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Abstract. This paper investigates a model of default in financial networks where the

decision by one agent on whether or not to default impacts the incentives of other agents

to escape default. Agents’ payoffs are determined by the clearing mechanism introduced

in the seminal contribution of Eisenberg and Noe (2001). We first show the existence of

a Nash equilibrium of this default game. Furthermore, we develop an algorithm to find

all Nash equilibria and guide regulatory intervention that relies on the financial network

structure. The algorithm provides a ranking for the set of Nash equilibria for specific

financial network structures, which can serve as a measure of systemic risk. Finally, we

show that introducing a central clearing counterparty achieves the efficient equilibrium

at no additional cost.
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1. Introduction

Financial institutions carry out various transactions with each other, including risk–sharing

and insurance. The architecture of the network of transactions between institutions can

support financial stability because it enables them to share funding or transfer risk. But

these linkages can also facilitate the diffusion of shocks through the system, due to chains

of default and the domino effect. This is referred to as systemic risk. Systemic risk is

costly for individuals, institutions and economies, as demonstrated by the last financial

crisis. The obvious need for a stable financial system has led to a significant interest in

policies that could reduce systemic risk and mitigate contagion.

This paper introduces a model of default in financial networks. We study a two-period

economy where agents have a positive endowment in each period. The endowment rep-

resents agents’ cash flows from outside the financial system. We assume that agents hold

each other’s financial liabilities and that this constitutes the network between them. These

liabilities mature in the second period, and we assume that agents’ second-period endow-

ments are small and deterministic, so that they face a risk of default. More specifically, the

liabilities structure results in cyclical payments interdependencies that are simultaneously

computed according to the clearing mechanism described in the seminal contribution of

Eisenberg and Noe (2001). The clearing vector satisfies three criteria:

• debt absolute priority, which stipulates that liabilities are paid in full in order to

have positive asset;

• limited liability, which means that the payment made by each agent cannot exceed

his inflows;

• equal seniority of all creditors, which implies pro rata repayments.

Agents can avoid default by storing part of their first-period endowment.

Due to complementarities in the payments, the decision taken by one agent to store

part of his endowment exerts a positive externality on the other agents to whom he is

connected.1 We show that the strategic interactions in the financial system modelled

here can be investigated as a coordination game, called the default game, where agents’

decisions are simply whether to default or not. It is well known in the literature that

1The non-storage in our model can be equivalently interpreted as a bank run in the influential Diamond–
Dybvig model.
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coordination games will in general yield multiple pure–strategy Nash equilibria and that

the set of pure–strategy Nash equilibria has a lattice structure—in particular, there are

two extreme pure–strategy Nash equilibria. In our setting, the best equilibrium is the

one where the largest number of agents choose the maximal action Non-Default and the

worst equilibrium is the one where the largest number of agents choose the minimal action

Default.

In the paper, we relate the multiplicity of Nash equilibria to the presence of a cycle of

financial obligations.

Then, we develop a simple algorithm for finding all Nash equilibria of the default game.

While there are easy algorithms for finding the maximal and minimal equilibria and

relatively easy algorithms to compute all Nash equilibria in coordination games such as

the default game (see Echenique, 2007), the advantage of the algorithm developed in this

paper is that it relies on the financial network structure to inform the computation of

Nash equilibria. By exploiting the network structure, our algorithm can quickly compute

all Nash equilibria, and provide useful information on the strategic interactions between

agents. In particular, the algorithm provides a ranking of the Nash equilibria in specific

financial network structures. The ranking of the Nash equilibria is advantageous from a

policy perspective since it can serve as a measure of systemic risk contribution of agents.

More specifically, agents that default in all Nash equilibria will be called the first wave

of default. Then, agents that default in all Nash equilibria except the highest Nash

equilibrium will be called the second wave of default and so on.

In this paper, we show that the problem of inefficient coordination may arise in finan-

cial networks. Similar to other areas in economics, the strategic complementarities of

payments due to the cyclical financial interconnections allow for the existence of multiple

Nash equilibria. This gives rise to the question of which one of these equilibria will be

the outcome of the underlying default game. From a policy perspective, given that inef-

ficient coordination might pose a severe economic problem, there is a need for financial

institutions fostering efficient coordination of agents’ decisions. Recently, central clearing

has become the cornerstone of policy reform in financial markets since it limits the scope

of default contagion. Our analysis shows that introducing a central clearing counterparty

(henceforth, CCP) also allows agents playing different actions at different Nash equilibria
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to coordinate on the efficient equilibrium at no additional cost. As a consequence, our

result reinforces the key role CCP’s play in stabilising financial markets.

This paper is structured as follows. In Section 2, we review the related literature.

In Section 3 we present the model. We show the existence of a Nash equilibrium and

develop an algorithm to find all Nash equilibria in Section 4, and Section 5 provides some

policy implications of central clearing. Section 6 concludes the paper and Section 7 is an

appendix devoted to the proofs.

2. Related Literature

The impact of the financial network structure on economic stability has been a subject

of ongoing interest since the last financial crisis (of 2008). The seminal contributions of

Allen and Gale (2000) and Eisenberg and Noe (2001) were first to acknowledge that the

financial network structure determines default contagion, and would serve as a basis for

many subsequent contributions.

Allen and Gale (2000) investigate how symmetric financial networks lead to contagion,

where links represent sharing agreements. Their key finding is that incomplete financial

networks are less resilient and more vulnerable to contagion than their complete coun-

terparts. Eisenberg and Noe (2001) develop a static model of default contagion in a

financial network where agents hold each other’s financial liabilities and the activities and

operations of each agent are condensed into one value: the operational cash flow. The

repayment of liabilities will be interdependent, since whether an agent defaults or not is a

result of his operational cash flow as well as the payments he receives from other agents.

Eisenberg and Noe first prove the existence of a clearing payment vector that is unique

under mild conditions. They also provide an algorithm to compute the clearing vector,

which is important to predict chains of defaults.

Acemoglu, Ozdaglar and Tahbaz-Salehi (2015) extend the Eisenberg–Noe model to

accommodate agent exposure to outside shocks. They establish that up to a certain

magnitude of shocks, the more connected the financial network is, the more stable it is;

beyond this threshold, the connectedness of the network makes it more prone to conta-

gion and thus more fragile. Elliott, Golub and Jackson (2014) introduce two concepts

of cross-holdings that have distinctive and non-monotonic impact on default cascades.
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Integration, which measures the dependence on counterparties, expands the extent of de-

fault contagion but reduces the probability of the first failure; while diversification, which

measures the heterogeneity of cross-holdings, increases the propagation of failure cascades

but decreases the exposure level among pairs of financial institutions. Cabrales, Gottardi

and Vega-Redondo (2017) investigate the optimal network structure that maximizes risk-

sharing benefits among interconnected firms while decreasing their risk exposure. Jackson

and Pernoud (2020) investigate how the network structure impacts agents’ investment

strategies as well as optimal regulatory intervention. Other recent contributions include

Teteryatnikova (2014) and Csóka and Herings (2016).

For a recent survey, see Jackson and Pernoud (2020). Several approaches have been

investigated to mitigate the domino effect in the financial network, such as central clearing

and identifying the most systemically relevant financial institutions and then targeting

them through cash injections. For instance, Demange (2018), following a similar approach

to Eisenberg and Noe (2001), develops a new measure, called the threat index, which

identifies the most systemically relevant agents for optimal targeted cash injection.

3. The Model

Consider a two-period (t = 1, 2) economy with N = {1, 2, ..., n} agents. Agent i’s

endowment in the first period is z1i ≥ 0 and in the second period is z2i > 0. The endowment

of agent i in each period denotes the cash flows arriving from outside the financial system.

We assume that agents hold each other’s liabilities, which mature in the second period.

More specifically, given two agents i, j ∈ N , let Lij ∈ R+ denote the liability that agent

i owes agent j. Then, agent i’s total liabilities are Li =
∑

j∈N Lij. Meanwhile,
∑

j∈N Lji

is the total assets of agent i. Let α = (αij)i,j∈N denote the matrix of relative liabilities,

with entries αij =
Lij

Li
representing the ratio of the liability agent i owes to agent j over

the total amount of agent i’s liabilities.

Each agent i can store an amount xi ∈ [0, z1i ] from his first-period endowment and

receives an interest rate r > 0 on his storage. Given the storage strategies of agents

x = (xi)i∈N , let πx = (πx
i )i∈N denote the clearing payment vector, uniquely defined as in
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Eisenberg and Noe (2001), such that for each agent i it holds that

πx
i = min

{
z2i + (1 + r)xi +

n∑
j=1

αjiπ
x
j ;Li

}
.

This means that z1i − xi denotes the assets of agent i in the first period and

z2i + (1 + r)xi +
n∑

j=1

αjiπ
x
j − πx

i

denotes the assets of agent i in the second period.

The utility function of agent i is Ui(e
1
i , e

2
i ) = e1i + e2i , where e1i represents assets with-

drawn by agent i at t = 1 and e2i is the asset of agent i remaining at t = 2 after receiving

and making loan repayments. Therefore, the utility function of agent i, given the storage

strategies of agents x = (xi, x−i), can be expressed as

Ui

(
z1i − xi, z2i + (1 + r)xi +

n∑
j=1

αjiπ
x
j − πx

i

)
= z1i + z2i + rxi +

n∑
j=1

αjiπ
x
j − πx

i .

4. Nash Equilibria of the Default Game

First, we investigate further the economy introduced above. Observe that each agent

will choose to store a positive amount of his first-period endowment if and only if he prefers

(is better off) not to default; otherwise he will store nothing. If he prefers not to default,

the combination of linear utility and the fixed interest rate implies that he will store his

entire first-period endowment. Similarly, it is only the decision of an agent to default or

not, rather than the amount of storage, that affects the other agents. This is because, if

he defaults he will pay out his total second-period endowment and loan receipts, and if

he does not default he will pay his total liability, neither of which is directly affected by

his level of storage.

Therefore, the strategic interaction of agents in the economy can be investigated as a

binary coordination game with two actions (Default) = 0 and (Non-Default) = 1 among

which agents must choose. Now, define a threshold τi (a−i) as the minimum amount agent

i must pay in the second period to avoid default, given other agents’ actions a−i.

Proposition 1. The threshold τi (a−i) is well-defined and decreasing in a−i.
6



Proof. The proof of Proposition 1, together with all our other proofs, appears in the

Appendix.�

Proposition 1 shows that the threshold τi (a−i) is well-defined. Observe that agent i

will choose to play 1 whenever

(1 + r)z1i − τi (a−i) ≥ z1i .

Therefore, the best reply function of agent i can be written as follows:

Ψi (a−i) =

1 if rz1i − τi (a−i) ≥ 0

0 otherwise.

A profile of actions a∗ ∈ {0, 1}N is a Nash equilibrium if a∗i = Ψi

(
a∗−i
)
.

The default game introduced above corresponds to a binary game of strategic com-

plements. As defined in Topkis (1979), Milgrom and Roberts (1990), and Vives (1990)

strategic complementarities arise if an increase in one agent’s strategy increases the opti-

mal strategies of the other agents.2

Theorem 1. There exists a pure–strategy Nash equilibrium of the default game.

Theorem 1 shows the existence of a pure–strategy Nash equilibrium. Understandably,

the existence of a pure–strategy Nash equilibrium follows from the strategic complemen-

tarities between agents’ actions, since the decision of an agent not to default makes it

easier for other agents not to default too.

It is established in the literature that a binary game of strategic complements will in

general have multiple pure–strategy Nash equilibria with a lattice structure. In particular,

this class of games has two extreme equilibria: the best equilibrium is the equilibrium

where the largest number of agents choose the maximal action (Non-Default) = 1; the

worst equilibrium is the equilibrium where the largest number of agents choose the mini-

mal action (Default) = 0 .

For simplicity, for the remainder of this paper, we assume that at a Nash equilibrium

of the default game, no agent is indifferent between (Non-Default) = 1 and (Default) = 0,

2See, Bulow, Geanakoplos and Klemperer (1985), Sobel (1988), Echenique and Sabarwal (2003), Amir
(2005), Echenique (2007) and Barraquer (2013) for other economic applications of games of strategic
complements.
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Figure 1. Cyclical obligations Unidirectional obligations

which is likely to be the case.3 The following result highlights the connection between the

multiplicity of equilibria and the structure of the financial network.

Proposition 2. If the default game has multiple Nash equilibria then, the financial net-

work has cyclical obligations.

Proposition 2 shows that the presence of a cycle of financial obligations is necessary

for the multiplicity of Nash equilibria as demonstrated in Figure 1. Eisenberg and Noe

(2001) term this phenomenon cyclical interdependence and illustrate it as follows: “A

default by Firm A on its obligations to Firm B may lead B to default on its obligations to

C. A default by C may, in turn have a feedback effect on A.”

In a recent contribution Roukny et al. (2018) investigate a model where defaulting

agents only recover a fraction of their assets and establish that multiple equilibria occur

if and only if there is a cycle of financial liabilities. More specifically, their result shows

that the contagion induced by an exogenous shock is not unique if and only if there

exists a cycle composed of agents such that each agent’s default depends on the default

of his predecessor in the cycle. Interconnectedness, which is the main feature of the

fabric of financial networks, provides therefore a feedback mechanism that can generate

multiple equilibria. Similarly, our analysis highlights in a strategic setting that cyclical

financial liabilities are the key condition for multiple equilibria. While in both settings

multiple equilibria arise due to change in each agent’s assets between Default and Non

Default, partial recovery of assets in Roukny et al. (2018) or forgoing interest rate in this

3That is, this always holds except for a null set of first-period and second-period endowments.
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Figure 2. A financial network with eight agents

paper. In Roukny et al. (2018), agents are exposed to an exogenous shocks that propagate

mechanically in the financial network whereas in this paper agents make strategic decisions

on whether to default or not.

The next example illustrates the default game.

Example 1. Consider an economy of eight agents connected through their owner-

ship of each other’s liabilities, among which only the first seven agents are strategi-

cally relevant as illustrated in Figure 2. Agents’ endowments in the first period are

z1 = (40, 45, 40, 25, 30, 75, 70) and in the second period are z2 = (3, 3, 3, 3, 3, 3, 3) and the

interest rate is r = 0.1. All agents have the same utility function Ui(e
1
i , e

2
i ) = e1i + e2i .

This will result in three Nash equilibria (0, 0, 0, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0) (Fig. 4),

(1, 1, 1, 1, 1, 1, 1) (Fig. 5), for which computation will be provided at a later stage.

4.1. A financial network with a unique SCC. In the following, we will show that

the close relationship between the multiplicity of Nash equilibria and the cyclical finan-

cial interconnections as shown in Proposition 2 is useful to solve for pure–strategy Nash

equilibria of the default game. More specifically, we will provide an algorithm to find all

pure–strategy Nash equilibria of the default game.

Recall that the financial network is strongly connected if there is a path of obligations

between all pairs of agents. A strongly connected component (henceforth, SCC) of the

financial network is a maximal4 strongly connected subnetwork.

First, for simplicity, we consider the case of a financial network with a unique strongly

connected component. We will use the following notion of ear decomposition of a network,

4In the sense that it is not properly contained in a larger strongly connected subnetwork.
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which is useful given its close relationship to network connectivity. An ear decomposition

of a network is a partition of the edges into directed paths, called ears. More precisely,

an ear decomposition of a network is a partition of the edges into Ep, . . . , Ej, . . . , E1 such

that

• for each j = p, . . . , 1 it holds that Ej = {(vj1 , vj2), . . . , (vj(k−1)
, vjk)} is a directed

path such that the start agent vj1 and the end agent vjk are in Ej−1 ∪ . . .∪E1 but

the internal agents of Ej—that is, vj2 , . . . , vj(k−1)
—are not in Ej−1 ∪ . . . ∪ E1.

• E1 is a cycle. That is, v11 = v1k .

A financial network is strongly connected if and only if it has an ear decomposition. In

the following, we will rely on the ear decomposition to provide an algorithm to find all

pure–strategy Nash equilibria of the default game of a financial network with a unique

SCC.

Given an ear Ej ∈ {Ep, Ep−1, . . . , E1}, and an internal agent vjl ∈ {vj2 , . . . , vj(k−1)
}, we

define the activation outflow Aj(vjl) as the minimum outflow of the start agent vj1 that

is sufficient for vjl to escape default, conditional on the activation outflows of internal

agents in preceding ears.

The algorithm, which we call USCCNE, builds on the above definitions and goes as

follows:

Algorithm 1. (USCCNE)

(1) Compute an ear decomposition of the network (Ep, . . . , Ej, . . . , E1)

(2) For each ear Ej = Ep, Ep−1, . . . , E1

(a) Calculate the activation outflow from start agent vj1 that is sufficient for each

internal agent u = vj2 , . . . , vj(k−1)
not to default, conditional upon the previous

activation outflows of internal agents in {Ep, Ep−1, . . . , Ej+1}
(b) Add calculated activation outflows to list Aj = {(vj2, Aj(vj2)), ...}.

(3) For each activation outflow profile in Ap × . . . ×A1, calculate repayment inflows

into vp1 , . . . , v11 and verify that the corresponding strategy profile is an equilibrium.

Drop any strategy profiles that are not equilibria.
10



The USCCNE algorithm makes the search for equilibria a recursive problem. More

specifically, the algorithm traverses the network following the structure of the ear decom-

position, starting from the final ear Ep and working backwards to E1. At each ear Ej, the

algorithm visits the internal agents outwards calculating their activation outflows from

the start agent of the ear Ej, conditional upon the activation outflows of internal agents

in preceding ears. At this point, we can eliminate some combinations of strategy profiles

for agents in Ej, Ej+1, ...Ep. For example, the activation inflows for agents in Ej+1 may be

satisfied by the agents in Ej not defaulting. This would allow us to drop strategy profiles

where the agents in Ej do not default, but the agents in Ej+1 default. At the end, for

each remaining strategy profile of activation outflows, the algorithm calculates repayment

into each ear start agent and verifies whether the strategy profile is an equilibrium (that

is, the repayment inflow is consistent with the activation outflow for each ear start agent).

Proposition 3. (i) USCCNE identifies all equilibria.(ii) USCCNE returns only equilibria.

USCCNE is particularly fast when there are fewer edges (liabilities) in the default game,

and as a result, fewer ears. The number of ears in the network is equal to |E| = m−n+1,

where m is the number of edges. When the network has fewer, longer ears, the algorithm

traverses the network more quickly. For example, given a cycle network, traversal of the

network and calculation of consistent strategy profiles is the completed in linear time.

The key feature of the USCCNE is that it transforms the SCC into partition of ears

(directed paths), where the strategy profiles of internal agents in each ear are computed

based on the outflow of the start agent, conditional on strategy profiles in preceding ears.

We revisit Example 1 to illustrate the computation of Nash equilibria using the USC-

CNE.

Example 1. (Revisited: Computing Nash equilibria) Consider again the financial network

in Figure 2. This network contains a unique SCC, {1, 2, 3, 4, 5, 6, 7}, which has three ears,

E1 = {(1, 2), (2, 3), (3, 4), (4, 1)}, E2 = {(1, 5), (5, 6), (6, 4)} and E3 = {(5, 7), (7, 4)}.
In order to compute the Nash equilibria, we apply USCCNE. Figure 3 shows the ears

(directed paths) generated by the algorithm. Starting from E3, we can compute the acti-

vation outflow of agent 7: A3(7). Then we move to E2, calculate A2(5) and A2(6). Finally,

the activation outflows for E1 would be A1(2), A1(3) and A1(4) (conditional on previous
11
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activation levels). We obtain the following A3 = {(7, 40)}, A2 = {(6, 37.5), (5, 39)}. The

calculation of A1 is then conditional on A3 × A2. Then, the algorithm checks the dif-

ferent remaining combinations A3 × A2 × A1 for potential equilibria. For instance, one

possibility is that the outflow from agent 5 through ear 1 exceeds 40, the outflow from

agent 1 through ear 2 exceeds 39 and the outflow from agent 1 through ear 1 to exceed

7.5. In this case, agents 7, 5, 6, 2, 3 and 4 do not default and pay their total liabilities.

Finally we verify the repayment into each ear start agent (agents 1 and 5) are consistent

with their outflows hence resulting in an equilibrium (the best equilibrium with no agent

defaulting).

4.2. Policy implications of the USCCNE algorithm. The key feature of the USC-

CNE algorithm is that (based on the ear decomposition) it exploits the transformation of

the SCC into ears (a partition of the edges of the network into directed paths).
12
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Not only the USCCNE algorithm computes all the Nash equilibria of the default game,

but it could also provide some concrete policy implications. Indeed, the USCCNE algo-

rithm could guide regulatory interventions to achieve the best equilibrium by targeting

the start agent of each ear. More specifically, if by relying on outside cash injection or

regulation the outflow of the start agent of each ear is made equal to his best equilibrium

outflow, then the best equilibrium is achieved. Note that both outside cash injection or

regulation are budget neutral as policy interventions.

It is worth noting that the properties of the USCCNE algorithm can be even exploited

further so that the best equilibrium could be achieved by targeting a smaller subset of

ears’ start agents as seed agents. In the following we will focus on a special case, where

it is enough for the policy intervention to target just one seed agent to achieve the best

equilibrium.

Definition 1. We say that the start agent of the second ear is an overarching seed agent

if his outflow determines the outflows of all other ears’ start agents.

In interpretation, an overarching seed agent belongs to every cycle of the network, which

if targeted adequately would permit to achieve the best equilibrium. In the following, we

revisit Example 1 to illustrate policy intervention with an overarching seed agent.

Example 1. (Revisited: Policy intervention with an overarching seed agent) Consider

again the financial network in Figure 2. Using the USCCNE algorithm as described in

Figures 3, 4 and 5, we observe that agent 1 is an overarching seed agent and hence can
13



be potentially targeted by policy intervention. More specifically, if by relying on outside

cash injection or regulation the outflow of agent 1 is made equal to his best equilibrium

outflow, that is 50, then the best equilibrium (1, 1, 1, 1, 1, 1, 1) is achieved.

Recall that the USCCNE algorithm ranks the internal agents in each ear by their order

of non-default according to their activation outflows on each ear. Since in the presence

of an overarching seed agent all Nash equilibria strategy profiles can be determined by

his outflow of just one agent (the overarching seed agent) we have the following stronger

prediction.

Corollary 1. If there is an overarching seed agent, the USCCNE algorithm provides as

well a ranking for the set of Nash equilibria.

Corollary 1 shows that if there is an overarching seed agent the USCCNE algorithm

developed in this paper based on the concept of ear decomposition provides the stronger

property of ranking Nash equilibria within the SCC (as in Example 1). The ranking of

Nash equilibria within the SCC follows from the fact that outflow of the overarching seed

agent determines the outflows of each ear start agent, and consequently the outflows of

all agents.

In this case, the ranking of Nash equilibria can be thought of as a measure of systemic

risk based on waves of default. That is, the agents that default in all Nash equilibria will

be called the first wave of default. Then, agents that default in all Nash equilibria except

the highest Nash equilibrium will be called the second wave of default and so on.

Observe that, as illustrated in Figure 6, not all financial networks have an overarching

seed agent. This is due to the presence of non-overlapping cycles, permitting independent

coordination on the best equilibrium within each cycle.

Finally, it is worth noting that the subset of ears’ start agents constitutes a feedback

vertex set (FVS) of the financial network, which is a subset of agents S such that removing

S makes the financial network acyclic (or equivalently, removes cyclical liabilities).

Proposition 4. If there is an overarching seed agent, USCCNE has a worst-case time

complexity of O(n4).
14



1

4 3

25

6

15

30

10

30

40

10

40

30

Figure 6. A financial network with with no overarching seed agent.

The key feature of USCCNE is that it allows us to traverse the network recursively, from

outer ears to interior ears of the network. At each ear, we can collect information about

the strategy profiles in outer ears that are consistent with some outflow from the current

ear. If there is an overarching seed agent, then the set of strategy profiles consistent

with equilibrium grows at worst linearly, as the strategies of outer ears can be determined

straightforwardly from the repayments of interior ears. When we reach the overarching

seed agent, we then need to check the remaining strategy profiles are consistent with

equilibrium after accounting for cyclical obligations, for example by solving the linear

system of repayments conditional upon each strategy profile.

4.3. Welfare. Now we investigate efficient outcomes among equilibrium and non equilib-

rium outcomes. Recall that the best equilibrium is the most efficient outcome only among

equilibrium outcomes. To do so, we take a standard utilitarian approach and consider the

social welfare function:

W(x)
def
=

n∑
i=1

Ui

(
z1i − xi, z2i + (1 + r)xi +

n∑
j=1

αjiπ
x
j − πx

i

)
,

which is the sum of utilities achieved by agents given their storage strategies x.

Proposition 5. The (possibly non-equilibrium) outcome where each agent stores his first

period endowment is the most efficient outcome.

Proposition 5 shows that the possibly non-equilibrium outcome where each agent stores

his first period endowment is the most efficient outcome. Understandably, this result

holds since paying out a dividend in the first period for any agent amounts to forgoing

the opportunity for all agents to earn the risk-free return of r.
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In order to achieve the set of efficient outcome where each agent stores his first period

endowment, we can consider a two steps policy intervention through outside cash injection.

In the first step use the policy intervention described in Section 4.1 to achieve the best

equilibrium. Then as a second step target the remaining defaulting agents using the

again maximal trees developed in the algorithm. It is worth noting that while the first

intervention is budget neutral the second one might not be budget neutral.

4.4. Arbitrary financial network. Now we investigate the case of an arbitrary financial

network. Recall that an arbitrary financial network can be transformed into a directed

acyclic graph (henceforth, DAG)—that is, a network with no cycles–by contracting each

SCC into a single large node (see Figures 6-7).

The algorithm described here MSCCNE is a generalisation of USCCNE. It consists of

applying the USCCNE to each SCC in any given arbitrary network starting by the SCCs

with no incoming link from any outside node or group of nodes, which are the SCCs that

are not impacted by the other nodes in the network, and moving along the chain of SCCs.

In the following, we will rely on transitive reduction, which is a uniquely defined op-

eration on a DAG, to compute the pure–strategy Nash equilibria of a financial network

with multiple SCCs. A transitive reduction of a DAG is the network representation with

the fewest possible links that preserves the chains of default of the original financial net-

work(see Figure 8). It is hence constructed by removing all the links that are unnecessary

for the chain of default to be realised and only the nodes which were connected by a

path in the original network remain connected in the transitively reduced network. For

instance, if A links to B, and B links to C, then the transitive reduction removes the link

from A to C, if it exists.

Observe that, from the minimality of links in the transitive reduction, there exists a

unique partition of the set of agents W = {W1, . . . ,Wk} such that W1 corresponds to the

SCCs with no incoming links, W2 corresponds to the SCCs with only incoming links from

W1, W3 corresponds to the SCCs with only incoming links from W1 ∪W2, and so on.

Then, the algorithm USCCNE can be easily extended to compute the Nash equilibria

with multiple SCCs. The algorithm, which we call MSCCNE, goes as follows:

(1) Apply USCCNE to find all Nash equilibria for each SCC in W1.
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(2) For each p Nash equilibrium of SCCs in W1, apply USCCNE to find all Nash

equilibria for each SCC in W2.

(3) For each Nash equilibrium of SCCs in W1 ∪W2, apply USCCNE to find all Nash

equilibria for each SCC in W3.

(4) Repeat the procedure until visiting all the elements of the partition W .

a1 a2

a3a4

b1

b2b3

b4b5

c1c2

c3

e1e2

e3

e4 e5

d1

Figure 7. Example of a DAG

The MSCCNE algorithm is a simple algorithm that exploits a network decomposi-

tion technique to find all the pure–strategy Nash equilibria of a financial network. It is
17



A B

C E

D

Figure 8. Condensation of the DAG

A B

C

ED

Figure 9. Transitive reduction of the DAG

worth noting that the MSCCNE algorithm can be easily adapted to compute the clearing

payment vector of Eisenberg and Noe (2001).

Corollary 2. Assume that the first-period endowment of each agent i is zero—that is,

z1i = 0. Then the MSCCNE algorithm computes the clearing payment vector in Eisenberg

and Noe (2001).

Recall that the clearing payment vector of Eisenberg and Noe (2001) is unique under

mild conditions. Hence the existence of cyclical financial interconnections, while necessary

for multiple equilibria, is not sufficient.

At the heart of the seminal contribution of Eisenberg and Noe (2001) lies the elegant

fictitious default algorithm that computes the unique clearing payment vector. The fic-

titious default algorithm goes as follows. First, determine the set of agents who cannot

fulfill their obligation, even when we assume that all agents receive their due payments.

These agents will be called the first wave of default. Then, assume that the agents in the
18



first wave of default pay their liabilities pro rata and the new defaulting agents will be

called the second wave of default and so on until the algorithm terminates. In this way,

the fictitious default algorithm produces a natural measure of systemic risk, which is the

number of waves required to induce a given agent to default.

Echenique (2007) provides the most efficient algorithm for computing all pure–strategy

Nash equilibria in the class of games of strategic complements, of which the default game is

a special case. The algorithm elegantly checks whether there is another Nash equilibrium

once the smallest and largest pure–strategy Nash equilibria are computed from classical

algorithms (for example, Topkis (1979)).

While each of the above algorithms is clearly interesting in many aspects, arguably,

the advantage of the MSCCNE algorithm developed in this paper is that it relies on the

financial network architecture to compute the Nash equilibria. Generally, algorithms that

exploit the financial network structure such as the algorithm developed in this paper,

as well as having a clear computational advantage, provide valuable policy guidance to

achieve the best equilibrium.

5. Policy Implications of central clearing

From a policy perspective, in view of the multiplicity of Nash equilibria of the default

game, there is the central policy question of equilibrium selection. In particular, it may

be desirable to implement the best equilibrium in order to achieve financial stability and

minimise the cost of default.

Given the best and the worst equilibria, agents in the network can be classified into

three types:5

(1) agents that choose 0 in the worst equilibrium and 1 in the best equilibrium;

(2) agents that choose 0 in the worst equilibrium and 0 in the best equilibrium;

(3) agents that choose 1 in the worst equilibrium and 1 in the best equilibrium.

Note that agents of type (2) and (3) are not strategically relevant since they play the

same action in the worst and the best equilibrium. Actually, we could construct a reduced

financial network containing only agents of type (1). To do so, we first eliminate all

outgoing links emanating from agents of type (3) and, since none of them defaults, add

5Obviously, it is not possible for an agent to choose 1 in the worst equilibrium and 0 in the best.
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their liabilities pro rata to the cash flow of the agents intercepting their outgoing links.

As for agents of type (2), given that they default and pay their inflows—i.e. their cash

flow and the payments they receive from their debtors—they can be eliminated from

the network by adding their cash flow to the cash flow of their creditors pro rata and by

extending their ingoing liabilities links to their creditors pro rata so that the new liabilities

directly link between their debtors and their creditors.

Recently, CCP has become increasingly the cornerstone of policy reform in financial

markets. Introducing a CCP in the financial network modifies the structure of the financial

network: each liability between a debtor and a creditor is erased and replaced by two new

liabilities—one liability between the debtor and the CCP, and another one between the

CCP and the creditor. As a consequence, one of the key benefits of central clearing is that,

by breaking down the cyclical connections of financial liabilities, it reduces the aggregate

level of default exposure, which in turn reduces default contagion.

There is a growing literature which investigates the benefits of central clearing. Duffie

and Zhu (2011) show that CCP’s reduce significantly the counterparty risk even when

clearing across multiple derivative classes. Zawadowski (2013) suggests that a CCP elim-

inates ex ante own default externalities by making banks contribute to the insurance of

counterparty risk in the form of a guarantee fund. In other respect, Tirole (2011) argues

that centralisation should be encouraged and CCP’s enhance transparency and allow for

multilateral netting. Acharya and Bisin (2014) study how the lack of transparency be-

tween agents sharing default risk produce counterparty risk externality and show that this

externality disappears when introducing a centralized clearing mechanism which ensures

transparency. They prove that the main advantage of central clearing is enhancing the

aggregation of information.

The following proposition points out another potential benefit of introducing central

clearing in financial markets.

Proposition 6. Introducing a CCP in each SCC of the reduced financial network achieves

the best equilibrium in the default game at no additional cost.
20



1

2 3

456

15

30

10

30

40

10

40

Figure 10. A financial network with five agents

Proposition 6 shows that when a CCP intermediates the liabilities of each SCC of

the reduced financial network,6 the best equilibrium is achieved and the CCP is budget

neutral. As a consequence, in addition to reducing default contagion by eliminating the

cyclical financial interconnections, central clearing can also serve as a coordination device

that achieves the best equilibrium of the default game.

The following example illustrates this point.

Example 2 Consider an economy of six agents connected through their ownership of

each other’s liabilities, among which only the first five agents are strategically relevant.

Agents’ endowments in the first period are z1 = (22, 22, 75, 180, 100) and in the second

period are z2 = (3, 3, 3, 3, 3) and the interest rate is r = 0.1. All agents have the same

utility function Ui(e
1
i , e

2
i ) = e1i + e2i . The financial liabilities of agents to each other are

illustrated in the network in Figure 10.

This financial network contains a unique SCC {1, 2, 3, 4, 5}. To compute the Nash

equilibria, we apply the USCCNE algorithm described above. We find three Nash equi-

libria—the best equilibrium (1, 1, 1, 1, 1), the intermediate equilibrium (0, 0, 0, 1, 1), and

the worst equilibrium (0, 0, 0, 0, 0)—which we illustrate in Figures 11-13.

6That is, the financial network with only strategic relevant agents.
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Figure 11. The best equilibrium
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Figure 12. The intermediate equilibrium
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Figure 13. The worst Equilibrium

Adding a CCP will result in a new financial network as shown in Figure 14, with the

following liabilities vector:

L̃ = (5, 5, 10, 10, 10,−40) .
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Given that there are no feedback effects in the presence of the CCP, the minimum cash

flow for an agent i to escape default is equal to the new liability L̃i. Therefore, after the

introduction of a CCP, it is easy to check that the best equilibrium is implemented at no

additional cost since the inflows and outflows of CCP are equal.

1 2

3

45

6 CCP

5 5

10

1010

40

Figure 14. Adding a CCP

6. Conclusion

This paper shows that the introduction of a CCP allows agents playing different actions

at different Nash equilibria to achieve the best equilibrium at no additional cost. As a

consequence, central clearing can serve as a coordination device in financial markets.

While our result reinforces the key role CCP plays in financial markets, as highlighted

in several important contributions by Duffie and Zhu (2011), Tirole (2011), Zawadowski

(2013) and Acharya and Bisin (2014), it remains to be seen whether other policies can be

designed to minimise the number of defaults, such as identifying key agents and targeting

them through either cash injection or minimum endowment requirement.
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8. Appendix

Proof of Proposition 1. Recall that the default game corresponds to a binary coordi-

nation game with two actions (Default) = 0 and (Non-Default) = 1 among which agents

must choose.

First, for each agent i we will show that τi (a−i) is well-defined given other agents’

actions a−i ∈ {0, 1}N−1. To do so, for each agent i we consider an auxiliary economy with a

modified network of liabilities, where we eliminate all outgoing links emanating from agent

i and add his liabilities pro rata to the cash flow of the agents intercepting his outgoing

links. Hence, the matrix of relative liabilities in the auxiliary economy is α̂ = (α̂kj)k,j∈N ,

where α̂kj = αkj if k 6= i and α̂kj = 0 otherwise. Moreover, the (augmented) second-period

endowment of agent j in the auxiliary economy is ẑ2j = z2j + αijLi.

Now, given other agents’ actions a−i, let xa−i = (x
a−i

j )j∈N denote the agents’ storage

strategies, where x
a−i

j = z1j for each agent j 6= i such that aj = 1, and x
a−i

j = 0 otherwise.

Let also πxa−i
= (πxa−i

j )j∈N denote the clearing payment vector, uniquely defined as in

Eisenberg and Noe (2001), such that for each agent j it holds that

πxa−i

j = min

{
ẑ2j + (1 + r)x

a−i

j +
n∑

k=1

α̂kjπ
xa−i

k ;Lj

}
.

Therefore, since x
a−i

i = 0 it holds that

τi (a−i) = max

{
Li − z2i −

n∑
j=1

α̂jiπ
xa−i

j ; 0

}
. (8.1)

Hence, the threshold τi (a−i) is well-defined.

Moreover, it follows from Lemma 5 in Eisenberg and Noe (2001) (see, also, Theorem

6 in Milgrom and Roberts (1990)) that πxa−i
is increasing in xa−i , which, in turn, is

increasing in a−i. Hence, it follows from (8.1) that the threshold τi (a−i) is decreasing in

a−i.�
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Proof of Theorem 1. Since the threshold τi (a−i) is decreasing in a−i it follows that

the best reply function of agent i

Ψi (a−i) =

1 if rz1i − τi (a−i) ≥ 0

0 otherwise

is increasing in a−i. By the Knaster–Tarski Theorem, there exists a fixed point of the

following map:

Ψ : {0, 1}N −→ {0, 1}N

Ψ (a) = (Ψ1 (a−1) , ...,Ψn (a−n)) ,

which will be a Nash equilibrium of the default game.�

Proof of Proposition 2. Suppose not—that is, the default game has multiple equilibria

and the financial network does not have cyclical obligations. Let R denote the set of agents

who play 0 in the worst Nash equilibrium and 1 in the best Nash equilibrium. Then the

subnetwork induced by R contains an agent i that does not have any ingoing link. As a

consequence, the inflow of agent i does not change between the worst equilibrium and the

best equilibrium, and as a result agent i will not change his choice in the worst equilibrium

and the best equilibrium. This is a contradiction.�

Proof of Proposition 3. Part (i): Let γ be an equilibrium strategy profile. If γ is not

in Γ∗, then it must be the case that the strategy profile γ was eliminated by the algorithm

at some point, for example when the algorithm visited Ej. But the algorithm would only

eliminate strategy profile γ if there were no outflow from vj1 consistent with the strategy

profile γ, in which case, γ could not be an equilibrium strategy profile.

Part (ii): Part (ii) is ensured by Step 3 of USCCNE. If Step 2 generates any tree-

consistent strategy profiles that are not equilibria of the default game, these will be

identified upon the calculation of equilibrium repayments in Step 3 and subsequently

removed.�

Proof of Proposition 4. Computing the ear decomposition in Step 1 can be performed

in linear time. In step 2, each agent is visited once. When the algorithm visits ear Ej, the
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activation outflows for each interior agent in ear Ej are computed, along with the outflows

that activate stratefy profiles carried backward from Ej+1, ..., Ep. By Corollary 1, when

there is an overarching seed agent, these strategy profiles are bounded by the number of

interior agents in Ej+1, ..., Ep. Therefore, the time complexity of Step 2 is O(n2).

By Corollary 1, the set of strategy profiles generated in Step 2 of the algorithm form a

total order over the space {0, 1}n, leaving at most n strategy profiles to check in Step 3.

These strategy profiles can be checked in O(n3) time, for example by solving a system of

linear equations7.�

Proof of Proposition 5. Using clearing properties, it holds that

W(x) =
n∑

i=1

Ui(z
1
i − xi, z2i + (1 + r)xi +

n∑
j=1

αjiπ
x
j − πx

i )|

=
n∑

i=1

[z1i + z2i + rxi +
n∑

j=1

αjiπ
x
j − πx

i ]

=
n∑

i=1

[z1i + z2i + rxi] +
n∑

i=1

[
n∑

j=1

αjiπ
x
j ]−

n∑
i=1

πx
i

=
n∑

i=1

[z1i + z2i + rxi] +
n∑

j=1

[
n∑

i=1

αjiπ
x
j ]−

n∑
i=1

πx
i

=
n∑

i=1

[z1i + z2i + rxi] +
n∑

j=1

πx
j −

n∑
i=1

πx
i

=
n∑

i=1

[z1i + z2i + rxi].

Hence, W(x) is maximised when xi = z1i , for each agent i.�

Proof of Proposition 6. Adding a CCP in the middle of the financial network will net

out the liabilities and will sort agents into two types: debtors and creditors to the CCP.

7Actually repayments can be calculated as follows:

π = (I−Dα′)−1((I−D)L + Dz2)

where D is a diagonal matrix with entry Djj = 1 if and only if j is a defaulting agent.
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Let node 0 represent the CCP, and L̃i0 the liabilities to/from the CCP such that

L̃i0 =
∑
j∈N

Lij −
∑
j∈N

Lji.

Hence, if L̃i0 is positive (resp. negative), agent i is a debtor (resp. creditor) to the CCP.

Since the best equilibrium can be reached, it follows that whenever agent i receives all

the liabilities from his debtors, he will choose not default. Therefore, it holds that

z2i + (1 + r) z1i +
∑
j∈N

Lji ≥
∑
j∈N

Lij,

which implies

z2i + (1 + r) z1i ≥ L̃i0.

Hence, the non-default condition is satisfied for each agent in the network with liabilities

intermediated by the CCP and the best equilibrium is reached.�
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