
1. Introduction
When a tropical cyclone (TC) passes over the ocean, it extracts a considerable amount of heat out of the ocean for 
its development, cooling down the ocean surface (e.g., Cione & Uhlhorn, 2003; Emanuel et al., 2004; Price, 1981; 
Shay et al., 1992). Meanwhile, the strong winds associated with the TC inject a huge amount of momentum into 
the upper ocean, driving strong ocean currents (e.g., Fan et al., 2009; Jarosz et al., 2007; Sun et al., 2022). When 
the vertical shear in the ocean currents is large enough to overcome the vertical stratification set up by temperature 
and salinity differences, vigorous vertical mixing takes place and stirs the surface warm water with colder water 
in the subsurface ocean, further reducing sea surface temperature (SST) (e.g., Shay et al., 1992; Sun et al., 2021; 
Zhang et al., 2021; Zhu & Zhang, 2006). The surface ocean cooling generated by TCs has been well evidenced by 
satellite images of SST (e.g., Bender et al., 1993; Chen & Tang, 2012; Hart, 2011; Liu et al., 2020; Price, 1981; 
Yang & Tang, 2010). The produced surface cooling in turn can diminish the heat flow from the ocean to the TC, 
and thereby slow down the storm's intensification or cause it to decay (the so-called negative SST feedback) (e.g., 
Cione & Uhlhorn, 2003; Emanuel, 1999; Liu, Wei, et al., 2019; Mei et al., 2012; Mei, Lien, et al., 2015; Mei, Xie, 
et al., 2015; Mei & Pasquero, 2013; Palmen, 1948; Wang & Wu, 2004; Zhang et al., 2019; Zhu & Zhang, 2006). 
The cooling may also serve as a predictor for the accompanying changes in chlorophyll-a (Chl-a) concentrations 
in the surface ocean influenced by the TC wind pump effects (e.g., Chen & Tang, 2012; Cui et al., 2023; Liu 
et al., 2020; Zheng & Tang, 2007). Thus, substantial observational, modeling and theoretical efforts have been 
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devoted to improving our understanding of the processes involved in TC-ocean interaction and the contributions 
of those processes to TC-induced sea surface cooling (e.g., Balaguru et al., 2022; Huang et al., 2009; Liu, Wei, 
et  al.,  2019; Mei & Pasquero,  2012; Pasquero et  al.,  2021; Sriver & Huber,  2007; Sui et  al.,  2022; Vincent, 
Lengaigne, Vialard, et al., 2012; Vincent, Lengaigne, Madec, et al., 2012; Wang et al., 2016; Zhang et al., 2015).

The key factors that have been identified to affect the magnitude of the TC-induced sea surface cooling include 
both TC and ocean characteristics, such as TC intensity and translation speed, and pre-storm ocean mixed layer 
depth (MLD) and stratification below mixed layer (e.g., Balaguru et al., 2012; Huang et al., 2015; I. I. Lin, 2012; 
Lin et al., 2013; Mei et al., 2012; Mei & Pasquero, 2013; Zheng et al., 2008). The relative importance of these 
factors may differ significantly from location to location (e.g., Liu, Zhang, & Guan, 2019; Liu, Wei, et al., 2019; 
Vincent, Lengaigne, Madec, et al., 2012; Wang et al., 2016). For a specified basin or area, identifying the domi-
nant factors and quantifying their roles in TC-generated SST cooling can help improve the prediction of SST 
changes caused by future TCs.

With the development of artificial intelligence technology in recent years, several machine learning-based 
models have been proposed to predict TC-induced SST cooling (e.g., Jiang et al., 2018; Wei et al., 2017; Zhao 
et al., 2022). For example, Wei et al. (2017) introduced a neural network model to predict the TC-generated sea 
surface cooling, and showed that a neural network is more efficient than linear regression. Jiang et al. (2018) 
developed a deep learning-based algorithm to improve the stability of the prediction of TC-induced surface cool-
ing. While these studies have greatly advanced the application of machine learning in predicting TC-generated 
SST response, they focused primarily on the cooling generated by a limited number of TC cases. For instance, 
Jiang et al. (2018) focused on four cases (including Soulik, Neoguri, Halong, and Muifa) and considered only 
five predictors, that is, 10-m winds (U10 and V10), ocean temperature at 100-m depth, sea surface height (SSH), 
and SST. Recently, a long short-term memory (LSTM) neural network has been proposed to predict the SST after 
TC passage using long-term time series data. For instance, Shao et al. (2021) introduced a hybrid model that 
combines a LSTM model with a statistical method to forecast SST and SSH anomalies after TC passage in the 
South China Sea (SCS). Zhang et al. (2023) developed a multi-variate LSTM model using the same predictors 
as those used in Jiang et al. (2018) to predict TC-induced SST cooling in the northwest Pacific Ocean (NWP).

The above-mentioned studies open a new avenue for understanding and studying TC-induced SST cooling, and 
provide insights into the application of machine learning in predicting the cooling. However, those studies did not 
consider TC characteristics (e.g., intensity, translation speed, and size) that have been shown to strongly affect the 
TC-induced SST cooling. Furthermore, no studies have been devoted to predicting the temporal evolutions of the 
spatial structure of the TC-induced SST response and assessing the relative importance of the various factors  that 
have been identified to modulate the cooling.

In the present study, we aim to further research in this field and develop a machine learning-based model to predict 
the spatial structure and temporal evolution of the SST anomalies generated by TCs in the NWP, the basin where 
TCs are most active. We first construct the model using a random forest regressor and 12 variables related to TC 
characteristics and pre-storm ocean states. We show that the model can skillfully predict the spatial structure and 
temporal evolution of the TC-induced SST cooling for TCs of different intensity groups (e.g., the dependence of 
the cooling on TC intensity, strong asymmetry of the cooling with respect to TC track, and leftward movement 
of  the local maximum cooling with time after TC passage). We then build another model using the same machine 
learning method to quantify the relative importance of different predictors in determining the magnitude of the 
TC-induced maximum cooling. After describing the data and methods in Section 2, we present the results from 
the models built on machine learning in Section 3. Section 4 contains discussions and conclusions. For clarity, a 
list of key abbreviations and their meanings is given in Table S4 in Supporting Information S1.

2. Data and Methods
2.1. Data

We focus our work here on the NWP, which is defined as the region between equator and 30°N, 100°, and 
160°E (Figure 1a). The following datasets are used in this study. The best-track data for TCs were produced by 
the Japan Meteorological Agency (JMA) and obtained from the International Best Track Archive for Climate 
Stewardship (IBTrACS) archive (Knapp et al., 2010), which provides TC intensity, location, translation direction 
and speed, and the shortest radius of 30-kt winds or greater at 6-hr intervals. SST data are from the Tropical 
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Rainfall Measuring Mission (TRMM) Microwave Imager (Wentz et al., 2000), and have a spatial resolution of 
0.25° × 0.25° and a daily temporal resolution including ascending and descending orbit segments; to test the 
robustness of the results, we also use another satellite-derived SST data, microwave and infrared (MW_IR) which 
have a spatial resolution of 0.1° × 0.1° and daily temporal resolution (Reynolds et al., 2007). Daily altimeter 
satellite gridded sea level anomalies (SLA) are from the EU Copernicus Marine Environment Monitoring Service 
(CMEMS). They have a spatial resolution of 0.25° × 0.25°, and are estimated by Optimal Interpolation, merging 
the measurement from multiple altimeter missions available (e.g., Jason-1, Jason-2, Jason-3, Sentinel-3A, and 
HY-2). Monthly data of MLD and potential temperature are from the World Ocean Atlas (WOA) and have a 
spatial resolution of 0.25° × 0.25° (Boyer et al., 2019). Eastward current speed (U) and northward current speed 
(V) of the ocean are provided by the Daily Global Reanalysis Multi-Ensemble Product GREP reanalysis, which 
has 75 levels vertically (from 0 to 5,500 m) and a horizontal resolution of 0.25° × 0.25°. Because TRMM SST 
data are available starting from 1998 and U and V data are available only before 2018, we limit our work here 
over the period of 1998–2018.

2.2. Preprocessing

As described in Introduction, the magnitude of TC-induced SST cooling is primarily determined by TC character-
istics and pre-storm upper-ocean conditions (e.g., Lin et al., 2003a, 2003b; Mei et al., 2012; Mei & Pasquero, 2013; 
H. Zhang, 2023). Here we consider 12 predictors as input features for the model described in Section 2.3. Six of 
them are related to TC characteristics, including intensity (Vmax), translation speed (Vtrans), translation direction 
(Vdir), the shortest radius of 30-kt or greater (R30), TC-centered longitude (Lon), and TC-centered latitude (Lat). 
To apply the Saffir-Simpson hurricane wind scale, we convert the JMA TC wind speeds from 10-min mean 
values to 1-min mean values following Mei and Xie (2016) and using the Koba table (Hagiwara et al., 1990), and 
use the obtained 1-min mean values to represent TC intensity. The other six predictors are related to pre-storm 
upper-ocean state: mixed layer depth (𝐴𝐴 MLD ), SSH (𝐴𝐴 SSH ), SST (𝐴𝐴 SST ), ocean temperature at 75-m depth (𝐴𝐴 𝑇𝑇 75 ), 

Figure 1. Study area and distribution of data points in the training and validation sets during January 1998–December 
2018. (a) TC occurrence density, calculated as the number of TC occurrence during the entire study period within individual 
0.1° × 0.1° grids. (b) Histogram of the number of data points used in the training stage as a function of TC intensity. (c) 
Histogram of TC-induced SST anomalies on day 1 after TC passage in the training stage. Abbreviations: TS, tropical storm; 
H1–H2, category-1–2 hurricane; H3–H5, category-3–5 hurricane; and H1–H5, category-1–5 hurricane.
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vertical shear of zonal current speed (��Res ), and vertical shear of meridional current speed (� �Res ). They are 
obtained by removing the climatologically seasonal cycle and averaging in time during seven to four days prior 
to the TC passage.

2.3. Model Construction Using Random Forest Method

We employ the random forest method to build a model for the prediction of TC-generated SST response from 
3 days before TC passage to 14 days after the passage (referred to as day −3, day −2, …, and day 14, respec-
tively), using the above-mentioned 12 predictors (i.e., 𝐴𝐴 MLD , 𝐴𝐴 SSH , 𝐴𝐴 SST , 𝐴𝐴 𝑇𝑇 75 , ��Res , � �Res , Vmax, Vtrans, Vdir, 
R30, Lon, Lat). Random forest is currently one of the most widely used machine learning methods for prediction, 
and has been applied to oceanic and atmospheric research in recent years (e.g., Jergensen et al., 2020; Kumar 
et al., 2021; Rolnick et al., 2022) because of its good performance and high computational efficiency. The random 
forest method was developed within a bagging ensemble framework that combines a group of weak decision 
tree-based learners to construct a stronger prediction model (Breiman, 2001). During the training stage, each 
regression tree is fed with a subset of training data created by randomly sampling with replacement to construct 
a predictive model. Then, during the testing stage, each regression tree produces a prediction for each input 
sample. The final output of random forest is the average of the outputs of individual regression trees (Figure S1 
in Supporting Information S1). To avoid overfitting, we use a grid search method of 5-fold cross-validation to 
determine the major parameters for the model (see Text S1 and Figure S2 in Supporting Information S1).

We divided all TC cases (627,400 in total) into two groups, with 2/3 used in the training stage and 1/3 used in the 
testing stage. We further divided the data used to train the model (Figure 1c) into two subgroups: 60% for training 
and 40% for validation (Figure 1b). After training and validation, the constructed model is used to predict the 
spatial structure and temporal evolution of the cold wakes induced by the remaining 1/3 TC cases (i.e., TC cases 
in the testing group). The predicted cold wakes are then compared with those in the observations to evaluate the 
performance of the constructed model. To assess the model performance for TCs of different intensities, the test-
ing data are further stratified by TC intensity that is measured using the Saffir-Simpson wind scale [that is, TS: 
tropical storm (17.5 m/s ≤ Vmax < 33 m/s), H1: category-1 hurricane (33 m/s ≤ Vmax < 43 m/s), …, H5: category-5 
hurricane (Vmax ≥ 70 m/s), H1–H2: category-1–2 hurricane (33 m/s ≤ Vmax < 50 m/s), H3–H5: category-3–5 
hurricane (Vmax ≥ 50 m/s), H1–H5: category-1–5 hurricane (Vmax ≥ 33 m/s)].

2.4. Accuracy Assessment and Feature Importance

We use the Pearson correlation coefficient (r, Equation 1), root mean square error (RMSE, Equation 2), and mean 
absolute error (MAE, Equation 3) to measure the performance of the constructed model:

𝑟𝑟 =

∑𝑁𝑁

𝑖𝑖=1

(
𝑂𝑂𝑖𝑖 − 𝑂𝑂

)(
𝑃𝑃𝑖𝑖 − 𝑃𝑃

)

√
∑𝑁𝑁

𝑖𝑖=1

(
𝑂𝑂𝑖𝑖 − 𝑂𝑂

)2 ∑𝑁𝑁

𝑖𝑖=1

(
𝑃𝑃𝑖𝑖 − 𝑃𝑃

)2

, (1)

RMSE =

√
1

𝑁𝑁

∑𝑁𝑁

𝑖𝑖=1
(𝑂𝑂𝑖𝑖 − 𝑃𝑃𝑖𝑖)

2
, (2)

MAE =
1

𝑁𝑁

∑𝑁𝑁

𝑖𝑖=1
|𝑂𝑂𝑖𝑖 − 𝑃𝑃𝑖𝑖|, (3)

where Oi is the observed value, Pi is the predicted value, 𝐴𝐴 𝑂𝑂 is the mean of Oi, 𝐴𝐴 𝑃𝑃  is the mean of Pi, N is the total 
number of cases, and i = 1, 2,…,N. Smaller values of MAE and RMSE and larger values of r indicate better 
model performance.

To determine the relative importance of the 12 predictors in modulating the TC-induced SST cooling, we exam-
ined the feature scores of these predictors (Tuv et al., 2009). The relative importance of those predictors may 
depend on the area over which the spatial averaging is computed. Accordingly, we evaluate the feature scores of 
the predictors for SST cooling averaged over TC-centered boxes of three different sizes (i.e., 1° × 1°, 3° × 3°, and 
5° × 5°, respectively) and examine the possible dependency of the dominant predictors.
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3. Results
3.1. Spatial Structure and Temporal Evolution of TC-Induced Cold Wake

Figure 2a displays the spatial structure and temporal evolution of the composite cold wake induced by TCs of all 
intensities in the observations. On average, the cooling begins around 2 days prior to the TC passage, intensifies 
during the day of the TC passage, and reaches its peak of above 1.3°C on the day right after the TC passage. The 
cooling also expands in space from day −2 to day 1. In line with previous studies (e.g., Mei & Pasquero, 2013), 
the cooling exhibits strong asymmetry with respect to the TC track owing to the resonance effect (e.g., Jansen 
et al., 2010; Liu, Wei, et al., 2019; Price, 1981): On day 1, the local maximum cooling is located around 50 km 
to the right of the TC track.

Figure 2f shows the cross-track profiles of the SST cooling generated by TCs of various intensities on the day 
right after the TC passage (i.e., on average the day when the cooling peaks). The asymmetry and rightward bias 
exist in the SST cooling generated by TCs of different intensities. Figure 2f also illustrates the strong dependence 
of the cooling on TC intensity. For example, the average local maximum cooling produced by a tropical storm is 
around 1°C, whereas that left behind a category-3–5 hurricane is about 2°C.

After day 1, the cold wake decays rapidly in terms of both the magnitude and spatial coverage of the cooling 
(Figure 2a). On day 14, the local maximum cooling has weakened to less than 0.4°C. Meanwhile, the location 
of the local maximum cooling move leftward owing to the westward propagation of Rossby waves (e.g., Jansen 
et al., 2010), and as a result the cold wake becomes more symmetric.

Figure 3a shows the temporal evolution of the composite SST anomalies averaged within a TC-centered 3° × 1° 
box (3° in the cross-track direction and 1° in the along-track direction) induced by TCs of different intensities. 
Consistent with Figure 2a, the SST drops quickly during day 0 and day 1, experiences a quick rebound during 
days 2–4, followed by a recovery at a slower rate. These evolutions of the cooling are independent of TC intensity, 
and the decay e-folding times are about 10 days.

Figure 2b shows the composite map of the SST cooling generated by TCs of all intensities in the predictions 
by the constructed model, with its difference from the observations shown in Figure S3 in Supporting Informa-
tion S1. Overall, the model is skillful at predicting the spatial structure and temporal evolution of the cooling in 
the observations, for example, the quick strengthening and spatial expansion of the cooling during day 0 and day 
1 and the strong asymmetry in the cooling. We further calculated r, RMSE and MAE to quantify the performance 
of the model in predicting the TC-induced SSTA. The model captures more than 90% of the cross-case variance 
(i.e., r ≥ 0.95) in the cooling within 200 km of the TC track during day −3 and day 14 (Figure 2c). In general, the 
stronger the cooling, the larger the error as estimated using RMSE and MAE (Figures 2d and 2e). For instance, 
the MAE is above 0.2°C at the location of the local maximum cooling on day 1. The predictions for the cooling 
induced by TCs of hurricane intensities gives similar conclusions (Figure S4 in Supporting Information S1).

Figure 2g shows the cross-track profiles of the predicted TC-induced SST cooling for TCs of various intensities 
on the day right after the TC passage; the comparisons between the prediction and the observation for individual 
TC intensity groups are shown in Figure S5 in Supporting Information S1. The model well predicts the prominent 
features in the observations (Figure 2h), including the asymmetry and rightward bias of the SST cooling for all 
TC intensity groups and strong dependence of the magnitude of the cooling on TC intensity. In addition, we note 
that on average the model underpredicts the magnitude of the local maximum cooling for all intensity groups, 
with larger RMSEs and MAEs for stronger TCs (Figures 2i and 2j). Figures S6 and S7 in Supporting Informa-
tion S1 compare the spatial pattern of the composite TC-induced SST cooling on day 1, and show that the model 
well captures both the cross- and along-track structure of the TC-induced SST cooling. Figure S8 in Supporting 
Information S1 provides a detailed comparison of the cooling averaged within a TC-centered 3° × 1° box on day 
1 induced by all TCs in the predictions with that in the observations. Although overall the predicted cooling is 
weaker than that in the observations, the model well captures the case-to-case variations in the maximum cooling, 
with a correlation coefficient of 0.97.

Figure 3b displays the predicted temporal evolutions of TC-induced SSTA averaged within a TC-centered 3° × 1° 
box for TCs of various intensities; the comparisons between the prediction and the observation for individual TC 
intensity groups are shown in Figure S9 in Supporting Information S1. The predicted temporal evolutions highly 
resemble those in the observations for all intensity groups, with the cross-case correlation coefficients above 0.95 
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Figure 2.
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for all days (Figure 3c). Both the RMSE and MAE rapidly increase from day −3 to day 1, peak on day 1, and 
gradually decrease after that (Figures 3d and 3e).

We also tested all the results shown above using a different SST data set (i.e., MW_IR SST), and found no signif-
icant differences. As an example, Figure S10 in Supporting Information S1 compares the corresponding spatial 
structure and temporal evolution of the SST cooling induced by all TCs in the observations and predictions. We 
conclude that the model is skillful at simulating and predicting the TC-produced cold wake and its evolution, 
independent of the SST observations in use.

3.2. Quantification of Relative Importance of Predictors

To assess the relative importance of the 12 factors considered here in producing the SST cooling, we built another 
model to reconstruct the strongest cooling induced by all TCs and then calculate the feature scores of the 12 
factors using the feature permutation; note that the strongest cooling could occur during day 0 to day 4 after TC 
passage although on average the strong cooling takes place on day 1. Because the cooling is inhomogeneous in 
space as shown in Figure 2a, averaging the cooling over area of different sizes may produce different results. 
Accordingly, we examine the cooling averaged over TC-centered boxes of three different sizes: 1° × 1°, 3° × 3°, 
and 5° × 5°, in order to test the sensitivity of the results to the size of the box in use.

Figure 2. (a) Spatial structure and temporal evolution of the TC-induced SST anomalies (°C) in the observations from the testing set. (b) As in (a), but for the 
predictions. (c)–(e) Evaluation of the model performance for (b), that is, (c) correlation coefficient r, (d) RMSE (°C), and (e) MAE (°C). (f) TC-induced SST anomalies 
in the observations as a function of the distance across TC track on the day right after the cyclone passage when the SST anomaly near the storm center peaks. Only the 
standard errors for TS and H3–H5 are shown (light blue and light green shading, respectively), and are calculated as the standard deviation divided by the square root 
of the number of observations used in the testing stage (i.e., standard error of the mean); the size of the standard errors for the other three intensity groups is in between 
these two. (g) As in (f), but for the predictions. (h)–(j) Evaluation of the model performance for (g), that is, (h) correlation coefficient r, (i) RMSE (°C) and (j) MAE 
(°C), for different TC intensity groups.

Figure 3. (a) Temporal evolution of the composite SST anomaly averaged within a TC-centered 3° × 1° box in association 
with the passage of TCs of different intensity groups in the observations from the testing set. The standard errors for TS 
and H3–H5 are calculated and shown as in Figure 2f. (b) As in (a), but for the predictions. (c)–(e) Evaluation of the model 
performance for (b), that is, (c) correlation coefficient r, (d) RMSE (°C) and (e) MAE (°C), for different TC intensity groups.
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Figure 4a shows the feature scores when a TC-centered 1° × 1° box is used: TC intensity (Vmax) and transla-
tion speed (Vtrans) are the two dominant factors, followed by R30, 𝐴𝐴 MLD , and 𝐴𝐴 SST . All these factors have been 
shown in the literature to play important roles in determining the magnitude of the TC-induced SST cooling 
(e.g., Mei et al., 2012; Mei & Pasquero, 2013). As the size of the box increases, the importance of TC intensity 
(Vmax) and translation speed (Vtrans) decreases, but TC size (R30) and pre-storm ocean states (i.e., 𝐴𝐴 MLD and 

𝐴𝐴 SST ) become more important (Figures 4b and 4c). Specifically, for cooling averaged over a TC-centered 3° × 3° 
box, TC features and pre-storm ocean conditions are nearly equally important, while for cooling averaged over 
a TC-centered 5° × 5° box, TC size and pre-storm ocean conditions dominate over TC intensity and translation 
speed. These results are expected since the influence of the former two factors is relatively more localized around 
the TC track and the latter three factors affect SSTs over a larger area. The feature scores of individual factors 

Figure 4. (a) The feature scores of the 12 predictors used in the model constructed to predict the maximum SST cooling 
induced by TCs averaged within a TC-centered 1° × 1° box. (b), (c) As in (a), but for the model constructed to predict the 
maximum SST cooling induced by TCs averaged within TC-centered 3° × 3° and 5° × 5° boxes, respectively. Vertical lines 
show the standard deviations of the feature scores.
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show some dependence on the size of the TC-centered box used in spatial averaging. It is worth noting that Vmax 
always contributes more than Vtrans, independent of the box size.

4. Discussions and Conclusions
In this study, we applied the random forest method to build models to predict the sea surface temperature (SST) 
responses to tropical cyclones (TCs) in the northwest Pacific using 12 factors related to TC characteristics (Vmax, 
Vtrans, Vdir, R30, Lon, Lat) and pre-storm ocean properties (𝐴𝐴 MLD , 𝐴𝐴 SSH , 𝐴𝐴 SST , 𝐴𝐴 𝑇𝑇 75 , ��Res , � �Res ). TC char-
acteristics have not been included as predictors in previous studies (e.g., Shao et al., 2021; Zhang et al., 2023). 
In this study, we have demonstrated that the performance of the model could be effectively improved by using 
both the TC features and pre-storm upper-ocean variables as predictors. Specifically, the constructed model well 
predicts the spatial structure and temporal evolution of the TC-induced SST cooling for various TC intensity 
groups, for example, the cross-track profile and strong asymmetry of the cooling on day 1 (the day on average 
when the maximum cooling occurs), the leftward movement of the local maximum cooling with time after day 
1, and the temporal evolution of the SSTA averaged within a TC-centered 3° × 1° box. The model also well 
captures the  cross-case variance in TC-generated sea surface cooling in the observations. We note, however, that 
more efforts are needed to improve the prediction of the local maximum of the TC-generated SST cooling (e.g., 
Figures 2a and 2b).

We then proceeded to assess the relative importance of the 12 predictors considered in the model in determin-
ing the magnitude of the SST cooling, which has not been quantified in previous studies. The assessment was 
achieved by building another model to predict the TC-induced maximum cooling averaged within TC-centered 
boxes and then calculating the feature scores of those predictors using the feature permutation. For SST cooling 
averaged within a small TC-centered box (e.g., 1° × 1°), TC intensity and translation speed are the primary 
contributors, followed by TC size and pre-storm mixed layer depth and SST. These results are broadly consistent 
with previous studies (e.g., Mei & Pasquero, 2013) in that stronger, slower-moving and larger TCs in areas with 
shallower mixed layer generate stronger SST cooling, although the relative importance of the factors has not been 
evaluated previously. As the box size increases, the importance of TC intensity and translation speed weakens, 
while TC size, pre-storm mixed layer depth and SST become more important. For example, for cooling averaged 
within a 5° × 5° box the latter three predictors dominate over the former two in shaping the SST cooling. This is 
consistent with our expectation, because the influence of the former two predictors is relatively more localized 
around the TC track and the latter three predictors exert influence over a larger area.

In short, this study has demonstrated the effectiveness of a random forest regressor in predicting the SST cooling 
generated by TCs. We recognize that further improvements (e.g., the underestimated SST cooling in the model 
predictions) are still needed for our model. In addition, we plan to apply the same methodology to other ocean 
basins (e.g., the North Atlantic), and compare the results with those shown in this study, such as the model perfor-
mance and dominant factors. The presented results and proposed method also have important implications for 
predicting the response of ocean primary production to the TC wind pump effects.

Data Availability Statement
Microwave Imager SST and MW_IR SST data were provided by Remote Sensing Systems for the (https://www.
remss.com/missions/tmi/). Daily altimeter satellite gridded SLA data and the daily current speed (U and V) data 
were provided by Copernicus Marine and Environmental Monitoring Service Center (https://resources.marine.
copernicus.eu/). TC best track data was provided by National Centers for Environmental Information (https://
www.ncdc.noaa.gov/ibtracs/). MLD and potential temperature data were provided by WOA (https://www.ncei.
noaa.gov/data/oceans/woa/WOA18/).
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