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Abstract
In this paper, rational solutions of the fifth Painlevé
equation are discussed. There are two classes of rational
solutions of the fifth Painlevé equation, one expressed in
terms of the generalized Laguerre polynomials, which
are themain subject of this paper, and the other in terms
of the generalized Umemura polynomials. Both the
generalized Laguerre polynomials and the generalized
Umemura polynomials can be expressed as Wronskians
of Laguerre polynomials specified in terms of specific
families of partitions. The properties of the generalized
Laguerre polynomials are determined and various
differential-difference and discrete equations found.
The rational solutions of the fifth Painlevé equation,
the associated 𝜎-equation, and the symmetric fifth
Painlevé system are expressed in terms of generalized
Laguerre polynomials. Nonuniqueness of the solutions
in special cases is established and some applications
are considered. In the second part of the paper, the
structure of the roots of the polynomials are investigated
for all values of the parameters. Interesting transitions
between root structures through coalescences at the
origin are discovered, with the allowed behaviors con-
trolled by hook data associated with the partition. The
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2 CLARKSON and DUNNING

discriminants of the generalized Laguerre polynomials
are found and also shown to be expressible in terms of
partition data. Explicit expressions for the coefficients
of a general Wronskian Laguerre polynomial defined in
terms of a single partition are given.

KEYWORDS
discriminant, Laguerre polynomials, partition, Painlevé equation,
rational solutions, Wronskian

1 INTRODUCTION

The fifth Painlevé equation is given by
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which we will refer to as PV .
The six Painlevé equations (PI–PVI), were discovered by Painlevé, Gambier and their colleagues

while studying second-order ordinary differential equations of the form

𝑑2𝑤

𝑑𝑧
2
= 𝐹

(
𝑧, 𝑤,

𝑑𝑤

𝑑𝑧

)
, (3)

where 𝐹 is rational in 𝑑𝑤∕𝑑𝑧 and 𝑤 and analytic in 𝑧. The Painlevé transcendents, that is, the
solutions of the Painlevé equations, can be thought of as nonlinear analogs of the classical special
functions. Iwasaki et al28 characterize the six Painlevé equations as “the most important non-
linear ordinary differential equations” and state that “many specialists believe that during the
twenty-first century the Painlevé functions will become new members of the community of spe-
cial functions.” Subsequently, the Painlevé transcendents are a chapter in theNISTDigital Library
of Mathematical Functions [53, Section 32].
The general solutions of the Painlevé equations are transcendental in the sense that they

cannot be expressed in terms of known elementary functions and so require the introduction
of a new transcendental function to describe their solution. However, it is well-known that all
the Painlevé equations, except PI, possess rational solutions, algebraic solutions, and solutions
expressed in terms of the classical special functions—Airy, Bessel, parabolic cylinder, Kummer,
and hypergeometric functions, respectively—for special values of the parameters, see, for
example, Refs. 12, 19, 25 and the references therein. These hierarchies are usually generated from
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CLARKSON and DUNNING 3

“seed solutions” using the associated Bäcklund transformations and frequently can be expressed
in the form of determinants.
Vorob’ev62 and Yablonskii66 expressed the rational solutions of PII in terms of special

polynomials, now known as the Yablonskii–Vorob’evpolynomials, which were defined through
a second-order, bilinear differential-difference equation. Subsequently, Kajiwara and Ohta31
derived a determinantal representation of the polynomials, see also Refs. 29, 30. Okamoto48
obtained special polynomials, analogous to the Yablonskii–Vorob’ev polynomials, which are asso-
ciated with some of the rational solutions of PIV . Noumi and Yamada45 generalized Okamoto’s
results and expressed all rational solutions of PIV in terms of special polynomials, now known as
the generalized Hermite polynomials𝐻𝑚,𝑛(𝑧) and generalized Okamoto polynomials 𝑄𝑚,𝑛(𝑧), both
of which are determinants of sequences of Hermite polynomials; see also Ref. 32.
Umemura59 derived special polynomials associated with certain rational and algebraic solu-

tions of PIII and PV , which are determinants of sequences of associated Laguerre polynomials.
(The original manuscript was written by Umemura in 1996 for the proceedings of the confer-
ence “Theory of nonlinear special functions: the Painlevétranscendents” in Montreal, which were
not published; see Ref. 52.) Subsequently, there have been further studies of rational and alge-
braic solutions of PV .11,14,33,38,43,49,63 Several of these papers are concerned with the combinatorial
structure and determinant representation of the generalized Laguerre polynomials, often related
to the Hamiltonian structure and affine Weyl symmetries of the Painlevé equations. In addition,
the coefficients of these special polynomials have some interesting combinatorial properties.57–59
See also Ref. 41 and results on the combinatorics of the coefficients of Wronskian Hermite
polynomials7 and Wronskian Appell polynomials.6
We define generalized Laguerre polynomials as Wronskians of a sequence of associated

Laguerre polynomials specified in terms of a partition of an integer. We give a short introduction
to the combinatorial concepts in Section 2 and record several equivalent definitions of a general-
ized Laguerre polynomial in Section 3, where we also show that the polynomials satisfy various
differential-difference equations and discrete equations. In Section 4, we express a family of ratio-
nal solution of PV (2) in terms of the generalized Laguerre polynomials. For certain values of the
parameter, we show that the solutions are not unique. Rational solutions of the PV 𝜎-equation,
the second-order, second-degree differential equation associated with the Hamiltonian represen-
tation of PV , are considered in Section 5, which includes a discussion of some applications. In
Section 6, we describe rational solutions of the symmetric PV system. Properties of generalized
Laguerre polynomials are established in Section 7 as well as an explicit description of all parti-
tions with 2-core of size 𝑘 and 2-quotient (𝝀, ∅) for all partitions 𝝀. Then, in Section 8 we obtain
the discriminants of the polynomials, describe the patterns of roots as a function of the parameter
and explain how the roots move as the parameter varies. Finally, we show that many of the results
in the last section can be expressed in terms of combinatorial properties of the underlying parti-
tion. We also obtain explicit expressions for the coefficients of Wronskian Laguerre polynomials
that depend on a single partition using the hooks of the partition.

2 PARTITIONS

Partitions will appear throughout this paper. We give a brief description of the key ideas. Use-
ful references include Refs. 36, 55. A partition 𝝀 = (𝜆1, 𝜆2, … , 𝜆𝑟) is a sequence of nonincreasing
integers 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆𝑟. We sometimes set 𝑟 = 𝓁(𝝀). The partition ∅ represents the unique par-
tition of zero. We define |𝝀| = 𝜆1 + 𝜆2 +⋯+ 𝜆𝑟. The associated degree vector 𝐡𝝀 = (ℎ1, ℎ2, … , ℎ𝑟)
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4 CLARKSON and DUNNING

(A) (B) (C) (D)

F IGURE 1 The Young diagrams including hook length corresponding to (A) 𝝀 = (42, 2, 13) and its core (B)
𝝀 = (2, 1), and corresponding abacus diagrams (C) and (D).

is a sequence of distinct integers ℎ1 > ℎ2 > … > ℎ𝑟 > 0 related to partition elements via

𝜆𝑗 = ℎ𝑗 − 𝑟 + 𝑗, 𝑗 = 1, 2, … , 𝑟. (4)

We often write 𝐡 rather than 𝐡𝝀. Define the Vandermonde determinant Δ(𝐡) as

Δ(𝐡) =
∏

1≤𝑗<𝑘≤𝑟

(ℎ𝑘 − ℎ𝑗). (5)

Partitions are usefully represented as Young diagrams by stacking 𝑟 rows of boxes of decreasing
length 𝜆𝑗 for 𝑗 = 1, 2, … , 𝑟 on top of each other. Reflecting a Young diagram in the main diagonal
gives the diagram corresponding to the conjugate partition 𝝀∗. Young’s lattice is the lattice of all
partitions partially ordered by inclusion of the corresponding Young diagrams. That is, 𝝀 ≤ 𝝀 if
𝜆𝑖 ≤ 𝜆𝑖 for 𝑖 = 1, 2, … , 𝓁(𝝀). We write 𝝀 <𝑗 𝝀 if |𝝀| + 𝑗 = |𝝀|. Let 𝐹𝝀 denote the number of paths in
the Young lattice from 𝝀 to ∅, and 𝐹𝝀∕𝝀 the number of paths from 𝝀 to 𝝀. Explicitly

𝐹𝝀∕𝝀 = (|𝝀| − |𝝀|)! det[ 1

(𝜆𝑗 − 𝜆𝑘 − 𝑗 + 𝑘)!

]𝓁(𝝀)
𝑗,𝑘=1

.

A hook length ℎ𝑗𝑘 is assigned to box (𝑗, 𝑘) in the Young diagram via

ℎ𝑗,𝑘 = 𝜆𝑗 + 𝜆∗
𝑘
− 𝑗 − 𝑘 + 1. (6)

The hook length counts the number of boxes to the right of and below box (𝑗, 𝑘) plus one. Thus

𝐹𝝀 =
|𝝀|!∏
ℎ∈𝝀

ℎ
,

where𝝀 is the set of all hook lengths. The entries of the degree vector𝐡𝝀 are the hooks in the first
column of the Young diagram. Examples of Young diagrams and the corresponding hook lengths
are given in Figure 1.
A partition can be represented as𝑝 + 1 smaller partitions known as the𝑝-core 𝝀 and𝑝-quotient

(𝝂1, … , 𝝂𝑝). A partition is a 𝑝-core partition if it contains no hook lengths of size 𝑝. Therefore, the
example partition (2,1) is a 2-core, and 𝝀 = (42, 2, 13) is both a 6- and 7-core. We only consider
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CLARKSON and DUNNING 5

𝑝 = 2 here. The hooks of size 2 are vertical or horizontal dominoes. We note that all 2-cores are
staircase partitions 𝝀 = (𝑘, 𝑘 − 1,… , 1).
The 2-core of a partition is found by sequentially removing all hooks of size 2 from the Young

diagram such that at each step the diagram represents a partition. The terminating Young diagram
defines the 2-core, which we denote 𝝀. It does not depend on the order in which the hooks are
removed. For example, the partition (42, 2, 13) has 2-core 𝝀 = (2, 1). Figure 1A shows that there
are three choices of domino that may be removed at the first step. The 2-height ht(𝝀) (or 2-sign)
of partition 𝝀 is the (unique) number of vertical dominoes removed from 𝝀 to obtain its 2-core.
Equivalently, the 2-height is the number of vertical dominoes in any domino tiling of the Young
diagram of 𝝀.
The 2-quotient records how the dominoes are removed fromapartition to obtain its core. James’

𝑝-abacus26 is a useful tool to determine the quotient, and provides an alternative visual represen-
tation of a partition. A 2-abacus consists of left and right vertical runners with bead positions
labeled 0, 2, 4, … (left) and 1, 3, 5, … (right) from top to bottom. To represent a partition on the 2-
abacus, place a bead at the points corresponding to each element of the degree vector 𝐡. Since a
partition can have as many 0’s as we like, we allow an abacus to have any number of initial beads
and any number of empty beads after the last bead. There are, therefore, an infinite set of abaci
associated to each partition, according to the location of the first unoccupied slot. We return to
this point below. The parts of a partition are read from its abacus by counting the number of empty
spaces before each bead.
A bead with no bead directly above it on the same runner corresponds to a hook of length 2

in the Young diagram. The 2-core 𝝀 is found from the abacus by sliding all beads vertically up
as far as possible and reading off the resulting partition. Figure 1 shows the Young diagram and
hooklengths of (42, 2, 13) in (A), an abacus representation in (C), its 2-core 𝝀 = (2, 1) in (B), and
the abacus corresponding to 𝝀 that is obtained from (C) by pushing up all beads.
The 2-quotient is an ordered pair of partitions (𝝂1, 𝝂2) that encodes howmany places the beads

on each runner are moved to obtain the 2-core. The 2-quotient ordering is specified by ensuring
the 2-core has at least as many beads on the second runner as the first. One can always add a bead
to the left runner of the partition abacus and shift all subsequent beads one place if this condition is
not met,64 swapping the order of the quotient partitions. Consequently, the relationship between
a partition and its 2-core of size 𝑘 and 2-quotient (𝝂1, 𝝂2) is bijective. In the running example,
one bead on the left runner is moved one place and another bead is moved three places. This is
recorded in the partition 𝝂1 = (3, 1). Only one bead ismoved on runner 2, by one space, and so 𝝂2 =
(1). Therefore, the 2-core and 2-quotient of 𝝀 = (42, 2, 13) are (2,1) and ((3, 1), (1)), respectively.
While we do not know of an explicit representation of the core and quotient for a generic parti-

tion, nor vice versa, the corresponding partitions can easily be found case by case and the bijection
is known in some special families of partitions. Partitions with 2-core 𝑘 and 2-quotient (𝝂, ∅) will
be important in this paper. For such partitions, we now determine the (unordered) first column
hooks of the corresponding partition 𝚲(𝑘, 𝝂). Find the degree vector 𝒉𝝂 and place beads on the
2-abacus in positions

{2ℎ𝑖}
𝑟
𝑖=1 ∪ {2𝑗 − 1}𝑟+𝑘

𝑗=1
. (7)

We read off the corresponding partition𝚲(𝑘, 𝝂) from the position of the beads on the abacus. The
first column hooks given by (7) must be ordered before using (4) to obtain the partition, which
is why we cannot give an expression for 𝚲(𝑘, 𝝂) for generic partitions 𝝂. As an example take
𝑘 = 3 and 𝝂 = (4, 2, 1). Then, 𝐡𝝂 = (6, 3, 1). It follows from (7) that the abacus of the partition
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6 CLARKSON and DUNNING

𝚲(3, (4, 2, 1)) has beads in places 2,6,12 and 1,3,5,7,9,11. Therefore, 𝐡𝚲 = (12, 11, 9, 7, 6, 5, 3, 2, 1)

and thus 𝚲(3, (4, 2, 1)) = (42, 3, 23, 13). In Section 7, we use the first column hook set (7) to
determine an explicit formula for the family of partitions with 2-core 𝑘 and 2-quotient (((𝑚 +

1)𝑛), ∅).

3 GENERALIZED LAGUERRE POLYNOMIALS

Definition 1. The generalized Laguerre polynomial𝑇(𝜇)𝑚,𝑛(𝑧), which is a polynomial of degree (𝑚 +

1)𝑛, is defined by

𝑇
(𝜇)
𝑚,𝑛(𝑧) = det

[
𝑑𝑗+𝑘

𝑑𝑧𝑗+𝑘
𝐿
(𝜇+1)
𝑚+𝑛 (𝑧)

]𝑛−1
𝑗,𝑘=0

, 𝑚 ≥ 0, 𝑛 ≥ 1, (8)

where 𝐿(𝛼)𝑛 (𝑧) is the associated Laguerre polynomial

𝐿
(𝛼)
𝑛 (𝑧) =

𝑧−𝛼 e𝑧

𝑛!

𝑑𝑛

𝑑𝑧
𝑛

(
𝑧𝑛+𝛼 e−𝑧

)
, 𝑛 ≥ 0. (9)

Lemma 1. The generalized Laguerre polynomial 𝑇(𝜇)𝑚,𝑛(𝑧) can also be written as the Wronskian

𝑇
(𝜇)
𝑚,𝑛(𝑧) = (−1)𝑛(𝑛−1)∕2 Wr

(
𝐿
(𝑛+𝜇)
𝑚+𝑛 (𝑧), 𝐿

(𝑛+𝜇)
𝑚+𝑛−1

(𝑧), … , 𝐿
(𝑛+𝜇)
𝑚+1

(𝑧)
)

= Wr
(
𝐿
(𝑛+𝜇)
𝑚+1

(𝑧), 𝐿
(𝑛+𝜇)
𝑚+2

(𝑧), … , 𝐿
(𝑛+𝜇)
𝑚+𝑛 (𝑧)

)
. (10)

Proof. We use

𝑑𝑘

𝑑𝑧𝑘
𝐿
(𝛼)
𝑛 (𝑧) =

{
(−1)𝑘𝐿

(𝛼+𝑘)

𝑛−𝑘
(𝑧), 𝑘 ≤ 𝑛,

0, otherwise,
(11)

cf. Ref. [53, eq. (18.9.23)], to write the determinant form of 𝑇(𝜇)𝑚,𝑛(𝑧) as a Wronskian

det

[
𝑑𝑗+𝑘

𝑑𝑧𝑗+𝑘
𝐿
(𝜇+1)
𝑚+𝑛 (𝑧)

]𝑛−1
𝑗,𝑘=0

= (−1)𝑛(𝑛−1)∕2 Wr
(
𝐿
(𝜇+1)
𝑚+𝑛 (𝑧), 𝐿

(𝜇+2)
𝑚+𝑛−1

(𝑧), … , 𝐿
(𝜇+𝑛)
𝑚+1

(𝑧)
)
.

Using the result

𝐿
(𝛼)
𝑚 (𝑧) = 𝐿

(𝛼+1)
𝑚 (𝑧) − 𝐿

(𝛼+1)
𝑚−1

(𝑧) (12)

Ref. [53, eq. (18.9.13)], it can be shown using induction that

𝐿
(𝛼+1−𝑘)

𝑚+𝑘
(𝑧) = 𝐿

(𝛼)

𝑚+𝑘
(𝑧) +

𝑘−1∑
𝑗=1

(−1)𝑘−𝑗
(𝑘 − 1

𝑗 − 1

)
𝐿
(𝛼)
𝑚+𝑗

(𝑧).
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CLARKSON and DUNNING 7

Hence, setting 𝛼 = 𝜇 + 𝑛 gives

𝐿
(𝜇+𝑛+1−𝑘)

𝑚+𝑘
(𝑧) = 𝐿

(𝜇+𝑛)

𝑚+𝑘
(𝑧) +

𝑘−1∑
𝑗=1

(−1)𝑘−𝑗
(𝑘 − 1

𝑗 − 1

)
𝐿
(𝜇+𝑛)

𝑚+𝑗
(𝑧), 𝑘 = 1, 2, … , 𝑛, (13)

and so we obtain

𝑇
(𝜇)
𝑚,𝑛(𝑧) = (−1)𝑛(𝑛−1)∕2

× Wr

(
𝐿
(𝑛+𝜇)
𝑚+𝑛 (𝑧) +

𝑛∑
𝑗=1

(−1)𝑛−𝑗
(𝑛 − 1

𝑗 − 1

)
𝐿
(𝑛+𝜇)

𝑚+𝑗
, … , 𝐿

(𝑛+𝜇)
𝑚+2

(𝑧) − 𝐿
(𝑛+𝜇)
𝑚+1

(𝑧), 𝐿
(𝑛+𝜇)
𝑚+1

(𝑧)

)
.

Since we can add amultiple of any column to any other columnwithout changing theWronskian
determinant, we keep the last term in each sum:

𝑇
(𝜇)
𝑚,𝑛(𝑧) = (−1)𝑛(𝑛−1)∕2 Wr

(
𝐿
(𝑛+𝜇)
𝑚+𝑛 (𝑧), 𝐿

(𝑛+𝜇)
𝑚+𝑛−1

(𝑧), … , 𝐿
(𝑛+𝜇)
𝑚+1

(𝑧)
)
. (14)

On interchanging the 𝑗th column with the (𝑛 − 𝑗 + 1)th column, we find

𝑇
(𝜇)
𝑚,𝑛(𝑧) = Wr

(
𝐿
(𝑛+𝜇)
𝑚+1

(𝑧), 𝐿
(𝑛+𝜇)
𝑚+2

(𝑧), … , 𝐿
(𝑛+𝜇)
𝑚+𝑛 (𝑧)

)
. (15)

□

We remark that

𝑇
(𝑛−𝑚+1)
0,𝑚−1

(𝑧) = Wr
(
𝐿
(𝑛)
1
(𝑧), 𝐿

(𝑛)
2
(𝑧), … , 𝐿

(𝑛)
𝑚−1

(𝑧)
)
= (−1)⌊𝑚∕2⌋𝐿(−𝑚−𝑛)

𝑚−1
(−𝑧).

Definition 2. Bonneux and Kuiljaars,8 see also, Refs. 17, 18, 22 define a Wronskian of Laguerre
polynomials

Ω
(𝛼)

𝝀
(𝑧) = Wr

(
𝐿
(𝛼)

ℎ1
(𝑧), 𝐿

(𝛼)

ℎ2
(𝑧), … , 𝐿

(𝛼)

ℎ𝑟
(𝑧)
)
, (16)

in terms of the degree vector 𝐡 = (ℎ1, ℎ2, … , ℎ𝑟) of partition 𝝀 = (𝜆1, 𝜆2, … , 𝜆𝑟). Hence,

𝑇
(𝜇)
𝑚,𝑛(𝑧) = (−1)𝑛(𝑛−1)∕2 Ω

(𝑛+𝜇)

𝝀
(𝑧), (17)

where the partition is 𝝀 = ((𝑚 + 1)𝑛).

Definition 3. The elementary Schur polynomials 𝑝𝑗(𝐭), for 𝑗 ∈ ℤ, in terms of the variables 𝐭 =
(𝑡1, 𝑡2, …), are defined by the generating function

∞∑
𝑗=0

𝑝𝑗(𝐭) 𝑥
𝑗 = exp

(
∞∑
𝑗=1

𝑡𝑗 𝑥
𝑗

)
, 𝑝𝑗(𝐭) = 0, for 𝑗 < 0, (18)
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8 CLARKSON and DUNNING

with 𝑝0(𝐭) = 1. The Schur polynomial 𝑆𝝀(𝐭) for the partition 𝝀 is given by

𝑆𝝀(𝐭) = det
[
𝑝𝜆𝑗+𝑘−𝑗(𝐭)

]𝑟
𝑗,𝑘=1

. (19)

The generalizedLaguerre polynomial𝑇(𝜇)𝑚,𝑛(𝑧) can be expressed as a Schur polynomial, as shown
in the following Lemma.

Lemma 2. The generalized Laguerre polynomial 𝑇(𝜇)𝑚,𝑛(𝑧) is the Schur polynomial

𝑇
(𝜇)
𝑚,𝑛(𝑧) = (−1)𝑛(𝑛−1)∕2𝑆𝝀(𝐭), (20)

where 𝝀 = ((𝑚 + 1)𝑛) and

𝑡𝑗 =
𝜇 + 𝑛 + 1

𝑗
− 𝑧, 𝑗 = 1, 2, … . (21)

Proof. Since

𝜕𝑗𝑝𝑚

𝜕𝑡
𝑗
1

= 𝑝𝑚−𝑗,

the Schur polynomial (19) can be written as the Wronskian

𝑆𝝀(𝐭) = Wr
(
𝑝𝜆𝑛 , 𝑝𝜆𝑛−1+1, … , 𝑝𝜆1+𝑛−1

)
(22)

for any partition 𝝀, where the Wronskian is evaluated with respect to 𝑡1. The choice of 𝑡𝑗 defined
in (20) leads to

𝑝𝑗(𝐭) = 𝐿
(𝜇+𝑛)

𝑗
(−𝑧), 𝑗 = 0, 1, … . (23)

Set 𝝀 = ((𝑚 + 1)𝑛), then (20) follows from (22) by reordering rows and columns and letting 𝑧 →
−𝑧. □

Definition 4. Define the polynomial 𝑇(𝜇)𝑚,𝑛(𝑧)

𝑇
(𝜇)
𝑚,𝑛(𝑧) = det

[
𝑑𝑗+𝑘

𝑑𝑧𝑗+𝑘
𝐿
(𝜇+1)
𝑚+𝑛 (−𝑧)

]𝑛−1
𝑗,𝑘=0

, 𝑚 ≥ 0, 𝑛 ≥ 1, (24)

with 𝐿(𝛼)𝑛 (𝑧) the associated Laguerre polynomial.

Remark 1. We note that

𝑇
(𝜇)
𝑚,𝑛(−𝑧) = 𝑇

(𝜇)
𝑚,𝑛(𝑧). (25)
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CLARKSON and DUNNING 9

Lemma 3. The generalized Laguerre polynomial 𝑇(𝜇)𝑚,𝑛(𝑧) has the discrete symmetry

𝑇
(𝜇)
𝑚,𝑛(𝑧) = (−1)⌊(𝑚+𝑛+1)∕2⌋ 𝑇(−𝜇−2𝑛−2𝑚−2)

𝑛−1,𝑚+1
(−𝑧). (26)

Proof. Apply the standard relation

𝑆𝝀(𝐭) = 𝑆𝝀∗(−𝐭) (27)

with 𝝀∗ = (𝑛𝑚+1) to the Schur form of the generalized Laguerre polynomial (2). □

Lemma 4. The generalized Laguerre polynomial 𝑇(𝜇)𝑚,𝑛(𝑧) can also be written as the determinants

𝑇
(𝜇)
𝑚,𝑛(𝑧) = det

[
𝐿
(𝜇+𝑗+𝑘+1)
𝑚+𝑛 (𝑧)

]𝑛−1
𝑗,𝑘=0

, 𝑚 ≥ 0, 𝑛 ≥ 1, (28a)

𝑇
(𝜇)
𝑚,𝑛(𝑧) = det

[
𝐿
(𝜇+2𝑛−1)

𝑚+𝑛−𝑗−𝑘
(𝑧)
]𝑛−1
𝑗,𝑘=0

, 𝑚 ≥ 0, 𝑛 ≥ 1, (28b)

𝑇
(𝜇)
𝑚,𝑛(𝑧) = det

[
𝐿
(𝜇+2𝑛−1)

𝑚+2−𝑛+𝑗+𝑘
(𝑧)
]𝑛−1
𝑗,𝑘=0

, 𝑚 ≥ 0, 𝑛 ≥ 1, (28c)

𝑇
(𝜇)
𝑚,𝑛(𝑧) = (−1)⌊𝑛∕2⌋ det [𝐿(𝜇+𝑛+𝑘)

𝑚+𝑗+1
(𝑧)
]𝑛−1
𝑗,𝑘=0

, 𝑚 ≥ 0, 𝑛 ≥ 1, (28d)

𝑇
(𝜇)
𝑚,𝑛(𝑧) = (−1)⌊𝑛∕2⌋ det [𝐿(𝜇+2𝑛−1)

𝑚+1+𝑗−𝑘
(𝑧)
]𝑛−1
𝑗,𝑘=0

, 𝑚 ≥ 0, 𝑛 ≥ 1, (28e)

where 𝐿(𝛼)𝑛 (𝑧) is the Laguerre polynomial with 𝐿(𝛼)𝑛 (𝑧) = 0 if 𝑛 < 0.

Proof. These identities are easily proved using the well-known formulas (11) and (12), and
properties of Wronskians in either (8) or (10). □

Lemma 5. The generalized Laguerre polynomial 𝑇(𝜇)𝑚,𝑛(𝑧) satisfies the second-order, differential-
difference equation

𝑇
(𝜇)
𝑚,𝑛

𝑑2𝑇
(𝜇)
𝑚,𝑛

𝑑𝑧
2

−

(
𝑑𝑇

(𝜇)
𝑚,𝑛

𝑑𝑧

)2
= 𝑇

(𝜇)
𝑚+1,𝑛−1

𝑇
(𝜇)
𝑚−1,𝑛+1

. (29)

Proof. According to Sylvester,56 see also Ref. 39, if𝑛(𝜑) is the double Wronskian given by

𝑛(𝜑) = det

[
𝑑𝑗+𝑘𝜑

𝑑𝑧
𝑗+𝑘

]𝑛−1
𝑗,𝑘=0

= Wr

(
𝜑,
𝑑𝜑

𝑑𝑧
,… ,

𝑑𝑛−1𝜑

𝑑𝑧
𝑛−1

)
,

then𝑛(𝜑) satisfies the

𝑛
𝑑2𝑛

𝑑𝑧
2
−

(
𝑑𝑛

𝑑𝑧

)2
= 𝑛+1𝑛−1, (30)
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10 CLARKSON and DUNNING

which is now known as the Toda equation. From (8),

𝑇
(𝜇)
𝑚,𝑛 = det

[
𝑑𝑗+𝑘𝐿

(𝜇)
𝑚+𝑛

𝑑𝑧
𝑗+𝑘

]𝑛−1
𝑗,𝑘=0

= Wr

(
𝐿
(𝜇)
𝑚+𝑛,

𝑑𝐿
(𝜇)
𝑚+𝑛

𝑑𝑧
, … ,

𝑑𝑛−1𝐿
(𝜇)
𝑚+𝑛

𝑑𝑧
𝑛−1

)
.

If we let 𝜑 = 𝐿
(𝜇)
𝑚+𝑛 and𝑛(𝐿

(𝜇)
𝑚+𝑛) = 𝑇

(𝜇)
𝑚,𝑛, then we need to show that

𝑛+1

(
𝐿
(𝜇)
𝑚+𝑛

)
= 𝑇

(𝜇)
𝑚−1,𝑛+1

, 𝑛−1

(
𝐿
(𝜇)
𝑚+𝑛

)
= 𝑇

(𝜇)
𝑚+1,𝑛−1

.

By definition

𝑛+1

(
𝐿
(𝜇)
𝑚+𝑛

)
= Wr

(
𝐿
(𝜇)
𝑚+𝑛,

𝑑𝐿
(𝜇)
𝑚+𝑛

𝑑𝑧
, … ,

𝑑𝑛𝐿
(𝜇)
𝑚+𝑛

𝑑𝑧
𝑛

)
= 𝑇

(𝜇)
𝑚−1,𝑛+1

,

𝑛−1

(
𝐿
(𝜇)
𝑚+𝑛

)
= Wr

(
𝐿
(𝜇)
𝑚+𝑛,

𝑑𝐿
(𝜇)
𝑚+𝑛

𝑑𝑧
, … ,

𝑑𝑛−2𝐿
(𝜇)
𝑚+𝑛

𝑑𝑧
𝑛−2

)
= 𝑇

(𝜇)
𝑚+1,𝑛−1

,

which proves the result. □

Remark 1.

(i) Lemma 5 can also be proved using the well-known Jacobi Identity,16 sometimes known as the
Lewis Carroll formula, for the determinant



[
𝑖,𝑘

𝑗,𝓁

]
= 

[
𝑖

𝑗

]


[
𝑘

𝓁

]
−

[
𝑘

𝑗

]


[
𝑖

𝓁

]
, (31)

where[𝑖
𝑗
] is the determinant with the 𝑖th row and the 𝑗th column removed from. If

 = 𝑇
(𝜇)
𝑚−1,𝑛+1

= det

[
𝑑𝑗+𝑘

𝑑𝑧𝑗+𝑘
𝐿
(𝜇+1)
𝑚+𝑛

]𝑛
𝑗,𝑘=0

= Wr

(
𝐿
(𝜇+1)
𝑚+𝑛 ,

𝑑𝐿
(𝜇+1)
𝑚+𝑛

𝑑𝑧
, … ,

𝑑𝑛𝐿
(𝜇+1)
𝑚+𝑛

𝑑𝑧
𝑛

)
,

from (8), then



[
𝑛,𝑛+1

𝑛,𝑛+1

]
= Wr

(
𝐿
(𝜇+1)
𝑚+𝑛 ,

𝑑𝐿
(𝜇+1)
𝑚+𝑛

𝑑𝑧
, … ,

𝑑𝑛−2𝐿
(𝜇+1)
𝑚+𝑛

𝑑𝑧
𝑛−2

)
= 𝑇

(𝜇)
𝑚+1,𝑛−1

,



[
𝑛+1

𝑛+1

]
= Wr

(
𝐿
(𝜇+1)
𝑚+𝑛 ,

𝑑𝐿
(𝜇+1)
𝑚+𝑛

𝑑𝑧
, … ,

𝑑𝑛−1𝐿
(𝜇+1)
𝑚+𝑛

𝑑𝑧
𝑛−1

)
= 𝑇

(𝜇)
𝑚,𝑛,



[
𝑛

𝑛+1

]
= 

[
𝑛+1

𝑛

]
= Wr

(
𝐿
(𝜇+1)
𝑚+𝑛 ,

𝑑𝐿
(𝜇+1)
𝑚+𝑛

𝑑𝑧
, … ,

𝑑𝑛−2𝐿
(𝜇+1)
𝑚+𝑛

𝑑𝑧
𝑛−2

,
𝑑𝑛𝐿

(𝜇+1)
𝑚+𝑛

𝑑𝑧
𝑛

)

=
𝑑

𝑑𝑧
Wr

(
𝐿
(𝜇+1)
𝑚+𝑛 ,

𝑑𝐿
(𝜇+1)
𝑚+𝑛

𝑑𝑧
, … ,

𝑑𝑛−2𝐿
(𝜇+1)
𝑚+𝑛

𝑑𝑧
𝑛−2

)
=
𝑑𝑇

(𝜇)
𝑚,𝑛

𝑑𝑧
,
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CLARKSON and DUNNING 11


[𝑛
𝑛

]
=

𝑑

𝑑𝑧
Wr

(
𝐿
(𝜇+1)
𝑚+𝑛 ,

𝑑𝐿
(𝜇+1)
𝑚+𝑛

𝑑𝑧
, … ,

𝑑𝑛−2𝐿
(𝜇+1)
𝑚+𝑛

𝑑𝑧
𝑛−2

,
𝑑𝑛𝐿

(𝜇+1)
𝑚+𝑛

𝑑𝑧
𝑛

)
=
𝑑2𝑇

(𝜇)
𝑚,𝑛

𝑑𝑧
2

,

and so (29) follows from the Jacobi Identity (31) with 𝑖 = 𝑘 = 𝑛 and 𝑗 = 𝓁 = 𝑛 + 1.
(ii) We note that the generalized Hermite polynomial

𝐻𝑚,𝑛(𝑧) = Wr (𝐻𝑚(𝑧),𝐻𝑚+1(𝑧), … ,𝐻𝑚+𝑛−1(𝑧)),

with 𝐻𝑘(𝑧) the Hermite polynomial, which arises in the description of rational solutions of
PIV , satisfies two second-order, differential-difference equations, see Ref. [45, eq. (4.19)].

The generalized Laguerre polynomial 𝑇(𝜇)𝑚,𝑛(𝑧) satisfies a number of discrete equations. In the
following lemma, we prove two of these using Jacobi’s Identity (31).

Lemma 6. The generalized Laguerre polynomial 𝑇(𝜇)𝑚,𝑛(𝑧) satisfies the equations

𝑇
(𝜇−1)
𝑚,𝑛+1

𝑇
(𝜇+1)
𝑚,𝑛−1

= 𝑇
(𝜇−1)
𝑚+1,𝑛

𝑇
(𝜇+1)
𝑚−1,𝑛

−
(
𝑇
(𝜇)
𝑚,𝑛

)2
, (32)

𝑇
(𝜇−1)
𝑚,𝑛+1

𝑇
(𝜇+1)
𝑚+1,𝑛−1

= 𝑇
(𝜇−1)
𝑚+1,𝑛

𝑇
(𝜇+1)
𝑚,𝑛 − 𝑇

(𝜇)
𝑚+1,𝑛

𝑇
(𝜇)
𝑚,𝑛. (33)

Proof. As the 𝑛 + 1-dimensional determinant in (32) and (33) is the same, then to apply Jacobi’s
Identity (31), it will be necessary to use two different representations of 𝑇(𝜇−1)

𝑚,𝑛+1
.

To prove (32), we use 𝑇(𝜇)𝑚,𝑛 as defined by (8) and so we consider

 = 𝑇
(𝜇−1)
𝑚,𝑛+1

= Wr
⎛⎜⎜⎝𝐿(𝜇)𝑚+𝑛+1

,
𝑑𝐿

(𝜇)
𝑚+𝑛+1

𝑑𝑧
, … ,

𝑑𝑛𝐿
(𝜇)
𝑚+𝑛+1

𝑑𝑧
𝑛

⎞⎟⎟⎠,
then



[
1

1

]
= Wr

⎛⎜⎜⎝
𝑑2𝐿

(𝜇)
𝑚+𝑛+1

𝑑𝑧
2

,
𝑑3𝐿

(𝜇)
𝑚+𝑛+1

𝑑𝑧
3

, … ,
𝑑𝑛+1𝐿

(𝜇)
𝑚+𝑛+1

𝑑𝑧
𝑛+1

⎞⎟⎟⎠
= Wr

⎛⎜⎜⎝𝐿(𝜇+2)𝑚+𝑛−1
,
𝑑𝐿

(𝜇+2)
𝑚+𝑛−1

𝑑𝑧
, … ,

𝑑𝑛−1𝐿
(𝜇+2)
𝑚+𝑛−1

𝑑𝑧
𝑛−1

⎞⎟⎟⎠ = 𝑇
(𝜇+1)
𝑚−1,𝑛

,



[
𝑛+1

𝑛+1

]
= Wr

⎛⎜⎜⎝𝐿(𝜇)𝑚+𝑛+1
,
𝑑𝐿

(𝜇)
𝑚+𝑛+1

𝑑𝑧
, … ,

𝑑𝑛−1𝐿
(𝜇)
𝑚+𝑛+1

𝑑𝑧
𝑛−1

⎞⎟⎟⎠ = 𝑇
(𝜇−1)
𝑚+1,𝑛

,



[
1

𝑛+1

]
= 

[
𝑛+1

1

]
= Wr

⎛⎜⎜⎝
𝑑𝐿

(𝜇)
𝑚+𝑛+1

𝑑𝑧
,
𝑑2𝐿

(𝜇)
𝑚+𝑛+1

𝑑𝑧
2

, … ,
𝑑𝑛𝐿

(𝜇)
𝑚+𝑛+1

𝑑𝑧
𝑛

⎞⎟⎟⎠
= (−1)𝑛 Wr

(
𝐿
(𝜇+1)
𝑚+𝑛 ,

𝑑𝐿
(𝜇+1)
𝑚+𝑛

𝑑𝑧
, … ,

𝑑𝑛−1𝐿
(𝜇+1)
𝑚+𝑛

𝑑𝑧
𝑛−1

)
= (−1)𝑛𝑇

(𝜇)
𝑚,𝑛,
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12 CLARKSON and DUNNING



[
1,𝑛+1

1,𝑛+1

]
= Wr

⎛⎜⎜⎝
𝑑2𝐿

(𝜇)
𝑚+𝑛+1

𝑑𝑧
2

,
𝑑3𝐿

(𝜇)
𝑚+𝑛+1

𝑑𝑧
3

, … ,
𝑑𝑛𝐿

(𝜇)
𝑚+𝑛+1

𝑑𝑧
𝑛

⎞⎟⎟⎠
= Wr

⎛⎜⎜⎝𝐿(𝜇+2)𝑚+𝑛−1
,
𝑑𝐿

(𝜇+2)
𝑚+𝑛−1

𝑑𝑧
, … ,

𝑑𝑛−2𝐿
(𝜇+2)
𝑚+𝑛−1

𝑑𝑧
𝑛−2

⎞⎟⎟⎠ = 𝑇
(𝜇+1)
𝑚,𝑛−1

,

since

𝑑

𝑑𝑧
𝐿
(𝛼)
𝑚 (𝑧) = −𝐿

(𝛼+1)
𝑚−1

(𝑧),
𝑑2

𝑑𝑧
2
𝐿
(𝛼)
𝑚 (𝑧) = 𝐿

(𝛼+2)
𝑚−2

(𝑧).

Then using Jacobi’s Identity (31) with 𝑖 = 𝑘 = 1 and 𝑗 = 𝓁 = 𝑛 + 1, we obtain (32) as required.
To prove (33), we use the representation of 𝑇(𝜇)𝑚,𝑛 given by (10), so we consider

 = 𝑇
(𝜇−1)
𝑚,𝑛+1

= Wr
(
𝐿
(𝑛+𝜇)
𝑚+1

, 𝐿
(𝑛+𝜇)
𝑚+2

, … , 𝐿
(𝑛+𝜇)
𝑚+𝑛 , 𝐿

(𝑛+𝜇)
𝑚+𝑛+1

)
,

then



[
1

1

]
= Wr

(
𝑑

𝑑𝑧
𝐿
(𝑛+𝜇)
𝑚+2

,
𝑑

𝑑𝑧
𝐿
(𝑛+𝜇)
𝑚+3

, … ,
𝑑

𝑑𝑧
𝐿
(𝑛+𝜇)
𝑚+𝑛 ,

𝑑

𝑑𝑧
𝐿
(𝑛+𝜇)
𝑚+𝑛+1

)
= (−1)𝑛 Wr

(
𝐿
(𝑛+𝜇+1)
𝑚+1

, 𝐿
(𝑛+𝜇+1)
𝑚+2

, … , 𝐿
(𝑛+𝜇+1)
𝑚+𝑛−1

, 𝐿
(𝑛+𝜇+1)
𝑚+𝑛

)
= (−1)𝑛𝑇

(𝜇+1)
𝑚,𝑛



[
𝑛+1

𝑛+1

]
= Wr

(
𝐿
(𝑛+𝜇)
𝑚+1

, 𝐿
(𝑛+𝜇)
𝑚+2

, … , 𝐿
(𝑛+𝜇)
𝑚+𝑛

)
= 𝑇

(𝜇)
𝑚,𝑛



[
𝑛+1

1

]
= Wr

(
𝐿
(𝑛+𝜇)
𝑚+2

, 𝐿
(𝑛+𝜇)
𝑚+3

, … , 𝐿
(𝑛+𝜇)
𝑚+𝑛 , 𝐿

(𝑛+𝜇)
𝑚+𝑛+1

)
= 𝑇

(𝜇)
𝑚+1,𝑛



[
1

𝑛+1

]
= Wr

(
𝑑

𝑑𝑧
𝐿
(𝑛+𝜇)
𝑚+1

,
𝑑

𝑑𝑧
𝐿
(𝑛+𝜇)
𝑚+2

, … ,
𝑑

𝑑𝑧
𝐿
(𝑛+𝜇)
𝑚+𝑛−1

,
𝑑

𝑑𝑧
𝐿
(𝑛+𝜇)
𝑚+𝑛

)
= (−1)𝑛 Wr

(
𝐿
(𝑛+𝜇+1)
𝑚 , 𝐿

(𝑛+𝜇+1)
𝑚+1

, … , 𝐿
(𝑛+𝜇+1)
𝑚+𝑛−2

, 𝐿
(𝑛+𝜇+1)
𝑚+𝑛−1

)
= (−1)𝑛𝑇

(𝜇+1)
𝑚−1,𝑛



[
1,𝑛+1

1,𝑛+1

]
= Wr

(
𝑑

𝑑𝑧
𝐿
(𝑛+𝜇)
𝑚+2

,
𝑑

𝑑𝑧
𝐿
(𝑛+𝜇)
𝑚+3

, … ,
𝑑

𝑑𝑧
𝐿
(𝑛+𝜇)
𝑚+𝑛

)
= (−1)𝑛−1 Wr

(
𝐿
(𝑛+𝜇+1)
𝑚+1

, 𝐿
(𝑛+𝜇+1)
𝑚+2

, … , 𝐿
(𝑛+𝜇+1)
𝑚+𝑛−1

)
= (−1)𝑛−1𝑇

(𝜇+1)
𝑚+1,𝑛−1

and so using Jacobi’s Identity with 𝑖 = 𝑘 = 1 and 𝑗 = 𝓁 = 𝑛 + 1 gives (33) as required. □

The generalized Laguerre polynomial 𝑇(𝜇)𝑚,𝑛(𝑧) satisfies a number of Hirota bilinear equa-
tions and discrete bilinear equations.

Lemma 7. The generalized Laguerre polynomial 𝑇(𝜇)𝑚,𝑛(𝑧) satisfies the Hirota bilinear equations

D𝑧

(
𝑇
(𝜇+1)
𝑚,𝑛−1

∙𝑇
(𝜇)
𝑚,𝑛

)
= 𝑇

(𝜇)
𝑚+1,𝑛−1

𝑇
(𝜇+1)
𝑚−1,𝑛

, (34a)

D𝑧

(
𝑇
(𝜇+1)
𝑚,𝑛−1

∙𝑇
(𝜇−1)
𝑚+1,𝑛

)
= 𝑇

(𝜇)
𝑚+1,𝑛−1

𝑇
(𝜇)
𝑚,𝑛, (34b)
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CLARKSON and DUNNING 13

D𝑧

(
𝑇
(𝜇+1)
𝑚,𝑛−1

∙𝑇
(𝜇−1)
𝑚,𝑛

)
= 𝑇

(𝜇)
𝑚+1,𝑛−1

𝑇
(𝜇)
𝑚−1,𝑛

, (34c)

D𝑧

(
𝑇
(𝜇)
𝑚+1,𝑛

∙𝑇
(𝜇+1)
𝑚,𝑛

)
= 𝑇

(𝜇+1)
𝑚+1,𝑛−1

𝑇
(𝜇)
𝑚,𝑛+1

, (34d)

D𝑧

(
𝑇
(𝜇)
𝑚,𝑛 ∙𝑇

(𝜇+1)
𝑚,𝑛

)
= 𝑇

(𝜇+1)
𝑚+1,𝑛−1

𝑇
(𝜇)
𝑚−1,𝑛+1

, (34e)

D𝑧

(
𝑇
(𝜇)
𝑚+1,𝑛

∙𝑇
(𝜇)
𝑚,𝑛

)
= 𝑇

(𝜇+1)
𝑚+1,𝑛−1

𝑇
(𝜇−1)
𝑚,𝑛+1

, (34f)

where D𝑧 is the Hirota bilinear operator

D𝑧(𝑓 ∙𝑔) =
𝑑𝑓

𝑑𝑧
𝑔 − 𝑓

𝑑𝑔

𝑑𝑧
, (35)

and the discrete bilinear equation

𝑇
(𝜇)
𝑚,𝑛 𝑇

(𝜇)
𝑚,𝑛−1

− 𝑇
(𝜇)
𝑚−1,𝑛

𝑇
(𝜇)
𝑚+1,𝑛−1

= 𝑇
(𝜇−1)
𝑚,𝑛 𝑇

(𝜇+1)
𝑚,𝑛−1

. (36)

Proof. In Ref. [60, Theorem 3.6], Vein and Dale prove three variants of the Jacobi Identity (31). To
prove some to the results in this lemma, we use,

𝑛

[
1

1

]
𝑛+1

[𝑛
1

]
−𝑛

[𝑛
1

]
𝑛+1

[
1

1

]
= 𝑛+1

[
𝑛+1

1

]
𝑛+1

[
1,𝑛

1,𝑛+1

]
, (37)

which is identity (C) in Ref. [60, Theorem 3.6] with 𝑟 = 1. For (34a), consider the determinants

𝑛 = 𝑛

(
𝐿
(𝜇)
𝑚+𝑛+1

)
= 𝑇

(𝜇−1)
𝑚+1,𝑛

, 𝑛+1 = 𝑛+1

(
𝐿
(𝜇)
𝑚+𝑛+1

)
= 𝑇

(𝜇−1)
𝑚,𝑛+1

,

where𝑛(𝜑) is defined by

𝑛(𝜑) = det

[
𝑑𝑗+𝑘𝜑

𝑑𝑧𝑗+𝑘

]𝑛−1
𝑗,𝑘=0

= Wr

(
𝜑,
𝑑𝜑

𝑑𝑧
,… ,

𝑑𝑛−1𝜑

𝑑𝑧
𝑛−1

)
,

then

𝑛

[
1

1

]
= 𝑛−1

⎛⎜⎜⎝
𝑑2𝐿

(𝜇)
𝑚+𝑛+1

𝑑𝑧
2

⎞⎟⎟⎠ = 𝑛−1

(
𝐿
(𝜇+2)
𝑚+𝑛−1

)
= 𝑇

(𝜇+1)
𝑚,𝑛−1

,

𝑛

[𝑛
1

]
= 𝑛−1

⎛⎜⎜⎝
𝑑𝐿

(𝜇)
𝑚+𝑛+1

𝑑𝑧

⎞⎟⎟⎠ = (−1)𝑛−1𝑛−1

(
𝐿
(𝜇+1)
𝑚+𝑛

)
= (−1)𝑛−1 𝑇

(𝜇)
𝑚+1,𝑛−1

,

𝑛+1

[
1

1

]
= 𝑛

⎛⎜⎜⎝
𝑑2𝐿

(𝜇)
𝑚+𝑛+1

𝑑𝑧
2

⎞⎟⎟⎠ = 𝑛

(
𝐿
(𝜇+2)
𝑚+𝑛−1

)
= 𝑇

(𝜇+1)
𝑚−1,𝑛

,

𝑛+1

[𝑛
1

]
=

𝑑

𝑑𝑧
𝑛

⎛⎜⎜⎝
𝑑𝐿

(𝜇)
𝑚+𝑛+1

𝑑𝑧

⎞⎟⎟⎠ = (−1)𝑛
𝑑

𝑑𝑧
𝑛

(
𝑑𝐿

(𝜇+1)
𝑚+𝑛

𝑑𝑧

)
= (−1)𝑛

𝑑

𝑑𝑧
𝑇
(𝜇)
𝑚,𝑛,
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14 CLARKSON and DUNNING

𝑛+1

[
𝑛+1

1

]
= 𝑛

⎛⎜⎜⎝
𝑑𝐿

(𝜇)
𝑚+𝑛+1

𝑑𝑧

⎞⎟⎟⎠ = (−1)𝑛𝑛

(
𝐿
(𝜇+1)
𝑚+𝑛

)
= (−1)𝑛𝑇

(𝜇)
𝑚,𝑛,

𝑛+1

[
1,𝑛

1,𝑛+1

]
=

𝑑

𝑑𝑧
𝑛−1

⎛⎜⎜⎝
𝑑2𝐿

(𝜇)
𝑚+𝑛+1

𝑑𝑧
2

⎞⎟⎟⎠ =
𝑑

𝑑𝑧
𝑛−1

(
𝐿
(𝜇+2)
𝑚+𝑛−1

)
=

𝑑

𝑑𝑧
𝑇
(𝜇+1)
𝑚,𝑛−1

,

and so

𝑇
(𝜇+1)
𝑚,𝑛−1

𝑑

𝑑𝑧
𝑇
(𝜇)
𝑚,𝑛 + 𝑇

(𝜇)
𝑚+1,𝑛−1

𝑇
(𝜇+1)
𝑚−1,𝑛

= 𝑇
(𝜇)
𝑚,𝑛

𝑑

𝑑𝑧
𝑇
(𝜇+1)
𝑚,𝑛−1

,

which proves the result.
To prove (34b), we use (37) with

𝑛 = Wr
(
𝐿
(𝑛+𝜇−1)
𝑚+1

, 𝐿
(𝑛+𝜇−1)
𝑚+2

, … , 𝐿
(𝑛+𝜇−1)
𝑚+𝑛

)
= 𝑇

(𝜇−1)
𝑚,𝑛 ,

𝑛+1 = Wr
(
𝐿
(𝑛+𝜇−1)
𝑚+1

, 𝐿
(𝑛+𝜇−1)
𝑚+2

, … , 𝐿
(𝑛+𝜇−1)
𝑚+𝑛+1

)
= 𝑇

(𝜇−2)
𝑚,𝑛+1

,

then

𝑛

[
1

1

]
= Wr

(
𝑑

𝑑𝑧
𝐿
(𝑛+𝜇−1)
𝑚+2

,
𝑑

𝑑𝑧
𝐿
(𝑛+𝜇−1)
𝑚+3

, … ,
𝑑

𝑑𝑧
𝐿
(𝑛+𝜇−1)
𝑚+𝑛

)
= (−1)𝑛−1 Wr

(
𝐿
(𝑛+𝜇)
𝑚+1

, 𝐿
(𝑛+𝜇)
𝑚+2

, … , 𝐿
(𝑛+𝜇)
𝑚+𝑛−1

)
= (−1)𝑛−1 𝑇

(𝜇+1)
𝑚,𝑛−1

,

𝑛

[𝑛
1

]
= Wr

(
𝐿
(𝑛+𝜇−1)
𝑚+2

, 𝐿
(𝑛+𝜇−1)
𝑚+2

, … , 𝐿
(𝑛+𝜇−1)
𝑚+𝑛

)
= 𝑇

(𝜇)
𝑚+1,𝑛−1

,

𝑛+1

[𝑛
1

]
=

𝑑

𝑑𝑧
Wr

(
𝐿
(𝑛+𝜇−1)
𝑚+2

, 𝐿
(𝑛+𝜇−1)
𝑚+3

, … , 𝐿
(𝑛+𝜇−1)
𝑚+𝑛+1

)
=

𝑑

𝑑𝑧
𝑇
(𝜇−1)
𝑚+1,𝑛

,

𝑛+1

[
1

1

]
= Wr

(
𝑑

𝑑𝑧
𝐿
(𝑛+𝜇−1)
𝑚+2

,
𝑑

𝑑𝑧
𝐿
(𝑛+𝜇−1)
𝑚+3

, … ,
𝑑

𝑑𝑧
𝐿
(𝑛+𝜇−1)
𝑚+𝑛+1

)
= (−1)𝑛 Wr

(
𝐿
(𝑛+𝜇)
𝑚+1

, 𝐿
(𝑛+𝜇)
𝑚+2

, … , 𝐿
(𝑛+𝜇)
𝑚+𝑛

)
= (−1)𝑛𝑇

(𝜇)
𝑚,𝑛,

𝑛+1

[
𝑛+1

1

]
= Wr

(
𝐿
(𝑛+𝜇−1)
𝑚+2

, 𝐿
(𝑛+𝜇−1)
𝑚+3

, … , 𝐿
(𝑛+𝜇−1)
𝑚+𝑛+1

)
= 𝑇

(𝜇−1)
𝑚+1,𝑛

,

𝑛+1

[
1,𝑛

1,𝑛+1

]
= Wr

(
𝑑

𝑑𝑧
𝐿
(𝑛+𝜇−1)
𝑚+2

,
𝑑

𝑑𝑧
𝐿
(𝑛+𝜇−1)
𝑚+3

, … ,
𝑑

𝑑𝑧
𝐿
(𝑛+𝜇−1)
𝑚+𝑛

)
,

= (−1)𝑛−1 Wr
(
𝐿
(𝑛+𝜇)
𝑚+1

, 𝐿
(𝑛+𝜇)
𝑚+2

, … , 𝐿
(𝑛+𝜇)
𝑚+𝑛−1

)
= (−1)𝑛−1

𝑑

𝑑𝑧
𝑇
(𝜇+1)
𝑚,𝑛−1

,

and so

𝑇
(𝜇+1)
𝑚,𝑛−1

𝑑

𝑑𝑧
𝑇
(𝜇−1)
𝑚+1,𝑛

− 𝑇
(𝜇)
𝑚+1,𝑛−1

𝑇
(𝜇)
𝑚,𝑛 = 𝑇

(𝜇−1)
𝑚+1,𝑛

𝑑

𝑑𝑧
𝑇
(𝜇+1)
𝑚,𝑛−1

,

which proves the result. The other results (34c)–(34f) are proved in a similar way. □
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CLARKSON and DUNNING 15

4 RATIONAL SOLUTIONS OF P𝐕

4.1 Classification of rational solutions of P𝐕

Rational solutions of PV (2) are classified in the following theorem.

Theorem 1. Equation (2) has a rational solution if and only if one of the following holds:

(i) 𝛼 = 1

2
𝑚2, 𝛽 = −

1

2
(𝑚 + 2𝑛 + 1 + 𝜇)2, 𝛾 = 𝜇, for𝑚 ≥ 1;

(ii) 𝛼 = 1

2
(𝑚 + 𝜇)2, 𝛽 = −

1

2
(𝑛 + 𝜀𝜇)2, 𝛾 = 𝑚 + 𝜀𝑛, with 𝜀 = ±1, provided that𝑚 ≠ 0 or 𝑛 ≠ 0;

(ii) 𝛼 = 1

2
(𝑚 +

1

2
)2, 𝛽 = −

1

2
(𝑛 +

1

2
)2, 𝛾 = 𝜇, provided that𝑚 ≠ 0 or 𝑛 ≠ 0,

where 𝑚, 𝑛 ∈ ℤ and 𝜇 is an arbitrary constant, together with the solutions obtained through the
symmetries

1 ∶ 𝑤1

(
𝑧; 𝛼1, 𝛽1, 𝛾1, −

1

2

)
= 𝑤

(
−𝑧; 𝛼, 𝛽, 𝛾, −

1

2

)
,

(
𝛼1, 𝛽1, 𝛾1, −

1

2

)
=
(
𝛼, 𝛽, −𝛾, −

1

2

)
, (38)

2 ∶ 𝑤2

(
𝑧; 𝛼2, 𝛽2, 𝛾3, −

1

2

)
=

1

𝑤
(
𝑧; 𝛼, 𝛽, 𝛾, −

1

2

) , (
𝛼2, 𝛽2, 𝛾3, −

1

2

)
=
(
−𝛽,−𝛼,−𝛾,−

1

2

)
,

(39)

where 𝑤(𝑧; 𝛼, 𝛽, 𝛾, −1

2
) is a solution of (2).

Proof. See Kitaev et al33; also Ref. [25, Theorem 40.3]. □

Remark 2. Kitaev et al33, Theorem 1.1] give four cases, though their cases (I) and (II) are related
by the symmetry (39). Kitaev et al [33 also state that 𝜇 ∉ ℤ in case (iii), but this does not seem
necessary, except for uniqueness as discussed in Section 4.2.

Rational solutions in case (i) of Theorem 1 are expressed in terms of generalized Laguerre poly-
nomials, which are written in terms of a determinant of Laguerre polynomials and are our main
concern in this manuscript.
Rational solutions in cases (ii) and (iii) of Theorem 1 are expressed in terms of generalized

Umemura polynomials. As mentioned above, Umemura59 defined some polynomials through a
differential-difference equation to describe rational solutions of PV (2); see also Refs. 11, 43, 65.
Subsequently, these were generalized by Masuda et al,38 who defined the generalized Umemura
polynomial𝑈(𝛼)

𝑚,𝑛(𝑧) through a coupled differential-difference equations and also gave a represen-
tation as a determinant. Our study of the generalized Umemura polynomials is currently under
investigation and we do not pursue this further here.
Rational solutions in case (i) of Theorem 1 are special cases of the solutions of PV (2) express-

ible in terms of Kummer functions 𝑀(𝑎, 𝑏, 𝑧) and 𝑈(𝑎, 𝑏, 𝑧), or equivalently the confluent
hypergeometric function 1𝐹1(𝑎; 𝑐; 𝑧). Specifically,

𝑈(−𝑛, 𝛼 + 1, 𝑧) = (−1)𝑛(𝛼 + 1)𝑛𝑀(−𝑛, 𝛼 + 1, 𝑧) = (−1)𝑛𝑛!𝐿
(𝛼)
𝑛 (𝑧), (40)

with 𝐿(𝛼)𝑛 (𝑧) the associated Laguerre polynomial, cf. Ref. [53, eq. (13.6.19)].
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16 CLARKSON and DUNNING

Determinantal representations of these rational solutions are given in the following theorem.

Theorem 2. Define the polynomial 𝜏(𝜇)𝑚,𝑛(𝑧)

𝜏
(𝜇)
𝑚,𝑛(𝑧) = det

[(
𝑧
𝑑

𝑑𝑧

)𝑗+𝑘

𝐿
(𝑛+𝜇)
𝑚+𝑛 (𝑧)

]𝑛−1
𝑗,𝑘=0

, (41)

with 𝐿(𝛼)𝑛 (𝑧) the associated Laguerre polynomial (9), then

𝑤𝑚,𝑛(𝑧; 𝜇) =

(
𝑚 + 𝜇 + 2𝑛

𝑚 + 𝜇 + 2𝑛 + 1

)𝑛 𝜏(𝜇)
𝑚−1,𝑛

(𝑧) 𝜏
(𝜇)
𝑚−1,𝑛+1

(𝑧)

𝜏
(𝜇)
𝑚,𝑛(𝑧) 𝜏

(𝜇)
𝑚−2,𝑛+1

(𝑧)
, 𝑚, 𝑛 ≥ 1, (42a)

is a rational solution of PV (2) for the parameters

𝛼𝑚,𝑛 =
1

2
𝑚2, 𝛽𝑚,𝑛 = −

1

2
(𝑚 + 2𝑛 + 1 + 𝜇)2, 𝛾𝑚,𝑛 = 𝜇. (43a)

Proof. This result can be derived from the determinantal representation of the special function
solutions of PV (2) given by Masuda [37, Theorem 2.2]. □

Remark 3. The polynomial 𝜏(𝜇)𝑚,𝑛(𝑧) has degree
1

2
(2𝑚 + 𝑛 + 1)𝑛.

Lemma 8. The polynomials 𝜏(𝜇)𝑚,𝑛(𝑧) and 𝑇
(𝜇)
𝑚,𝑛(𝑧) are related as follows:

𝜏
(𝜇)
𝑚,𝑛(𝑧) = 𝑎𝑚,𝑛𝑧

𝑛(𝑛−1)∕2𝑇
(𝜇)
𝑚,𝑛(𝑧), 𝑎𝑚,𝑛 =

𝑛∏
𝑗=1

(𝑚 + 𝑛 + 𝑗 + 𝜇)𝑗−1.

Proof. From (41), by definition

𝜏
(𝜇)
𝑚,𝑛(𝑧) = det

[(
𝑧
𝑑

𝑑𝑧

)(𝑗+𝑘)
𝐿
(𝑛+𝜇)
𝑚+𝑛 (𝑧)

]𝑛−1
𝑗,𝑘=0

.

Now we use the identity

det

[(
𝑧
𝑑

𝑑𝑧

)𝑗
𝑓𝑘(𝑧)

]𝑛−1
𝑗,𝑘=0

= 𝑧𝑛(𝑛−1)∕2 Wr (𝑓0(𝑧), 𝑓1(𝑧), … , 𝑓𝑛−1(𝑧)), (44a)

with

𝑓0(𝑧) = 𝐿
(𝑛+𝜇)
𝑚+𝑛 (𝑧), 𝑓𝑘(𝑧) =

(
𝑧
𝑑

𝑑𝑧

)𝑘
𝐿
(𝑛+𝜇)
𝑚+𝑛 (𝑧), 𝑘 = 1, 2, … , 𝑛 − 1. (44b)

Using the recurrence relation

𝑧
𝑑

𝑑𝑧
𝐿
(𝛼)
𝑛 (𝑧) = 𝑛𝐿

(𝛼)
𝑛 (𝑧) − (𝑛 + 𝜇)𝐿

(𝛼)
𝑛−1

(𝑧),
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CLARKSON and DUNNING 17

cf. Ref. [53, eqs. (18.9.14), (18.9.23)], it is straightforward to show by induction that(
𝑧
𝑑

𝑑𝑧

)𝑘
𝐿
(𝛼)
𝑛 (𝑧) =

𝑘−1∑
𝑗=0

𝑏
(𝑛,𝜇)

𝑗,𝑘
𝐿
(𝛼)
𝑛−𝑗

(𝑧) + (−1)𝑘𝑏
(𝑛,𝜇)

𝑘,𝑘
𝐿
(𝛼)

𝑛−𝑘
(𝑧), (45)

where 𝑏(𝑛,𝜇)
𝑗,𝑘

, 𝑗 = 0, 1, … , 𝑘, are constants, with

𝑏
(𝑛,𝜇)

𝑘,𝑘
=

𝑘−1∏
𝑗=0

(𝑛 − 𝑗 + 𝜇). (46)

(It is not necessary to know what the constants 𝑏(𝑛,𝜇)
𝑗,𝑘

, 𝑗 = 0, 1, … , 𝑘 − 1 are.) Therefore, using (44)
and (45), we have

𝜏
(𝜇)
𝑚,𝑛(𝑧) = 𝑧𝑛(𝑛−1)∕2 Wr

(
𝐿
(𝑛+𝜇)
𝑚+𝑛 (𝑧), 𝑧

𝑑

𝑑𝑧
𝐿
(𝑛+𝜇)
𝑚+𝑛 (𝑧), … ,

(
𝑧
𝑑

𝑑𝑧

)𝑛−1

𝐿
(𝑛+𝜇)
𝑚+𝑛 (𝑧)

)

= 𝑧𝑛(𝑛−1)∕2 Wr
(
𝐿
(𝑛+𝜇)
𝑚+𝑛 (𝑧), −(𝑚 + 2𝑛 + 𝜇)𝐿

(𝑛+𝜇)
𝑚+𝑛−1

(𝑧), … , (−1)(𝑛−1)𝑏
(𝑚+𝑛,𝑛+𝜇)
𝑛−1,𝑛−1

𝐿
(𝑛+𝜇)
𝑚+1

(𝑧)
)
,

since, as in the proof of Lemma 1, we need only keep the last term due to properties of Wronskians.
Consequently, from (10) we have

𝜏
(𝜇)
𝑚,𝑛(𝑧) = 𝑧𝑛(𝑛−1)∕2

(
𝑛−1∏
𝑘=0

𝑏
(𝑚+𝑛,𝑛+𝜇)

𝑘,𝑘

)
Wr

(
𝐿
(𝑛+𝜇)
𝑚+1

(𝑧), 𝐿
(𝑛+𝜇)
𝑚+2

(𝑧), … , 𝐿
(𝑛+𝜇)
𝑚+𝑛 (𝑧)

)
= 𝑎𝑚,𝑛𝑧

𝑛(𝑛−1)∕2 𝑇
(𝜇)
𝑚,𝑛(𝑧),

where using (46)

𝑎𝑚,𝑛 =

𝑛−1∏
𝑘=1

𝑏
(𝑚+𝑛,𝑛+𝜇)

𝑘,𝑘
=

𝑛−1∏
𝑘=1

𝑘−1∏
𝑗=0

(𝑚 + 2𝑛 − 𝑗 + 𝜇) =

𝑛∏
𝑗=1

(𝑚 + 𝑛 + 𝑗 + 𝜇)𝑗−1

as required. □

Theorem 3. Given the generalized Laguerre polynomial 𝑇(𝜇)𝑚,𝑛(𝑧) given by (8), then

𝑤𝑚,𝑛(𝑧; 𝜇) =
𝑇
(𝜇)
𝑚−1,𝑛

(𝑧) 𝑇
(𝜇)
𝑚−1,𝑛+1

(𝑧)

𝑇
(𝜇)
𝑚,𝑛(𝑧) 𝑇

(𝜇)
𝑚−2,𝑛+1

(𝑧)
, 𝑚, 𝑛 ≥ 1 (47a)

is a rational solution of PV (2) for the parameters

𝛼𝑚,𝑛 =
1

2
𝑚2, 𝛽𝑚,𝑛 = −

1

2
(𝑚 + 2𝑛 + 1 + 𝜇)2, 𝛾𝑚,𝑛 = 𝜇. (47b)

In the case when 𝑛 = 0, then

𝑤𝑚,0(𝑧; 𝜇) =
𝑇
(𝜇)
𝑚−1,1

(𝑧)

𝑇
(𝜇)
𝑚−2,1

(𝑧)
=
𝐿
(𝜇+1)
𝑚 (𝑧)

𝐿
(𝜇+1)
𝑚−1

(𝑧)
, 𝑚 ≥ 1 (48a)
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18 CLARKSON and DUNNING

is a rational solution of PV (2) for the parameters

𝛼𝑚,0 =
1

2
𝑚2, 𝛽𝑚,0 = −

1

2
(𝑚 + 1 + 𝜇)2, 𝛾𝑚,0 = 𝜇. (48b)

Proof. The result follows from Theorem 2 and Lemma 8. □

Corollary 1. The rational solutions related through the symmetry 1 (38) are given by

𝑤𝑚,𝑛(𝑧; 𝜇) =
𝑇
(𝜇)
𝑚−1,𝑛

(𝑧) 𝑇
(𝜇)
𝑚−1,𝑛+1

(𝑧)

𝑇
(𝜇)
𝑚,𝑛(𝑧) 𝑇

(𝜇)
𝑚−2,𝑛+1

(𝑧)
, 𝑚, 𝑛 ≥ 1, (49a)

with 𝑇(𝜇)𝑚,𝑛(𝑧) the polynomial given by (24), which is a rational solution of PV (2) for the parameters

𝛼𝑚,𝑛 =
1

2
𝑚2, 𝛽𝑚,𝑛 = −

1

2
(𝑚 + 2𝑛 + 1 + 𝜇)2, 𝛾𝑚,𝑛 = −𝜇. (49b)

In the case when 𝑛 = 0 then

𝑤𝑚,0(𝑧; 𝜇) =
𝑇
(𝜇)
𝑚−1,1

(𝑧)

𝑇
(𝜇)
𝑚−2,1

(𝑧)
=
𝐿
(𝜇+1)
𝑚 (−𝑧)

𝐿
(𝜇+1)
𝑚−1

(−𝑧)
, 𝑚 ≥ 1 (50a)

is a rational solution of PV (2) for the parameters

𝛼𝑚,0 =
1

2
𝑚2, 𝛽𝑚,0 = −

1

2
(𝑚 + 1 + 𝜇)2, 𝛾𝑚,0 = −𝜇. (50b)

Proof. Since 𝑇(𝜇)𝑚,𝑛(−𝑧) = 𝑇
(𝜇)
𝑚,𝑛(𝑧), recall (25), then 𝑤𝑚,𝑛(−𝑧; 𝜇) = 𝑤𝑚,𝑛(𝑧; 𝜇) and so the result

follows immediately. □

It is known that rational solutions of PIII can be expressed either in terms of four special polyno-
mials or in terms of the logarithmic derivative of the ratio of two special polynomials [9, Theorem
2.4]. Hence, it might be expected that the rational solutions of PV discussed here can also be
written in terms of the logarithmic derivative of the ratio of two generalized Laguerre polynomials.

Remark 4. Using computer algebra, we have verified for several small values of 𝑚 and 𝑛 that
alternative forms of the rational solutions (47) and (49) are given by

𝑤𝑚,𝑛(𝑧; 𝜇) =
𝑧

𝑚

𝑑

𝑑𝑧

⎧⎪⎨⎪⎩ln
𝑇
(𝜇)
𝑚−2,𝑛+1

(𝑧)

𝑇
(𝜇)
𝑚,𝑛(𝑧)

⎫⎪⎬⎪⎭ −
𝑧 −𝑚 − 2𝑛 − 1 − 𝜇

𝑚
, (51)

𝑤𝑚,𝑛(𝑧; 𝜇) =
𝑧

𝑚

𝑑

𝑑𝑧

⎧⎪⎨⎪⎩ln
𝑇
(𝜇)
𝑚−2,𝑛+1

(𝑧)

𝑇
(𝜇)
𝑚,𝑛(𝑧)

⎫⎪⎬⎪⎭ +
𝑧 +𝑚 + 2𝑛 + 1 + 𝜇

𝑚
, (52)

respectively. Consequently, by comparing the solutions we expect the relations

𝑧D𝑧

(
𝑇
(𝜇)
𝑚−1,𝑛+1

∙𝑇
(𝜇)
𝑚+1,𝑛

)
= (𝑧 − 𝑚 − 2𝑛 − 2 − 𝜇)𝑇

(𝜇)
𝑚−1,𝑛+1

𝑇
(𝜇)
𝑚+1,𝑛

+ (𝑚 + 1)𝑇
(𝜇)
𝑚,𝑛𝑇

(𝜇)
𝑚,𝑛+1

, (53a)
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CLARKSON and DUNNING 19

𝑧D𝑧

(
𝑇
(𝜇)
𝑚−1,𝑛+1

∙𝑇
(𝜇)
𝑚+1,𝑛

)
= −(𝑧 + 𝑚 + 2𝑛 + 2 + 𝜇)𝑇

(𝜇)
𝑚−1,𝑛+1

𝑇
(𝜇)
𝑚+1,𝑛

+ (𝑚 + 1)𝑇
(𝜇)
𝑚,𝑛𝑇

(𝜇)
𝑚,𝑛+1

, (53b)

where D𝑧 is the Hirota bilinear operator (35). We envisage that the relations (53) can be proved
using the Jacobi identity (31) or a variant thereof, though we do not pursue this further here.

Setting 𝑛 = 0 in (51) gives

𝑤𝑚,0(𝑧; 𝜇) =
𝑧

𝑚

𝑑

𝑑𝑧

{
ln 𝑇

(𝜇)
𝑚−2,1

(𝑧)
}
−
𝑧 −𝑚 − 1 − 𝜇

𝑚

=
𝑧

𝑚

𝑑

𝑑𝑧
ln
{
𝐿
(𝜇+1)
𝑚−1

(𝑧)
}
−
𝑧 −𝑚 − 1 − 𝜇

𝑚
=
𝐿
(𝜇+1)
𝑚 (𝑧)

𝐿
(𝜇+1)
𝑚−1

(𝑧)
,

which is (48), since

𝑧
𝑑

𝑑𝑧
𝐿
(𝜇+1)
𝑚−1

(𝑧) = (𝑚 − 1)𝐿
(𝜇+1)
𝑚−1

(𝑧) − (𝑚 + 𝜇)𝐿
(𝜇+1)
𝑚−2

(𝑧).

The solutions (50) and (52) in the case when 𝑛 = 0 can be shown to be the same in a similar way.

Remark 5. From Theorem 3, we note that 𝑤𝑚,𝑛(𝑧; −𝑚 − 𝑛 − 𝑗) and 𝑤𝑚,𝑗−1(𝑧; −𝑚 − 𝑛 − 𝑗) are
both rational solutions for

𝛼𝑚,𝑛 =
1

2
𝑚2, 𝛽𝑚,𝑛 = −

1

2
(𝑛 + 1 − 𝑗)2, 𝛾𝑚,𝑛 = −𝑚 − 𝑛 − 𝑗, 𝑗 = 1,… , 𝑛.

The equality of the solutions follows from Lemma 12 and the definition of 𝑤𝑚,𝑛(𝑧; 𝜇) in the form
(51). We add that

𝑚𝑤𝑚,𝑛(𝑧; −𝑚 − 𝑛) = −(𝑛 + 1)𝑤𝑛+1,0(𝑧; −𝑚 − 𝑛 − 2).

4.2 Nonuniqueness of rational solutions of P𝐕

Kitaev et al [33, Theorem 1.2] state that rational solutions of PV (2) are uniquewhen the parameter
𝜇 ∉ ℤ. In the following lemma, we illustrate that when 𝜇 ∈ ℤ then nonuniqueness of rational
solutions of PV (2) can occur, that is for certain parameter values there is more than one rational
function.

Lemma 9. Consider the rational solutions of PV (2) given by

𝑤𝑚,𝑛(𝑧; 𝜇) =
𝑇
(𝜇)
𝑚−1,𝑛

(𝑧) 𝑇
(𝜇)
𝑚−1,𝑛+1

(𝑧)

𝑇
(𝜇)
𝑚,𝑛(𝑧) 𝑇

(𝜇)
𝑚−2,𝑛+1

(𝑧)
, 𝑤𝑚,𝑛(𝑧; 𝜇) =

𝑇
(𝜇)
𝑚−1,𝑛

(𝑧) 𝑇
(𝜇)
𝑚−1,𝑛+1

(𝑧)

𝑇
(𝜇)
𝑚,𝑛(𝑧) 𝑇

(𝜇)
𝑚−2,𝑛+1

(𝑧)
. (54)

If 𝜇 ∈ ℤ and 𝜇 ≥ −𝑛 then there are two distinct rational solutions of PV (2) for the same parameters.
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20 CLARKSON and DUNNING

Proof. If 𝜇 = 𝑘, with 𝑘 ∈ ℤ and 𝑘 ≥ −𝑛, then from Theorem 3 and Corollary 1, 𝑤𝑚,𝑛(𝑧; 𝑘) and
𝑤𝑚,𝑛+𝑘(𝑧; −𝑘) both satisfy PV (2) for the parameters

𝛼 =
1

2
𝑚2, 𝛽 = −

1

2
(𝑚 + 2𝑛 + 𝑘 + 1)2, 𝛾 = 𝑘.

□

Example 1. The rational functions

𝑤1,1(𝑧; 1) = −
(𝑧 − 3)(𝑧2 − 8𝑧 + 20)

(𝑧 − 2)(𝑧 − 6)
, 𝑤1,2(𝑧; −1) =

(𝑧2 + 4𝑧 + 6)(𝑧3 + 9𝑧2 + 36𝑧 + 60)

𝑧4 + 12𝑧3 + 54𝑧2 + 96𝑧 + 72

are both solutions of PV (2) with parameters

𝛼 = 1∕2, 𝛽 = −25∕2, 𝛾 = 1.

Also the rational functions

𝑤1,2(𝑧; −1) = −
(𝑧2 − 4𝑧 + 6)(𝑧3 + 9𝑧2 − 36𝑧 + 60)

𝑧4 − 12𝑧3 + 54𝑧2 − 96𝑧 + 72
, 𝑤1,1(𝑧; 1) =

(𝑧 + 3)(𝑧2 + 8𝑧 + 20)

(𝑧 + 2)(𝑧 + 6)
,

are both solutions of PV (2) with parameters

𝛼 = 1∕2, 𝛽 = −25∕2, 𝛾 = −1.

We note that

𝑤1,1(−𝑧; 1) = 𝑤1,1(𝑧; −1), 𝑤1,2(−𝑧; −1) = 𝑤1,2(𝑧; 1).

The solutions 𝑤1,1(𝑧; 1) and 𝑤1,2(𝑧; −1) have different expansions about both 𝑧 = 0 and 𝑧 = ∞,
which are singular points of PV . As 𝑧 → 0

𝑤1,1(𝑧; 1) = 5 −
1

3
𝑧 +

5

18
𝑧2 +

7

54
𝑧3 +

41

648
𝑧4 +

61

1944
𝑧5 + (𝑧6),

𝑤1,2(𝑧; −1) = 5 −
1

3
𝑧 +

5

18
𝑧2 +

7

54
𝑧3 −

139

648
𝑧4 +

313

1944
𝑧5 + (𝑧6),

and as 𝑧 → ∞

𝑤1,1(𝑧; 1) = −𝑧 + 3 −
8

𝑧
−
40

𝑧2
−
224

𝑧3
−
1312

𝑧4
−
7808

𝑧5
+ (𝑧−6),

𝑤1,2(𝑧; −1) = 𝑧 + 1 +
12

𝑧
−
36

𝑧2
+
72

𝑧3
+
216

𝑧4
−
3888

𝑧5
+ (𝑧−6).

Remark 6. Recently, Aratyn et al4 also discuss nonuniqueness of solutions of PV (2).
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CLARKSON and DUNNING 21

5 RATIONAL SOLUTIONS OF THE P𝐕 𝝈-EQUATION

5.1 Hamiltonian structure

Each of the Painlevé equations PI–PVI can be written as a (nonautonomous) Hamiltonian system

𝑧
𝑑𝑞

𝑑𝑧
=
𝜕J

𝜕𝑝
, 𝑧

𝑑𝑝

𝑑𝑧
= −

𝜕J

𝜕𝑞
, J = I, II, … , VI (55)

for a suitable Hamiltonian function J = J(𝑞, 𝑝, 𝑧). Furthermore, there is a second-order,
second-degree equation, often called the Painlevé𝜎-equation or Jimbo–Miwa–Okamoto equation,
whose solution is expressible in terms of the solution of the associated Painlevé equation.27,47
For PV (2), the Hamiltonian is

𝑧V(𝑞, 𝑝, 𝑧) = 𝑞(𝑞 − 1)2𝑝2 −
{
𝜈1(𝑞 − 1)2 − (𝜈1 − 𝜈2 − 𝜈3)𝑞(𝑞 − 1) + 𝑧𝑞

}
𝑝 + 𝜈2𝜈3𝑞, (56)

with 𝜈1, 𝜈2, and 𝜈3 parameters.27,47,49 Substituting (56) into (55) gives

𝑧
𝑑𝑞

𝑑𝑧
= 2𝑞(𝑞 − 1)2𝑝 − 𝜈1(𝑞 − 1)2 + (𝜈1 − 𝜈2 − 𝜈3)𝑞(𝑞 − 1) − 𝑧𝑞, (57a)

𝑧
𝑑𝑝

𝑑𝑧
= −(3𝑞 − 1)(𝑞 − 1)𝑝2 − 2(𝜈2 + 𝜈3)𝑞𝑝 + (𝑧 − 𝜈1 − 𝜈2 − 𝜈3)𝑝 − 𝜈2𝜈3. (57b)

Eliminating 𝑝 then 𝑞 = 𝑤 satisfies PV (2) with

𝛼 =
1

2
(𝜈2 − 𝜈3)

2, 𝛽 = −
1

2
𝜈2
1
, 𝛾 = 𝜈1 − 𝜈2 − 𝜈3 − 1.

The function 𝜎(𝑧) = 𝑧V(𝑞, 𝑝, 𝑧) defined by (56) satisfies the second-order, second-degree
equation

(
𝑧
𝑑2𝜎

𝑑𝑧
2

)2
=

[
2

(
𝑑𝜎

𝑑𝑧

)2
+ (𝜈1 + 𝜈2 + 𝜈3 − 𝑧)

𝑑𝜎

𝑑𝑧
+ 𝜎

]2
− 4

𝑑𝜎

𝑑𝑧

3∏
𝑗=1

(
𝑑𝜎

𝑑𝑧
+ 𝜈𝑗

)
, (58)

cf. Ref.27, eq. (C.45)]; the PV 𝜎-equation derived by Okamoto [47, 49 is Equation (59). Conversely,
if 𝜎(𝑧) is a solution of Equation (58), then the solutions of Equation (57) are

𝑞(𝑧) =
𝑧𝜎′′ + 2(𝜎′)2 + (𝜈1 + 𝜈2 + 𝜈3 − 𝑧)𝜎′ + 𝜎

2(𝜎′ + 𝜈2)(𝜎′ + 𝜈3)
,

𝑝(𝑧) =
𝑧𝜎′′ − 2(𝜎′)2 − (𝜈1 + 𝜈2 + 𝜈3 − 𝑧)𝜎′ − 𝜎

2(𝜎′ + 𝜈1)
.

Henceforth, we shall refer to Equation (58) as the SV equation.
The PV 𝜎-equation derived by Okamoto47,49 is

(
𝑧
𝑑2ℎ

𝑑𝑧
2

)2
=

[
2

(
𝑑ℎ

𝑑𝑧

)2
− 𝑧

𝑑ℎ

𝑑𝑧
+ ℎ

]2
− 4

3∏
𝑗=0

(
𝑑ℎ

𝑑𝑧
+ 𝜅𝑗

)
, (59)
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22 CLARKSON and DUNNING

with 𝜅0, 𝜅1, 𝜅2, and 𝜅3 parameters such that 𝜅0 + 𝜅1 + 𝜅2 + 𝜅3 = 0. Equation (59) is equivalent to
SV (58), since these are related by the transformation

𝜎(𝑧; 𝝂) = ℎ(𝑧; 𝜿) + 𝜅0𝑧 + 2𝜅2
0
, 𝜈𝑗 = 𝜅𝑗 − 𝜅0, 𝑗 = 1, 2, 3, (60a)

where 𝝂 = (𝜈1, 𝜈2, 𝜈3) and 𝜿 = (𝜅0, 𝜅1, 𝜅2, 𝜅3), with

𝜅0 = −(𝜅1 + 𝜅2 + 𝜅3) = −
1

4
(𝜈1 + 𝜈2 + 𝜈3) (60b)

as is easily verified.
There is a simple symmetry for solutions of SV (58) given in the following lemma.

Lemma 10. Making the transformation

𝜎(𝑧; 𝝂) = 𝜎(𝑧; 𝝀) − 𝜈1𝑧 + (𝜈2 + 𝜈3 − 𝜈1)𝜈1, (61a)

with

𝝀 = (𝜆1, 𝜆2, 𝜆3) = (−𝜈1, 𝜈2 + 𝜈1, 𝜈3 + 𝜈1) (61b)

in SV (58) yields(
𝑧
𝑑2𝜎

𝑑𝑧
2

)2
=

[
2

(
𝑑𝜎

𝑑𝑧

)2
+ (𝜆1 + 𝜆2 + 𝜆3 − 𝑧)

𝑑𝜎

𝑑𝑧
+ 𝜎

]2
− 4

𝑑𝜎

𝑑𝑧

3∏
𝑗=1

(
𝑑𝜎

𝑑𝑧
+ 𝜆𝑗

)
.

Proof. This is easily verified by substituting (61) in (58). □

5.2 Classification of rational solutions of S𝐕

There are two classes of rational solutions of SV (58), one expressed in terms of the generalized
Laguerre polynomial 𝑇(𝜇)𝑚,𝑛(𝑧), which we discuss in the following theorem, and a second in terms
of the generalized Umemura polynomial 𝑈(𝛼)

𝑚,𝑛(𝑧).

Theorem 4. The rational solution of SV (58) in terms of the generalized Laguerre polynomial 𝑇
(𝜇)
𝑚,𝑛

is

𝜎𝑚,𝑛(𝑧; 𝝂) = 𝑧
𝑑

𝑑𝑧
ln
{
𝑇
(𝜇)
𝑚,𝑛(𝑧)

}
− (𝑚 + 1)𝑛, 𝑚 ≥ 0, 𝑛 ≥ 1 (62)

for the parameters

𝝂 = (𝑚 + 1,−𝑛,𝑚 + 𝑛 + 𝜇 + 1). (63)

Proof. This result can be inferred from the work of Forrester and Witte21 and Okamoto49 on
special function solutions of SV , together with the relationship between Kummer functions and
associated Laguerre polynomials (40). We have used Lemma 10 as a normalization. □
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CLARKSON and DUNNING 23

Corollary 2. The rational solution of SV (58) in terms of the generalized Laguerre polynomial
𝑇
(𝜇)
𝑚,𝑛(𝑧) is

𝜎𝑚,𝑛(𝑧; 𝝂) = 𝑧
𝑑

𝑑𝑧
ln
{
𝑇
(𝜇)
𝑚,𝑛(𝑧)

}
− (𝑚 + 1)𝑛, 𝑚 ≥ 0, 𝑛 ≥ 1 (64)

for the parameters

𝝂 = (−𝑚 − 1, 𝑛, −𝑚 − 𝑛 − 𝜇 − 1). (65)

Proof. Since 𝑇(𝜇)𝑚,𝑛(𝑧) = 𝑇
(𝜇)
𝑚,𝑛(−𝑧) then 𝜎𝑚,𝑛(𝑧; 𝝂) = 𝜎𝑚,𝑛(−𝑧;−𝝂). □

Remark 7. We note that

𝜎𝑚,𝑛(𝑧;𝑚 + 1,−𝑛,𝑚 + 1 − 𝑗) = 𝜎𝑚−𝑗,𝑛(𝑧;𝑚 + 1 − 𝑗,−𝑛,𝑚 + 1), 𝑗 = 1,… ,𝑚,

𝜎𝑚,𝑛(𝑧;𝑚 + 1,−𝑛, 0) = 0,

𝜎𝑚,𝑛(𝑧;𝑚,−𝑛, 1 − 𝑗) = 𝜎𝑚,𝑗−1(𝑧;𝑚 + 1, 1 − 𝑗, −𝑛), 𝑗 = 2,… , 𝑛.

This result follow from the factorization given in Lemma 12 of the 𝑇(𝜇)𝑚,𝑛(𝑧) at certain negative
integer values of 𝜇. The third case also follows from the invariance of the HamiltonianV(𝑞, 𝑝, 𝑧)

under the interchange of 𝜈2 and 𝜈3.

5.3 Nonuniqueness of rational solutions of S𝐕

In Section 4.2, it was shown that there was nonuniqueness of rational solutions of PV (2) in case
(i) in terms of the generalized Laguerre polynomial 𝑇(𝜇)𝑚,𝑛(𝑧) when 𝜇 is an integer. An analogous
situation arises for rational solutions of SV (58).

Lemma 11. If 𝜇 ∈ ℤ and 𝜇 ≥ −𝑛 then there are two distinct rational solutions of SV (58) for the
same parameters.

Proof. If 𝜇 = 𝑘 ∈ ℤ and 𝑘 ≥ −𝑛 then a second rational solution for the parameters (63) is

𝜎𝑚,𝑛(𝑧;𝑚 + 1,−𝑛,𝑚 + 𝑛 + 𝑘 + 1) = 𝑧
𝑑

𝑑𝑧
ln
{
𝑇
(−𝑘)

𝑚,𝑛+𝑘
(𝑧)
}
− (𝑚 + 1)𝑧 − (𝑚 + 1)𝑛. (66)

If 𝜇 = 𝑘 ∈ ℤ and 𝑘 ≥ −𝑛 then a second rational solution for the parameters (65) is

𝜎𝑚,𝑛(𝑧;𝑚 − 1, 𝑛, −𝑚 − 𝑛 − 𝑘 − 1) = 𝑧
𝑑

𝑑𝑧
ln
{
𝑇
(−𝑘)

𝑚,𝑛+𝑘
(𝑧)
}
+ (𝑚 + 1)𝑧 − (𝑚 + 1)𝑛. (67)

□
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24 CLARKSON and DUNNING

5.4 Applications

5.4.1 Probability density functions associated with the Laguerre unitary
ensemble (LUE)

In their study of probability density functions associated with LUE, Forrester and Witte21 were
interested in solutions of(

𝑧
𝑑2𝑆

𝑑𝑧
2

)2
=

[
2

(
𝑑𝑆

𝑑𝑧

)2
+ (2𝑀 + 𝓁 − 𝜇 − 𝑧)

(
𝑑𝑆

𝑑𝑧

)
+ 𝑆

]2

− 4
𝑑𝑆

𝑑𝑧

(
𝑑𝑆

𝑑𝑧
− 𝜇

)(
𝑑𝑆

𝑑𝑧
+𝑀

)(
𝑑𝑆

𝑑𝑧
+𝑀 + 𝓁

)
, (68)

where𝑀 ≥ 0, 𝓁 ∈ ℕ, and 𝜇 is a parameter, which is SV (58) with parameters 𝝂 = (−𝜇,𝑀,𝑀 + 𝓁).
Forrester and Witte [21, Proposition 3.6] define the solution

𝑆(𝑧; −𝜇,𝑀,𝑀 + 𝓁) = −𝜇𝑀 −𝑀𝑧 + 𝑧
𝑑

𝑑𝑧
ln det

[
𝑑𝑗

𝑑𝑧
𝑗
𝐿
(𝜇)

𝑀+𝑘
(−𝑧)

]𝑎−1
𝑗,𝑘=0

, (69)

which behaves as

𝑆(𝑧; −𝜇,𝑀,𝑀 + 𝓁) = −𝜇𝑀 −
𝜇𝑀

𝜇 + 𝓁
𝑧 + (𝑧2), as 𝑧 → 0. (70)

In terms of the generalized Laguerre polynomial 𝑇(𝜇)𝑚,𝑛(𝑧), we have

𝑆(𝑧; −𝜇,𝑀,𝑀 + 𝓁) = −𝜇𝑀 −𝑀𝑧 + 𝑧
𝑑

𝑑𝑧
ln 𝑇

(𝜇−𝓁)

𝑀−1,𝓁
(−𝑧). (71)

Explicitly, we have

det

[
𝑑𝑗

𝑑𝑧
𝑗
𝐿
(𝜇)

𝑀+𝑘
(−𝑧)

]𝓁−1
𝑗,𝑘=0

= (−1)⌊𝓁∕2⌋ 𝑇(𝜇−𝓁)
𝑀−1,𝓁

(−𝑧) (72)

= (−1)⌊𝓁∕2⌋+⌊(𝑀+𝓁)∕2⌋𝑇(−𝜇−𝓁−2𝑀)

𝓁−1,𝑀
(𝑧). (73)

5.4.2 Joint moments of the characteristic polynomial of CUE random
matrices

In their study of joint moments of the characteristic polynomial of CUE random matrices, Basor
et al [5, eq. (3.85)] were interested in solutions of the equation

(
𝑧
𝑑2𝑆𝑘

𝑑𝑧
2

)2
=

[
2

(
𝑑𝑆𝑘
𝑑𝑧

)2
− (2𝑁 + 𝑧)

𝑑𝑆𝑘
𝑑𝑧

+ 𝑆𝑘

]2

− 4
𝑑𝑆𝑘
𝑑𝑧

(
𝑑𝑆𝑘
𝑑𝑧

+ 𝑘

)(
𝑑𝑆𝑘
𝑑𝑧

− 𝑁

)(
𝑑𝑆𝑘
𝑑𝑧

− 𝑘 − 𝑁

)
, (74a)
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CLARKSON and DUNNING 25

where𝑁, 𝑘 ∈ ℤwith 𝑛 ≥ 𝑘 > 1, which is SV (58) with parameters 𝝂 = (𝑘, −𝑁,−𝑘 − 𝑁), satisfying
the initial condition

𝑆𝑘(𝑧) = −𝑘𝑁 +
1

2
𝑁𝑧 + (𝑧2), as 𝑧 → 0. (74b)

Basor et al derive the solution of (74), see Ref. [5, eq. (4.23)], given by

𝑆𝑘(𝑧) = −𝑘𝑁 + 𝑧
𝑑

𝑑𝑧
ln 𝐵𝑘(𝑧), (75)

where 𝐵𝑘(𝑧) is the determinant

𝐵𝑘(𝑧) = det
[
𝐿
(2𝑘−1)

𝑁+𝑘+1−𝑖−𝑗
(−𝑧)

]𝑘
𝑖,𝑗=1

, 𝑁 ≥ 𝑘 > 1 (76)

with 𝐿(𝛼)𝑛 (𝑧) the associated Laguerre polynomial. Basor et al5 remark that Equation (74a) is degen-
erate at 𝑧 = 0, which is a singular point of the equation, and so the Cauchy–Kovalevskaya theorem
is not applicable to the initial value problem (74).
From (28c), we have

𝐵𝑘(𝑧) = 𝑇
(0)

𝑁−1,𝑘
(𝑧) = (−1)⌊((𝑁+𝑘)∕2)⌋𝑇(−2(𝑘+𝑁))

𝑘−1,𝑁
(𝑧), (77)

where the second equality follows from (26). In terms of the generalized Laguerre polynomial
𝑇
(𝜇)
𝑚,𝑛(𝑧), a solution of (74) is given by

𝜎(𝑧; 𝑘, −𝑁,−𝑘 − 𝑁) = −𝑘𝑁 + 𝑁𝑧 + 𝑧
𝑑

𝑑𝑧
ln{𝑇

(0)

𝑁−1,𝑘
(𝑧)}, 𝑁 ≥ 1, 𝑘 ≥ 1. (78)

Alternatively, in terms of the polynomial 𝑇(𝜇)𝑚,𝑛(𝑧), a solution of (74) is given by

𝜎(𝑧; 𝑘, −𝑁,−𝑘 − 𝑁) = −𝑘𝑁 + 𝑧
𝑑

𝑑𝑧
ln 𝑇

(0)

𝑁−1,𝑘
(𝑧), 𝑁 ≥ 1, 𝑘 ≥ 1,

which is the same solution as (75), though without the constraint 𝑁 ≥ 𝑘. Therefore, we have two
different solutions of the initial value problem (74). The solutions (75) and (78) are related by

𝑆𝑘(𝑧) = 𝜎(𝑧; 𝑘, −𝑁,−𝑘 − 𝑁) − 𝑁𝑧,

since Equation (74) is invariant under the transformation

𝜎(𝑧) → 𝜎(𝑧) − 𝑁𝑧, 𝑧 → −𝑧.

For example, suppose that 𝑁 = 2 and 𝑘 = 2, then from (75)

𝑆2(𝑧) = −
16𝑧3 + 192𝑧2 + 720𝑧 + 960

𝑧4 + 16𝑧3 + 96𝑧2 + 240𝑧 + 240
= −4 + 𝑧 −

𝑧2

5
+
3 𝑧4

100
+
𝑧5

45
+ (𝑧6),

and from (78)

𝜎(𝑧; 2, −2, −4) = 2𝑧 +
16𝑧3 − 192𝑧2 + 720𝑧 − 960

𝑧4 − 16𝑧3 + 96𝑧2 − 240𝑧 + 240
= −4 + 𝑧 −

𝑧2

5
+
3 𝑧4

100
−
𝑧5

45
+ (𝑧6).
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26 CLARKSON and DUNNING

If we seek a series solution of (74) in the form

𝜎(𝑧) = −𝑁𝑘 +
1

2
𝑁𝑧 +

∞∑
𝑗=2

𝑎𝑗𝑧
𝑗,

then 𝑎2𝑗 are uniquely determined with

𝑎2 =
(𝑁 + 2𝑘)𝑁

4(4𝑘2 − 1)
, 𝑎4 =

(𝑁 + 2𝑘 + 1)(𝑁 + 2𝑘)(𝑁 + 2𝑘 − 1)𝑁

16(4𝑘2 − 1)2(4𝑘2 − 1)
+
36(4𝑘2 − 1)(𝑘2 − 1)

𝑁(𝑁 + 2𝑘)(4𝑘2 − 9)
𝑎2
3
, … ,

and 𝑎2𝑗+1 = 0 unless 𝑘 is an integer. If 𝑘 is an integer then 𝑎2𝑗+1 = 0 for 𝑗 < 𝑘, 𝑎2𝑘+1 is arbitrary,
and 𝑎2𝑗+1 uniquely determined for 𝑗 > 𝑘, as discussed in Ref. 5. For example, when 𝑁 = 2 and
𝑘 = 2 then

𝜎(𝑧; 𝑘, −𝑁,−𝑘 − 𝑁) = −4 + 𝑧 −
𝑧2

5
+
3 𝑧4

100
+𝑎5𝑧

5 +
29 𝑧6

3000
+
4𝑎5 𝑧

7

25
+

263 𝑧8

360000
−
13𝑎5 𝑧

9

6000
+ (𝑧10),

with 𝑎5 arbitrary.
The solutions 𝑆2(𝑧) and 𝜎(𝑧; 2, −2, −4) have completely different asymptotics as 𝑧 → ∞,

namely,

𝑆2(𝑧) = −
16

𝑧
+
64

𝑧2
+
208

𝑧3
+
64

𝑧4
−
7424

𝑧5
+ (𝑧−6),

𝜎(𝑧; 2, −2, −4) = 2𝑧 +
16

𝑧
+
64

𝑧2
−
208

𝑧3
+
64

𝑧4
+
7424

𝑧5
+ (𝑧−6).

6 RATIONAL SOLUTIONS OF THE SYMMETRIC P𝐕 SYSTEM

From the works of Okamoto,48–51 it is known that the parameter spaces of PII–PVI all admit the
action of an extended affineWeyl group; the group acts as a group of Bäcklund transformations. In
a series of papers, Noumi and Yamada40,42,44,46 have implemented this idea to derive a hierarchy
of dynamical systems associated to the affine Weyl group of type 𝐴(1)

𝑁 , which are now known
as “symmetric forms of the Painlevé equations.” The behavior of each dynamical system varies
depending on whether 𝑁 is even or odd.
The first member of the𝐴(1)

2𝑛
hierarchy, that is,𝐴(1)

2
, usually known as sPIV , is equivalent to PIV

and given by

𝑑𝑓1
𝑑𝑧

= 𝑓1(𝑓2 − 𝑓3) + 𝜅1, (79a)

𝑑𝑓2
𝑑𝑧

= 𝑓2(𝑓3 − 𝑓1) + 𝜅2, (79b)

𝑑𝑓3
𝑑𝑧

= 𝑓3(𝑓1 − 𝑓2) + 𝜅3, (79c)

with constraints

𝜅1 + 𝜅2 + 𝜅3 = 1, 𝑓1 + 𝑓2 + 𝑓3 = 𝑧. (79d)
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CLARKSON and DUNNING 27

The first member of the 𝐴(1)
2𝑛+1

hierarchy, that is, 𝐴(1)
3
, usually known as sPV , is equivalent to PV

(2), as shown below, and given by

𝑧
𝑑𝑓1
𝑑𝑧

= 𝑓1𝑓3(𝑓2 − 𝑓4) +

(
1

2
− 𝜅3

)
𝑓1 + 𝜅1𝑓3, (80a)

𝑧
𝑑𝑓2
𝑑𝑧

= 𝑓2𝑓4(𝑓3 − 𝑓1) +

(
1

2
− 𝜅4

)
𝑓2 + 𝜅2𝑓4, (80b)

𝑧
𝑑𝑓3
𝑑𝑧

= 𝑓3𝑓1(𝑓4 − 𝑓2) +

(
1

2
− 𝜅1

)
𝑓3 + 𝜅3𝑓1, (80c)

𝑧
𝑑𝑓4
𝑑𝑧

= 𝑓4𝑓2(𝑓1 − 𝑓3) +

(
1

2
− 𝜅2

)
𝑓4 + 𝜅4𝑓2, (80d)

with the normalizations

𝑓1(𝑧) + 𝑓3(𝑧) =
√
𝑧, 𝑓2(𝑧) + 𝑓4(𝑧) =

√
𝑧 (80e)

and 𝜅1, 𝜅2, 𝜅3, and 𝜅4 are constants such that

𝜅1 + 𝜅2 + 𝜅3 + 𝜅4 = 1. (81)

The symmetric systems sPIV (79) and sPV (80) were found by Adler1 in the context of periodic
chains of Bäcklund transformations, see also Ref. 61. The symmetric systems sPIV (79) and sPV
(80) have applications in random matrix theory, see, for example, Refs. 20, 21.
Setting 𝑓1(𝑧) =

√
𝑧 𝑢(𝑧) and 𝑓2(𝑧) =

√
𝑧 𝑣(𝑧), in sPV (80) gives the system

𝑧
𝑑𝑢

𝑑𝑧
= 𝑧(2𝑣 − 1)𝑢2 − (2𝑧𝑣 − 𝑧 + 𝜅1 + 𝜅3)𝑢 + 𝜅1, (82a)

𝑧
𝑑𝑣

𝑑𝑧
= 𝑧(1 − 2𝑢)𝑣2 + (2𝑧𝑢 − 𝑧 − 𝜅2 − 𝜅4)𝑣 + 𝜅2. (82b)

Solving (82a) for 𝑣, substituting in (82b) gives

𝑑2𝑢

𝑑𝑧
2
=
1

2

(
1

𝑢
+

1

𝑢 − 1

)(
𝑑𝑢

𝑑𝑧

)2
−
1

𝑧

𝑑𝑢

𝑑𝑧
+
(𝑢 − 1)2𝜅2

1
− 𝑢2𝜅2

3

2𝑧2𝑢(𝑢 − 1)

+
(𝜅2 − 𝜅4)𝑢(𝑢 − 1)

𝑧
+
𝑢(𝑢 − 1)(2𝑢 − 1)

2
. (83)

Making the transformation 𝑢 = 1∕(1 − 𝑤) in (83) yields

𝑑2𝑤

𝑑𝑧
2
=

(
1

2𝑤
+

1

𝑤 − 1

)(
𝑑𝑤

𝑑𝑧

)2
−
1

𝑧

𝑑𝑤

𝑑𝑧
+
(𝑤 − 1)2(𝑤2𝜅2

1
− 𝜅2

3
)

2𝑧2𝑤
+
(𝜅2 − 𝜅4)𝑤

𝑧
−
𝑤(𝑤 + 1)

2𝑤 − 1)
,

(84a)

which is PV (2) with parameters

𝛼 =
1

2
𝜅2
1
, 𝛽 = −

1

2
𝜅2
3
, 𝛾 = 𝜅2 − 𝜅4. (84b)
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28 CLARKSON and DUNNING

Analogously solving (82b) for 𝑢, substituting in (82a) gives

𝑑2𝑣

𝑑𝑧
2
=
1

2

(
1

𝑣
+

1

𝑣 − 1

)(
𝑑𝑣

𝑑𝑧

)2
−
1

𝑧

𝑑𝑣

𝑑𝑧
+
(𝑣 − 1)2𝜅2

2
− 𝑣2𝜅2

4

2𝑧2𝑣(𝑣 − 1)

+
(𝜅3 − 𝜅1)𝑣(𝑣 − 1)

𝑧
+
𝑣(𝑣 − 1)(2𝑣 − 1)

2
.

Then making the transformation 𝑣 = 1∕(1 − 𝑤) gives PV (2) with parameters

𝛼 =
1

2
𝜅2
2
, 𝛽 = −

1

2
𝜅2
4
, 𝛾 = 𝜅3 − 𝜅1.

As shown above, PV (2) has the rational solution in terms of the generalized Laguerre
polynomial 𝑇(𝜇)𝑚,𝑛(𝑧) given by

𝑤𝑚,𝑛(𝑧; 𝜇) =
𝑇
(𝜇)
𝑚−1,𝑛

(𝑧) 𝑇
(𝜇)
𝑚−1,𝑛+1

(𝑧)

𝑇
(𝜇)
𝑚,𝑛(𝑧) 𝑇

(𝜇)
𝑚−2,𝑛+1

(𝑧)
(85a)

for the parameters

𝛼 =
1

2
𝑚2, 𝛽 = −

1

2
(𝑚 + 2𝑛 + 𝜇 + 1)2, 𝛾 = 𝜇, (85b)

and so

𝑢𝑚,𝑛(𝑧; 𝜇) =
1

1 − 𝑤𝑚,𝑛(𝑧; 𝜇)
=

𝑇
(𝜇)
𝑚,𝑛(𝑧) 𝑇

(𝜇)
𝑚−2,𝑛+1

(𝑧)

𝑇
(𝜇)
𝑚,𝑛(𝑧) 𝑇

(𝜇)
𝑚−2,𝑛+1

(𝑧) − 𝑇
(𝜇)
𝑚−1,𝑛

(𝑧) 𝑇
(𝜇)
𝑚−1,𝑛+1

(𝑧)
. (86)

From Equations (33) in Lemma 6 and (34c) in Lemma 7, with 𝑛 → 𝑛 + 1, we have

𝑇
(𝜇)
𝑚,𝑛 𝑇

(𝜇)
𝑚,𝑛+1

− 𝑇
(𝜇−1)
𝑚,𝑛+1

𝑇
(𝜇+1)
𝑚,𝑛 = 𝑇

(𝜇)
𝑚+1,𝑛

𝑇
(𝜇)
𝑚−1,𝑛+1

, (87)

D𝑧

(
𝑇
(𝜇+1)
𝑚,𝑛 ∙𝑇

(𝜇−1)
𝑚,𝑛+1

)
= 𝑇

(𝜇)
𝑚+1,𝑛

𝑇
(𝜇)
𝑚−1,𝑛+1

(88)

with D𝑧 the Hirota operator (35), and so the solution of Equation (83) is given by

𝑢𝑚,𝑛(𝑧; 𝜇) = −
𝑇
(𝜇)
𝑚,𝑛(𝑧) 𝑇

(𝜇)
𝑚−2,𝑛+1

(𝑧)

𝑇
(𝜇+1)
𝑚−1,𝑛

(𝑧) 𝑇
(𝜇−1)
𝑚−1,𝑛+1

(𝑧)
=

𝑑

𝑑𝑧
ln
𝑇
(𝜇−1)
𝑚−1,𝑛+1

(𝑧)

𝑇
(𝜇+1)
𝑚−1,𝑛

(𝑧)
, 𝑚 ≥ 1, 𝑛 ≥ 1. (89)

In the case when 𝑛 = 0, then

𝑢𝑚,0(𝑧; 𝜇) = −
𝑇
(𝜇)
𝑚−2,1

(𝑧)

𝑇
(𝜇−1)
𝑚−1,1

(𝑧)
=

𝑑

𝑑𝑧
ln 𝑇

(𝜇−1)
𝑚−1,1

(𝑧), 𝑚 ≥ 1. (90)

We note that

𝑢𝑚,0(𝑧; 𝜇) = −
𝐿
(𝜇+1)
𝑚 (𝑧)

𝐿
(𝜇)
𝑚+1

(𝑧)
=

𝑑

𝑑𝑧
ln 𝐿

(𝜇)
𝑚 (𝑧).
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CLARKSON and DUNNING 29

From Equation (82a), we obtain

𝑣 =
1

2𝑧𝑢(𝑢 − 1)

{
𝑧
𝑑𝑢

𝑑𝑧
+ 𝑧𝑢2 − (𝑧 − 𝜅1 − 𝜅3)𝑢 − 𝜅1

}
. (91)

Depending on the choice of 𝜅1 and 𝜅3, there is a different solution for 𝑣. From (81), (84b), and
(85b), we obtain

𝜅2
1
= 𝑚2, 𝜅2

3
= (𝑚 + 2𝑛 + 𝜇 + 1)2, 𝜅2 − 𝜅4 = 𝜇, 𝜅1 + 𝜅2 + 𝜅3 + 𝜅4 = 1,

which gives four solutions

𝜿 = (𝑚,−𝑚 − 𝑛, 𝜇 + 𝑚 + 2𝑛 + 1,−𝑚 − 𝑛 − 𝜇),

𝜿 = (𝑚, 𝜇 + 𝑛 + 1,−𝜇 − 𝑚 − 2𝑛 − 1, 𝑛 + 1),

𝜿 = (−𝑚,−𝑛, 𝜇 + 𝑚 + 2𝑛 + 1,−𝑛 − 𝜇),

𝜿 = (−𝑚, 𝜇 + 𝑚 + 𝑛 + 1,−𝜇 − 𝑚 − 2𝑛 − 1,𝑚 + 𝑛 + 1).

Each of these gives a different solution 𝑣𝑚,𝑛(𝑧) which we will discuss in turn.

(i) For the parameters 𝜿 = (𝑚,−𝑚 − 𝑛, 𝜇 + 𝑚 + 2𝑛 + 1,−𝑚 − 𝑛 − 𝜇), the solution is

𝑣
(i)
𝑚,𝑛(𝑧; 𝜇) = −

𝑚 + 𝑛

𝑧

𝑇
(𝜇−1)
𝑚−1,𝑛+1

(𝑧) 𝑇
(𝜇+1)
𝑚−2,𝑛

(𝑧)

𝑇
(𝜇)
𝑚−1,𝑛

(𝑧) 𝑇
(𝜇)
𝑚−2,𝑛+1

(𝑧)

= 1 −
𝜇 + 2𝑛 + 1

𝑧
+

𝑑

𝑑𝑧
ln

𝑇
(𝜇)
𝑚−1,𝑛

(𝑧)

𝑇
(𝜇)
𝑚−2,𝑛+1

(𝑧)
, 𝑚 ≥ 1, 𝑛 ≥ 1, (92a)

𝑣
(i)
𝑚,0

(𝑧; 𝜇) = −
𝑚

𝑧

𝑇
(𝜇−1)
𝑚−1,1

(𝑧)

𝑇
(𝜇)
𝑚−2,1

(𝑧)
= 1 −

𝜇 + 1

𝑧
−

𝑑

𝑑𝑧
ln 𝑇

(𝜇)
𝑚−2,1

(𝑧), 𝑚 ≥ 1. (92b)

(ii) For the parameters 𝜿 = (𝑚, 𝜇 + 𝑛 + 1,−𝜇 − 𝑚 − 2𝑛 − 1, 𝑛 + 1), the solution is

𝑣
(ii)
𝑚,𝑛(𝑧; 𝜇) =

𝑇
(𝜇−1)
𝑚−1,𝑛+1

(𝑧) 𝑇
(𝜇+1)
𝑚−2,𝑛+1

(𝑧)

𝑇
(𝜇)
𝑚−1,𝑛+1

(𝑧) 𝑇
(𝜇)
𝑚−2,𝑛+1

(𝑧)
= 1 +

𝑑

𝑑𝑧
ln
𝑇
(𝜇)
𝑚−1,𝑛+1

(𝑧)

𝑇
(𝜇)
𝑚−2,𝑛+1

(𝑧)
, 𝑚 ≥ 1, 𝑛 ≥ 0. (93)

(iii) For the parameters 𝜿 = (−𝑚,−𝑛, 𝜇 + 𝑚 + 2𝑛 + 1,−𝑛 − 𝜇), the solution is

𝑣
(iii)
𝑚,𝑛(𝑧; 𝜇) = −

𝑇
(𝜇+1)
𝑚,𝑛−1

(𝑧) 𝑇
(𝜇−1)
𝑚−1,𝑛+1

(𝑧)

𝑇
(𝜇)
𝑚−1,𝑛

(𝑧) 𝑇
(𝜇)
𝑚,𝑛(𝑧)

=
𝑑

𝑑𝑧
ln
𝑇
(𝜇)
𝑚−1,𝑛

(𝑧)

𝑇
(𝜇)
𝑚,𝑛(𝑧)

, 𝑚 ≥ 1, 𝑛 ≥ 1, (94)

and 𝑣(iii)
𝑚,0

(𝑧; 𝜇) = 0.
(iv) For the parameters 𝜿 = (−𝑚, 𝜇 + 𝑚 + 𝑛 + 1,−𝜇 − 𝑚 − 2𝑛 − 1,𝑚 + 𝑛 + 1), the solution is
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30 CLARKSON and DUNNING

𝑣
(iv)
𝑚,𝑛(𝑧; 𝜇) =

𝜇 + 𝑚 + 𝑛 + 1

𝑧

𝑇
(𝜇+1)
𝑚,𝑛 𝑇

(𝜇−1)
𝑚−1,𝑛+1

𝑇
(𝜇)
𝑚,𝑛 𝑇

(𝜇)
𝑚−1,𝑛+1

=
𝜇 + 2𝑛 + 1

𝑧
+

𝑑

𝑑𝑧
ln
𝑇
(𝜇)
𝑚−1,𝑛+1

(𝑧)

𝑇
(𝜇)
𝑚,𝑛(𝑧)

, 𝑚 ≥ 1, 𝑛 ≥ 1, (95a)

𝑣
(iv)
𝑚,0

(𝑧; 𝜇) =
𝜇 + 𝑚 + 1

𝑧

𝑇
(𝜇−1)
𝑚−1,1

𝑇
(𝜇)
𝑚−1,1

=
𝜇 + 1

𝑧
+

𝑑

𝑑𝑧
ln 𝑇

(𝜇)
𝑚−1,1

(𝑧), 𝑚 ≥ 1. (95b)

Remark 2.

(i) Analogous rational solutions of sPV (80) can be derived in terms of the polynomial 𝑇
(𝜇)
𝑚,𝑛(𝑧) =

𝑇
(𝜇)
𝑚,𝑛(−𝑧) given by

𝑢𝑚,𝑛(𝑧; 𝜇) = 𝑢𝑚,𝑛(−𝑧; 𝜇), 𝑣𝑚,𝑛(𝑧; 𝜇) = 𝑣𝑚,𝑛(−𝑧; 𝜇).

(ii) Some rational solutions of sPV (80) are given in Refs. 3, 23, 24, where a different normalization
of the symmetric system is used.

6.1 Nonuniqueness of rational solutions of sP𝐕

As was the case for PV (2) and SV (58), there is nonuniqueness for some rational solutions of the
symmetric system sPV (80). We illustrate this with an example.

Example 2. The sets of functions

𝑢1,1(𝑧; 1) =
(𝑧 − 2)(𝑧 − 6)

(𝑧 − 4)(𝑧2 − 6𝑧 + 12)
, 𝑣

(i)
1,1
(𝑧; 1) =

𝑧2 − 6𝑧 + 12

𝑧(𝑧 − 3)
,

and

𝑢1,2(𝑧; −1) = −
𝑧4 + 12𝑧3 + 54𝑧2 + 96𝑧 + 72

(𝑧2 + 6𝑧 + 12)(𝑧3 + 6𝑧2 + 18𝑧 + 24)
, 𝑣

(i)
1,2
(𝑧; −1) = −

2(𝑧2 + 6𝑧 + 12)

𝑧(𝑧2 + 4𝑧 + 6)
,

are both solutions of the system (82) for the parameters

𝜿 = (1, −2, 5, −3).

Hence, the associated solutions of sPV (80) are

𝑓1(𝑧) =

√
𝑧 (𝑧 − 2)(𝑧 − 6)

(𝑧 − 4)(𝑧2 − 6𝑧 + 12)
, 𝑓2(𝑧) =

√
𝑧 (𝑧2 − 6𝑧 + 12)

𝑧(𝑧 − 3)
,

𝑓3(𝑧) =

√
𝑧 (𝑧 − 3)(𝑧2 − 8𝑧 + 20)

(𝑧 − 4)(𝑧2 − 6𝑧 + 12)
, 𝑓4(𝑧) =

3
√
𝑧 (𝑧 − 4)

𝑧(𝑧 − 3)
,
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CLARKSON and DUNNING 31

and

𝑓1(𝑧) = −

√
𝑧 (𝑧4 + 12𝑧3 + 54𝑧2 + 96𝑧 + 72)

(𝑧2 + 6𝑧 + 12)(𝑧3 + 6𝑧2 + 18𝑧 + 24)
, 𝑓2(𝑧) = −

2
√
𝑧 (𝑧2 + 6𝑧 + 12)

𝑧(𝑧2 + 4𝑧 + 6)
,

𝑓3(𝑧) =

√
𝑧 (𝑧2 + 4𝑧 + 6)(𝑧3 + 9𝑧2 + 36𝑧 + 60)

(𝑧2 + 6𝑧 + 12)(𝑧3 + 6𝑧2 + 18𝑧 + 24)
, 𝑓4(𝑧) =

√
𝑧 (𝑧3 + 6𝑧2 + 18𝑧 + 24)

𝑧(𝑧2 + 4𝑧 + 6)
.

7 PROPERTIES OF GENERALIZED LAGUERRE POLYNOMIALS

Remark 8. The generalized Laguerre polynomial 𝑇(𝜇)𝑚,𝑛(𝑧) is such that

𝑇
(𝜇)
𝑚,𝑛(𝑧) = 𝑐𝑚,𝑛

{
𝑧(𝑚+1)𝑛 − 𝑛

(
𝑚+1

)
(𝑚+𝑛+1+𝜇)𝑧(𝑚+1)𝑛−1

+
1

2
𝑛(𝑚 + 1)(𝑚 + 𝑛 + 1 + 𝜇)[(𝑚 + 1)(𝑚𝑛 + 𝑛2 + 𝑛 − 2) + (𝑚𝑛 + 𝑛 − 1)𝜇]𝑧(𝑚+1)𝑛−2

+⋯+ (−1)𝑛(𝑚+𝑛)𝑑𝑚,𝑛
}
, (96)

where

𝑐𝑚,𝑛 = (−1)𝑛(2𝑚+1+𝑛)∕2
𝑛∏
𝑗=1

(𝑗 − 1)!

(𝑚 + 𝑗)!
, (97)

which follows from Lemma 1 in Ref. 8, and

𝑑𝑚,𝑛 =

min(𝑚+1,𝑛)−1∏
𝑗=1

(𝜇 + 𝑛 + 𝑗)𝑗
max(𝑚+1,𝑛)∏
min(𝑚+1,𝑛)

(𝜇 + 𝑛 + 𝑗)min(𝑚+1,𝑛)
𝑚+𝑛∏

max(𝑚+1,𝑛)+1

(𝜇 + 𝑛 + 𝑗)𝑚+𝑛+1−𝑗.

(98)
Therefore,

𝑇
(−𝑛−𝑗)
𝑚,𝑛 (0) = 0, 𝑗 = 1, 2, … ,𝑚 + 𝑛. (99)

Lemma 12. The generalized Laguerre polynomials have multiple roots at the origin when

𝜇 = −𝑛 − 𝑗, 𝑗 = 1, 2, … ,𝑚 + 𝑛. (100)

Moreover, at such values of 𝜇 the polynomials 𝑇(𝜇)𝑚,𝑛(𝑧) factorize as

𝑇
(−𝑛−𝑗)
𝑚,𝑛 (𝑧) =

𝑐𝑚,𝑛

𝑐𝑚−𝑗,𝑛
𝑧𝑛𝑗 𝑇

(𝑗−𝑛)

𝑚−𝑗,𝑛
(𝑧), 𝑗 = 1, 2, … ,𝑚, (101)

𝑇
(−𝑚−𝑛−1)
𝑚,𝑛 (𝑧) = 𝑐𝑚,𝑛 𝑧

𝑛(𝑚+1), (102)

𝑇
(−𝑚−𝑛−𝑗)
𝑚,𝑛 (𝑧) =

𝑐𝑚,𝑛

𝑐𝑚,𝑗−1
𝑧(𝑚+1)(𝑛+1−𝑗) 𝑇

(−𝑚−𝑛−𝑗)

𝑚,𝑗−1
(𝑧), 𝑗 = 2,… , 𝑛, (103)

where

𝑇
(𝑗−𝑛)

𝑚−𝑗,𝑛
(0) ≠ 0, 𝑇

(−𝑚−𝑛−𝑗)

𝑚,𝑗−1
(0) ≠ 0.
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32 CLARKSON and DUNNING

Proof. The fact that the generalized Laguerre polynomials have multiple roots at the points (100)
follows from the discriminant, and that these roots are always at the origin is a consequence of
(99). We use the standard property of Wronskians

Wr (𝑐1𝑔(𝑥)𝑓1(𝑥), … , 𝑐𝑟𝑔(𝑥)𝑓𝑟(𝑥)) =

(
𝑟∏
𝑖=1

𝑐𝑖

)
[𝑔(𝑥)]𝑟 Wr (𝑓1(𝑥), … , 𝑓𝑟(𝑥)), 𝑐1, … , 𝑐𝑟 ∈ ℂ,

(104)
and the property (see, for example, Ref. 35)

𝐿
(𝛼)
𝑛 (𝑧) =

(𝑛 + 𝛼)!

𝑛!
(−𝑧)−𝛼𝐿

(−𝛼)
𝑛+𝛼 (𝑧), 𝛼 ∈ {−𝑛,−𝑛 + 1,… ,−1}, (105)

to rewrite

𝑇
(−𝑚−𝑛−1)
𝑚,𝑛 (𝑧) = Wr

(
𝐿
(−𝑚−1)
𝑚+1

(𝑧), 𝐿
(−𝑚−1)
𝑚+2

(𝑧), … , 𝐿
(−𝑚−1)
𝑚+𝑛 (𝑧)

)
, (106)

as

𝑇
(−𝑚−𝑛−1)
𝑚,𝑛 (𝑧) = (−𝑧)𝑛(𝑚+1)

𝑛−1∏
𝑗=0

𝑗!

(𝑚 + 𝑗 + 1)!
Wr

(
𝐿
(𝑚+1)
0

(𝑧), 𝐿
(𝑚+1)
1

(𝑧), … , 𝐿
(𝑚+1)
𝑛−1

(𝑧)
)
. (107)

Since 𝐿(𝑚+1)
0

(𝑧) = 1 and

Wr (1, 𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑟(𝑥)) = Wr
(
𝑓′
1
(𝑥), 𝑓′

2
(𝑥), … , 𝑓′𝑟(𝑥)

)
, (108)

we repeatedly use (11) and (108) to show that

Wr
(
𝐿
(𝑚+1)
0

(𝑧), 𝐿
(𝑚+1)
1

(𝑧), … , 𝐿
(𝑚+1)
𝑛−1

(𝑧)
)
=

𝑛−1∏
𝑗=0

(−1)𝑗. (109)

Hence, we obtain

𝑇
(−𝑚−𝑛−1)
𝑛,𝑚 (𝑧) = (−𝑧)𝑛(𝑚+1)

𝑛−1∏
𝑗=0

(−1)𝑗𝑗!

(𝑚 + 𝑗 + 1)!
= 𝑐𝑚,𝑛 𝑧

𝑛(𝑚+1). (110)

When 𝛼 = −𝑛 − 𝑗 for 𝑗 = 1, 2, … ,𝑚, we again use (105) and (104) to obtain

𝑇
(−𝑛−𝑗)
𝑚,𝑛 (𝑧) = Wr

(
𝐿
(−𝑗)
𝑚+1

(𝑧), 𝐿
(−𝑗)
𝑚+2

(𝑧), … , 𝐿
(−𝑗)
𝑚+𝑛(𝑧)

)
= 𝑧𝑛𝑗 (−1)𝑛𝑗

𝑛∏
𝑖=1

(𝑚 − 𝑗 + 𝑖)!

(𝑚 + 𝑖)!
Wr

(
𝐿
(𝑗)

𝑚+1−𝑗
(𝑧), 𝐿

(𝑗)

𝑚+2−𝑗
(𝑧), … , 𝐿

(𝑗)

𝑚+𝑛−𝑗
(𝑧)
)

=
𝑐𝑚,𝑛

𝑐𝑚−𝑗,𝑛
𝑧𝑛𝑗 𝑇

(𝑗−𝑛)

𝑚−𝑗,𝑛
(𝑧). (111)

The final case of 𝛼 = −𝑚 − 𝑛 − 𝑗 for 𝑗 = 2, 3, … , 𝑛 follows similarly, except that we first apply
the symmetry (26) in order to use (105). Specifically, we have
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CLARKSON and DUNNING 33

𝑇
(−𝑚−𝑛−𝑗)
𝑚,𝑛 (𝑧) = (−1)⌊(𝑚+𝑛+1)∕2⌋ 𝑇(−𝑚−𝑛+𝑗−2)

𝑛−1,𝑚+1
(𝑧)

= (−1)⌊(𝑚+𝑛+1)∕2⌋𝑧(𝑚+1)(𝑛−𝑗+1) 𝑚∏
𝑖=0

(𝑗 + 𝑖 − 1)!

(𝑛 + 𝑖)!

× Wr
(
𝐿
(𝑛+1−𝑗)

𝑗−1
(−𝑧), 𝐿

(𝑛+1−𝑗)

𝑗
(−𝑧), … , 𝐿

(𝑛+1−𝑗)

𝑗+𝑚−1
(−𝑧)

)
= (−1)⌊(𝑚+𝑛+1)∕2⌋𝑧(𝑚+1)(𝑛−𝑗+1) 𝑚∏

𝑖=0

(𝑗 + 𝑖 − 1)!

(𝑛 + 𝑖)!
𝑇
(𝑛−𝑚−𝑗)

𝑗−2,𝑚+1
(𝑧).

Applying the symmetry (26) yields (103). Finally,

𝑇
(𝑗−𝑛)

𝑚−𝑗,𝑛
(0) ≠ 0, 𝑗 = 1, 2, … ,𝑚,

and

𝑇
(−𝑚−𝑛−𝑗)

𝑚,𝑗−1
(0) ≠ 0, 𝑗 = 2,… , 𝑛

follow from Lemma 2 in Ref. 8. □

Remark 9. The Young diagrams of the polynomials on the right-hand side of (103) are found from
the Young diagram of 𝝀 = ((𝑚 + 1)𝑛) for 𝑗 = 1, 2, … ,𝑚 + 1 by removing the rightmost 𝑗 columns.
When 𝑗 = 2, 3, … , 𝑛, the Young diagrams are those such that the bottom 𝑛 − 𝑗 + 1 rows have been
removed from 𝝀.

Definition 5. AWronskian Hermite polynomial𝐻𝝀(𝑧), labeled by partition 𝝀, is a Wronskian of
probabilists’ Hermite polynomials He𝑛(𝑧) given by

𝐻𝝀(𝑧) =
Wr

(
Heℎ1(𝑧), Heℎ2(𝑧), … ,Heℎ𝑟 (𝑧)

)
Δ(𝐡𝝀)

. (112)

The scaling by the Vandermonde determinant Δ(𝐡𝝀) ensures the polynomials are monic.

Remark 10. The well-known identities relating Hermite polynomials and Laguerre polynomials

He2𝑛(𝑧) = (−1)𝑛2𝑛𝑛! 𝐿
(−1∕2)
𝑛 (

1

2
𝑧2), He2𝑛+1(𝑧) = (−1)𝑛2𝑛𝑛! 𝑧𝐿

(1∕2)
𝑛 (

1

2
𝑧2),

cf. Ref.53, Section 18.7], mean that generalized Laguerre polynomials evaluated at negative half-
integers are related to Wronskian Hermite polynomials. We specialize Corollary 4 in Ref. [7 to
the generalized Laguerre polynomials Ω(𝛼)

𝝂 (𝑧). Suppose partition 𝚲 = 𝚲(𝑘, 𝝂) has 2-core 𝑘 and
2-quotient (𝝂, ∅). Set 𝛼𝑘 = −

1

2
− 𝓁(𝝂) − 𝑘. Then

𝐻𝚲(𝑘,𝝂)(𝑧) = 2|𝝂|𝑧𝑘(𝑘−1)∕2
∏𝓁(𝝂)

𝑗=1
(−1)ℎ𝑗 ℎ𝑗!

Δ(𝐡𝝂)
Ω
(𝛼𝑘)
𝝂

(
1

2
𝑧2
)
, (113)

where 𝐡𝝂 = (ℎ1, … , ℎ𝑟) is the degree vector of partition 𝝂.
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34 CLARKSON and DUNNING

Lemma 13. Set 𝛼𝑘 = −2𝑛 − 𝑘 −
1

2
for 𝑘 = 0, 1, … . Then

𝑇
(−2𝑛−𝑘−1∕2)
𝑚,𝑛 (

1

2
𝑧2) = 2−𝑛(𝑚+1)𝑐𝑚,𝑛 𝑧

−𝑘(𝑘+1)∕2 𝐻𝚲𝑘,𝑚,𝑛 (𝑧), (114)

where the partition𝚲𝑘,𝑚,𝑛 is

𝚲𝑘,𝑚,𝑛 =

⎧⎪⎪⎨⎪⎪⎩

(
{2𝑚 − 𝑗 − 𝑘 + 1}𝑛−1

𝑗=0
, {𝑛 + 𝑘 − 𝑗}𝑛+𝑘−1

𝑗=0

)
, 𝑘 < 𝑚 − 𝑛 + 2,(

{2𝑚 − 𝑗 − 𝑘 + 1}𝑚−𝑘
𝑗=0

, {𝑚 + 1}
2(𝑛−𝑚+𝑘−1)
𝑗=1

, {𝑚 + 1 − 𝑗}𝑚
𝑗=0

)
, 𝑚 − 𝑛 + 2 ≤ 𝑘 < 𝑚 + 1,(

{𝑘 − 𝑗}𝑘−𝑚−1
𝑗=0

, {𝑚 + 1}2𝑛−2
𝑗=0

, {𝑚 + 1 − 𝑗}𝑚
𝑗=0

)
, 𝑘 ≥ 𝑚 + 1.

(115)
We can equivalently write

𝑇
(−2𝑛−𝑘−1∕2)
𝑚,𝑛

(
1

2
𝑧2
)
= 𝑏𝑘,𝑚,𝑛 𝑧

−𝑘(𝑘+1)∕2 Wr
(
{He1+2𝑗}

𝑛+𝑘−1
𝑗=0

, {He2(𝑚+1+𝑗)}
𝑛−1
𝑗=0

)
, (116)

where

𝑏𝑘,𝑚,𝑛 =
2−𝑛(𝑚+1)𝑐𝑚,𝑛

Δ
(
{1 + 2𝑗}𝑛+𝑘−1

𝑗=0
, {2(𝑚 + 1 + 𝑗)}𝑛−1

𝑗=0

) . (117)

We also find

𝑇
(−2𝑛−𝑘−1∕2)
𝑚,𝑛

(
1

2
𝑧2
)
= (−1)𝑛(𝑚+1)2−𝑛(𝑚+1)𝑐𝑚,𝑛 𝑧

−𝑘(𝑘+1)∕2 𝐻𝚲∗
𝑘,𝑚,𝑛

(𝑧), (118)

where 𝚲∗
𝑘,𝑚,𝑛

denotes the conjugate partition to 𝚲𝑘,𝑚,𝑛 and 𝑐𝑚,𝑛 is given by (97).

Proof. Set 𝜇 = 𝜇𝑘 = −2𝑛 − 𝑘 −
1

2
in (17) then

𝑇
(𝜈)
𝑚,𝑛

(
1

2
𝑧2
)
= (−1)𝑛(𝑛−1)∕2 Ω

(−𝑛−𝑘−1∕2)

𝝀

(
1

2
𝑧2
)

=
(−1)𝑛(𝑛−1)∕22𝑛(𝑚+1)Δ(𝐡𝝀)∏𝑛

𝑚=1
(−1)𝑚+1(𝑚 + 1)!

𝑧−𝑘(𝑘+1)∕2𝐻𝚲𝑘,𝑚,𝑛 (𝑧), (119)

using (113) with 𝝂 = 𝝀 = ((𝑚 + 1)𝑛) and𝛼𝑘 = 𝑛 + 𝜇𝑘.We denote by𝚲𝑘,𝑚,𝑛 the partition that has 2-
core 𝑘 and 2-quotient (𝝀, ∅). Simplifying the constant term,we obtain (114).Moreover, (118) follows
from (114) by replacing 𝑧 with i𝑧 and using the well-known relation

𝐻𝝆(i𝑧) = i|𝝆|𝐻𝝆∗(𝑧).

We determine the degree vector of partition 𝚲𝑘,𝑚,𝑛 from the degree vector

𝒉𝝀 = (𝑚 + 1,𝑚 + 3,… ,𝑚 + 𝑛)

using (7). Put beads in positions 2(𝑚 + 1) to 2(𝑚 + 𝑛) on the left runner and in positions 1 to
2(𝑛 + 𝑘 − 1) + 1 on the right runner. The components of the degree vector of 𝚲𝑘,𝑚,𝑛 correspond
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CLARKSON and DUNNING 35

(A) (B) (C)

F IGURE 2 The abaci of 𝝀𝑘,𝑚,𝑛.

to the positions of the beads:

{2(𝑚 + 1 + 𝑗)}𝑛−1
𝑗=0

∪ {2𝑗 − 1}𝑛+𝑘
𝑗=1

. (120)

Writing theWronskian Hermite polynomial explicitly in terms of (120) gives (116), where the Van-
dermonde determinant in the denominator of the constant (117) arises because the components
of the degree vector as given in (120) are not ordered.
The degree vector 𝒉𝚲𝑘,𝑚,𝑛 is obtained by ordering (120) from largest value to smallest value.

Depending on 𝑘,𝑚, 𝑛, there are three possibilities corresponding to the three abaci in Figure 2.
We deduce from the abaci that the degree vector is

𝒉𝚲𝑘,𝑚,𝑛
=

⎧⎪⎪⎨⎪⎪⎩

(
{2(𝑚+𝑛−𝑗)}𝑛−1

𝑗=0
, {2(𝑛+𝑘−𝑗)−1}𝑛+𝑘−1

𝑗=0

)
, 𝑘 < 𝑚−𝑛+2,(

{2(𝑚+𝑛−𝑗)}𝑚−𝑘
𝑗=0

, {2(𝑛+𝑘)−1−𝑗}
2(𝑛+𝑘−𝑚)−3
𝑗=0

, {2(𝑚−𝑗)+1}𝑚
𝑗=0

)
, 𝑚−𝑛+2 ≤ 𝑘 < 𝑚 + 1,(

{2(𝑛+𝑘−𝑗)−1}𝑘−1−𝑚
𝑗=0

, {2(𝑚+𝑛)−𝑗}
2(𝑛−2)
𝑗=0

, {2(𝑚−𝑗)+1}𝑚
𝑗=0

)
, 𝑘 ≥ 𝑚+1.

The description of the partition 𝚲𝑘,𝑚,𝑛 in (115) follows from the degree vector using (4) with 𝑟 =
2𝑛 + 𝑘. □

Remark 11. In (115), we have explicitly described the partition𝚲𝑘,𝑚,𝑛 with 2-core 𝑘 and 2-quotient
((𝑚 + 1)𝑛, ∅). This result may be of independent interest to those who work in combinatorics.

Remark 12. Wronskian Hermite polynomials of the type 𝐻𝚲𝐾,𝑚,𝑛 (𝑧) appear in Ref. 23 in their
classification of solutions to PV at half-integer values of the associated Laguerre parameter using
Maya diagrams. Such diagrams also represent partitions and there is straightforward connection
between their results and the ones in this paper. The 𝐻𝚲𝐾,𝑚,𝑛 (𝑧) are related to the 𝑘 = 2 cases
studied in Section 6 of Ref. 23; the 𝑘 = 3 case therein relates to solutions of generalized Umemura
polynomials at half-integer values of the parameter.
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36 CLARKSON and DUNNING

TABLE 1 Some discriminants of 𝑇(𝜇)𝑚,𝑛(𝑧).

Dis1,1(𝜇) = (𝜇 + 3)

Dis1,2(𝜇) = (𝜇 + 3)(𝜇 + 4)4(𝜇 + 5)∕2433

Dis1,3(𝜇) = (𝜇 + 4)2(𝜇 + 5)8(𝜇 + 6)4(𝜇 + 7)∕22438

Dis2,1(𝜇) = (𝜇 + 3)(𝜇 + 4)2∕223

Dis2,2(𝜇) = −(𝜇 + 3)(𝜇 + 4)4(𝜇 + 5)8(𝜇 + 6)2∕22438

Dis2,3(𝜇) = −(𝜇 + 4)2(𝜇 + 5)8(𝜇 + 6)16(𝜇 + 7)8(𝜇 + 8)2∕260321511

8 DISCRIMINANTS, ROOT PATTERNS, AND PARTITIONS

In this section, we give an expression for the discriminant of the generalized Laguerre polynomi-
als and obtain several results and conjectures concerning the pattern of roots of the generalized
Laguerre polynomials in the complex plane. We finish by noting that several of the results can be
reframed using partition data.

8.1 Discriminant of 𝑻(𝝁)
𝒎,𝒏(𝒛)

Recall that a monic polynomial 𝑓(𝑥)

𝑓(𝑥) = 𝑥𝑑 + 𝑎𝑑−1𝑥
𝑑−1 +⋯+ 𝑎1𝑥 + 𝑎0, (121)

with roots 𝛼1, 𝛼2, … , 𝛼𝑑 ∈ ℂ has discriminant

Dis(𝑓) =
∏

1≤𝑗<𝑘≤𝑑

(𝛼𝑗 − 𝛼𝑘)
2. (122)

The discriminants Dis𝑚,𝑛(𝜇) of several 𝑇
(𝜇)
𝑚,𝑛(𝑧) are given in Table 1.

Conjecture 1. The discriminant of 𝑇(𝜇)𝑚,𝑛(𝑧) when 𝑛 > 𝑚 is

Dis𝑚,𝑛(𝜇) = (−1)(𝑚+1)⌊𝑛∕2⌋𝑐2((𝑚+1)𝑛−1)𝑚,𝑛

𝑚∏
𝑗=1

𝑗𝑗
3

𝑛∏
𝑗=𝑚+1

𝑗𝑗(𝑚+1)
2
𝑚+𝑛∏
𝑗=𝑛+1

𝑗𝑗(𝑚+𝑛−𝑗+1)
2

×

𝑚∏
𝑗=1

𝑗2𝑗(𝑛−𝑗)(𝑗−1−𝑚)
𝑚∏
𝑗=1

(𝜇 + 𝑛 + 𝑗)𝑓(𝑛−1,𝑗)

×

𝑛∏
𝑗=𝑚+1

(𝜇 + 𝑛 + 𝑗)𝑓(𝑚+𝑛−𝑗,𝑚+1)
𝑚+𝑛∏
𝑗=𝑛+1

(𝜇 + 𝑛 + 𝑗)𝑓(𝑚,𝑚+𝑛+1−𝑗), (123)
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CLARKSON and DUNNING 37

and when 𝑛 ≤ 𝑚

Dis𝑚,𝑛(𝜇) = (−1)(𝑚+1)⌊𝑛∕2⌋𝑐2((𝑚+1)𝑛−1)𝑚,𝑛

𝑛∏
𝑗=1

𝑗𝑗
3

𝑚∏
𝑗=𝑛+1

𝑗𝑗𝑛
2

𝑚+𝑛∏
𝑗=𝑚+1

𝑗𝑗(𝑚+𝑛−𝑗+1)
2

×

𝑛∏
𝑗=1

𝑗2𝑗(𝑛−𝑗)(𝑗−1−𝑚)
𝑛∏
𝑗=1

(𝜇 + 𝑛 + 𝑗)𝑓(𝑛−1,𝑗)

×

𝑚∏
𝑗=𝑛+1

(𝜇 + 𝑛 + 𝑗)𝑓(𝑗−1,𝑛)
𝑚+𝑛∏
𝑗=𝑚+1

(𝜇 + 𝑛 + 𝑗)𝑓(𝑚,𝑚+𝑛+1−𝑗), (124)

where

𝑓(𝑗, 𝑝) = 𝑗𝑝2 − 𝑝(𝑝 − 1)(𝑝 − 2)∕3. (125)

Roberts54 derived formulas for the discriminants of the Yablonskii–Vorob’ev polynomials, the
generalized Hermite polynomials and the generalized Okamoto polynomials starting from suit-
able sets of differential-difference equations. Amdeberhan2 applied similar ideas to the Umemura
polynomials associated with rational solutions of PIII. It would be interesting to see if Roberts’
approach can be adapted to prove the generalized Laguerre discriminants, possibly starting from
the differential-difference equations found in Section 3.

8.2 Roots in the complex plane

In this section, we classify the allowed configuration of roots of 𝑇(𝜇)𝑚,𝑛(𝑧) in the 𝑧2-plane as a func-
tion of 𝜇. Given the symmetry (26), the root plot of 𝑇(𝜇)𝑚,𝑛 when 𝜇 ∈ (−𝑚 − 𝑛 − 1,… ,∞) follows
from that of 𝑇(−𝜇−2𝑛−2𝑚−2)

𝑛−1,𝑚+1
(
1

2
𝑧2) rotated by 1

2
𝜋.

Example 3. Figure 3 shows the roots of 𝑇(𝜇)
6,4
(
1

2
𝑧2) in the complex plane for various 𝜇. For 𝜇 =

−35∕2 and 𝜇 = −6, the nonzero roots form a pair of approximate rectangles of size 5 × 6. When
𝜇 = −14 and 𝜇 = −8, there are 24 roots at the origin and two rectangles of roots of size 3 × 6.
At 𝜇 = −17∕2, the roots form two rectangles of size 2 × 6 (or possibly 3 × 6), two approximate
trapezoids of short base 4 and long base 5 (or 6) centered on the real axis and two triangles of size 2
centered on the imaginary axis. At 𝜇 = −25∕2, there are four 4-triangles and two 5 × 2 rectangles.

Further investigations suggest that the roots of 𝑇(𝜇)𝑚,𝑛(
1

2
𝑧2) that are away from the origin form

blocks in the form of approximate trapezoids and/or triangles near the origin and rectangles fur-
ther away. We label such blocks E–G as shown in Figure 4. We say a rectangle has size 𝑑1 × 𝑑2 if
it has width 𝑑1 and height 𝑑2. A trapezoid of size 𝑑1 × 𝑑2 has long base 𝑑1 and short base 𝑑2. If
𝑑2 = 1, then we call the resulting (degenerate) trapezoid a triangle. The blocks of roots centered
on the real or imaginary axis in approximate rectangles are labeled blocks E and D, respectively,
and those forming approximate trapezoids are labeled G and F, respectively.
Figure 4B,C shows the zeros of 𝑇(−57∕5)

5,8
(
1

2
𝑧2) and 𝑇(−323∕20)

5,8
(
1

2
𝑧2) with block E zeros in green,

block G in red, block F in orange, and block D in blue.
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38 CLARKSON and DUNNING

F IGURE 3 The roots of 𝑇(𝜇)6,4 (
1

2
𝑧2) for various 𝜇.

F IGURE 4 Blocks formed by the zeros of 𝑇(𝜇)𝑚,𝑛(
1

2
𝑧2).
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CLARKSON and DUNNING 39

F IGURE 5 The roots of 𝑇(𝜇)5,3 (
1

2
𝑧2) for 𝜇 ∈ [−7,−

16

5
]..

We describe how the roots transition between blocks as a function of 𝜇 and determine the size
of each root block for a given 𝜇 when𝑚 = 5 and 𝑛 = 3, before stating the result for all𝑚, 𝑛.

Example 4. Figures 5 and 6 show the roots of 𝑇(𝜇)
5,3
(
1

2
𝑧2) for various 𝜇. We describe the root blocks

and transitions between the blocks as 𝜇 varies from −16∕5 to −61∕5. For 𝜇 > −4, the roots form
two E-type rectangles of size 6 × 3 as shown in the first two images in Figure 5. As 𝜇 → −4, all
roots move toward the imaginary axis. At 𝜇 = −4, the innermost column of three zeros from each
rectangle have coalesced at the origin and the remaining roots form two rectangles of size 5 × 3.
We discuss the detailed behavior of the coalesecing zeros in the next section.
As𝜇 decreases further, the zeros at the origin emerge as a pair of zeros on the imaginary axis and

two complex zeros forming a pair of columns of height two. The coalescing roots move away from
the origin, while the other roots move toward the origin. As 𝜇 continues to decrease, the zeros
that coalesced turn back toward the origin. At 𝜇 = −5, these roots and the six roots in the column
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40 CLARKSON and DUNNING

F IGURE 6 The roots of 𝑇(𝜇)5,3 (
1

2
𝑧2) for 𝜇 ∈ [−

61

5
, −

39

5
]..

of the E-rectangle closest to the imaginary axis all coalesce at 𝑧 = 0. There are now 12 zeros at the
origin and the remaining zeros form two rectangles of size 4 × 3. As 𝜇 decreases, the roots emerge
from the origin as four 2-triangles with the remaining roots forming two 4 × 3 E-rectangles. The
roots in the triangles initially move away from the origin while the rectangles move toward the
origin. For some 𝜇 ∈ (−6,−5), all the roots in the triangles have turned back toward the origin.
At 𝜇 = −6, the roots in the triangles and the next innermost column of zeros from each rectangle
coalesce at the origin. After the next coalescence, we see the appearance of a pair of F-trapezoids
as well as G-triangles and E-rectangles.
Until all roots coalesce at 𝜇 = −𝑚 − 𝑛 − 1 = −9, the coalescing roots always consist of the roots

that previously coalesced plus the innermost column of roots from each E-rectangle. These zeros
reconfigure and join new blocks as they emerge from the origin. The coalescing roots initially
move away from the origin as 𝜇 decreases, and at various values of 𝜇 return to the origin to reco-
alesce. For 𝜇 < −𝑚 − 𝑛 − 1, some of the roots start to form D-type rectangles. Such roots do not
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CLARKSON and DUNNING 41

TABLE 2 Size of the root blocks of 𝑇(𝜇)5,3 (
1

2
𝑧2).

𝝁 E rectangle G trapezoid/triangle F triangle/trapezoid D rectangle
−4 < 𝜇 < ∞ 6 × 3

−5 < 𝜇 < −4 5 × 3 2 × 2 1
−6 < 𝜇 < −5 4 × 3 2 × 1 2
−7 < 𝜇 < −6 3 × 3 2 3 × 1

−8 < 𝜇 < −7 2 × 3 2 4 × 2

−9 < 𝜇 < −8 1 × 3 2 5 × 3

−10 < 𝜇 < −9 2 5 × 4 6 × 1

−11 < 𝜇 < −10 1 5 × 5 6 × 2

−∞ < 𝜇 < −11 6 × 3

TABLE 3 Conjectured root blocks of 𝑇(𝜇)𝑚,𝑛(
1

2
𝑧2) at 𝜇 when there are zeros at the origin.

Condition Number of zeros E D
𝒋 𝝁 at origin rectangle rectangle
1, … ,𝑚 + 1 −𝑛 − 𝑗 2𝑛𝑗 𝑚 − 𝑗 + 1 × 𝑛

2,… , 𝑛 −𝑚 − 𝑛 − 𝑗 2(𝑚 + 1)(𝑛 + 1 − 𝑗) 𝑚 + 1 × 𝑗 − 1

TABLE 4 Conjectured root blocks of 𝑇(𝜇)𝑚,𝑛(
1

2
𝑧2) when 𝑛 > 𝑚 and 𝑗 = −𝑛 − ⌈𝜇⌉ ∈ ℤ.

Condition
𝒋 = −𝒏 − ⌈𝝁⌉ E rectangle

G trapezoid/
triangle

F triangle/
trapezoid D rectangle

𝑗 ≤ 0 𝑚 + 1 × 𝑛

1 < 𝑗 < 𝑚 + 1 𝑚 + 1 − 𝑗 × 𝑛 𝑛 − 1 × 𝑛 − 𝑗 𝑗

𝑚 + 1 < 𝑗 < 𝑛 𝑚 + 𝑛 − 𝑗 × 𝑛 − 𝑗 𝑚 𝑚 + 1 × 𝑗 − 𝑚

𝑛 < 𝑗 < 𝑚 + 𝑛 𝑚 + 𝑛 − 𝑗 𝑚 × 𝑗 − 𝑛 + 1 𝑚 + 1 × 𝑗 − 𝑚

𝑗 > 𝑚 + 𝑛 𝑚 + 1 × 𝑛

return to the origin as 𝜇 decreases, while all other roots return to the origin at each coalescence
until they become part of a D-rectangle. The sizes of each root block of 𝑇(𝜇)

5,3
(
1

2
𝑧2) for 𝜇 between

each coalescence point is given in Table 2.

Conjecture 2. The block structures when 𝜇 = −𝑛 − 𝑗 for 𝑗 = 1,… ,𝑚 + 𝑛 and there are roots at the
origin are given in Table 3. Our investigations suggest the root blocks of 𝑇(𝜇)𝑚,𝑛(

1

2
𝑧2) are as per Table 4

for 𝑛 > 𝑚 and Table 5 for 𝑛 ≤ 𝑚 for 𝜇 such that ⌈𝜇⌉ = −𝑛 − 𝑗 where 𝑗 ∈ ℤ, excluding the points
𝜇 = −𝑛 − 1,−𝑛 − 2,… ,−2𝑛 − 𝑚.

The family of Wronskian Hermite polynomials with partitions 𝚲 = (𝑚𝑛) are known as the
generalized Hermite polynomials 𝐻𝑚,𝑛(𝑧). The roots form 𝑚 × 𝑛 rectangles centered on the
origin.10,13
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42 CLARKSON and DUNNING

TABLE 5 Conjectured root blocks of 𝑇(𝜇)𝑚,𝑛(
1

2
𝑧2) when 𝑛 ≤ 𝑚 and 𝑗 = −𝑛 − ⌈𝜇⌉ ∈ ℤ.

Condition
𝒋 = −𝒏 − ⌈𝝁⌉ E rectangle

G trapezoid/
triangle

F trapezoid/
triangle D rectangle

𝑗 ≤ 0 𝑚 + 1 × 𝑛

1 < 𝑗 < 𝑛 𝑚 + 1 − 𝑗 × 𝑛 𝑛 − 1 × 𝑛 − 𝑗 𝑗

𝑛 + 1 < 𝑗 <

𝑚 + 1

𝑚 + 1 − 𝑗 × 𝑛 𝑛 − 1 𝑗 × 𝑗 − 𝑛 + 1

𝑚 + 2 < 𝑗 <

𝑚 + 𝑛

𝑚 + 𝑛 − 𝑗 𝑚 × 𝑗 − 𝑛 + 1 𝑚 + 1 × 𝑗 − 𝑚

𝑗 > 𝑚 + 𝑛 𝑚 + 1 × 𝑛

F IGURE 7 The coalescence of the zeros of 𝑇(𝜇)5,3 (
1

2
𝑧2) that are closest to the origin shown by overlaying the

zero plots as 𝜇 tends to 𝜇 = −4 (left) and 𝜇 = −5 (right). The arrows show the direction in which 𝜇 decreases. The
solid lines correspond to zeros that arise from the first column of the E-rectangles, and the dashed lines
correspond to zeros that arise from the second column of the E-rectangles.

The appearance of rectangular blocks of width 𝑚 + 1 and height 𝑛 for large positive and neg-
ative 𝑘 in the root pictures for 𝑇(−2𝑛−𝑘−1∕2)𝑚,𝑛 (

1

2
𝑧2) is consistent with Theorem 9.6 and Remark 9.7

of Ref. 15. The results therein imply for large 𝑘 the roots will, up to scaling, be those of a certain
Wronskian Hermite polynomial shifted to the right along the real axis, plus the block reflected
in the imaginary axis. The numerical investigations in Ref. 7 suggest that the relevant Wronskian
Hermite polynomial is 𝐻𝑚+1,𝑛(𝑧).

8.3 Root coalescences

We now zoom into the origin to investigate precisely how the zeros that coalesce behave as they
approach and leave the origin. We start with the example of 𝑇(𝜇)

5,3
(
1

2
𝑧2), for which the coalescences

occur at 𝜇 = −11,−10, … ,−4.

Example 5. Recall that at 𝜇 → −4+, the six roots of 𝑇(𝜇)
5,3
(
1

2
𝑧2) that form the two innermost

columns of the E-rectangles coalesce at 𝜇 = −4. The left-hand plot in Figure 7 shows the
coalescence of these six zeros by overlaying the root plots for 𝜇 ∈ [−4,−16∕5] near the origin.
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CLARKSON and DUNNING 43

F IGURE 8 The movement of the roots of 𝑇(𝜇)5,3 (
1

2
𝑧2) closest to the origin overlaid for 𝜇 in each given interval.

The bold lines in the right-hand plot of Figure 7 shows the reappearance of those zeros as 𝜇
decreases toward 𝜇 = −5. The previously-real zeros move onto the imaginary axis and the com-
plex zeros return to the complex plane and move away from the origin. The arrows show the
direction of decreasing 𝜇. At 𝜇 ≈ 4.2105, the complex zeros that coalesced turn back toward the
origin. The lower solid line in the first quadrant shows the movement of the complex root for
𝜇 ∈ (4.2105, −4]. The upper line shows the root for 𝜇 ∈ [−5, 4.2105). At 𝜇 ≈ 4.32656, the imag-
inary zeros also turn back to the origin. The dashed lines show the coalescence of the six zeros
in the innermost columns of the E-rectangles for 𝜇 from −4 to −5. At 𝜇 = −5, all 12 zeros are at
the origin. The top right plot in Figure 8 shows the 12 zeros as they emerge from the origin as 𝜇
decreases from 4.
There are two roots on the imaginary axis, two on the real axis and eight in the complex plane,

all of which initially move away from the origin. All roots eventually turn around and return to
the origin, along with the next set of six zeros from the innermost column of the E-rectangles. We
see the petal-like shapes traced out by the complex zeros as 𝜇 decreases from−5 to−6. The values
of 𝜇 at which each set of zeros turn around are different. The remaining plots in Figure 8 show
the zeros emerging from the origin and those that coalescence for each of the stated 𝜇. Some roots
form F-rectangles when 𝜇 < −9.

Our numerical investigations reveal that the angles in the complex plane at which the coa-
lescing roots approach the origin and emerge from it can be determined for all 𝑚, 𝑛, 𝑗 where
𝜇 = −𝑛 − 𝑗 and 𝑗 = 1, 2, … ,𝑚 + 𝑛. Before giving the result for 𝑇(𝜇)𝑚,𝑛(𝑧) as a function of 𝑧, we
consider an example.
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44 CLARKSON and DUNNING

F IGURE 9 The coalescence of the zeros of 𝑇(𝜇)2,3 that are closest to the origin shown by overlaying the zero
plots as 𝜇 approaches 𝜇 = −4 (left) and 𝜇 = −5 (right) from the right. The black arrows (left) indicate the
direction of the root movement as 𝜇 → −4 from the right and the red arrows (right) show the roots leaving the
origin as 𝜇 decreases from −4. The black arrows show the third roots of unity and the red arrows (right) show the
third roots of −1. The blue lines in the right figure without arrows correspond to the movement of the roots that
approach the origin as 𝜇 → −5− at angles corresponding to the fourth roots of 1 and the square roots of −1.

Example 6. The roots of 𝑇(𝜇)
2,3

that coalesce at 𝜇 = −3 − 𝑗 − 𝜀 for 𝑗 = 1… , 5 behave as the 𝑛th
roots of one or minus one as follows:

𝑗 𝜇 𝜇 → 𝜇+ 𝜇 → 𝜇−

1 −4 (𝑧3 − 1) (𝑧3 + 1)

2 −5 (𝑧4 − 1)(𝑧2 + 1) (𝑧4 + 1)(𝑧2 − 1)

3 −6 (𝑧5 − 1)(𝑧3 + 1)(𝑧 − 1) (𝑧5 + 1)(𝑧3 − 1)(𝑧 + 1)

4 −7 (𝑧4 + 1)(𝑧2 − 1) (𝑧4 − 1)(𝑧2 + 1)

5 −8 (𝑧3 − 1) (𝑧3 + 1)

Figure 9 shows the roots of 𝑇(𝜇)
2,3

that converge to the origin (left) as 𝜇 → −4 and emerge (right)
from the origin. The third roots of 1 and −1 are shown in black and red, respectively.

Conjecture 3. Let 𝑛 > 𝑚 and 𝜀 > 0. For 𝜇 = −𝑛 − 𝑗 + 𝜀, where 𝑗 = 1, 2, … ,𝑚 + 1 the 𝑛𝑗 roots of
𝑇
(𝜇)
𝑚,𝑛(𝑧) that coalesce at the origin at 𝜀 = 0 approach the origin on the rays in the complex plane

defined by certain roots of +1 and −1. We encode this behavior in the polynomial

𝑗∏
𝑘=1

(
𝑧𝑛+𝑗+1−2𝑘 − (−1)𝑛+𝑘

)
, 𝑗 = 1, 2, … ,𝑚 + 1. (126)

Furthermore, when 𝜇 = −𝑛 − 𝑗 + 𝜀 for 𝑗 = 𝑚 + 2,… ,𝑚 + 𝑛 the (𝑚 + 1)(𝑚 + 𝑛 + 1 − 𝑗) roots that
approach the origin behave as roots of ±1 according to

𝑗∏
𝑘=𝑗−𝑚

(
𝑧𝑛+𝑗+1−2𝑘 − (−1)𝑛+𝑘

)
, 𝑗 = 𝑚 + 2,𝑚 + 3,… , 𝑛, (127a)

𝑛∏
𝑘=𝑗−𝑚

(
𝑧𝑛+𝑗+1−2𝑘 − (−1)𝑛+𝑘

)
, 𝑗 = 𝑛 + 1, 𝑛 + 2,… ,𝑚 + 𝑛. (127b)
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CLARKSON and DUNNING 45

The roots that coalesce leave the origin on rays that are rotated through 1

2
𝜋 compared to the coa-

lescence rays. Thus, the root behaviors as 𝜇 = −𝑛 − 𝑗 − 𝜀 for 𝑗 = 1, 2, … ,𝑚 + 𝑛 are encoded in the
polynomials

𝑗∏
𝑘=1

(
𝑧𝑛+𝑗+1−2𝑘 + (−1)𝑛+𝑘

)
, 𝑗 = 1, 2, … ,𝑚 + 1, (128a)

𝑗∏
𝑘=𝑗−𝑚

(
𝑧𝑛+𝑗+1−2𝑘 + (−1)𝑛+𝑘

)
, 𝑗 = 𝑚 + 2,𝑚 + 3,… , 𝑛, (128b)

𝑛∏
𝑘=𝑗−𝑚

(
𝑧𝑛+𝑗+1−2𝑘 + (−1)𝑛+𝑘

)
, 𝑗 = 𝑛 + 1, 𝑛 + 2… ,𝑚 + 𝑛. (128c)

Similarly, when 𝑛 ≤ 𝑚 the roots coalesce at and emerge from the origin as 𝜇 = −𝑛 − 𝑗 ± 𝜀 as roots
of ±1 according to

𝑗∏
𝑘=1

(
𝑧𝑛+𝑗+1−2𝑘 ∓ (−1)𝑛+𝑘

)
, 𝑗 = 1, 2… , 𝑛, (129a)

𝑛∏
𝑘=1

(
𝑧𝑛+𝑗+1−2𝑘 ∓ (−1)𝑛+𝑘

)
, 𝑗 = 𝑛 + 1, 𝑛 + 2,… ,𝑚 + 1, (129b)

𝑛∏
𝑘=𝑗−𝑚

(
𝑧𝑛+𝑗+1−2𝑘 ∓ (−1)𝑛+𝑘

)
, 𝑗 = 𝑚 + 2,𝑚 + 3,… ,𝑚 + 𝑛. (129c)

8.4 The role of the partition

In this section, we remark that several features of the generalized Laguerre polynomials can be
written in terms of partition data, particularly the hooks of the partition 𝝀 = (𝑚 + 1)𝑛.
We first propose an expression for the coefficients of the Wronskian Laguerre polynomials

Ω
(𝛼)

𝝀
(𝑧) for all partitions 𝝀. The result generalizes the expression given in Theorem 3 and Propo-

sition 2 in Ref. 7 for the coefficients of the Wronskian Hermite polynomials 𝐻𝚲(𝑧) for the subset
of partitions 𝚲 with 2-quotient (𝝀, ∅).

Conjecture 4. Consider the Wronskian Laguerre polynomialΩ(𝛼)

𝝀
(𝑧) defined in (16). Set

Ω
(𝛼)

𝝀
(𝑧) = 𝑐𝝀

|𝝀|∑
𝑗=0

𝑟
(𝛼)
𝑗

𝑧|𝝀|−𝑗, (130)

with 𝑟(𝛼)
0

= 1. Then,

𝑐𝝀 =
Δ𝝀∏

ℎ∈𝒉𝝀
(−1)ℎℎ!

(131)
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46 CLARKSON and DUNNING

and

𝑟
(𝛼)
𝑗

=
(|𝝀|
𝑗

) ∑
𝝀<𝑗 𝝀

𝐹𝝀𝐹𝝀∕𝝀

𝐹𝝀

Ψ
(𝛼)

𝝀

Ψ
(𝛼+𝓁(𝝀)−𝓁(𝝀))

𝝀

, (132)

where the sum is over all partitions 𝝀 in the Young lattice obtained by removing 𝑗 boxes from the
Young diagram of 𝝀. Moreover,

Ψ
(𝛼)
𝝆 = (−1)|𝝆|+ht(𝐏) 𝓁(𝝆)∏

𝑗=1

⎛⎜⎜⎝
𝒉𝝆𝑗−1∏
𝑘=𝓁(𝝆)

(
𝒉𝝆𝑗 − 𝑘 + 𝛼 + 𝓁(𝝆)

)

×

𝑗−1∏
𝑘∈{0,1,…,𝓁(𝝆)−1}⧵𝒉𝝆

(𝑗 − 1 − 𝑘 − 𝛼 − 𝓁(𝝆))

⎞⎟⎟⎠, (133)

where ht(𝐏) is the number of vertical dominoes in the partition𝐏 that has empty 2-core and2-quotient
(𝝆, ∅). We remark that Ψ(𝛼)

𝝆 is a polynomial of degree |𝝆| in 𝛼 with leading coefficient (−1)|𝝆|. A con-
sequence is that all coefficients of the Wronskian Laguerre polynomial are written through (133) in
terms of the hooks of partitions.

Remark 13. We have also generalized Conjecture 4 to determinants of Laguerre polynomials of
universal character type34. Such polynomials are defined in terms of two partitions and are gener-
alizations of Wronskian Hermite polynomials 𝐻𝚲(𝑧) with 2-quotient (𝝀1, 𝝀2). Examples include
the generalized Umemura polynomials38 and the Wronskian Laguerre polynomials arising in
Refs. 8, 17, 18, 22. A proof of the more general result is under consideration.

We now record some information about the partitions 𝝀 = ((𝑚 + 1)𝑛) of the generalized
Laguerre polynomial 𝑇(𝜇)𝑚,𝑛(𝑧) and the corresponding partition 𝚲𝑚,𝑛 with empty 2-core and 2-
quotient (𝝀, ∅). The Young diagram of ((𝑚 + 1)𝑛) is a rectangle of width𝑚 + 1 and height 𝑛. Since
the degree vector of 𝝀 is

𝒉𝝀 = (𝑚 + 𝑛,𝑚 + 𝑛 − 1,… ,𝑚 + 1),

the Vandermonde determinant is

Δ(𝒉𝝀) = (−1)𝑛(𝑛−1)∕2
𝑛∏
𝑗=2

(𝑗 − 1)!

Since 𝝀∗ = (𝑛𝑚+1), the multiset of hooks𝑚,𝑛 of 𝝀 following from (6) is

𝑚,𝑛 = {{𝑚 + 𝑛 + 2 − 𝑗 − 𝑘}𝑚+1
𝑘=1

}𝑛
𝑗=1

. (134)

The multiset can also be written as

𝑚,𝑛 = {𝑘𝑘}
min(𝑚+1,𝑛)−1

𝑘=1
∪ {𝑘min(𝑚+1,𝑛)}

max(𝑚+1,𝑛)

𝑘=min(𝑚+1,𝑛)
∪ {𝑘𝑚+𝑛+1−𝑘}𝑚+𝑛

𝑘=max(𝑚+1,𝑛)+1
. (135)

We now describe the Young diagram of 𝚲𝑚,𝑛 and determine its 2-height. The shape of the
Young diagram depends on the relative values of𝑚 and 𝑛. When 𝑚 > 𝑛 − 2, the Young diagram
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CLARKSON and DUNNING 47

(A) (B)

F IGURE 10 Examples of Young diagrams of 𝚲𝑚,𝑛 for𝑚 > 𝑛 − 2 (left) and𝑚 ≤ 𝑛 − 2 (right). The domino
tiling is shown. The number of vertical dominoes is ht(𝚲4,3) = 6 and ht(𝚲1,3) = 5, respectively.

consists of the top 𝑛 rows of a staircase partition of size 2𝑚 + 1with a complete staircase of size 𝑛
below. When𝑚 ≤ 𝑛 − 2, the Young diagram consists of the top𝑚 + 1 rows of a 2𝑚 + 1 staircase,
then 2(𝑛 − 𝑚 − 1) rows of length𝑚 + 1 and finally a complete𝑚 + 1 staircase. The two cases are
illustrated in Figure 10.
All Young diagrams corresponding to partitions𝚲(0, 𝝂)with empty 2-core and 2-quotient (𝝂, ∅)

have a unique tiling with |𝝂| dominoes: tile the boxes of the Young diagram to the right and above
the main diagonal with horizontal dominoes and tile the boxes on and below the main diagonal
with vertical dominoes. The tiling is illustrated in Figure 10. The number of vertical dominoes
and, therefore, the 2-height of 𝚲(0, 𝝂) is

ht(𝚲(0, 𝝂)) =
𝑑∑
𝑗=1

(𝜆∗
𝑗
− 𝑗)∕2,

where 𝑑 is the number of boxes in themain diagonal or, equivalently, the size of theDurfee square.
The 2-heights of the Young diagrams of 𝚲𝑚,𝑛 are therefore

ht(𝚲𝑚,𝑛) =

{
𝑛(𝑛 + 1)∕2 𝑚 > 𝑛 − 2,

(2𝑛 − 𝑚)(𝑚 + 1)∕2 𝑚 ≤ 𝑛 − 2.
(136)

Lemma 14. Recall the Expansion (96) of the generalized Laguerre polynomial

𝑇
(𝜇)

𝝀
(𝑧) = 𝑐𝑚,𝑛

(
𝑧𝑛(𝑚+1) + 𝑑

(𝜇)
1
𝑧𝑛(𝑚+1)−1 +⋯+ (−1)𝑛(𝑚+1)𝑑

(𝜇)

𝑛(𝑚+1)
)
)
.

The overall constant is

𝑐𝑚,𝑛 = (−1)𝑛(𝑚+1)
Δ(ℎ𝝀)∏

ℎ∈𝒉𝝀
(−1)ℎ ℎ!

, (137)

where

Δ(𝒉𝝀) = (−1)𝑛(𝑛−1)∕2
𝑛∏
𝑗=1

(𝑗 − 1)! (138)
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48 CLARKSON and DUNNING

and

𝑑
(𝜇)
1

= −𝑛(𝑚 + 1)(𝜇 + 𝑚 + 𝑛 + 1) . (139)

The constant 𝑑(𝜇)
𝑛(𝑚+1)

can be written in terms of the hooks of the Young diagram of 𝝀:

𝑑
(𝜇)

𝑛(𝑚+1)
=

∏
ℎ∈𝑚,𝑛

𝜇 + 𝑛 + ℎ . (140)

Proof. Set 𝝀 = ((𝑚 + 1)𝑛). Then, 𝓁(𝝀) = 𝑛 and |𝝀| = 𝑛(𝑚 + 1). Using the relation (17) between
𝑇
(𝜇)
𝑚,𝑛(𝑧) and Ω

(𝛼)

𝝀
(𝑧) and comparing the Expansions (96) and (130), we have

𝑐𝑚,𝑛 = (−1)𝑛(𝑛−1)∕2𝑐𝝀,

𝑑
(𝜇)
1

= 𝑟
(𝜇+𝑛)
1

= 𝑛(𝑚 + 1)
Ψ
(𝜇+𝑛)

𝝀

Ψ
(𝜇+𝑛)

𝝀

,

and

𝑑
(𝜇)

𝑛(𝑚+1)
= (−1)𝑛(𝑚+1)𝑟

(𝜇+𝑛)

𝑛(𝑚+1)
= (−1)𝑛(𝑚+1)Ψ

(𝜇+𝑛)

𝝀
. (141)

The expression for 𝑐𝑚,𝑛 follows from (131) using the degree vector 𝒉𝝀.
We now determine Ψ(𝛼)

𝝀
from (133). We need (136) and

{0, 1, … 𝑛 − 1} ⧵ 𝒉𝝀 =

{
{0, 1, … 𝑛 − 1}, 𝑚 > 𝑛 − 2,

{0, 1, …𝑚}, 𝑚 ≤ 𝑛 − 2.

We deduce that when𝑚 > 𝑛 − 2 then

Ψ
(𝛼)

𝝀
= (−1)𝑛(𝑚+1)+𝑛(𝑛+1)∕2

𝑛∏
𝑗=1

(
𝑚+𝑛−𝑗∏
𝑘=𝑛

(𝑚 + 2𝑛 + 1 − 𝑗 − 𝑘 + 𝛼)

𝑗−1∏
𝑘=0

(𝑗 − 1 − 𝑘 − 𝛼 − 𝑛)

)

= (−1)𝑛(𝑚+1)
𝑛∏
𝑗=1

(
𝑚+1−𝑗∏
𝑘=1

(𝑚 + 𝑛 + 2 − 𝑗 − 𝑘 + 𝛼)

𝑚+1∏
𝑘=𝑚+2−𝑗

(𝑚 + 𝑛 + 2 − 𝑗 − 𝑘 + 𝛼)

)
,

(142)

where the second line follows after changing variables and taking a minus sign out of each entry
in the second set of products. If𝑚 < 𝑛 − 2 then

Ψ
(𝛼)

𝝀
= (−1)𝑛(𝑚+1)+(2𝑛−𝑚)(𝑚+1)∕2

𝑚∏
𝑗=1

𝑚+𝑛−𝑗∏
𝑘=𝑛

(𝑚 + 2𝑛 + 1 − 𝑗 − 𝑘 + 𝛼)

𝑛∏
𝑗=1

min(𝑗−1,𝑚)∏
𝑘=0

(𝑗 − 1 − 𝑘 − 𝛼 − 𝑛)

= (−1)𝑛(𝑚+1)
𝑚∏
𝑗=1

(
𝑚+1−𝑗∏
𝑘=1

(𝑚 + 𝑛 + 2 − 𝑗 − 𝑘 + 𝛼)

𝑚+1∏
𝑘=𝑚+2−𝑗

(𝑚 + 𝑛 + 2 − 𝑗 − 𝑘 + 𝛼)

)

×

𝑛∏
𝑗=𝑚+1

𝑚+1∏
𝑘=1

(𝑚 + 𝑛 + 2 − 𝑗 − 𝑘 + 𝛼) . (143)
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CLARKSON and DUNNING 49

Recalling that the hook in box (𝑗, 𝑘) of the Young diagram of 𝝀 is ℎ𝑗,𝑘 = 𝑚 + 𝑛 + 2 − 𝑗 − 𝑘, we
deduce for all𝑚, 𝑛 that

Ψ
(𝛼)

𝝀
= (−1)𝑛(𝑚+1)

𝑛∏
𝑗=1

𝑚+1∏
𝑘=1

(ℎ𝑗,𝑘 + 𝛼) . (144)

Therefore, from (141) we conclude that

𝑑
(𝜇)

𝑛(𝑚+1)
=

𝑛∏
𝑗=1

𝑚+1∏
𝑘=1

(ℎ𝑗,𝑘 + 𝜇 + 𝑛) . (145)

To determine the coefficient 𝑟(𝛼)
1
, we find all partitions 𝝀 obtained from 𝝀 by removing one box

from the Young diagram of 𝝀 such that the result is a valid Young diagram. Since the Young
diagram of 𝝀 is a rectangle, the only possibility is to remove box in position (𝑛,𝑚 + 1). Hence,

𝝀 = ((𝑚 + 1)𝑛−1,𝑚), 𝒉𝝀 = (𝑚 + 𝑛,𝑚 + 𝑛 − 1,… ,𝑚 + 2,𝑚), (146)

and 𝓁(𝝀) = 𝑛 and |𝝀| = 𝑛(𝑚 + 1) − 1. Clearly, 𝐹𝝀 = 𝐹𝝀 and 𝐹𝝀∕𝝀 = 1. We also need the 2-height
of the partition �̃� with empty 2-core and quotient (𝝀, ∅). The partition is

�̃� =

⎧⎪⎪⎨⎪⎪⎩

(
{2𝑚 − 𝑗 + 1}𝑚

𝑗=0
, {𝑚 + 1}

2(𝑛−𝑚−1)−1
𝑗=1

,𝑚, {𝑚 − 𝑗}𝑚−1
𝑗=0

)
, 𝑚 ≤ 𝑛 − 2,(

{2𝑚 − 𝑗 + 1}𝑚−1
𝑗=0

,𝑚,𝑚, {𝑚 − 𝑗}𝑚−1
𝑗=0

)
, 𝑚 = 𝑛 − 1,(

{2𝑚 − 𝑗 + 1}𝑛−2
𝑗=0

, {2𝑚 − 𝑛}, {𝑛 − 𝑗}𝑛−1
𝑗=0

)
, 𝑚 > 𝑛 − 2,

(147)

which is obtained from 𝚲𝑚,𝑛 by removing one vertical domino from the Young diagram if 𝑚 >

𝑛 − 1 and one horizontal domino if𝑚 ≤ 𝑛 − 1. Hence, the 2-height is

ht(�̃�) =

⎧⎪⎨⎪⎩
1

2
𝑛(𝑛 + 1) − 1, 𝑚 > 𝑛 − 2,

1

2
(2𝑛 − 𝑚)(𝑚 + 1), 𝑚 ≤ 𝑛 − 2.

(148)

Carefully evaluating (133), we deduce that when𝑚 = 𝑛 − 1 then

Ψ
(𝛼)

𝝀
= −(−1)𝑚

𝑚∏
𝑗=1

(
𝑚+1−𝑗∏
𝑘=1

(2𝑚 + 3 − 𝑗 − 𝑘 + 𝛼)

𝑚+1∏
𝑘=𝑚+2−𝑗

(2𝑚 + 3 − 𝑗 − 𝑘 + 𝛼)

)

×

𝑚+1∏
𝑗=𝑚+1

𝑚+1∏
𝑘=2

(2𝑚 + 3 − 𝑗 − 𝑘 + 𝛼) . (149)

When𝑚 > 𝑛 − 2 then
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50 CLARKSON and DUNNING

Ψ
(𝛼)

𝝀
= −(−1)𝑛(𝑚+1)

𝑛−1∏
𝑗=1

𝑚+1−𝑗∏
𝑘=1

(𝑚 + 𝑛 + 2 − 𝑗 − 𝑘 + 𝛼)

𝑚+1−𝑛∏
𝑘=2

(𝑚 + 𝑛 + 2 − (𝑛) − 𝑘 + 𝛼)

×

𝑛∏
𝑗=1

𝑚+1∏
𝑘=𝑚+2−𝑗

(𝑚 + 𝑛 + 2 − 𝑗 − 𝑘 + 𝛼), (150)

and when𝑚 ≤ 𝑛 − 2 then

Ψ
(𝛼)

𝝀
= −(−1)𝑛(𝑚+1)

𝑛−1∏
𝑗=1

𝑚+1−𝑗∏
𝑘=1

(𝑚 + 𝑛 + 2 − 𝑗 − 𝑘 + 𝛼)

𝑚∏
𝑗=1

𝑚+1∏
𝑘=𝑚+2−𝑗

(𝑚 + 𝑛 + 2 − 𝑗 − 𝑘 + 𝛼)

×

𝑛−1∏
𝑗=𝑚

𝑚+2∏
𝑘=3

(𝑚 + 𝑛 + 2 − 𝑗 − 𝑘 + 𝛼)

𝑛−1∏
𝑗=𝑚+1

1∏
𝑘=1

(𝑚 + 𝑛 + 2 − 𝑗 − 𝑘 + 𝛼). (151)

We notice that in each caseΨ(𝛼)

𝝀
includes all terms of the form ℎ𝑗,𝑘 + 𝛼where ℎ𝑗,𝑘 are the hooks

of the Young diagram of 𝝀 except for the term𝑚 + 1 + 𝛼. Therefore,

(𝑚 + 1 + 𝛼)Ψ
(𝛼)

𝝀
= −(−1)𝑛(𝑚+1)

𝑛∏
𝑗=1

𝑚+1∏
𝑘=1

(ℎ𝑗,𝑘 + 𝛼) = −Ψ
(𝛼)

𝝀
. (152)

We conclude that

𝑟
(𝛼)
1

= 𝑛(𝑚 + 1)
Ψ
(𝛼)

𝝀

Ψ
(𝛼)

𝝀

= −𝑛(𝑚 + 1)(𝛼 + 𝑚 + 1) (153)

and

𝑑
(𝛼)
1

= −𝑛(𝑚 + 1)(𝜇 + 𝑚 + 𝑛 + 1) . (154)

□

Conjecture 5. The hook multiset𝑚,𝑛 (135) has the form

𝑚,𝑛 =

⎧⎪⎨⎪⎩
{𝑘𝑝1}𝑚

𝑘=1
∪ {𝑘𝑝2}𝑛

𝑘=𝑚+1
∪ {𝑘𝑝3}𝑚+𝑛

𝑘=𝑛+1
, 𝑛 > 𝑚,

{𝑘𝑝1}𝑛
𝑘=1

∪ {𝑘𝑝2}𝑚+1
𝑘=𝑛+1

∪ {𝑘𝑝3}𝑚+𝑛
𝑘=𝑚+2

, 𝑛 ≤ 𝑚,

(155)

where

𝑝1 = 𝑘, 𝑝2 = 𝑚 + 1, 𝑝2 = 𝑛, 𝑝3 = 𝑚 + 𝑛 + 1 − 𝑘,

are the multiplicities of the hooks in each respective set. The discriminant of 𝑇(𝜇)𝑚,𝑛(𝑧) for 𝑛 > 𝑚 in
terms of partition data is
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CLARKSON and DUNNING 51

Dis𝑚,𝑛(𝜇) = (−1)(𝑚+1)⌊𝑛∕2⌋𝑐𝑛(𝑚+1)−1𝑚,𝑛

×

𝑚∏
𝑘=1

𝑘2𝑘(𝑛−𝑘)(𝑘−1−𝑚)
𝑚∏
𝑘=1

𝑘𝑘𝑝
2
1 (𝜇 + 𝑛 + 𝑘)𝑓(𝑛−1,𝑝1)

×

𝑛∏
𝑘=𝑚+1

𝑘𝑘𝑝
2
2 (𝜇 + 𝑛 + 𝑘)𝑓(𝑚+𝑛−𝑘,𝑝2)

𝑚+𝑛∏
𝑘=𝑛+1

𝑘𝑘𝑝
2
3 (𝜇 + 𝑛 + 𝑘)𝑓(𝑚,𝑝3), (156)

where 𝑓(𝑘, 𝑝) = 𝑘𝑝2 − 𝑝(𝑝 − 1)(𝑝 − 2)∕3. Similarly, the discriminant when 𝑛 ≤ 𝑚 is

Dis𝑚,𝑛(𝜇) = (−1)(𝑚+1)⌊𝑛∕2⌋𝑐2(𝑛(𝑚+1)−1)𝑚,𝑛

𝑚∏
𝑘=1

𝑘2𝑘(𝑛−𝑘)(𝑘−1−𝑚)
𝑛∏
𝑘=1

𝑘𝑘𝑝
2
1 (𝜇 + 𝑛 + 𝑘)𝑓(𝑛−1,𝑝1)

×

𝑚∏
𝑘=𝑛+1

𝑘𝑘𝑝
2
2 (𝜇 + 𝑛 + 𝑘)𝑓(𝑘−1,𝑝2)

𝑚+𝑛∏
𝑘=𝑚+1

𝑘𝑘𝑝
2
3 (𝜇 + 𝑛 + 𝑘)𝑓(𝑚,𝑝3). (157)

The discriminant representations (156) and (157) follow directly from rewriting (123) and (124)
in terms of the hooks and their multiplicities as defined by (155).
As already mentioned, the E- and F-type blocks seen for large positive and negative values of

𝜇 are of size 𝑚 + 1 × 𝑛 and therefore resemble the rectangular Young diagram of 𝜆. Moreover,
the three allowed sets of block structures corresponding to intermediate values of 𝜇, as given in
Table 4, appear at 𝜇 + 𝑛 + 𝑘 = 0 where the multiplicity of the first column hook 𝑘 in 𝒉𝝀 changes
its multiplicity type from type 𝑝1 to 𝑝2 to 𝑝3.

Conjecture 6. Finally, the set of integers encoding the 𝑛th roots of ±1 via the polynomials in Con-
jecture 3 are the hooks on the diagonals parallel to the main diagonal of the Young diagram of 𝝀.
Specifically, as 𝜀 → 0 for 𝜇 = −𝑛 − 𝑗 − 𝜀, hook ℎ𝑗𝑘 in column 𝑗 contributes an ℎ𝑗𝑘th root of unity if
𝑘 is odd and an ℎ𝑗𝑘th root of−1 if 𝑘 is even. For 𝜇 = −𝑛 − 𝑗 ∓ 𝜀, the polynomials in Conjecture 3 are

𝑗∏
𝑘=1

𝑧ℎ𝑗,𝑘 ∓ (−1)𝑛+𝑘, 𝑗 = 1, 2, … ,𝑚 + 1,

𝑛∏
𝑘=𝑗−𝑚

𝑧ℎ𝑗,𝑘 ∓ (−1)𝑛+𝑘, 𝑗 = 𝑚 + 2,𝑚 + 3,… , 𝑛,

𝑛∏
𝑘=𝑗−𝑚

𝑧ℎ𝑗,𝑘 ∓ (−1)𝑛+𝑘, 𝑗 = 𝑛 + 1, 𝑛 + 2,… ,𝑚 + 𝑛,

when 𝑛 > 𝑚 where ℎ𝑗,𝑘 ∈ 𝑚,𝑛. For 𝑛 ≤ 𝑚, the result is

𝑗∏
𝑘=1

𝑧ℎ𝑗,𝑘 ∓ (−1)𝑛+𝑘, 𝑗 = 1, 2, … , 𝑛,

𝑛∏
𝑘=1

𝑧ℎ𝑗,𝑘 ∓ (−1)𝑛+𝑘, 𝑗 = 𝑛 + 1, 𝑛 + 2,… ,𝑚 + 1,
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52 CLARKSON and DUNNING

F IGURE 11 The hooks on the 𝑗th diagonal of the Young diagram of 𝑇(𝜇)2,3 encode the behavior of the roots
that coalesce at the origin at 𝜇 = −𝑛 − 𝑗 − 𝜀 through the polynomials in Conjecture 6. When 𝑗 = 3, the
polynomial is (𝑧5 − 1)(𝑧3 + 1)(𝑧 − 1) and when 𝑗 = 3 or 𝑗 = 5 the polynomial is 𝑧3 − 1.

𝑛∏
𝑘=𝑗−𝑚

𝑧ℎ𝑗,𝑘 ∓ (−1)𝑛+𝑘, 𝑗 = 𝑚 + 2,𝑚 + 3,… ,𝑚 + 𝑛.

Remark 14. The result follows from Conjecture 3 by rewriting the hook multiset (135) as

𝑚,𝑛 =

⎧⎪⎨⎪⎩
{{𝑛+𝑗+1−2𝑘}

𝑗

𝑘=1
}𝑚+1
𝑗=1

∪ {{𝑛+𝑗+1−2𝑘}
𝑗

𝑘=𝑗−𝑚
}𝑛
𝑗=𝑚+2

∪ {{𝑛+𝑗+1−2𝑘}𝑛
𝑘=𝑗−𝑚

}𝑚+𝑛
𝑗=𝑛+1

, 𝑛 > 𝑚,

{{𝑛+𝑗+1−2𝑘}
𝑗

𝑘=1
}𝑛
𝑗=1

∪ {{𝑛+𝑗+1−2𝑘}𝑛
𝑘=1

}𝑚+1
𝑗=𝑛+1

∪ {{𝑛+𝑗+1−2𝑘}𝑛
𝑘=𝑗−𝑚

}𝑚+𝑛
𝑗=𝑚+2

, 𝑛 ≤ 𝑚.

(158)
We illustrate how to determine the root angle polynomials from a Young diagram in Figure 11 for
the example 6 of 𝑇(𝜇)

2,3
(𝑧).

Remark 15. We have found other families of Wronskian Hermite and Wronskian Laguerre poly-
nomials for which properties can be written compactly in terms of partition data. Combinatorial
concepts also appeared in the studies of special polynomials associated with Painlevé equations
in Refs. 6, 7, 41, 57, 58, 59. We are currently investigating this curious appearance of partition
combinatorics in various aspects of Wronskian polynomials.
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