)

with three essential parameters ã, c̃, ν̃ (compared with [7] we have put tildes here to distinguish them from
the parameters in (3.2), and rescaled so that the parameter d → 1).

The lowest degree first integral of the map defined by (4.1), with degree pattern (1, 3, 3, 1), is given by

H1 = w3w
3
2w

2
1 + w2

2w
3
1w0 − w3w

2
2w

2
1w0 + w3

2w
3
1 + ν̃w2

2w
2
1 + c̃w2w1 + ã(w2 + w1), (4.2)

and this is the same as IP.v
low in [7]. Another first integral, with degree pattern (2, 4, 4, 2), is

H2 = w2
2w

2
1

(
(w3w2 + w1w0 + w2w1)

2 + ν̃(w3 + w1)(w2 + w0)
)

+c̃w2w1(w3w2 + w1w0 + w2w1) + ã(w3w
2
2 + w2

1w0 + w2
2w1 + w2w

2
1).

(4.3)

The second invariant presented in [7] is IP.v
high = H2 − ν̃H1.

The nondegenerate Poisson bracket between the coordinates is given by

{wn, wn+1 } = 0, {wn, wn+2 } =
1

w2
n+1

, {wn, wn+3 } = −2(wnwn+1 + wn+1wn+2 + wn+2wn+3) + ν̃

w2
n+1w

2
n+2

.

The independent first integrals (4.2) and (4.3) are in involution with respect to this bracket, which shows
that the map (4.1) is Liouville integrable.

Computing the Hamiltonian vector field for the first flow, generated by H1, we find that this takes the
form

dwn

dt
= w2

n(wn+1 − wn−1) (4.4)

for n = 1, 2. However, since the map (4.1) is Poisson and commutes with the flow {·, H1}, the equation (4.4)
holds for all n ∈ Z. Thus the compatible solutions of the map and the flow together provide a sequence of
functions

(
wn(t)

)
n∈Z which satisfy (4.4), which is a degenerate case of the modified Volterra lattice equation

[25].
If we make the tau function substitution

wn =
τnτn+2

τ2n+1

(4.5)

for (P.v), then we find that the sequence (τn) satisfies a Somos-8 relation. More precisely, by direct computer
algebra calculations we can show the following:

Proposition 4.1. Whenever wn is a solution of (4.1), the sequence (τn) satisfies the following Somos-
8 recurrence, with coefficients that are functions of the Hamiltonians H1, H2 as in (4.2) and (4.3) above
(constant along each orbit):

α1 τn+8τn + α2 τn+7τn+1 + α3 τn+6τn+2 + α4 τn+5τ3 + α5 τ
2
n+4 = 0, (4.6)

where the coefficients are given by

α1 = H1, α2 = ãH2, α3 = ã2H2 −H3
1 ,

α4 = ã
(
H2

2 + ν̃H1H2 + c̃H2
1 + ã2H1

)
, α5 = −H1

(
H2

2 + ν̃H1H2 + c̃H2
1 + ã2H1

)
.

Let us denote a solution of the Volterra lattice (3.6) by ŵn. Then the Miura map from the modified
Volterra lattice (4.4) takes the form

ŵn = wn+1wn. (4.7)

This Miura map remains valid at the level of the maps (3.2) and (4.1), in the following sense.
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Theorem 4.2. Let wn be a solution of (4.1) with parameters ã, c̃, ν̃, lying on the level set H1 = h̃1, H2 = h̃2,
of the first integrals (4.2) and (4.3). Then ŵn given by the Miura map (4.7) is a solution of (3.2) with
parameters

ν = ν̃, b = c̃, a = h̃1.

Furthermore, on this solution ŵn, the values h1, h2 of the first integrals (3.3) and (3.4) for the map (3.2)
are given by

h1 = h̃2, h2 = −ã2 − ν̃h̃2 − c̃h̃1.

Proof: The first part of this result is verified by substituting the Miura formula (4.7) directly into (3.2),
using (4.1) to eliminate wn+5 followed by wn+4, and then using the formula for H1 in (4.2) to eliminate wn+3

on the level set H1 = h̃1. Analogous calculations, rewriting (3.3) and (3.4) in terms of wn satisfying (4.1)
and comparing with h̃2, the value of the first integral (4.3) for the latter map, yield the above expressions
for h1, h2.

It is worth commenting on the meaning of the Miura formula (4.7), restricted to this finite-dimensional
setting. Given initial data w0, w1, w2, w3 for the map (4.1), we can fix a level set H1 = h̃1 to write

ŵ0 = w0w1, ŵ1 = w1w2, ŵ2 = w2w3, ŵ3 = w3 G(w1, w2, w3, h̃1),

for some rational function G, obtained by using the formula (4.2) for H1 to eliminate w4. Similarly, we can
use H1 to eliminate w0 above in terms of w1, w2, w3 and h̃1, and after taking resultants we can do further
elimination to solve for each of w0, w1, w2, w3 as algebraic functions of ŵ0, ŵ1, ŵ2, ŵ3 and h̃1. So this leads
to an explicit inverse of (4.7), at least in the form of an algebraic correspondence.

5 The map (P.vi)

The map (P.vi) is given by

wn+4(w
2
n+3 − δ2)(w2

n+2 − δ2) + wn(w
2
n+1 − δ2)(w2

n+2 − δ2)

+wn+2

(
(w2

n+2 − δ2)(wn+3 + wn+1)
2 + c̄− δ4

)
+ ν̄(w2

n+2 − δ2)(wn+3 + wn+1) + ā = 0.
(5.1)

This depends on only three essential parameters ā, c̄, ν̄; compared with [7] we have replaced a → ā, c → c̄,
d → −ν̄ and δ → δ2. Note the map P(v) in the previous section arises from P(vi) in the limit δ → 0, while
for δ ̸= 0 the map can always be rescaled so that δ → 1, but it will be convenient to retain this parameter
which has the same weight as wn in (5.1).

The lowest degree first integral of the map defined by (5.1), with degree pattern (1, 3, 3, 1), is given by

H1 =
(
w2

1w
2
2 − δ2(w2

1 + w2
2)
)(

w3w2 + w0w1 + w1w2 − w3w0 + ν̄
)

δ4(w3w2 + w0w1 − w0w3) + c̄w2w1 + ā(w2 + w1).
(5.2)

A nondegenerate Poisson bracket between the coordinates is given by

{wn, wn+1 } = 0, {wn, wn+2 } =
1

w2
n+1 − δ2

, {wn, wn+3 } = −2(wnwn+1 + wn+1wn+2 + wn+2wn+3) + ν̄

(w2
n+1 − δ2)(w2

n+2 − δ2)
,

and was derived in [7] using a discrete Lagrangian structure for (5.1). A second independent first integral
H2 was given in [7], which is in involution with H1 with respect to this bracket. Here we take the second
independent quantity as

H2 = (w2
1 − δ2)(w2

2 − δ2)2 w2
3 + (w2

1 − δ2)2(w2
2 − δ2)w2

0 + (2w1w2 + ν̄)(w2
1 − δ2)(w2

2 − δ2)w3w0

+
(
2w3

1w
2
2 + ν̄w2

1w2 + c̄w1 + ā− (2w1w
2
2 + ν̄w2)δ

2 − w1δ
4
)
(w2

2 − δ2)w3

+
(
2w2

1w
3
2 + ν̄w1w

2
2 + c̄w2 + ā− (2w2

1w2 + ν̄w1)δ
2 − w2δ

4
)
(w2

1 − δ2)w0

+ w4
1w

4
2 + ν̄w3

1w
3
2 + c̄w2

1w
2
2 + āw1w2(w1 + w2)

−
((

w2
1w

2
2 + ν̄w1w2

)
(w2

1 + w2
2) + ā(w1 + w2)

)
δ2 + (w2

1w
2
2 + ν̄w1w2 − c̄)δ4 − (w2

1 + w2
2)δ

6;

(5.3)
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so the map (5.1) is Liouville integrable.
The Hamiltonian vector field for the first flow, generated by H1, takes the form

dwn

dt
= (w2

n − δ2)(wn+1 − wn−1) (5.4)

for n = 1, 2, and once again, since the Poisson map (5.1) is compatible with the flow {·, H1}, the equation
(5.4) holds for all n ∈ Z, and thus the map and the flow together produce a sequence of functions

(
wn(t)

)
n∈Z

satisfying (5.4), which (up to rescaling) is the general form of the modified Volterra lattice equation. If we
set δ → 0 in (5.4), then the equation (4.4) is recovered, corresponding to the same limit that reproduces (4.1)
as a degenerate case of (5.1). However, the behaviour of the degenerate map (4.1) is sufficiently different
compared with (5.1) e.g. with respect to singularity structure, that it is worth giving it a separate analysis
as we have done here.

Let us denote a solution of the Volterra lattice (3.6) by ŵn. Then the Miura map from the modified
Volterra lattice (5.4) takes the form

ŵn = (wn+1 ∓ δ)(wn ± δ), (5.5)

(so there are effectively two maps, with an opposite choice of sign in each factor on the right-hand side
above). Moreover, this persists at the level of the maps (3.2) and (5.1), in the following sense.

Theorem 5.1. Let wn be a solution of (5.1) with parameters ā, c̄, ν̄, lying on the level set H1 = h̄1, H2 = h̄2

of the first integrals (5.2) and (5.3). Then for either choice of signs, ŵn given by the Miura map (5.5) is a
solution of (3.2) with parameters

ν = ν̄ + 6δ2, b = c̄+ 4ν̄δ2 + 7δ4, a = h̄1 + c̄δ2 + ν̄δ4 − δ6.

Moreover, on either solution ŵn, the values h1, h2 of the first integrals (3.3) and (3.4) for the map (3.2) are
given by

h1 = h̄2 + 2δ8, h2 = −ā2 − ν̄h̄2 − c̄h̄1 − 2h̄2δ
2 + (h̄1 − ν̄c̄)δ4 − ν̄δ8 − 4δ10.

Proof: The first part of this result is verified by substituting the Miura formula (5.5) directly into (3.2),
using (5.1) to eliminate wn+5 followed by wn+4, and then using (5.2) to eliminate wn+3 on the level set
H1 = h̄1. After the initial substitution of the Miura map and eliminating, all the final results are quadratic
in δ, so do not depend on the choice of sign in (5.5). Similar calculations using the same substitutions in the
formulae (3.3) and (3.4), together with the expression (5.3) on the level set H2 = h̄2, produce the expressions
for h1, h2, which are the corresponding values of the first integrals for (3.2).

We can also malke use of a tau function substitution for (P.vi), which has the more complicated structure

wn + δ = ρn
σn+2τn

σn+1τn+1
, (5.6)

wn − δ =
1

ρn+1

σnτn+2

σn+1τn+1
, (5.7)

with
ρn+2 = ρn.

This implies that

ŵ(+)
n = (wn − δ)(wn+1 + δ) =

σnσn+3

σn+1σn+2
, (5.8)

ŵ(−)
n = (wn + δ)(wn+1 − δ) =

τnτn+3

τn+1τn+2
(5.9)

are both solutions of (3.2), and both sequences (σn) and (τn) satisfy the same Somos-9 relation. Thus the
two different formulae for the Miura map in (5.5) can be regarded as defining a Bäcklund transformation

for the discrete equation (3.2) with parameter δ, since given ŵ
(−)
n and a solution wn of (5.1), a new solution

ŵ
(+)
n of (3.2) is generated by taking

ŵ(+)
n = ŵ(−)

n + 2δ(wn+1 − wn).
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6 Conclusion

We have shown that the integrable maps (P.iv), (P.v) and (P.vi) from [7] are closely related to one another,
via Miura-type transformations, and they provide genus two solutions of Volterra and modified Volterra
lattices, respectively. So far we do not have a complete understanding of what the relations between these
maps mean geometrically, particularly from the Poisson and algebro-geometric points of view. However, since
the construction of the integrable maps Vg presented in [10] is valid for any g ≥ 1, this strongly suggests
that (P.v) and (P.vi) should each be the g = 2 members of a family of maps defined for any g. In the elliptic
case (g = 1) we have constructed elliptic solutions of the modified Volterra and Volterra lattices, and showed
how they are linked by the Miura transformation, essentially recovering the solutions found in [24], which
can be interpreted in terms of integrable maps in the plane (QRT type). The complete description of these
results, together with the proposed extension to families of maps for all g ≥ 1, is planned for future work.
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