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Abstract—This paper presents a tomographic and deep 

learning (DL) technique for the three-dimensional (3-D) 

reconstruction of burner flames. Two-dimensional (2-D) flame 

images are obtained using a tomographic imaging system from 

different directions around the burner. A flame data 

augmentation technique using a morphological operator is used 

to generate the complete training and testing datasets. The 

simultaneous algebraic reconstruction technique (SART) is used 

to generate the ground truth, i.e., flame cross-sectional datasets. 

A DL method based on a convolutional neural network (CNN) 

is employed for the reconstruction of the flame cross- and 

longitudinal sections. The CNN parameters are optimized 

through a trial-and-error approach as well as simulation. The 

CNN is constructed using a machine learning (ML) hardware 

accelerator i.e., a tensor processing unit to perform faster 

reconstruction. The proposed model is evaluated using the 2-D 

flame images obtained on a lab-scale gas-fired test rig under 

different operation conditions. Results obtained from the 

experiments suggest that the proposed strategy can accurately 

and faster reconstruct the flame cross- and longitudinal sections. 

Keywords—flame, tomographic imaging, deep learning, 3-D 

reconstruction 

I. INTRODUCTION 

 Due to increasingly tighter government regulations, the 
power generation sector and other industries with energy-
intensive processes are required to maximize combustion 
efficiency and reduce pollutant emissions in their combustion 
systems (such as boilers and gas turbines). Therefore, 
combustion monitoring and diagnosis play a vital role in 
controlling and optimizing such combustion processes [1]. A 
flame, as the central reaction zone of the combustion process, 
has a number of characteristic parameters such as size, shape, 
brightness, uniformity, temperature and oscillation frequency 
[2]. The monitoring and characterization of these parameters 
have become increasingly important for an in-depth 
understanding of the combustion process. With the advances 
in digital imaging and computing technology, digital imaging-
based volumetric tomography (VT) techniques have attracted 
great attention in combustion research due to their unique 
features including three-dimensional (3-D) visualization, non-
intrusiveness, relatively simple system set-up and easy 
implementation, making them suitable for the spatial and 
temporal monitoring and characterization on practical 
combustion systems [3, 4]. Conventional iterative techniques 
such as the Algebraic Reconstruction Technique (ART) [5] 
and the Simultaneous ART (SART) [6] were used 
successfully in the 3-D reconstruction of flames. However, 
these techniques have limitations such as high computational 
cost and offline reconstruction. 

 In recent years, the 3-D reconstruction of burner flames 
through Deep Learning (DL) has increasingly attracted the 

interest of combustion researchers and engineers. It has 
demonstrated an impressive performance in terms of 
reconstruction accuracy and computational efficiency 
compared with the conventional 3-D reconstruction 
approaches [7, 8, 9]. The widely used DL models are the 
Convolutional Neural Networks (CNNs) which have been 
applied in various tomographic applications including 
ultrasonic, magnetic resonance and X-ray computed 
tomography (CT) [10-12]. For instance, Ying, et al. [7] 
developed a CNN-based tomography system using 12 color 
Charge-Coupled Device (CCD) cameras for rapid 3-D flame 
chemiluminescence reconstruction. Huang, et al. [8] designed 
a hybrid model utilizing a CNN and Long Short-Term 
Memory (LSTM) model for reconstructing 3-D flame 
structures indirectly from 2-D projections without explicitly 
tomographic reconstruction. Wang, et al. [9] performed the 3-
D reconstruction of turbulent flames based on the CNN and 
recurrent neural network models. To solve the inversion 
problem in the CT system, Huang, et al. [13] proposed a CNN 
and proper orthogonal decomposition (POD) based solution 
for the flame reconstruction. Cai, et al. [14] show the 
feasibility of using Transfer Learning (TL) for the VT flame 
reconstruction, where a CNN is implemented using both the 
TL and semi-supervised learning techniques. The above-
mentioned studies demonstrate that the DL techniques can be 
used for the 3-D reconstruction of flames with a similar level 
of accuracy as conventional tomographic techniques. 
However, whilst the DL approaches have proven promising 
for 3-D flame reconstruction, they rely on a large amount of 
experimental data, which can sometimes be challenging to 
obtain. 

 In addition, the performance of DL models in real-time 

measurements or online monitoring of burner flames can be 

improved by machine learning (ML) hardware accelerators. 

This provides significant performance, energy efficiency, and 

cost-effectiveness advantages. Hardware accelerators for ML 

are specifically designed to handle heavy computational 

demands. Multiple cores or specialized units enable them to 

perform parallel computations more efficiently than central 

processing units (CPUs). Using parallelism, larger datasets 

and more complex models can be trained and inferred faster. 

In comparison to CPUs, ML hardware accelerators deliver 

high performance while using less power. Energy efficiency 

is especially beneficial when ML workloads are deployed in 

resource-constrained environments, such as mobile devices or 

edge computing devices. The use of ML hardware 

accelerators such as tensor processing units (TPUs) [15] is 

often more cost-effective than scaling a CPU-based 

infrastructure. ML hardware accelerators can deliver superior 

performance at a lower price, making them an appealing 

option for organizations and researchers. Though various DL-

based 3-D flame reconstruction applications have been 



 

 

studied, the majority of these have concentrated on CPU and 

GPU-based implementations.  

In this study, a DL-based tomographic imaging technique 
along with an ML hardware accelerator is proposed to 
reconstruct 3-D flames cross- and longitudinal sections. A 
tomographic imaging system is used to capture flame images 
under different combustion operation conditions. Data 
augmentation using a morphological transformation operator 
is further used to increase the data availability for the proposed 
technique. The ground truth data is generated using the 
traditional SART. The model construction is performed on a 
TPU, an ML hardware accelerator, for an accelerated 
reconstruction process. The flame reconstruction results 
obtained from the proposed model are discussed and 
presented.  

II. METHODOLOGY 

Fig. 1 shows the technical strategy of the proposed DL-
based 3-D flame reconstruction. A CNN is constructed based 
on 2-D flame images which are obtained using a tomographic 
imaging system from different directions around the flame. A 
SART algorithm is applied to generate ground truth cross-
sectional data using the 2-D flame images. The CNN (Fig. 2) 
consists of seven 2-D convolutional layers (Conv2D), each 
having a linear activation function. This is chosen based on a 
trial-and-error method for achieving the best performance of 
the model. The output layer has a flattened layer and a dense 
layer. Other hyperparameters such as learning rate and batch 
size are determined through simulations. The CNN is trained 
using the 2-D flame images and the ground truth data. The 
trained model is then applied to reconstruct the flame's cross- 
and longitudinal sections. 

 

Fig. 1. Technical strategy of the proposed DL-based 3-D flame 

reconstruction.  

 
Fig. 2. The architecture of the CNN model. 

In this study, the CNN is constructed based on the 

Conv2D layers using Keras API (application programming 

interface) [16]. The Conv2D layer determines features of the 

input image through a kernel and produces an output feature 

map [i.e., indicates whether the learned features are presented 

in the input image]. This procedure can be repeated by 

applying multiple kernels to produce various output feature 

maps where each feature map represents a different 

characteristic of the input image. The Conv2D layer uses 

important hyperparameters such as the number of kernels, 

kernel size and stride and these parameters can be tuned 

during the CNN training process. 

In the Keras API, the first hyperparameter to be set for the 
Conv2D layer is the number of convolution kernels. Each 
kernel represents a different set of features in the output 
feature map. In this study, the first Conv2D layer has the 
number of kernels of 8; the second and third Conv2D layers, 
16; the fourth and fifth Conv2D layers, 32; and the last two 
Conv2D layers (i.e., sixth and seventh), 64. The kernel size 
specifies the height and width of each Conv2D window. The 
common kernel sizes are (1×1), (3×3), (5×5) and (7×7). In 
this study, the kernel size of (3×3) is chosen as it is considered 
the best practice in the field [17]. The stride specifies the step 
size of the convolution taken along the x and y axes of the 
input data. The stride value is set to (1, 1) to ensure that the 
convolutional kernel is moved one pixel at a time from the 
left to the right of the input data. This process is repeated until 
the convolutional kernel reaches the far-right border of the 
data. The kernel is then shifted to one pixel down and re-
restart the process. In this way, the convolution process is 
completed for the whole input data. Padding is another 
important parameter which has two types, i.e., valid and same 
for the Conv2D layers. The “same” type is used in this study 
to ensure that padding is applied in such a way that the output 
feature map has the same spatial dimensions as the input 
image. This also ensures that the kernel is applied to all the 
pixels of the input images. In addition, three max-pooling 
layers are employed between the Conv2D layers to reduce the 
spatial size of the feature map.  

The CNN was trained on Google Colab [18] on a TPU. 

The Google Colab is a cloud computing platform, that can 

access computing resources such as CPUs, GPUs and TPUs, 

allowing developers to write and execute Python code 

through a web browser by using a hosted Jupyter Notebook 

service. The TPU is Google's custom-developed Application 

Specific Integrated Circuit (ASIC) which uses a math library 

called TensorFlow framework, enabling it to accelerate 

machine learning workloads, particularly CNN modelling. A 

detailed description of the configuration and setup of the TPU 

can be found elsewhere [15] [19]. 

III. DATA PREPARATION AND MODEL CONSTRUCTION 

A. Data Preparation 

2-D images of the flame were obtained using a 3-D flame 

tomographic imaging system from eight different directions 

around a gas-fired Bunsen-type burner under six different 

operation conditions. A detailed description of the imaging 

system can be found in [20]. Fig. 3 shows the example images 

of the flame. The dimensions of each image projection dataset 

are (8×145×90) where 8 is the number of projections 

(145×90) and the size of each projection (i.e., 2-D flame 

image). For each operation condition, a total of 100 samples 

were used for training and testing the CNN, where ten 

samples were original, i.e., without altering, and 90 samples 

were generated using the data augmentation technique as 

described in the next section.  
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B. Data Augmentation 

Due to the data availability and accessibility, additional 
flame projection datasets need to be generated to train the 
CNN effectively. This is achieved through a morphological 
transformation over the ten original 2-D flame images. These 
samples were then added to the original 2-D images to ensure 
that the dataset contained images with different shapes and 
structures.   

 

 

Fig. 3 Example flame images taken from eight different directions  

using the tomographic imaging system [20]. 

TABLE I.  FLAME SAMPLES USED IN DATASET PREPARATION 

Condition 
Fuel flow 

rate 

(l/min) 

No. of 

original 

images 

No. of 

transformed 

images 

Total 

number 

of images 

1 0.2 10 90 100 

2 0.3 10 90 100 

3 0.4 10 90 100 

4 0.5 10 90 100 

5 0.6 10 90 100 

6 0.7 10 90 100 

 

The morphological transformation operator essentially 

changes the geometric and luminous appearance of the 

original flame images without losing their main 

characteristics. To obtain a wide range of images, random 

values for kernel and iteration were used in the 

transformation. The output of the operation is a set of 

projection images which are similar to the original input 

images. Fig. 4 shows the samples of transformed flame 

images. These images are similar in terms of their structural 

similarity index measure (SSIM) values (Image A: 0.92, 

Image B: 0.62 and Image C: 0.83). Using this approach, a 

total of 100 projection samples (which includes ten original 

flame samples) were generated for each condition as shown 

in Table I, making a total of 600 samples available for 

training, testing and validating the CNN (Fig. 2). 

 

 

Fig.4 Data augmentation for additional dataset generation. 

C. Ground Truth 

A total of 600 ground truth data were generated, which 
are a collection of cross-sectional slices of the reconstructed 
flame using the SART. Fig. 5 illustrates typical cross-
sectional slices generated for Condition 6. The dimension of 
each ground truth dataset is (145, 90, 90), where 145 is the 
number of slices and (90, 90) is the dimensions of each 2-D 
image.  

D. Model Construction 

To construct the CNN, the dataset was split into training 
(60%), validation (20%), and testing (20%) sub-datasets. 
Before the training, the training dataset was shuffled to mix 
up the samples and the 2-D projection data. The dimensions 
of the training dataset were reduced to (8×25×25) and the 
ground truth data to (145×45×40). This was due to the limited 
availability of computation resources. The model is initially 
trained using different values (i.e., the number of 
convolutional layers, learning rate and batch size) and 
iterations to determine the optimum hyperparameters. The 
model was implemented in Python using Keras under the 
TensorFlow framework. It was trained using 1000 epochs as 
the training and validation losses did not reduce further after 
this value (i.e., the model reached a steady state). A learning 
rate of 0.001 and a batch size of 16 were used during the 
training process. It took two hours to train the model on the 
TPU ML hardware accelerator.  

 

Fig.5 Example of the ground truth (i.e., flame cross-sectional data) 

generated using the SART. 

IV. RESULTS AND DISCUSSION 

A. 3-D Reconstruction of Flame Sections 

Fig. 6 illustrates the grey-level reconstruction of the flame 
cross- and longitudinal sections achieved using the proposed 
model for Condition 6 (Table I). To evaluate the quality of the 
reconstruction, a total of 145 slices of flame were used under 
Condition 6. An average SSIM was found to be 0.77±0.07, 
which suggests that the ground truth images and reconstructed 
slices have a high degree of similarity. An average Root Mean 
Squared Error (RMSE) is also found to be 9.7e-04. In addition, 
the peak signal-to-noise ratio (PSNR) value is 60.9 ± 2.87, 

0 22.5 45 67.5

90 112.5 135 157.5

2-D image of the 
flame under 
Condition 6

Image A              Image B            Image C



 

 

suggesting that the reconstruction results have high accuracy 
and low variability across the sample sets. It is demonstrated 
that the proposed DL model can perform the online 
reconstruction of the cross- and longitudinal sections of the 
flames under various combustion conditions. 

B. Computational Efficiency 

To investigate the computational efficiency, the flame 
reconstruction as given in section IV was performed using 
both the TPU and CPU on the Colab platform. The flame 
reconstruction using other models was also conducted. The 
computational times of the reconstruction are given in Table 
II. It can be seen that the reconstruction time using the TPU is 
77% faster than that of the CPU. 

It is also found that the proposed strategy has faster 
reconstruction compared with the conventional Multiplicative 
ART (MART) and ART on a CPU-based platform [7]. 
However, it is difficult to compare with the results from other 
studies since the flame structure, the hardware platform, code 
optimization, and model architecture differ from one to 
another. Further research is needed for fair and effective 
comparison among different models on different platforms. 

 
(a) Cross-sections at different flame heights (along the z-axis) as shown in 

the flame image at left. Note: the cross-section numbers are arbitrary.  

 

 

(b) Longitudinal sections at different flame depths (along the x-axis). 0: the 

longitudinal section at the burner axis; -2 and -4: longitudinal sections 

back-off the burner axis; 2 and 4: sections forward the burner axis. 

Fig. 6 Grey-level distributions of flame cross- and longitudinal-sections. 

TABLE II.  COMPARISON OF FLAME RECONSTRUCTION TIME 

Reconstruction 

method 

Hardware  

platform 

Reconstruction  

time (s) 

CNN 
[Proposed] 

TPU 0.24 

CPU [Intel(R) Xeon 

(R), 2.30 GHz] 

1.07 

CNN [7] CPU [Intel Core i7-

8750H, 2.20 GHz] 

1.28 

MART [7] 143.40 

ART [7] 170.25 

 

V. CONCLUSION 

A deep learning and tomographic imaging-based 
technique incorporated with a machine learning hardware 
accelerator has been proposed for the 3-D reconstruction of 
burner flames. 2-D images of the gas-fired flame from eight 
different directions around the burner are obtained using a 3-
D flame tomography system under six different operation 
conditions. A morphological transformation has been 
performed to generate complete flame datasets based on the 
original 2-D flame images. A convolutional neural network 
has been constructed, where the 2-D flame images are used as 
input, and flames cross- and longitudinal sections derived 
from the SART algorithm serve as ground truth data. The 
experimental results have demonstrated that reconstructed 
flame slices (i.e., cross- and longitudinal sections) and the 
ground truth data have high similarity. A comparative study 
has shown that the proposed CNN has a faster reconstruction 
time compared with other iterative methods. Further work will 
focus on experimenting with more flame conditions and 
effectively comparing reconstruction times observed in other 
studies.  
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