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Abstract 

Significant advances in sequencing technologies over the past twenty years have drastically 

changed scientific approaches to solving biological problems. A shift towards big data 

driven research and computational predictions has been made possible by vast sequence 

and structural databases, populated by sequences determined by modern sequencing 

methods. This thesis focuses on the use of these resources to predict protein function in 

the form of ligand-binding sites, in the determination of positions in proteins that are 

pivotal in virus pathogenesis, and in the elucidation of amino acids in myosin proteins which 

are adapted to the mass of mammalian species.  

Firstly, a tool developed to predict protein-ligand interactions is introduced that utilises up-

to-date data resources, tools, and machine learning algorithms to identify, and assign 

confidence to, candidate ligand-binding positions in proteins. This work builds on 

3DLigandSite in the first major update since its release. A new webserver is presented in 

this work for users to query their protein sequences for probable ligand-binding residues.  

Sequence analysis of conventional myosin sequences identified positions associated with 

increased body mass and no association with clade in the second area explored in this 

thesis. In beta-cardiac myosin, nine positions were found to adjust contraction velocity 

when mutated, highlighting the predictive power from alignments combined with a 

measurable phenotype. This further shows the time- and cost-saving benefits of combined 

computational and experimental methods.  

Finally, differentially conserved positions were identified between SARS-CoV and SARS-

CoV-2, determining probable variants for the source of phenotypic differences between 

these viruses. A webserver for other researchers to perform these analyses was developed, 

enabling users to query coronavirus sequences for these variants. Our analysis included all 

sequences available from GISAID at the time of writing. Some of the DCPs identified using 

these methods are shown to be found in the ACE2 binding site of the spike protein, and in 

close vicinity to serine protease binding sites, which are essential for virus entry into the 

host.  
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at Figshare. The inset shown in Figure 3.7D; a complication of the ADP displacement 
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measurement is that ADP displacement from human β-myosin occurs in two phases (fast 

and slow). The fast phase corresponds with ADP released at the end of the normal ATPase 

cycle while the slow phase is a trapped ADP which is released much slower and at a much 

slower rate than the overall cycling.  This is therefore a dead-end side branch of the 

pathway commonly seen in slow muscle & non muscle myosins (Resnicow et al. 2010; 

Srikakulam and Winkelmann 2004; Nyitrai and Geeves 2004).  The fraction of ADP 

trapped in this way is characteristic of each myosin.  The rat β-myosin S1 has no apparent 

slow phase, the human has ~10 % of ADP released in the slow phase while the chimera 

has a larger fraction (~40 %) of the total ADP released in the slow phase.  The role of the 

substituted amino acids in the slow phase requires further study, but the reader is 

referred to the literature for a broader study of this phenomena. ...................................107 
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Chapter 1: Introduction 

This thesis focuses on the development and use of computational tools to predict the 

functional regions of proteins. This has been applied by i) creating webservers to predict 

ligand-binding positions in proteins, ii) by identifying sequence positions in coronaviruses 

that are differentially conserved, and iii) in the analysis of evolution in myosin-II protein 

isoforms. This thesis is composed of a series of papers illustrating this work. One of these 

papers outlines the functionalities and performance of the 3DLigandSite webserver, and 

details how to use it. One section details statistical techniques implemented to identify 

positions in myosin-II proteins from a range of mammalian clades that are adapted to body 

mass and heart rate.  A final paper informs on the application of a differentially conserved 

position pipeline to decipher positions in coronaviruses that are likely to be associated with 

the transmission and pathogenicity of the disease.  

1.1 Sequencing 

Advances in sequencing technologies have rapidly increased our understanding of 

biological organisms through data-orientated analyses. These analyses are made possible 

by the vast increases in data availability over the past few decades brought about by the 

reduction in the speed and cost of sequencing (Leinonen, Sugawara, and Shumway 2011; 

Sayers et al. 2020), as shown in Figure 1.1. The cost of sequencing the human genome has 

Figure 1.1. The cost of sequencing the human genome. Figure extracted from  NIH, Wetterstrand, 

no date. 
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fallen by >99.99% since 2001, with the price currently at ~$1000 (Wetterstrand, n.d.), 

making sequencing of human and many other genomes much more accessible. One main 

reason for the reduction in the price of sequencing is the amount of money invested into 

genome projects, which has improved sequencing technologies. 

1.1.1  Genome Projects 

The Human Genome Project started in 1990, and after 13 years and between 500 million 

and 1 billion US dollars of funding, the human genome was successfully mapped, and a 

platform for large-scale sequencing projects was established.  A key finding of this project 

was that the number of genes encoded by the human genome of roughly 20,500 is 

considerably less than the estimates of the time (Abdellah et al. 2004), thought to be 

between 50,000 to 100,000 (Kanavakis and Xaidara 2001).  

In 2008, the 1000 Genomes Project was launched to catalogue human variation data, and 

it was completed in 2015. In this project, data obtained from over 2500 individuals and 26 

populations enabled the characterisation of ~88 million variants (Auton and Salcedo 2015) 

in human DNA. In addition, genomic representation from broader human populations was 

gained, and the identification of disease- and disease-causing variants by the filtering of 

neutral variants (Devuyst 2015) developed our knowledge of human diseases. Further, the 

NHS funded a sequencing project in 2012 titled the 100,000 Genomes Project, aimed at 

sequencing 100,000 genomes from 85,000 NHS patients affected by rare diseases and 

cancer. This data is vital to advancing personalised medicine (Genomics England Ltd 2017).  

These projects, and many more, have enabled a plethora of human sequences and 

sequence variation to be identified, to which novel sequencing data can be compared. 

Efforts to update and improve the human reference genome are ongoing, and the version 

currently widely in use is the 38th edition (GRCH38) (Ballouz, Dobin, and Gillis 2019; Marx 

2013). It is much improved since the first version, which contained ~150,000 gaps, far 

greater than the 250 gaps in GRCH37 (“E Pluribus Unum” 2010). The scale of genome 

projects has encouraged innovation in the methods and technologies used to sequence. It 

has paved the way for the much more cost-effective sequencing of a wide range of 

organisms (Wetterstrand, n.d.), culminating in the ever-increasing sequences available in 

popular resource banks today, such as UniProt (Consortium 2017) and NCBI 
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(NCBI Resource Coordinators 2017). A number of different techniques can be used to 

sequence these genomes, Sanger Sequencing (Sanger, Nicklen, and Coulson 1977) and 

Next-Generation Sequencing (NGS) being two of the most commonly utilised and each have 

various advantages and disadvantages.  

1.1.2  Sanger Sequencing 

This technique is the ‘gold standard’ for clinical research sequencing and is often used to 

confirm NGS data. It is a highly accurate technique with an accuracy of circa 99.99%. 

However, it has a high cost in comparison to NGS when performed on genomes. This is a 

result of Sanger sequencing only being able to sequence a single DNA fragment at a time. 

Sanger Sequencing is termed the chain termination method, where a single-stranded 

sequence of DNA is identified by the complementary synthesis of polynucleotide chains, 

where chain-terminating dideoxynucleotides (ddNTPs) are incorporated into the chain 

(Sanger, Nicklen, and Coulson 1977; Heather and Chain 2016). In the next step, gel 

electrophoresis, negatively charged bases move towards an anode, then fluorescently 

tagged ddNTPs are read and identified in the sequence. It can produce long reads at high 

precision, making it suitable for sequencing single genes and verifying the findings of NGS 

data.  

1.1.3  Next Generation Sequencing 

NGS is a modern high-throughput sequencing technique that describes a number of 

different modern methods that can sequence DNA much more quickly than Sanger 

sequencing. One such example is Illumina sequencing. In this process, reads with lengths 

of 100-150bp are generated. PCR is performed on these reads to amplify them, creating 

spots with many copies of the same read, which are then separated into single strands to 

be sequenced. The slides are flooded with fluorescently labelled bases each with a 

terminator, so only one base is added at a time. Images of the slide are then taken at each 

read location, then the terminators and fluorescent signals are removed, and the process 

is repeated. Programs are then used to identify the base in each image of each read, and 

these are used to construct a sequence. These reads are aligned to a reference sequence 

to construct a contig. This process takes around four hours to complete, with an error rate 

of 0.1-1% (Salk, Schmitt, and Loeb 2018).  
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Nanopore sequencing is a third generation NGS technology that is commonplace for 

monitoring outbreaks of viruses due to its low cost, ease of mobility, and high-throughput 

(Greninger et al. 2015). Portable analysis of samples using MinION and Flongle devices (J. 

Li et al. 2020; Lu, Giordano, and Ning 2016) enable samples to be sequenced in real-time, 

and benchtop devices scale up this process. In this technology, Nanopores are embedded 

in an electro-resistant membrane, where an electric current that flows across it is 

measured. This sequencing method works by decoding the disruption caused by a molecule 

passing through a nanopore, using base-calling algorithms to determine the DNA/RNA 

sequence. When first introduced, the raw accuracy of this technique is much lower than 

other methods described in this thesis, at around 85% (Jain et al. 2018), however 

continuous improvements since then have resulted in >95 % accuracy now being achieved 

(Oxford Nanopore Technologies 2020) . However, the portability, scalability, direct analysis 

of samples, and real time data analysis capabilities of this method make it a valuable tool 

for monitoring viruses (Quick et al. 2016), and in the rapid identification of viral pathogens 

(Greninger et al. 2015).  
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1.1.4  Sequencing and Data Explosion 

The development of affordable platforms for these sequencing methods has led to many 

sequences being deposited in public data repositories. Furthermore, this increase in the 

number of sequences is not limited to humans but includes a substantial increase in the 

number of different species sequenced (O’Leary et al. 2016) as indicated in Figure 1.2. 

Data from a wide range of organisms and clades is vital for phylogenetic inference and 

understanding. It also furthers the global efforts to characterise the genomes of a wide 

range of organisms. An area of major interest since the 100,000 Genomes Project has been 

sequencing representative species from each eukaryotic taxonomic family (Lewin et al. 

2018). In 2018, 2500 eukaryotic species had had their genomes sequenced, and this project 

aims to sequence 10-15 million eukaryotic species’ genomes. A collection of data of this 

breadth and detail is crucial for obtaining fundamental biological insights. These include 

the understanding of biological systems, which can be useful in exploiting biological 

mechanisms to our benefit, such as in the production of biotherapeutics and as model 

systems. Further insights can be gained from the identification of relationships between 

pathogenic organisms and hosts, enabling rapid development of preventative measures. In 

Figure 1.2. The rate of increase in sequence records in the RefSeq databank. Figure extracted from 

RefSeq (O’Leary et al., 2016) growth statistics page 06/02/2022. 
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addition, the identification of new sequences, and identifying evolutionary relationships 

between organisms can all advance the scientific knowledge base and provide a greater 

view of biodiversity. Due to the large investment in this field and other large-scale 

sequencing projects, the amount and diversity of sequence datasets will likely continue to 

rise.  

Despite these innovations and commitments, one vital area of understanding sequence 

content requires attention. The ratio of functionally annotated to unannotated or poorly 

annotated sequences remain high. The roles of many of the genes and sequences 

deposited are not experimentally validated, leading to ~99% of functional annotations of 

data being assigned through automated annotation methods. As of 12/02/2020, there are 

~208-million TrEMBL sequences and ~564,000 SwissProt entries in UniProt (Consortium 

2017), highlighting the vast number of unreviewed sequences that require function 

prediction and verification. Similarly, the NCBI database shows a drastic increase in the 

number of whole-genome sequences (WGS) after 2003 and a steady increase in GenBank 

records (Figure 1.3) (Sayers et al. 2020). This broad dataset has prompted large-scale 

assessments of sequences that have led to the development of powerful tools, techniques, 

and databases, such as sequence homology algorithms and phylogenetic inference 

resources. The use of sequence homology to group genes and infer functionalities forms 

Figure 1.3. The increase in records deposited in the NCBI data resource from 1985-2020. Whole 

genome sequences and GenBank records are shown.  

WGS 

GenBank 
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the basis of many bioinformatics programs, which aim to identify the function of a gene by 

comparing it to similar sequences. Clustering UniProt at 50% and 90% sequence identity 

(UniRef50 and UniRef90) reduces the sequence numbers to ~49 million and ~131 million, 

respectively. Clustering is a method that uses a sequence similarity threshold to reduce the 

number duplicated or sufficiently similar records in a dataset. CD-HIT (Fu et al. 2012) is one 

such clustering algorithm that groups sequences starting with the longest sequence, then 

iterating through the sequence data from the longest sequence to shortest sequence and 

either assigning the sequence as a redundant or representative sequence. The dramatic 

decrease in the number of sequences as a result of clustering shows that although the total 

number of sequences is high, redundancy is also substantial. By identifying comparable 

sequences to a query sequence, homologous genes can be used to predict protein 

functions, evolutionary relationships between organisms and characterise protein families.  

1.2 Inferring Protein Function 

To combat the large amount of sequencing data for which little information is known, 

automated annotation methods are used to ascertain the likely biological function of the 

proteins. UniProt utilises InterPro (Zdobnov and Apweiler 2001) to classify sequences into 

functional domains and important sites. A protein domain is an independently stable, short 

region in a polypeptide chain (Xu and Nussinov 1998) that can form a functional unit and 

often has a conserved sequence and/or structure. UniProt uses a range of member 

databases to predict features, intrinsic disorder, homologous superfamilies, and domains 

in a protein sequence. These annotations provide insight for unreviewed sequences in 

UniProt. Additionally, the identification of the subcellular compartment to which a protein 

is targeted is a key step in understanding a protein’s role, which can be determined by 

identifying signalling peptides, minimising the interactions in which it can participate and 

narrowing down a likely protein function.  

Protein function can be inferred by the use of alignment tools which identify sequences 

with high similarity, and one of the most significant advances in these comparative analyses 

was the development of BLAST (basic local alignment search tool) 

(NCBI Resource Coordinators 2017). BLAST takes query sequences and compares them to 

large databases, returning the best matches. Since its development, BLAST has been 

updated extensively to cope with the ever-increasing sequence database sizes whilst 
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retaining accurate and time-efficient comparisons, and it is one of the most powerful tools 

for inferring a protein’s function. BLAST utilises BLOSUM (Henikoff and Henikoff 1992) 

matrices to judge the quality of sequence alignments. BLOSUM (Blocks Substitution Matrix) 

was determined by local alignments of conserved regions in protein families. The 

frequencies of amino acids and at each position were counted and used to score the 

substitution probabilities of all 20 standard amino acids. The higher a BLOSUM score, the 

more likely the corresponding amino acid substitution is.   

More recent methods employ profile-HMMs to identify sequence similarities. These are 

probabilistic models that capture position-specific conservation information for each 

amino acid in an alignment (Eddy 1998). This enables the identification of more distantly 

related sequences to a query. One such example that utilises HMMs to conduct sequence 

searches is HHsearch (Söding 2005). In this method, a profile-HMM is built for the query 

sequence and compared to a database of HMMs. These profiles contain far more 

information than a single sequence, and as such are far more sensitive to more divergent 

sequences. A ranked list of matches are generated in this method, displaying the metrics 

of similarity between the query match regions and their corresponding hits in the HMM 

database.  

There are, however, limitations in assigning protein function, mostly arising from the rapid 

increase in sequences. Poorly or incorrectly annotated protein domains lead to a 

propagation of error effect when predicting protein function, whereby errors in the initial 

labelling of the domains are subsequently used to annotate proteins, resulting in these 

errors being passed on (Friedberg, 2006). Proteomic data is susceptible to error 

propagation, and strategies to combat the misleading data have been being implemented 

for over a decade (Schnoes et al. 2009), including the introduction of evidence codes 

(SwissProt) and a more conservative approach to assigning function. More recently, 

machine learning has been implemented to discover incorrect function annotations 

(Nakano, Lietaert, and Vens 2019).  

Another fundamental method of distinguishing correctly annotated proteins from 

mislabelled data is the use of orthologs. Databanks of orthologs comprise genes in different 

species that evolved from a common ancestor and retain the same functionality, e.g. 

EggNOG (Huerta-Cepas et al. 2016) and PANTHER (Mi et al. 2021). The development of 
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tools that compare annotated sequences to families of orthologs enables the sequence's 

protein function to be verified and the assignment of likely evolutionarily related 

organisms.   

Though identification of the likely subcellular location and domains in a protein are useful 

for predicting function, much more information can be acquired through analysis of the 

protein structure (Hvidsten et al. 2009).  

1.2.1 Protein Structure Prediction 

Protein structures can be classified based on their sub-structures and function. The CATH 

(Class Architecture Topology Homology) database (Dawson et al. 2017) uses manual 

curation to place protein structures into hierarchies at four levels. The Class level is based 

on the protein domain secondary structures, namely the frequency of alpha-helices (Class 

1) or beta-sheets (Class 2), whilst Class 3 comprises a combination of both. Each class is 

split into Architectures which identifies domains with similar arrangements of secondary 

structures. At the T-level, the connectivity of the secondary structures is considered, and 

at the H-level, domain homologs at the sequence, structural and functional level are 

incorporated. The sequences at this level are also clustered at 35, 60, 95 and 100 % 

sequence identity to generate more detailed levels of classification (Sillitoe et al. 2013).  

An alternate method of protein structure classification, SCOP (Structural Classification Of 

Proteins) (Andreeva et al. 2020; Murzin et al. 1995), sorts proteins into classes, folds, 

superfamilies and families and derives them based on expert knowledge. Classes are based 

on the secondary structure elements; folds on the arrangement and topological conditions 

of the secondary structures; superfamilies are based on low-level sequence identity and 

functional features; and families are based on a higher level of sequence identity and 

functional evidence. Around 70 % of domain definitions overlap between SCOP and CATH 

(Csaba, Birzele, and Zimmer 2009), indicating a high level of similarity between them, and 

both are the gold standards in protein domain classification.  

CATH also incorporates functional families to capture the functional diversity within 

superfamilies. Functional families (FunFams) are subclusters of protein domains within 

homologous superfamilies which have related structures and functions, based purely on 

sequence patterns. They are identified by hierarchical clustering of the domains within 
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superfamilies (D. A. Lee, Rentzsch, and Oreng 2009), followed by optimisation using 

FunFHMMer (S. Das et al. 2015), which uses conservation metrics and specificity-

determining positions (SDPs, described in more detail in Chapter 1.4.4) to categorise 

clusters into those likely to share function (Dawson et al. 2017). These FunFams are 

important for assigning functional information to proteins, and at least 50 % of human 

proteins are functionally annotated with FunFams, far greater than the ~8 % that are 

experimentally characterised (S. Das et al. 2015).  

The number of protein superfamilies is far fewer than the number of protein structures, 

indicating that there are preferential folds for proteins to exist in. This lends itself to protein 

structure prediction, which can utilise the large amount of protein structural information 

to predict likely folds for sequences with unknown structures.  

 

Experimentally, protein structures are typically solved using X-ray crystallography or 

Nuclear Magnetic Resonance (NMR), which can produce high-resolution models. Due to 

the time-expensive nature and difficulty performing these techniques for many proteins, 

the number of protein sequences with associated protein structures is low. Compared to 

the number of protein structures, the number of sequences remains high, as showcased in 

Figure 1.4 (Berman et al. 2000). Moreover, whilst the number of sequences available is 

Figure 1.4. Protein structures released yearly by the PDB, and the total number of entries available. 

Figure extracted from PDB Statistics.  
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growing exponentially, there is a relatively smaller increase in the PDB structures deposited 

each year, with around 180,000 entries to date. This pales compared to the ~230 million  

sequences currently available in GenBank (Sayers et al. 2020). By observing the non-

redundant datasets for each resource, we can estimate that far fewer sequences currently 

have bona-fide structures. The gulf between these values has arisen from a combination of 

several reasons. Firstly, there are proteins, particularly membrane proteins, which are 

difficult to isolate and produce in the quantities required for X-ray crystallography. 

Secondly, the cost, time, and skill it takes to generate viable, accurate, and high-resolution 

protein models is expensive, meaning it is only performed where knowing the protein 

model is vital. Finally, the proteins which are of keen research and economic interest are 

preferentially modelled, and subsequently, the size of the non-redundant databank grows 

more slowly as the number of these unmodelled structures of interest reduces.  

Further, an area of research interest since the Human Genome Project is the structural 

modelling of the human proteome. Protein sequences are able to fold into a three-

dimensional structure based on the amino acids of which they are comprised. In the protein 

folding process, the secondary structures alpha helices and beta sheets form rapidly as they 

are stabilised by intramolecular hydrogen bonds, followed by hydrophilic and hydrophobic 

interactions reorientating the secondary structures to face the aqueous or hydrophobic 

core environments, respectively. This is followed by disulphide bridge formation between 

cysteines. This forms the tertiary structure of the protein. In some proteins, quaternary 

structures are formed of multiple protein chains. The native state of the protein is its free 

energy minimum, where it is most stable. Here the unfolded states have the most energy, 

and through energy minimisation, the protein folds into its native state (Dobson 2004).  

Understanding the structure of human proteins leads to a greater amount of detail that 

can be acquired when analysing disease-causing variants, metabolic pathways, and the 

roles of proteins. However, despite 70 % of human proteins having a known or homologous 

protein structure (Somody, MacKinnon, and Windemuth 2017),  around 50 % of human 

protein structures are modelled with < 60 % coverage. Many of these proteins are likely 

implicated in diseases. By solving more protein structures, better quality and more targeted 

therapies for human diseases will arise due to improved understanding of protein 
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interactions. To help bridge the gap to complete structural coverage of the human 

proteome, methods to predict proteins structures have been developed. 

The use of computational tools to predict protein structure can drastically reduce the cost 

and time required to identify how proteins fold, and how sequence changes affect a 3-

dimensional protein model. The use of homology modelling to generate probable 

structures has been the most widely used and reliable method since the early 2000s. 

However, the use of neural networks to determine 3D representations of sequences 

without reference structures is becoming a powerful tool. The continued improvement of 

protein structure prediction is assessed in the Critical Assessment of Structural Proteins 

(CASP) (Kryshtafovych et al. 2019a). These assessments measure the model quality of 

predicted structures against protein structures solved using X‐ray techniques, protein 

NMR, and cryo‐electron microscopy that are previously unseen. The accuracy of the models 

is assessed using a metric termed the Global Distance Test (GDT), which is calculated by 

superimposing the predicted structure against the target. The amount of amino acid alpha 

carbon atoms within a distance to the corresponding match on the target is used to 

generate a score between 0 and 100, with a score above 90 typically being considered close 

to experimentally correct. Protein flexibility and the folding of a protein in different 

conditions can affect the folding of the protein, consequently, a small margin of error can 

be tolerated.  The varying methodologies used to generate structures using these methods 

are discussed below.  

1.2.1.1 Phyre2 and homology-based methods 

Phyre2 (Kelly et al. 2015) utilises profile HMMs to identify homologous protein structures 

to a query sequence. It then uses the backbone coordinates as a template, and models 

sidechains of the query onto this backbone. Confidence, coverage, and sequence identity 

scores are output to users, where regions of interest or the whole protein can be assessed 

to ascertain if the predicted structure accurately represents the query sequence.  

Initially, an HHBlits (Remmert et al. 2012) search is performed against a non-redundant 

database of the sequences of protein structures, generating a multiple-sequence 

alignment. This alignment is then used to construct the secondary structure using PSIPRED 

(Buchan et al. 2010), and an HMM for the query is generated. The query HMM is then 

scanned against a database of known protein structures, and the best scoring results are 
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used to build the backbone of the structure. Insertions and deletions are then corrected 

using loop modelling, and side chains are added to the model, which is then assigned a 

confidence, sequence identity, and coverage score.  

The ease of use and consistently high performance in the CASP evaluations make Phyre2 

(Kelly et al. 2015) a valuable resource for predicting protein structure, as well as the 

performance scores associated with each prediction, which allows for the reliability of the 

results to be assessed. However, it is limited by currently being unable to predict multimeric 

structures, as well as in predicting difficult CASP targets due to the limitations of homology 

modelling.    

Though Phyre2 is the method utilised in Chapters 2 and 4 of this thesis, several other 

strongly performing homology-based methods of predicting protein structure are available 

including RaptorX (Källberg et al. 2012) and IntFold (Mcguffin et al. 2019). RaptorX offers 

both a homology-modelling based and deep-learning-based generation of protein 

structures to its users. Where similar templates are insufficient to generate reliable results, 

structures can be generated in a template-free method using neural networks. It differs 

from Phyre2 by implementing a different strategy for models with little homology to known 

structures, improving predictions for poorly understood proteins. IntFold incorporates 

ligand-binding, domain, and disorder prediction providing users with functional insights 

into the predicted model (Mcguffin et al. 2019).  

I-TASSER (Iterative Threading Assembly Refinement) (Roy, Kucukural, and Zhang 2010) is 

another tool the can be used to predict protein structure and function. It performs 

consistently well in CASP  assessments, ranking in the top two spots since 2006 

(Kryshtafovych et al. 2019b; Moult et al. 2018; Mariani et al. 2011). Initially, similar folds 

are identified in the PDB using LOMETS (S. Wu and Zhang 2007) template-based structure 

prediction. This is followed by the reassembly of fragments excised from these PDB 

templates into full-length models and selecting near-native models by clustering these 

decoys. A molecular dynamics simulation then refines the structure, and functional 

annotations are provided by COACH using substructure comparison and sequence profile 

alignments (Yang, Roy, and Zhang 2013b). 
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Rosetta (Raman et al. 2009) is a common protein structure prediction tool that performs 

consistently strongly in CASP, and offers the functionality of to explore protein backbone, 

side-chain, and sequence space. Several methods to predict protein structures can be used, 

with template-based, sequence-based, and specific protocols for membrane- and metallo-

proteins (Barth, Wallner, and Baker 2009).  

1.2.1.3 AlphaFold  

In the past few years, deep learning algorithms to model protein structures without solved 

protein templates have been developed and performed well. These breakthrough 

algorithms have been of great value in solving the protein folding problem. This problem, 

Levinthal’s Paradox in 1969 (Levinthal 1969), highlights the dilemma that an unfolded 

polypeptide chain has an estimated 10300 possible conformations in three-dimensional 

space. Producing this number of models to identify the likely native pose would be far too 

computationally expensive to be considered a viable approach. However, proteins 

themselves can fold spontaneously within milliseconds, highlighting that a method exists 

to determine the configuration of a protein.  

AlphaFold (Senior et al. 2020) uses neural networks trained on a comprehensive set of 

protein structures and sequences to predict the distances between pairs of amino acids 

and the angles of the chemical bonds that connect them. A metric that estimates the 

likeness to the native structure is also trained using a separate network. Gradient descent 

is then used to optimise the scores and produce predicted structures. This methodology 

has performed well on CASP13 and CASP14 targets (Alquraishi 2019), even where 

homologous templates are not available. The strong performance of AlphaFold in these 

assessments shows that effective protein structure prediction can now be achieved for a 

wide range of proteins. Models for Coronavirus proteins predicted by this tool were made 

publicly available during the global Coronavirus pandemic in 2020 (John Jumper, Kathryn 

Tunyasuvunakool, Pushmeet Kohli, Demis Hassabis 2020). These predictions were verified 

by similar models produced experimentally several months after the prediction release 

(John Jumper, Kathryn Tunyasuvunakool, Pushmeet Kohli, Demis Hassabis 2020).  

AlphaFold has recently been used to predict the proteomes of model organisms, including 

humans, resulting in confident structural predictions for 58% of residues in the human 
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proteome (Tunyasuvunakool et al. 2021). This increases the structural coverage for humans 

by 41% (Tunyasuvunakool et al. 2021), dramatically increasing the knowledge base in the 

structural field. Further, the tool is now available for users to implement on their protein 

sequences – enabling widespread use of AlphaFold for proteins which can produce highly 

accurate predictions even when homology to the given protein is low (Jumper et al. 2021).  

The availability and high levels of accuracy demonstrated by AlphaFold (Jumper et al. 2021; 

OpenAI 2020) is a landmark in protein structure prediction and is likely to improve with 

future versions. 

AlphaFold is able to draw on a large library of single domain protein structures, enabling 

predictions to be made for almost any domain, and is expected to perform well on 

multidomain and multimeric structures due to the way it recognises patterns in residue 

connectivity (Skolnick et al. 2021). One main reason that AlphaFold is so successful is being 

able to draw on databases with a high level of structural completeness (PDB) (Skolnick et 

al. 2021), and includes a huge amount of sequence data (~2.2 TB). An area in which 

AlphaFold can be improved is in the identification of biochemical or phenotypical effects. 

One method that seeks to provide this information is AlphaFill (Hekkelman et al. 2021) 

which uses sequence and structural similarity to AlphaFold models to transplant missing 

small molecules onto the predicted structures.   

Improvements in deep learning and homology modelling resources will remain an area of 

keen focus with advances in machine learning. In addition, groups identifying novel 

methods to improve their algorithms, assessing new features associated with improved 

GDT, and building on and implementing different strategies utilised by competitors in the 

CASP assessments will further the method success. Using homology methods, large-scale 

predictions of protein structures will drastically increase the sequences with probable 

structural models, from which protein function can be derived. Furthermore, the 

application of the state-of-the-art methods described will improve the structural coverage 

of the human proteome and many other organisms.  

1.2.2 Protein-Ligand Interactions 

A protein structure can be used to identify likely ligand-binding positions and regions. The 

interaction partners of proteins are pivotal in determining the mechanism by which 
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proteins elicit a function. Proteins can interact with other proteins, ligands, and other small 

molecules, and determining these partners narrows down the number of locations, 

functions, and pathways in which the target protein is involved.  

1.2.2.1 Ligand Types 

In this thesis, we define a ligand as any biologically relevant small molecule that interacts 

with a protein. We separate ligands into two groups, metal and non-metal ligands. Between 

30 % and 40 % of proteins require metal ions to perform biological functions (Andreini et 

al. 2008), emphasising the key functional and structural roles of metals in proteins. 

Currently, only 18 cognate metal ligands are found in the PDB, determined cognate by 

FireDB (Maietta et al. 2014). This is a subset of the 31 metal ligands found, with the 

additional 13 being either non-cognate or ambiguous in their biological relevance.  

Non-metal ligands encompass a much larger dataset. There are currently 636 cognate, 51 

ambiguous, and ~32000 non-cognate ligands (Maietta et al. 2014), highlighting the vast 

number of protein structures solved with ligands that lack biological relevance, or those 

solved with synthetic inhibitors. These non-metal ligands can be further split into groups: 

organic, ionic, peptide, and polynucleotide, which each may exhibit different binding 

profiles to biological targets. A key observation in the last ligand binding assessment in 

CASP10 (Gallo Cassarino, Bordoli, and Schwede 2014) was that any following assessments 

of ligand binding would benefit from classifying the ligands into these categories.  

1.2.2.2 Features and assessment of small molecule binding 

Regions of a protein that bind to a ligand or an interaction partner are usually in close 

vicinity in three-dimensional space yet are not necessarily adjacent in the sequence. 

Protein folding increases the complexity of assigning ligand binding sites as it enables 

primary structure amino acids to fold into similar positions to other amino acids in the 

protein chain. For this reason, a protein structure of the target sequence is required for 

accurate predictions of small molecule binding.   

Ligand-binding regions can be predicted using homologous structures and sequences by 

determining the solvent-accessible surface area (SASA) (B. Lee and Richards 1971) and by 

use of conservation metrics to identify probable active site regions within a protein (Lopez 

et al. 2011). SASA is a key determinate of small molecule binding as ligands bind into 
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pockets on the protein surface to elicit their function, and this metric distinguishes surface 

from buried residues.  

Conservation of a sequence can be inferred from sequence alignments using Jensen-

Shannon Divergence to estimate the importance of a given position. In this method, each 

alignment position is compared to a precomputed background set of amino acids under no 

evolutionary pressure. Positions that vary significantly to the background set are then 

predicted to be functionally important or constrained. In addition, positions in the 

sequence within three positions to the alignment position also impact the score, the more 

conserved they are, the higher the score for the alignment position (Capra and Singh 

2007a). Spatial neighbours would likely improve the accuracy of this method, however 

structural information is often not available where sequence data is.  

A proteins’ binding regions can be determined by comparing a query structure with 

unknown binding sites to a library of structures with known bound biologically relevant 

ligands, thus using homology to infer interactions with small molecules. 

CASP8 through CASP10 (Gallo Cassarino, Bordoli, and Schwede 2014; López, Ezkurdia, and 

Tress 2009; Schmidt et al. 2011) evaluated the performance of ligand-binding methods on 

a total set of 70 protein structures which had no prior ligand-binding information known. 

These assessments used the Matthews Correlation Coefficient (Matthews 1975) to 

determine the accuracy of the predicted binding residues compared to the native bound 

residues of the target. These comparisons can be made using structural superposition 

programs such as TM-align (Y. Zhang and Skolnick 2005) and MAMMOTH (Lupyan, Leo-

Macias, and Ortiz 2005). TM-align aligns the backbone Cα coordinates of protein structures 

and performs well on proteins with large differences in sequence length and therefore is 

useful for capturing structural information from a range of PDB structures. It works by 

initially aligning the secondary structures, followed by the gapless matching of the two 

structures, ranked by the TM-Score metric. The alignments are then refined using a 

heuristic iterative algorithm (Y. Zhang and Skolnick 2005).  MAMMOTH identifies structural 

matches that are least likely to occur by chance by creating a motif alignment of residues 

which share properties between the query and target. The criteria for matching is the local 

structure overlap, the secondary structure, the structural superposition, and the ordering 

in the primary sequence. These are used to compute an E-value, and the tool performs well 
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at superposing remote homologs (Ortiz, Strauss, and Olmea 2009). These are underlying 

methods used to infer ligand-binding through structural similarity.  

Several different methods to predict ligand- and metal-binding residues in proteins are 

described below.  

1.2.2.1 METALPDB 

MetalPDB (Andreini et al. 2013) was developed to showcase minimal functional sites that 

bind to metals. Its database is built from all PDB structures that contain metal atoms. The 

minimal functional site is defined as: the metal atoms, ligands within a distance threshold, 

and the ligand neighbours, and they describe the local environment around the metal 

(Andreini et al. 2013). This tool facilitates the investigation of metal-binding sites in proteins 

and allows users to examine probable metal-binding regions in proteins.  

1.2.2.2 Firestar 

Firestar (Lopez et al. 2011) uses PSI-BLAST to generate profiles for an input sequence or 

structure. Functional residues are then mapped onto the alignments, and residue 

conservation and reliability scores are calculated. The conservation of binding site amino 

acids is a key indicator of a residue involvement in binding (Tress, Jones, and Valencia 

2003). Finally, predicted functional residues are output to the user. 

1.2.2.3 COACH-D 

COACH-D (Y. Cui et al. 2019) combines protein-ligand binding information from four 

template-based methods, considering only biologically relevant ligands from BioLiP (Yang, 

Roy, and Zhang 2013a). Sequence conservation and structural geometry are identified 

using ConCavity (Capra et al. 2009), and the likely binding residues from this and the 

template predictions are combined to produce a consensus prediction. The ligands 

identified by these analyses are then docked into the binding site using AudoDock Vina 

(Trott and Olson 2010) to identify the optimal binding conformation.  

1.1.2.4 3DLigandSite (2010 Release) 

3DLigandSite (Wass, Kelley, and Sternberg 2010a) uses MAMMOTH (Lupyan, Leo-Macias, 

and Ortiz 2005) to perform a structural search of a query protein structure to identify 

structurally similar proteins in the PDB that contain ligands from a curated database of 

biologically relevant ligands. It aligns identified structures to the query structure using 
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TMAlign (Y. Zhang and Skolnick 2005). This superimposes the ligands from the PDB 

structures onto the structure of the query proteins. Ligands are then clustered using single-

linkage clustering and used to predict ligand-binding amino acids, and the probable ligands 

for a binding site.  

1.2.5 Machine Learning 

There has been a movement towards the implementation of machine learning algorithms 

to predicting biological systems and mechanisms. These algorithms, though complex, are 

usually fundamentally categorised as supervised or unsupervised learning. In supervised 

learning, data is separated into feature and target variables, where the features of a 

training set are fitted using a classifier, such as Random Forest (T. K. Ho 1995) or Support 

Vector Machine (SVM) (Cortes and Vapnik 1995). The results can then be used to predict 

the target variable of the test and validation datasets. A broad range of features can be 

determined from a protein sequence or structure, and here the operator can choose which 

are required for predicting their target variable.   

The SVM classifier is a method that focuses on points that are difficult to decipher between 

classes, reasoning that if it can perform well at distinguishing these challenging data points, 

then less challenging data points should be easy to classify.  

Random Forest and ExtraTrees are classifiers built on a large number of decision trees. 

Decision trees have a series of nodes representing decisions, where a pure node dictates 

that the data in it belongs to a single class. As the number of nodes increase, the depth of 

the tree increases, which leads to increased accuracy, to a point. However, runtime and 

accuracy can decrease when there are too many node splits, therefore the depth 

parameter of a decision tree classifier should be explored when making machine learning 

models (Kamiński, Jakubczyk, and Szufel 2018). Random Forest and Extra Trees classifiers 

work by considering the prediction of every tree and using a majority vote to determine 

the classification. Random forest uses bootstrap replicates to subsample the input data, 

whereas Extra Trees does not. Extra Trees also selects the cut points for splitting nodes 

randomly, reducing variance, whereas the Random Trees classifier finds the optimal cut 

point. This results in Extra Trees having a faster run time as it does not have to compute 
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the optimal cut points, but the two classifiers typically perform similarly (Geurts, Ernst, and 

Wehenkel 2006).  

Logistic Regression (Cox 1959) is a fast and simple classification method. It works fitting a 

sigmoid curve with input data to distinguish to categories. It performs well on simple 

datasets when the input data is linearly separable. It struggles however to identify complex 

relationships between the dependant and independent variables. 

In unsupervised learning, a common use is exploratory data analysis which identifies 

hidden patterns and groupings in a dataset that does not contain labelled responses. This 

can reduce the complexity of large datasets (De Ridder, De Ridder, and Reinders 2013; 

Sommer and Gerlich 2013) and cluster data. In a biological context, these learning methods 

facilitate phenotype profiling (Perlman et al., 2004), enable unknown phenotypes to be 

explored (Wang et al., 2008), and cluster large datasets for faster processing and identifying 

patterns.  

1.2.6 Methods for Phylogenetic Analysis 

Phylogenetics is the study of the reconstruction of evolutionary relationships between 

organisms. It can be applied to several biological fields, including the identification of 

related genes and in species classification. Phylogenetic relationships can be inferred from 

sequences, at the protein or nucleotide level, yet nucleotide data yields more accurate 

trees due to the capturing of both synonymous and non-synonymous mutations. 

Phylogenetic trees can be constructed using a range of methods. Two methods utilised in 

this thesis are Bayesian and maximum likelihood approaches.   

1.2.6.1 Bayesian Inference 

Bayesian inference methods use prior probability distributions, these being the probability 

of an event occurring before additional data is collected, to calculate the posterior 

probability, which is the likelihood of an event based on previous events occurring. In 

Bayesian-based approaches, the prior probability of a phylogeny is combined with the tree 

likelihood to produce a posterior probability (J. P. Huelsenbeck et al. 2001). The best 

estimate of the phylogenetic relationship between the data is the tree with the highest 

posterior probability (Douady 2003). Several tools are available to conduct Bayesian 
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inference of phylogeny on biological data, including BEAST (Bouckaert et al. 2019) and 

MrBayes (John P. Huelsenbeck and Ronquist 2001). 

1.2.6.2 Maximum Likelihood 

Maximum likelihood models for phylogenetic assessments utilise more sequence 

information than Bayesian methods. Probabilities at each alignment position are 

calculated, and the likelihood of these changes and their positional variability are also 

considered. This method produces trees which are ranked by the highest compound 

probability, the tree with the maximum likelihood.  It relies on assumptions about 

sequence evolution such as equal mutation rates and the independent evolution of 

binding sites (Golding and Felsenstein 1990). It is a computational intense method that 

requires far more compute power than Bayesian methods (Douady 2003).  

1.2.6.3 Phylogenetic Independent Contrasts 

 Phylogenetic Independent Contrasts (PIC) (Felsenstein 1985) is a statistical method for 

incorporating trait information into phylogenetic trees. This method enables shared 

evolutionary traits to be distinguished from traits under a different selection pressure. The 

hypothesis of a trait being evolutionary correlated with another if the contrasts in one trait 

covaries significantly with contrasts in another trait (Quader et al. 2004).  

 

The processes and tools outlined in Section 1.2 can be applied to most research projects 

which can guide and prioritise experiments to accelerate research findings. Here, we apply 

these techniques to protein-ligand prediction software development, coronavirus, and 

myosin to increase knowledge in these fields and provide information and tools for the 

wider scientific community to implement.  
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1.3 Myosin  

Myosins are motor proteins that are vital in many cell processes for force and translocation. 

They are the power behind both voluntary and involuntary movements, functioning to 

convert chemical energy into motion at the cost of ATP. There are at least 20 myosin classes 

of distinct function and structure (Krendel and Mooseker 2005), and each have their 

specialisms. The myosin-II class, or conventional myosin, is the focus of Chapter 3, where 

the isoforms expressed in different tissues in mammals are investigated for sequence 

changes  across a range of organisms of different masses. Myosin-II is a large protein (circa 

500 kDa (Ojima 2019)) responsible for muscle contraction in muscle cells and the formation 

of stress fibres in non-muscle cells.  

1.3.1 Myosin-II Structure 

Myosin-II proteins are organised into two heavy chains and four light chains. The heavy 

chains comprise an N-terminal head (or motor) domain, a C-terminal coiled-coil tail 

domain, and a neck region connecting them, which binds to the myosin light chains. The 

complete myosin-II protein is very large, and as such an accurate complete structural model 

of it does not exist. However, high-resolution models of the motor, in both rigor (PDBID: 

2MYS) and flexed PDBID: 1ATN) states, the neck, and regions of the tail domain are 

available in the PDB (Kabsch et al. 1990; Rayment et al. 1993), enabling detailed analysis of 

structural interactions.  

1.3.1.1 The Motor Domain 

The N-terminal half of the heavy chain and one of each light chain form a single globular 

motor domain of ~80 kDa (Figure 1.5). The motor domain contains an actin-binding region 

(residues 655-677 and 757-771 (Consortium 2017)), which forms cross-bridges between 

the myosin and actin filaments, in addition to an ATP binding site where hydrolysis of ATP 

allows filament sliding. This hydrolysis is activated by actin, ensuring that ATPase activity is 

fastest when the motor domain is bound to actin. In the absence of actin, a decrease in the 

rate of hydrolysis is observed. The motor domain functions to couple ATP hydrolysis with 

motion (Harvey et al. 2000) and it is connected to the tail domain by a linker neck domain. 

The neck domain contains between one and seven IQ motifs which form an alpha helix that 

binds to calmodulin, a key stage in enabling contraction to begin (Krendel and Mooseker 

2005).  
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1.3.1.2 The Tail Domain 

The two carboxyl halves of the heavy chain dimerize to form a coiled-coil tail, enabling the 

myosin heavy chains to dimerise and form two-headed motors (Shu et al. 1999; Harvey et 

al. 2000). In myosin-II, multiple tail domains associate to form thick filaments, which 

function to organise the skeletal muscle so that motor domains are positioned at each end 

of the filament, with a bare zone located centrally (Harvey et al. 2000). In addition, the tail 

region contains conserved protein domains. The organisation of the tail domain is typically 

similar within myosin classes. The activity of the protein occurs primarily in the motor 

domain, but structurally the tail is vital for protein function and is also implicated in the 

stability of the inactivated state of myosin (Woodhead et al. 2005; Blankenfeldt et al. 2006). 

1.3.2 Myosin-II Function 

Myosin-II plays a vital role in muscle contraction. This occurs through a mechanism 

described in the sliding-filament model (Hanson and Huxley 1953; Huxley and Niedergerke 

1954; Cooke 2004)  (Figure 1.6) where myosin undergoes a series of events during 

movement, and causes the myosin to slide relative to the thin filament. The myosin exists 

Figure 1.5. Structure of myosin motor domain. The protein structure of myosin motor domain 

with MgADP bound (PDBID: 1B7T). The regulatory light chain is shown in cyan, the essential light 

chain is shown in magenta, and the myosin heavy chain is shown in grey.  
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in a number of conformation states during each cycle: a prehydrolysis state where it is not 

bound to actin, an ADP-Pi state where it is bound to actin, and a post-power stroke state 

(Lodish et al. 2000). In this process, the myosin motor is bound tightly to actin in a rigor 

state. The binding of ATP to myosin in the prehydrolysis state opens a cleft near the actin-

binding site on myosin, causing dissociation from the actin. ATPase activity cleaves the 

inorganic phosphate from the ATP molecule, and partially closes the cleft, trapping the 

hydrolysis products and restoring the actin-binding site, allowing myosin to bind a new 

actin subunit. Large rotations around the neck region prepare the complex for the power 

stroke, where the motor pivots and moves the actin filament as the Pi is released, and this 

restores the rigor conformation of the motor domain. ADP is then dissociated from the 

binding site (Lodish et al. 2000).  

Figure 1.6. ATP hydrolysis coupled to movement of myosin along an actin filament. 

1. The initial, prehydrolysis rigor state of myosin bound to the actin filament. 2. Upon binding of 

ATP to the ATP binding site on the myosin motor domain, a cleft opens, causing the dissociation of 

the thick (myosin) from thin (actin) filament. 3. The motor domain ATPase activity hydrolyses the 

ATP into ADP and Pi, causing the closure of the cleft, preventing the hydrolysis products from 

release, and restoring the actin-binding site. 4. The myosin is then primed for the power stroke, 

where Pi is released, and the actin filaments slide towards the middle of the thick filament (in 

myosin-II). Figure generated using Lodish et al., 2000, Figure 18-25 as a template. 
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This process drives movement and is fundamental for life as we know it today. The 

investigation of conventional myosin proteins in close detail is vital to understand how the 

protein is adapted to the demands of a diverse range of organisms needs.  

1.3.3 Myosin II Isoforms 

In mammalian organisms, a range of different myosin isoforms are expressed. The 

characterisation of the functional classes of these myosins is based on the motor domains 

of the sequences, from which phylogenetic relationships are inferred (Figure 1.7) (Berg, 

Powell, and Cheney 2001). It is hypothesised that myosin I and myosin II were the earliest 

members of the myosin superfamily to evolve (Thompson and Langford 2002), which is 

likely the reason for the greatest divergence of isoforms in these classes (Figure 1.7). These 

classes of myosin are highly important for cellular processes – myosin I functions in vesicle 

transport, it is a ubiquitous cellular protein and vital for cell survival, and myosin II is 

responsible for regulating cell morphology (Newell-Litwa, Horwitz, and Lamers 2015) and 

the muscle contraction on which many multicellular organisms rely. Unsurprisingly, a large 

number of these proteins are found in humans. The human genome encodes for 40 myosin 

genes, covering 12 classes of myosin (Krendel and Mooseker 2005). Of these, there are 14 

known conventional myosin genes including two cardiac, two non-muscle, a smooth 

muscle, and six skeletal muscle genes (Berg, Powell, and Cheney 2001).  
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1.3.3.1 Myosin-II Cardiac Isoforms 

Myosin-II cardiac isoforms include the alpha (α, MYH6) and beta (β, MYH7) genes. These 

are located in tandem on chromosome 14 (Marín-García, Goldenthal, and Moe 2007) and 

play key roles in heart muscle contraction. The alpha-cardiac isoform exhibits a higher rate 

of ATPase activity than the beta-cardiac isoform, and the amount of expression of each 

isoform contributes to the contraction velocity and force generation in the heart (Nakao et 

al. 1997; Mahdavi, Chambers, and Nadal-Ginard 1984). The alpha-cardiac isoform is 

primarily expressed in the atria (Gelb and Chin 2012), while the beta-cardiac isoform is 

expressed in humans in both the embryonic heart and the atria of adults (Marín-García, 

Goldenthal, and Moe 2007). Mutations in these isoforms are implicated in diseases, 

principally hypertrophic cardiomyopathies (HCM), as well as dilated cardiomyopathies 

Figure 1.7. An unrooted phylogenetic tree of the myosin superfamily in humans.  The 

phylogenetic relationship between myosin classes, and the intra-class distribution of class 

isoforms is depicted in this figure. Figure extracted from Berg, Powell and Cheney, 2001, Figure 

1.  
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(DCM) (Francine Parker and Peckham 2020). Most of these mutations are missense – 

920/1000 in MYH7 and 128/145 in MYH6 (Francine Parker and Peckham 2020). The 

mutations are classified based on their prevalence in patients with cardiomyopathies, 

however, this likely has led to a large number of passenger mutations reported.  

1.3.3.2 Myosin-II Non-muscle isoforms 

In mammals, there are three non-muscle myosin II isoforms of the heavy chain that 

contribute to cell adhesion, protrusion, and polarity (Vicente-Manzanares et al. 2009). 

These isoforms are non-muscle A (NMA) encoded by MYH9, non-muscle B (NMB) (MYH10) 

and non-muscle C (NMC) (MYH14). Cell types appear to express up to two of the non-

muscle isoforms and never three under normal conditions (Betapudi 2014). For example, 

MYH9 and MYH10 are expressed at comparable levels in epithelial and endothelial cells, 

whilst in lung tissue MYH14 is predominantly expressed (Betapudi 2014). 

1.3.3.3 Myosin-II Skeletal Muscle Isoforms 

There are six skeletal muscle myosin-II isoforms which form fast/type-II fibres: IIa (MYH2),  

IIb (MYH4), IIx (MYH1), extraocular (MYH13), embryonic (MYH3), and perinatal (MYH8) 

(Resnicow et al. 2010). Embryonic and perinatal myosin are expressed early on in muscle 

development and thus are termed developmental myosin heavy chains (MyHC). Expression 

levels of these isoforms decrease rapidly shortly after birth, only continuing expression in 

specialised muscles and regenerating dystrophic muscles (Resnicow et al. 2010).  

Extraocular MyHC is highly specialised and only expressed in the extraocular and laryngeal 

muscles, and is one of the fastest myosins in terms of shortening velocity (Sciote et al. 

2002). The adult-fast MyHCs (IIa, IIb, and IIx) are the main isoforms expressed in skeletal 

muscles, in varying levels based on several factors including age, disease, and exercise.   

1.3.3.4 Myosin-II Smooth Muscle Isoform 

There are four smooth muscle isoforms encoded for by the MYH11 gene by alternative 

splicing, and they are differentially expressed as muscle cells mature (Kwartler et al. 2014). 

Two of these isoforms are expressed in the aorta (Babu, Warshaw, and Periasamy 2000), 

and all function in muscle contraction.  
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1.3.3.5 Other 

SlowT (MYH7b) is a slow twitch isoform discovered in mammals in 2002. It is more highly 

conserved than either of the cardiac isoforms (Warkman et al. 2012), and appears vital for 

normal cardiac function, as MyH7b knockouts and mutations can cause HCM in mice 

(Warkman et al. 2012).  

These isoforms are summarised in Table 1.1, where the isoform, gene name, and tissue in 

which the isoform is primarily expressed are shown.  

Type Isoform Gene Tissue 

Cardiac α MYH6 Heart, skeletal 

 β MYH7 Heart  

Fast Twitch IIA MYH2 Skeletal, tongue 

 IIB MYH4 Skeletal 

 IIX MYH1 Skeletal 

Developmental Embryonic MYH3 Oesophagus, prostate, skeletal 

 Perinatal MYH8 Oesophagus, skeletal, tongue 

Non-Muscle Non-muscle A MYH9 N/A 

 Non-muscle B MYH10 N/A 

 Non-muscle C MYH14 Intestine, skeletal 

Smooth Muscle Smooth muscle MYH11 Smooth muscle, urinary bladder 

Other SlowT MYH7B Heart, skeletal 

 Extraocular MYH13 Placenta, skeletal, stomach 

Table 1.1. Table summarising the isoforms and tissue expression of active myosin isoforms. Tissue 

expression information obtained from the Human Protein Atlas (Uhlén et al. 2015). 

1.3.4 Distribution across Mammalian Clades 

Phylogenetically, humans are placed in the mammalian class. This class comprises over 

6450 species (Burgin et al. 2018), with organisms ranging in sizes from the Etruscan shrew 

at ~2 grams (Jürgens et al. 1996; Brecht et al. 2011) to the largest terrestrial mammal, the 

African bush elephant, at 10400 kilograms (maximum) (Larramendi 2016) and the heaviest 

mammal the blue whale at >150000 kilograms (Árnason et al. 2018). There are ~5400 living 

mammalian species (Foley, Springer, and Teeling 2016) inhabiting a range of niches and 
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biomes, dictating their adaptations in size and function. Mammalian masses are frequently 

found between these mass extremes (Figure 1.8) (Blackburn and Gaston 1998), highlighting 

the diversity within this group and inviting research questions as to how muscle cell 

architecture and, in particular, myosin proteins are adapted to mammals at a range of 

masses.  

 

Mammalia can be subdivided into four superordinal groups: Euarchontoglires, 

Laurasiatheria, Afrotheria, and Xenarthra (Foley, Springer, and Teeling 2016). Sequencing 

data is mostly available for the first three groups, which also encompasses most living 

mammals. Euarchontoglires comprises placental mammals, including rodents, primates, 

dermopterans, lagomorphs and scandentians (V. Kumar, Hallström, and Janke 2013). There 

are over 150 genomes available from members of this clade in GenBank (X. Song et al. 2021; 

Sayers et al. 2020). However, there are many more without available sequencing data, as 

there are over 1500 species of rodent alone (Tibbetts 2017).  Despite this, a broad range of 

sizes of these mammals are covered by the sequencing data – from small rodents such as 

Figure 1.8.  Histogram depicting the distribution of mammalian masses. This figure is based on 

mammalian species mass values known at the publication date. Figure extracted from Blackburn and 

Gaston, 1998, Figure 1. 
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mice up to large primates such as gorillas, covering both the Glires (rabbits, hares and 

rodents) and Euarchonta (tree shrews, flying lemurs, and primates). Euarchontaglires 

descends from the Boreoeutheria clade along with Laurasiatheria (Springer et al. 2011).  

Laurasiatheria contains six orders however their phylogenetic placements within the 

superorder are a topic of much debate.  The orders are Eulipotyphla (hedgehogs, moles 

and shrews), Perissodactyla (horses, rhinoceroses), Cetartidactyla (hoofed placental 

mammals, cetaceans), Chiroptera, Carnivora, and Pholidota (pangolins) (Hu, Zhang, and Yu 

2012). This incredibly diverse superorder ranges from whales to bats, yet the placements 

of its orders phylogenetically remains a challenge due to the divergence of major 

laurasiatherian lineages occurring over a short period (1-4 million years) (M. Y. Chen, Liang, 

and Zhang 2017). Sequence data from all major lineages of Laurasiatheria are available (M. 

Y. Chen, Liang, and Zhang 2017), providing a good data resource for investigating the 

divergence of myosin proteins in this thesis.  

Afrotheria is a more divergent superordinal group. This encompasses placental mammals, 

including the Tubulidentata, Macroscelidea, Chrysochloridae, Tenrecoidea, Sirenia, 

Hyracoidea, and Proboscidea (Seiffert 2007). The phylogenetic basis for this grouping is 

strongly supported by a range of genomic data, where indels, nuclear and mitochondrial 

DNA sequences (Amrine-Madsen et al. 2003), and SINEs (Nikaido et al. 2003) lend credit to 

the clade.  It has the longest stem divergence of around 25 million years (Seiffert 2007), 

and as such contains a highly varied group of organisms.  

1.3.5 Motivation of research  

Placental mammals have adapted to most biological niches on the planet and have evolved 

into a plethora of different shapes and sizes. Each niche presents its own challenges: an 

elephant and a mouse would exhibit vastly different muscle fibres to achieve their 

movements. By investigating sequence changes in placental mammal myosin-II isoforms, 

we can begin to understand the different demands that size, and other factors, can place 

on muscle contraction. The primary focus of research performed in Chapter 3 is based on 

the beta-cardiac myosin-II isoform.   
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1.4 Coronaviruses 

Coronavirinae is a virus family comprising four genera of positive-sense, single-stranded 

RNA viruses: α-, β-, γ-, and δ-coronaviruses. Of these, the α- and β-coronaviruses are known 

to cause disease in humans, and Severe Acute Respiratory Syndrome (SARS-CoV), Middle 

Eastern Respiratory Syndrome (MERS), and Severe Acute Respiratory Syndrome (SARS-

CoV-2) have all caused severe outbreaks in the past twenty years (Table 1.2).  

Species Cases Deaths 

SARS-CoV 8098 774 

MERS 2566 866 

SARS-CoV-2 >111 million >2.46 million 

Table 1.2. Wide-spread betacoronavirus outbreak cases and deaths. Outbreak data was taken from 

the WHO.  

 

Though not fully elucidated, the reservoir of these viruses appears to be of bat origin 

(Latinne et al. 2020). Transmission of MERS to humans is most common through infected 

dromedary camels (WHO) and was originally transmitted from bats to camels in the distant 

past (Reusken, Haagmans, and Koopmans 2014). The natural reservoir of SARS-CoV is likely 

to be horseshoe bats (L. F. Wang and Eaton 2007) and spill over from this population to 

humans occurred through intermediate hosts such as palm civets (M. Wang et al. 2005). 

Phylogenetic analyses suggest that the zoonotic source of SARS-CoV-2 is horseshoe bats 

(RaTG13 ) (Z. Zhu et al. 2020), though pangolins have also been proposed as the natural 

reservoir of this virus due to having the closest sequence similarity to the RatG13 

coronavirus and SARS-CoV-2 (T. Zhang, Wu, and Zhang 2020; P. Zhou et al. 2020; Lam et al. 

2020). Of the β-coronaviruses, SARS-CoV and SARS-Cov-2 are markedly more similar, 

sharing 80.21% genomic sequence identity and 97.71% sequence identity in the spike 

protein, whilst the MERS spike protein and SARS-CoV-2 spike protein share 32.79% 

sequence identity (Kaur et al. 2021). The similarities between SARS-CoV and SARS-CoV-2 

have prompted  comparison between the two viruses to better understand each virus 

phenotype and pathogenicity.  
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1.4.1 Virus Phenotype and Pathogenesis 

The SARS outbreak originated in China in 2003 and spread to four other countries, resulting 

in 8098 cases and 774 deaths, a mortality rate of 9.6%. It typically infects the lower 

respiratory tract causing flu-like symptoms, fever, chills and malaise (Gu and Korteweg 

2007), and is spread through droplets and contact with contaminated surfaces (Olsen et al. 

2003). The genome of this virus is organised into 11 ORFs that can produce 23 proteins 

(Ruan et al. 2003).  

In December 2019 in the Wuhan food market in China, an outbreak of novel coronavirus 

SARS-CoV-2 spread rapidly across the globe. As of 24/09/2021 there have been 219 million 

cases and 4.55 million deaths, a mortality rate of 2.1%, though many more cases are 

expected in the asymptomatic population that do not factor into the mortality rate. This 

virus infects the respiratory tract and is transmitted from host-to-host through direct 

contact, by aerosols, and in exhaled breath (Ma et al. 2020; Lednicky et al. 2020; Q. Li et al. 

2020), particularly in poorly ventilated areas (Meyerowitz et al. 2021). The virus genome 

encodes 11 genes (Khailany, Safdar, and Ozaslan 2020), including a polyprotein that is 

Figure 1.9. Structural protein organisation for SARS-CoV-2. Figure extracted from (Kumar et al., 

2020) 
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cleaved into 16 non-structural proteins, structural proteins (Figure 1.9), and several 

accessory proteins encoded by ORFs (S. Kumar et al. 2020). 

The mechanism of cellular entry is similar for these SARS-CoV and SARS-CoV-2. The 

dominant host receptor for infection is the angiotensin-converting enzyme 2 (ACE2), which 

interacts with the viral spike protein to mediate cell entry. The spike protein must be 

primed by the serine protease TMPRSS2 and cysteine proteases cathepsin B and cathepsin 

L (Hoffmann, Kleine-Weber, et al. 2020), which generates the S1/S2 fragment and S2’ 

fragment of the spike protein (Hussain et al. 2020). The proteolytic cleavage of the spike 

protein by TMPRS22 occurs at positions R685-S686 and R815-S816 (Hussain et al. 2020), 

producing S1 and S2 fragments. The S1 domain of spike protein binds to ACE2, altering the 

conformation of the S2 domain and allowing fusion between the viral envelope and plasma 

membrane of the target cell (Xia et al. 2020; Tang et al. 2020) (Figure 1.10). 

Figure 1.10. Overview of the Replication of SARS-CoV-2. Figure extracted from Kumar et al.  
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The SARS-CoV-2  spike protein binds to ACE2 with a  greater affinity than the SARS-CoV 

Spike (Wrapp et al. 2020), resulting in an increased transmission rate. Furthermore, SARS-

CoV-2 exhibits a longer incubation period, is infectious more quickly after symptom onset, 

and has a higher proportion of mild illness in hosts (Petersen et al. 2020). These make for 

a disease that is highly effective in transmission and difficult to contain.  

1.4.2 Coronavirus Proteins 

Despite the genomic similarities of SARS-CoV and SARS-CoV-2, the transmission and 

severity of the viruses are clearly distinct. The differing phenotypes of the viruses must 

therefore be a result of differences in the proteins that the viruses encode.  

One protein of interest is the spike glycoprotein. The spike protein is a large homotrimeric 

protein, and each chain is made up of 1273 amino acids. It is made up of two functionally 

distinct regions, the S1 region is involved in the attachment of the virus, and the S2 subunit 

is involved in the entry of the virus. The main function of this protein is to facilitate virus 

entry into host cells through the binding of the ACE2 receptor. After internalisation into 

endosomes, this protein undergoes structural changes and allows the entry of 

nucleocapsids that can start replication (Gonçalves et al. 2020).  

The envelope protein (E) functions in the assembly and release of the virus and is required 

for pathogenesis but not replication (Nieto-Torres et al. 2014). The membrane protein (M) 

is the most abundant structural protein and functions to give the virion its shape, promote 

membrane curvature, and bind to the nucleocapsid. The interaction of the nucleocapsid 

protein with M and NSP3 functions to package the viral genome into viral particles. This 

protein binds to RNA using its N-terminal or C-terminal domain, with optimal binding 

utilising both (Chang et al. 2006).  

ORF1a and ORF1b produce two large polyproteins by proteolytic cleavage (Yoshimoto 

2020). Protease enzymes (NSP3 and NSP5) cleave the polyproteins into NSP1-11 and 1-16, 

respectively (Astuti and Ysrafil 2020). Most of these proteins function in replicase–

transcriptase complex assembly and are involved in RNA replication and transcription (Fehr 

and Perlman 2015).  
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1.4.3 SARS-CoV-2 Phylogeny and nomenclature 

SARS-CoV-2 has spread rapidly, infecting a large proportion of the human population. A 

range of phenotypes of the virus are observed in different regions and display different 

mortality rates and transmissibility. This could be due to mutations in the coronavirus 

genome or ecological factors such as population density and accessibility to better quality 

healthcare. Additional factors such as government guidelines on virus containment, 

identification of COVID-19 cases through testing procedures, and the definitions of COVID-

19 related deaths are all important considerations when comparing cases across countries. 

Through sequence analysis of the virus, it was possible to identify the mutations in the virus 

and subsequently track their spread. Variants advantageous to transmissibility and viral 

spread quickly became dominant as the pandemic grew (Le Page 2021).   

Deposition of SARS-CoV-2 genome sequences from around the world into data banks 

invited the determination of phylogenetic clades and groupings of sequences. Several 

different nomenclatures have been used to dictate clade – typically coined by the sequence 

deposition groups. GISAID (Global Initiative on Sharing Avian Influenza Data) (GISAID 2020), 

PANGOLIN (Phylogenetic Assignment of Named Global Outbreak Lineages) (O’Toole et al. 

2021), and  Nextstrain (Hadfield et al. 2018) each name the sequence groups generated by 

their phylogenetic analyses differently. Comparison of the clades named by these resources 

are shown in Figure 1.11 below (Alm et al. 2020). For the purposes of this thesis, we will 

use the GISAID nomenclature. GISAID currently separates SARS-CoV-2 sequences into nine 

groups. The naming is based on the mutation that leads to a branching and novel clade 

introduction. The clades S and L were prevalent at the start of the pandemic but now 

constitute a small fraction of sequences compared to other clades. The L clade split into 

clades G and V, then G further split into GR, GH and GV. GR subsequently split into GRY, 

and the branching of these clades are illustrated in Figure 1.11.  

Of particular interest, the D614G clade arose in February 2020 (Isabel et al. 2020) and 

quickly became the dominant clade in regions it entered. It was accompanied by mutations 

in ORF1ab in proteins involved in replication, possibly affecting the replication rate of the 

virus (Koyama, Platt, and Parida 2020). Subsequent mutations within this branch resulted 

in additional clades evolving, which must be monitored to anticipate virus adaptations. In 

particular, the GK clade (delta coronavirus) poses a significant threat to the containment of 
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COVID-19 as it exhibits a lower sensitivity to antibodies (Planas et al. 2021) and has become 

dominant in numerous countries after its identification in India in late 2020. This variant 

and 13 others are considered variants of concern by Public Health England (Public Health 

England 2020; 2021) and must continue to be tracked and investigated. To aid in public 

understanding of current coronavirus variants, the WHO has developed a simple labelling 

system for coronavirus variants of interest, using letters of the Greek alphabet (WHO 2021). 
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Figure 1.11. Clade representation by sequence deposition and annotation resources. The strains 

of SARS-CoV-2 as represented by GISAID, PANGOLIN, and Nextstrain. Figure extracted from (Alm 

et al., 2020). 
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1.4.4 Differentially Conserved Positions 

Differentially Conserved Positions (DCPs), also known as Specificity Determining Positions 

(SDPs), are positions in the sequences of two groups of proteins that are conserved within 

their groups and exclusive to their group (Sloutsky and Naegle 2016). This method was 

originally used to identify functionally important residues in proteins and to investigate 

interactions at protein interfaces (Rausell et al. 2010; Casari, Sander, and Valencia 1995).  

DCPs are calculated from multiple sequence alignments (MSAs) between two related 

groups of sequences (see Figure 1.12). Proteins are under evolutionary pressures, and 

random mutations can give rise to a number of different phenotypes. However, for a 

protein to maintain its core functionality, large sections of the protein must remain 

unchanged. Further, variable positions are less important biochemically and are more 

structurally conserved, with several amino acids being interchangeable in these positions. 

The features of amino acids can be conserved, be that the size of the amino acid or its 

functional groups, and often this feature conservation can be indicative of a structural or 

functional advantage. Remaining positions that are conserved between groups of 

evolutionarily related organisms are candidates for determining specificity and affecting 

Figure 1.12. Example identification of DCPs. Position three in the alignment would be considered 

a DCP.  
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divergent phenotypes of the protein. Scoring functions for characterising DCPs differ 

depending on the program used, but in each only highly conserved positions that differ 

between groups can be classed as DCPs.  

There are, however, limitations of MSAs. Alignment algorithms assign gaps by a range of 

methods and penalties for introducing single gaps and multiple gaps vary. The penalties for 

the introduction of a single gap versus multiple gaps differ (Edgar 2004; Sievers and Higgins 

2014a; Katoh and Standley 2013). Though this is unlikely to be a frequent occurrence 

between groups of high sequence similarity, it can be addressed by using multiple 

alignment algorithms and assigning each DCP a confidence score based on the number of 

different alignments in which it is a DCP.  

Further, the method is only applicable when sequence similarity between the two sets is 

sufficiently conserved, as a high level of divergence results in a very large set of DCPs. 

Sequences with sequencing errors and poorly sequenced regions can give rise to false 

positive or false negative calling of DCPs, but methods have now been developed to reduce 

this uncertainty (Castresana 2000). In addition, the size of each group should be 

representative of the species. Sequences from an isolated event may result in poor 

coverage of the species, leading to biased output and less informative DCPs identified. The 

effective number of sequences can be calculated from the sequence length, the number of 

sequences in the MSA and the sequence identities between them (C. Zhang et al. 2020).  

Sequence alignments with sufficient data quality and quantity can be investigated to 

decipher candidate positions responsible for a change in phenotype between proteins of 

related organisms. Furthermore, DCPs can assign more specific functions to unannotated 

proteins (Hannenhalli and Russell 2000). S3det (Muth et al. 2012) is one such tool that 

identifies DCPs and maps them to protein structures to gauge the biological relevance of 

the DCP. 

This technique is particularly applicable for viruses, which encode few genes, mutate 

rapidly, and elicit differing phenotypes often. One such example of the effectiveness of 

DCPs in identifying changes associated with phenotype is in Ebolavirus. Ebolaviruses are 

negative strand RNA viruses that form part of the filoviridae family and have a length of 

~19000bp. There are six known species of Ebolavirus with varying degrees of pathogenicity. 



Chapter 1: Introduction 

 
 

54 

Zaire, or EBOV, is the most lethal and has a mortality rate ranging from 25%-90%. In the 

2014 outbreak in West Africa, for which EBOV was responsible, over 11,323 people died of 

this virus. Its high mortality rate, transmission through direct contact with bodily fluids, and 

a lengthy incubation period of between 2-21 days facilitated a widespread pandemic. Three 

additional Ebolavirus species – Sudan virus, Tai Forest virus, and Bundibugyo virus – have 

all shown to be pathogenic in humans, however, the onset of disease from Reston 

Ebolavirus has yet to occur. This indicates that it is non-pathogenic in humans. By 

identifying DCPs between pathogenic and non-pathogenic strains of the virus, a subset of 

189 amino acid differences between the two groups was collected, which likely contain the 

cause of the phenotypic differences. Further structural analysis narrowed this set to 47 

DCPs (Pappalardo et al. 2016) and fewer present in regions of interest, enabling predictions 

about the changes required to make Reston Ebolavirus pathogenic. Additional 

examinations using DCPs have indicated that the recently discovered novel Ebolavirus, 

Bombali virus, is likely non-pathogenic in humans (Martell et al. 2019). This highlights the 

predictive application of this method which can be applied to other viruses with distinct 

phenotypes. 
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1.7  Scope and Outline of this Thesis 

This thesis focuses on the use of computational tools to predict and assign protein function 

from sequence and structural analysis. 

Chapter 1 introduces and provides background for the topics explored in this thesis and 

explains fundamental methodologies on which much of this thesis relies.  

Chapter 2 describes the development of 3DLigandSite tool and webserver and its 

performance on validation data. This work is set to be sent out for review. My role in this 

research was design and creation of the webservers, the 3DLigandSite Pipeline, and in the 

drafting of the manuscript.  

Chapter 3 describes sequence analysis of myosin-II isoforms and the altering of human 

beta-cardiac myosin-II to behave like rat myosin-II. This work is published in PLOS Biology 

(C. A. Johnson et al. 2021). My contribution to this research includes all bioinformatics 

works performed and the drafting of the manuscript.  

Chapter 4 describes the application of Coronavirus Analysis Tool (CAT) to Coronavirus 

Proteins and the possible implications of DCPs identified. This work is published in 

Bioinformatics. My role in this project was creating a pipeline to determine DCPs found 

between coronaviruses, in the analysis on the DCPs identified, and in the drafting of the 

manuscript. I also developed the CAT webserver and its functionality in predicting DCPs.  

Chapter 5 summarises the work from previous chapters and explores the implications of 

the research and future work for building on the findings.  

Further research performed during my PhD and not included in this thesis includes: 

• Investigation of DCPs in the recently discovered Bombali Ebolavirus to identify 

whether it is likely pathogenic (Martell et al. 2019).  

• Deposition of 3DLigandSite results as part of the functional annotations of PDB 

data in PDBe-KB (Varadi et al. 2020). 

• Investigation of Aprotinin as an inhibitor of SARS-CoV-2 replication (Bojkova et 

al. 2020).  
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2.1 Abstract 

3DLigandSite is a web tool for the prediction of ligand-binding sites in proteins. It allows 

users to submit either a query protein sequence or structure. Results are displayed in 

multiple formats to enable users to investigate the predicted binding sites, including an 

interactive Mol* molecular visualisation of the protein and the predicted binding site. 

Here, we report a significant update since the first release of 3DLigandSite in 2010. The 

overall methodology remains the same, with 3DLigandSite inferring candidate binding 

sites in proteins using known binding sites in related protein structures as templates. The 

tool now uses HHSearch to identify template structures. Moreover, we introduced a 

machine learning element as the final prediction step, which improves the accuracy of 

predictions and provides a confidence score for each residue in a predicted binding site.  

Validation of 3DLigandSite on a set of 6416 binding sites obtained recall of 0.72 at 0.75 

precision. 3DLigandSite is available at https://www.wass-michaelislab.org/3dligandsite. 
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2.2 Introduction 

Elucidation of protein function remains a difficult and important task, with many millions 

of proteins present in UniProt (Bateman et al. 2021) and only a small fraction of them 

functionally annotated (N. Zhou et al. 2019), making automated sequence annotation tools 

essential. Small molecules that bind to proteins are intimately related to protein function; 

they can be substrates or products of an enzyme reaction, cofactors (Mukhopadhyay et al. 

2019) that play an essential role in catalysis or have important structural or regulatory roles 

(Torrance, MacArthur, and Thornton 2008). 

Methods for predicting ligand-binding sites (reviewed in (Zhao, Cao, and Zhang 2020)) use 

a range of different approaches, including sequence conservation (Capra and Singh 2008), 

structural approaches such as identifying pockets on the protein surface, the combined 

analysis of sequence and structural information (Capra et al. 2009), and machine learning 

(Krivák and Hoksza 2018; Jendele et al. 2019; Santana et al. 2020; Jiménez et al. 2017). 

3DLigandSite and methods such as firestar (Lopez et al. 2011), FINDSITE (Skolnick and 

Brylinski 2009; Feinstein and Brylinski 2014), COACH-D (Q. Wu et al. 2018) and FunFOLD2 

(Roche, Buenavista, and McGuffin 2013) utilise knowledge of existing binding sites in solved 

protein structures present in the Protein Databank (PDB) (Armstrong et al. 2020). 

3DLigandSite, FINDSITE, FunFOLD2 and COACH-D combine the modelling of protein 

structure with the identification of homologous proteins in the PDB that have ligands 

bound to them. These binding sites in identified homologues are then used to infer binding 

sites in the query protein. By contrast, firestar uses FireDB (Maietta et al. 2014), a database 

of ligand-binding residues extracted from protein structures in the PDB and also catalytic 

residues extracted from the catalytic site atlas (Ribeiro et al. 2018).  

Here, we present the first major update to the 3DLigandSite webserver.  3DLigandSite 

(Wass, Kelley, and Sternberg 2010a) was first developed in 2010 to automate an approach 

that was successfully used in the ligand-binding site experiment in the 8th Critical 

Assessment of protein Structure Prediction (CASP) (Wass and Sternberg 2009; López, 

Ezkurdia, and Tress 2009). Over the last eleven years, 3DLigandSite has become widely 

used, attracting on average 125,000 submissions per annum. 3DLigandSite binding site 

predictions have been used for a diverse range of purposes, including genome annotation 

(Nishiyama et al. 2018; Antczak, Michaelis, and Wass 2019), antiviral screening (Kuhlmann 
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et al. 2017), the analysis of single nucleotide variants associated with disease (Bernkopf et 

al. 2014; O’Grady et al. 2016; Martell et al. 2017; Chambers et al. 2011) and the 

development of fluorescent sensors (C. H. Ho and Frommer 2014). Over the last two years, 

3DLigandSite binding site prediction has been incorporated into the PDBe Knowledgebase 

(Varadi et al. 2020), making binding site predictions for protein structures in the PDBe 

(Armstrong et al. 2020) widely available. 

The basic algorithm remains the same in the new version, but it now makes use of the latest 

sequence searching methods and incorporates machine learning as the final step in the 

prediction process, which improves prediction accuracy and associates a confidence score 

with each individual residue predicted to be part of a binding site. This is combined with a 

new webserver that offers improved functionality for users to investigate the predicted 

binding sites. 
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2.3 The 3DLigandSite Method 

A summary of the 3DLigandSite methodology is outlined in Figure 2.1. Users submit either 

a protein sequence in FASTA format or a protein structure (in PDB format). Where a 

sequence is submitted, Phyre2 (Kelley et al. 2015) is used to perform template-based 

modelling, or AlphaFold (Jumper et al. 2021) is used to predict the protein structure. Where 

the sequence is identical to a protein structure in the AlphaFold model organisms’ resource 

or the PDB, these structures are used. The next step focuses on the identification of ligand-

bound structures that are homologous to the query protein. Originally, 3DLigandSite used 

MAMMOTH (Lupyan, Leo-Macias, and Ortiz 2005) to perform a structural search of the 

query structure against a structural library of proteins from the PDB, which was a time-

consuming step, typically taking between 40-80 minutes. This has been replaced by a 

sequence-based search using HHSearch (Söding 2005) to screen a sequence library of 

ligand-bound proteins in the PDB (detailed below), which only takes a few minutes to run. 

A structural search is provided as an advanced option that the user can choose to perform. 

Here, TM-Align (Y. Zhang and Skolnick 2005) is used to align each ligand-binding structural 

database protein structure onto the query structure, where alignments with TM-Scores of 

0.6 or above are considered.  
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All matches from the sequence search with an HHSearch probability score greater than 80 

% are retained, and their protein structures are aligned to the query structure using TM-

Align (Y. Zhang and Skolnick 2005). The user can reduce the HHSearch probability cut off if 

they would like to use less confident matches to the query sequence.  

The alignment of the library structures onto the query structure superimposes the ligands 

present in the library structures onto the query structure. These ligands are then clustered. 

Originally 3DLigandSite used single linkage clustering to cluster both metal and non-metal 

ligands, resulting in some very large clusters of ligands. To avoid this, we now generate 

clusters such that 50 % of each ligand must overlap with at least one of the other ligands in 

the same cluster. Moreover, metal and non-metal ligands are now separately clustered to 

make individual predictions of metal and non-metal binding sites. 

The prediction of residues that form the binding site based on each cluster of ligands is the 

final step in the prediction process. Each cluster may contain multiple different ligands or 

many instances of the same (or similar) ligands in different poses. We also do not know 

what ligand actually binds to the query protein at this location. To predict the residues that 

form a binding site at this location,  3DLigandSite originally predicted any residue within 

0.8 Å of at least 25 % of the ligands in a cluster to be part of the binding site. We have now 

introduced a Logistic Regression classifier (detailed below) to perform this final prediction 

step. This produces accurate predictions and a confidence score associated with each 

residue in the predicted binding site. 

2.2.1 Generation of the library of ligand-bound protein structures 

To generate the library of biologically relevant protein binding sites, protein structures 

were extracted from the PDB and filtered to retain only those containing ligands classed as 

Figure 2.1. An overview of the 3DLigandSite method. Users submit either a protein sequence or 

structure. Where sequences are submitted Phyre2 is used to model the 3D structure. HHsearch is 

used to search a sequence library of protein structures with ligands bound. Hits from this search 

are aligned with the structure of query protein, the ligands present are clustered. Each cluster of 

ligands represents a potential binding site in the protein. A machine learning classifier is used to 

predict which of the residues around the cluster are likely to form part of a binding site. 
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cognate by FireDB (Maietta et al. 2014). The protein structures were clustered, and the 

ligands from proteins in each cluster mapped onto a representative structure to reduce 

search time. The amino acid sequences of the retained structures were clustered using CD-

HIT (Fu et al. 2012) using an 80 % sequence identity threshold. The protein models in each 

cluster identified were then aligned against the cluster representative (obtained from CD-

HIT) using TM-align  (Y. Zhang and Skolnick 2005), and the ligands were superimposed onto 

the representative structure and retained. An HHSearch (Steinegger et al. 2019) sequence 

database was then built from the representative sequences for searching user-submitted 

protein sequences against. 

2.2.2 Calculating residue conservation 

To calculate residue conservation, HHBlits (Remmert et al. 2012) was used to search the 

query sequence against the UniClust30 database (Mirdita et al. 2017). The multiple 

sequence alignment was then used to calculate the Jensen-Shannon Divergence (Capra and 

Singh 2007b) conservation score. 

2.2.3 Machine learning-based prediction of binding site residues 

The machine learning step was introduced to accurately predict which residues are most 

likely to be part of the binding site around a cluster of ligands. An equal number of binding 

and non-binding residues on the query protein were used for training and testing. For each 

of these residues, a set of features was extracted and converted to a 0-1 range (Table 2.1). 

A number of features were considered for best determining binding propensity. The 

features include distance measurements to the ligand cluster, residue conservation and 

amino acid properties such as charge, hydrophobicity and van der Waals volume (Table 

2.1). Solvent accessibility scores were obtained from ProAct2 (Tjelvar S.G. Olsson, Antony 

M.E. Churchill, William R. Pitt 2012). Distance-based features were calculated such as the 

minimum, maximum, and average distance of each residue to ligands in the cluster, and 

the percentage of ligands in the cluster within 0.8 Å + Van der Waals radii of the amino 

acid. Univariate feature selection was used to identify ligand contacts, the three distance 

features, residue conservation in metals and non-metals as the most informative features 

for predicting ligand binding, with the negatively charged feature included for metals as 

well. A single distance metric was selected to avoid overtraining on a similar feature, 

resulting in the ligand contacts, minimum ligand distance, negatively charged, and residue 
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conservation as our chosen features to predict ligand binding. The negatively charged 

amino acid feature showed a preference for metal-binding and is in keeping with the 

literature (Al-Karadaghi n.d.; Barber-Zucker, Shaanan, and Zarivach 2017). Solvent 

accessibility is not considered for the machine learning step as it is not considered in 

commonly used ligand binding calculations; however, it may be useful to the user to 

identify easily targetable positions, and therefore this information is retained for the user. 

Feature Value range 

JS Divergence Score (conservation) 0-1 

Amino acid properties  

Hydrophobicity 0-1 

Polar uncharged 0/1 (1 if polar uncharged, 0 otherwise) 

Isoelectric point 0-1 

Aromatic 0/1 (1 if aromatic, 0 otherwise) 

Van der Waals volume 0-1 

Positive 0/1 (1 if positive, 0 otherwise) 

Negative 0/1 (1 if negative, 0 otherwise) 

Amino acid 

Each amino acid 1 if present, if not 0. I.e., Is 

tyrosine? 1, Is alanine? 0 

3DLigandSite features  

Min ligand distance 

0-1 (Value/10, any value greater than 1 is 

scored as 1)  

Max ligand distance 

0-1 (Value/10, any value greater than 1 is 

scored as 1)  

Average ligand distance 

0-1 (Value/10, any value greater than 1 is 

scored as 1)  

Ligand Contacts  

0-1 (Percentage of ligands that the residue is 

within 0.8/0.4Å + VDW of/100) 

 

Table 2.1. Features used in machine learning. 
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The scikit-learn Python package  was used to train Support Vector Machines (SVMs) (Cortes 

and Vapnik 1995), Extra-Trees, Logistic Regression, and Random Forest classifiers.  

The data were then fitted with optimum parameters from 100 random iterations and three 

cross-validation steps using GridSearchCV within scikit-learn. A randomly generated 80:20 

train-test split was used to fit the models. 

The training and test sets comprise monomers with cognate ligands bound. These 

structures were identified by filtering the PDB, clustering their sequences using MMseqs2 

(Steinegger and Söding 2017)  at a maximum sequence identity of 40 %. This resulted in 

5223 metal and 4995 non-metal binding sites. A subset of 1600 metal and 1573 non-metal 

binding sites were randomly selected for testing and training from ~2000 protein 

structures. The remaining binding sites were used as a validation set to evaluate 

performance on the trained classifiers (that had not been used in training) (Figure 2.2). The 

split of the data in this way was to ensure there was enough data to accurately validate this 

method, whilst also providing lots of structures for the classifiers to learn from. The PDB 

identifiers and chains of all sequences used are provided (Supplementary Table 2.1).  
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The residues used for each binding site were obtained by selecting all residues of the query 

protein. From this set, binding residues were classed as all residues within VDW radii + 0.8 

Å  of the ligand present in the PDB structure, with all other residues classed as non-binding. 

This resulted in 1976 and 6950  metal and non-metal binding residues, respectively, and an 

equal number of randomly selected non-binding residues (Table 2.2), providing the positive 

and negative examples required for training the machine learning classifiers. 

 

 

 

Figure 2.2. Benchmarking of 3DLigandSite on the cross-validation training-testing data. Receiver 

operator characteristic (ROC) curves and Precision-Recall graphs are shown for the prediction of 

binding sites of non-metal (A and C) and metal (B and D) ligands. 
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2.4 Evaluating 3DLigandSite Performance 

The performance of 3DLigandSite was assessed using the validation set (see methods 

section), which contained 59203 and 16166 (Table 2.2)  non-metal and metal-binding 

residues, respectively, that had not been used in the testing or training of the classifiers. 

Performance was assessed using multiple measures of precision, sensitivity (recall), and a 

Receiver Operator Characteristic (ROC) graph.  

 Number of 

binding sites 

Number of 

binding residues 

Number of 

non-binding 

residues 

Metal binding 

sites 

   

Train/test 1600 1976 1976 

Validation 2889 16166 825376 

    

Non-metal 

binding sites 

   

Train/test 1573 6950 6950 

Validation 3527 59203 1044947 

 

Table 2.2. Testing, training, and validation dataset sizes. The training/test set was used for five-

fold cross validation using an 80:20 split, with 80% of the data used for training and testing on the 

remaining 20%. 

 

The Logistic Regression classifier performed best on the non-metal binding sites, with a 

AUROC of 0.99, though a similar performance is observed for ExtraTrees and RandomForest 

classifiers (Figure 2.3A, Table 2.3). For metals, the Logistic Regression classifier performed 

best with the computed area under the receiver operating characteristic curve (ROCAUC) 

score of 0.99 (Figure 2.3C, Table 2.2). These results demonstrate that 3DLigandSite makes 

accurate predictions of binding site residues. For example, it is able to obtain 92 % recall at 

75 % precision for non-metal binding sites (Figure 2.3C) and 52 % recall at 75 % precision 

for metal-binding sites (Figure 2.3D). The performance of the metal-binding predictor was 
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worse than that of non-metals. This is likely due to a number of reasons: metals typically 

bind to fewer residues than non-metals due to the size difference between the two, leading 

to comparatively more false positives when variation in the atomic positions of the metals 

in clustering results in more amino acids labelled as binding.  In addition, the validation 

data set includes proteins that are difficult to predict due to the lack of sequentially 

homologous proteins, possibly indicating the metal binding sites are more structurally 

conserved than sequentially. Another reason for the reduced performance in metal-

binding prediction than non-metal-binding prediction could be that non-metal clusters of 

ligands occur more frequently, lowering the ranking of the metal-binding site, and 

therefore resulting in a worse performance in the validation set.  

 

A. Non-metal ligands 

*Average from 5-Fold CV 

B. Metal ligands 

 
Test Validation Validation Struc-Search 

Model Precision Recall AUC 
* 

Precision Recall AUC Precision Recall AUC 

ET 0.89 0.89 0.96 0.71 0.89 0.96 0.71 0.78 0.84 

RF 0.9 0.9 0.96 0.71 0.89 0.96 0.72 0.78 0.85 

SVM 0.88 0.88 0.92 0.79 0.89 0.91 0.73 0.78 0.7 

LogR 0.88 0.88 0.95 0.79 0.89 0.98 0.73 0.78 0.9 

*Average from 5-Fold CV 

Table 2.3. Benchmarking machine learning performance. The performance of four classifiers on 

datasets are summarised here. ET = Extra-Trees, RF = Random Forest, SVM = Support Vector 

Machine, LogR = LogisticRegression. Results for A) Non-metal ligands and B) Metal ligands. 

 

 
Test Validation Seq-Search Validation Struc-Search 

Model Precision Recall AUC 
* 

Precision Recall AUC Precision Recall AUC 

ET 0.9 0.9 0.96 0.85 0.92 0.97 0.83 0.89 0.92 

RF 0.9 0.9 0.96 0.86 0.92 0.98 0.84 0.89 0.93 

SVM 0.91 0.91 0.93 0.9 0.93 0.94 0.87 0.89 0.9 

LogR 0.91 0.91 0.95 0.91 0.92 0.99 0.88 0.89 0.95 
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The ability of the classifiers to distinguish binding and non-binding positions was plotted 

showing the distribution of probability scores assigned to binding and non-binding residues 

in the validation set for metals and non-metals (Figure 2.4). We evaluated the performance 

of 3DLigandSite on the CASP8, CASP9 and CASP10 datasets, totalling 70 targets. The 

sequence-based homology search resulted in MCC, precision and recall scores of 0.73, 0.65, 

and 0.85, respectively, for 70 targets. Using the structural-search option resulted in MCC, 

precision and recall scores of 0.72, 0.67, and 0.8, respectively, for the 70 targets. Structural 

search results at a range of TM-Scores is shown in Table 2.4. This was surprising given 

recent studies that have shown that structural searches are better at identifying related 

protein structures (J. Chen et al. 2018). Given, the extra time taken to perform the 

Figure 2.3. Benchmarking the 3DLigandSite machine learning classifier. Receiver operator 

characteristic (ROC) curves and Precision-Recall graphs are shown for the prediction of binding sites 

of non-metal (A and C) and metal (B and D) ligands. 
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structural search (circa 4 hours per submission) and the slightly poorer prediction, we 

generally recommend using the default sequence-based search.  

Sequence-based MCC Precision Recall Targets 

HHSearch Prob 
75% 

0.73 0.65 0.85 70 

Structure Based     

TMScore 0.5 0.65 0.62 0.71 70 

TMScore 0.6 0.72 0.67 0.8 70 

TMScore 0.7 0.71 0.68 0.77 70 

TMScore 0.8 0.69 0.65 0.77 70 
 

Table 2.4. CASP Assessment. The performance of the sequence-based and structure-based 

3dligandsite tool on the CASP dataset. 

Figure 2.4. Assessment of the average probability scores assigned to binding and non-binding 

residues in the metal and non-metal residues in the validation set. Non-metal binding residues 

(A), non-metal not binding residues (B), metal binding residues (C), metal not binding residues (D). 
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2.5 The 3DLigandSite Web Server 

The 3DLigandSite web server is available at https://www.wass-

michaelislab.org/3dligandsite. The web server is free to all without a login requirement. 

Users can select to submit either a protein sequence (in FASTA format) or a protein 

structure (in PDB format). Where a sequence is submitted, the first step of the prediction 

process is to model the protein structure using Phyre2 (Kelley et al. 2015) or AlphaFold 

(Jumper et al. 2021). The runtime for such submissions is longer for these methods as 

modelling protein structures is a time-consuming process. Any sequences submitted that 

are equivalent to the sequences of proteins structures present in the PDB or AlphaFold 

model organisms’ dataset are automatically matched to these structures and these 

structures are used for the prediction. Where users submit a protein structure, the runtime 

is typically less than five minutes using default settings. Users who provide an email address 

receive an email upon submission and also once the results are ready for viewing. The web 

server includes a help section that provides recordings that work users through both the 

submission process and also interpretation of data in the results pages. 

2.4.1 Results Output  

3DLigandSite results pages are split into three main sections. Results are initially presented 

as a sequence view (Figure 2.5A), which shows the amino acid sequence of the submitted 

protein, residue conservation, and a row for each of the clusters of ligands that have been 

identified as potential binding sites (Figure 2.5). This provides users with an easily 

interpretable view of the predicted binding sites. 

The second section of results shows the cluster table, which includes details of the clusters 

identified, the number of ligands present in each cluster and the number of structures that 

these ligands come from. The ligands are represented by the three-letter codes from the 

mmCIF dictionary (Adams et al. 2019) and are linked to the small molecule details in the 

PDB (Figure 2.5). Clusters are sorted according to the number of ligands present in the 

cluster. There is greater confidence that a cluster represents a binding site when there is 

evidence for this from multiple protein structures. The second table in this section contains 

a tab for each ligand cluster and lists all of the residues predicted to be in the binding site 

along with the conservation score, solvent accessibility, and the probability calculated by 

the classifiers. 

https://www.wass-michaelislab.org/3dligandsite
https://www.wass-michaelislab.org/3dligandsite
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The final section of the results page contains a Mol* molecular viewer (www.molstar.org) 

(Sehnal et al. 2018) that by default displays the protein structure in a cartoon format along 

with the ligands in the top-ranked cluster, highlighting the predicted binding site residues 

for this cluster in red (Figure 2.5). The Mol* viewer enables users to inspect the predicted 

binding sites within the protein structure and offers multiple features for exploring the 

structure. The 3DLigandSite control panel to the right of the viewer provides easy to use 

functions such as changing the colour or format of the display of the ligands and the protein 

structure. Further functionality is available via the Mol* built-in options shown on the top 

right of the viewer. The control panel also includes a button enabling users to generate 

publication-quality images of the current display in the viewer. 
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Figure 2.5. Viewing results on the 3DLigandSite web server of T0396 from the CASP 

assessments, PDBID: 1JR8. Results are presented in 3 main sections: A) a sequence view, which 

maps sequence conservation and the different clusters identified onto the protein sequence. B) 

Details of the clusters, including the number of ligands and type of ligand are displayed as well as 

a table listing the residues predicted to form the binding site for each cluster. C) The structural 

analysis section includes a Mol* molecular viewer to visualise the protein, the predicted binding 

site and the clusters used to make the predictions. A separate control panel (on the right) enables 

users to easily modify the display. 
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2.6 Use Cases 

As set out in the introduction, 3DLigandSite predictions have been widely used for a range 

of different biological and biomedical purposes (Wass, Kelley, and Sternberg 2010a; López, 

Ezkurdia, and Tress 2009; Wass and Sternberg 2009; Antczak, Michaelis, and Wass 2019; 

Nishiyama et al. 2018; Kuhlmann et al. 2017; Chambers et al. 2011) (20-26). For example, 

with widespread use of sequencing technologies, there is extensive interest in the analysis 

of non-synonymous single nucleotide variants (nsSNVs), specifically to identify those 

nsSNVs that may alter protein structure and function and be associated with a phenotype 

such as a disease. Thus, 3DLigandSite has been applied to analyse such nsSNVs for a range 

of diseases, from liver disease to cardiomyopathies.  

One application has been to study nsSNVs present in individuals with cystinuria, which is 

caused by variants in two genes, SLC7A9 and SLC3A1, that encode a dimeric amino acid 

transporter (Thomas et al. 2014). Cystinuria is caused by variants that affect the ability of 

the transporter to transport cystine into cells, which results in the formation of kidney 

stones. In a recent study (Martell et al. 2017), 3DLigandSite was used to model the structure 

and ligand binding sites of the two encoded proteins and to analyse how the set of nsSNVs 

observed in a cohort of patients may affect transporter function and be linked with the 

severity of the disease that patients experienced.  
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2.7 Concluding Remarks 

The 3DLigandSite web server provides free access to an easy-to-use resource for modelling 

small molecule binding sites in proteins. This widely used resource has been extensively 

updated to provide improved functionality and to reduce the run time of user submissions. 

Our benchmarking demonstrates that 3DLigandSite can obtain high recall with high 

precision, therefore accurately predicting binding sites for users to apply to the proteins 

they are researching. 
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3.1  Abstract: 

The speed of muscle contraction is related to body size; muscles in larger species contract 

at slower rates. Since contraction speed is a property of the myosin isoform expressed in a 

muscle, we investigated how sequence changes in a range of muscle myosin II isoforms 

enable this slower rate of muscle contraction. We considered 798 sequences from 13 

mammalian myosin II isoforms to identify any adaptation to increasing body mass. We 

identified a correlation between body mass and sequence divergence for the motor domain 

of the four major adult myosin II isoforms (β/Type I, IIa, IIb, IIx), suggesting that these 

isoforms have adapted to increasing body mass. In contrast, the non-muscle and 

developmental isoforms show no correlation of sequence divergence with body mass.  

Analysis of the motor domain sequence of β-myosin (predominant myosin in Type-I/slow 

and cardiac muscle) from 67 mammals from two distinct clades identifies 16 sites, out of 

800, associated with body mass (padj<0.05) but not with the clade (padj>0.05).  Both clades 

change the same small set of amino acids, in the same order from small to large mammals, 

suggesting a limited number of ways in which contraction velocity can be successfully 

manipulated.  To test this relationship, the nine sites that differ between human and rat 

were mutated in the human β-myosin to match the rat sequence. Biochemical analysis 

revealed that the rat-human β-myosin chimera functioned like the native rat myosin with 

a two-fold increase in both motility and in the rate of ADP release from the actin.myosin 

cross-bridge (the step that limits contraction velocity). Thus, these sequence changes 

indicate adaptation of β-myosin as species mass increased to enable a reduced contraction 

velocity and heart rate. 
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3.2 Introduction: 

Proteins can adapt over time, tuning their function to the specific needs of the organisms 

in which they are expressed.  That is, the same protein expressed in different organisms 

(orthologues) may have distinct properties to better suit the needs of each organism.  This 

is well established for muscle contraction where the maximum shortening velocity, V0, is a 

property of the myosin isoform expressed in the tissue.  V0 varies more than 5-fold for 

muscles expressing the same myosin isoform in different mammals. For example, the V0 of 

rat and human Type I/β-cardiac myosin (hereafter referred to as β-myosin) are 1.42 and 

0.33 µm s-1 half sarcomere-1 respectively (Pellegrino et al. 2003). Across a range of 

mammals, V0 for each muscle myosin isoform is inversely related to the size of the 

mammal; larger mammals have slower contracting muscles (Luana Toniolo et al. 2004; 

Pellegrino et al. 2003).  This can most commonly be observed in cardiac tissue where heart 

rate (related to the contraction velocity, see below) varies widely and is slower for larger 

mammals (Savage et al. 2007). 

Since V0 is a property of the myosin isoform expressed in the tissue, there are expected to 

be changes in the myosin sequence that have resulted in a myosin with the needed velocity.  

However, changes in sequence may be occurring for reasons other than adjusting the 

velocity. Here we ask if it is possible to define which sequence changes tune V0 for an 

individual myosin isoform. 

Several attempts have been made to identify the sequence changes associated with 

changes in the myosin isoforms and the associated changes in shortening velocity.  These 

used the relatively small numbers of sequences available at the time or considered the 

differences between paralogues of muscle myosin IIs.  The studies focussed on non-

conservative substitutions in sequence (Bottinelli and Reggiani 2000) or on the variable 

surface loops (Schiaffino and Reggiani 2011; Luana Toniolo et al. 2004) and identified areas 

of interest, but did not locate specific residues nor how they might influence contraction 

velocity. Large numbers of mammalian myosin sequences are now available from various 

genome projects. Using this large data set, we test the hypothesis that muscle myosin-II 

isoforms from mammals have adaptations in protein sequence associated with mean body 

mass and V0.    
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We have examined 798 mammalian myosin II sequences, from 13 myosin II isoforms and 

find that the myosin isoforms found in adult sarcomeric muscle (Type II fast muscle 

isoforms IIa, IIb and IIx and β; see Table 3.1 for definition of isoforms) have a much higher 

variation in sequence than the non-muscle myosins (NMA and NMB).  This is consistent 

with an adaptation of contraction velocity to body mass occurring only in the adult muscle 

myosins and not in the non-muscle cellular myosin which are unaffected by overall species 

size.   

Gene 
name 

Heavy 
Chain 

Muscle Type Isoform Short 
name 

No 
complete 
sequences 

Motor Tail 

Major adult sarcomeric muscle myosins R2 Gradient 
(%/log(kg)) 

R2 Gradient 
(%/log(kg)) 

MYH1 MyHC-1 Fast Skeletal IIb IIb 51 0.48 -0.52 ± 0.20 0.58 -0.75 ± 0.12 

MYH2 MyHC-2 Fast Skeletal IIa IIa 77 0.44 -0.53 ± 0.10 0.35 -0.43 ± 0.11 

MYH4 MyHC-4 Fast Skeletal 
IID/X 

IIx 41 0.84 -0.84 ± 0.11 0.85 -0.68 ± 0.09 

MYH6 MyHC-6 Cardiac α cardiac α 65 0.3 -0.36 ± 0.29 0.35 -0.31 ± 0.11 

MYH7 MyHC-7 Cardiac/Slo
w 

β-cardiac β 67 0.63 -0.72 ± 0.11 0.03 -0.06 ± 0.16 

Specialist adult sarcomeric myosins      

MYH13 MyHC-13 Fast Extraocular EXOC 60 0.18 -0.32 ± 0.10 0.21 -0.72 ± 0.2 

MYH7b MyHC-7b Slow Slow Tonic SlowT 72 0.05 -0.08 ± 0.06 0.03 -0.063 ± 0.06 
 

Developmental muscle isoforms      

MYH3 MyHC-3 Developmen
tal 

Embryonic EMB 60 0.13 -0.09 ± 0.04 0.22 -0.31 ± 0.12 

MYH8 MyHC-8 Developmen
tal 

Perinatal PERI 54 0.01 -0.04 ± 0.11 0.21 -0.28 ± 0.12 
 

Non sarcomeric myosins      

MYH9 MyHC-9 Non-muscle Non-muscle 
A 

NMA 59 0.03 -0.033 ± 
0.036 

0.14 -0.14 ± 0.06 

MYH10 MyHC-10 Non-muscle Non-muscle 
B 

NMB 69 0.11 0.042 ± 
0.022 

0.09 -0.08 ± 0.05 

MYH11 MyHC-11 Smooth 
muscle 

Smooth 
Muscle 

SM 71 0.52 -0.37 ± 0.07 0.08 -0.17 ± 0.09 

MYH14 MyHC-14 Non-muscle Non-muscle 
C 

NMC 52 0.10 -0.21± 0.11 0.203 -0.65± 0.35 

Table 3.1. Myosin II Isoforms considered. The myosin isoforms, number of sequences, and 

overview of mass vs sequence identity results. MyHC 13 & 7b are labelled specialized because 

unlike the other sarcomeric forms they are not found alone in a specific muscle type but only in 

combination with other isoforms.   
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We go on to examine in greater detail the sequence differences within the more widely 

studied mammalian β-myosin  (MYH7, expressed in slow Type I and cardiac muscle) to 

establish if it is possible to define a relationship between amino acid sequence and velocity 

of contraction.  We examine 67 mammalian β-myosin sequences from 2 clades and identify 

a group of 16 amino acids which have the strongest association with the size of the mammal 

and not the clade.  Four are in the hypervariable regions (Loop2 and the N-terminus). Of 

the 12 remaining amino acids, nine differ between human and rat β-myosin. We test our 

hypothesis that these nine residues influence V0 through the construction and subsequent 

biochemical characterisation of a rat-human β-myosin chimera (hereafter referred to as 

chimera) in which the nine rat residues are exchanged into the human β-myosin. 
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3.3 Materials and Methods 

Protein sequences were extracted from RefSeq (Pruitt et al. 2014)  and UniProt 

(Consortium 2017) as listed in Table S3.1. To ensure that each sequence corresponded to 

the specific myosin isoform we used both the UniProt and eggNOG (Huerta-Cepas et al. 

2016) annotations and for the model species available in APPRIS (Rodriguez et al. 2018) 

selected the principal isoform. Isoform determination was also checked with the gene tree 

(Figure S3.6) of all sequences. There were 15 sequences in which eggNOG gave a different 

assignment to UniProt (six NMA, seven α and one IIa); these are described in the 

supplementary information. 

Incomplete sequences were excluded from our analysis because sequence gaps could have 

a major effect on the sequence comparison for such closely related isoforms. 

 

For each isoform, the protein sequences were divided into the Motor (1‐800, β‐myosin 

numbering) and Tail (842 – 1936) regions. For each region of each myosin, the sequences 

were aligned using Clustal Omega (Sievers and Higgins 2014a); the resulting multiple 

sequence alignment was used to construct a percentage identity matrix between the 

species. Sequence identity was used rather than sequence similarity as we are considering 

small changes (>93% identity, >98% similarity) within the isoform and substitutions that 

would normally be classed as similar (e.g. aspartate to glutamate) may be relevant. 

 

The masses of each species were extracted from a wide range of information sources and 

are listed in Table S3.2. Where the literature provides a range of adult body masses the 

arithmetic mean was selected. To compare sequence divergence against either 

evolutionary time or animal body mass, the relevant matrices were plotted against each 

other. Amino acid sequences for the β-myosin motor from 67 different mammalian species 

comprised organisms from the clades Euarchontoglires (32), Laurasiatheria (30), 

Metatheria (4) and Afrotheria (1).  

Protein sequence divergence was plotted against the species mass. A robust regression was 

fitted to reduce the weighting of the outliers. This was done by minimizing absolute 

difference rather than squared distance which should reduce the amount of under- and 

over-estimation in value difference caused by the square. 
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Residues associated with cardiomyopathies were obtained from Parker & Peckham 

(Francine Parker and Peckham 2020) and compared to the residues associated with body 

mass by considering exact matches to residues associated with cardiomyopathy. These 

were grouped into hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), 

and other.  

3.3.1 Phylogenetic Independent Contrasts 

Two statistical methods were used to create phylogenetic trees, maximum likelihood (ML) 

and Bayesian inference methods, using programs Randomized Axelerated Maximum 

Likelihood (RAxML) (Stamatakis 2014) and Bayesian Evolutionary Analysis Sampling Trees 

(BEAST) and its corresponding user interface BEAUtI (Drummond et al. 2012), to increase 

reliability as species sequence identity is high. The RaxML trees were generated using the 

CIPRES Science Gateway (M. A. Miller, Pfeiffer, and Schwartz 2010). TreeAnnotator 

(Drummond et al. 2012) was then used to generate a consensus tree for each set of 10000 

trees produced by BEAST. Monodelphis domestica (opossum) was selected as an outgroup. 

The ML and Bayesian trees were compared using Compare2Trees (Nye, Liò, and Gilks 2006), 

with black nodes on the trees indicating branches where the two trees disagree. Trees were 

drawn using FigTree (Rambaut 2014). 

Phylogenetically independent contrasts (Felenstein, 1985) were performed using the ape 

(Paradis, Claude, and Strimmer 2004) and phytools (Revell 2012) packages in R. This 

analysis used species trees generated from TimeTree from the species present in our 

analyses for the β, α, IIa, IIb, and IIx isoforms.  

3.3.2 Statistical analysis: 

For each position in the alignment that had more than one amino acid present, species 

masses were compared between the two highest frequency amino acids at that position 

using the Mann-Whitney U test, a nonparametric two-sample test.  Multiple testing was 

accounted for by applying the Bonferroni correction (Bonferroni 1936). Bonferroni 

correction is used to correct the error rate when multiple tests are being performed 

simultaneously, as such is the case with this data. It reduces Type 1 errors and increases 

the confidence in null hypothesis rejection. To avoid very imbalanced comparisons, the 

analysis was not run if the frequency of the second amino acid was less than 10% of the 
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frequency of the most frequent one. Where more than two amino acids were present at 

an alignment position, only the two most frequent amino acids were considered. See Figure 

S3.3 for details of sites with more than 2 amino acids.  

Alignment positions were divided into three groups: those with an adjusted p-value (padj) 

less than 0.01 (with Bonferroni correction applied this is equivalent to a p-value of p= 

9.50x10-04), those with 0.01 < padj  < 0.05 (5 % significance threshold equivalent to p=9.6x10-

4), and those with a padj  >0.05.  In addition, the two highest frequency amino acids were 

coded as 0 and 1 and a logistic regression model was fitted with log(mass) as the 

explanatory variable (Figure 3.3 & Figure S3.2). In order to overlay these residue plots, as 

the coding of the amino acids as 0 and 1 was arbitrary, it was done in such a way that the 

slope of the fitted logistic regression line was positive (Figure 3.3). The value of mass at 

which the two amino acids were predicted to be equally likely to occur was estimated from 

the regression line.  

For each alignment position, a 2x2 table was constructed classifying the species by amino 

acids present (most frequent and second most frequent) and clade. Fisher’s exact test was 

used to test whether these two factors were associated. The residue and -log10 of the P-

value from the Fisher’s exact test were plotted to identify residues for which the amino 

acid variation was likely to have resulted from clade associated changes. The residue and -

log10 of the p-value from the Mann-Whitney U test were also plotted to determine when 

residue variation was likely attributed to mass changes. Finally, the -log10 p-values obtained 

from both tests were plotted against each other. For each of these plots, lines at positions 

of the Bonferroni adjusted p-values 0.01, and 0.05 were added to assess the confidence in 

each residues association with mass or clade. 

All statistical analyses were run in R (R Core team 2018). 

3.3.3 Molecular Biology of the chimera 

A pUC19 plasmid containing the human β-myosin motor domain gene was digested with 

NsiI and NgoMIV to excise DNA encoding for residues 310 – 599 of the human β-myosin. 

This region was replaced with a complementary pair of synthetic oligos encoding for the 

same region, but with the nine amino-acid substitutions listed (Ala326Ser, Ser343Pro, 

Leu366Gln, Ile421Ala, Thr424Ile, Ala430Ser, Arg434Lys, Phe553Tyr, Pro573Gln). The 
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subsequent clone was confirmed by sequencing. This chimera gene was cloned into a 

pShuttle CMV vector to allow recombinant replication-deficient adenovirus production, as 

previously described (Deacon et al 2012). 

3.3.4 Protein purification: 

The chimera and the human β-myosin motor domains (known as subfragment 1  or S1) 

were expressed and purified as described previously (Resnicow et al. 2010). Briefly, the 

adenoviruses were used to infect C2C12 myotubes in culture and resulted in overexpression 

of recombinant myosin proteins.  The heavy chains (residues 1-842) were co-expressed in 

C2C12 myotubes with His-tagged human ventricular essential light chain. The recombinant 

proteins also carried the endogenous mouse regulatory light chain (MLC3). This is 

homologous to subfragment 1, S1, generated by proteolytic digestion of myosin. For 

motility assays the heavy chain was additionally tagged with an eight residue (RGSIDTWV) 

C-terminal extension. Cell pellets were homogenized in a low salt buffer and centrifuged, 

and the supernatants were purified by affinity chromatography using a HisTrap HP 1 ml 

column. The proteins were then dialyzed into the low salt experimental buffer (25 mM KCl, 

20 mM MOPS, 5 mM MgCl2, 1 mM DTT, pH 7.0).  

The SNAP-PDZ18 affinity tag used for in vitro motility measurements were purified as 

described in (Huang, Jin. Nagy, Stanislav. Koide, Akiko. Rock, Ronald. Koide 2009; Aksel et 

al. 2015). SNAP-PDZ18 was expressed through a pHFT2 expression vector, and the plasmid 

transformed into E. coli BL21 DE3 cells. The protein was purified using nickel-affinity 

chromatography, and dialyzed in PBS. 

Actin was prepared from rabbit muscle as described by (Spudich and Watt 1971). The actin 

was labelled with pyrene at Cys-374 as described in (Criddle, Geeves, and Jeffries 1985). 

When used at sub-micromolar concentrations the actin was stabilized by incubation in a 

1:1 mixture with phalloidin. 

Rat β-myosin S1 was prepared from soleus muscle which was dissected immediately post-

mortem and stored on ice. The muscle was homogenised into Guba-Straub buffer and left 

to stir for 30 minutes. After centrifugation at 4600 RPM for 30 minutes at 4 °C, the 

supernatant was subject to myosin precipitation as described in (Margossian, SS. Lowey 

1982). The resulting myosin was digested with 0.1 mg chymotrypsin per ml of solution and 
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left to stir for 10 mins exactly, at room temperature. To stop the digestion, 0.5 mM 

phenylmethylsulfonyl fluoride (PMSF) was added and the solution left to stir for 10 

minutes. The digested myosin solution was dialysed into the low salt experimental buffer 

overnight (25 mM KCl, 20 mM MOPS, 5 mM MgCl2, 1 mM DTT, pH 7.0). Precipitated myosin 

and light meromyosin was pelleted and removed via centrifugation at 12,000 RPM for 10 

minutes, with the supernatant containing the purified soleus S1.  SDS-Gels of the purified 

protein were run and compared to the expressed human β-myosin and chimera S1.  

3.3.5 Stopped-flow spectroscopy 

Kinetic measurements for S1 of chimera, human β-myosin and rat soleus myosin were 

performed as described previously (M. Bloemink et al. 2013; Walklate et al. 2016; Resnicow 

et al. 2010). Solutions were buffered with 25 mM KCl, 20 mM MOPS, 5 mM MgCl2, 1 mM 

DTT at pH 7.0, and measurements were conducted at 20 °C on a High-Tech Scientific SF-61 

DX2 stopped-flow system. Traces were analysed in Kinetic Studio (TgK Scientific) and Origin. 

3.3.6 In vitro motility assay 

Motility assays were performed essentially as described previously (Adhikari et al. 2016; 

Aksel et al. 2015). Briefly, flow chambers were constructed with coverslips coated with 

nitrocellulose mounted on glass slides. Reagents were loaded in the following order: 1) 

SNAP-PDZ18 affinity tag; 2) BSA to block the surface from non-specific binding; 3) S1 of 

human β-myosin or the chimera with an eight amino acid C-terminal affinity clamp; 4) BSA 

to wash the chamber; 5) rhodamine-phalloidin-labelled rabbit actin; 6) an oxygen-

scavenging system consisting of 5 mg/ml glucose, 0.1 mg/ml glucose oxydase and 0.02 

mg/ml catalase 7; 2 mM ATP. Partially inactivated myosin heads in S1 preparations were 

removed by incubating with a 10-fold molar excess of actin and 2 mM ATP for 15 minutes, 

then sedimentation at 100,000 RPM for 15 minutes. Supernatant was collected containing 

active myosin heads. All solutions were diluted into 25 mM imidazole, 25 mM KCl, 4 mM 

MgCl2, 1 mM EGTA, 1 mM DTT, pH 7.5. Actin filaments were detected using a widefield 

fluorescence imaging system (described in (M. Johnson, East, and Mulvihill 2014)) with 

UAPON 100XOTIRF NA lens (Olympus) and QuantEM emCCD camera (Photometrics). The 

system was controlled and data analysed using Metamorph software (Molecular Devices, 

Sunnyvale, USA). Assays were performed at 20 °C and were repeated with three fresh 

protein preparations, with at least three movies of 30 second duration, recorded at a rate 
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of 0.46 sec per frame. Individual velocities were determined from motile filaments that 

demonstrated a smooth consistent movement over 10 frames (4.6 sec). 100 individual 

measured velocities were used to calculate the mean velocity for each recombinant 

myosin.  

3.4 Results 

All myosin II isoforms contain a motor-domain, and a tail-domain. The N-terminal globular 

motor domain (approximately 800 amino acids) contains all of the requirements for motor 

activity, while the C-terminal tail domain (~1200 amino acids, almost entirely a single α 

helix) drives dimerization and assembly into myosin filaments.  Here we focus on the motor 

domain but also report a summary of a similar analysis of the tail domain.  

Our analysis considered 13 different mammalian myosin II isoforms (Table 1), the five main 

adult sarcomeric muscle isoforms (three fast muscle – IIa, IIb, IIx and two cardiac isoforms, 

α and β, also known as the slow skeletal isoform), two relatively rare adult sarcomeric 

forms (extraocular and slow tonic), two developmental isoforms (perinatal and embryonic), 

a smooth muscle isoform and three non-muscle isoforms (non-muscle A, B and C). The non-

muscle isoforms provide a negative control, as they act only at the cellular level and are 

therefore unlikely to be influenced by body mass.  We identified all available complete 

myosin II sequences of these 13 myosin isoforms (see methods; Table S3.1). This resulted 

in a total of 798 sequences, with an average of 61 sequences per isoform (range 41-74 

sequences; Table 3.1). 

3.4.1 Adaptation of the myosin II motor domain to increasing body mass 

To consider how the motor domain of myosin II isoforms may have adapted to increasing 

body mass, we investigated whether there was a correlation between sequence divergence 

and body mass. Mass values were collected from the literature, and we report the 

arithmetic mean of the range of values reported for each species. The range of masses 

covers more than six orders of magnitude from 6 g to 10,000 kg (Table S3.1). Being one of 

the smallest species, the mouse was selected as a reference. The sequence identity of each 

other species with the mouse sequence was plotted against the species body mass (see 

Figure 3.1, Table 3.1, Figure S3.1). The analysis can alternatively be done using the myosin 

sequence from largest species, but this is not always the same for each myosin II data set. 
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We therefore used the commonly available mouse sequences throughout.  Sequence 

identity rather than conservation was used because within each myosin isoform a low level 

of divergence was expected (>95 % identity). As such, even conservative changes of amino 

acids that tune the function of the protein may be relevant to adaptation to body mass. For 

example, a 2-fold change in a rate constant that controls shortening velocity, would 

according to transition state theory require only a change of the order of 1 kcal/mol in the 

activation energy.  This is comparable to a single hydrogen bond or van der Waals 

interaction (see note in Supp information and (Frauenfelder and Wolynes 1985; Gutfreund 

1995)). 

In Figure 3.1 the sequence identity vs mass is plotted for four representative myosin motor 

domains, the slow/cardiac β-myosin, the fast muscle IIx, the non-muscle IIa and the 

embryonic isoforms.  Plots for the other 9 isoforms are presented in Figure S3.1.  The plots 

in Figure 3.1 show that both adult sarcomeric forms β and IIx have a strong correlation with 

body mass (R2 = 0.63 and 0.838 respectively) with gradients of -0.72 and -0.84 percent 

divergence per log kg.   The data for all 13 isoforms is summarised in Figure 3.1E and Table 

3.1. Based on the rate of divergence with body mass, the 13 myosin II isoforms form three 

groups. The first group with gradients > 0.5 % per log kg body mass contains four of the five 

main adult sarcomeric muscle isoforms, IIb, β, IIa and IIx isoforms with the IIb isoform plots 

showing a wider scatter in data as indicated in the 20-40 % error in the gradient value.  For 

a myosin motor domain of ~800 amino acids, a gradient of >0.5 % per log kg body mass 

means >4 amino acids change for each 10-fold increase in body mass. At the other extreme, 

five of the isoforms (slow tonic, embryonic, perinatal, non-muscle A and non-muscle B) 

exhibit little divergence of sequence and no correlation with body mass (slope < 0.1, R2 < 

0.13) i.e. < 1 amino acid per log kg increase in mass.     
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Figure 3.1. Sequence Identity (%ID) vs Mass (kg) for myosin II motor domains.  

A-D) Sequence Identity (%ID) vs Mass (kg) for the motor domains of four myosin II isoforms; 

embryonic (EMB), non-muscle A (NMA), β-myosin, and IIx. Symbols indicate the clade that each 

species belongs to: grey squares (Euarchontoglires), black triangles (Laurasiatheria) and clear circles 

(Afrotheria and Metatheria). Each plot has been fitted with a robust linear regression. Sequence 

identity is pairwise to the mouse. The R2 value and slope are shown on each plot. 
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The remaining four isoforms (α-myosin, smooth muscle and extraocular and NMC) are 

intermediate between the two groups with a lower rate of sequence divergence with body 

mass (-0.21 –  -0.36) with only the smooth muscle isoform having an R2 > 0.3 (0.498). Note 

the very large scatter in the data for α-cardiac myosin (Figure S3.1D gradient -0.36 ± 0.29) 

A similar range of gradients (-0.75 to -0.05) and R2 values (0.85 to 0.016) were observed for 

the tail domains but only the adult sarcomeric myosins had R2 values greater than 0.3 

(Table 3.1, Figure S3.1) and for these sarcomeric myosins, the gradients and R2 values were 

similar for the motor and tail domains. An intriguing exception was the β-myosin isoform, 

where there was no correlation between size and sequence variation in the tail (gradient -

0.06 %/log(kg), R2 0.03) showing that the tail is far more highly conserved than the motor 

and more highly conserved than for other sarcomeric myosin tail domains.  

Given that there may be some error associated with the species body mass, we tested what 

effect this may have on the results of this analysis. To do this we randomly modified the 

body mass of each species such that they were varied in the range 80 %-120 % of the 

average value being used. This was repeated 1000 times each time reperforming the 

analysis.   Our results demonstrate that the results are stable to such errors (Table S3.1). 

Species and gene trees were generated for the sarcomeric myosin isoforms (Figure S3.6). 

To exclude the possibility that the observations for adult sarcomeric myosins could simply 

be the result of phylogenetic relationships between the sequences we used Felsenstein’s 

phylogenetically independent contrasts (PIC; (Felsenstein 1985)) method to exclude the 

phylogenetic relationship as a factor for the correlation between sequence divergence and 

body mass. For β-myosin we still observe a significant correlation (p=0.06 x10-4). For the 

other three main adult isoforms (IIa, IIb, IIx) where a significant correlation had been 

observed, only IIx was significant  (p=0.009) while IIa and IIb were not (p=0.54 and 0.1 

respectively). We also performed the equivalent analysis for the tail domain data (Table 

S3.1) and observed a p-value of 0.29 for the β-myosin, indicating that variation in the tail 

domain is explained by phylogenetic relationships. 
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3.4.2 Adaptation of the β-myosin motor domain to reduce contraction velocity as 

species size increased. 

Of the adult sarcomeric myosin isoforms, β-myosin is unique as it is the only slow muscle 

myosin and it is expressed in few tissues, primarily slow, Type 1 muscle and in cardiac 

muscle (it is the dominant isoform expressed in the ventricle of the heart of mammals 

larger than 1 kg) and as result of both of these it performs the same specific function in 

different species. The other striated muscle isoforms are expressed in multiple tissues and 

may be involved in multiple different functions. 

The negative correlation between species heart rate and body mass is well established 

across a wide range of species (Savage et al. 2007). Given our observation that β-myosin 

shows a strong association of sequence change with body mass, it is possible that there has 

been selection pressure on this isoform to enable a change in contraction velocity which is 

associated with the change in heart rate as body mass has increased.  However, the 

observation of small correlation between sequence and body mass for the α isoform 

implies that this relationship between body mass and sequence if, present, is less dominant 

for α than for β.  It is possible that the role of β as the only slow skeletal muscle isoform is 

more significant in defining the relationship to body mass than its role in cardiac muscle. 

This would make it similar to the fast skeletal muscle isoforms (IIa, IIb, IIx) which show 

strong dependence of sequence on body mass.    

In addition, the rate constant controlling ADP release is easily measured for β-myosin and 

limits contraction velocity for this isoform (Table 3.2 and refs therein). Therefore, all further 

analyses focus on variation in β-myosin. 
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Slow muscle/β 

cardiac myosin 

Measured Predicted τ (sec) 

 k-ADP (s-1) V0 

(µm/sec/half 

sarcomere) 

τADP = 1/k-ADP 

(msec) 

τVo = d/V0 

(msec) 

Ratio  

τADP/ τVo 

Rat   119 1.42 8.4 7.04 1.19 

Rabbit 63 0.67 15.9 14.9 1.06 

Human  30* 0.33 33 30.3 1.08 

Cow 27 0.27 37 37.0 1.00 

Experimental data was collected at 100 mM KCl and 12 °C. 

k-ADP values for bovine, rabbit and human are from Deacon et al (Deacon et al. 2012), the rat from 

this study. NB the value for human k-ADP at 12 °C was estimated from an Arrhenius plot of values 

between 20 and 10 °C. These values are consistent with rat and porcine β data collected using the 

two headed myosin fragment, heavy meromyosin carried out at 100 mM KCl and 15 °C. 

Vo data for rat, rabbit & human are from Pellegrino et al (Pellegrino et al. 2003), bovine from Toniolo 

et al (L. Toniolo et al. 2005). 

Table 3.2. The relationship between the predicted and measured parameters for four slow/beta 

cardiac myosin isoforms.  

In terms of the actin myosin cross bridge cycle, the dominant model proposes that the maximum 

velocity (V0) is limited by the lifetime of the strongly attached force holding state (τ) the 

“detachment limited model” ((Siemankowski, Wiseman, and White 1985),  V0 = d/τ   where d is the 

working stroke of the cross bridge; assumed here to be 5 nm (7). For the mammalian, β- myosin 

isoform, it is well established that τ is defined by the rate constant controlling ADP release k-ADP = 

1/τ (Deacon et al. 2012; Nyitrai and Geeves 2004; Marieke J. Bloemink and Geeves 2011) . Thus, 

values of k-ADP measured using myosin motor domains isolated from β-cardiac/slow muscle of a 

mammal predict remarkably accurately the maximum shortening velocity of a muscle fibre taken 

from the same tissues. 

 

The location of sequence changes in the motor and tail domains were examined to evaluate 

if particular structural features of the domains are especially variable (Figure 3.2).  For each 

residue we considered the frequency of the consensus amino acid (black lines) and the 

number of different amino acids present at each position (red lines). In the β-myosin motor 
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domain, of the 800 amino acids, 632 were totally conserved and a further 114 sites were 

highly conserved (i.e., fewer than 4/67 species have a different amino acid; for 69 of these 

sites only one species had a different amino acid). These changes occurred in so few species 

that no conclusions could be drawn about the driver for these changes. For 52 positions 

the consensus amino acid was present in less than 90 % of the sequences, thus these 

positions with more frequent alternate amino acids are of greater interest (highlighted in 

Figure 3.2 by crossing the dotted line).  
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The sequence variations are scattered throughout the motor both within and outside the 

major functional regions of the motor domain with no identifiable pattern to the location 

of the changes (Figure 3.2). High levels of variation are found in the N-terminal domain (1-

60) and near the surface loops, Loop 1 (near residue 210) and Loop 2 (near 630).  These 

loops are known to be hypervariable across the larger myosin family.  

The 52 common sites of variation between species were of interest to compare with amino 

acids in human β-myosin implicated in myopathies (Hypertrophic Cardiomyopathies, 

Dilated Cardiomyopathies, and other cardiomyopathies as orange, magenta, and green 

dots in Figure 3.2 (Francine Parker and Peckham 2020)).  More than half the sites in the 

motor domain (~500/800) have been found to have mutations linked to myopathies but 

only 20 out of the 52 sites identified to differ amongst mammals are common between 

the two groups. Of these only one E44D shares the same mutation; in all other cases the 

substituted amino acid is different.  Thus, there is no simple correlation between the two 

groups of positions with changed sequences.  This is illustrated by the converter domain 

(710-778, region k in Figure 3.2) which is enriched in myopathy mutations (59 reported 

mutations at 35 sites in the 68 residues of the converter domain) but there are very few 

Figure 3.2. Location of human variation, cardiomyopathy associated variants and non-conserved 

residues for the β isoform. 

Blue lines show the frequency of missense variation present in the Genome Aggregation Database 

(gnomAD). Circles indicate the residue position of variants associated with cardiomyopathy  (HCMs 

in orange, DCMs in magenta, and other in green (Francine Parker and Peckham 2020). Black lines 

show the number of times the consensus amino acid occurs at each residue position in the 

sequence (maximum equals the no of sequences used). Red lines show the number of different 

amino acids occurring at that position in the sequence (minimum 1).  The dashed grey lines in A (in 

the  section with the y-axis label AA Freq (%)) indicate the position at which more than 10% of 

sequences contain an alternate amino acid. Key functional areas of the sequence are as listed: 

Motor domain: a. N-terminus 1-36, b. SH3 domain 37-75, c. Loop 1 201- 215, d. Drosophila exon 7 

region 300-335, e. Loop 4 368-372, f. Helix-O 426-440, g.Relay helix/loop, h. Loop 3 558-573, i. Loop 

2 615-637, j. SH helices 680-707, k. Converter 710-778, l. IQ 781-810. B. Tail. Tail:  IQ - neck region 

containing the IQ light chain binding motif, S2 - Sub fragment 2 coiled-coil, LMM - Light Meromyosin 

filament forming region. Raw data files are available at Figshare. 
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sequence changes between species in this region with only one position that differs in 

more than two species (Gly747, replaced by Ser in seven species). 

Further, analysis of gnomAD (Homburger et al. 2016) revealed that there is very little 

variation in β-myosin within healthy human populations (Figure 3.2), thus suggesting that 

the sequence is highly constrained within human but varies between species. This 

constraint in humans for the MYH7 gene has been analysed in several papers and in 

databases (Freeman, Nakao, and Leinwand 2001).  

3.4.3 Distinguishing between variation due to clade and body mass in β-myosin.  

Change in sequence can be driven by several things. Here we identified positions of 

variation that are associated with body mass and also compared this to variation that is 

clade-specific between the two main clades present in the data set (Euarchontoglires and 

Laurasiatheria). Of the 67 complete sequences examined, about half were 

Euarchontoglires (32, e.g., rodents and primates) with a mass range of 0.011 - 140 kg and 

half were Laurasiatheria (30, e.g., bats, ungulates, cetaceans) with a mass range of 0.0069 

- 42500 kg.   

The 52 sites of variation that occur in >10 % of species, were analysed to distinguish 

between changes that correlated with clade and those that correlated with body mass as 

illustrated in Figure 3.3 for four sites with the remaining plots in Supplementary 

Information (Figure S3.2).  At most positions (41/52), only two residues were observed at 

each specific site; in the small number of positions (11/52) with multiple amino acids, only 

the two most frequent residues were considered.  The identity of the two most frequent 

amino acids were coded as 0 and 1 (with the amino acid more frequently present in smaller 

species as 0) and a logistic regression model was fitted with log(mass) as the explanatory 

variable (Figure 3.3, Figure S3.2; see Methods) to model the transition between residues.  

For the four positions present in Figure 3.3, two had a strong correlation with species body 

mass (the amino acid common in small mammals is given first) A326P and I349M; (padj << 

0.01. Note the adjusted one percent significance threshold is p=1.92x10-4 and the 5 % 

significance threshold is p=9.62x10-4. padj will be used to indicate the adjusted significance 

threshold), and each has a distinct midpoint mass for the transition between the two amino 

acids.  In contrast, I125V has a low association with mass (padj > 0.05) and M77L has an 

intermediate association (padj ~0.05), however both M77L and V125I have a strong 
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association with the clade (Figure 3.4). This is highlighted in Figure 3.3A where the four 

sequence positions are mapped against the species tree; L77 and I125 are found almost 

exclusively in Laurasiatheria. In contrast it is clear from Figure 3.3A that the variation at 

positions 326 and 349 is not explained by the phylogenetic relationships, with the two 

different amino acids spread across the two clades.  
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Figure 3.3. Residue-mass transition plots for four representative amino acid sites.  

A) Species tree of organisms used in this analysis is shown, with the amino acids present in each 

species at the four sites and the mass of the organism displayed adjacent to it. Darker reds in the mass 

column are indicative of a greater mass value. In this tree, species from the Euarchontoglires clade are 

highlighted blue, and species from Laurasiatheria are highlighted pink. B) Binomial regression mapping 

the transition of the most frequent amino acid at positions in the motor region of β-myosin to the 

second most frequent amino acid at that position. The residue numbering is that of the human β-

cardiac myosin. The blue squares are Euarchontoglires, and the triangles are Laurasiatheria. The P-

value with each plot arises from a test of the null hypothesis that amino acid type is unrelated to mass. 

Raw data files are available at Figshare. 
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Overall, only 12 sites had a very strong association with clade (padj ≤ 0.01) and a further two 

were significant at the five percent level (padj ≤ 0.05; Figure 3.4A). Some of these residues 

occur in two groups; one group in the N terminal region (4, 11, 52, 77, 110, 125) and four 

residues near surface loop 2 (610, 616, 627, 629).  The remaining four are at D208E, E509T, 

T585I and I684M. Twenty positions were strongly associated (padj ≤ 0.01) with body mass 

and a further four were associated at padj ≤ 0.05 (Figure 3.4B). Nine positions were 

associated with both clade and body mass (Figure 3.4C), which is likely to represent that 

the very largest mammals (body mass > 500 kg) in the data set are all Laurasiatheria (Figure 

S3.5). 

Twelve of the 24 sites associated with body mass occur in the known hypervariable regions, 

four in the N terminal region (11,15,52,65, bold residues also occur in the clade list), one in 

loop 1 (D208E), and a further six occur in or near loop 2 (607,610,616,627,629, 631)) and 

one at I684M.  The remaining 12 sites group into three sets of four; most with padj ≤ 0.01 

(coloured in Figures 3.4 & 3.5).  Comparing the strength of association between clade and 

body mass, these 12 sites, are strongly associated with body mass but not with clade (Figure 

3.4C).  Hence, we propose that these 12 positions are likely to be important in determining 

the β-myosin velocity of contraction. At eight of the 12 positions only two amino acids are 

observed, one position contains three amino acids, although the third is only present once 

(residue 366). Multiple amino acids (4-7) were observed at the remaining three positions. 

For two of the positions, 421 and 424, this reflects a subset of the species from one clade 

having an alternate amino acid in some of the larger species (see Figure S3.3).  

 

 

Figure 3.4. Residue mass change association with mass, clade, and each other.  

The association of each residue with clade (A), mass (B), and the association of the P-values of clade 

vs mass (C) are plotted. 1 % and 5 % significance thresholds are shown with the Bonferroni adjusted 

lines (blue and grey). The three groups of residues investigated are highlighted in orange, purple 

and red, and labelled with the human residue numbering in each plot. Raw data files are available 

at Figshare. 
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Figure 3.5. Location of residues switched in the chimera. Structure of human β-myosin (homology 

model based on Protein Databank ID 6FSA). The actin-binding site is highlighted in brown, exon 7 in 

blue, the nucleotide binding site in marine blue, and the converter region in yellow. The three groups 

of residues investigated are highlighted and labelled in orange (326, 343, 349, 366), purple (421, 424, 

430, 434), and red (553, 569, 573, 580) in each plot, and those that were switched are underlined. The 

structure shown represents one of the known conformations adopted by myosin during the turnover 

of ATP and is shown to illustrate the relative position of the residues of interest in relation to e.g., actin 

and ADP binding sites.  Since the residues highlighted are not directly coupled to ADP binding, it is 

likely that the stability of specific conformations and/or the transition (activation barrier) between 

conformations are affected by the sequence changes. For a review of the myosin motor domain 

structure see (Robert-Paganin, Auguin, and Houdusse 2018; Geeves and Holmes 1999) and for a 

broader discussion of activation barriers and conformational changes see the Supplementary 

Information and (Schmid and Hugel 2020).  The Table indicates the details about the three groups of 

variable residues, the adjusted probability (padj) of association with clade or Mass, the Log(mass) at 

the midpoint of the transition of the regression line between the two amino acids, and the range (10 

– 90 %) over which the transition occurs. 
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Figure 3.6. Residue mass transition plots. Overlapping binomial regression mapping the transition of 

the most frequent amino acid at positions in the motor region of β-myosin to the second most frequent 

amino acid at that position for the 12 residues of interest. The three groups of residues investigated are 

highlighted and labelled in orange (326, 343, 366), purple (421, 424, 430, 434), and red (553, 573) in 

each plot. The residues in black are residues of interest, but were not mutated (349, 569, 580). The table 

shows the mass and residues for species at different weights, where the bat and cow are from the clade 

Laurasiatheria, and the other species are from Euarchontoglires clade. Raw data files are available at 

Figshare. 
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The first group of residues is in a region 331-371 (orange residues in Figure 3.4 – 3.6).  One 

residue 366, is just before the actin binding loop known as the Cardiomyopathy Loop.  The 

remaining three residues are adjacent to the region of Drosophila myosin II coded by exon 

7 (and the “linker region”).  This region is one of four exons in the single myosin II gene of 

Drosophila which are alternately spliced to generate all isoforms of myosin II in Drosophila 

(Bernstein and Milligan 1997). We have previously shown (B. Miller et al. 2007) that the 

alternatively spliced forms of this region alter ADP release in the Drosophila myosin. The 

second set (426-439; residues Magenta in Figure 3.4 – 3.6) is in a long helix (Helix-O) in the 

upper 50 kDa domain that links the Cardiomyopathy loop to the nucleotide binding pocket 

(via switch 2).  The third region (560 - 587; residues Red in Figure 3.4 and Figure 3.5) is in 

the lower 50 kDa domain and residue 553 forms part of the Helix-Loop-Helix actin binding 

motif while 573 and 569 are part of actin binding Loop 3. The last residue 580 is on the β-

strand that follows Loop 3.  Thus, four of the twelve residues are in or close to actin binding 

loops, three are close to a region known to influence ADP binding (the region coded by 

exon 7) and four are on the helix that links the actin binding site to the nucleotide pocket. 

It is therefore possible that many of these residues could influence how actin binding leads 

to displacement of ADP. 

Comparing the myopathy mutations listed by (Parker and Peckham, (Francine Parker and 

Peckham 2020)) six mutations occur in the 16 sites we found to be associated with mass 

(padj <0.05)  but not with clade. Each of these myopathy sites have a different substitution 

to the one found across mammals except R434K.  Of the six sites, ClinVar (Landrum et al. 

2018) lists only A326P as a potential cardiomyopathy mutation.  The others are classified 

as benign or of uncertain significance.  

3.4.4 Experimental testing of the computational predictions: 

We have previously expressed the motor domain of human β-myosin in mouse C2C12 

muscle cells and isolated the protein using His tags attached to the co-expressed human 

light chain.   This is currently the only way to express mammalian striated muscle myosin 

motors domains but is complex and time consuming and yields just a few mg of protein (B. 

M. Miller et al. 2007; Q. Wang, Moncman, and Winkelmann 2003; Srikakulam and 

Winkelmann 2004).  To test the hypothesis that the highlighted group of 12 residues is 
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responsible for a significant part of the adjustment of ADP release rate constant, we 

generated a chimeric human-rat β-myosin motor domain in which the region containing 

the nine positions (of the 12) that vary between human and rat, was replaced with the 

amino acid sequence present in rat (A326S, S343P, L366Q, I421A, T424I, A430S, R434K, 

F553Y, P573Q – human residue number and amino acid listed first). The other three 

positions are the same in rat and human (349, 569 & 580).  At residue 421 we replaced Ile 

with Ala as present in rat, although Ser is present in most of the smallest mammals (See 

Figure S3.5). 

As shown in Table 2, the velocity of contraction for β cardiac/Type I slow muscle fibres in 

rat and humans differ by a factor of ~4.  Given that these residues have a range of transition 

masses (see Figure 3.6 and Discussion), the hypothesis is that each of these nine residues 

will contribute a fraction of the difference between the rat and human β-myosin ADP 

release rate constant and hence, velocity.  With all nine residues changed, our prediction 

was that the differences in the rate constant would be large enough to be easily detectable.  

The S1 fragment of human β-myosin and the chimera were expressed in C2C12 cells and 

purified with the human essential light chain attached.  Few details of the kinetic 

characterisation of the rat β-myosin S1 have been published (Freeman, Nakao, and 

Leinwand 2001).  The rat β-myosin S1 was therefore purified from rat soleus muscle to use 

as a comparator for the chimera. The supplementary data include the SDS PAGE of all three 

proteins used in this study and demonstrates that all three proteins are pure and contain 

the appropriate light chains (Figure S3.4). 

As a test of the functions of the chimeric protein, the ATP-induced dissociation of the 

chimera from pyrene labelled actin was monitored and compared to the recombinant 

human and the native rat S1.  A typical transient is presented (inset in Figure 3.7B) and the 

observed amplitude of the signal change was the same for all three proteins.  The similarity 

of observed amplitudes of the pyrene signal changes for the chimera, human and native 

rat proteins indicates that the chimera binds actin and releases it on ATP binding as for the 

human and rat S1. This is consistent with the chimera being a fully folded and active 

protein.  A plot of the observed rate constant (kobs) vs [ATP] gives a straight line which 

defines the apparent 2nd order rate constant for the reaction (Figure 3.7B, Table 3.3) and 
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appears the same for all three proteins. The observed rate constant of this reaction has 

been defined for many myosins and has two components, kobs = [ATP] K’1k’+2.  The reaction 

is sensitive to both the affinity of ATP for the complex (K’1) and the efficiency with which 

ATP induced a major conformational change in the myosin (k’+2).  This involves the closure 

of switches 1 and 2 onto the ATP and the opening of the major cleft in the actin binding site 

of myosin. The absence of any change in K’1k’+2 is consistent with a well-preserved 

nucleotide pocket and a preserved communication pathway between the ATP binding 

pocket and the actin binding site.  
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Figure 3.7. In vitro analysis of the chimera, rat and human β-S1 proteins. A. Histogram of in vitro 

velocity of 100 rhodamine-labelled-phalloidin actin filaments moving over human β-S1 or chimera 

S1. The solid line shows the data fitted to a single Gaussian curve. The mean velocity for the human 

β-S1 was 0.49 ± 0.028 μm s-1 and for the chimera 0.90 ± 0.015 μm s-1. B. The effect of ATP 

concentration on kobs for ATP-induced dissociation of pyrene-actin.S1. The gradient generates a 

second order rate constant of ATP binding; the values for the 3 proteins are highlighted next to the 

plot. Inset shows an example transient of 50 nM pyrene actin-chimera S1 mixed with 20 µM ATP, 

resulting in a fluorescence change of 26%. C. Plot of kobs dependence on [ADP] for the ATP induced 

dissociation of pyrene-actin.S1. 50 nM pyrene-actin.S1 was mixed with 10 µM ATP and varying 

[ADP] (0-100 µM). Numbers indicate the values of ADP affinity for acto.S1, KADP, for the 3 proteins. 

D. To measure k+ADP, ADP is displaced from pyrene-actin.S1.ADP complex by an excess of ATP. 2 mM 

ATP was mixed with 250 nM S1 which was pre-incubated with 500 nM pyrene-actin and 100 µM 

ADP. k+ADP values for the 3 proteins are given 7D. Inset showing data on a longer log time scale 

showing the slow phase components of the transients. The average values from 3 independent 

measurements for experiments shown in B, C and D are summarised in Table 3. Raw data files are 

available at Figshare. The inset shown in Figure 3.7D; a complication of the ADP displacement 

measurement is that ADP displacement from human β-myosin occurs in two phases (fast and slow). 

The fast phase corresponds with ADP released at the end of the normal ATPase cycle while the slow 

phase is a trapped ADP which is released much slower and at a much slower rate than the overall 

cycling.  This is therefore a dead-end side branch of the pathway commonly seen in slow muscle & 

non muscle myosins (Resnicow et al. 2010; Srikakulam and Winkelmann 2004; Nyitrai and Geeves 

2004).  The fraction of ADP trapped in this way is characteristic of each myosin.  The rat β-myosin 

S1 has no apparent slow phase, the human has ~10 % of ADP released in the slow phase while the 

chimera has a larger fraction (~40 %) of the total ADP released in the slow phase.  The role of the 

substituted amino acids in the slow phase requires further study, but the reader is referred to the 

literature for a broader study of this phenomena. 
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 Rat 

native S1 
Chimera S1 Human S1 

Chimera/Rat 

ratio 

Chimera/Human 

ratio 

ATP binding 

to A.S1 

(µM-1s-1) 

5 ± 0.16 4.5 ± 0.2 4.4 ± 0.3 0.9 1.02 

ADP affinity 

to A.S1 

(µM) 

14 ± 0.09 14 ± 0.14 6.1 ± 0.7 1 2.3 

ADP release 

from 

A.S1.ADP 

(s-1) 

107.2 ± 

7.3 
100.7 ± 4.2 59 ± 3.3 0.94 1.71 

Motility 

(μm.s-1) 

 

NA 

 

0.90 ± 0.221 

 

0.49 ± 

0.129 

 

 

NA 

 

1.84 

Data are from three separate preparation of protein from either different cell pellets (expressed 

protein) or different soleus muscles from the rat. Experimental conditions were 25 mM KCl, 20 °C. 

Table 3.3. Comparison of ATP and ADP binding parameters of native rat S1, and the C2C12 cell 

expressed human β-myosin and chimera S1.  

Errors reported are SEM, except for motility which is the HWHM of the normal distribution. 

 

The affinity of ADP for actin.S1 was measured in a competition assay with ATP (Figure  3.7C) 

and the affinity of ADP for the rat actin.S1 complex  (14 μM) was 2.3-fold weaker than for 

the human WT protein (6.3 μM).  These values are consistent with published values (M. J. 

Bloemink et al. 2007).  The chimera was distinct from the human S1 and indistinguishable 

from the rat S1. To confirm this result the ADP release rate constant was measured directly 

by displacing ADP from actin.S1.ADP through addition of an excess of ATP.  The results 

(Figure 3.7D) for human and rat S1 are again consistent with published values with ADP 

leaving the rat complex at ~ twice the rate of the human complex (107 vs 59 s-1).  The 
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chimera was indistinguishable from the rat S1. As predicted, the amino acids introduced 

into the human β-myosin motor domain weaken ADP affinity for actin.myosin by 

accelerating ADP release to make the human β-myosin S1 behave like the rat β-myosin S1.  

Motor activity of the recombinant human β-myosin S1 and the chimera protein was 

measured using an in vitro motility assay (Figure 3.7A, Supplementary movie S1). This 

assay determines the myosin-mediated velocities of fluorescent actin-filaments moving on 

a nitrocellulose-coated slide surface. The human WT β-myosin moved actin at a velocity of 

0.49 μm.s-1, at 20 °C. For the chimera, the mean filament velocity was almost 2-fold faster 

than human WT at 0.9 μm.s-1, which is consistent with the ~ 2-fold increase in ADP release-

rate data. Our human S1 velocity was similar to the 0.612 μm.s-1 value reported by Ujfalusi 

et al, which was measured at 23 °C (Ujfalusi et al. 2018). A similar velocity of 0.378 μm.s-1 

was reported for full length human-β myosin at 25 °C   and a velocity of 0.624 μm.s-1 for 

the rat. This gives a rat/human ratio of 1.65, very similar to our chimera/human ratio (1.84). 

The motility assay was not performed for the rat S1 as we do not have an expression system 

for the protein.  The native rat S1 has only a single light chain and lacks a tag to attach the 

protein to the surface.  The rat protein will not therefore give a valid comparable 

measurement.  However, it is known from the literature (Table 3.2 references therein) that 

the rat protein moves 3-5 times faster than the human protein, depending upon the exact 

measurement conditions. 
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3.5 Discussion 

The well-established observation that the muscles of large mammals contract at slower 

speeds than small mammals (Lindstedt 1987) and that the maximum contraction velocity 

is a property of the myosin isoforms expressed in the muscle (Pellegrino et al. 2003) led us 

to ask if it is possible to define which amino acid changes are responsible for the change in 

contraction velocity.  Our analysis of a large number of myosin II sequences indicates that 

adult sarcomeric myosins have a larger variation in sequence than two of the non-muscle 

myosins (or developmental striated muscle myosin isoforms) which are expected to be 

independent of species size.  Furthermore, there appears to be a correlation between size 

difference and sequence difference. 

Examination of 67 mammalian β-myosin sequences identified sequence changes at 12 sites 

which had a high correlation with species size and little correlation with clade. Figure 3.6 

plots the probability of transition vs species mass for each of these sites and indicates that 

there is a distinct mid-point of transition for each site as shown in Figure 3.5B.  Reading the 

mass of a given species on the x-axis allows the probability of each site having the amino 

acid associated with small or large species to be estimated. The trend in midpoint values 

implies there is a distinct order in which the amino acids at the 12 sites change as the 

species mass increases from the smallest to the largest. Furthermore, the order in which 

the sequence changes is similar for both clades. This is illustrated for seven species in Figure 

3.6B where the seven sites are shown in the order of the mid-point mass of the transition. 

The sites change from yellow to blue as the species mass increases in the order expected. 

A similar plot for all 67 species is given in the Supp information (Figure S3.5) and shows the 

same phenomena but, as might be expected, with more scatter in the data. 

Our analysis suggests that there are reasons to believe that the sequence of the motor 

domain is changing with the mass of the species.  Before considering the sequence changes 

in the motor domain of β-myosin in more detail it is useful to consider why contraction 

velocity and specifically the maximum velocity is an important factor in defining muscle 

performance. 
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3.5.1 The central role of V0 in muscle physiology 

The maximum contraction velocity of a muscle, V0, is a key attribute of muscle contraction 

that plays a significant role in defining both the Force-Velocity relationship, power output 

and the efficiency of muscle contraction (Bottinelli and Reggiani 2000; Schiaffino and 

Reggiani 2011). V0, one part of the Force-Velocity relationship of a muscle, as empirically 

defined by Hill in 1938, is a fundamental property which underpins both the power output 

(Power = Force x Velocity) and the contraction velocity at which power and efficiency of 

contraction are maximum; normally considered the optimal working conditions for a 

muscle. Power and efficiency are fundamental parameters which define the movement of 

an animal and crucially the output of the heart.  In contrast to V0, which varies more than 

10-fold for different myosin isoforms (Canepari et al. 2010), the maximum force a myosin 

can generate varies relatively little between myosin isoforms when assessed at the single 

molecule level or in the muscle sarcomere (Canepari et al. 2010; Schiaffino and Reggiani 

2011). Maximum velocity is therefore a central parameter that plays a significant role in 

defining both the Force-Velocity relationship, power output and the efficiency of muscle 

contraction.   

There are strong theoretical arguments and experimental evidence that ADP release is the 

event in the crossbridge cycle that defines the maximum velocity of contraction in β-myosin 

(Table 3.2). We need to understand how the rate of ADP release is adjusted to match the 

physiological requirements. 

3.5.2 How does the location of the 12 residues in the motor domain influence ADP 

release and hence V0. 

The sites identified are not directly linked to the ADP binding pocket and this is not a 

surprise since the same pocket binds ATP and compromising ATP binding is likely to be 

detrimental to myosin function.  This illustrates the problem in modifying myosin, the 

mutation should affect only ADP release and not any other event in the cycle which it is 

assumed are optimised to make efficient use of the energy of ATP hydrolysis.  

Some loops on myosin’s surface are known to be variable across myosin in general and 

surface loop 1 has been shown to modulate ADP release in some myosins (Scallop muscle 

myosin II and smooth muscle myosin II have an alternate splice in this region (Kurzawa-
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Goertz et al. 1998; Canepari et al. 2010), and smooth muscle myosin, Dictyostelium myosin 

II and human myosin 1b have been modified to explore the role of variations in this region 

(Haase and Morano 1996; Sweeney et al. 1998; Murphy and Spudich 1998).  Loop 1 does 

show some variations here but this has no correlation with size.  Note that the Rat and Cow 

share identical sequences in this region. 

Myosin is a coordinated mechanical system with each part of the structure able to sense 

allosteric changes across the structure as a whole – as illustrated by the many mutations in 

β-myosin that have been explored.  Each mutation can have multiple effects on the cycle 

as a whole. Thus, in principle, mutations anywhere in the motor domain could influence 

ADP release but the system is tightly constrained because ADP release must be modulated 

without a negative effect elsewhere in the cycle. There will be a limited number of ways in 

which this can be achieved. The evidence from Figure 3.6 is that a solution to this problem 

exists and both clades have found the same solution. 

Drosophila has multiple isoforms of muscle myosin II (flight, cardiac, leg, embryonic muscle 

etc) and all of these isoforms are encoded by a single gene. Alternate splicing of four regions 

of the motor domain results in the expression of each different isoform. One of these 

regions is coded by exon 7 which has been shown to modulate ADP release and this region 

overlaps with some of the mutations highlighted here.  Thus, different routes to modulating 

ADP release are possible and it is intriguing that Drosophila and mammals use the same 

region. To define exactly how the set of 12 sites identified here can modulate ADP release 

and V0 will require more detailed molecular structures and detailed molecular dynamics.   

One question about the relationship between myosin sequence and mammal size is 

whether such a correlation is seen with any other sarcomeric protein. It is of course 

impossible to be definitive about this but examination of the other major sarcomeric 

proteins actin, tropomyosin and the three troponin components (I, T & C) reveals no such 

correlation.  In fact, actin and tropomyosin are among the most conserved eukaryotic 

proteins showing little variation among mammals or indeed vertebrates (Barua 2013; Barua 

et al. 2012).  Troponins do have a higher degree of variation than actin or tropomyosin but 

we found no evidence of a correlation between sequence and mammal size. There has 

been a report of a correlation in the size of repetitive Pro Ala rich regions in myosin binding 
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protein C (Shaffer and Harris 2009) and in myosin light chain 1 (Bicer and Reiser 2007) but 

these have to-date only considered a small number of species and include a broader data 

set of vertebrates.  

In conclusion, we have used a computational approach to identify variation in β-myosin 

that is associated with increasing body mass, which would have a role in reducing heart 

rate. The experimental characterisation of the chimeric human-rat β-myosin demonstrates 

that these residues do indeed control the rate of ADP, the rate limiting step in the myosin 

cycle, and thus are likely to have adapted to enable the slower heart rate required in larger 

animals as they have evolved from small to large (Copes Law; (Hone and Benton 2005; 

Stanley 1973)).  
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4.1 Abstract 

Motivation: SARS-CoV-2 is a novel coronavirus currently causing a pandemic. Here, we 

performed a combined in-silico and cell culture comparison of SARS-CoV-2 and the closely 

related SARS-CoV.  

Results: Many amino acid positions are differentially conserved between SARS-CoV-2 and 

SARS-CoV, which reflects the discrepancies in virus behaviour, i.e., more effective human-

to-human transmission of SARS-CoV-2 and higher mortality associated with SARS-CoV. 

Variations in the S protein (mediates virus entry) were associated with differences in its 

interaction with ACE2 (cellular S receptor) and sensitivity to TMPRSS2 (enables virus entry 

via S cleavage) inhibition. Anti-ACE2 antibodies more strongly inhibited SARS-CoV than 

SARS-CoV-2 infection, probably due to a stronger SARS-CoV-2 S-ACE2 affinity relative to 

SARS-CoV S. Moreover, SARS-CoV-2 and SARS-CoV displayed differences in cell tropism. 

Cellular ACE2 and TMPRSS2 levels did not indicate susceptibility to SARS-CoV-2. In 

conclusion, we identified genomic variation between SARS-CoV-2 and SARS-CoV that may 

reflect the differences in their clinical and biological behaviour.  
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4.2 Introduction 

In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel 

betacoronavirus, was identified that causes a respiratory disease and pneumonia called 

coronavirus disease 19 (COVID-19) (Gorbalenya, A.E., Baker 2020; N. Zhu et al. 2020). As of 

22nd of December 2020, 77,801,721 confirmed COVID-19 cases and 1,713,109 COVID-19 

deaths have been reported (Dong, Du, and Gardner 2020). Since 2002, SARS-CoV-2 is the 

third betacoronavirus, after severe acute respiratory syndrome coronavirus (SARS-CoV) 

and Middle East respiratory syndrome coronavirus (MERS-CoV), that has caused a 

substantial outbreak associated with significant mortality (A. Wu et al. 2020).  

SARS-CoV-2 is closely related to SARS-CoV (Gorbalenya, A.E., Baker 2020; A. Wu et al. 2020). 

Entry of both viruses is mediated via interaction of the viral Spike (S) protein with the 

cellular receptor ACE2, and both viruses depend on S activation by cellular proteases, in 

particular by TMPRSS2 (Wrapp et al. 2020; Wan et al. 2020; Yan et al. 2020; Hoffmann, 

Kleine-Weber, et al. 2020; A. Wu et al. 2020; Walls et al. 2020; J. Cui, Li, and Shi 2019). 

Despite these similarities, the diseases caused by SARS-CoV-2 (COVID-19) and SARS-CoV 

(SARS) differ. According to WHO, the SARS-CoV outbreak resulted in 8,098 confirmed and 

suspected cases and 774 deaths, equalling a mortality rate of 9.6 % (www.who.int). 

Estimated mortality rates for SARS-CoV-2 are below 1 % (Borges do Nascimento et al. 2020) 

SARS-CoV was only spread by symptomatic patients with severe disease (Cheng et al. 2013). 

In contrast, SARS-CoV-2 has been reported to be transmitted by individuals who are 

asymptomatic during the incubation period or who do not develop symptoms at all (Rivett 

et al. 2020). 

We have developed an approach to identify sequence-associated phenotypic differences 

between related viruses based on the identification of differentially conserved amino acid 

sequence positions (DCPs) and in silico modelling of protein structures (Pappalardo et al. 

2016; Martell et al. 2019). Conserved amino acid positions are likely to be of functional 

relevance, and differential conservation may indicate functional differences and they have 

been widely used for the analysis of protein families (Rausell et al. 2010; K. M. Das et al. 

2015). Here, we used this method to identify differentially conserved positions that may 

explain phenotypic differences between SARS-CoV-2 and SARS-CoV. These data were 

combined with data derived from virus-infected cells.  
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4.3 Methods 

4.3.1 Structural analysis 

Sequences for each of the SARS-CoV-2 proteins were obtained from the GISAID resource. 

The protein sequences were then filtered for sequences from human hosts with high 

coverage, and sequences with spans of X’s were removed. The number of sequences 

retained after filtering for each protein is shown in Supplementary Table S4.4. Fifty-three 

SARS-CoV genome sequences derived from human hosts were downloaded from VIPR 

(Pickett et al. 2012). Open Reading Frames (ORFs) were extracted using EMBOSS getorf 

(Rice, Longden, and Bleasby 2000) and matched to known proteins using BLAST. Fragments 

and mismatches were discarded. To match the ORF1ab non-structural proteins, a BLAST 

database of the sequences from the SARS non-structural proteins was generated and the 

SARS-CoV-2 ORF1ab searched against it. The sequences for each protein were then aligned 

using ClustalO (Sievers and Higgins 2014b) with default settings. 

Conserved positions were identified by calculating the Jensen-Shannon divergence score 

(Capra and Singh 2007b) for each position in the multiple sequence alignment of virus 

proteins. Differing alignment positions with conservation score >0.8 for both species were 

considered as differentially conserved positions (DCPs). 

SARS-CoV-2 and SARS-CoV protein structures were downloaded from the Protein Databank 

(PDB; Supplementary Table S4.1) (Armstrong et al. 2020). Where structures were not 

available, they were modelled using Phyre2 (Kelly et al. 2015)(Supplementary Table S4.2). 

Ligand binding sites were modelled using 3DLigandSite (Wass, Kelley, and Sternberg 

2010b). DCPs were mapped onto protein structures using PyMOL. Exposed (solvent-

accessible) and buried (solvent-inaccessible) residues were identified using Python module 

findSurfaceResidues with default parameters. Amino acid changes at DCPs were manually 

analysed for their potential impact on protein structure and function based on presence or 

absence of hydrogen bonding, changes in hydrogen bonding capacity and changes in 

charge in SARS-CoV compared with SARS-CoV-2 proteins. Where models were unavailable, 

mutagenesis was performed within PyMOL to assess the potential impact of the amino acid 

changes. Here, different rotamers of the mutated amino acid were cycled through to 

identify the rotamer with least clashes. Future investigation into these positions should 

focus on the use of molecular dynamics or minimisation to identify the effect of each 
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mutant on the protein structure. The structural analysis grouped DCPs into six different 

categories based on the effect that they were proposed to have. These include ‘unlikely’, 

‘possible’ and ‘likely’. The possible and likely categories were split into three and two 

subgroups respectively depending on the type of effect (Supplementary Table S4.3). 

4.3.2 Cell culture 

The Caco2 cell line was obtained from DSMZ (Braunschweig, Germany). The cells were 

grown at 37 °C in minimal essential medium (MEM) supplemented with 10 % foetal bovine 

serum (FBS), 100 IU/ml penicillin, and 100 μg/mL of streptomycin. 293 cells (PD-02-01; 

Microbix Bisosystems Inc.) and 293/ACE2 cells (Kamitani et al. 2006)(kindly provided by 

Shinji Makino, UTMB, Galveston, Texas) were cultured in Dulbecco’s modified Eagle 

medium (DMEM) supplemented with 10 % FBS, 50 IU/ mL penicillin, and 50 µg/ mL 

streptomycin. Selection of 293/ACE2 cells constitutively expressing human angiotensin-

converting enzyme 2 (ACE2) was performed by addition of 12 µg/ mL blasticidin. All culture 

reagents were purchased from Sigma (Munich, Germany). Cells were regularly 

authenticated by short tandem repeat (STR) analysis and tested for mycoplasma 

contamination. 

4.3.3 Virus infection 

The isolate SARS-CoV-2/1/Human/2020/Frankfurt (Hoehl et al. 2020) was cultivated in 

Caco2 cells as previously described for SARS-CoV strain FFM-1 (J. Cinatl et al. 2004), as they 

are highly permissive to infection with SARS-CoV. Virus titres were determined as 

TCID50/ml in confluent cells in 96-well microtitre plates (J. Cinatl et al. 2003; Jindrich Cinatl 

et al. 2005). 

4.3.4 Western blot 

Western blotting was performed as previously described (Schneider et al. 2017). Briefly, 

cells were lysed using Triton-X-100 sample buffer, and proteins were separated by SDS-

PAGE. Proteins were blotted on a nitrocellulose membrane (Thermo Scientific). Detection 

occurred by using specific antibodies against β-actin (1:2500 dilution, Sigma-Aldrich, 

Munich, Germany), ACE2, and TMPRSS2 (both 1:1000 dilution, abcam, Cambridge, UK) 

followed by incubation with IRDye-labeled secondary antibodies (LI-COR Biotechnology, 

IRDye®800CW Goat anti-Rabbit, 926-32211, 1:40,000) according to the manufacturer’s 
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instructions. Protein bands were visualised by laser-induced fluorescence using infrared 

scanner for protein quantification (Odyssey, Li-Cor Biosciences, Lincoln, NE, USA). 

 

4.3.5 Receptor blocking experiments 

SARS-CoV/ SARS-CoV-2 receptor blocking experiments were adapted from Cinatl et al 

(2004). Caco2 cells were pre-treated for 30 min at 37 °C with goat antibodies directed 

against the human ACE2 or DDP4 ectodomain (R&D Systems, Wiesbaden-Nordenstadt, 

Germany). Then, cells were washed three times with PBS and infected with SARS-CoV-2 at 

MOI 0.01. Cytopathogenic effects were monitored 48 hours post infection. Cytopathogenic 

effect  (CPE) was assessed visually by light microscopy  by two independent laboratory 

technicians 48 hours after infection (J. Cinatl et al. 2003). 

4.3.6 Antiviral assay 

Confluent cell cultures were infected with SARS-CoV-2 or SARS-CoV in 96-well plates at MOI 

0.01 in the absence or presence of drug. Cytopathogenic effect (CPE) was assessed visually 

by light microscopy by two independent laboratory technicians 48h post infection (J. Cinatl 

et al. 2003). 

4.3.7 Viability assay 

Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) assay modified after Mosmann (Mosmann 1983), as previously described 

(Onafuye et al. 2019). 

4.3.8 qPCR 

SARS-CoV-2 and SARS-CoV RNA was isolated from cell culture supernatants using AVL 

buffer and the QIAamp Viral RNA Kit (Qiagen) according to the manufacturer’s instructions. 

RNA was subjected to OneStep qRT-PCR analysis using the SYBR green based Luna Universal 

One-Step RT-qPCR Kit (New England Biolabs) and a CFX96 Real-Time System, C1000 Touch 

Thermal Cycler. Primers were adapted from the WHO protocol (Corman et al. 2020) 

targeting the open reading frame for RNA-dependent RNA polymerase (RdRp) of both 

SARS-CoV-2 and SARS-CoV: RdRP_SARSr-F2 (GTGARATGGTCATGTGTGGCGG) and 

RdRP_SARSr-R1 (CARATGTTAAASACACTATTAGCATA) using 0.4 μM per reaction. RNA 

copies/ml were determined by standard curves which were using plasmid DNA (pEX-A128-
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RdRP) harbouring the corresponding amplicon regions for SARS-CoV-2 RdRP target 

sequence (GenBank Accession number NC_045512). For each condition, three biological 

replicates were used. Mean and standard deviation were calculated for each group. 

4.4 Results 

4.4.1 Determination of differentially conserved positions (DCPs) 

Coronavirus genomes harbour single-stranded positive sense RNA (+ssRNA) of about 30 

kilobases in length, which contain six or more open reading frames (ORFs) (J. Cui, Li, and 

Shi 2019; A. Wu et al. 2020). The SARS-CoV-2 genome has a size of approximately 29.8 

kilobases and was annotated to encode 14 ORFs and 27 proteins (A. Wu et al. 2020). Two 

ORFs at the 5’-terminus (ORF1a, ORF1ab) encode the polyproteins pp1a and pp1b, which 

comprise 15 non-structural proteins (nsps), the nsps 1 to 10 and 12-16 (A. Wu et al. 2020). 

Additionally, SARS-CoV-2 encodes four structural proteins (S, E, M, N) and eight accessory 

proteins (3a, 3b, p6, 7a, 7b, 8b, 9b, orf14)(A. Wu et al. 2020). This set-up resembles that of 

SARS-CoV. The 8a protein in SARS-CoV is absent in SARS-CoV-2. 8b is longer in SARS-CoV-2 

(121 amino acids) than in SARS-CoV (84 amino acids), and 3b is shorter in SARS-CoV-2 (22 

amino acids) than in SARS-CoV (154 amino acids) (A. Wu et al. 2020). 

To identify genomic differences between SARS-CoV-2 and SARS-CoV that may affect the 

structure and function of the encoded virus proteins, we identified differentially conserved 

amino acid positions (DCPs) (Rausell et al. 2010) and determined their potential impact by 

in silico modelling (Pappalardo et al. 2016; Martell et al. 2019). 

In the reference sequences of the 22 SARS-CoV-2 virus proteins that could be compared 

with SARS-CoV, 1393 positions encoded different amino acids. 891 (64 %, 9 % of all SARS-

CoV-2 genome residues) of these positions were DCPs (Supplementary Table S4.3). Most 

of the amino acid substitutions at DCPs appear to be fairly conservative as demonstrated 

by the average BLOSUM substitution score of 0.32 (median 0; Figure S4.1) and with 69 % 

of them having a score of 0 or greater (the higher the score the more frequently such amino 

acid substitutions are observed naturally in evolution). 46 % of DCPs represent conservative 

changes where amino acid properties are retained (e.g. change between two hydrophobic 

amino acids), 18 % represented polar - hydrophobic substitutions, and <10 % changes 

between charged amino acids (Supplementary Table S4.3). 
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Six of the SARS-CoV-2 proteins have a higher proportion of DCPs, S, 3a, p6, nsp2, nsp3 

(papain-like protease), and nsp4 with 14.82 %, 11.68 %, 9.52 %, 21.38 %, 17.9 %, and 10.8 

% of their residues being DCPs, respectively (Supplementary Table S4.4). Very few DCPs 

were observed in the envelope (E) protein and most of remaining non-structural proteins 

encoded by ORF1ab. For example, no residues in the helicase and <4 % of residues in the 

RNA-directed RNA polymerase, 2’-O-Methyltransferase, nsp8 and nsp9 are DCPs (Table 

S4.1). We were able to map 572 DCPs onto protein structures (Supplementary Figure S4.2, 

Supplementary Tables S4.3 and S4.4). Nearly all of the mapped DCPs occur on the protein 

surface (86 %), with only 34 DCPs buried within the protein, primarily in S and the papain-

like protease (nsp3) (Supplementary Table S4.3). We propose that 49 DCPs are likely to 

result in structural/ functional differences between SARS-CoV and SARS-CoV-2 proteins. A 

further 259 could result in some change. The remaining 264 DCPs seem unlikely to have a 

substantial functional impact (Table 4.1). 
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4.4.2 Differentially conserved positions (DCPs) in interferon antagonists 

At least 10 SARS-CoV proteins have roles in interferon antagonism (Totura and Baric 2012). 

Two of these proteins, p6 and the papain-like protease (nsp3), contain many DCPs, two 

have very few DCPs (nsp7 and nsp16), five have intermediate proportions of DCPs (nsp14, 

nsp1, nsp15, N and M), while p3b is not encoded by SARS-CoV-2. Initial studies have 

identified a difference in the interferon inhibition between SARS-CoV and SARS-CoV-2 

(Lokugamage, Schindewolf, and Menachery 2020). Thus, it is possible that especially the 

DCPs in p6 and the papain-like protease may have an effect on interferon inhibition. 

Table 4.1. Criteria used for classifying proposed effect on protein structure and function within the 

structural analysis. 
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4.4.3 Differences in cell tropism between SARS-CoV-2 and SARS-CoV 

Next, we elucidated whether the substantial number of DCPs results in different 

phenotypes in cell culture, using the cell lines Caco2, CL14 (susceptible to SARS-CoV 

infection), HT-29, and DLD-1 (non-susceptible) (J. Cinatl et al. 2004). Analogously to SARS-

CoV infection, SARS-CoV-2 replication was detected in Caco2 and CL14 cells, but not in HT-

29 or DLD-1 cells, as shown by cytopathogenic effects (CPE) (Figure 4.1A), staining for 

double-stranded RNA (Supplementary Figure S4.3A), and viral genomic RNA levels 

(Supplementary Figure S4.3B).  

However, ACE2-expressing 293 cells differed in their susceptibility to SARS-CoV-2 and SARS-

CoV (Figure 4.1B, Supplementary Figure S4.4). ACE2 has been identified as a cellular 

receptor for both SARS-CoV-2 and SARS-CoV (J. Cui, Li, and Shi 2019; A. Wu et al. 2020; 

Hoffmann, Kleine-Weber, et al. 2020; Walls et al. 2020; Wan et al. 2020; Wrapp et al. 2020; 

Yan et al. 2020). Unmodified 293 cells are not susceptible to SARS-CoV infection due to a 

lack of ACE2 expression. However, 293 cells that stably express ACE2 (293/ACE2) support 

SARS-CoV infection (Kamitani et al. 2006). As expected, infection of 293 cells with SARS-

CoV or SARS-CoV-2 did not result in detectable cytopathogenic effect (CPE) (Figure 4.1B), 

but a SARS-CoV-induced CPE was detected in 293/ACE2 cells (Figure 4.1B). In contrast, 

Figure 4.1. SARS-CoV-2 and SARS-CoV replication in cell culture. A) Cytopathogenic effect (CPE) 

formation 48h post infection in MOI 0.01-infected Caco2, CL14, DLD-1, and HT29 cells. 

Representative images showing immunostaining for double-stranded RNA (indicates virus 

replication) and quantification of virus genomes by qPCR are presented in Supplementary Figure 

S3. B) CPE formation in SARS-CoV and SARS-CoV-2 (MOI 0.01)-infected ACE2-negative 293 cells and 

293 cells stably expressing ACE2 cells (293/ACE2) 48h post infection. Immunostaining for double-

stranded RNA and quantification of virus genomes by qPCR is shown in Figure S4. C) Western blots 

indicating cellular ACE2 and TMPRSS2 protein levels in uninfected cells. Uncropped blots are 

provided in Figure S5. D) A sequence view of the DCPs in the vicinity of the S two cleavage sites and 

an image of the R815 cleavage site and closely located DCPs. S is cleaved and activated by TMPRSS2. 

E) Concentration-dependent effects of the TMPRSS2 inhibitors camostat and nafamostat on SARS-

CoV-2- and SARS-CoV-induced cytopathogenic effect (CPE) formation determined 48h post 

infection in Caco2 infected at an MOI of 0.01. Similar effects were observed in CL14 cells 

(Supplementary Figure S6). 
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293/ACE2 cells displayed limited permissiveness to SARS-CoV-2 infection (Figure 4.1B). 

Staining for double-stranded RNA (Figure S4A) and detection of viral genomic RNA copies 

(Figure S4B) confirmed these findings. Hence, the ACE2 status does not reliably predict cell 

sensitivity to SARS-CoV-2. Indeed, CL-14 was characterised by lower ACE2 levels than DLD-

1 and HT29 (Figure 4.1C).  

SARS-CoV-2 and SARS-CoV cell entry depends on S cleavage by transmembrane serine 

protease 2 (TMPRSS2) (Y. Zhou et al. 2015; Hoffmann, Kleine-Weber, et al. 2020). However, 

the non-SARS-CoV-2 susceptible and susceptible cell lines displayed similar TMPRSS2 levels 

(Figure 4.1C). Thus, cellular TMPRSS2 levels do also not reliably predict cell susceptibility to 

SARS-CoV-2. 

4.4.4 Differences between SARS-CoV-2 and SARS-CoV S (Spike) protein cleavage sites 

and sensitivity to protease inhibitors 

R667 and R797 are the critical cleavage sites in SARS-CoV S that are recognised by TMPRSS2 

(Simmons et al. 2013; Y. Zhou et al. 2015). These cleavage sites are conserved in SARS-CoV-

2 (R685 and R815) (Figure 4.1D). However, there is a four amino acid insertion in SARS-

CoV-2 S prior to R685 and many of the residues close to R685 are DCPs (V663=Q677, 

S664=T678, T669=V687, Q671=S689, K672=Q690 DCPs are represented by the SARS CoV 

residue followed by the SARS-CoV-2 residue) (Figure 4.1D). The R815 cleavage site has two 

DCPs in close proximity (L792=S810, T795=S813) (Figure 4.1D). Around the R685 cleavage 

site two DCPs retain polar side chains (S664=T678, Q671=S689), while the others represent 

larger changes between hydrophobic and polar side chains (V663=Q677, T669=V687) and 

one changes from a positive charge to a polar side chain (K672=Q690). While around the 

R815 cleavage site, one substitution is conservative (T795=S813) and the other is a 

hydrophobic to polar change (L792=S810). 

These changes are likely to impact on TMPRSS2-mediated S cleavage. Indeed, SARS-CoV-2 

was more sensitive than SARS-CoV to inhibition by the serine protease inhibitors camostat 

and nafamostat (Figure 4.1E, Supplementary Figure S4.6), which are known to inhibit 

TMPRSS2-mediated S cleavage and virus entry (Y. Zhou et al. 2015; Hoffmann, Kleine-

Weber, et al. 2020; Hoffmann, Schroeder, et al. 2020). This confirms that the observed 

differences in the amino acid sequence of S have functional consequences. 



Chapter 4: Differentially conserved amino acid positions may reflect differences in SARS-CoV-2 and SARS-CoV behaviour 

 
   

126 

4.4.5 Differences in between SARS-CoV-2 and SARS-CoV S interaction with ACE2 

Our computational analysis detected further interesting changes in the S protein. SARS-

CoV-2 S is 77.46 % sequence identical to the SARS-CoV S and most of the remaining 

positions are DCPs (186 residues) (Supplementary Table S4.1).  

The SARS-CoV S receptor binding domain (residues 306-527, equivalent to 328-550 in SARS-

CoV-2) is enriched in DCPs, containing 43 DCPs (19 % of residues). Nine of the 24 SARS-CoV 

S residues in direct contact with ACE2 were DCPs (Figure 4.2A, Table S4.4). Five of these 

DCPs represent conservative substitutions in amino acid (hydrophobic – hydrophobic or 

polar-polar), two hydrophobic polar substitutions, one positive charge to polar change, 

while the ninth is substitution between a hydrophobic and positively charged amino acid 

(Supplementary Table S4.4).  

Analysis of the DCPs using the SARS-CoV and SARS-CoV-2 S protein complexes with ACE2 

(W. Song et al. 2018; Yan et al. 2020) identified runs of DCPs (A430-T433, F460-A471) in 

surface loops forming part of the S-ACE2 interface and resulted in different conformations 

in SARS-CoV-2 S compared to SARS-CoV S (Figure 4.2A, 4.2B). Two DCPs remove 

intramolecular hydrogen bonding within the spike protein in SARS-CoV-2 (Supplementary 

Table S4) and three DCPs (R426=N439, N479=QQ493, Y484=Q498) are residues that form 

hydrogen bonds with ACE2. For two of these positions, hydrogen bonding with ACE2 is 

present with both S proteins, but for R426=N439 hydrogen bonding with ACE2 is only 

observed with SARS-CoV S. N439 in SARS-CoV-2 S is not present in the interface and the 

sidechain points away from the interface. Further, analysis of the SARS-CoV-2 S-ACE2 

complex highlighted important roles of the V404=K417 DCP, where K417 in SARS-CoV-2 S 

is able to form a salt bridge with ACE2 D30 (Figure 4.2C, 4.2D) (Yan et al. 2020). 

Alanine scanning (Chakraborti et al. 2005) and adaptation experiments (Wan et al. 2020) 

have identified 16 SARS-CoV S residues impacting on the binding affinity with ACE2. For all 

five residues identified from adaptation studies and four of the 11 identified by alanine 

scanning experiments, different amino acids are present in SARS-CoV-2 S (Figure 4.2E), 

highlighting the difference in the interaction with ACE2.  
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In agreement with our structural analysis, we detected differences in the effects of an anti-

ACE2 antibody on SARS-CoV-2 and SARS-CoV infection. Antibodies directed against ACE2 

were previously shown to inhibit SARS-CoV replication (W. Li et al. 2003). In line with this, 

an anti-ACE2 antibody inhibited SARS-CoV infection in Caco2 cells (Figure 4.2F). In contrast, 

the anti-ACE2 antibody displayed limited activity against SARS-CoV-2 infection (Figure 

4.2F). This shows that it is more difficult to antagonise SARS-CoV-2 infection with anti-ACE2 

antibodies and supports previous findings indicating a stronger binding affinity of SARS-

CoV-2 S to ACE2 compared to SARS-CoV S (Walls et al. 2020; Wrapp et al. 2020). As 

anticipated, antibodies directed against DPP4, the MERS-CoV receptor (De Wit et al. 2016; 

J. Cui, Li, and Shi 2019), did not interfere with SARS-CoV or SARS-CoV-2 infection (Figure 

4.4E). 

  

Figure 4.2. SARS-CoV-2 and SARS-CoV S interaction with ACE2. A-D) Differentially conserved 

positions in the Spike protein. A) A sequence view of the DCPs present in the Spike protein, with an 

inset showing the receptor binding domain. B) The S interface with ACE2 (cyan). The ACE2 interface 

is shown in blue spheres, DCPs in red. C) The V404=K417 DCP. D) The R426=N439 DCP, the left image 

shows SARS-CoV S R426, the image on the right show the equivalent N439 in SARS-CoV-2 S. E) SARS-

CoV residues associated with altering ACE2 affinity and the residues at these positions in SARS-CoV-

2 S. F) Cytopathogenic effect (CPE) formation in SARS-CoV-2 and SARS-CoV (MOI 0.01)-infected 

Caco2 cells in the presence of antibodies directed against ACE2 or DPP4 (MERS-CoV receptor) 48 

hours post infection. 
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4.5 Discussion 

Here, we performed an in-silico analysis of the effects of differentially conserved amino 

acid positions (DCPs) between SARS-CoV-2 and SARS-CoV proteins on virus protein 

structure and function in combination with a comparison of wild-type SARS-CoV-2 and 

SARS-CoV in cell culture. 

We identified 891 DCPs, which represents 64 % of the amino acid positions that differ 

between SARS-CoV-2 and SARS-CoV and nearly 9 % of all residues encoded by the SARS-

CoV genome. 49 of these DCPs are likely to have a structural and functional impact. The 

DCPs are not equally distributed between the proteins. DCPs are enriched in S, 3a, p6, nsp2, 

papain-like protease, and nsp4, but very few DCPs are present in the envelope (E) protein 

and most of the remaining non-structural proteins encoded by ORF1ab. This indicates that 

the individual proteins differ in their tolerance to sequence changes and/or their exposure 

to selection pressure exerted by the host environment.  

The large proportion of DCPs reflects the differences in the clinical behaviour of SARS-CoV-

2 and SARS-CoV. Mortality associated with SARS-CoV is higher than that associated with 

SARS-CoV-2 (Borges do Nascimento et al. 2020; J. Cui, Li, and Shi 2019). SARS-CoV causes a 

disease of the lower respiratory tract. Infected individuals are only contagious when they 

experience symptoms (De Wit et al. 2016). SARS-CoV-2 is present in the upper respiratory 

tract and can be readily transmitted prior to the onset of symptoms. Mild but infectious 

cases may substantially contribute to its spread (Rivett et al. 2020).  

Although further research will be required to elucidate in detail, which DCPs are 

responsible for which differences in virus behaviour, our analysis has already provided 

important clues. Both viruses use ACE2 as a receptor and are activated by the 

transmembrane serine protease TMPRSS2 (W. Li et al. 2003; J. Cui, Li, and Shi 2019; 

Hoffmann, Kleine-Weber, et al. 2020; Walls et al. 2020; Wan et al. 2020; Wrapp et al. 2020; 

Yan et al. 2020). Our results show, however, that the ACE2 and the TMPRSS2 status are not 

sufficient to predict cells susceptibility to SARS-CoV-2 or SARS-CoV. The cell line CL14 

supported SARS-CoV-2 replication, although it displayed lower ACE2 levels and similar 

TMPRSS2 levels to non-susceptible DLD-1 and HT29 cells. Thus, attempts to identify SARS-
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CoV-2 target cells based on the ACE2 status (Luan et al. 2020; Qiu et al. 2020) need to be 

considered with caution. 

As previously described (Kamitani et al. 2006), ACE2 expression rendered SARS-CoV non-

permissive 293 cells susceptible to SARS-CoV. However, ACE2 expression had a 

substantially lower impact on SARS-CoV-2 infection. This suggests the presence of further 

host cell factors that determine SARS-CoV-2 susceptibility. Based on our sequence analysis, 

DCPs in the viral interferon antagonists may contribute to the differences observed in the 

cellular tropism of SARS-CoV-2 and SARS-CoV. 

Our computational analysis detected DCPs in the ACE2-binding domain of S, which are likely 

to impact S-ACE2 binding. In agreement, an anti-ACE2 antibody displayed higher efficacy 

against SARS-CoV than against SARS-CoV-2, illustrating the differences between SARS-CoV-

2 S and SARS-CoV S interaction with ACE2. This probably reflects an increased SARS-CoV-2 

S affinity to ACE2 compared to SARS-CoV S (Wrapp et al. 2020), which may be more difficult 

to antagonise. 

To mediate virus entry, S needs to be cleaved by host cell proteases, in particular by 

TMPRSS2 (Y. Zhou et al. 2015; Hoffmann, Kleine-Weber, et al. 2020; Hoffmann, Schroeder, 

et al. 2020). The S cleavage sites are conserved between SARS-CoV-2 and SARS-CoV. 

However, we found DCPs in close vicinity to the S cleavage sites, which are likely to affect 

S cleavage by host cell enzymes and/ or the activity of protease inhibitors on S cleavage. 

Indeed, the serine protease inhibitors camostat and nafamostat, which interfere with S 

cleavage (Hoffmann, Kleine-Weber, et al. 2020; Hoffmann, Schroeder, et al. 2020), 

displayed increased activity against SARS-CoV-2 infection than against SARS-CoV infection, 

confirming the functional relevance of the DCPs. 

In conclusion, our in-silico study revealed a substantial number of differentially conserved 

amino acid positions in the SARS-CoV-2 and SARS-CoV proteins. In agreement, cell culture 

experiments indicated differences in the cell tropism of these two viruses and showed that 

cellular ACE2 and TMPRSS2 levels do not reliably indicate cell susceptibility to SARS-CoV-2. 

Moreover, we identified DCPs in S that are associated with differences in the interaction 

with ACE2 and increased SARS-CoV-2 sensitivity to the protease inhibitors camostat and 

nafamostat relative to SARS-CoV. 
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Chapter 5: General Discussion 

This thesis explores themes of elucidating protein function and specific protein properties 

related to select amino acids. This chapter comments on the relevance of these works, 

their development, and the research implications on future projects.  

 

5.1 Advances in Protein-Ligand Binding  

Despite significant advances in the last few decades, both in terms of cost and speed, in 

determining sequence information, the link between sequence and its function still 

requires research. Current costs of determining protein function experimentally are 

compounded by labour intensive and often difficult procedures that are a strongly limiting 

factor in performing function determination experiments. Further, due to the vast number 

of genes with unknown functions, genes that appear less interesting are unlikely to be 

investigated. The need for automatic annotation of these sequences is vital to improving 

our understanding of pathways and systems, with the mammoth aim of elucidating the role 

of all coding DNA.  

The research performed in Chapter 2 showcases the methodology we have developed, 

3DLigandsite, and its new features, which should increase the amount of functionally 

annotated data and improve the accuracy of protein-ligand binding predictions. By hosting 

this tool as a webserver, users are able to identify likely binding regions, probable ligands, 

surface binding residues, and establish a priority system for experimentally identifying 

binding residues as guided by the probability scores we associate to each amino acid.  

The method we describe does have its limitations. For example, a lack of homologous 

structures to a given input query will likely return no results. However, we have minimised 

the effect of this limitation by firstly allowing users to reduce the HHSearch probability 

threshold, thus allowing for more distantly related proteins to be captured in the initial 

homology scan. This works automatically on the webserver when there are no results 

available at a user set threshold, reducing the probability score by 5 % until a minimum of 

60 % is reached. In addition, the option of a structural search is provided. A structural 

search compares structures containing biologically relevant ligands to the query structure. 
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Structures can be more conserved than sequences, and therefore may identify homologs 

where a sequence search does not. However, it is a much slower process than the sequence 

search.  

Another limitation is the clustering of likely irrelevant ligands in the context of the query 

structure. In solved PDB structures, often ligands are added to aid in crystallisation and are 

subsequently retained in the structures when the models are deposited in data banks. 

Despite our database only recognising biologically relevant ligands, there is some overlap 

between these ligands and common stabilising agents. Through a propagation effect, these 

ligands carry over onto our predictions. Submissions with low homology to other structures 

can show a high ranked binding site that is not likely. For most predictions, these effects 

are diminished due to the presence of true binding sites, so the propagated ligands are lost 

or shown as a low confidence binding site.   

Further, the dynamic nature of proteins, and the conformational rearrangement that often 

occurs on ligand binding, may result in a query structure that is not arranged in a bound 

state, and therefore predicted residues may differ. The difference will likely be minimal, 

but a method of optimising the structure of the protein to a cluster of ligands could be 

implemented in future releases. Comparison of the binding site in the query structure and 

homologous protein structures from the PDB or from AlphaFold to determine the best pose 

for ligand-binding could be implemented. Further, the non-metal ligands could be docked 

into the binding site to optimise the interaction.  

These limitations highlight that improvements are still necessary to fulfil the 

characterisation of binding sites on protein structures; however, the tool we have 

developed addresses most key statements outlined in the last assessment of ligand binding 

predictions in CASP10. Metal and non-metal ligands are now clustered separately – 

allowing for more refined clusters are preventing multiple metal ligands spanning across a 

non-metal binding site. A probability score is now assigned for each amino acid in the 

binding site – based on key attributes of the amino acid and its position, and this feature 

can aid researchers in prioritising residues to investigate. In addition, solvent accessibility 

is now included for the user to aid in establishing which positions are likely targetable.  
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These features, and a clear user interface, will reduce the time that experimental 

procedures take by providing a basis for what an interaction between a query protein and 

ligands may look like. Improvements will continue to take place in this field. The recent 

publication of predicted structures for the human proteome and other model organisms 

released by AlphaFold has drastically increased our understanding of human coding 

sequences and is a landmark in structural biology and bioinformatics. Development of 

methods to identify the functions of these predicted structures are key, and tools such as 

that described in Chapter 2 will play a key role in this, however steps towards homology 

independent determination of ligand binding should be explored.   

 

5.2 Elucidation of sequence positions associated with muscle 

contraction velocity 

Public access to vast data and sequencing resources drove the research in Chapter 3. 

Sequence data for enough mammalian species to perform inter-and intra-clade 

comparisons of myosin-II proteins would not have previously been possible.  The utilisation 

of these resources, combined with a measurable phenotypic feature (mass), enabled the 

identification of sequence positions that likely correlated with the contraction velocity of 

the heart.  

Though the function of mammalian conventional myosins is well studied, the sequential 

components that exert control over the mechanisms behind the nuances of muscle 

contraction require further understanding. Methods of determining the role of amino acids 

in a given sequence are required to fully elucidate the protein's function and decipher 

positions with structural roles, binding propensity, and regulation, amongst other 

functions. Typical experimental characterisation of these sites is performed by associating 

variants to disease, such as in cardiomyopathies in beta-cardiac myosin or by mutagenesis 

experiments. We have demonstrated that the alignment of these proteins and statistical 

methods that assess variation at alignment positions can be a powerful tool for 

investigating the relevance of these positions in proteins. Applying this methodology to 

proteins participating in mechanisms with a measurable phenotypic variable could shine a 

light on the function of sequence positions and narrow down the possible positions 
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involved in said function. The guidance of experimental work by computational methods is 

vital for allowing research to be performed, making expensive techniques cheaper by 

narrowing the scope and reducing the number of tests that may otherwise need to be 

performed.  

The computational method performed in Chapter 3 is limited by the availability of 

sequencing and phenotypic data available for all organisms in the study. Lack of reliable 

sources for species masses could impact the binomial regression analysis, though it likely 

has a minimal impact as a log scale is utilised, and only a large divergence in mass would 

drastically affect results. Further, as more species of mammalian clades are sequenced as 

part of global sequencing initiatives, supporting information could be incorporated into the 

analyses we performed. This could elucidate additional positions that transition to a 

different amino acid at mass thresholds. Akin to this, only mammalian clades are included 

in this study, and it would be interesting to identify if similar trends are observed in distinct 

clades.  

It is clear that sequence positions distinct from the ATP binding site in beta cardiac myosin 

influence the rate at which ATP is hydrolysed in mammals. By changing just nine sites in 

human beta cardiac myosin to those of the rat equivalent, the behaviour of the ATPase was 

affected. The combination of dry lab and wet lab practices expounded the role of key 

sequence positions in beta-cardiac myosin. Additional experiments to identify the 

contribution of each sequence position mutated in the chimera to the ADP release rate 

would further increase our understanding of the mechanism behind the altered release 

rate.   

    

5.3 Functional Impact of DCPs in Viruses 

The impact of viruses on the human population has never been more in the public eye and 

the tracking of virus changes is of great import. The pandemic caused by SARS-CoV-2 has 

shown how quickly a new virus can ravage populations across continents. Perhaps the more 

worrying aspect of this virus is its similarity to the much more lethal SARS-CoV, making 

epidemiology essential for predicting, managing,  and preventing disease outbreak.   
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Coronavirus is one of the greatest challenges of this generation, yet it has galvanised the 

global scientific community to better understand the virus, how to control its spread. 

Widespread sequencing of SARS-CoV-2 genomes and their subsequent deposition into data 

archives, such as GISAID, enable real-time tracking of variants in the coronavirus genome 

and the classification of variants into phylogenetic groupings. Identification of proteins 

encoded by the genome of SARS-CoV-2 and subsequent solving of the protein structures 

provided a platform for the effects of variants to be assessed. Where experimental and 

traditional homology modelling methods failed to produce structural models, novel deep 

learning-based methods provided protein structures.  Remarkably, due to the vast amount 

of information gained from worldwide studies on coronavirus, many groups were able to 

mass produce viable vaccines in the fastest conception-to-mass-dispersion of a vaccine 

seen in history, where at least 17 COVID-19 vaccines have been developed. This consorted 

effort demonstrates the effectiveness of modern science when pointed towards a common 

purpose.  

Early indications of a coronavirus pandemic raised fears that it could carry a significantly 

higher mortality rate in humans than we now know. The SARS pandemic in 2002/2004 

resulted in an 11 % mortality rate (Chan-Yeung and Xu 2003), with 10-20 % of cases 

culminating in the need for mechanical ventilators (Chu et al. 2008) . With the greater 

capability for transmission, the SARS-CoV-2 pandemic could have been far worse if the virus 

displayed a similar severity of the disease.  Sharing 80 % sequence similarity with the SARS-

CoV virus, SARS-CoV-2 variants must continue to be monitored and assessed to prevent 

further cases and deaths.  

In Chapter 4, a pipeline to identify differentially conserved positions between SARS-CoV 

and SARS-CoV-2 is introduced. In these works, we identified 186 positions in the spike 

protein that are likely responsible for the phenotypic differences between the viruses. By 

assessing the impact of these DCPs and identifying important functional areas near the 

DCPs, key insights into the differences between the two viruses can be made. An altered 

mode of binding to the ACE2 receptor was identified as shown by DCPs in the binding site 

and several other studies. DCPs were also found close to the S cleavage site, which is 

targeted by serine protease drugs camostat and nafamostat. These drugs showed 

increased activity against SARS-CoV-2 than SARS-CoV, highlighting the relevance of DCPs in 



Chapter 5: General Discussion 

 
   

136 

virus function. The method described in Chapter 4 is available as a webserver that allows 

users to submit SARS-CoV and SARS-CoV-2 sequences and identifies DCPs. This tool is useful 

for the ongoing analysis of coronavirus variants, where the loss or gain of DCPs may directly 

relate to the phenotype of the virus. In addition, it will allow researchers to easily categorise 

differences between their chosen input sequences, which has already proven a valuable 

tool in the analysis of viral species.  

 

The works performed in this thesis demonstrate the value of combined computational and 

experimental analysis and the vital role that bioinformatics has in streamlining research. 

The continued development of computational methods to predict and assign function to 

biological systems will increase our knowledge and enable more targeted, detailed 

research to occur. We already see the great impact that machine learning has had on the 

field of biology, and it is likely its impact will only grow.  
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Appendix 1. Chapter 2 Supplementary Material 
Supplementary Figure 2.1. Benchmarking of 3DLigandSite on the cross-validation 

training-testing data. Receiver operator characteristic (ROC) curves and Precision-Recall 

graphs are shown for the prediction of biding sites of metal (A and B) and non-metal (C 

and D) ligands. 
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Supplementary Figure 2.2. Assessment of the average probability scores assigned to 

binding and non-binding residues in the metal and non-metal residues in the validation 

set. Non-metal binding residues (A), non-metal not binding residues (B), metal binding 

residues (C), metal not binding residues (D). 
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Supplementary Table 2.1. PDB and chain Identifiers of protein structures. The PDB and 

chain Identifiers of protein structures used in the training, testing, and validation of 

3DLigandSite machine learning performance.  

https://github.com/jmcgreig/3DLigandSite_Data 
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Appendix 2. Chapter 3 Supplementary Material 
Assignment of isoforms to myosin sequences 

Our assignments of the isoforms are based on the data in UNIPROT. We have checked all 

of the sequences against several data bases including NCBI, and eggnog.  All agree on the 

isoforms except eggnog in which 15 of the sequences had been assigned to a different 

isoform. In eggnog six NMB sequences have been assigned to NMA but this gives these 

species two copies of NMA and no NMB sequence.  Similarly, seven α sequences have been 

assigned to β with the same results – two β sequences and no α.  One IIa sequence was 

assigned to IIb.   Given these anomalies we have used the UNIPROT assignments. 

Furthermore, we have generated a phylogenetic tree (Supplementary figure S6) in which 

sequences for each isoform group into the expected isoform.   

Why are conservative amino acid changes potentially important in tuning muscle 

contraction velocity? 

The velocity of contraction is 2-3-fold faster for a rat muscle expressing β-myosin than for 

the same isoform in human muscle.  Before considering the role of conservative changes 

in sequence it is constructive to examine the free energy changes involved in such an 

acceleration of velocity.  

The relationship between the rate constant defining a chemical/biochemical reaction and 

temperature was defined empirically by Arrhenius as k = A e-Ea/R.T where R is the gas 

constant, T is absolute temperature, A is an arbitrary constant and Ea is the activation 

energy – the energy barrier between the reactants and products. Essentially the ratio of 

the activation barrier (Ea) to thermal energy (R.T) defines the fraction of molecules with 

sufficient kinetic energy from the environment (at temperature, T) to pass over the barrier.  

 

 ADP release from the actin-myosin complex is the event thought to limit the velocity of 

contraction (see Table 3.2 and Figure 3.6).  The activation energy for ADP release from 

A.M.ADP in human β-myosin has been measured as ~ 90 kJ mol-1 (Deacon et al. 2012), while 

at room temperature (298 K) R.T is 2.48 kJ mol-1.  This means that few molecules at any one 

time will react.  The rate of reaction can be accelerated by increasing the temperature or 

lowering the activation energy.  The activation energy is measured from the temperature 

dependence of the rate constant and an activation energy of 90 kJ mole-1 is typical of many 
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protein reactions. For an Ea of this size an increase of temperature of 10 K (or ~3% of 298 

K) will increase the rate constant by ~3 fold.  Changing the sequence of a protein can 

increase the rate of a reaction by reducing the activation energy.  From the Arrhenius 

equation it is simple demonstrate that to increase k by a factor of 3 (at constant T and A) 

requires a decrease in Ea of the order of 2.7 kJ. mol-1 . i.e. k/k’ = 3 = A e-Ea/RT / A e-E’a/RT   or 

ln 3 = (E’a- Ea)/R.T. For a temperature of 298 K and R = 8.314 J.mol-1 K-1 ,  then E’a- Ea = 2.7 

kJ.mol-1. 

 

The decrease in activation energy is therefore small compared to Ea itself (2.7 vs 90 kJ mol-

1), small compared to a weak side chain interaction (e.g., a hydrogen bond is ~ 20 kJ mol-1) 

and the increase in k is equivalent to that induced by a 10 K temperature rise.   In the case 

of the human-rat chimera we show that a 2-3-fold acceleration in the rate constant of ADP 

release and the velocity in the motility assay can be induced by a set of 9 amino acid 

substitutions some conservative (K434R, Y553F) others not (P343S, Q573P).  The 

contribution of each side chain is impossible to assess from our work, we assume each 

makes a small contribution to the overall change. If we assume, for the sake of argument, 

that each amino acid substitution makes a similar size contribution to the change in Ea then 

each would contribute 2.7/9 or 0.30 kJ mole-1 the equivalent of a 1 K temperature rise.  

From this calculation it would be unwise to assume a conservative amino acid substitution 

cannot make a contribution to the change in Ea. The slow change of contraction velocity 

over time then occurs by the accumulation or multiple very small changes in sequence each 

conferring a marginal advantage.   

 

Conserved amino acids are defined as having similar properties (charge, hydrophobicity 

etc) but they are not identical.  Small changes considered conservative Asp/Glu, Lys/Arg or 

Val/Lue can have a significant effect on activity. For example, the well-known serine 

protease family has a catalytic triad of Ser/His/Asp which is invariant, the Asp for example 

cannot in general be replaced by Glu (Barnes and Gray 2003).  In the case of the myosin ~ 

1000 mutations in human MyHC7 have been reported which are linked to familial 

cardiomyopathies of these ~60 % are in the motor domain (reviewed in Parker & Peckham 

2020(F Parker and Peckham 2020). These myosins, containing a mutation are for the most 

part functional but have a hyper- or hypo- contractile phenotype often resulting in disease 
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in adulthood.  Although most of the mutations would be considered non-conservative, 

many are not e.g., Asp/Glu (positions 554, 497), Val/Leu (pos 186, 216), Arg/Lys (pos 207, 

721) Leu or Val/Met (338, 427).  

  

In addition to being important in specific interactions in protein catalysis, in ligand 

recognition and protein stability, amino acid side chains are important in conformational 

flexibility - the ability of proteins to access the optimal conformational states linked to 

function(Schmid and Hugel 2020).  Since the sites we have identified are not directly 

involved in ADP binding we suspect conformational flexibility to be affected since 

mutations often affect the ability of the remote actin and ADP binding sites to 

communicate(M.J Bloemink et al. 2009; MJ Bloemink et al. 2011; Tsiavaliaris et al. 2002).  

In fact, the thermodynamic coupling between actin and ADP binding defines different types 

of myosin motor activity (M Bloemink and Geeves 2011). 
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Supplementary Figure 3.1. Mass vs sequence identity plots. The motor and tail domains 

have been analysed separately. The grey squares are Euarchontoglires, the black triangles 

are Laurasiatheria and the open circles are the Afrotheria and Metatheria groups. Each plot 

has been fitted with a robust linear regression. Sequence identity is pairwise to the mouse. 

The R2 value and slope gradient are shown on each plot. Raw data files are available at 

Figshare. 

 

A – Tail domains for EMB, β, NMA, IIx  
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B – Motor and Tail domains for NMB, EXOC and SM. 

 

 



Appendix 2. Chapter 3 Supplementary Material 

 
   

173 

C – Motor and Tail domains for IIa, IIb and NMC 

NB   Note change of y-scale for NMC to accommodate the broader spread of values for the 

NMC tail 
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D – Motor and Tail domains for PERI, SlowT, and α  
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Supplementary Figure 3.2. Residue-mass transition plots. Binomial regression mapping 

the transition of the most frequent amino acid at positions in the motor region of β-myosin 

to the second most frequent amino acid at that position. The residue numbering is that of 

the human β-myosin, as oppose to the alignment position. The black squares are 

Euarchontoglires, and the triangles are Laurasiatheria. The P-value with each plot indicate 

the probability that the transition of the amino acids is not a result of change in mass. AliPos 

refers to positions in the sequence alignment that are not present in human β-myosin. Raw 

data files are available at Figshare. 
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Supplementary Figure 3.3. Highly variable residue mass vs amino acid frequencies. 

Residues which had more than two sites of variation, with the third most frequent amino 

acid being close in frequency to the second most common amino acid. The black squares 

are Euarchontoglires, and the triangles are Laurasiatheria. The residue numbering is that 

of human β-cardiac myosin. Raw data files are available at Figshare. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A
m

in
o
 A

c
id

 



Appendix 2. Chapter 3 Supplementary Material 

 
   

181 

Supplementary Figure 3.4. SDS-PAGE  of the three protein preparations.  A. Recombinant 

human β-S1 with 2 light chains. B. Native rat β-S1 and recombinant chimera S1 with 2 light 

chains.  
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Supplementary Figure 3.5. Distribution of amino acids at twelve positions. This table 

shows the amino acids that occurs in each of the twelve residues, those predicted to be 

assocaited with mass and that are of interest, in each species, sorted by mass. Yellow 

background is the predominant amino acid in small mammals. Blue background is the 

predominant amino acid in large mammals. The clades Laurasiatheria, Euarchontoglires, 

Metatheria, and Afrotheria are represented by the letter L, E, M and A respectively.  
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Supplementary Figure 3.6. Tree of all myosin isoforms.  Maximum-Likelihood phylogenetic 

tree generated for all myosin isoforms. Isoforms are labelled according to the key. Zoomed 

in sections show the α and β regions, and the NMA and NMB regions. Bootstrap values for 

the isoform branches are shown adjacent to the bars identifying each isoform.  
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Supplementary Figure 3.7. Phylogenetic (Gene) Trees for sarcomeric isoforms. 

Phylogenetic trees for IIa, IIb, IIx, α and β isoforms motor and tail domains.  

 

A IIa Motor 
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B IIa Tail 
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C IIb Motor 
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D IIb Tail 
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E IIx Motor 
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F IIx Tail  
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G α Motor 
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H α Tail 
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I β-Motor 
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J β-Tail 
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Supplementary Figure 3.8. Phylogenetic (Species) Trees for sarcomeric isoforms. 

Phylogenetic trees for IIa, IIb, IIx, α and β species generated from TimeTree.  

A IIa 
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B IIb 
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C IIx 
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D α 
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E β 
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Supplementary Table 3.1. Mass bootstrapping for each myosin isoform. The mass of 

species for each isoform was randomised 1000 times at 0.8-1.2 times the mass value for 

each given species. This table shows the range of values produced from this analysis. The 

values for the motors are shown in A, and values for the tails in B. 

A Motor domain 

Isoform Error Range Slope 
Range 

R2- Range 
Error 

STD-DEV 
Slope 

STD-DEV 
R2- STD-

DEV 

IIb 0.181 - 
0.216 

-0.053 
0.448 - 
0.497 

0.01 0.01 0.01 

IIa 0.095 - 
0.101 

-0.025 
0.426 - 
0.461 

0 0 0 

IIx 0.083 - 
0.138 

-0.068 
0.796 - 
0.869 

0.01 0.01 0.01 

α 0.267 - 
0.326 

-0.066 0.339 - 0.42 0.01 0.01 0.01 

β 0.098 - 
0.112 

-0.031 
0.618 - 
0.658 

0 0.01 0.01 

EXOC 0.099 - 
0.104 

-0.023 
0.165 - 
0.187 

0 0 0 

slowT 0.058 - 
0.061 

-0.011 0.039 - 0.05 0 0 0 

EMB 0.034 - 
0.036 

-0.007 
0.118 - 
0.136 

0 0 0 

PERI 0.105 - 
0.122 

-0.02 
0.005 - 
0.014 

0 0 0 

NMA 0.034 - 
0.037 

-0.007 
0.027 - 
0.038 

0 0 0 

NMB 0.021 - 
0.023 

0.04 - 
0.043 

0.103 - 0.12 0 0 0 

SM 0.066 - 
0.073 

-0.015 
0.479 - 
0.514 

0 0 0.01 

NMC 0.107 - 
0.117 

-0.022 
0.095 - 
0.113 

0 0 0 
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B Tail domain 

Isoform Error 
Range 

Slope 
Range 

R2-Range Error 
STD-DEV 

Slope 
STD-DEV 

R2- STD-
DEV 

IIb 0.112 - 
0.126 

-0.041 0.558 - 0.607 0 0.01 0.01 

IIa 0.104 - 
0.112 

-0.025 0.337 - 0.371 0 0 0.01 

IIx 0.076 - 
0.127 

-0.037 0.831 - 0.862 0.01 0.01 0.01 

α 0.093 - 
0.113 

-0.02 0.338 - 0.368 0 0 0 

β 0.156 - 
0.194 

-0.037 0.059 - 0.121 0.01 0.01 0.01 

EXOC 0.19 - 0.2 -0.043 0.204 - 0.225 0 0.01 0 

slowT 0.058 - 
0.062 

-0.011 0.013 - 0.021 0 0 0 

EMB 0.12 - 
0.128 

-0.024 0.208 - 0.237 0 0 0 

PERI 0.113 - 
0.125 

-0.023 0.198 - 0.225 0 0 0 

NMA 0.058 - 
0.064 

-0.011 0.135 - 0.154 0 0 0 

NMB 0.051 - 
0.054 

-0.011 0.069 - 0.088 0 0 0 

SM 0.099 - 
0.105 

-0.018 0.127 - 0.144 0 0 0 

NMC 0.34 - 
0.367 

-0.063 0.189 - 0.217 0 0.01 0 
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Supplementary Table 3.2. Accession numbers for isoforms considered. 

https://doi.org/10.1371/journal.pbio.3001248.s011 
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Supplementary Movie 3.1. Movie to show the in vitro motility of the wild type and 

chimera beta-cardiac myosin.  

https://figshare.com/articles/media/In_vitro_motility_of_WT_and_chimeric_beta-

myosin_/14763676 
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Appendix 3. Chapter 4 Supplementary Material 
Figure S4.1. The BLOSUM scores for the amino acid substitutions present in the SDPs. A 

graph is plotted that combines all of the proteins combined and one for each of the 

individual proteins that were analysed. 
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Figure S4.2. Overview of modelled DCPs. DCPs with likely functional effects are indicated 

by arrows and labelled. Structural model shown is indicated in brackets. DCPs likely to have 

an effect are coloured red; DCPs with a possible effect are shown in orange; and DCPs 

unlikely to have an effect are coloured yellow. Please refer to Table S6 for full details of 

structural analysis of each DCP. 
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Figure S4.3. SARS-CoV-2 and SARS-CoV susceptibility of cell lines. A) Representative images 

showing MOI 0.01-infected cells immunostained for double-stranded RNA 48h post 

infection. B) Quantification of virus genomes by qPCR at different time points post infection 

(p.i.). Values are presented as means ± S.D. (n =3). 
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Figure S4.4. SARS-CoV-2 and SARS-CoV replication in 293 cells stably expressing ACE2 cells 

(293/ACE2). A) Immunostaining for double-stranded RNA (indicating virus replication) in 

SARS-CoV-2 and SARS-CoV (MOI 0.01)-infected 293/ACE2 cells 48h post infection. B) 

Quantification of virus genomes by qPCR in SARS-CoV-2 and SARS-CoV (MOI 0.01)-infected 

293/ACE2 cells 48h post infection. Values are presented as means ± S.D. (n =3). 
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Figure S4.5. Uncropped Western blots for Figure 2D. 293/ACE2 cells served as positive 

control for ACE2. *Protein quantification 
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Figure S4.6. Role of TMPRSS2-mediated S cleavage in SARS-CoV-2 and SARS-Co-V 

replication. Concentration-dependent effects of the TMPRSS2 inhibitors camostat and 

nafamostat on SARS-CoV- 2- and SARS-CoV-induced cytopathogenic effect (CPE) formation 

determined 48h post infection in CL14 cells infected at an MOI of 0.01. Values are 

presented as means ± S.D. (n =3). 
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Table S4.1. Protein structures used for structural analysis obtained from the Protein 

Databank. 
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Table S4.2. Structural models generated by Phyre2 and used for structural analysis. 

Where structures were not available from the Protein Databank, the structures were 

modelled. 
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Table S4.3. Specificity Determining Positions (DCPs) identified between SARS-CoV and 

SARS-CoV-2. 
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Table S4.4. Analysis of DCPs present in the SARS-CoV and SARS-CoV-2 Spike protein 

interface with human ACE2. 

 


