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Correlation between
pseudotyped virus and
authentic virus neutralisation
assays, a systematic review and
meta-analysis of the literature
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Martin Mayora-Neto4, Edward Wright5, Simon Scott4,
Surajit Ray2, Javier Castillo-Olivares6, Jonathan Luke Heeney6,7,
Giada Mattiuzzo3 and Nigel James Temperton4*

1MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom,
2School of Mathematics & Statistics, University of Glasgow, Glasgow, United Kingdom, 3Medicines and
Healthcare Products Regulatory Agency, South Mimms, United Kingdom, 4Viral Pseudotype Unit,
Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham,
United Kingdom, 5Viral Pseudotype Unit, School of Life Sciences, University of Sussex, Brighton,
United Kingdom, 6Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of
Cambridge, Cambridge University, Cambridge, United Kingdom, 7DIOSynVax, University of Cambridge,
Cambridge, United Kingdom
Background: The virus neutralization assay is a principal method to assess the

efficacy of antibodies in blocking viral entry. Due to biosafety handling

requirements of viruses classified as hazard group 3 or 4, pseudotyped viruses

can be used as a safer alternative. However, it is often queried how well the

results derived from pseudotyped viruses correlate with authentic virus. This

systematic review and meta-analysis was designed to comprehensively evaluate

the correlation between the two assays.

Methods: Using PubMed and Google Scholar, reports that incorporated

neutralisation assays with both pseudotyped virus, authentic virus, and the

application of a mathematical formula to assess the relationship between the

results, were selected for review. Our searches identified 67 reports, of which 22

underwent a three-level meta-analysis.

Results: The three-level meta-analysis revealed a high level of correlation

between pseudotyped viruses and authentic viruses when used in an

neutralisation assay. Reports that were not included in the meta-analysis also

showed a high degree of correlation, with the exception of lentiviral-based

pseudotyped Ebola viruses.

Conclusion: Pseudotyped viruses identified in this report can be used as a surrogate

for authentic virus, though care must be taken in considering which pseudotype

core to use when generating new uncharacterised pseudotyped viruses.
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1 Introduction

Serological assays are an invaluable tool in detecting exposure of

pathogens in organisms and understanding the immune system’s

response. The level of insight gained from these assays during a

disease outbreak is crucial for the initial medical response, and

subsequently understanding the dynamics, strength and longevity

of the immune response (1–3). An important protective response

requires antibody interaction with the pathogen. Upon infection,

the humoral response produces antibodies that bind to the antigens

displayed by the pathogen, including those that prevent interaction

with the receptors necessary for entry into host cells. Assays for

antibody analysis have proved effective during recent viral

outbreaks, such as those caused by Ebola virus (4, 5) and Severe

Acute Respiratory Coronavirus 2 virus (SARS-CoV-2) (6–8), as

they allow for detection and monitoring of viral spread in a

population. Such assays are similarly applied to animals, which

can also identify intermediary hosts or potential reservoirs and

provide information about the potential for zoonotic spillover (9,

10), as well as inform on vaccines and treatment efficacy in

preclinical studies.

Some serological assays, such as enzyme-linked immuno-

absorbance assays (ELISA), can identify the presence of antigen-

binding antibodies within a day of receiving a human or animal blood

sample (11, 12). When considering antibodies targeting a viral

glycoprotein, typically a proportion of the binding antibodies to a

viral glycoprotein successfully impair the virus entry, whilst other

antibodies bind to non neutralising epitopes, enabling other

antibody-mediated immune functions (13). This highlights a

shortcoming of binding assays such as ELISAs which lack the

functional component of measuring virus entry into cells. Owing to

this, in order to measure functional activity, specifically the ability of

antibodies in preventing entry, a neutralisation assay is required.

These assays are considered the gold standard for measuring the

presence and magnitude of neutralising antibodies and typically

require the use of authentic virus (14). As a result, these assays

often take several days to allow the virus to grow and are subject to

biosafety containment requirements depending on the virus under

investigation. This restricts the study of viruses classified as hazard

group 3 or 4, such as SARS-CoV-2 or Ebola virus and Nipah virus,

due to the paucity of facilities that possess such high level of

biocontainment. An approach to circumvent these requirements is

to use a pseudotyped virus (PV), which can be handled at

containment level 2 or below (Figure 1). These are comparatively

easier to produce, typically by plasmid transfections, and, under

optimized conditions, can be produced within 3 to 5 days. Many

reviews have been published regarding pseudotype production, core

composition, and their uses (15–20). These chimeric viruses

commonly use a retroviral or VSV nucleocapsid core are

surrounded by a lipid envelope bearing viral glycoproteins of a

heterologous virus of interest on their surface. Often, PVs do not

contain the virus genomic material required for replication. Instead,

the modified genome is replaced by a transgene, for example a

reporter gene such as green fluorescent protein (GFP) or luciferase

enzyme (16). Upon successful entry into target cells, transgene

expression allows for quantification of infected cells. Primarily due
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to their replication deficiency, PVs can be handled in a containment

level 2 laboratories, which are common facilities in biological research

laboratories (18). Many viruses of high consequence have been

pseudotyped successfully and rapidly during the onset of an

outbreak, as authentic viruses typically require isolation and stock

amplification, whereas PVs require a published sequence of the viral

glycoprotein to be cloned into an expression plasmid. Due to their

external mimicry of the virus of interest, with reduced risk of

acquiring mutations during production in mammalian tissue

culture as seen with authentic viruses, PVs are an effective tool to

use in neutralisation assays (18, 19). The COVID-19 global

pandemic, caused by SARS-CoV-2, caused a significant rise in the

use of pseudotype assays for both serology and molecular virology

studies (17, 21). When PVs are used in a multi-well plate assay setting

they are often referred to as pseudotype virus microneutralisation

assays (pMNA). For the purposes of this systematic review, the

alternative authentic virus microneutralisation assay will be referred

to as vMNA.

Given that neutralising antibodies are one of the principle

components measured to determine correlates or surrogates of

protection against disease or infection (22–24), the neutralisation

test remains a critical assay. An important aspect when determining

a correlate or surrogate of protection is to be able to draw

comparisons between data and bridge between studies. By

calibrating assays to a common reference reagent, often a pooled

sera sample, assay readouts can be standardised across laboratories

worldwide as these relative results are reported in a standard

unitage (25–27). It is important that such common reagent is

used correctly to calibrate in house standards, but in some cases,

this is still not enough and the reduction of inter-laboratory

variation can only be achieved by sharing common protocols and

critical reagents similar to the approach used by the CEPI

Centralised Laboratories network. Such reference reagents have

been produced for several viruses, including many of high

consequence which are applicable to pseudotyping (28–30).

Whilst reporting results relative to a reference reagent reduces

inter-laboratory variations and allows comparisons between

assays, it is fundamentally important to investigate whether

surrogate assays, designed to mimic and replace vMNAs which

employ highly pathogenic viruses, correlate. If there is a correlation

between a pMNA and a vMNA, then the results from either assay

could be applied within clinical trials and investigations aimed at

identifying the correlates for protection against a virus.

However, it is commonly queried how well the results from a

pMNA correlate with those from a vMNA. The question is

particularly relevant with the increasing uptake of pMNAs as a

consequence of the recent COVID-19 pandemic and their

increasing application to clinical trials as focus turns to vaccine

development for other high consequence pathogens (31, 32). The

studies to-date use a mixture of correlation formulae, most of which

are Pearson’s R and/or Spearman’s Rho (33, 34). Other studies have

instead fitted linear regressions to understand the relationship

between the two variables, with the R2 value providing an

equivalent measure to the square of Pearson’s R in the case of a

positive relationship (35). Several reviews on PVs or neutralisation

assays have included some of these studies which sought to correlate
frontiersin.org
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results from both assays, yet only a handful are cited (17–19).

Despite several studies directly comparing PV and authentic virus

neutralization assays, correlation information tends to be buried in

the mass of data or supplementary material in these reports. It is

likely that for these reasons, the question as to whether the two

assays correlate is still frequently posed.
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To the best of our knowledge, there is no systematic review nor

meta-analysis that has condensed the literature that has correlated

pMNA and vMNA. Therefore, the purpose of this systematic review

and meta-analysis is to collect the available information on the

comparison between the two tests, analyse the strength of

correlations, and present the results in a clear and coherent
A B

D

E F

G

C

FIGURE 1

Comparison between live virus neutralisation assay and pseudotyped neutralisation assays. Live viruses are commonly used in neutralisation assays
though their practicality may depend on the biohazard containment regulations (A). Pseudotyped viruses, despite displaying glycoproteins of highly
pathogenic viruses, are designated as a level 2 pathogen (B). The live virus neutralisation assay and the pseudotyped virus neutralisation assay are
designed in a similar fashion whereby antibodies are incubated in the presence of virus, followed by addition of a cell line that is susceptible to virus
infection (C). In the context of a SARS-CoV-2 neutralisation assay (D), neutralising antibodies bind to the Spike protein of the virus, preventing the
virus to bind to the required entry receptor ACE2. Live viruses that enter begin to replicate, whereas pseudotyped viruses only express the desired
reporter gene. Plaque assays, fluorescent staining of viral proteins or qPCR are often used to measure neutralisation levels in live virus assays
(E), whereas pseudotyped assays typically rely on measuring the intensities of luciferase or fluorescent protein expression (F). The pertinent question
of whether the results derived from either assay correlate still remain (G). Figure created with Biorender.com.
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manner. Overall, we aim to inform the wider community whether

pseudotyped viruses can be used as surrogates for authentic virus

for the purposes of a neutralisation assay and subsequently to

determine the correlates of protection against a virus. Despite the

findings within this report, it remains critical that PV-based assays

continue to be assayed and correlated with authentic virus wherever

possible, particularly if a new PV has been designed for use. Given

that correlation coefficient values have different classifications of

strength based on the field of study, we included a table based on the

definitions that are often cited in the field of medicine (34, 36,

37) (Table 1).
2 Methods

2.1 Search strategy and selection criteria

Google Scholar and PubMed were used to identify published

research articles which reported data on correlation between pMNA

and vMNAs. The following Boolean search terms were employed to

filter studies indexed in Google Scholar and PubMed: “pseudotype|

pseudotyped|pseudoparticle” “correlate|correlated|correlation”

“live” “virus” “neutralisation|neutralization”.

The criteria for inclusion were reports that contained

neutralisation assays with both pseudotype virus and authentic

virus, as well as application of a mathematical formula to assess

the relationship between the results, either by linear regression,

Pearson’s correlation, Spearman’s rank, or a combination of the

three. Studies that did not present any form of analysis of

correlation were excluded.
2.2 Data collection

We extracted the following data from reports that satisfied our

selection criteria: report author name and year, virus used,

pseudotype core used, neutralisation assay readout (both for

pMNA and vMNA), correlation method, p value of the

correlation coefficients, number of samples, and sample types. In

total, we identified 67 reports that satisfied our selection criteria and

were used for comparative data analysis.
2.3 Statistical analysis

For our meta-analysis, we considered data for the relationships

between SARS-CoV-2 PVs and authentic virus. There was
Frontiers in Immunology 04
insufficient data to consider other viruses in separate meta-

analyses and we decided not to analyse the results from multiple

viruses together. We instead present the data for other viruses in a

table in the supplementary materials (Suppl. Table 1). For the

studies reporting a linear regression (R2), we opted to convert

the value by its square-root, so that it may be combined with the

Pearson’s R values derived from other studies and therefore

included in the analysis. We checked that all regressions reported

only included the PVs and authentic virus and that the relationships

were all positive. We did not have sufficient Spearman’s Rho values

to analyse and these cannot be directly combined with the Pearson’s

R values, as they do not measure the same characteristic. Therefore,

we did not attempt to carry out a meta-analysis of Spearman’s Rho

coefficients. These values are reported in the supplementary

materials (Suppl. Table 1). We therefore used a dataset of 50

Pearson’s R coefficients from 22 papers. Since studies on SARS-

CoV-2 used different PV cores (HIV and VSV), PV assays (eGFP,

GFP, Luciferase, PRNT and SEAP) and sample types (hamster sera,

human mAbs, human plasma and human sera), we checked for

differences in the Pearson’s correlations between studies using t-

tests with a null hypothesis of no difference in the mean Pearson’s

correlations between the groups containing at least 10 results

(Suppl. Figure 1). Since we failed to reject the null hypothesis for

any comparison, we decided to carry out our meta-analysis on the

full dataset. We had only very limited results reported for different

SARS-CoV-2 variants, so that investigating differences in results for

each variant alone is left for future work. The analysed datasets used

identical variants for PV and authentic viruses.

We conducted a three-level meta-analysis of Fisher’s z-

transformed Pearson’s correlations, using the inverse-variance

method, accounting for the dependence between multiple results

from the same study (38, 39). We assigned data to “clusters” based

on their dependence on other data. All coefficients calculated using

the same dataset were considered dependent and were assigned to

the same cluster, resulting in 26 clusters in total. Taking the example

of Wang et al, 2020 (40), a correlation coefficient was calculated for

each of two independent datasets, so that these two coefficients were

assigned to separate clusters, while Sholukh et al, 2021 (41)

presented four correlation coefficients that were calculated using

the same datasets, so that these coefficients were all assigned to the

same cluster. Clusters with higher estimated sampling variance of

their correlation coefficients, e.g., due to lower sample sizes, are

given lower weights in the calculation of the pooled correlation,

while clusters are given higher weights if there is less dependence

among their correlation coefficients (39). The heterogeneity

variance, t2, was calculated using the restricted maximum

likelihood estimator, with confidence interval estimates calculated

using the profile likelihood method. We assessed heterogeneity

using the I2 and H statistics (42) and we calculated prediction

intervals (using the t-distribution) for the pooled correlation

estimate. While confidence intervals provide measures of

uncertainty around the true mean values of correlation, the

prediction interval provides a measure of uncertainty around the

likely values of correlation to be seen in future studies (38). We

checked for influential outliers by removing correlations in turn and

recalculating all estimates. We plotted Fisher’s z-transformed
TABLE 1 Guide for interpreting correlation coefficients in the medical
field of study.

Correlation Coefficient value Strength of Relationship

>0.8 Very strong

0.6 - 0.79 Moderately strong

0.3 - 0.59 Fair

<0.3 Poor
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correlation against standard error (a “funnel plot”) to assess

possible publication bias. All calculations were carried out in R

version 4.3.1 (R Core Team, 2022) using the packages meta (43),

metafor (44) and dmetar (45).
3 Results

3.1 Results of literature search

Our search terms returned a total of 33 reports in PubMed and

5,880 reports in Google Scholar. After manually screening abstracts

and titles, we identified 80 studies that met our selection criteria and

ultimately included 67 reports in this systematic review (Suppl.

Table 1). The primary reason for exclusion were reports that either
Frontiers in Immunology 05
did not include both pMNA and vMNA, or reported neutralisation

titres in both the pMNA and vMNA, but did not carry out a

correlation analysis between the two methods. Briefly, the total

number of reports found for each virus were; SARS-CoV-2 (n=32)

(40, 41, 46–75), SARS-CoV-1 (n=2) (76, 77), Canine distemper virus

(CDV, n=1) (78), Chikungunya virus (CHIKV, n=1) (79), European

bat lyssavirus 1 (EBLV-1, n=1) (80), EBLV-2 (n=1) (80), Ebola virus

(EBOV, n=3) (81–83), Hepatitis C virus (HCV, n=3) (84–86),

Human immunodeficiency virus (HIV, n=1) (87), Hantaan

orthohantavirus (HTNV, n=2) (88, 89), Influenza A virus H5N1

(IAV H5N1, n=5) (90–94), IAV H7N9 (n=1) (95), Japanese

encephalitis virus (JEV, n=1) (96), Lagos bat virus (LBV, n=1) (97),

Middle East respiratory syndrome virus (MERS, n=4) (98–101),

Newcastle disease virus (NDV, n=1) (102), Nipah virus (NIV, n=1)

(103), Peste des petite ruminants virus (PPRV, n=1) (104), Puumala
TABLE 2 Summary of reported correlation coefficients. The bounds represent the minimum and maximum point values across the studies.

Virus
No. of
Reports

Correlation
Range (Linear R2)

Correlation
Range

(Pearson’s)

Correlation Range
(Spearman’s)

Correlation
Range

(Intra-Class)

Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2)

31 0.385 - 0.993 0.641 - 0.939 0.54 - 1 0.872 - 0.872

Severe acute respiratory syndrome
coronavirus 1 (SARS-CoV-1)

2 – 0.69 - 0.78 – –

Canine distemper Virus (CDV) 1 – – 0.65 - 0.91 –

Chikungunya virus (CHIKV) 1 0.78 - 0.98 – –

European bat 1 lyssavirus (EBLV-1) 1 – 0.79 - 0.79 – –

European bat 2 lyssavirus (EBLV-2) 1 – 0.9 - 0.9 – –

Ebola virus (EBOV) 3 – 0.96 - 0.96 0.54 - 0.86 –

Hepatitis C virus (HCV) 3 – 0.893 - 0.893 0.7 - 0.93 –

Human immunodeficiency virus
(HIV) 1

0.903 - 0.903 – – –

Hantaan virus (HTNV) 1 0.91 - 0.91 – – –

Influenza A virus H5N1 (IAV
H5N1) 5

0.524 - 0980 0.734 - 0.78 0.79 - 0.79 –

Influenza A virus H7N9 (IAV
H7N9) 1

– 0.82 - 0.82 – –

Japanese encephalitis virus (JEV) 1 0.915 - 0.915 – – –

Lagos bat lyssavirus (LBV) 1 – 0.83 - 0.83 – –

Middle East respiratory syndrome
virus (MERS)

4 0.96 - 0.96 0.88 - 0.934 0.97 - 0.97 –

Newcastle disease virus (NDV) 1 0.92 - 0.92 – – –

Nipah virus (NIV) 1 – – – –

Peste des petits ruminants virus
(PPRV) 1

– – 0.89 - 0.89 –

Puumala virus (PUUV) 1 – – 0.82 - 0.82 –

Rift Valley fever virus (RVF) 1 – – 0.77 - 0.77 –

Rabies virus (RABV) 3 0.946 - 0.946 0.915 - 0.918 – –

Seoul orthohantavirus (SEOV) 1 0.82 - 0.845 – – –
Some types of correlation coefficient were not reported in any studies of some viruses and this is indicated by entries containing only "-".
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virus (PUUV, n=1) (105), Rift Valley fever virus (RVF, n=1) (106),

Rabies virus (RABV, n=2) (107, 108), and Seoul orthohantavirus

(SEOV, n=2) (88, 89). A summary of the findings from these reports

can be viewed in Table 2, whereas a more detailed breakdown for

each report can be viewed in the supplementary file (Suppl. Table 1).

Aside from SARS-CoV-2 which will be analysed in the

following sections of this study, we found that in general, most of

the pseudotypes correlated well with the vMNA, irrespective of

pseudotype cores and the readout techniques used to measure the

assay results (Suppl. Table 1.). We found some studies that did not

clarify the correlation test used, and were therefore omitted from

Table 2, though relevant information including the r value is still

included in the Supplementary Table 1. Interestingly, a study

analysing the EBOV PVs reported that the choice of the PV core

had a substantial impact on correlation with authentic virus (82,

83). When the negative control samples were omitted from the

neutralisation assays, the correlation coefficients dropped from 0.68,

0.77 to -0.03 and 0.18, effectively showing no correlation, whereas

the samples assayed with the VSV core PVs retained correlation

coefficients of 0.84 and 0.96 (Suppl. Table 1.). This study highlights

the need to consistently verify whether cores of pseudotypes can

affect correlations with vMNAs.
3.2 Three-level meta-analysis results

From 22 SARS-CoV-2 studies we analysed 50 Pearson’s

correlation coefficients, which were derived from a combined total

of 1238 data points by pMNA and vMNA (Figure 2). As stated in

the methods, we verified that there were no significant differences in

the mean Pearson’s correlation values between studies that used

different PV cores, neutralising reagents and assay readout types

(Suppl. Figure 1). We calculated a pooled correlation of 0.86 (95%

CI; 0.82-0.89, p < 0.01). These results suggest that there is a strong

correlation between the results derived by pMNA and vMNA.

The results indicated the presence of low to moderate between-

cluster heterogeneity [I2 = 37.1% (CI: 11.2%-55.5%); H=1.26 (CI:

1.06 to 1.50); t2 = 0.05 (CI: 0.02-0.12)]. This means that there is

some weak evidence of differences in the true effect sizes in the

study. A 95% prediction interval (PI) for the pooled correlation is

0.69-0.94, which means that it is highly likely that the true

correlation between pMNA and vMNA in a future study will lie

between 0.69 and 0.94. Since this is entirely greater than 0.5, this

provides us with evidence of a positive relationship between pMNA

and vMNA for SARS-CoV-2, appropriately accounting for the

distribution of effects amongst the studies. Removing results in

turn did not lead to substantial reductions in heterogeneity. Our

“funnel plot” (Suppl. Figure 2) shows that most points lie within the

funnel shape in a symmetrical pattern, providing no evidence of

publication bias.

Our “forest plot” (Figure 3) shows the calculated interval

estimates for each study. We note that the majority of the interval

estimates include our pooled estimate and that all studies except

Mykytyn et al. (61), which has very small reported sample sizes,

have entirely positive interval estimates.
Frontiers in Immunology 06
3.3 Agreement between pMNA and vMNA
by Bland-Altman method

Since Pearson’s or Spearman’s correlation coefficients are used

for understanding correlation between two variables, they may not

determine whether different assays are strictly in agreement with

each other. The Bland-Altman method (109) is a frequently applied

analysis which is often used to determine agreement between two

methods that aim to measure the same variable, in this case,

antibody neutralising capability. Within our literature search,

several studies have used the Bland-Altman method of analysis.

Therefore, we also refined the literature search used for this study by

adding the search terms; “Bland-Altman”. All four resulting papers

identified were already included from the main literature search.

Due to the power of this statistical method, we opted to present the

results by the Bland-Altman method within the reports in a separate

table (Table 3). All studies that reported results from the Bland-

Altman method showed high levels of agreement between pMNA

and vMNA.
4 Discussion

Given the interest in the results derived by pMNA compared to

vMNA, our systematic review and meta-analysis sought to

consolidate the data to inform the wider community on whether

there is a correlation and subsequently, agreement between the two

assays. The results of the meta-analysis would confirm that for

SARS-CoV-2 there is a strong degree of correlation between pMNA

and vMNA. Despite the limited number of studies, the Bland-

Altman results presented in this manuscript also indicate a high

level of agreement between the two assays. This data support the use

of pMNA as a surrogate to the vMNA, though more correlation

studies by Bland-Altman would be very valuable to perform in

future reports.

Moreover, since multiple viral cores can be used for

pseudotyping, it is important to assess whether this could impact

the pMNA vs vMNA correlation. It would appear that in the case of

the Ebola virus, there is a lower concordance, if a lentiviral core is

used in the pMNA compared with a VSV core (82, 83). Whilst the

precise reason for influence of the core remains unknown, though

speculated to be due to the morphological difference between a VSV

capsid and a filamentous EBOV particle (82) or the target cells,

which is the same for the authentic virus and EBOV-VSV but differ

for the lenti-based pMNA. It will be important to determine

whether these differences exist in the case of other filoviruses and

indeed other viruses, as there may be a high risk of reporting

erroneous results. Therefore, it is important to optimize all aspects

of the pMNA and different pseudotype cores combined with

identical envelope glycoproteins should always be assessed in

parallel with the authentic virus in neutralization tests, if possible.

Critically, the two EBOV studies observed the reduced correlation

of the lentiviral cores when negative control sera were excluded

from their analyses. Therefore, we advise future correlation studies

to consider not only including negative control samples within their
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analyses, but also consider deriving correlations with and without

the negative control samples, especially if the number of samples is

low and multiple cores are under assessment.

Interestingly, multiple studies have mentioned that one of the

benefits of using PVs is that they are more sensitive in

discriminating samples containing weaker or a low concentration

of neutralising antibodies (92, 100, 104). In fact, one report

provided evidence of the vMN assay reporting false negative

results on samples that contained neutralising antibodies,

successfully detected by the pMN (102). Whilst this would

highlight the benefits of using PVs for detecting positive samples

within a human or animal population, it is may also bring into

question whether the results derived from the weaker samples could

protect the individual or animal from subsequent infection, given

that the authentic virus was not neutralised. However, it is essential

to consider that lower limits of detections can change based on

assay design, virus species, the titre of the virus used, and the

volume of serum sample used. This highlights reporting of results

relative to a reference reagent can add value by enabling

comparisons between data produced by different methods. Whilst

use of a reference material will not ultimately improve assay

performance, it helps to highlight differences. In any case, having

a more sensitive assay such as the pMNA would prove to be very

useful for epidemiological studies that are aiming to determine
Frontiers in Immunology 07
whether a virus exists or existed in a particular human or animal

population, as opposed to correlating neutralising titres towards

disease severity or protection.

Lastly, it is very important to distinguish the type of

interpretation derived from either Pearson’s R or Spearman’s

rank correlation analyses and the Bland-Altman plot. Neither the

Pearson’s R, which is a measure of the linear relationship between

two variables, nor the Spearman’s rank, that informs on correlation

from measurements taken on an ordinal scale, provide information

on the agreement between two different assays. In this case, the

Bland-Altman method is required (109). Our literature search has

shown for multiple viruses that the pMNA and vMNA have high

agreement for multiple viruses in several families.

The main limitation of our systematic review is that it was

biased towards SARS-CoV-2, due to the sheer number of

publications dedicated to this virus in the past three years,

providing enough correlation values that allowed for the meta-

analysis. Whilst it would have been useful to carry out the same

analysis for other viruses, unfortunately there were not enough

correlation values. We did not use the Spearman’s Rho coefficients

in our analyses, but the strong positive values of these, for both

SARS-CoV-2 and other viruses (Suppl. Table 1) do not disagree

with our main conclusions that PVs and authentic virus showed

strong positive relationships. Some of the studies used very small
FIGURE 2

Flow diagram of the study identification and selection process.
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sample sizes, which was accounted for through giving lower weights

to these studies. We opted to include studies that used PVs that are

non-replicative, single cycle of infection, therefore excluding studies

that used replicon infection systems, despite some of these reports
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showing high correlation and high level of agreement between

single-round replicons and authentic virus in a neutralisation

assay (110, 111). Lastly, new virus and cell-free assays have now

been developed for SARS-CoV-2 that measure the capability of
FIGURE 3

Forest Plot of the three-level meta-analysis results. The endpoints of the black or white horizontal lines represent the endpoints of the 95% CIs for
the Pearson’s correlation coefficients for each study. The grey boxes represent the sample sizes of each study. The vertical dotted line represents
the pooled Pearson’s correlation coefficient estimate and the grey diamond represents the 95% CI for the pooled Pearson’s correlation coefficient
estimate. The 95% prediction interval is shown by the red line. The table columns are, respectively, study name, cluster indicator, sample size (n)
from which Pearson’s correlation coefficient was calculated, correlation as described above, Pearson’s correlation coefficients, 95% CI of Pearson’s
correlation coefficients, and weighting assigned to each coefficient.
TABLE 3 Reported Bland-Altmann results.

Study Virus Samples Conclusions

Hyseni et al., 2020 (54) SARS-CoV-2 65 64/65 samples within 95% Limit of Agreement

Lester et al., 2019 (100) MERS 52 High level of agreement

Nie et al., 2017 (107) RABV 320 All samples within Limit of Agreement

Buchy et al., 2010 (91) IAV H5N1 41 High level of agreement
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antibodies blocking the spike protein from interacting with its

receptor ACE-2, effectively becoming a surrogate neutralisation

assay, have shown to have strong correlations with both pMNAs

and vMNAs (51, 69, 112–114). Whilst these assays do not fit the

scope of this study, we believe it is worth mentioning and

monitoring for follow up meta-analyses.

In summary, our systematic review and meta-analysis shows that

the pMNA designed for use towards SARS-CoV-2 serological studies

demonstrated a high degree of correlation with assays performed

using the authentic virus. In addition, many other viruses that have

been pseudotyped also show a high degree of correlation. We

recommend, where possible, that future studies on methods

agreement should continue to investigate the use of multiple PV

cores, to determine whether there could be differences in

neutralisation titres, such as that exemplified with Ebola virus PVs.

It is also essential that future studies incorporate the Bland-Altman

analysis to determine the agreement between the two assays as well as

this is substantially more informative, especially when both assay

results are to be applied to clinical trials and assessed for determining

correlates of protection. Ultimately, we would encourage laboratories

to calibrate assays to reference materials, if one is available and

relevant for the isolate under study, which will support these future

comparisons and critically provide traceability to a correlate of

protection once derived.
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Supplementary Figure 1. Boxplots of Pearson’s correlation coefficients for: studies with HIV and 
VSV PV Cores (left); eGFP, GFP, Luciferase, PRNT and SEAP PV Assays (centre); and hamster sera, 
human mAbs, human plasma, human sera and unknown/unspecified Sample Type (right). P-values for 
t-tests of differences in means between groups are shown in light blue, with horizontal light blue lines 
linking the groups being compared. The numbers of studies in each group are shown in dark blue. 

 



 

 

Supplementary Figure 2. “Funnel plot”, showing Fisher’s z-transformed correlation against standard 
error for each reported correlation. The dotted lines represent the theoretical shape within which 95% 
of points are expected to lie when no biases or heterogeneity are present. 



Paper Virus PV 
Core LV Assay PV Assay Correlation Method Sample 

size Sample type 

Atti et al. 2022 (46) SARS-CoV-2 HIV Fluorescence Luciferase 0.78 (IC50) (p<0.0001) Spearman's 92 Human sera 

     0.63 (IC50) (p<0.0031) Spearman's 23 Human sera 

     0.61 (IC50) (p<0.0001) Spearman's 92 Human sera 

     0.54 (IC50) (p=0.014) Spearman's 23 Human sera 
Bewley et al. 2021 (47) SARS-CoV-2 VSV PRNT Luciferase 0.862 (IC50) (p<0.001) Pearson's 37 Human sera 
Chi et al. 2020 (48) SARS-CoV-2 HIV qPCR Luciferase 0.6868 (IC50) (p=0.0283) Pearson's 10 Human plasma 
Collier et al. 2021 (49) SARS-CoV-2 HIV Coomassie Intensity Luciferase 0.8117 (IC50) (p<0.001) Pearson's 13 Human sera 
D'Apice et al. 2022 (50) SARS-CoV-2 HIV CPE Luciferase 0.9231* (IC90) (p<0.0001) Spearman's 111 Human sera 

     0.9139 (IC90) (p<0.0001) Spearman's 29 Human sera 

     0.8444 (IC90) (p<0.0001) Spearman's 59 Human sera 

     0.9486 (IC90) (p<0.0001) Spearman's 29 Human sera 

     0.8844 (IC90) (p<0.0001) Spearman's 59 Human sera 

     0.7341 (IC90) (p<0.0001) Spearman's 29 Human sera 

     0.5376 (IC90) (p<0.0001) Spearman's 59 Human sera 
Fenwick et al. 2021 (51) SARS-CoV-2 HIV CPE Luciferase 0.65 (IC50) Linear R2 74 Human sera 
Grzelak et al. 2020 (52) SARS-CoV-2 HIV CPE GFP 0.83 (Single Dilution) (p<0.0001) Spearman's 21 Human sera 
Harvala et al. 2020 (53) SARS-CoV-2 HIV ELISA Luciferase 0.83 (IC50) (p<0.0001) Spearman's 51 Human plasma 
Hyseni et al. 2020 (54) SARS-CoV-2 HIV CPE Luciferase 0.84 (IC50) (p<0.0001) Linear R2 65 Human sera 

     0.872 (IC50) (p<0.0001) Intra-Class 65 Human sera 
James et al. 2021 (55) SARS-CoV-2 HIV CPE Luciferase 0.7084 (IC50) Linear R2 23 Human sera 

     0.7405 (IC50) Linear R2 23 Human sera 

     0.8092 (IC50) Linear R2 23 Human sera 
Legros et al. 2020 (56) SARS-CoV-2 MLV CPE GFP 0.75* (IC50) (p<0.0001) Spearman's 140 Human sera 
Li et al. 2020 (57) SARS-CoV-2 VSV PRNT Luciferase 0.9636 (IC50) (p<0.001) Linear R2 6 Human sera 
Liu et al. 2022 (58) SARS-CoV-2 HIV PRNT Luciferase 0.385 (IC50) Linear R2 19 Human sera 

  VSV PRNT Luciferase 0.427 (IC50) Linear R2 19 Human sera 
Maciola et al. 2022 (59) SARS-CoV-2 VSV OD (Crystal Violet) Luciferase 0.78 (IC50) (p<0.0001) Spearman's 60 Human sera 
Merluza et al. 2023 (60) SARS-CoV-2 HIV PRNT Luciferase 0.921 (IC50) (p=0.0263) Pearson's 5 Human sera 
Mykytyn et al. 2022 (61) SARS-CoV-2 VSV PRNT PRNT 0.6018 (IC50) Linear R2 4 Hamster sera 

 
    0.5645 (IC50) Linear R2 4 Hamster sera 

 
    0.4701 (IC50) Linear R2 4 Hamster sera 

 
    0.659 (IC50) Linear R2 4 Hamster sera 

 
    0.3858 (IC50) Linear R2 4 Hamster sera 

Supplementary Table 1. List of reported correlation coefficients. *denotes result with inclusion of a chosen pre-pandemic, or pre-vaccinated, or non-neutralising control 
sample within the correlation analysis, as described within the cited manuscript. 



 
    0.8968 (IC50) Linear R2 4 Hamster sera 

 
    0.7478 (IC50) Linear R2 4 Hamster sera 

 
    0.8503 (IC50) Linear R2 4 Hamster sera 

 
    0.8184 (IC50) Linear R2 4 Hamster sera 

 
    0.6178 (IC50) Linear R2 4 Hamster sera 

Neerukonda et al. 2021 (62) SARS-CoV-2 HIV PRNT Luciferase 0.8066* (IC50) (p<0.001) Spearman's 14 Human sera 

 
    1* (IC50) (p=0.0028) Spearman's 5 Human sera 

 
    0.9197* (IC80) (p<0.0001) Spearman's 14 Human sera 

 
    1* (IC80) (p=0.0028) Spearman's 5 Human sera 

Newman et al. 2022 (63) SARS-CoV-2 HIV CPE luciferase 0.70 (IC80) (p=0.0035) Spearman's 16 Human sera 
Nguyen et al. 2022 (64) SARS-CoV-2 HIV ELISA Luciferase 0.9 (IC50) (p<0.001) Linear R2 20 Human plasma 

 
    0.91 (IC50) (p<0.001) Linear R2 20 Human plasma 

 
    0.91 (IC50) (p<0.001) Linear R2 20 Human plasma 

 
    0.87 (IC50) (p<0.001) Linear R2 55 Human plasma 

 
    0.78 (IC50) (p<0.001) Linear R2 55 Human plasma 

 
    0.73 (IC50) (p<0.0001) Linear R2 55 Human plasma 

Ni et al. 2020 (65) SARS-CoV-2 HIV  Luciferase 0.9728 (IC90) (p<0.0001) Linear R2 20 Human sera 
Noval et al. 2020 (66) SARS-CoV-2 HIV Monolayer Score Luciferase 0.64 (IC50) (p<0.0001) Linear R2 101 Human sera 

 
    0.4628 (IC90) (p<0.0001) Linear R2 101 Human sera 

Oguntuyo et al. 2021 (67) SARS-CoV-2 VSV NP-HRP Luciferase 0.8159 (IC50) (p<0.0001) Pearson's 15 Human sera      
0.6415 (IC80) (p<0.0001) Pearson's 15 Human sera 

Schmidt et al. 2020 (68) SARS-CoV-2 VSV Immunofluoresence Luciferase 0.73 (IC50) (p<0.001) Pearson's 20 Human plasma 

     0.86 (IC50) (p<0.0001) Spearman's 20 Human plasma 

  HIV Immunofluoresence Luciferase 0.82 (IC50) (p<0.0001) Pearson's 20 Human plasma 

 
    0.94 (IC50) (p<0.0001) Spearman's 20 Human plasma 

 
 HIV Immunofluoresence Luciferase 0.76 (IC50) (p<0.001) Pearson's 15 mAbs 

 
 

   0.91 (IC50) (p<0.0001) Spearman's 15 mAbs 

 
 VSV Immunofluoresence Luciferase 0.89 (IC50) (p<0.001) Pearson's 15 mAbs 

 
    0.92 (IC50) (p<0.0001) Spearman's 15 mAbs 

Sholukh et al. 2021 (41) SARS-CoV-2 HIV Luciferase Luciferase 0.81 (IC50) (p<0.001) Pearson's 40 Human plasma 

 
 VSV Luciferase Luciferase 0.82 (IC50) (p<0.001) Pearson's 40 Human plasma 

 
 HIV Luciferase Luciferase 0.85 (IC50) (p<0.001) Pearson's 40 Human plasma 

 
 HIV Luciferase Luciferase 0.78 (IC50) (p<0.001) Pearson's 40 Human plasma 

Tan et al. 2020 (69) SARS-CoV-2 VSV  Luciferase 0.7678 (IC50) (p<0.0001) Linear R2 60 Human sera 



Von Rhein et al. 2021 (75) SARS-CoV-2 HIV PRNT Luciferase 0.79 (IC50) Linear R2 29 Human plasma 
 SARS-CoV-2 HIV PRNT Luciferase 0.84 (IC50) Linear R2 8  
Wang et al. 2020 (40) SARS-CoV-2 VSV CPE Luciferase 0.83 (IC50) (p<0.0001) Pearson's 19 Human sera 

 
    0.82 (IC50) (p<0.0001) Pearson's 16 Human sera 

Wohlgemuth et al. 2021 (70) SARS-CoV-2 VSV PRNT SEAP 0.771 (IC50) (p<0.0001) Pearson's 39 Human sera 

 
    0.757 (IC50) (p<0.0001) Pearson's 39 Human sera 

 
    0.703 (IC50) (p<0.0001) Pearson's 39 Human sera 

Xiong et al. 2020 (71) SARS-CoV-2 VSV CPE eGFP 0.8396 (IC50) (p<0.0001) Linear R2 12 Human sera 
Yang et al. 2020 (72) SARS-CoV-2 HIV qPCR Luciferase 0.8325 (IC50) Pearson's 11 Human sera 

 
    0.6931 (IC50) (p<0.005) Linear R2 11 Human sera 

Yu et al. 2021 (73) SARS-CoV-2 HIV Luciferase Luciferase 0.747 (IC50) (p<0.0001) Spearman's 67 Macaque sera 
Zettl et al. 2020 (74) SARS-CoV-2 VSV CPE Luciferase 0.939 (IC50) (p<0.001) Pearson's 13 Human sera 

 
    0.929 (IC50) (p<0.0001) Pearson's 25 Human sera 

Temperton et al. 2005 (76) SARS-CoV-1 MLV CPE GFP 0.78 (IC50) Pearson's 11 Human sera 

 
    0.69 (IC90) Pearson's 11 Human sera 

Fukushi et al. 2006 (77) SARS-CoV-1 VSV CPE GFP 0.77 (IC50) Pearson's 56 Human sera 
Logan et al. 2016 (78) CDV VSV CPE Luciferase 0.76 (IC90) (p<0.0001) Spearman's 202 Dog sera 

     0.79 (IC90) (p<0.0001) Spearman's 202 Dog sera 

     0.65 (IC90) (p<0.0001) Spearman's 202 Dog sera 

     0.91 (IC90) (p<0.0001) Spearman's 168 Dog sera 
Kishishita et al. 2013 (79) CHIKV HIV CPE Luciferase 0.98 (IC50) Linear R2 4 Mouse sera 

     0.78 (IC50) Linear R2 23 Human sera 
Wright et al. 2008 (80) EBLV-1 VSV FAVN Luciferase 0.79* (IC100) Pearson's 9 Animal Sera 
Wright et al. 2008 (80) EBLV-2 VSV FAVN Luciferase 0.9 (IC100) Pearson's 9 Animal Sera 
Konduru et al. 2018 (81) EBOV VSV PRNT FRNT 0.96 (<0.0001) Pearson's 5 Guinea pig sera 

   PRNT PRNT 0.96 (<0.0001) Pearson's 5 Guinea pig sera 
Steeds et al. 2020 (82) EBOV VSV  Luciferase 0.86 (IC50) (p<0.0001) Spearman's 40 Human plasma 
  VSV   0.69* (IC50) (p<0.0001) Spearman's 30 Human plasma 

  HIV   0.54 (IC50) (p<0.001) Spearman's 40 Human plasma 
  HIV   0.38* (IC50) (p=0.0375) Spearman’s 30 Human plasma 

Wilkinson et al. 2017 (83) EBOV VSV   0.99 Unknown 9 Mixed serum and Abs 
  VSV   0.84* Unknown 7 Mixed serum and Abs 
  VSV   0.99 Unknown 9 Mixed serum and Abs 
  VSV   0.96* Unknown 7 Mixed serum and Abs 



  HIV   0.68 Unknown 9 Mixed serum and Abs 
  HIV   -0.03* Unknown 7 Mixed serum and Abs 
  HIV   0.77 Unknown 9 Mixed serum and Abs 
  HIV   0.18* Unknown 7 Mixed serum and Abs 

Wasilewski et al. 2016 (84) HCV HIV ELIspot Luciferase 0.8 (IC50) (p=0.002) Spearman's 12 mAbs 
     0.7 (Single Dilution) (p<0.0001) Spearman's 34 mAbs 

Bailey et al. 2014 (85) HCV HIV Fluorescence Luciferase 0.93 (IC50) (p<0.02) Spearman's 6 mAbs 
Urbanowicz et al. 2016 (86) HCV MLV Immunofluoresence GFP 0.8938 (IC50) (p=0.0152) Pearson's 5 mAbs 
Chan et al. 2006 (87) HIV MMLV Luciferase beta-Gal 0.903 (IC50) Linear R2 70 Antagonist Reagents 
Li et al. 2017 (88) HTNV VSV PRNT Luciferase 0.91 (IC50) Linear R2 62 Rabbit sera 
Alberini et al. 2009 (90) IAV H5N1 HIV ELISA Luciferase 0.78* (IC80) (p<0.001) Pearson's 226 Human sera 
Buchy et al. 2010 (91) IAV H5N1 HIV CPE Luciferase 0.79 (IC50) (p<0.001) Spearman's 101 Human sera 
Garcia et al. 2009 (92) IAV H5N1 HIV CPE Luciferase 0.734* (IC50) (p<0.001) Pearson's 26 Human sera 
Temperton et al. 2007 (93) IAV H5N1 MLV  GFP 0.99 Linear R2 5 Human sera 
     0.78* Linear R2 56 Human sera 
Wang et al. 2010 (94) IAV H5N1 MLV ELISA b-Gal 0.9802* (IC95) Linear R2 17 Mixed sera 

     0.8193* (IC95) Linear R2 17 Mixed sera 
     0.5244* (IC95) Linear R2 17 Mixed sera 

Tian et al. 2018 (95) IAV H7N9 HIV ELISA Luciferase 0.82 (IC50) (p<0.0001) Pearson's 339 Human sera 
Lee et al. 2022 (96) JEV JEV PRNT X-Gal 0.9154 (IC50) (p<0.0001) Linear R2 30 Human sera 
Wright et al. 2010 (97) LBV HIV Luciferase Luciferase 0.83 (IC100) (p<0.0001) Pearson's 184 Bat sera 
Perera et al. 2013 (98) MERS HIV CPE luciferase 0.88 (IC90) Pearson's 21 Camel sera 
Park et al. 2015 (99) MERS HIV PRNT Luciferase 0.97 (IC90) Spearman's 95 Human sera 
Lester et al. 2019 (100) MERS VSV  Luciferase 0.9348 (IC80) (p<0.0001) Pearson's 52 Human sera 
Alharbi et al. 2019 (101) MERS HIV unclear Luciferase 0.96 (IC50) (p<0.0001) Linear R2 8 Camel sera 
Wang et al. 2014 (102) NDV HIV CPE Luciferase 0.92 Linear R2 16 Sera 
Tamin et al. 2009 (103) NIV VSV PRNT Luciferase 0.51 Linear R2 363 Pig sera 

     0.62 Linear R2 363 Pig sera 
     0.68 Linear R2 363 Pig sera 

Logan et al. 2016 (104) PPRV VSV Luciferase Luciferase 0.89 (IC90) (p<0.0001) Spearman's 72 Mixed sera 
Iheozor-Ejiofor et al. 2016 
(105) PUUV VSV FRNT GFP 0.82* (IC50) Spearman's 17 Human sera 

Bukbuk et al. 2014 (106) RFV VSV CPE Luciferase 0.77 (IC50) Spearman's 278 Human sera 
Nie et al. 2017 (107) RABV HIV RFFIT luciferase 0.946 (IU/mL) Linear R2 295 Human and Mouse sera 
Wright et al. 2009 (108) RABV HIV FAVN Luciferase 0.915 (IC50) Pearson's 304 Dog sera 



 RABV HIV FAVN b-Gal 0.918 (IC50) Pearson's 33 Dog sera 
Ning et al. 2021 (89) SEOV VSV PRNT Luciferase 0.82 (IC50) Linear R2 62 Rabbit sera 
Li et al. 2017 (88) SEOV/HTNV VSV PRNT Luciferase 0.845 (IC50) (p<0.001) Linear R2 44 Human sera 

 


