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Abstract

Timely characterizations of risks in economic and financial systems play an
essential role in both economic policy and private sector decisions. However, the
informational content of low-frequency variables and the results from conditional
mean models provide only limited evidence to investigate this problem. We pro-
pose a novel mixed-frequency quantile vector autoregression (MF-QVAR) model
to address this issue. Inspired by the univariate Bayesian quantile regression lit-
erature, the multivariate asymmetric Laplace distribution is exploited under the
Bayesian framework to form the likelihood. A data augmentation approach cou-
pled with a precision sampler efficiently estimates the missing low-frequency vari-
ables at higher frequencies under the state-space representation.

The proposed methods allow us to analyse conditional quantiles for multiple
variables of interest and to derive quantile-related risk measures at high frequency,
thus enabling timely policy interventions. The main application of the model is
to detect the vulnerability in the US economy and then to nowcast conditional
quantiles of the US GDP, which is strictly related to the quantification of Value-at-
Risk, the Expected Shortfall and distance among percentiles of real GDP nowcasts.

Keywords: Bayesian inference; mixed-frequency; multivariate quantile regres-
sion; nowcasting; VAR.
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1 Introduction

Most economic models’ primary object of interest is the conditional mean of a given vari-

able or index, as it summarizes the central response to explanatory variables. However,

following the financial crises and economic shocks that characterised the last decade,

policymakers and researchers have shifted their attention and interest beyond the con-

ditional mean. In particular, the significant effects that exogenous shocks (such as the

COVID-19 pandemic), wars (e.g., the Russian invasion of Ukraine), and fluctuations of

the business cycles have on the economy highlight the crucial need to investigate the

tails and shoulders of the response variable’s distribution.

Timely characterisations of risks to the economic outlook play a vital role in both

economic policy and private sector decisions, where central bankers and analysts share

a demand for timely forecasts of economic activity. To encapsulate and reflect the most

recent events, forecasts of macroeconomic or financial variables should blend information

collected from a wide array of sources and observed at different intervals or frequencies.

Moreover, research following the global financial crisis has provided substantial em-

pirical evidence that the relationships among macroeconomic and financial time se-

ries are characterised by nonlinearities and asymmetries (Kilian and Vigfusson, 2017;

Adrian et al., 2019). Thus, investigating the nonlinear effects related to cycles is cru-

cial to policymakers for designing policies targeted at specific phases of the cycles.

Researchers in macroeconomics usually base their analysis on linear regression meth-

ods, whereas only recently nonlinear methods have been applied to investigate economic

policies and financial crises (e.g., Caggiano et al., 2022; Huber and Rossini, 2022). How-

ever, using conditional mean regression methods raises several concerns when modelling

data with features such as skewness, fat tails, outliers, truncation, censoring, and het-

eroscedasticity. This relates to the fact that the impact of covariates on the response

may significantly vary across the range of the latter, thus highlighting the limitations

of methods based on conditional mean only. The issue is exacerbated by nonlinear re-
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lationships and non-Gaussian noises, typical features of many economic and financial

variables.

In detecting economic and financial crises, appropriate risk measures are needed

(Merlo et al., 2021), such as the Value at Risk (VaR) or the Expected Shortfall (ES).

The VaR considers the maximum loss an operator can incur over a defined time horizon

and for a given confidence level. At the same time, the ES coincides with the conditional

expectation of exceedance beyond the VaR. In forecasting, Gneiting and Ranjan (2011)

propose a threshold- and quantile-based decomposition of the continuously ranked prob-

ability score to assess density forecasting over the whole distribution and specific quan-

tiles or regions of a variable of interest (e.g., the tails).

To address the limitations of standard linear regression models and capture the

complete picture of the conditional distribution of a multivariate response variable, we

propose a novel mixed-frequency quantile vector autoregressive (MF-QVAR) model.

Our approach is based on quantile regression (QR, see Koenker and Bassett, 1978),

which offers robust modelling of conditional quantiles and allows for different impacts

of covariates on each quantile level. This enables a comprehensive investigation of the

entire conditional distribution. To conduct a simultaneous inference under the Bayesian

framework on the marginal conditional quantiles of a multivariate response variable, we

use the multivariate asymmetric Laplace (MAL) distribution to form the likelihood (see

also Petrella and Raponi, 2019).

Our approach allows for a flexible covariance matrix within the multivariate struc-

ture, which benefits from cross-sectional information to estimate the marginal condi-

tional quantiles. Considering different quantile levels, our framework permits the in-

vestigation of asymmetry in the downside and upside risks, unlike standard models

with symmetric second-moment dynamics. This is particularly effective when skew-

ness dynamics accompany the evolution of the distribution. Therefore, the proposed

MF-QVAR is more effective in modelling the conditional distribution of a multivariate

response variable, especially in the presence of dynamic asymmetries in the distribution.
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The main feature of the proposed MF-QVAR model is the coupling of multivariate

quantile regression with state-space-based mixed-frequency techniques. By combining

them, we provide a theoretically coherent and computationally efficient method to fore-

cast and nowcast a desired quantile of low-frequency variables of interest.

Most of the existing approaches for quantile forecasting are actually based on a model

for the conditional mean, then rely on the quantiles of the implied predictive distribu-

tion (e.g., see Adrian et al., 2019; Carriero et al., 2022). Conversely, we directly model

and forecast the conditional quantile of interest, allowing for heterogeneity of the im-

pact of covariates across different quantiles, which is prevented in the above-mentioned

approaches. Moreover, by adopting a multivariate framework, the MF-QVAR allows

capturing contemporaneous cross-sectional dependence, which is known to characterise

economic and financial time series.

We extend the mixed-frequency literature to develop a method for nowcasting quan-

tiles of low-frequency variables using a state-space representation that exploits the in-

formation available at a higher frequency. This approach enables policymakers to timely

detect early signs of distress and implement corrective measures to counteract the de-

terioration of the economy. While there is a substantial amount of literature based

on the mixed-data sampling (MIDAS) formulation to estimate conditional quantiles

of lower frequency variables (e.g., Adams et al., 2021; Carriero et al., 2022), our MF-

QVAR framework is the first to provide these conditional quantile estimates at a higher

frequency. For example, we provide monthly conditional quantiles of GDP growth, a

quarterly variable, instead of the quarterly conditional quantiles provided by the stan-

dard MIDAS approach.

Moreover, the proposed approach overcomes the “ragged-edge” problem, which arises

due to differences in data release dates that cause the available information set to differ

over time within the quarter. This automatic adjustment ensures that the forecaster

can use all available information to generate accurate nowcasts and forecasts. Finally,

the MF-QVAR model leverages the mixed-frequency structure and flexible multivariate
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dynamics to blend the high-frequency temporal evolution into estimating conditional

quantiles of low-frequency variables in the high-frequency domain. This provides a

natural mechanism for incorporating high-frequency information into estimating low-

frequency variables, allowing us to capture the high frequency dynamic relationship

between the variables more accurately.

To overcome the computational challenge in the mixed-frequency VAR, we follow

Chan et al. (2023), who designed a computationally efficient sampler for state-space

models with missing observations, such as MF-VARs. They exploit the block-banded

structure of the precision matrix of the conditional distribution of the missing observa-

tions to adapt the precision-based sampler of Chan and Jeliazkov (2009) to draw the

missing low-frequency variables (see also Rue and Held, 2005). The importance of the

precision sampler to modern econometric models is proven by its use in a variety of

settings, including models with missing observations (Hauber and Schumacher, 2021),

and dynamic factor models (Kaufmann and Schumacher, 2019). An earlier method to

make inference on unobserved variables in state-space models is the simulation smoother

(Durbin and Koopman, 2002). Moreover, we impose linear constraints when sampling

the missing observations to ensure that missing high-frequency observations match the

observed values of the low-frequency variables. This results in sampling from a linearly

constrained Gaussian distribution, which is efficiently performed following the methods

in Cong et al. (2017).

To assess the forecasting accuracy of our proposed framework, we conduct two Monte

Carlo simulation experiments. In the first experiment, we estimate both the univari-

ate quantile regression and QVAR models using a single observed frequency without

any missing data. The purpose is to showcase the effectiveness of jointly estimating

conditional quantiles, as opposed to individual estimation, in enhancing forecasting

performance. For the second experiment, we consider a mixed-frequency setting where

we compare our proposed MF-QVAR model against the conditional mean counterpart

of Schorfheide and Song (2015). Overall, we find that our proposed MF-QVAR model is
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highly accurate in capturing complex dependencies and unobserved variables compared

to the standard models employed in the literature.

We apply our novel MF-QVAR model in both an in- and out-of-sample context. For

the in-sample analysis, we estimate the MF-QVAR on a sample period from January

1973 to December 2021. Then, we compare our model’s in-sample monthly US growth-

at-risk estimates against a quarterly measure derived from univariate quantile regression.

We find that these two frequency estimates display substantial differences in times of

a recession. For instance, our monthly US growth-at-risk estimates appear to detect

the vulnerability in the US economy considerably faster than the quarterly quantile

regression for the Great Recession of 2007-08. We find that when modelling US growth-

at-risks during a recession, the low-frequency estimate can exhibit significantly different

dynamics compared to its high-frequency counterpart.

We conduct an out-of-sample analysis using our proposed MF-QVAR model to now-

cast monthly US growth-at-risk in real-time for two specific episodes. First, we focus

on the Global Financial Crisis (GFC) period, employing data vintage spanning from

January 2005 to December 2010. Second, we focus our attention on the period of the

COVID-19 pandemic and the Russian invasion of Ukraine, utilising data vintage from

January 2016 to March 2022. We generate monthly nowcasts and forecasts based on the

three release timings of US real GDP by the US Bureau of Economic Analysis (BEA).

Our analysis reveals four key insights. First, the proposed MF-QVAR appears to

produce monthly nowcasts capable of detecting the vulnerability of the US economy at

the earlier stage of the GFC compared to its quarterly counterpart. This observation

indicates that the MF-QVAR model offers valuable insights into the economic condi-

tions preceding the GFC. Second, the negative growth-at-risk estimates generated by

our monthly analysis during the early 2010 period align with the prevailing theme of

weakened economic growth experienced by the US economy during that period. In con-

trast, the quarterly counterpart suggests that the US economy had already rebounded

from the recessionary phase that transpired from late 2008 to early 2009.
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Third, we observe a downward shift in the monthly nowcasts of US growth-at-risk

since the pandemic, with the average dropping from about -3% to -5%. Additionally, we

find that the distance between the 10th and 50th percentile of the real GDP nowcasts

significantly increases during the pandemic period, indicating that the monthly distri-

bution of US real GDP has become more skewed to the left. Finally, we compare our

monthly nowcasts of US growth-at-risk to their corresponding quarterly nowcasts from

a quantile regression mixed-data sampling (MIDAS) model. On average, the quarterly

nowcasts underestimate US growth-at-risk relative to our monthly nowcasts, which also

appear to align with the current post-pandemic economic situation in the US.

The remainder of this article is organized as follows: Section 2 presents a novel mixed-

frequency quantile VAR model under the acronym of MF-QVAR and the intertemporal

constraints. In Section 3, the Bayesian approach for inference along with the posterior

algorithm is described. Section 4 investigates the performance of our method using

simulated data. Section 5 shows the results of the in- and out-of-sample analysis on US

real GDP growth-at-risk. Finally, Section 6 draws the conclusions.

2 Mixed-Frequency Quantile VAR

2.1 Notation

Let Sk = {X ∈ Rk×k : X = X ′} denote the space of symmetric matrices of size k × k

and Sk
++ = {X ∈ Sk : a′Xa > 0, ∀ a ∈ Rk} be the space of symmetric, positive definite

matrices of size k × k. For a matrix A ∈ Sk
++, A1/2 represents the Cholesky factor of

A. Let MALn(µ, δ,Σ) indicate a multivariate asymmetric Laplace distribution with

location µ ∈ Rn, skewness parameter δ ∈ Rn, and scale matrix Σ ∈ Sn
++. Let yo

t ∈ Rno

be a vector of variables observed at high-frequency and let yu
t ∈ Rnu be a vector of

variables that are unobserved or only partially observed. Finally, let In be the identity

matrix of size n, and denote with 1n and 0n an n-dimensional vector with all entries
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equal to one and zero, respectively. The symbol ⊗ denotes the Kronecker product.

2.2 Model

We consider a n-dimensional VAR(p) model with p lags for yt = (yo′

t ,y
u′

y )
′, with n =

no + nu, that is

yt = b0 +

p∑

j=1

Bjyt−j + ǫt, ǫt ∼ MALn(0n, Dθτ,1, Dθτ,2Ψθ′
τ,2D

′), (1)

for t = p + 1, . . . , T , where b0 is a n-dimensional vector of intercepts, B1, . . . , Bp are

(n × n) autoregressive coefficient matrices, Ψ is a (n × n) correlation matrix, D =

diag
(
Σ

1/2
11 , . . . ,Σ

1/2
nn

)
, for Σ

1/2
ii ∈ R, and

θτ,1 =

(
1− 2τ1

τ1(1− τ1)
, . . . ,

1− 2τn
τn(1− τn)

)′

, θτ,2 = diag

(√
2

τ1(1− τ1)
, . . . ,

√
2

τn(1− τn)

)
,

where τ = (τ1, . . . , τn) is the quantile representation, such that τi ∈ (0, 1) for i =

1, . . . , n. The multivariate asymmetric Laplace distribution, MALn(µ, Dθτ,1, Dθτ,2Ψθ′
τ,2D

′),

has density function

fY (y|µ, Dθτ,1, Dθτ,2Ψθ′
τ,2D

′) =
2 exp

{
(y − µ)′D−1(θτ,2Ψθ′

τ,2)
−1θτ,1

}

(2π)n/2
∣∣Dθτ,2Ψθ′

τ,2D
∣∣1/2

×
(

m̃

2 + d̃

)ν

Kν

(√
(2 + d̃)m̃

)
,

where m̃ = (y − µ)′(Dθτ,2Ψθ′
τ,2D

′)−1(y − µ), d̃ = θ′
τ,1θτ,2Ψθ′

τ,2θτ,1 and Kν(·) denotes

the modified Bessel function of the third kind with index parameter ν = (2−n)/2. The

MAL distribution is closely related to multivariate quantile regression models, as stated

in Proposition 1 from Petrella and Raponi (2019), which we report using our notation.

Proposition 1 (Petrella and Raponi (2019)). Let y ∼ MALn(µ, Dθτ,1, Dθτ,2Ψθ′
τ,2D

′)

and let τ = (τ1, . . . , τn)
′ be a fixed n-dimensional vector, such that τi ∈ (0, 1) for i =
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1, . . . , n. Then P(yi ≤ µi) = τi if and only if

θτ,1,i =
1− 2τi
τi(1− τi)

, θ2τ,2,i =
2

τi(1− τi)
.

Moreover, yi ∼ AL(µi,Σ
1/2
ii , τi) follows a univariate asymmetric Laplace distribution

(see the Supplement).

Modern models for investigating macroeconomic and financial time series are in-

herently multivariate, which calls for developing suitable multivariate quantile regres-

sion models. Chavleishvili and Manganelli (2021) provide a structural quantile VAR

(QVAR) model to capture nonlinear relationships among macroeconomic variables and

propose a quantile impulse response function to perform stress tests. Both the proposed

MF-QVAR and the QVAR of Chavleishvili and Manganelli (2021) allow for persistence

in all the quantiles. In fact, both specifications include lags of all the endogenous vari-

ables in the conditional quantile for every response. To clarify this point, we remark that

maximum likelihood and Bayesian inference based on the asymmetric Laplace distribu-

tion (multivariate or univariate) with the constraints defined in Petrella and Raponi

(2019) yield the same coefficient estimate as the minimisation of the check-loss func-

tion. The former approach is adopted by the MF-QVAR model, whereas the latter is

followed by Chavleishvili and Manganelli (2021). In short, the location parameter of the

constrained asymmetric Laplace distribution corresponds to the conditional quantile of

interest.

Most of the models commonly used to investigate macroeconomic data focus on mod-

elling the conditional mean of some indicators of interest. In a recent contribution to

this literature, Antolin-Diaz et al. (2021) propose a dynamic factor model with stochas-

tic volatility and outliers for studying the growth rates of macroeconomic variables.

Similar to our empirical application, they deal with mixed-frequency data combining

quarterly and monthly variables. The key difference between Antolin-Diaz et al. (2021)

and the proposed MF-QVAR model is that the latter is a multivariate quantile regres-
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sion framework, whereas the former is a conditional mean model. Quantile regression

is advantageous over mean models since it allows to investigate the (possibly) heteroge-

neous impact of covariates on the entire conditional distribution of the response instead

of restricting only to the effects on the mean.

Montes-Rojas (2019) develop a reduced form QVAR model to provide reliable fore-

casts and define a different quantile impulse response function to explore dynamic het-

erogeneity of the response variables to exogenous shocks. Recently, Adams et al. (2021)

used quantile regressions to characterise upside and downside risks around the survey

of professional forecasters’ median consensus forecasts for each indicator.

The above-mentioned studies adopt a frequentist perspective. In contrast, Bernardi et al.

(2015) developed a Bayesian inference for univariate quantile regression models to mea-

sure tail risk interdependence using Tobias and Brunnermeier (2016)’s Conditional VaR

(CoVaR) indicator, defined as a quantile of a conditional distribution calculated at a

given quantile of its conditioning distribution. Despite the increasing interest by pol-

icymakers in understanding and forecasting the whole distribution of economic and

financial indicators, the literature on quantile VAR models is scant. We aim to fill this

gap by proposing a novel fast Bayesian approach to inference for quantile VAR models.

Following the literature on multivariate time series, we define the nβ-dimensional vec-

tor β = (b′
0, vec(B1)

′, . . . , vec(Bp)
′)′, with nβ = n(1 + np), and the n× nβ-dimensional

matrix Xt = (1n,x
′
t,1, . . . ,x

′
t,p), with xt,j = (yt−j ⊗ In) for each j = 1, . . . , p. Moreover,

let us reparametrize the innovation scale by introducing the positive definite matrix

Σ = DΨD′ ∈ Sn
++, and relabelling with D = D(Σ) = diag

(
Σ

1/2
11 , . . . ,Σ

1/2
nn ). Owing to

the properties of the multivariate asymmetric Laplace distribution, eq. (1) admits a rep-

resentation as a location-scale mixture of Gaussian distributions (Petrella and Raponi,

2019; Kotz et al., 2001), as follows:

yt = b0 +

p∑

j=1

Bjyt−j +Dθτ,1wt +
√
wtDθτ,2Ψ

1/2z̃t, z̃t ∼ Nn(0n, In), (2)
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= Xtβ +D(Σ)θτ,1wt + zt, zt ∼ Nn(0n, wtθτ,2Σθτ,2), (3)

where wt is an auxiliary variable satisfying1 wt
i.i.d.∼ Exp(1), and define w = (wp+1, . . . , wT )

′

the vector of latent variables.2

Let τ = {τ1, . . . , τn} be quantile levels. Then we denote the vector of quantiles of the

marginal distributions, that is, P
(
yi,t ≤ Qτi

i,t | Ft

)
= τi, where Ft is the natural filtration

of the whole state space in the highest frequency domain, as follows:

Qτ
t = b0 +

p∑

j=1

Bjyt−j.

Traditional multivariate time series models, such as the VAR, typically yield distorted

results in the presence of outliers, which is caused by the fact that they are modelling

the conditional mean of the response vector. Conversely, quantile regression methods,

including the proposed MF-QVAR, model the conditional quantiles of the response

variable. Therefore, extreme observations are treated as related to the tail behaviour of

the response but do not contaminate the estimation of all the other quantiles.

Our MF-QVAR model offers a unique approach compared to the standard MIDAS

method. Specifically, we investigate the conditional quantiles of all variables (both

high- and low-frequency), denoted yt, in the highest frequency domain, indexed by t.

In contrast, the MIDAS approach focuses on conditional quantiles of the low-frequency

variables in their respective frequency domain, where t is low-frequency and yt only

contains low-frequency variables. Therefore, our proposed approach allows us to better

capture the dynamics and relationships among variables in the high-frequency domain,

which can be especially important for understanding rapid financial market fluctuations

and other economic events. By employing the multivariate asymmetric Laplace dis-

1We use the rate parametrization, such that if x ∼ Exp(1), then kx ∼ Exp(1/k), for k > 0.
2The variable wt shares a similar resemblance to the common stochastic volatility (CSV) specifi-

cation proposed within a large BVAR framework by Chan (2020). As depicted in Figure S.15 of the
supplementary material, the posterior estimations of wt exhibit strikingly similar dynamics to the CSV
derived from the large BVAR framework proposed by Chan (2020).
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tribution and a Bayesian framework, we can estimate the conditional quantiles of the

high-frequency variables and employ them to nowcast the low-frequency ones.

2.3 Mixed-frequency and Inter-Temporal Constraints

Mixed-frequency VAR (MF-VAR) models in macroeconomics and forecasting have be-

come increasingly popular for producing high-frequency nowcasts of low-frequency vari-

ables. Specifically, MF-VARs are often used to joint model quarterly macroeconomic

variables (low-frequency), such as gross domestic product (GDP), and monthly financial

variables (high-frequency), such as surveys, to produce monthly nowcasts of GDP (e.g.,

see Schorfheide and Song, 2015).

We contribute to this literature by introducing mixed-frequency components in quan-

tile VAR models that allow us to nowcast the conditional mean and the distribution of

the low-frequency variables of interest. This is of paramount importance to timely un-

derstand the status of the economic system by explaining and nowcasting fundamental

indicators, such as GDP and systemic risk indices. Moreover, it allows the researchers

to consider any ragged-edge issues arising from the data release calendar.

A stacked or a state-space approach can be used to handle the mixed-frequency vari-

ables. The first class includes the MIDAS models, initially proposed by Ghysels et al.

(2005) and Ghysels (2016), which consist of a linear model for the lowest observed fre-

quency that includes the high-frequency covariates using particular functional forms

for the coefficients. This framework has recently been extended to account for mul-

tiple regimes, dynamic panels, and high-dimensional settings (e.g., see Casarin et al.,

2018; Mogliani and Simoni, 2021). Conversely, the state-space approach proposed by

Schorfheide and Song (2015) treats the high-frequency observations of the low-frequency

variables as missing values and estimates them via Kalman filtering and smoothing algo-

rithms. This method has been applied to investigate consumption growth and long-run

risks (Schorfheide et al., 2018), regional output growth (Koop et al., 2020), and high-
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dimensional macroeconomic systems (Berger et al., 2023).

In particular, we adopt the state-space approach and model all variables at the

highest observed frequency to obtain the interpolated estimates of the low-frequency

variables at a higher frequency. The main drawback of this approach is the signifi-

cant computational burden, mainly due to the estimation of high-dimensional latent

state vectors (i.e., missing observations of the low-frequency variables) via filtering and

smoothing techniques. This cost becomes prohibitive as the dimension of the VAR gets

large, thus representing a major obstacle to using state-space methods on datasets with

medium-high dimensions.

To investigate the joint distribution of the unobserved variables, conditional on the

observations, let us denote with Y = (y′
p+1, . . . ,y

′
T )

′ and ζ = (z′p+1, . . . , z
′
T )

′ the (T −

p)n-dimensional vectors obtained by stacking all observations and all innovations over

time, respectively. It is now possible to rewrite eq. (2) in matrix form as:

BY = b+ ζ, ζ ∼ N (0(T−p)n,Σ), (4)

where

b = (1T−p ⊗ b0) +w ⊗
(
(1− 2τ1)Σ

1/2
11

τ1(1− τ1)
, . . . ,

(1− 2τn)Σ
1/2
nn

τn(1− τn)

)′

, Σ = diag(w)⊗ θτ,2Σθτ,2,

and

B =




−B1 −B2 . . . −Bp In 0n . . . 0n 0n 0n

0n −B1 . . . −Bp−1 Bp In . . . 0n 0n 0n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0n 0n . . . 0n 0n 0n . . . −Bp In 0n

0n 0n . . . 0n 0n 0n 0n −Bp−1 −Bp In




as a banded matrix of dimensionality (Tn× (T −p)n). Notice that b, Σ, and B depend
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on the model parameters; we drop the notation for exposition purposes.

As stated in Schorfheide and Song (2015), we formulate the mixed-frequency VAR

in a state-space structure. To this aim, let us first denote with yo = (yo′

1 , . . . ,y
o′

T )
′

and yu = (yu′

1 , . . . ,y
u′

T )
′ the Tno- and Tnu-dimensional stacked vectors of observed

and unobserved response variables. This allows to represent the vector y as a linear

combination of yo and yu, as follows:

y = Muy
u +Moy

o, (5)

where Mo and Mu are (Tn× Tno) and (Tn× Tnu) selection matrices with full column

rank. Then, by substituting eq. (5) into eq. (4) along the lines of Chan et al. (2023), one

obtains the joint distribution of the missing observations, conditional on the observed

data and model parameters as the Gaussian distribution:

yu|yo,β,Σ,w ∼ N (µy, K
−1
y ), (6)

where Ky = M ′
uB

′Σ−1BMu and µy = K−1
y (M ′

uB
′Σ−1 (b−BMoy

o)).

In practice, the unobserved data points in yu are constrained to match the value

of the low-frequency variables at those points in time when the latter are observed.

One of the most commonly used restrictions for log-differenced variables is the log-

linear approximation of Mariano and Murasawa (2003). This approach assumes that

the observed quarterly value of the i-th variable at month t, denoted by ỹui,t, is obtained

as a linear combination of the missing monthly values at the current and previous four

months, denoted by yui,t, . . . , y
u
i,t−4, as follows:

ỹui,t =
1

3
yui,t +

2

3
yui,t−1 + yui,t−2 +

2

3
yui,t−3 +

1

3
yui,t−4. (7)

This is a log-linear approximation to an arithmetic average of the quarterly variable,

where note that ỹui,t is only observed for every third month. Stacking the inter-temporal
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constraints over time, one gets

ỹu = May
u, (8)

where Ma is a (k × Tnu) matrix containing the k linear restrictions, and ỹu is a vector

containing the observed values of the low-frequency variables. To account for the inter-

temporal constraints when sampling the unobserved variables, yu, it is sufficient to

draw from the Gaussian distribution in eq. (6) subject to the restrictions in eq. (8).

This is efficiently done following the methods described in Algorithm 2 of Cong et al.

(2017), which postulates first to draw a vector from the unconstrained distribution,

u ∼ N (µy, K
−1
y ), then compute

yu = u+K−1
y M ′

a(MaK
−1
y M ′

a)
−1(ỹu −Mau). (9)

From a computational perspective, we follow the efficient implementation in Algorithm

1 of Chan et al. (2023).

We emphasise that while this is conceptually similar to the standard inter-temporal

constraints of mean regression models, it is practically different. Similar to the mean

regression models presented in Chan et al. (2023) under the state-space formulation, the

variables themselves are subject to constraints. Specifically, the monthly GDP values

are linearly combined to obtain the quarterly GDP observations, which are often used

for performance evaluation. However, it is important to note that a linear combination

of monthly quantiles does not necessarily equal the quarterly quantile:

Qτ
ỹi,t

6= 1

3
Qτ

yi,t
+

2

3
Qτ

yi,t−1
+Qτ

yi,t−2
+

2

3
Qτ

yi,t−3
+

1

3
Qτ

yi,t−4
,

where we made a slight abuse of notation by denoting with Qτ
yi,t

the τth quantile of

yi,t, the ith response variable at time t. The primary objective of this article is to

offer prompt estimates of monthly quantiles for quarterly variables, that is, the quantile

estimates for the right-hand side equation above. If the aim is to acquire estimates of
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quarterly GDP quantiles, a quantile-MIDAS approach can be used in place of the one

proposed in this article.

Remark 1 (Aggregation). In this article, our primary objective is to estimate the high-

frequency quantiles of a lower-frequency variable, that is Qτ
i,t = inf {x ∈ X : P(Yi,t ≤ x|Ft) = τ},

where Yi,t is not observed, which makes a direct evaluation of nowcasts or forecasts from

the proposed MF-QVAR model impossible. We illustrate this problem via

Q̃τ
i,nt

= inf

{
x ∈ X : P

(
Yi,nt

=
k∑

j=1

wjYi,t−j+1 ≤ x
∣∣∣Ft

)
= τ

}
, (10)

where {wj}kj=1 is a sequence of weights stemming from the time constraints that maps

the unobserved high-frequency observations Yi,t into the low-frequency observations,

Yi,nt
, and nt denotes the lower frequency count at the time measured in high frequency.

Under a standard conditional mean framework, such as the MF-VAR model employed

by Schorfheide and Song (2015), nowcasts or forecasts can be evaluated by aggregating

the (unobserved) missing high-frequency estimates against the observed low-frequency

value. However, in our proposed quantile framework, a direct aggregation across the

estimated high-frequency quantiles of a lower-frequency variable cannot be made since:

Q̃τ
i,nt

6=
k∑

ℓ=1

wℓQ
τ
i,t−ℓ+1, (11)

that is, the linear combination of the quantiles is not equal to the quantile of the random

variable constructed by the same temporal aggregation as in Eq. (7).

Remark 2 (MIDAS QR vs MF-QVAR). In estimating a conditional quantile of quarterly

real GDP, the quantile MIDAS approach is concerned with the conditional distribution:

P (yq2,t|y1,t−1, y1,t−2, y
q
2,t−3), (12)

where y1,t is the vector of (high-frequency) observed monthly variables, and yq2,t denotes
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the (low-frequency) quarterly real GDP that is only observed for t ∈ Tq ⊂ {1, . . . , T}.

Instead, we consider a state-space formulation and assume an unobserved monthly

evolution of the GDP, such that each quarterly observation is a linear combination of

the (unobserved) monthly real GDP:

yq2,t =
k∑

j=1

wjy2,t−j+1. (13)

In this case, differently from the MIDAS approach, we work with the conditional dis-

tribution:

P (y2,t|y1,t−1, y2,t−1), (14)

where y2,t is never observed and satisfies the set of constraints set in Eq. (13).

It is important to acknowledge that Eq. (12) and (14) represent two distinct distri-

butions. In fact, Eq. (12) is the distribution of an observed variable, which allows direct

evaluation of fitness and forecast performances in practical scenarios. Conversely, the

distribution in Eq. (14) is related to an unobserved variable, making it challenging to

assess. Therefore, considering the practical and theoretical challenges outlined above,

we are unable to directly evaluate the nowcasts and forecasts generated by our proposed

framework in the out-of-sample forecasting exercise.

3 Bayesian inference

In this section, we provide the details of the estimation of our proposed MF-QVAR

model. Initially, we exploit the location-scale mixture representation of the multivariate

asymmetric Laplace in eq. (1) and introduce a set of auxiliary variables wt
i.i.d.∼ Exp(1),

thus the complete-data likelihood is given by:

L((yo
1,y

u
1), . . . , (y

o
T ,y

u
T ),w|β,Σ) =

T∏

t=p+1

P (yt|β,Σ, wt)P (wt|β,Σ)
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=
T∏

t=p+1

exp
{
− 1

2

[(
yt −Xtβ −D(Σ)θτ,1

)′(
wtθτ,2Σθτ,2

)−1(
yt −Xtβ −D(Σ)θτ,1

)]}

× (2π)−
n
2 |wtθτ,2Σθτ,2|−

n
2 exp{−wt}. (15)

Before describing the posterior distributions along with the algorithm used, we define

the prior specifications for our parameters. Starting with the coefficient vector β =

(b′
0, vec(B1, . . . , Bp)

′)′, we assume a conjugate multivariate Gaussian prior distribution

β ∼ Nnβ
(µ

β
,Ωβ).

For this vector of coefficients, one may consider using shrinkage priors such as the global-

local shrinkage prior (Polson and Scott, 2010), and the Minnesota prior (Kadiyala and Karlsson,

1997). In this article, we focus on a simple case by setting the prior mean of the coef-

ficient associated with each equation at the frequentist univariate regression estimate,

µ
β
= β̂, and a prior variance Ωβ = 100 · Inβ

, which results in a relatively flat prior

distribution. We leave for further research on the use of more complex shrinkage priors.

The other parameter of interest is the scale matrix, Σ ∈ Sn
++, and in this scenario,

we assume an inverse Wishart prior distribution

Σ ∼ IWn(ν0, Φ0),

where ν0 > n− 1 is the degrees of freedom parameter and Φ0 ∈ Sn
++ is a scale matrix,

such that if ν0 > n+1 then E[Σ] = Φ0/(ν0 −n− 1). This is equivalent to assuming the

Wishart prior distribution for Σ−1 ∼ Wn(ν0, Φ−1
0 ), where E[Σ−1] = Φ−1

0 ν0.

Based on these prior specifications and the likelihood function in eq. (15), we can

provide the full conditional distributions for each parameter and latent variable of the

model. We remark that our parametrization differs from Tian et al. (2016), as we work

with the positive definite matrix Σ, instead of the correlation matrix Ψ and the diagonal

matrix D separately. Moreover, we work with multivariate Bayesian analysis of quantile
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regression models, while Yu and Moyeed (2001) proposed a Bayesian approach for the

univariate framework.

As the joint posterior distribution is not tractable, we rely on data augmentation to

obtain closed-form full conditional distributions and to design a Markov chain Monte

Carlo (MCMC) algorithm for approximating the posterior distribution. Specifically, we

design an efficient Gibbs sampler based on the precision sampler of Chan and Jeliazkov

(2009) and Chan et al. (2023), which cycles over the following steps:

1. draw yu given yo,β,w and Σ from eq. (6) subject to the restrictions in eq. (8)

using Algorithm 1 of Chan et al. (2023);

2. draw β given yo,yu,w and Σ from the Gaussian distribution Nnβ
(µb,Ωb), with

ẽt = yt −Dθτ,1wt and parameters

Ωb =
(
Ω−1

b +
T∑

t=p+1

X ′
t(wtθτ,2Σθτ,2)

−1Xt

)−1

, µb = Ω
−1

b

(
Ω−1

b µ
b
+

T∑

t=p+1

ẽ′t(wtθτ,2Σθτ,2)
−1Xt

)
.

3. draw wt, for each t = p + 1, . . . , T , given yo,yu,β and Σ from the Generalised

inverse Gaussian distribution GiG(pw, aw, bw,t), with ut = yt −Xtβ, and

pw = 1− n

2
, aw = 2 + θ′

τ,1D(θτ,2Σθτ,2)
−1Dθτ,1, bw,t = u′

t(θτ,2Σθτ,2)
−1ut.

4. draw Σ given yo,yu,β and w via the slice sampler of Neal (2003). Defining

et(Σ) = yt −Xtβ −D(Σ)θτ,1wt, the target density function is proportional to:

∝ |Σ|−
ν0+n+1

2 exp

{
−1

2
tr
(
Φ0Σ

−1
)}

|Σ|−T
2 exp

{
−1

2

T∑

t=1

e′t(Σ)
(
w−1

t θ−1
τ,2Σ

−1θ−1
τ,2

)
et(Σ)

}
.

The Supplement provides a detailed description of the MCMC algorithm along with the

derivation of the full conditional distributions.
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4 Simulation Study

To illustrate the estimation and forecasting accuracy of our proposed framework, we

undertake a simulation study across two data-generating processes (DGP) based on the

following bivariate process:

Y1,t = Xtβ1 + exp(Xtγ1)Z1,t,

Y2,t = Xtβ2 + exp(Xtγ2)Z2,t, t = 1, . . . , T,

(16)

where Xt = [Y1,t−1, Y2,t−1] and Zi,t ∼ N (0, 1), for i = 1, 2. Given the marginal DGPs in

Eq. (16), we model the dependence between the series using:

1. a Gaussian copula, with correlation coefficient ρ = 0.5 and variance σ2 = 1;

2. a Student-t copula with correlation coefficient, degree of freedom parameter and

variance equal to ρ = 0.5, ν = 5 and σ2 = 1, respectively.

It is worth noting that the Gaussian copula assumes a symmetric dependence with

constant strength across the entire range, whereas the t-copula allows for heavy-tailed

and asymmetric dependence, accommodating a wider range of dependence patterns. For

each model i = 1, 2 and variable j = 1, . . . , n, with n = 2 in this case, the conditional

τ -quantiles are constructed as:

Q
τ,(i)
j,t = Xtβj + exp(Xtγj)F

−1
i (τ), (17)

where Fi is the CDF under model i. Finally, we evaluate the performance of each model

in terms of the estimated conditional quantiles against their corresponding true values
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using the in-sample and out-of-sample mean absolute error (MAE) metrics:3

MAEin(i) =
1

Tn

n∑

j=1

T∑

t=1

∣∣∣Qτ,(i)
j,t − Q̂

τ,(i)
j,t

∣∣∣ , MAEout(i) =
1

n

n∑

j=1

∣∣∣Qτ,(i)
j,T+1 − Q̂

τ,(i)
j,T+1

∣∣∣ , (18)

where Q
τ,(i)
j,t is the true DGP simulated conditional quantiles by Eq. (17) and Q̂

τ,(i)
j,t is

the estimated conditional quantile of the jth variable from model i. We set T = 600

and consider τ = {0.1, 0.5, 0.9}.4

In the first experiment, we estimate univariate quantile regression and QVAR models

based on a single observed frequency, that is, without missing observations. The goal

of this experiment is to demonstrate the effectiveness of jointly estimating conditional

quantiles, as opposed to individual estimation. Instead, the second experiment considers

a mixed-frequency setting, where we estimate the conditional mean MF-VAR model of

Schorfheide and Song (2015) and our proposed MF-QVAR model. As the primary focus

of this article is on estimating the conditional quantiles of the unobserved low-frequency

variables, we aim to compare the accuracy of our proposed framework against their

corresponding mean counterparts. To estimate all the models, we employ the Bayesian

approach and run 10 parallel MCMC chains.

In the first simulation experiment, the MAEs in Table 1 show a consistent pattern

across both DGPs. The joint estimation of conditional quantiles consistently outper-

forms the individual estimation approach, highlighting the effectiveness of considering

quantiles jointly rather than in isolation. This is because by jointly estimating the con-

3In this particular simulated experiment, our primary focus lies in assessing the precision of each
model in generating a specific conditional quantile estimate, a central objective of this article. The
evaluation and development of density forecasts utilizing our proposed methodology are beyond the
scope of this article. If we were to proceed with constructing density forecasts using our proposed model,
it would require estimation across a broad spectrum of conditional quantiles. Subsequently, we would
have to apply either the skew-t approach as delineated by Adrian et al. (2019) or the non-parametric
approach advocated by Mitchell et al. (2023) for constructing the density forecast across all these
quantiles. However, it’s noteworthy that these two approaches have been primarily employed in the
context of univariate quantile regression. Extending these methodologies to a multivariate framework
presents a formidable and intricate challenge, and its applicability is not guaranteed. Consequently, we
defer this endeavor to a future avenue of research.

4The selected time periods and quantiles are chosen to reflect the empirical application undertaken
in Section 5.
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ditional quantiles, we can leverage the interdependencies and relationships that exist

among several variables, capturing the complex dependence structure more accurately.

When quantiles are estimated independently, the performance of the upper and lower

tails deteriorates dramatically due to limited data. However, the proposed method

by jointly estimating the quantiles demonstrates robustness across different correlation

structures, effectively capturing potentially complex tail dependencies between the vari-

able, leading to improved estimation accuracy and forecasting performance.

10% Quantile 50% Quantile 90% Quantile

Model Gaussian Student-t Gaussian Student-t Gaussian Student-t

In-sample
Univariate BQR 1.26 1.48 0.13 0.14 1.25 1.46

QVAR 0.11 0.17 0.06 0.07 0.12 0.26

Out-of-
sample

Univariate BQR 1.25 1.48 0.09 0.11 1.24 1.49
QVAR 0.12 0.19 0.03 0.07 0.06 0.23

Table 1: MAE simulation results for the observed frequency case. Notes: Univariate BQR
denotes a univariate Bayesian quantile regression; QVAR denotes a quantile VAR with no
missing values. Bold values denote the best model.

In the mixed-frequency case, we focus on estimating the high-frequency quantiles

of the low-frequency variable, that is Qτ
2,t. The results in Table 2 provide valuable

insights into several key aspects. First, we find evidence that missing values in the

data can have an adverse impact on the estimation across all the modelling approaches,

due to the induced information loss. Second, the Gaussian MF-QVAR model may

struggle to effectively capture tail behaviour even when the Gaussian assumption is

correctly specified and the DGP exhibits heterogeneous error variance. This points

out the limitations of relying solely on the Gaussian assumption and suggests the need

for alternative modelling approaches that can better accommodate the complexities

of the data. Lastly, the proposed MF-QVAR demonstrates the capability to capture

such complex dependencies, even when a variable is unobserved and only its temporal

aggregation is available. This highlights the robustness and effectiveness of the proposed

methodology in capturing and incorporating information from unobserved variables,

leading to improved estimation accuracy and forecasting performance.
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10% Quantile 50% Quantile 90% Quantile

Model Gaussian Student-t Gaussian Student-t Gaussian Student-t

In-sample
MF-VAR 1.27 1.49 0.59 0.68 1.53 2.19

MF-QVAR 0.57 0.58 0.47 0.64 0.55 0.77

Out-of-
sample

MF-VAR 2.51 2.69 0.18 0.35 1.38 1.10
MF-QVAR 0.91 1.51 0.14 0.22 0.47 0.38

Table 2: MAE simulation results for the mixed-frequency case. Notes: MF-VAR denotes the
mixed-frequency state-space VAR of Schorfheide and Song (2015) and Chan et al. (2023);
MF-QVAR denotes our proposed mixed-frequency state-space quantile VAR model. Bold
values denote the best model.

Overall, the simulation results provide valuable insights into the challenges posed by

missing values, the limitations of the Gaussian MF-QVAR model in capturing tail be-

haviour, and the strengths of the proposed approach in handling complex dependencies

and unobserved variables. Furthermore, the Supplement presents the MAE simulation

results for a nine-variables DGP encompassing both Gaussian and Student-t copulas.

Once again, these outcomes reinforce the aforementioned conclusions drawn from the

bivariate cases.

5 Empirical Application

In this empirical application, we illustrate our proposed MF-QVAR model via an in- and

out-of-sample analysis. Specifically, we plot the monthly US growth-at-risk estimates

from our proposed model against a quarterly frequency counterpart model for the in-

sample analysis. Next, we undertake a real-time exercise to nowcast monthly US growth-

at-risk for the out-of-sample analysis.

5.1 In-Sample Analysis: Monthly US GDP Quantile Estimates

We estimate our proposed MF-QVAR model on the final vintage date of March 2022,

and the sample spans from January 1973 and December 2021. We estimate an MF-

QVAR model consisting of the quarterly US real GDP and eight monthly variables,
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which were gathered from the St. Louis ALFRED database.5 Seven of the monthly

variables included in our model are broadly similar to the monthly variables chosen in

Schorfheide and Song (2015), whereas the last one is the NFCI. This choice is motivated

by the recent study of Adrian et al. (2019), which showed that a tightening of the NFCI

could lead to a large increase in the growth-at-risk for US real GDP.

Figure 1 plots the monthly posterior estimates of US GDP across three selected

quantiles: 10, 50 and 90 per cent. All of these quantile estimates display broadly

similar dynamics over time and exhibit concurrent fall in their estimates during most

NBER recession dates. In addition, these quantile estimates are very volatile over time,

and this is unsurprising since we are modelling monthly percentage changes here.

Figure 1: Posterior mean of the monthly US GDP for the 10 (purple), 50 (black) and 90
(blue) per cent quantiles. The shaded grey areas denote the NBER recession dates.

Table 3 showcases the posterior mean of selected coefficients in the MF-QVAR model

applied to the GDP equation. Specifically, it elucidates the impacts of various economic

indicators, including CPI inflation, the Fed funds rate, the unemployment rate, and

NFCI.6 All the coefficient estimates presented in Table 3 are statistically significant, as

evidenced by the fact that the corresponding 68% credible intervals do not include zero.

Our analysis reveals an observable negative association between real GDP and both

5See the Supplement for further details of each data variable and their respective transformations.
6See the Supplement for the complete set of posterior estimates of the MF-QVAR model.
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CPI inflation and NFCI, indicating clear interdependencies. Importantly, the influence

of CPI inflation is more pronounced within the lower range of GDP, while NFCI exerts

a greater impact within the median quantile.

An intriguing finding emerges with regard to the coefficient of the Fed funds rate. Its

sign changes from positive in the 10% quantile to negative in the 90% quantile, suggest-

ing that a contractionary monetary policy significantly and adversely affects GDP. In

contrast, the coefficient of the unemployment rate exhibits an opposite behaviour to that

of the Fed funds rate. It demonstrates a negative effect on GDP within the lower and

median quantiles, consistent with Okun’s law, which states an inverse relationship be-

tween the unemployment rate and GDP. However, surprisingly, the unemployment rate

positively impacts the upper quantile of GDP, thereby invalidating Okun’s law in this

context. Consequently, our findings provide evidence of asymmetric behaviour within

the conditional distribution and underscore the notion that relationships established

based on conditional means may not hold true in the distribution’s tails.

Coefficient on the
GDP equation

CPI Inflation
Federal Funds
Rate

Unemployment
Rate

NFCI

10% quantile
-3.09 0.35 -0.87 -0.61

(-3.19, -2.99) (0.26, 0.45) (-0.97, -0.77) (-0.70, -0.51)

50% quantile
-0.31 0.47 -1.41 -2.61

(-0.40, -0.21) (0.37, 0.56) (-1.50, -1.31) (-2.71, -2.51)

90% quantile
-1.26 -1.09 0.95 -1.69

(-1.36, -1.16) (-1.20, -0.99) (0.86, 1.05) (-1.80, -1.58)

Table 3: Posterior mean estimates of selected VAR coefficients in the GDP equation of
MF-QVAR, with the associated 68% credible intervals in brackets.

In Carriero et al. (2022), they similarly nowcasts US growth-at-risk using weekly

information. However, they implement a MIDAS quantile regression framework where

they regress US quarterly real GDP against weekly economic indicators. Consequently,

they are still only able to nowcasts US growth-at-risk at the quarterly frequency. In

contrast, our proposed MF-QVAR allows us to specifically nowcast the US growth-at-

risk at the monthly frequency.
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Figure 2: Monthly and quarterly US GDP growth-at-risk estimates. Posterior mean of
monthly US GDP 10% quantile (growth-at-risk) estimates (blue line), and the corresponding
68% credible interval (shaded blue area). Quarterly US GDP 10% quantile estimates from a
standard frequentist QR (black line). The grey shades denote the NBER recession dates.

Intuitively, we would expect the higher frequency monthly US growth-at-risk esti-

mates to behave very differently from their quarterly counterpart. To illustrate these

differences, we plot in Fig. 2 the monthly and quarterly in-sample US growth-at-risk

estimates from our MF-QVAR and a quarterly frequency quantile regression, respec-

tively. In regards to the quarterly quantile regression specification (denoted as the

Quarterly-QR in Fig. 2), we regress the US real GDP against the lagged values of the

other eight variables described in the dataset, all at the quarterly frequency. Essentially,

the Quarterly-QR can be interpreted as the univariate version of the US GDP equation

of our MF-QVAR. By inspecting Fig. 2, we notice that both the monthly and quarterly

US growth-at-risk estimates display similar dynamics over time. However, these two

frequencies exhibit substantial differences in their level estimates during the recessions.

For instance, focusing on the Great Recession of 2007-08, our monthly US growth-at-

risk estimates appear to be detecting the vulnerability of the US economy considerably

faster than the quarterly quantile regression. In addition, the Quarterly-QR exhibits

a significant negative growth-at-risk compared to our MF-QVAR estimate in both the

Great Recession and the COVID-19 pandemic. Therefore, this result suggests that

when modelling US growth-at-risk, the low-frequency estimate can display significantly
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different dynamics compared to its high-frequency counterpart during a recession.7

5.2 Out-of-Sample Analysis: Nowcasting Monthly US GDP Growth-

at-risk

We illustrate the utility of our proposed MF-QVAR model by undertaking a real-time

nowcasting application for the growth-at-risk of US real GDP. To the best of our knowl-

edge, this is the first study that explicitly nowcasts a monthly growth-at-risk estimate for

US real GDP, whereas all the previous studies only modelled it at a quarterly frequency.

A key advantage of our MF-QVAR model is that it naturally allows the forecaster to

consider any ragged-edge issues arising from the data release calendar.

We conduct our real-time nowcasting analysis in two distinct episodes. Firstly, we

concentrate on the GFC period, employing data vintage spanning from January 2005

to December 2010. Secondly, we shift our attention to the period encompassing the

COVID-19 pandemic and the Russian invasion of Ukraine, utilising data vintage from

January 2016 to March 2022. All vintage data for the monthly and quarterly series used

in the out-of-sample analysis was collected from the St. Louis ALFRED database.8

We focus on generating the nowcasts and forecasts under three release timings of

US real GDP by the US BEA. This approach is similar to the works of Giannone et al.

(2008) and Bańbura et al. (2013). However, for the sake of simplicity and consistency

with Schorfheide and Song (2015), we conduct a real-time exercise where we only gener-

ate nowcasts and forecasts for US growth-at-risk at the end of each month. In contrast,

Giannone et al. (2008) and Bańbura et al. (2013) produce nowcasts of real GDP mul-

tiple times within each month. The objective of our real-time exercise is to analyse

the variation in the nowcasts and forecasts of US growth-at-risk from month to month

rather than focusing on their behaviour within each individual month.

7We have also estimated our MF-QVAR model using Minnesota prior specified in Carriero et al.
(2022). The in-sample results similar to our benchmark are presented in the Supplement.

8The data vintage for NFCI is only available from May 2011 onwards in the US ALFRED database.
Therefore, for the GFC period, we have to exclude NFCI from the nowcasting exercise.
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Our nowcasting approach is demonstrated in Fig. 3, which represents the data release

calendar. Let us begin by considering the end of January 2015, denoted as event (a) in

Fig. 3. At this time, the December 2014 data for the monthly indicators are released,

and the BEA provides the first estimate of Real GDP for the fourth quarter of 2014.

In this particular scenario, both the monthly variables and quarterly US GDP exhibit a

balanced data structure without a ragged edge at the end of the sample. Consequently,

we generate a growth-at-risk forecast for the upcoming one to three months (January,

February, and March 2015, as illustrated in our example). We categorised this as a

Forecast in our out-of-sample nowcasting exercise. As we progress to the end of February

2015 (event (b) in Fig. 3), the January 2015 data for the monthly indicators and the

BEA’s second estimate of Real GDP for the fourth quarter of 2014 are released. At this

point, there is a ragged edge at the end of the sample due to the unbalanced structure

of both the monthly variables and quarterly US GDP. The growth-at-risk nowcast for

the following one to three months, generated at this period, is designated as Nowcast

T + 1. Finally, we reach the conclusion of March 2015 (event (c) in Fig. 3), denoting

the release of the monthly indicators for February 2015 and the BEA’s third estimate

of Real GDP for the fourth quarter of 2014. Similarly, a ragged edge is observed at the

end of the sample period. During this period, the growth-at-risk nowcast is denoted as

Nowcast T + 2.

Subsequently, we maintain the iterative process throughout the ensuing three months

within each quarter, ensuring consistent classification of both nowcasts and forecasts.

Our main focus is on nowcasting the growth-at-risk at the 10th percentile, denoted as

τ = 0.1. To comprehensively explore the dynamics of the entire distribution of real

GDP, we also generate nowcasts for the 50th (τ = 0.5) and 90th (τ = 0.9) percentiles.

5.2.1 Global Financial Crisis Period

We investigate the nowcasting behavior of the monthly growth-at-risk estimates during

the GFC period. To obtain a quarterly series to compare with the low-frequency ob-
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December 31st,
2014

Actual Observed
Dates

January 31st, 2015

(a) Monthly indicators for 2014M12 are released
BEA 1st Release of Real GDP for 2014Q4

February 28th, 2015

(b) Monthly indicators for 2015M01 are released
BEA 2nd Release of Real GDP for 2014Q4

March 31st, 2015

(c) Monthly indicators for 2015M02 are released
BEA 3rd Release of Real GDP for 2014Q4

April 30th,
2015

Figure 3: Data Release Calendar. We denote the event as (a) Forecast, (b) Nowcast T + 1
and (c) Nowcast T + 2.

served GDP, Fig. 4 plots the rolling three-month posterior mean average of the monthly

changes of the growth-at-risk estimates for the three types of nowcasts. Moreover, for

comparison purposes, in Fig. 4 we also plot the corresponding quarterly growth-at-risk

nowcasts from a U-MIDAS quantile regression (QR) model. This U-MIDAS QR model

extends the quarterly frequency QR model used in Adrian et al. (2019) and incorporates

all the monthly indicators specified in our data table of the Supplement. The resulting

quarterly growth-at-risk nowcasts are denoted as the dashed lines in Fig. 4.

The findings depicted in Fig. 4 indicate that the MF-QVAR model demonstrates

a notable capability in detecting the vulnerability of the US economy at an earlier

stage compared to the U-MIDAS QR model. The end of 2005 was characterised by a

slowdown in housing prices and a rising delinquency rates in mortgage loans. During this

period, our proposed model generates forecast and nowcast estimates of approximately

-8%, whereas the quarterly counterpart model provides an estimate of -1%. A possible

explanation for the discrepancy is that the proposed framework might better captures

the large negative effects of the above-mentioned events on the economy.
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Figure 4: Posterior mean of the rolling three-month average growth-at-risk changes for the
10th percentile (τ = 0.1), from MF-QVAR (monthly, solid), and U-MIDAS QR (quarterly,
dashed). Forecasts of T in blue, nowcasts of T + 1 in red, and nowcasts of T + 2 in yellow.

During the period of intensified recession in late 2008 and early 2009, both the

monthly and quarterly growth-at-risk estimates exhibit a significant level of similarity.

However, the monthly growth-at-risk estimates demonstrate a tendency to identify the

onset of recessionary phases earlier compared to their quarterly counterparts. Moreover,

as the early 2010 period unfolded, the quarterly growth-at-risk estimates indicated pos-

itive values, suggesting a recovery of the US economy following the recession of late

2008 to early 2009. Conversely, the monthly growth-at-risk estimates showed negative

values, indicating that the US economy remained vulnerable and distant from achieving

a state of recovery. Additionally, we plot the posterior estimates of the monthly nowcast

for T + 2 at the 50th (τ = 0.5) and 90th (τ = 0.9) percentiles, as depicted in Fig. 5.

This figure illustrates that the monthly nowcasting distribution of real GDP becomes

increasingly negatively skewed towards the end of 2005 and during the heightened reces-

sionary period of late 2008 and early 2009.9 The persistence of negative growth-at-risk

estimates during the early 2010 period aligns with the prevailing theme of weakened

economic growth experienced by the US economy during that time.

9We find similar conclusions in the monthly forecast and nowcast of T+1, please see the Supplement.
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Figure 5: Posterior mean of the rolling three-month average of the Monthly Nowcast T + 2
for the 10th (τ = 0.1, blue), 50th (τ = 0.5, red), and 90th percentile (τ = 0.9, yellow).

5.2.2 COVID-19 Pandemic and Russian Invasion of Ukraine Period

In our final out-of-sample study, we focus on generating the forecast and nowcasts for

the period, including the COVID-19 pandemic and the Russian invasion of Ukraine.

Similarly, Fig. 6 displays the rolling three-month posterior mean average of the monthly

growth-at-risk estimates’ changes, specifically pertaining to the aforementioned period

of interest. It is evident from Fig. 6 that the growth-at-risk nowcasts were, on average,

about -3% during the pre-pandemic period, whereas this average has fallen to about

-5% since the pandemic. This implies that COVID-19 has caused US monthly real

GDP to be more skewed to the left and increased the vulnerability of the US to enter

a recession. In contrast, considering the 50th and 90th percentile, the monthly nowcast

between spring and summer 2020 evolved in the opposite direction compared to the

quarterly predictions (see the Supplement). This further highlights the importance of

the proposed nowcasting approach in providing a timely characterization of risks.

Based on the observations derived from Fig. 6, the majority of the quarterly growth-

at-risk nowcasts exhibit positive values, with the exception of the initial year marked by
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Figure 6: Posterior mean of the rolling three-month average growth-at-risk changes for the
10th percentile (τ = 0.1), from MF-QVAR (monthly, solid), and U-MIDAS QR (quarterly,
dashed). Forecasts of T in blue, nowcasts of T + 1 in red, and nowcasts of T + 2 in yellow.

the onset of the COVID-19 pandemic. In contrast, the monthly growth-at-risk nowcasts

from the MF-QVAR model are all negative. These results suggest that the nowcasts from

the U-MIDAS QR model may be underestimating the underlying growth-at-risk measure

for US Real GDP. For instance, the growth-at-risk nowcasts from the U-MIDAS QR

model bounced back to their pre-pandemic level at the end of 2020, which is inconsistent

with recent global events. In fact, since the pandemic period, the US has experienced

weaker growth and high inflation, and intuitively one would expect the US to be more

prone to a recession than an expansion. Conversely, the nowcasting results from our MF-

QVAR model are consistent with this idea. These differences between our MF-QVAR

and U-MIDAS QR model are consistent with the findings in the in-sample analysis,

where we found lower frequency growth-at-risk estimates can display different dynamics

to their monthly counterparts during a recession.

To further investigate the skewness of the real GDP nowcasts, we also generated

the nowcasts for the 50th (τ = 0.5) and 90th (τ = 0.9) percentiles. Figure 7 plots

all the posterior estimates of the percentiles for the monthly nowcast of T + 2. The

pattern displayed in Fig. 7 indeed confirms our previous finding that the COVID-19

pandemic has caused the real GDP nowcasts to become more negatively skewed. Similar
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conclusions can be drawn from the monthly forecast and monthly nowcast of T +1 (see

Supplement). Moreover, in Table 4, we report the posterior monthly nowcasts of all the

percentiles for selected pandemic periods. For December 2019, the nowcast estimate

for the 10th percentile was -1.44%, dropping to -5.67% in April 2020 of the first wave

of the pandemic. In addition, the uncertainty associated with the real GDP nowcasts

appears to have widened since the pandemic. For example, the distance between the

nowcasts of the 10th and 90th percentile has significantly increased since December

2019, as reported in the fifth column in Table 4. This result suggests that nowcasting

real GDP has become more challenging since the pandemic.

By inspecting the difference between nowcasts of the 50th-10th and the 90th-50th

percentiles, we find evidence of an increased negative skewness during the pandemic.

This is motivated by the shift of mass from the right tail (as proxied by |Q0.9−Q0.5|) to

the left tail (as proxied by |Q0.5 −Q0.1|), whose difference in the last column of Table 4

can be interpreted as a proxy for the skewness. In particular, the distance between the

nowcasts of the 10th and 50th percentile during the pandemic outweighs the increased

distance between the 50th and 90th percentile, thus providing evidence supporting our

previous finding that the US monthly real GDP has become more negatively skewed

during the pandemic (see last column in Table 4).

Figure 7: Posterior mean of the rolling three-month average of the Monthly Nowcast T + 2
for the 10th (τ = 0.1, blue), 50th (τ = 0.5, red), and 90th percentile (τ = 0.9, yellow).
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Percentile

Dates Q0.1 Q0.5 Q0.9 Q0.9 −Q0.1 Q0.5 −Q0.1 Q0.9 −Q0.5

|Q0.9 −Q0.5|−

|Q0.5 −Q0.1|

December 2019 -1.44 1.17 5.20 6.63 2.61 4.03 1.42

April 2020 -5.67 -0.46 3.44 9.11 5.21 3.90 -1.31

September 2020 -2.74 6.99 18.84 21.58 9.73 11.85 2.12

January 2021 -8.48 -2.63 4.75 13.23 5.85 7.38 1.53

December 2021 -2.95 1.01 5.90 8.85 3.96 4.89 0.93

Table 4: Posterior estimates of the 10th, 50th and 90th percentiles for the monthly nowcast
T + 2 across selected periods during the pandemic period.

6 Conclusions

Motivated by the limitations of popular VAR models for low-frequency economic vari-

ables, we introduce a novel mixed-frequency quantile vector autoregression (MF-QVAR)

model. The proposed method exploits the informational content of high- and low-

frequency variables to produce forecasts and nowcasts of conditional quantiles for indica-

tors of interest. This permits to derive quantile-related risk measures at high frequency,

thus enabling timely policy interventions.

The MF-QVAR model admits a state-space representation where the measurement

equation follows a multivariate asymmetric Laplace distribution. Bayesian inference is

performed by means of an efficient MCMC algorithm that exploits a data augmentation

scheme coupled with a precision sampler to estimate the missing low-frequency variables

at higher frequencies. To illustrate the forecasting accuracy of the proposed framework,

we conduct two Monte Carlo simulation experiments and showcased that our proposed

MF-QVAR model is capable of handling complex dependencies and unobserved variables

relative to the standard models prevalent in the existing literature.

The proposed method is applied to US macroeconomic data via an in- and out-of-

sample context. The in-sample analysis shows that the low-frequency US growth-at-risk
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estimate can display significant dynamics compared to its corresponding high-frequency

counterpart during a recession. For the out-of-sample exercise, we obtain real-time

nowcasts for the US growth-at-risk. The results show the ability of MF-QVAR to

produce meaningful monthly nowcasts that outperform the quarterly U-MIDAS QR

benchmark and reveal interesting patterns during the GFC period and the onset and

subsequent phases of the COVID-19 pandemic.
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