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Abstract

Individuals developing stroke have varying clinical characteristics, demographic, and bio-

chemical profiles. This heterogeneity in phenotypic characteristics can impact on cardiovas-

cular disease (CVD) morbidity and mortality outcomes. This study uses a novel clustering

approach to stratify individuals with incident stroke into phenotypic clusters and evaluates

the differential burden of recurrent stroke and other cardiovascular outcomes. We used

linked clinical data from primary care, hospitalisations, and death records in the UK. A data-

driven clustering analysis (kamila algorithm) was used in 48,114 patients aged� 18 years

with incident stroke, from 1-Jan-1998 to 31-Dec-2017 and no prior history of serious vascu-

lar events. Cox proportional hazards regression was used to estimate hazard ratios (HRs)

for subsequent adverse outcomes, for each of the generated clusters. Adverse outcomes

included coronary heart disease (CHD), recurrent stroke, peripheral vascular disease

(PVD), heart failure, CVD-related and all-cause mortality. Four distinct phenotypes with

varying underlying clinical characteristics were identified in patients with incident stroke.

Compared with cluster 1 (n = 5,201, 10.8%), the risk of composite recurrent stroke and

CVD-related mortality was higher in the other 3 clusters (cluster 2 [n = 18,655, 38.8%]: haz-

ard ratio [HR], 1.07; 95% CI, 1.02–1.12; cluster 3 [n = 10,244, 21.3%]: HR, 1.20; 95% CI,

1.14–1.26; and cluster 4 [n = 14,014, 29.1%]: HR, 1.44; 95% CI: 1.37–1.50). Similar trends

in risk were observed for composite recurrent stroke and all-cause mortality outcome, and
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subsequent recurrent stroke outcome. However, results were not consistent for subsequent

risk in CHD, PVD, heart failure, CVD-related mortality, and all-cause mortality. In this proof

of principle study, we demonstrated how a heterogenous population of patients with incident

stroke can be stratified into four relatively homogenous phenotypes with differential risk of

recurrent and major cardiovascular outcomes. This offers an opportunity to revisit the strati-

fication of care for patients with incident stroke to improve patient outcomes.

Author summary

Using an unsupervised machine learning cluster analysis approach, adult patients with

incident stroke were grouped into four clinically meaningful phenotypic clusters based on

their demographic, biochemical, comorbidities, and prescribed medication profiles at the

time of incident stroke. The findings of this study highlight the significant heterogeneity

that exists within patients with incident stroke with respect to subsequent cardiovascular

morbidity and mortality outcomes. This offers an opportunity to revisit the stratification

of care for patients with incident stroke to improve patient outcomes and highlights the

potential to target modifiable characteristics in clusters for more targeted preventive

intervention.

Introduction

Stroke is a leading cause of death and disability globally with a substantial economic cost due

to treatment and post-stroke care [1]. Patients at time of incident stroke have varied clinical

characteristics, demographics, and biochemical profiles. This heterogeneity in characteristics

at time of incident stroke impacts on cardiovascular morbidity and mortality outcomes [2].

Phenotyping (subgrouping) people after incident stroke, in terms of the risk of various cardio-

vascular outcomes, could provide individuals with the poorest prognosis better care. Intensive

secondary prevention strategies including the use of novel medications such as proprotein

convertase subtilisin/kexin type 9 (PCSK9) inhibitors and colchicine in patients at very high

risk of adverse cardiovascular morbidity and mortality outcomes.

Cluster analysis, a hypothesis-free unsupervised machine learning data-driven approach,

has been widely used to analyse clinical data to identify new phenotypic subgroups of complex

and heterogeneous diseases including obstructive sleep apnoea [3], asthma [4,5], chronic

obstructive pulmonary disease, chronic heart failure [6], dilated cardiomyopathy [7], sepsis

[8], Parkinson’s disease [9], breast cancer [10], and diabetes [11]. This approach does not

include outcome data, and may be less biased in its results, especially when using retrospec-

tively collected data. Clustering of clinical data may, therefore, be helpful in identifying sub-

groups of patients with incident stroke and generating new hypotheses. Efforts to determine

such phenotypic groups in patients with incident stroke remain limited.

Using a large population-based cohort of adult patients with incident stroke, the objectives

of this study are: (i) to identify patterns in linked primary and secondary clinical data and clus-

ter patients based on phenotypic similarities; (ii) to assess the association between phenotypic

clusters and subsequent recurrent stroke or CVD-related mortality, recurrent stroke or all-

cause mortality, coronary heart disease (CHD), recurrent stroke, peripheral vascular disease

(PVD), heart failure, CVD-related mortality, and all-cause mortality.
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Methods

Study design and data source

This prospective population-based cohort study used the UK Clinical Practice Research Data-

link (CPRD) GOLD database of anonymised longitudinal primary care electronic health rec-

ords [12], linked to secondary care hospitalisation data (Hospital Episode Statistics [HES])

[13], national mortality data (Office for National Statistics [ONS]) [14], and social deprivation

data (Index of Multiple Deprivation (IMD) 2015) [15]. Patients included in the CPRD GOLD

database, from a network of general practices across the UK, are representative of the UK gen-

eral population in terms of sex, age, and ethnicity [12].

Study population

We identified a cohort of patients with incident non-fatal stroke in either primary care

(CPRD GOLD) or secondary care (HES) between 1 January 1998 and 31 December 2017.

Details about this cohort were previously reported [16]. Patients with a prior record of coro-

nary heart disease (CHD), peripheral vascular disease (PVD), or heart failure before inci-

dent stroke event were excluded. Patients were followed from the date of incident stroke

diagnosis until they developed a major adverse cardiovascular event (MACE), died, ceased

contributing data, or last data collection date of the practice. The study flow diagram is

shown in Fig 1.

Fig 1. Study flow diagram.

https://doi.org/10.1371/journal.pdig.0000334.g001

PLOS DIGITAL HEALTH Stroke phenotypic clusters

PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0000334 September 13, 2023 3 / 16

https://doi.org/10.1371/journal.pdig.0000334.g001
https://doi.org/10.1371/journal.pdig.0000334


Outcomes

The primary outcome was a composite of recurrent stroke or CVD-related mortality event

recorded after incident stroke from across the linked data sources (CPRD, HES or ONS regis-

try). The secondary outcomes included: CHD, recurrent stroke, PVD, heart failure, CVD-

related mortality, all-cause mortality, and the composite of recurrent stroke or all-cause

mortality.

Subsequent outcomes within 30 days were considered to be representing or relating to the

incident stroke event [16]. Analyses were, therefore, restricted to patients with subsequent out-

comes occurring after 30 days of incident stroke.

Potential candidate variables for phenotyping

Based on availability in the electronic health records and established association with CVD,

336 candidate variables were selected. These included demographic data, vital signs, biochemi-

cal parameters, comorbid conditions, and prescribed medications (S1 Table). For vital signs

and biochemical test results, the most recent values/records within 24 months before incident

stroke were extracted. A prescription within 12 months before incident stroke was considered

as a medication prescribed. All comorbid conditions were defined based on the latest record of

a comorbid condition any time before incident stroke. All code lists used have been published

and available for download [17,18].

Data processing

The variable distributions and missingness were first assessed. Multiple imputation by chained

equations was used to account for missing data (S1 Fig, S2 Table). Ten imputed datasets were

generated, using all available covariates and all the outcomes, although outcomes were not

imputed [19,20]. The imputed datasets were pooled into a single dataset using Rubin’s rules

[21]. A high number of dimensions from a dataset with many variables/features is associated

with a loss of meaningful differentiation between similar and dissimilar individuals–the ‘curse

of dimensionality’ [22]. To improve the cluster analysis process and performance, feature

selection was carried out to reduce collinearity, conditional dependence and noise contribut-

ing to increasing the variance. Feature selection was based on two (2) widely used data-driven

feature selection methods (Boruta [23] and Least Absolute Shrinkage and Selection Operator

(Lasso) regression [24]–S2 Fig) and clinical expert consensus. An expert group of clinicians

from both primary (Consultant General Practitioners–NQ, JK) and secondary care (Stroke

Medicine Consultant/Specialist–GN, GG) were independently consulted to attain consensus

on which variables to select for the cluster analysis. Clinical expert consensus was defined as a

75% (3 out of 4) agreement among the clinical experts on each variable. 49 variables were rated

important by the clinical experts and at least 1 of the 2 data-driven methods–S1 Table. After

evaluating correlation among the 49 selected variables using mixedCor and Lares functions in

R for mixed-type data (S3 Fig & S4 Fig), we excluded 10 highly correlated variables based on

clinical judgement/importance. The remaining 39 variables, Box 1, were used for the cluster

analysis.

Phenotypic clustering

The prediction strength method by Tibshirani and Walther, 2015 [25] in the kamila function

and the Elbow method were used to select the optimal number of clusters–S5 Fig. The kamila
algorithm for mixed data clustering (S1 Text) was implemented to identify distinct patient

phenotypic clusters. To ensure robustness of the clusters identified, 1,000 initialisations (that
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is, random starting points) were carried out. Plot of the clusters with the principal component

analysis (PCA) dimensions was generated (S6 Fig).

Using the h2o package (http://www.h2o.ai), a gradient boosting model was applied to iden-

tify as well as rank the key covariates (candidate variables) that predict each of the identified

phenotypic clusters. The respective cluster groupings were coded as 1 –belonging to cluster or

0 –belonging to other clusters. SHAP (SHapley Additive exPlanations) was used to assess the

discriminative influence of the variables for each of the identified clusters [26].

Statistical analysis

For each cluster descriptive characteristics were provided, reporting proportion (%) for cate-

gorical variables and mean (SD) or median (IQR) for continuous variables. Kruskal-Wallis

and chi-squared tests were used to compare across clusters, for continuous and categorical

data, respectively.

The association between phenotypic clusters and adverse cardiovascular morbidity and

mortality outcomes were assessed using Cox proportional hazards regression model. The haz-

ard ratio (HR) for each phenotypic group is presented with 95% confidence intervals (CI) and

corresponding p-values. Cumulative incidence plots were derived and differences between

phenotypic groups assessed by the log-rank test. All statistical analyses were performed using

Stata SE version 17 (StataCorp LP) and R version 4.1.0. An alpha level of 0.05 was used.

Ethics approval and consent to participate

Ethical approval for this study was obtained from the Independent Scientific Advisory Com-

mittee (ISAC)–study protocol number 19_023R. De-identified (anonymised) patient data was

obtained from the CPRD hence this study was exempt from obtaining informed consent from

patients.

Results

Clinical characteristics among phenotypic clusters

We identified 68,642 patients aged�18 years old with any incident non-fatal stroke event

between 1998 and 2017. A total of 20,528 (29.9%) patients with subsequent clinical outcomes

Box 1. Phenotypic domains and phenotypic variables used for
cluster analysis

Phenotypic domain Phenotypic variables

Demographics Age at incident stroke, sex, incident stroke sub-type, ethnicity, smoking status

Physical

characteristics

Body mass index, diastolic and systolic blood pressures, pulse

Biochemical tests C-reactive protein, glomerular filtration rate, haemoglobin, glycated haemoglobin, HDL

cholesterol, LDL cholesterol, triglyceride

Comorbid

conditions

Acute kidney injury, alcohol misuse, arrhythmia, cancer (composite), dementia, depression,

diabetes mellitus (DM), DM with complications, diabetic ophthalmic complications,

dyslipidaemia, hypertension, non-rheumatic aortic valve disorder, obesity, renal disease,

severe mental illness, transient ischaemic attack

Prescribed

medications

Anticoagulant, antidepressant, antidiabetic, antihypertensive, antiplatelet, diuretic, inotrope,

loop diuretic, statin potency, thiazide diuretic

https://doi.org/10.1371/journal.pdig.0000334.t001
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occurring within 30 days of incident stroke event were excluded, as these outcomes were con-

sidered to be related to the incident stroke event [16]. Cluster analysis was performed in the

remaining 48,114 patients. Four phenotypic clusters with significant differences in clinical

characteristics were identified. The identified clusters were numbered from 1 to 4 according to

the ascendent overall incidence of subsequent composite outcome of recurrent stroke or

CVD-related mortality, the primary outcome. Table 1 describes and compares the clinical

characteristics among the phenotypic clusters.

The plots of the clusters are shown with the principal component analysis (PCA) dimen-

sions in S6 Fig. The cluster profiles are summarised in Box 2.

Variable importance for clusters

The supervised gradient boosting model to identify key covariates (candidate variables) that

predict the respective phenotypic cluster had excellent prediction accuracy–area under the

receiver operative curve (AUC) of 0.985, 0.982, 0.974, and 0.970 for clusters 1, 2, 3 and 4,

respectively. The most common variables for predicting the respective phenotypic clusters

were age at incident stroke, blood pressure, hypertension, LDL cholesterol, and potency of pre-

scribed statin—Fig 2.

Association with subsequent clinical outcomes

During the median follow-up time of 12.60 years (IQR, 7.60–16.97 years), there was a total of

24,588 (51.1%) composite recurrent stroke or CVD-related mortality outcome events. The

occurrence of recurrent stroke + CVD-related mortality was different across the 4 phenotypic

clusters–cluster 1 had the lowest incidence rate (15.13 per 100 person-years; 95% CI, 14.54–

15.74), while cluster 4 had the highest incidence rate (23.17 per 100 person-years, 95% CI:

22.67–23.69). The risk of subsequent recurrent stroke + CVD-related mortality was signifi-

cantly increased in cluster 2 (hazard ratio (HR), 1.07; 95% CI: 1.02–1.12); cluster 3 (HR, 1.20;

95% CI: 1.14–1.26), and cluster 4 (HR, 1.29; 95% CI: 1.26–1.33), when compared with cluster

1. Similar incidence rate and hazard ratio trends were observed for subsequent recurrent

stroke + all-cause mortality outcome (cluster 2: HR, 1.07; 95% CI, 1.03–1.12; cluster 3: HR,

1.32, 95% CI, 1.26–1.37; cluster 4: HR, 1.54; 95% CI: 1.48–1.60) and recurrent stroke outcome

Box 2. Summary of cluster profiles

Clusters Number (%) Characteristic feature(s)

Cluster

1

5,201

(10.8%)

Median age of 68 years (IQR 60–76), with a high proportion of patients who smoke or

have diagnosed alcohol problems. Predominantly higher prevalence of CHD-related

comorbidities/risk factors at time of incident stroke–high BMI (overweight/obese),

diabetes, dyslipidaemia, hypertension, and family history of CVD. Higher proportion of

antidiabetic and antihypertensive prescriptions.

Cluster

2

18,655

(38.8%)

Median age of 67 years (IQR 56–76), with lower prevalence of comorbid conditions at

time of incident stroke. Higher proportion of smokers and patients with alcohol

problems. Lowest proportion of prescribed medications.

Cluster

3

10,244

(21.3%)

Median age of 79 years (IQR: 73–85) with the highest prevalence of multiple long-term

conditions at time of incident stroke–arrhythmia, cancer, chronic kidney disease,

dementia, dyslipidaemia, hypertension, renal disease, and transient ischaemic attach.

Cluster

4

14,014

(29.1%)

The oldest cohort (median age: 83 years, IQR: 77–88) and predominantly female (75.4%).

High prevalence of arrhythmia, dementia, and hypertension.

https://doi.org/10.1371/journal.pdig.0000334.t003
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Table 1. Characteristics of study population at time of incident stroke according to cluster membership (n = 48,114).

Characteristics Entire cohort 48,114 (100%) Cluster 1

5,201 (10.8%)

Cluster 2

18,655 (38.8%)

Cluster 3

10,244 (21.3%)

Cluster 4

14,014 (29.1%)

Follow-up in years, median (IQR) 12.60 (7.60–16.97) 13.63 (8.67–17.70) 12.97 (7.97–17.26) 13.74 (8.81–17.82) 10.80 (6.02–15.53)

Females 26,283 (54.6) 2,120 (40.8) 8,112 (43.5) 5,490 (53.6) 10,561 (75.4)

Age (years), mean (SD) 76.0 (65.0–83.0) 68.0 (60.0–76.0) 67.0 (56.0–76.0) 79.0 (73.0–85.0) 83.0 (77.0–88.0)

Incident stroke subtype

Haemorrhagic 3,336 (6.9) 216 (4.2) 1,809 (9.7) 484 (4.7) 827 (5.9)

Ischaemic 15,594 (32.4) 1,896 (36.5) 6,066 (32.5) 2,797 (27.3) 4,835 (34.5)

Stroke NOS 29,184 (60.7) 3,089 (59.4) 10,780 (57.8) 6,963 (68.0) 8,352 (59.6)

Ethnicity

Asian 611 (1.3) 157 (3.0) 243 (1.3) 150 (1.5) 61 (0.4)

Black 377 (0.8) 87 (1.7) 140 (0.8) 69 (0.7) 81 (0.6)

Mixed 73 (0.2) 12 (0.2) 35 (0.2) 13 (0.1) 13 (0.1)

Other 335 (0.7) 50 (1.0) 152 (0.8) 66 (0.6) 67 (0.5)

White 43,011 (89.4) 4,660 (89.6) 16,589 (88.9) 9,582 (93.5) 12,180 (86.9)

Unknown 3,707 (7.7) 235 (4.5) 1,496 (8.0) 364 (3.6) 1,612 (11.5)

Socioeconomic status

1 (Least deprived) 10,292 (21.4) 869 (16.7) 3,849 (20.6) 2,446 (23.9) 3,128 (22.3)

2 10,736 (22.3) 1,056 (20.3) 4,024 (21.6) 2,426 (23.7) 3,230 (23.0)

3 10,355 (21.5) 1,115 (21.4) 4,004 (21.5) 2,179 (21.3) 3,057 (21.8)

4 8,836 (18.4) 1,066 (20.5) 3,502 (18.8) 1,744 (17.0) 2,524 (18.0)

5 (Most deprived) 7,814 (16.2) 1,093 (21.0) 3,244 (17.4) 1,438 (14.0) 2,039 (14.5)

Unknown 81 (0.2) 2 (0.0) 32 (0.2) 11 (0.1) 36 (0.3)

Current smokers 8,357 (17.4) 1,247 (24.0) 4,791 (25.7) 1,054 (10.3) 1,265 (9.0)

Body mass index (kg/m2) 26.4 (25.0–28.0) 30.0 (27.4–34.2) 26.4 (25.2–27.6) 25.8 (24.2–27.6) 26.2 (25.0–27.4)

DBP (mmHg) 80.0 (74.0–84.0) 80.0 (76.0–89.0) 80.0 (76.0–82.7) 72.0 (68.0–80.0) 80.0 (78.0–88.0)

SBP (mmHg) 140.0 (130.0–148.0) 142.0 (132.0–155.0) 139.5 (130.0–144.0) 133.0 (122.0–140.0) 145.0 (139.6–160.0)

C-reactive protein 9.8 (6.3–14.7) 9.2 (6.0–14.8) 10.1 (6.6–14.6) 8.4 (5.3–13.9) 10.4 (7.0–15.4)

Glomerular filtration rate 67.2 (62.4–72.0) 69.0 (61.2–75.0) 68.0 (64.6–72.5) 65.3 (58.0–72.0) 66.4 (61.8–70.4)

Glycated haemoglobin 49.9 (46.7–53.4) 58.3 (53.0–66.4) 49.7 (47.0–52.4) 47.5 (44.3–51.0) 50.2 (47.4–53.3)

Haemoglobin 13.5 (12.9–14.2) 14.2 (13.3–15.0) 13.6 (13.2–14.3) 13.2 (12.3–14.1) 13.4 (12.7–13.9)

HDL cholesterol (mmol/L) 1.5 (1.3–1.6) 1.2 (1.0–1.3) 1.5 (1.3–1.6) 1.5 (1.3–1.7) 1.5 (1.4–1.7)

LDL cholesterol (mmol/L) 3.0 (2.6–3.3) 3.0 (2.3–3.5) 3.0 (2.8–3.3) 2.4 (1.9–2.8) 3.1 (2.9–3.4)

Total cholesterol (mmol/L) 5.1 (4.7–5.4) 5.1 (4.3–5.8) 5.1 (4.8–5.4) 4.5 (3.9–4.9) 5.3 (5.0–5.7)

Triglyceride (mmol/L) 1.4 (1.2–1.7) 2.1 (1.6–2.7) 1.4 (1.3–1.6) 1.2 (1.0–1.4) 1.5 (1.3–1.6)

Pulse 76.4 (73.9–79.0) 77.8 (74.9–80.8) 76.6 (74.4–78.9) 74.8 (71.8–77.7) 76.7 (74.4–79.3)

Acute kidney injury 218 (0.5) 47 (0.9) 44 (0.2) 84 (0.8) 43 (0.3)

Alcohol problem 1,345 (2.8) 217 (4.2) 779 (4.2) 221 (2.2) 128 (0.9)

Arrhythmia 4,575 (9.5) 362 (7.0) 569 (3.1) 1,955 (19.1) 1,689 (12.1)

Atrial fibrillation 4,210 (8.8) 325 (6.3) 496 (2.7) 1,838 (17.9) 1,551 (11.1)

Cancer 7,652 (15.9) 634 (12.2) 2,167 (11.6) 2,514 (24.5) 2,337 (16.7)

Chronic kidney disease 4,945 (10.3) 767 (14.8) 390 (2.1) 2,580 (25.2) 1,208 (8.6)

Dementia 2,489 (5.2) 80 (1.5) 647 (3.5) 775 (7.6) 987 (7.0)

Depression 9,147 (19.0) 1,327 (25.5) 3,589 (19.2) 1,800 (17.6) 2,431 (17.3)

Diabetes mellitus 5,494 (11.4) 2,702 (52.0) 392 (2.1) 1,985 (19.4) 415 (3.0)

Dyslipidaemia 4,845 (10.1) 1,154 (22.2) 927 (5.0) 2,128 (20.8) 636 (4.5)

Family history of CVD 8,817 (18.3) 1,240 (23.8) 3,229 (17.3) 2,278 (22.2) 2,070 (14.8)

Hypertension 22,447 (46.7) 3820 (73.4) 1723 (9.2) 7885 (77.0) 9019 (64.4)

(Continued)
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(cluster 2: HR, 1.10; 95% CI, 1.05–1.16; cluster 3: HR, 1.12, 95% CI, 1.06–1.18; cluster 4: HR,

1.25; 95% CI: 1.19–1.32).

Different trends in incidence rate and hazard ratios were observed, however, for subsequent

CHD, PVD, heart failure, CVD-related and all-cause mortality outcomes–Fig 3 and Table 2.

When compared with cluster 1, the risk of subsequent CHD events was significantly decreased

in the other 3 clusters (cluster 2: HR, 0.49; 95% CI: 0.44–0.55; cluster 3: HR, 0.64; 95% CI,

0.56–0.73; cluster 4: HR, 0.55; 95% CI, 0.49–0.63). A similar decreased risk in the other 3 clus-

ters when compared to cluster 1 was observed for risk of subsequent PVD.

For risk of subsequent heart failure, CVD-related mortality and all-cause mortality, cluster

2 had a significantly decreased risk when compared to cluster 1 while clusters 3 and 4 had a sig-

nificantly increased risk–Table 2. The occurrence of subsequent cardiovascular morbidity and

mortality outcomes across the different phenotypic clusters is presented as Kaplan Meier plots

in Fig 4.

Discussion

This population-based study exploring phenotypic characteristics of patients with incident

stroke using a data-driven-cluster analysis approach identified four clinically meaningful

patient clusters based on the phenotypic characteristics at time of incident stroke. There was a

varied relationship between the identified phenotypic clusters and subsequent risk of adverse

cardiovascular morbidity and mortality outcomes.

In our study, four distinct and clinically meaningful phenotypic clusters were identified.

Smoking, a strong independent modifiable risk factor for cardiovascular morbidity and mor-

tality outcomes [27], was most highly prevalent in clusters 1 and 2. Preventative strategy to

communicate the risks of smoking and the benefits of quitting to this cluster of patients could

be an effective means to promote smoking cessation and reduce risk for subsequent adverse

Table 1. (Continued)

Characteristics Entire cohort 48,114 (100%) Cluster 1

5,201 (10.8%)

Cluster 2

18,655 (38.8%)

Cluster 3

10,244 (21.3%)

Cluster 4

14,014 (29.1%)

Non-rheumatic aortic valve disorder 571 (1.2) 46 (0.9) 74 (0.4) 254 (2.5) 197 (1.4)

Renal disease 5,545 (11.5) 867 (16.7) 555 (3.0) 2,764 (27.0) 1,359 (9.7)

Severe mental illness 695 (1.4) 108 (2.1) 327 (1.8) 102 (1.0) 158 (1.1)

Transient ischaemic attack 12,373 (25.7) 1,326 (25.5) 3,345 (17.9) 4,881 (47.6) 2,821 (20.1)

Anti-arrhythmic 2,163 (4.5) 227 (4.4) 451 (2.4) 698 (6.8) 787 (5.6)

Anti-coagulant 2,807 (5.8) 286 (5.5) 486 (2.6) 1,225 (12.0) 810 (5.8)

Anti-depressant 11,212 (23.3) 1,508 (29.0) 3,965 (21.3) 2,412 (23.5) 3,327 (23.7)

Anti-diabetics 4,379 (9.1) 2,476 (47.6) 254 (1.4) 1,421 (13.9) 228 (1.6)

Anti-hypertensive 23,678 (49.2) 4,231 (81.3) 2,312 (12.4) 8,497 (82.9) 8,638 (61.6)

Anti-platelet 19,789 (41.1) 2,618 (50.3) 4,605 (24.7) 6,753 (65.9) 5,813 (41.5)

Diuretics 16,835 (35.0) 2,265 (43.5) 280 (1.5) 5,288 (51.6) 9,002 (64.2)

Inotropic 2,084 (4.3) 141 (2.7) 160 (0.9) 714 (7.0) 1,069 (7.6)

Statin

Low intensity 1,855 (3.9) 391 (7.5) 321 (1.7) 860 (8.4) 283 (2.0)

Moderate intensity 9,797 (20.4) 1,939 (37.3) 1,889 (10.1) 5,177 (50.5) 792 (5.7)

High intensity 2,240 (4.7) 713 (13.7) 335 (1.8) 1,062 (10.4) 130 (0.9)

CVD: cardiovascular disease; DBP: diastolic blood pressure; HDL: high density lipoprotein; LDL: low density lipoprotein; n: frequency/numbers; SBP: systolic blood

pressure; SD: standard deviation; %: percent.

https://doi.org/10.1371/journal.pdig.0000334.t002
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events [28]. With the exception of clusters 2, the 3 other clusters included had high prevalence

of multiple long-term conditions as well as CVD risk factors at time of incident stroke. Patients

with incident stroke have been shown to commonly have pre-existing long-term conditions

[29]. To optimally manage the possible atherogenic effect of these comorbid condition to

reduce risk of subsequent cardiovascular morbidity and mortality outcomes, both non-phar-

macological (that is, lifestyle modification [30,31]) and pharmacological (antihypertensives for

Fig 2. Plot showing the clinical parameters which are the core of each phenotypic cluster. aki: acute kidney injury; dbp: diastolic blood pressure;

dm_eye_comp: diabetic ophthalmic complications; sbp: systolic blood pressure; gfr: glomerular filtration rate; hb: haemoglobin; hdl: high-density lipoprotein

cholesterol; ldl: low-density lipoprotein cholesterol; hba1c: glycated haemoglobin; nonRH_aortic: non-rheumatic aortic valve disorder; smi: severe mental

illness; tg: triglyceride; tia: transient ischaemic attack. SHAP summary plot combines feature/variable importance with feature effects. Each point on the

summary plot is a Shapley value for an individual. The position on the y-axis is determined by the feature and on the x-axis by the Shapley value. The colour

represents the value from low to high. The features are ordered according to importance.

https://doi.org/10.1371/journal.pdig.0000334.g002
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blood pressure management [32]; lipid-lowering medications such as statins for cholesterol

management [33]; antidiabetics for blood sugar control [30]; and antiplatelets/anticoagulants

to manage arrhythmia [34]) strategies need to be prioritised in line with clinical guidelines

[35]. Frequent monitoring/reviews to ensure treatment targets are being met is important [36].

Age, a non-modifiable risk factor, was a key factor for the patient cluster membership. Among

older adults (typical of cluster 4), incidence of aortic disease, PVD and venous

Fig 3. Incidence rate for the subsequent adverse outcomes by the identified phenotypic clusters.

https://doi.org/10.1371/journal.pdig.0000334.g003
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thromboembolism increase as age-related alterations in vascular structure and function are

compounded by the longer exposure to CVD risk factors [37].

Clustering is a common approach used to analyse large datasets, to identify both the num-

ber of subgroups in the data and the attributes of each subgroup, as has been done in this

Table 2. Subsequent major adverse outcomes after incident stroke by phenotypic clusters.

Events Number Incidence rate (95% CI) per 100 PY Hazard ratio (95% CI)

Recurrent stroke + CVD-related mortality 24,588 18.53 (18.30–18.76)

Cluster 1 2,447 15.13 (14.54–15.74) Reference

Cluster 2 9,249 16.01 (15.68–16.33) 1.07 (1.02–1.12)

Cluster 3 4,980 20.23 (19.68–20.80) 1.20 (1.14–1.26)

Cluster 4 7,912 23.17 (22.67–23.69) 1.44 (1.37–1.50)

Recurrent stroke + all-cause mortality 33,891 23.78 (23.52–24.03)

Cluster 1 3,183 18.77 (18.13–19.43) Reference

Cluster 2 12,275 20.01 (19.66–20.37) 1.07 (1.03–1.12)

Cluster 3 7,121 26.70 (26.09–27.33) 1.32 (1.26–1.37)

Cluster 4 11,312 30.09 (29.54–30.65) 1.54 (1.48–1.60)

Coronary heart disease (All) 2119 1.09 (1.04–1.14)

Cluster 1 408 1.84 (1.67–2.02) Reference

Cluster 2 784 0.89 (0.83–0.95) 0.49 (0.44–0.55)

Cluster 3 419 1.22 (1.10–1.34) 0.64 (0.56–0.73)

Cluster 4 508 1.03 (0.94–1.12) 0.55 (0.49–0.63)

Recurrent stroke (All) 19,810 15.42 (15.21–15.63)

Cluster 1 2,075 13.09 (12.54–13.67) Reference

Cluster 2 8,053 14.28 (13.97–14.59) 1.10 (1.05–1.16)

Cluster 3 3,939 16.58 (16.07–17.11) 1.12 (1.06–1.18)

Cluster 4 5,743 17.69 (17.24–18.15) 1.25 (1.19–1.32)

Peripheral arterial disease (All) 529 0.27 (0.24–0.29)

Cluster 1 105 0.46 (0.38–0.55) Reference

Cluster 2 161 0.18 (0.15–0.21) 0.40 (0.31–0.51)

Cluster 3 118 0.34 (0.28–0.40) 0.70 (0.54–0.91)

Cluster 4 145 0.29 (0.24–0.34) 0.62 (0.48–0.79)

Heart failure (All) 1390 0.70 (0.67–0.74)

Cluster 1 172 0.75 (0.64–0.87) Reference

Cluster 2 295 0.33 (0.29–0.37) 0.44 (0.37–0.53)

Cluster 3 363 1.04 (0.94–1.15) 1.34 (1.12–1.61)

Cluster 4 560 1.12 (1.03–1.22) 1.48 (1.24–1.75)

Cardiovascular mortality (All) 4,778 2.34 (2.27–2.41)

Cluster 1 372 1.57 (1.42–1.74) Reference

Cluster 2 1,196 1.30 (1.22–1.37) 0.85 (0.75–0.95)

Cluster 3 1,041 2.89 (2.72–3.07) 1.69 (1.50–1.91)

Cluster 4 2,169 4.15 (3.98–4.33) 2.52 (2.25–2.81)

All-cause mortality (All) 14,081 6.58 (6.47–6.68)

Cluster 1 1,108 4.54 (4.28–4.81) Reference

Cluster 2 4,222 4.40 (4.27–4.54) 0.98 (0.92–1.05)

Cluster 3 3,182 8.35 (8.06–8.64) 1.76 (1.64–1.88)

Cluster 4 5,569 9.99 (9.73–10.26) 2.14 (2.01–2.29)

CI: confidence interval; PY: person year

https://doi.org/10.1371/journal.pdig.0000334.t004
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study. Data analysed in real applications including healthcare (from electronic health records)

are mostly characterised by a mix of continuous and categorial variables. More common

approaches that have been applied to mixed data include converting the variables to a single

data type by either coding the categorical variables as numbers or dummy coding the variables

and then applying standard distance methods such as k-means designed for continuous vari-

ables to the transformed data to achieve the clustering objective(s) [38,39]. Continuous vari-

ables have also been converted to categorical variables using interval-based bucketing [40,41].

Similarities that may have been observed in the original data may be lost when the data is

transformed in such ways [40]. Kamila clustering algorithm has, however, been shown to bet-

ter handle high imbalance between continuous and categorical data than any other method

[40,42]. From a computational perspective, when compared with other algorithms, the Kamila

algorithm offers the best performance and most time-efficient when dealing with large datasets

(in relation to both observations and variables) in the setting of heterogeneous data, as was the

situation in our study [40,42].

Strengths and limitations

To our knowledge, this is the first time that a data-driven cluster analysis aimed at identifying

stroke phenotypes in a well characterised large population-based cohort of adults with any

incident stroke. This allows us to cover a large range of stroke phenotypes. Most importantly,

we had a comprehensive linked database with a broad spectrum of clinical data with many of

these variables being explored in cluster analysis for the first time.

There are, however, limitations of this study worth considering. First and foremost, the

study was not meant to propose a new classification for stroke, because the clusters are likely

Fig 4. Kaplan-Meier plots for subsequent clinical outcomes stratified by phenotypic clusters. A: Recurrent stroke

and CVD-related mortality (log-rank p<0.0001); B: Recurrent stroke and all-cause mortality (log-rank p<0.0001); C:

Recurrent stroke (log-rank p<0.0001); D: Coronary heart disease (log-rank p<0.0001); E: Peripheral vascular disease

(log-rank p<0.0001); F: Heart failure (log-rank p<0.0001); G: Cardiovascular-related mortality (log-rank p<0.0001);

H: All-cause mortality (log-rank p<0.0001).

https://doi.org/10.1371/journal.pdig.0000334.g004
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to vary according to patient characteristics and available data. These results serve to under-

score the need for novel multidimensional stroke classification approaches for improving

patient care. Furthermore, they are aimed to generate hypotheses for future studies that will

integrate clinical and biological data in patients, with the goal of improving the care of patients

with stroke. With immense advancement in machine learning, cluster analysis can be per-

formed in a large number of ways [42,43]. However, the knowledge and experience of the rele-

vant experts remain the best judge in the interpretation of findings from cluster analysis,

hence the involvement of a diverse group of clinical specialists, clinical researchers, and data

experts in our study. The presence of missing data is a common occurrence in clinical research

using electronic health records collected as part of routine care. For example, laboratory tests

are typically requested only when considered necessary for a patient’s health condition. Simi-

larly, information on BMI or smoking status may not be consistently recorded, leading to

potential bias in patterns of data completeness. To address this issue, multiple imputation by

chained equations, as outlined in the methods section, was used to handle missing data in our

study, which is the preferred option under any missingness mechanism [19,20].

Implications

Cluster analysis is most suited to address the multidimensional complexity of disease condi-

tions with considerable heterogeneity such as stroke. Population-based cluster analysis could

provide further understanding of disease patterns. Additionally, patients could be phenotyped

and allocated to specific clusters that could be associated with different risks for various out-

comes. Different treatment strategies or interventions could be targeted at specific phenotypic

clusters, based available evidence on risk and possible response. Future clinic trial design could

also focus on high-risk clusters or focus on specific aspects within a cluster.

Conclusions

Using an unsupervised learning data-driven cluster analysis on a broad spectrum of baseline

clinical data of patients with incident stroke, we identified four phenotypic and clinically

meaningful clusters with respect to risk of subsequent major adverse outcomes. These findings

highlight the significant heterogeneity that exists within patients with incident stroke with

respect to subsequent adverse outcomes. This offers an opportunity to revisit the stratification

of care for patients with incident stroke to improve patient outcomes. Further exploration in

different patient cohorts and populations is needed.
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