
Le Corre, Daniel, Mary, David, Mason, Nigel, Bernard-Salas, Jeronimo and Cox, 
Nick (2023) Automatically calculating the apparent depths of pits using the Pit 
Topography from Shadows (PITS) tool.  RAS Techniques and Instruments, 2 
(1). pp. 492-509. ISSN 2752-8200. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/102520/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1093/rasti/rzad037

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/102520/
https://doi.org/10.1093/rasti/rzad037
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


RASTAI 2, 492–509 (2023) https://doi.org/10.1093/rasti/rzad037 
Advance Access publication 2023 August 11 

Automatically calculating the apparent depths of pits using the Pit 

Topography from Shadows (PITS) tool 

Daniel Le Corre , 1 , 2 ‹ David Mary, 3 Nigel Mason, 1 Jeronimo Bernard-Salas 2 and Nick Cox 

2 

1 Centre for Astrophysics and Planetary Science, University of Kent, Giles Lane, Canterbury CT2 7NH, UK 

2 Centre d’Etudes et de Rec herc he de Grasse, ACRI-ST, Av. Nicolas Copernic, F-06130 Grasse, France 
3 La grang e UMR 7293, Universit ́e C ̂

 ote d’Azur, Observatoire de la C ̂

 ote d’Azur, Bd de l’Observatoire CS 34229, F-06304 Nice, France 

Accepted 2023 July 28. Received 2023 July 12; in original form 2023 January 29 

A B S T R A C T 

Pits, or pit craters, are near-circular depressions found in planetary surfaces, which are generally formed through gravitational 
collapse. Pits will be primary targets for future space exploration and habitability for their presence on most rocky Solar System 

surfaces and their potential to be entrances to sub-surface cavities. This is particularly true on Mars, where ca ves ha ve been 

simulated to harbour stable reserves of ice water across much of the surface. Caves can also provide natural shelter from the 
high radiation dosages experienced at the surface. Since pits are rarely found to have corresponding high-resolution ele v ation 

data, tools are required for approximating their depths in order to find those which are the ideal candidates for follow-up 

remote investigation and future exploration. The Pit Topography from Shadows (PITS) tool has been developed to automatically 

calculate the apparent depth of a pit ( h ) by measuring the width of its shadow as it appears in satellite imagery. The tool requires 
just one cropped single- or multiband image of a pit to calculate a profile of h along the length of the shado w, thus allo wing for 
depth calculation where altimetry or stereo image data is not available. We also present a method for correcting shadow width 

measurements made in non-nadir observations for all possible values of emission and solar/satellite azimuth angles. Shadows 
are extracted using image segmentation in the form of k -means clustering and silhouette analysis. Across 19 shadow-labelled 

Mars Reconnaissance Orbiter red-band HiRISE images of atypical pit craters (APCs) from the Mars global cave candidate 
catalogue (MGC 

3 ), PITS detected 99.6 per cent of all shadow pixels (with 94.8 per cent of all detections being true shadow 

pix els). F ollowing this testing, PITS has been applied to 123 red-band HiRISE images containing 88 APCs, which revealed an 

impro v ement in the variation of the calculated h due to emission angle correction, and also found 10 APCs that could be good 

candidates for cave entrances on Mars due to their h profiles. 

Key words: Machine Learning – Algorithms – Mars – Planetary surfaces – Pits – Cave entrances. 
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 I N T RO D U C T I O N  

its are circular-to-elliptical depressions on rocky planetary surfaces
hich are generally formed by the gravitational collapse of surface
aterial (Ferrill, Hargitai & Kereszturi 2015 ). Pits can often be
isconstrued as impact craters due to their circular morphology

nd ne gativ e ele v ation relati ve to the surrounding surface. None the
ess, pits are most distinguishable from impact craters by the clear
ack of a raised rim or any ejecta rays – formed by the impact ejecta
ettling on the surface. Pits can also range from being bowl-shaped

similar to the interior of impact craters – to being either more
egularly conical or cylindrical in shape (Ferrill et al. 2015 ). 

There are several proposed mechanisms for how pits are formed
n planetary surfaces. ‘Pit crater’ is a commonly used term for
efining a pit that has been created through volcanic, tectonic, or
aulting-related processes (van der Bogert, Ashley & Ferrill 2014 ).
its can also be formed due to the loss of subsurface volatiles through
hemical dissolution, impact melting, or sublimation (Ferrill et al.
 E-mail: dl387@kent.ac.uk 

a  

h  

2

Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( http://cr eativecommons.or g/licenses/by/4.0/), whi
015 ). Different formation processes, as well as the gravitational
ttraction of the host planet/moon, can lead to pits of a range of
iameters and volumes, though an extraterrestrial pit exceeding
0 km in diameter will instead be known as a ‘caldera’ (Mouginis-
ark & Rowland 2001 ). Many of these mechanisms can also result

n several pits occurring in linear or sinuous series, often called ‘pit
hains’ (Hagen 2014 ). For example, a survey of Martian pit chains
ith diameters greater than 930 m suggested that dilational normal

 aulting w as lik ely to be their most prominent formation pathway
Wyrick et al. 2004 ). This is where normal faults are refracted as
hey pass through unconsolidated layers, causing dilation under the
urface (Ferrill & Morris 2003 ) through which surface material may
rain (see Wyrick et al. 2004 , fig. 2). By comparing with known
errestrial examples, Lunar and Martian pit chains that indicate the
resence of partially intact lava tubes have also been identified (Sauro
t al. 2020 ). Lava tubes are underground conduits that currently or
ormerly held flowing or solid lava (Gad ́anyi & van der Bogert 2014 ),
hich can form pit chains as their roofs collapse. Collapses along
 lava tube are commonly called ‘skylights’ when they appear to
ave lateral entrances into the conduit (Gad ́anyi & van der Bogert
014 ). 
© 2023 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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Pits are not just present on the Moon (Wagner & Robinson 2014 ,
021 ; Sauro et al. 2020 ) and Mars (Wyrick et al. 2004 ; Cushing
t al. 2007 ; Cushing, Okubo & Titus 2015 ), but have also been
bserved on other Solar System bodies, including Mercury (Gillis- 
avis et al. 2009 ) and Venus (Dav e y et al. 2013 ). Ho we ver, this
ork will mostly focus on Martian pits for their prominence in Mars
econnaissance Orbiter (MRO) High Resolution Imaging Science 
xperiment (HiRISE) satellite imagery, as well as their role as po- 

ential entrances to underground caves. Martian pit craters were first 
roposed as potential cave entrances due to the thermal properties of
heir interiors resembling that which would be expected of subsurface 

aterial (Cushing et al. 2007 ). Using Mars Odyssey Thermal Emis-
ion Imaging System (THEMIS) infrared imagery, the candidate’s 
nteriors were found to emit these wavelengths more strongly than 
he exposed surrounding surface during the night (see Cushing et al. 
007 , fig. 4). Since then, MRO Context Camera (CTX) and HiRISE
mages have been surveyed to produce a data base of possible cave
ntrances on Mars called the Mars global cave candidate catalogue 
MGC 

3 ; Cushing 2015 ). This catalogue contains the locations of
062 candidate cave entrances and subdivides them into a number of
ategories including atypical pit craters (APCs), lava tube skylights, 
nd non-pit-related species. APCs are good candidates for cave 
ntrances due to their vertical or o v erhanging walls, rather than being
ore bowl-shaped – similar to those observed by Wyrick et al. ( 2004 ). 
Ca ves ha ve long been a target for human space exploration and

cientific investigation (Boston et al. 2004 ), particularly on Mars. 
ithout suf ficient shielding, prospecti ve astronauts on the Martian 

urface will be limited by how long they can spend there due
o exposure to cosmic radiation. Over time, this dosage will lead 
o an increased chance of cancer development, nervous system 

eterioration, and acute radiation syndrome (Atri et al. 2022 ). In
pite of this, it will likely not be feasible (in terms of fuel and
ost) to transport the amount of shielding necessary for protecting 
uman life o v er long durations. Therefore, underground cav es hav e
een identified as one of the ‘best solutions’ for a Martian habitat
or humans, in terms of eliminating the effect of radiation exposure 
Atri et al. 2022 ). One can imagine that the depth to diameter ratio of
 cave entrance is likely to increase the amount of shelter from this
isk of radiation that is provided. Numerical simulations have also 
uggested that caves are able to harbour stable ice deposits (i.e. no
et loss of ice after one Martian year) across much of the Martian
urface (Williams et al. 2010 ). Such reserves of water ice would be
articularly rele v ant for longer duration cre wed missions to Mars,
ut also for astrobiological in vestigations. W ithin the simulation, a 
ariable that increased the propensity for ice stability in a given cave
as its ceiling thickness (see Williams et al. 2010 , fig. 2). It can be

ssumed that a larger ceiling thickness will generally require a deeper 
r more voluminous cave to be unstable enough to lead to a collapse.
Consequently, knowledge of the depths of planetary pits will be 

ele v ant for knowing which features to target for follow-up remote
bservation with higher resolution sensors, as well as which ones to 
xplore for scientific or habitation purposes. Typically, the relative 
epths of planetary surface features are found in ele v ation data
roduced via radar/laser altimetry or from observing shading changes 
n stereo image pairs. It is the latter method that generally produces
igital Ele v ation/Terrain Models (DEMs/DTMs) with the highest 

patial resolutions. F or e xample, Mars Global Surv e yor (MGS)
ars Orbiter Laser Altimeter (MOLA) DEMs have high surface 

o v erage, but only a best spatial resolution of ≈ 460 m per pixel
Som, Greenberg & Montgomery 2008 ). Whereas DTMs produced 
rom MRO HiRISE stereo image pairs can have resolutions as low 

s 1 m per pixel (Kirk et al. 2008 ). Although, in order to produce this
orm of ele v ation data, more than one image is required to have been
aken of the same region. This also includes significant computational 
ffort to estimate the ele v ation. It is also impossible to produce
ccurate stereo DEMs for areas exhibiting similar shading despite 
hanging viewing angles and solar positions, such as Permanently 
hadowed Regions (PSRs). Therefore, data sets of such ele v ation
ata typically have low co v erage o v er the entire surface. F or e xample,
f the 1062 MGC 

3 features, only eight were contained within an
RO HiRISE DTM. 
A method for estimating the depths of pits that does not require

uch ele v ation data is to observe the size of the pit’s shadow as it
ppears in visual satellite imagery. The principle is that a deeper pit
ill cast a wider shadow than a shallower one, assuming that the Sun

s in the same relative position for both features. Wyrick et al. ( 2004 )
ropose a method for measuring the width of a pit’s shadow ( S ) as a
eans of calculating its apparent depth ( h ) – the relative depth at the

dge of the shadow – and estimating their volumes by assuming all
its are conical. According to the MGC 

3 documentation, a similar 
pproach, as outlined in Cushing et al. ( 2015 ), is also ‘generally’ used
o provide estimates for h for all MGC 

3 APCs (Cushing 2015 ). Both
yrick et al. ( 2004 ) and Cushing et al. ( 2015 ) manually measure S us-

ng GIS software. Although Wyrick et al. ( 2004 ) measures S in MGS
ars Orbiter Camera (MOC) wide-angle images, whereas Cushing 

t al. ( 2015 ) does so in HiRISE imagery. Cushing et al. ( 2015 ) apply
n additional correction to S for all images with an emission angle ( ε)
reater than 5 ◦ by assuming that MRO and the Sun are pointing either
ue east or west at all times. An explanation of ε and a description of
he method by which Wyrick et al. ( 2004 ) and Cushing et al. ( 2015 )
erive h from a measurement of S is given in Section 3.2 . 
With large catalogues of pits, such as MGC 

3 , it is unlikely that
le v ation data will be available for all features. In these cases, S
ust be measured manually for each individual pit, in order to

etermine their depths using current methods. In addition to this, 
achine Learning (ML) and Deep Learning (DL) are being used to

utomatically detect planetary surface features in remote-sensing 
magery (Wang et al. 2017 ; Tertius Bickel et al. 2020 ; Lagain
t al. 2021 ; Rajaneesh et al. 2022 ), including work on detecting
artian pits (Nodjoumi, Pozzobon & Rossi 2021 ). These techniques 
ill serve to bolster existing catalogues and increase their sizes. 
herefore, a method of automatically estimating pit depths from 

isual satellite imagery will be critical. 
In this work, we present a publicly available tool that can

utomatically calculate apparent depths of Martian and Lunar pits by 
xtracting their shadows and measuring the widths. This application, 
amed Pit Topography from Shadows (PITS), is a Python-based 
ramework that only requires a single cropped remote-sensing image 
o operate. PITS can also work with single- or multiband imagery.
urthermore, the tool can automatically derive profiles of the appar- 
nt depths for entire data sets of pits without the need for any manual
alculation or ele v ation data. The main objectives for developing
ITS were to: (i) devise an appropriately simple and robust method
or automatically measuring shadow widths; (ii) pro v e that the tool
chie ves near-human le vel accuracy; and (iii) ensure that the entire
ethod is quicker to run than it would take a human to complete. 
The remainder of this paper is divided into the following sections.

ection 2 is a description and justification of the imagery data set used
or development and testing of PITS. Section 3 is an outline of the
ethodology used to automatically produce apparent depth profiles. 
ection 4 details the testing performance of PITS’ automated shadow 

xtraction, as well as the results of applying the tool to a current
atalogue of Martian pits. Section 5 discusses these results and the
onclusions are presented in Section 6 . 
RASTAI 2, 492–509 (2023) 
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HiRISE RDRV11 
red-band images 
with colour
versions

Figure 1. 19 cropped red-band MRO HiRISE Reduced Data Record Version 
1.1 (RDRV11) images of MGC 

3 APCs. The shadows in these images have 
been manually labelled in order to assess the performance of the different 
automated shadow extraction methods detailed in Section 3.1 . 12 of these 19 
red-band images also have corresponding HiRISE colour versions – denoted 
by blue outlines. These images are not to scale. 
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 DATA  SET  

he PITS tool has been specifically developed for use on remote-
ensing visual imagery, due to its availability at high-resolutions and
ufficient co v erages, as well as for how shadows appear within them.
hadows are expected to be more distinct in imagery taken in visible
avelengths rather than in the infrared range, since some infrared
ill still be radiated from the surface underneath the shadow. The

mount of infrared radiation observed would also vary depending on
 number of factors, such as latitude, time of day/Martian year, and
eteorology. The focus has also been on ensuring the tool can be

sed with geo-referenced remote-sensing data. This is because it is
ssential to know where the analysed pit is present on the surface,
specially for automated cave identification. 

During development and testing, PITS has been applied to MRO
iRISE Reduced Data Record Version 1.1 (RDRV11) imagery of
ars (McEwan 2007 ). This data set was chosen for its very high

patial resolution (0.25–0.5 m per pixel) and the fact that its products
re already calibrated and map-projected (McEwen et al. 2007 ).
he products in this data set were also known to contain sufficient
GC 

3 features such that a well-sized collection of pit images
ould be created. MRO HiRISE images are available in single-band
mages taken in red wavelengths (570–830 nm) and multiband colour
mages comprised of red, blue-green ( < 580 nm), and near-infrared
 > 790 nm) filtered passes (McEwen et al. 2007 ). 

We selected 19 red-band images (shown side-by-side in Fig. 1 )
rom the MRO HiRISE RDRV11 data set for determining PITS’
ccuracy when automatically extracting shadows. These images were
cquired by finding the MGC 

3 APCs that had corresponding HiRISE
magery and selecting the ones which exhibited good variation
n size and morphology. MGC 

3 APCs were chosen since it was
ne of the most abundant classes and appeared the most visually
ynonymous with the definition of a pit. The corresponding pits
ere also contained in the colour versions of 12 of these 19 red-band

mages, allowing for comparison between the different data types. 
These testing images were manually labelled using polygons in

GIS (QGIS Development Team 2022 ) to produce georeferenced
SRI shapefiles for validation. The polygons in these ‘validation
hapefiles’ were assigned an attribute field, called ‘class’, which
escribed what the particular region of pixels represented. A class
f 1 was assigned to the largest continuous shadow in the image,
hich had clearly been cast by the pit’s rim. A class of 2 was
iv en to an y bright features, which were wholly contained within
he shadow polygon. The reasons for labelling bright features are
xplained in Section 3.1.4 . All remaining regions, which constituted
he background, were then assigned a class of 0. These polygons
ere then rasterized such that each pixel in the input image could
e compared to see if a correct shadow detection has been made.
ig. 2 gives an example of this labelling procedure for the testing
iRISE image ESP 052638 2020 RED containing MGC 

3 feature
PC140. 
Since PITS extracts shadows from images cropped to the extents

f a pit, a functionality exists to automatically crop larger image
roducts using user-inputted rectangular ESRI shapefile labels. Using
hese ‘location shapefiles’, as opposed to simply indexing the pixel
oordinates, ensures that the results of PITS can be georeferenced
o the pit’s position on the surface. The location labels must contain
he entire pit, while making sure that no other features exhibiting
hadows of comparable sizes (such as impact craters) are included.
he location shapefiles should also ideally minimize the proportion
f the surrounding surface, but different crop sizes were shown to
ot significantly affect the resulting shadow detection, as long as the
bo v e condition was met. 
ASTAI 2, 492–509 (2023) 
All HiRISE RDRV11 images which contained MGC 

3 APCs
ere acquired in order to compare the depths calculated by PITS
ith literature estimates. Due to the testing results discussed in
ection 4.1 , as well as the limited availability of colour versions, only
ed-band versions were acquired for this depth comparison. From this
election, APCs were remo v ed if they did not exhibit a shadow or if
hey partially fell outside the images’ extents. This resulted in 123
iRISE observations of 88 MGC 

3 APCs, from which PITS extracted
he shadows using k -means clustering when maximizing s̄ 0 (for
easons explained in Sections 4 and 5 ). A map of the Martian surface
 v erlaid with the locations of the MGC 

3 APC features used for both
hadow extraction testing and depth comparison can be found in
ig. 3 . As well as this depth comparison, a surv e y was conducted
pon these 88 APCs to determine which, if any, were possible cave
ntrances given the shapes of the h profiles produced by PITS. 

 M E T H O D O L O G Y  

he following section will detail the various elements of the PITS
lgorithm that when combined can derive a profile of h along the
ength of a pit’s shadow from a single cropped satellite image. Fig.
 shows a flow-chart of the whole algorithm that is applied to each
nput image given to the tool, along with section references for where
ach step is explained in this work. 

art/rzad037_f1.eps
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Figure 2. Example of the polygons produced when labelling the testing 
HiRISE image ESP 052638 2020 RED for the main shadow and any bright 
regions contained within it, which are likely to be features protruding abo v e 
the shadow. These polygons were produced in QGIS version 3.4.15 using the 
‘Advanced Digitizing Toolbar’ (QGIS Development Team 2022 ). 
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.1 Automated shadow extraction 

s discussed in Section 1 , Wyrick et al. ( 2004 ) provide a method
or estimating the depth of a pit by manually measuring the width
f the shadow along the Sun’s line of sight in GIS software. In
his work, we choose to employ image segmentation to automate 
his process, whereby a cropped satellite image of a pit would be
eparated into pixels that contain shadow, and those that are non- 
hadow background. This would result in a binary shadow mask 
onsisting of detected shadow and background pixels (assigned a 1 
nd 0, respectively). 

Image segmentation methods can range in complexity, from 

imple thresholding, all the way up to trained semantic/instance 
egmentation ML or DL models. As mentioned previously, the aim 

hen developing PITS was to devise a method that reflected the 
implicity for a human to delineate a shadow. This section details 
he approaches to image segmentation that were considered for 
utomated shadow extraction: Otsu’s method and k -means clustering 
ith two different types of silhouette analysis. It also details the
ecessary post-processing steps, as well as how these methods can 
e compared to each other on the shadow-labelled images described 
n Section 2 . 

.1.1 Thresholding with Otsu’s method 

tsu’s method is a non-parametric, unsupervised method of image 
egmentation which determines a threshold for separating a grey- 
cale image into foreground and background pixels (Otsu 1979 ). It
oes this by finding the threshold which maximizes the interclass 
ariance in intensity between the foreground and background pixels. 
s shadows should be visibly distinct from the surrounding surface, 
tsu’s method was considered for use in extracting them. 
The full mathematical procedure is as follows: calculate a his- 

ogram of the pixel values with L bins, where L is the number of grey
evels. The number of pixels in the bin i is given by n i whilst the total
umber of pixels is N = n 1 + n 2 + ... + n L . Following Otsu’s method,
 probability can be assigned to each bin i as p i = n i / N , where p i 

0 and 
∑ L 

i= 1 p i = 1. A given threshold value ( t ) will separate the
ixels into two classes ( C 0 and C 1 ), whose probability distributions
re given by equations ( 1 ) and ( 2 ), respectively. 

 1 = 

t ∑ 

i= 1 

p i = 1 − w 2 , (1) 

 2 = 

L ∑ 

i= t+ 1 

p i = 1 − w 1 . (2) 

The mean of classes C 0 and C 1 ( μ1 and μ2 , respecti vely) are gi ven
y equations ( 3 ) and ( 4 ), where the total mean of all pixels is μT =
 1 μ1 + w 2 μ2 . 

1 = 

t ∑ 

i= 1 

ip i /w 1 , (3) 

2 = 

L ∑ 

i= t+ 1 

ip i /w 2 . (4) 

The threshold selected by Otsu’s method is the one that maximizes
he interclass variance ( σ 2 

B ) of pixels between the two classes, which
s given by equation ( 5 ). 

2 
B = w 1 ( μ1 − μT ) 

2 + w 2 ( μ2 − μT ) 
2 . (5) 

Therefore, an y pix els which hav e an intensity below this threshold
re classified as a shadow pixel. It should also be noted that Otsu’s
ethod requires a grey-scale image to operate. Therefore, colour 

mages have been averaged across all bands and the averages rounded
o produce a single grey-scale image of integer pixel values. 

.1.2 k-means clustering 

 -means is an unsupervised clustering algorithm whose objective it 
s to separate N number of data points into the k number of clusters
defined as C = { C 0 , C 1 , ..., C k−1 } ) which locally minimize the
ntracluster sum of squared Euclidean distances. Therefore, k -means 
lustering finds a local minimum of the objective function J ( k ), given
n equation ( 6 ), where μi is the mean (also called the ‘centroids’) of
he data points x in cluster C i . 

 ( k) = 

k−1 ∑ 

i= 0 

∑ 

x ∈ C i 
‖ x − μi ‖ 2 . (6) 
RASTAI 2, 492–509 (2023) 
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Figure 3. Global map of Mars (in a −180 ◦ to 180 ◦ longitude domain) showing the 88 MGC 

3 APC features that were used in the development of the PITS 
tool. The 69 APCs which were only used for comparison with the depths provided by MGC 

3 are given as blue circles. The 19 APCs which were used both for 
depth comparison and for testing are given as yellow triangles. The inset axis focuses in on Arsia Mons, since the majority of the APCs used in this work are 
located there. This map was produced in QGIS by using the USGS Mars Viking Colourised Global Mosaic ∗ as the base map and converting the MGC 

3 data 
base (Cushing 2015 ) from CSV to ESRI shapefile format with the JMARS GIS software package (Christensen et al. 2009 ). 
∗ https:// astrogeology.usgs.gov/ search/map/Mars/ Viking/MDIM21/ Mars Viking MDIM21 ClrMosaic global 232m . 
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k -means finds only the local minimum of J ( k ) since the centroids
eeds to be initialized – often randomly. Once the centroids have been
efined for the first time, the N data points are then each assigned
o the cluster to whose centroid it is the closest. These centroids
re then iteratively updated by calculating the new mean of the data
oints x for each cluster and then repeating this assignment step. This
s repeated until the impro v ement in J ( k ) no longer meets a given
olerance, or the chosen number of iterations is exhausted. k must
lso be known a-priori for k -means clustering to operate. 

k -means clustering was chosen abo v e other clustering methods for
ts simple-to-interpret procedure and since this algorithm was found
o have a suitable run-time when dealing with the high numbers
as well as dimensionality) of data points found in high-resolution
emote-sensing imagery. In the case of PITS, the data points that k -
eans must segment are pixel intensities, meaning that the algorithm

s tasked with clustering in three dimensions: the longitude, latitude,
nd pixel intensity axes. 

With the implementation of the k -means algorithm into PITS, the
esult is an array of the same size as the input image with each
ixel being assigned an integer value according to which cluster it
elongs to (0,..., k − 1). Although, due to how the cluster centroids
ave to be randomly initialized, these integer values are not assigned
onsistently across multiple runs even with identical parameters. In
rder for the tool to extract specific clusters, clusters are reassigned
nteger values according to their average brightness in the input image
from 0 being the darkest, to k − 1 the brightest). Only the darkest
luster is then selected, and all constituent pixels are classified as
hadow pixels. 
ASTAI 2, 492–509 (2023) 
In the case of colour images, a single shadow mask had to be
erived from the resulting clusters from applying k -means to each of
he bands. This was performed by clustering each band individually
nd then taking the modal cluster label for each pixel across the three
ands. F or e xample, if a pix el was assigned to clusters C 0 , C 1 and C 1 

cross three bands, then this pixel would be reassigned to the modal
luster of C 1 . Where the modal count across all bands for a cluster
ssigned to a giv en pix el is 1 or equal to that of another cluster, pixels
re preferentially assigned to darker clusters. 

.1.3 k-means clustering with silhouette analysis 

s was disco v ered in preliminary testing, using a constant value of k
pon all images was resulting in highly variable results. Therefore, a
ethod was necessary for automatically deciding which value of k to

se for a given image. This would allow PITS to adapt the k -means
lustering algorithm to images which may be best described by more
r fewer clusters than others. 
Silhouette analysis is an approach for automatically suggesting a

 value whereby it finds the value of k which returns the clusters
hose data points are most consistent and distinct from those in
ther clusters (Rousseeuw 1987 ). For simplicity, this can be said
o be the k that yields the most appropriate clusters. The degree to
hich a given data point in cluster C i is appropriate is defined by the

ilhouette coefficient ( s i ) and is given by equation ( 7 ). 

 i = 

b i − a i 

max { a i , b i } , (7) 
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Figure 4. A flow-chart of the entire PITS algorithm. This procedure is applied to each input image given to the tool. Arrows are colour-coded according to the 
direction of flow through the algorithm (black), when data are retrieved (red), and where there are any iterative processes (blue). Each individual step of the 
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the tolerance (in squared Euclidean distances) for declaring convergence of the k -means algorithm. 
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here a i is the mean distance of a point in cluster C i to all other
oints in C i . Whereas b i is the shortest mean distance of a point in
 i to all of the points in another cluster which it does not belong to. 
s i can range between −1 and 1, with the goal being to maximize

 i since a larger value corresponds to a more consistent and distinct
luster. This means that instead of applying one value of k , PITS
terates its k -means clustering o v er a range of k values ( k = 4 to 13
n integer intervals). This range was selected as testing found that 
sing a smaller or larger k never produced the most accurate results.
he tool then calculates s i for each pixel upon downscaled (by a

actor of 10) versions of the input image and the array of assigned
luster values. This f actor w as chosen since it significantly impro v es
he run-time during this silhouette analysis, while not changing the 
uggested k values for each image during testing. 

s i is then averaged over all the data points within the same clusters
o produce k average silhouette coefficients ( ̄s i ). s̄ i describes, on 
RASTAI 2, 492–509 (2023) 
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Figure 5. Top-down schematic of an idealized, circular pit, displaying where 
the observed shadow width ( S obs ) of a pit along the Sun’s line of sight 
corresponds to when being measured by the PITS tool. The solar azimuth 
angle ( ϕ) is the clockwise angle between due north (in the case of PITS) and 
the subsolar point. Similarly, the satellite azimuth angle ( ω) is the clockwise 
angle between the same reference point and the subsatellite point. 
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verage, how consistent all pixels in cluster C i are with each other
nd how distinct they are from those in other clusters. The mean of
 ̄i can then be taken again, this time to produce an o v erall silhouette
core, which describes how appropriate all clusters are for this value
f k . This silhouette analysis has been tested with selecting the value
f k that maximized the o v erall silhouette score and also that which
aximized the average silhouette coefficient for the pixels in the

arkest cluster ( ̄s 0 ). 

.1.4 Post-processing of shadow masks 

n order to ensure correct shadow width measurement, the extracted
hadow masks (produced by Otsu’s method and k -means clustering
ith silhouette analysis) undergo post-processing. Once the binary

hadow masks are produced, the largest continuous feature is chosen,
hile all other smaller shadow detections are remo v ed. The reason for

his is to remo v e an y shadows from other objects in the image, such as
oulders, which could interfere with the shadow width measurement.
he ‘main’ shadow, upon which the width will be measured, will be

he largest shadow, provided the feature is not highly irregular or
egraded such that multiple similarly sized shadows are present.
his condition is manually verified before using PITS to extract the
ain shadow in a given image. 
Once the main shadow has been found, the next step is to identify

ny bright features that are wholly contained within it. These are
ikely to be either noisy pixels, or detritus protruding abo v e the
hadow. Whilst any holes in the shadow mask due to the former
hould be filled, filling in the latter would lead to o v erestimation in
he shadow width since they will be casting their own shadows. As
 result, PITS performs morphological closing on all holes with an
rea less than 10 pixels, such that any remaining larger holes are
ikely to be protruding bright features. 

.1.5 Comparing automated shadow extraction methods 

n order to determine which of the abo v e approaches to automated
hadow extraction are most appropriate, a consistent way of compar-
ng them is necessary. All three of (i) Otsu’s method, (ii) k -means
lustering when maximizing the o v erall silhouette score, and (iii)
 -means clustering when maximizing s̄ 0 have been applied to the 19
hadow-labelled HiRISE RDRV11 images described in Section 2 .
heir results have been compared to the rasterized validation
hapefiles, whereby a confusion matrix could then be calculated
or each image. It should be noted that the results are compared
fter the shadow has undergone the post-processing described in
ection 3.1.4 . This matrix consists of the number of true positive
TP), false positive (FP), true negative (TN), and false negative (FN)
hadow pixel classifications. 

From this matrix, the precision (P), which is the ratio of correctly
etected shadow pixels to all detected shadow pixels, is calculated
sing equation ( 8 ). 

 = 

TP 

TP + FP 

. (8) 

The recall (R), which is defined as the ratio of correctly detected
hadow pixels to all true shadow pixels, can also be found using
quation ( 9 ). 

 = 

TP 

TP + FN 

. (9) 

A popular metric used for describing the o v erall performance of
lassification algorithms is F1 score. As such, F1 score has been
ASTAI 2, 492–509 (2023) 
elected as the metric for assessing the performance of the various
hadow extraction methods. The method that achieves the highest F1
core in detecting shadow pixels is the one chosen for inclusion in
he PITS algorithm. F1 score, or just F1, is the harmonic mean of P
nd R , and is given by equation ( 10 ). 

1 = 2 

(
P · R 

P + R 

)
. (10) 

As explained in Section 3.1.3 , k -means clustering is performed for
 range of k values in order for silhouette analysis to be possible.
herefore, when testing k -means clustering with silhouette analysis,

he k values which produced the maximum F1 score in each testing
mage (not necessarily the one suggested via silhouette analysis)
ould also be recorded. The F1 scores generated when using these
target’ k values represent the highest achievable performance when
sing k -means clustering for shadow extraction. This helps assess
f silhouette analysis is an appropriate method of automatically
uggesting k v alues. Ho we v er, the y will of course not be known in
uture instances where the shadows have not been manually labelled.

.2 Apparent depth calculation 

.2.1 Automatically measuring shadow widths 

he task of manually measuring a shadow’s width along the Sun’s
ine of sight is relatively straightforward thanks to map-projected
atellite data and GIS software tools. On the other hand, making
he same measurement automatically upon the binary shadow masks
extracted via the methodologies in Section 3 ) is not as simple. This
s due to the fact that the Sun’s line of sight can come from a range
f angles. 
In order to account for this, PITS utilizes the solar azimuth angle

 ϕ), which is regularly given in the metadata for planetary remote-
ensing imagery. ϕ is the clockwise angle between some reference
oint (due north in PITS’ case) and the subsolar point – the location
irectly below the Sun on the surface. Fig. 5 shows how the observed
hadow width ( S obs ), as seen by the HiRISE camera, can be measured
y knowing ϕ. 
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PITS is able to retrieve ϕ for each image from the PDS3 index
les. These files provide the necessary sensing information for all 
ata products for a particular mission or instrument. Therefore, PITS 

an rotate the binary shadow masks anticlockwise about their centre 
y ϕ to horizontally align the shadow such that the Sun’s line of sight
ow passes directly through the mask from bottom to top. Nearest 
eighbour interpolation is used when aligning the shadow masks as 
o return the pixels to a gridded array while retaining their binary
alues, which would not be the case if a higher order of interpolation
as used. 
Aligning shadows in this manner means that PITS can now 

easure the distance between the first and last shadow pixels along 
he Sun’s line of sight (i.e. the shadow pixels adjacent to the pit’s rim
nd shadow’s edge, respectively). This shadow width (in pixels) is 
hen multiplied by the image’s resolution to acquire S obs (in metres).
his measurement of S obs is taken at every pixel along the shadow’s

ength (i.e. the axis perpendicular to the Sun’s line of sight) in order
o produce a profile of the shadow width. 

Ho we v er, if an y bright features are found, as per the method in
ection 3.1.4 , then the aligned binary shadow mask requires further

reatment before measuring S obs . For those bright features that are 
ound to be closer to the pit’s rim than the shadow’s edge, then
ll shadow pixels between them and the rim along the Sun’s line of
ight are remo v ed. This ef fecti vely means that the calculated apparent
epth is now the relative depth from the bright feature to the shadow’s
dge. 

Alternatively, if the feature is closer to the shadow’s edge than the
it’s rim, then all shadow pix els be yond it are remo v ed, meaning the
pparent depth is now the relative depth from the rim to the bright
eature. Due to the risk that detected bright features are only artefacts
f the image, or caused by reflection of a sunlit object elsewhere in
he pit, S obs is also measured upon a shadow mask where all holes
re filled. This provides a range of possible values to display within
he apparent depth profiles. 

.2.2 Correcting shadow widths for non-nadir observations 

s mentioned in Section 1 , Cushing et al. ( 2015 ) apply a correction
actor to the manual shadow width measurements made within all 
iRISE images with an emission angle ( ε) greater than 5 ◦. ε is the

ngle between the satellite and a normal drawn from the surface, and
s shown in Fig. 6 . The satellite will also have an azimuth angle ( ω),
hich is the clockwise angle between the same reference point as for
 and the point directly below the satellite (see Fig. 5 ). As discussed

n Section 5 , ε plays an important role in correctly calculating h since
he camera will observe a distorted shadow within any image where 
 is non-zero. 

The moti v ation for applying a ‘ ε-correction’ is that when the
iRISE camera is pointing in the same direction as the Sun’s

llumination, it will observe a foreshortened shadow due to the pit’s
im partially obscuring its view. Whereas the shadow will appear 
nlarged when HiRISE and the Sun are looking in opposite directions 
s some of the shadowed pit wall will now be visible. The scale of
hese distortion effects will depend on the degree of ε (see Cushing
t al. 2015 , fig. 9). 

In their correction, Cushing et al. ( 2015 ) assume that the Sun and
he HiRISE camera are al w ays pointing either due east or west (i.e.
 and ω must equal 90 ◦ or 270 ◦). This may be suitable for HiRISE

magery at non-polar latitudes, but this may not be the case for all
pacecraft in orbit around Mars or other planetary bodies. Therefore, 
n this work we present a generalization of this correction method
uch that it can be employed for all values of ϕ, ω, and ε. 

The aim is to retrieve the true shadow width ( S true ) that would
e observed if ε was zero. This is achieved by calculating the
bliquity of the satellite parallel and perpendicular to the Sun’s line
f sight ( ε � and ε ⊥ 

, respectively, and shown in Fig. 6 ). The purpose
or calculating these separate variables is that a non-zero ε � will
ead to a distorted shadow width measurement, and ultimately an 
ncorrect h value. Whereas a non-zero ε ⊥ 

will cause an incorrect
hadow length measurement. In order to get an accurate S true , the
-correction presented in this section adapts the equations presented 
n Cushing et al. ( 2015 ) by replacing ε for ε � . 

The first step in deriving ε � and ε ⊥ 

is to calculate the ground
istance (in metres) between the centre of the image and the satellite
 d g ) using equation ( 11 ), where d s is the slant distance (in metres)
etween the satellite and the centre of the image. d s is also provided
n the PDS3 index file. Any ‘ground’ distances referred to in this
ection are taken parallel to the horizon, rather than along the surface
s it curves beyond it. 

 g = d s · sin ε. (11) 

d s is also used in equation ( 12 ) for finding the satellite’s altitude
bo v e the horizon ( d h ). 

 h = d s · cos ε. (12) 

Fig. 6 sho ws ho w the parallel ground distance from the subsatellite
oint to the centre of the image ( v ) and the perpendicular ground
istance from the subsatellite point to the Sun’s line of sight ( u ) can
e calculated using equations ( 13 ) and ( 14 ). 

 = d g · | cos γ | , (13) 

 = d g · sin γ, (14) 

here γ is the ground phase angle between Sun and satellite, which is
efined as the smallest absolute difference between ϕ and ω, meaning
hat γ can range between 0 ◦ and 180 ◦. 

Therefore, Fig. 6 shows how ε � and ε ⊥ 

can now be found using
quations ( 15 ) and ( 16 ), respectively. 

 � = arctan ( v/d h ) , (15) 

 ⊥ 

= arctan ( u/d h ) . (16) 

In case (A) where 0 ◦ ≤ γ < 90 ◦ (i.e. the Sun and the satellite are
ointing roughly in the same directions), we can correct S obs to find
 true using equation ( 17 ), which has been adapted from equations (3)
o (5) of Cushing et al. ( 2015 ). 

 true = S vis + 

S vis · tan ε � 
tan α − tan ε � 

, (17) 

here the solar incidence angle ( α) is defined as the angle between
he Sun and a normal drawn from the surface and S vis is the true
idth of the visible portion of the shadow not blocked from view of

he satellite by the pit’s rim. S vis is given by equation ( 18 ). 

 vis = 

S obs 

cos ε � 
. (18) 

Meanwhile, in case (B) where 90 ◦ < γ ≤ 180 ◦ (i.e. the Sun and
atellite are pointing in approximately opposite directions to one 
nother), S true is found using equation ( 19 ), which has been adapted
rom equations (7) to (9) of Cushing et al. ( 2015 ). 

 true = 

S obs · sin α

cos 
(
90 ◦ − α − ε � 

) . (19) 
RASTAI 2, 492–509 (2023) 
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Figure 6. Schematic (o v erlaid on HiRISE image ESP 011531 2065 RED) of the sensing parameters in two examples of the cases (A) and (B) where the 
satellite and Sun are pointing in approximately the same or opposite directions (i.e. 0 ◦ ≤ γ < 90 ◦ or 90 ◦ < γ ≤ 180 ◦, respectively). Each of these parameters 
are defined in Section 3.2.2 . Cases (A) and (B) dictate how the shadow width observed by the satellite ( S obs ) is corrected to obtain the true shadow width ( S true ) 
as if the emission angle ( ε) was zero. The black, yellow, and blue dots represent the image centre, and the subsolar and subsatellite points, respectively. 
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Otherwise, in the event that γ = 90 ◦, ε � will be zero, meaning that
here will be no distortion in the observed shadow width (i.e. S true =
 obs ). While γ 
= 0 or 180 ◦, a correction can also be applied to the
bserved length of the detected shadow ( L obs ) using equation ( 20 ) to
etrieve the true shadow length ( L true ). L obs is simply the length of
he detected shadow (in pixels) multiplied by the image’s resolution
in m per pixel). Correcting L obs does not affect the h profile directly,
ut rather serves as a reference for where the profile is taken along
he length of the pit. 

 true = 

L obs 

cos ε 
. (20) 
ASTAI 2, 492–509 (2023) 

⊥ 
When this ε-correction was applied to all 123 HiRISE images used
n this work, the difference between the h values (the deri v ation of
hich is detailed in the Section 3.2.3 ) before and after ε-correction
as found to be ≈ 14.5 per cent on average and ≈ 231.4 per cent at

ts maximum (when ε � = 28.9 ◦). 

.2.3 Calculating apparent depth profiles 

ince S obs has been automatically measured and corrected for non-
adir observations to obtain S true , the apparent depth ( h ) can now be
ound. Fig. 7 takes a cross-section of a simplified pit along the Sun’s
ine of sight, showing how a value for S true can be combined with
nowledge of α (also retrieved from the PDS3 index file) to calculate

art/rzad037_f6.eps
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Figure 7. The cross-section of a simplified pit with an uneven floor as taken 
along the Sun’s line of sight. This figure shows how the apparent depth ( h ) 
can be found using the solar incidence angle ( α) and the true shadow width 
( S true ). The diameter ( D ) is not measured by PITS. Instead, the tool focuses 
on producing a profile for h along the entire length of the shadow, instead 
of calculating the maximum depth ( H ) like Wyrick et al. ( 2004 ), since this 
requires the assumption that all pits are conical in volume. 
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Figure 8. (a) Shows the MGC 

3 feature APC015 as seen in HiRISE image 
ESP 066942 1735 RED. The image has been rotated using the solar azimuth 
angle ( ϕ) so that the Sun’s line of sight now passes from bottom to top in the 
image. The red and blue lines correspond to the pit’s rim and the shadow’s 
edge, respectively, which were automatically detected by PITS. (b) Gives the 
apparent depth ( h ) profile calculated by PITS upon (a). This profile represents 
the relative depth between the rim and the shadow’s edge shown in (a). 
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 using equation ( 21 ) (adapted from the equation used by Wyrick
t al. 2004 ). 

 = S true · tan α. (21) 

Unlike Wyrick et al. ( 2004 ), PITS does not assume that all pits
re conical, since this was visibly untrue for the majority of the APC
eatures observed in this work. Moreo v er, no suitably robust method
f automatically measuring the diameter ( D ) could be found, which
s necessary for deriving the maximum depth ( H ). Instead, the tool
ocuses on extracting the full shadow using image segmentation such 
hat S true can be measured at every pixel along the entire length of the
hadow – rather than just at one location. This means that a profile of h
s produced, whereas previously h has been provided as a single value
Wyrick et al. 2004 ; Cushing et al. 2015 ). This h profile is built up of
he relative depths between the pit’s rim and the shadow’s edge along
he Sun’s line of sight, taken at each pixel in the shadow’s length. 

It should be noted that regions of PITS’ h profiles that correspond
o where the shadow’s edge is adjacent to the pit wall/rim, should
e treated as a minimum depth since the full width could not be
easured. This is particularly rele v ant for deep features whose floors

re completely co v ered in shadow. An example of the h profile
roduced by PITS for the HiRISE image ESP 066942 1735 RED
f MGC 

3 feature APC015 can be found Fig. 8 . 

.3 Error analysis 

s can be seen from equation ( 21 ) for finding h along the length of
he shadow, as well as equations ( 17 ) and ( 19 ) for deriving S true , the
ncertainty in h ( 	 h ) ultimately depends on a variety of factors. 
The first step towards finding 	 h is determining the uncertainty 

n S true ( 	 S true ), which itself depends on the uncertainties in S obs , ε,
nd α ( 	 S obs , 	ε, and 	α). The values for ε and α, which are given
ithin the PDS3 index files, are taken at the centre of the HiRISE

mage. Therefore, there will be an uncertainty in these values when 
sing them to calculate h , since the pit could fall anywhere within the
inimum and maximum latitude/longitude coordinates of the image. 
o we ver, due to the significant distance between the Sun and Mars,
α was found to be ne gligible. Ev en for the HiRISE image with the
argest footprint (of those described in Section 2 ), 	α represented 
nly 1 × 10 −5 per cent of the value for α. 
Whilst 	α may be negligible, the altitudes of planetary remote- 

ensing cameras render 	ε too significant to ignore. Thanks to the
DS3 index files, both the range of latitude/longitude coordinates of 

he image and the distance between the camera and the image centre
re known for every HiRISE RDRV11 product. PITS is then able to
se these values to calculate the maximum and minimum possible 
alues for ε for each image to use as 	ε. A maximum value of 	ε 

 0.063 ◦ was calculated across all 123 HiRISE images. As a result,
ε can become relatively high compared to ε when the satellite is

ery close to looking through nadir. 
RASTAI 2, 492–509 (2023) 
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Table 1. Average performance scores of shadow pixel detections with 
Otsu’s method and k -means clustering with silhouette analysis across 19 
shadow-labelled HiRISE red-band images of MGC 

3 APCs. The table 
compares the average precision 

(
P̄ 
)
, recall 

(
R̄ 

)
, and F1 scores 

(
F̄1 

)
of 

each method, with the maximum of each score highlighted in bold. For 
k -means clustering with silhouette analysis, the results of using the k 
values which maximized the o v erall silhouette score, and the silhouette 
coefficient of the darkest cluster ( ̄s 0 ), are given separately. The standard 
deviations (SD) of each performance score across all images are given 
in brackets, with the minimum SD of each score across all methods 
also highlighted in bold. 

Method P̄ [per cent] R̄ [per cent] F̄1 [per cent] 

Otsu’s method 76.8 (22.1) 100.0 (0.0 ) 84.6 (18.4) 
Silhouette score 97.7 (2.2 ) 93.4 (10.0) 95.1 (5.4) 
s̄ 0 94.8 (4.2) 99.6 (1.1) 97.1 (2.6 ) 
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Since PITS measures a shadow’s width via automated means, this
ill contribute an uncertainty to S obs which needs to be accounted

or. This uncertainty will be a factor of the expected proportion of
rue shadow pixels that are missed, as well as the expected rate at
hich non-shadow pixels are incorrectly classified as shadow. This

xpected uncertainty has been estimated by taking the precision and
ecall shadow extraction performances calculated in Section 3.1.5
nd averaging them across all 19 testing images. The PSF of the
iRISE camera, which is typically only 2 pixels wide at full width

t half-maximum (McEwen et al. 2007 ), is expected to be negligible
ompared to this uncertainty. 

As a result of potentially different average precision and recall
ates ( ̄P and R̄ , respectively), the upper and lower limits of 	 S obs 

re not necessarily equal. The upper limit ( 	 S obs , + 

) is a function of
he average ratio of missed shadow pixels to all true shadow pixels
called the ‘miss rate’) and is equal to 1 − R̄ . Therefore, 	 S obs , + 

can
e found by using equation ( 22 ). 

S obs , + 

= (1 − R̄ ) · S obs . (22) 

The lower bound 	 S obs , − is a function of the ratio of falsely
etected shadow pixels to all shadow detections (called the ‘false
isco v ery rate’) and is equal to (1 − P̄ ). 	 S obs , − is found using
quation ( 23 ). 

S obs , − = (1 − P̄ ) · S obs . (23) 

Now that 	 S obs and 	ε are known, 	 S true can be calculated
sing the procedure given in Section A . This requires deriving the
ncertainty in ε � ( 	ε � ) in situations where γ does not equal 0 ◦,
0 ◦, or 180 ◦. Since 	α is negligible, as mentioned previously, the
ncertainty in h ( 	 h ) is simply a function of 	 S true and is given by
quation ( 24 ). 

h = 	S true · tan α. (24) 

 RESULTS  

.1 Testing shadow extraction on HiRISE imagery 

.1.1 Shadow extraction performance on red-band ima g ery 

able 1 presents the average precision 
(
P̄ 

)
, recall 

(
R̄ 

)
, and F1 score

F̄1 
)

of shadow pixel detections when applying Otsu’s method
nd k -means clustering with silhouette analysis to automatically
xtract shadows from 19 shadow-labelled HiRISE red-band images
f MGC 

3 APCs. Results are given separately according to whether
ASTAI 2, 492–509 (2023) 
he k -means algorithm has been applied using the k values which
aximized the o v erall silhouette score or s̄ 0 . 
As Table 1 shows, extracting shadows by thresholding with Otsu’s
ethod resulted in an F̄1 of 84.6 per cent. While this may suggest

igh performance, this corresponds to a R̄ and ̄P of ≈ 100 per cent and
6.8 per cent, respectively. This means that the vast majority of true
hadow pixels will be detected, but roughly a quarter of all shadow
etections will be false. Fig. 9 displays examples of the shadows
hat were extracted by each method presented in Section 3.1 during
esting on labelled HiRISE red-band imagery. As shown in Fig. 9 , the
hreshold generated by Otsu’s method for ESP 030995 1610 RED is
learly too weak due to the large number of FP detections. This is due
o the image having a higher proportion of dark non-shadow pixels,
s images with similar shading conditions were found to generate
he lowest P across all testing images. 

Table 1 also pro v es that, upon shadow-labelled red-band imagery,
sing k -means clustering with the k values which maximized s̄ 0 
chieved the highest F̄1 (97.1 per cent) and R̄ (99.6 per cent).
he F1 scores achieved by k -means clustering when maximizing
 ̄0 across all 19 red-band testing images, also possessed the lowest
tandard deviation (SD). However, the highest P̄ (97.7 per cent) was
chieved by k -means clustering when the overall silhouette score was
aximized. 
Using k -means clustering with the target k values discussed in

ection 3.1.5 upon the 19 shadow-labelled HiRISE red-band images
roduced an F̄1 of 98.1 per cent with a SD of 2.2 per cent, which is
ot significantly higher than the F̄1 in Table 1 achieved by both
pproaches to k -means clustering with silhouette analysis. As a
esult, silhouette analysis can be said to be a suitable method for
 suggestion when using k -means clustering for automated shadow
xtraction. 

.1.2 Shadow extraction performance on colour ima g ery 

ITS’ automated shadow extraction has also been tested upon
iRISE colour imagery of Martian pits to determine if more image
ands will lead to more accurate shadow pixel detections. Table
 shows the P̄ , R̄ , and F̄1 when applying Otsu’s method and k -
eans clustering with silhouette analysis across 12 shadow-labelled
iRISE colour images of MGC 

3 APCs. This confirms that applying
 -means clustering with the k which maximized s̄ 0 achieved the
ighest and least variable F̄1 across both red-band and colour
mages. 

Since only 12 colour versions could be acquired for the 19
ed-band images, the average performance scores in Tables 1 and
 cannot be directly compared. Instead, the average performance
cores for all shadow pixel detections were calculated for the 12
iRISE red-band images that had corresponding colour versions.
tsu’s method achieved an F̄1 of 79.4 per cent (with a SD of
1.1 per cent) upon these 12 red-band images. Whereas k -means
lustering with the k suggested by maximizing the silhouette score
r s̄ 0 achie ved F̄1 v alues of 93.2 and 94.9 per cent (with SD of 7.2
nd 4.1 per cent), respectively. Comparing these scores with those
n Table 2 shows that using HiRISE colour imagery only yielded
 marginal impro v ement in shadow e xtraction performance when
sing k -means clustering, but not when using Otsu’s method. HiRISE
olour images will have three times the number of pixels as a red
ersion, since it has three bands as opposed to just one. Consequently,
he average run-time when using colour imagery was found to
e approximately three times longer than when using red-band
ersions. 
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Cropped input 
images

Otsu’s method

-means 
clustering when 

maximising 
silhouette score

ESP_050234_1735_RED ESP_030995_1610_RED PSP_003647_1745_RED

-means 
clustering when 
maximising 

Figure 9. Examples of the shadow pixel detections using each of the methods described in Section 3.1 . The example results shown here are for the HiRISE images 
ESP 050234 1735 RED, ESP 030995 1610 RED, and PSP 003647 1745 RED. These images were labelled, as described in Section 2 , for their respective 
shadows to be able to assess the validity of the detected shadow pixels. The detections and omissions of each extracted shadow have been colour-coded: true 
positives are green, false positives are red, false negatives are blue, and true negatives have been blended into the white background. 
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.2 Applying PITS to HiRISE imagery of MGC 

3 APCs 

s previously mentioned in Section 2 , all HiRISE RDRV11 red- 
and images which fully contained MGC 

3 APCs that exhibited 
hadows were acquired. PITS was then applied to these 123 HiRISE
bservations of 88 APCs to automatically calculate their h profiles. 
ue to it achieving the highest F̄1 during testing, as detailed in 
p
ection 4.1 , k -means clustering when maximizing s̄ 0 was the chosen
ethod of automated shadow extraction. A CSV file containing the 

esults for all 123 images can be found in the online supporting
aterial. In order to reduce the h profiles to singular values, the h at

he shadow’s centre ( h c ) and the maximum h ( h m ) were both extracted.
he file also includes the corresponding MGC 

3 APC codes, HiRISE 

roduct names, image resolutions, and sensing information. Table 3 
RASTAI 2, 492–509 (2023) 
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Table 2. Average performance scores of shadow pixel detections with 
Otsu’s method and k -means clustering with silhouette analysis across 
12 shadow-labelled HiRISE colour images of MGC 

3 APCs. This table 
follows the same format and notation as in Table 1 . 

Method P̄ [per cent] R̄ [per cent] F̄1 [per cent] 

Otsu’s method 69.4 (24.6) 100.0 (0.0 ) 78.9 (21.1) 
Silhouette score 92.6 (11.0) 98.9 (3.0) 95.2 (7.0) 
s̄ 0 94.1 (3.8 ) 99.4 (1.4) 96.6 (2.5 ) 

g  

s
 

a  

u  

s  

t  

i  

w  

p

4

O  

R  

n  

p  

w  

h  

t  

s  

b  

v
a  

t
 

f  

a  

t  

v  

a  

c  

b  

σ  

e  

A  

b

4

A  

h
A  

E  

t  

w  

b  

f

v  

t  

o  

e  

t  

e  

e  

s  

h  

t  

(  

t  

P

4

I  

M  

o  

f  

p  

w  

o  

p  

1  

T  

f  

p
h

 

d  

t  

w  

i  

o  

fi  

r  

d  

s  

f
 

p  

i  

s  

e  

s  

s  

d
(  

1  

s  

i

5

W  

u  

v  

i  

t  

s  

t  

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/rasti/article/2/1/492/7241547 by guest on 23 August 2023
ives a sample of these results for the first five HiRISE images when
orted alpha-numerically by the product name. 

Applying PITS to HiRISE imagery of MGC 

3 APCs has also
llowed the recording of the run-time, in order to suggest to a future
ser the approximate speed at which the tool can analyse their data
et. It was found that across the full data set of 123 HiRISE images,
he tool exhibited a minimum and maximum of ≈ 5 s and 500 s for
mages with approximately 0.02 and 4.80 Mpx, respectively. This
as achieved using a laptop with an 11th generation Intel Core i5
rocessor and 8 GB of RAM. 

.2.1 Investigating apparent depth variation 

f these 88 APCs, 25 APCs were contained in one or more HiRISE
DRV11 images. This allowed for an investigation into the effect of
on-zero ε values on the h values that are calculated. This was made
ossible by replacing S obs for S true in equation ( 21 ) to get the h that
ould be observed before applying any ε-correction ( h obs ). As before,
 c and h m were also recorded from the h obs profile, in order to compare
he variation in h profiles derived upon HiRISE images containing the
ame MGC 

3 features before and after ε-correction. The expectation
eing that APCs with multiple HiRISE observations having high
ariation in their ε, but little variation in the Sun’s position (i.e. α
nd ϕ), will also experience high degrees of variation in the h values
hat are calculated. 

Fig. 10 compares the relative SD in the h c values that are calculated
or the 25 APCs with multiple HiRISE observations ( σh / ̄h ) before
nd after ε-correction. σh / ̄h is the SD in the h c values divided by
heir average, which avoids only larger APCs appearing to have high
ariation in h c . Fig. 10 shows that before correction, σh / ̄h reached
s high as ≈ 37 per cent for some MGC 

3 APCs. Whereas after
orrection, it can be seen that in the majority of cases, σh / ̄h has now
een significantly reduced (denoted by a green line). Despite this,
h / ̄h in fact increases (denoted by a red line) for six APCs. The
xplanations for this are given in Section 5 . The same trends for each
PC was also seen when plotting the relative SD in the h m values
efore and after correction. 

.2.2 Comparing PITS and MGC 

3 apparent depths 

s previously discussed in Section 1 , it is not possible to validate the
 profiles derived by PITS upon all 123 HiRISE images of 88 MGC 

3 

PCs due to insufficient co v erage of high-resolution elevation data.
ven in the few instances where such data are available, it is difficult

o know exactly which pixels in an orthorectified DEM the h profile
ould correspond to. Ho we ver, the h profiles deri ved by PITS can
e corroborated with the manually produced h measurements made
or each APC in the MGC 

3 data base (Cushing 2015 ). 
Fig. 11 compares (on a logarithmic scale) the ε-corrected h c and h m 

alues calculated automatically by PITS with the MGC 

3 h values for
he HiRISE RDRV11 images, which were the only such observation
ASTAI 2, 492–509 (2023) 
f that MGC 

3 APC. This is to ensure that the same shadow is being
xtracted by PITS as was measured manually by MGC 

3 (i.e. so that
he depth is taken at the same place within the pit). This reasoning is
xplained further in Section 5 . If the PITS and MGC 

3 h values are all
qual, then they are expected to fall on the black dashed line. Fig. 11
hows that this happens on a number of occasions when plotting both
 c and h m . Ho we ver, the h c and h m calculated by PITS are less than
he MGC 

3 h for the majority of images. In fact, there are four APCs
APC001, APC029, APC048, and APC135) for which there is more
han a 200 per cent difference between the MGC 

3 h and both of the
ITS h c and h m values. Possible causes are discussed in Section 5 . 

.2.3 Possible cave entrances sug g ested by PITS 

n applying PITS to the 123 HiRISE RDRV11 images containing 88
GC 

3 APCs, the results of 11 images suggest the possible presence
f a cave entrance. Since two of the 11 images contained the same
eature, this resulted in 10 APCs which could be considered as
otential targets for the exploration of cave entrances. These features
ere identified according to three factors: the suggested presence of
 v erhanging rims, the shape of their h profiles, and the wider context
rovided by the input image. Fig. 8 (a) is an example of one of the
0 MGC 

3 APCs considered as a potential cave entrance in this work.
he image has been aligned such that the Sun’s line of sight passes

rom bottom to top. Overlaid upon the image is the shadow edge and
it rim detected by PITS, which serves as a reference for where S obs 

as been measured between. 
First, the georeferenced shapefile containing the main shadow

etected by PITS was used to crop the input HiRISE image to
he shadow’s perimeter. This allowed for the contrast of the pixels
ithin the shadow to be enhanced in order to look for deeper shading

ndicating steep or o v erhanging rims, while still retaining the context
f the surrounding image. A similar process has been used to produce
g. 7 of Cushing et al. ( 2015 ). Further justification for an o v erhanging
im is if no pit wall is visible in the image and there is a notable
ifference in albedo and morphology between the pit’s floor and the
urrounding surface. Fig. 12 displays the contrast-enhanced shadow
or the same HiRISE image shown in Fig. 8 . 

If the contrast-enhanced shadow and/or input image suggest the
resence of an o v erhanging rim, the APC remains in consideration
f their h profile showed a gradual or sudden decline towards the
uggested location of the o v erhanging rim. The input image is
xamined again to ensure that this feature of the h profile is not
imply a product of an uneven pit rim casting a wider or thinner
hado w. Fig. 8 (b) gi ves an example of a h profile with a sudden
ecline towards a suggested o v erhanging rim. The near-zero ε ⊥ 

0.02 ◦) and the decline to the left of the h profile of approximately
5 m suggests a potential cave entrance. If ε ⊥ 

was high, then the
atellite may be peering below an o v erhanging rim, which is casting
ts own shadow directly beneath. 

 DI SCUSSI ON  

hat is clear from the high variability of Otsu’s method when
sed for automated shadow extraction is that the number of clear,
isibly distinct regions in satellite images of pits can v ary. Dif ferent
llumination conditions, surface materials, and morphologies mean
hat two classes are often insufficient to appropriately extract a pit’s
hadow. Therefore, a method of shadow extraction was required
hat could automatically adapt the number of classes that it would
egment images into. k -means clustering with silhouette analysis was
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Table 3. Sample of the table (available through the online supporting material in CSV format) containing the calculated h values after ε-correction for the 
first five HiRISE images when sorted alpha-numerically by the product name. Each images’ resolution, solar incidence angle ( α), solar azimuth angle ( ϕ) and 
satellite emission angle ( ε), and satellite azimuth angle ( ω) are also given. The h values taken at the h profile’s centre ( h c ) and maximum ( h m ) are presented 
separately. The corresponding upper and lower bounds of the uncertainty in h ( 	 h ) are given first and last in brackets, respectively. 

HiRISE product name MGC 

3 name Resolution [m] α [deg] ϕ [deg] ε [deg] ω [deg] h c ( + / −) [m] h m ( + / −) [m] 

ESP 011386 2065 RED APC095 0 .25 61.01 162.78 6 .72 265 .28 175 .32 (0.75 / 9.17) 177 .55 (0.76 / 9.29) 
ESP 011531 2065 RED APC095 0 .25 61.40 159.40 8 .95 82 .82 176 .41 (0.76 / 9.22) 177 .94 (0.76 / 9.30) 
ESP 011677 1655 RED APC079 0 .5 58.18 180.91 9 .48 262 .61 69 .74 (0.30 / 3.65) 85 .86 (0.37 / 4.50) 
ESP 011756 1735 RED APC091 0 .25 55.56 174.52 22 .18 83 .13 131 .52 (0.56 / 6.88) 132 .10 (0.57 / 6.91) 
ESP 012600 1655 RED APC079 0 .5 49.90 163.77 3 .71 84 .50 56 .45 (0.24 / 2.95) 75 .66 (0.32 / 3.96) 

Figure 10. Comparison of the relative standard deviations (SD) in the centre apparent depth values ( h c ) calculated by PITS upon multiple images taken of the 
same MGC 

3 APC ( σh / ̄h ) before and after correcting for non-zero ε values. The σh / ̄h before correction is represented by a red, upwards triangle. Whereas the 
σh / ̄h after correction are given as green, downwards triangle. Similarly, scenarios where σh / ̄h has increased or decreased after correction for a particular APC 

are denoted by a red or green line, respectively. It can be seen that correcting for non-zero ε values has significantly reduced the σh / ̄h in the majority of APCs 
with multiple HiRISE observ ations. Ho we ver, σh / ̄h has in fact increased (to varying degrees) for the features: APC056, APC075, APC079, APC108, APC109, 
and APC117. Although, reasons for this are outlined in Section 5 , the SD in the images’ emission ( σε ) and incidence ( σα) angles are also given for context 
about possible causes of high σh / ̄h . 
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he preferred option since its objective is similar to the definition of
 shadow (uniformly dark, but also distinct from its surrounding). 
t was expected that maximizing s̄ 0 would achieve the highest F̄1 
cross the shadow-labelled red-band and colour HiRISE imagery, 
ince PITS classifies the darkest cluster as the shadow, meaning that 
t was critical for this cluster to be as appropriate as possible. For
xample, it is possible that a value of k could generate the highest
 v erall silhouette score, without also generating the highest s̄ 0 . 
A small impro v ement in the F̄1 was observ ed while using k -means

lustering with silhouette analysis upon colour versus red-band 
magery. Ho we ver, the F̄1 was marginally lo wer for colour imagery
hen applying Otsu’s method. This suggests that the appearance of 
 pit’s shadow is consistent across multiple HiRISE colour bands, 
ut not all three. This is likely because Otsu’s method operates on
n image that is averaged across all colour bands, whilst k -means
lustering assigns pixels to a cluster based on the modal cluster label
cross all bands. Therefore, due to the already high performance and
mpro v ed run-time, it is recommended to apply PITS (which utilizes
 -means clustering when maximizing s̄ 0 ) to red-band imagery when 
ealing with Martian pits imaged by HiRISE. None the less, it is
ossible that applying PITS to data from other sensors, or from
ther planetary bodies, reveals different results. As a result, the 
unctionality of extracting pit shadows from colour imagery remains 
n the algorithm. 
RASTAI 2, 492–509 (2023) 
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Figure 11. Apparent depths calculated by PITS compared to those in the 
MGC 

3 catalogue for the HiRISE RDRV11 images, which were the only such 
observation of that MGC 

3 APC. The PITS h values have been corrected for 
all values of ε, whereas Cushing et al. ( 2015 ) apply a correction to all images 
with ε > 5 ◦. The top axis plots the h taken at the centre of PITS’ h profile 
( h c ), with the bottom plotting the maximum h ( h m ) from the profile. The error 
bars for h c and h m are equal to 	 h , as calculated in Section 3.3 . If PITS 
extracts a shadow from the same image as was used to produce the MGC 

3 h , 
the expectation is that h c and h m should fall close to the black dashed line. 
Ho we ver, h c and h m were found to both disagree with MGC 

3 by more than 
200 per cent for four APCs: APC001, APC029, APC048, and APC135. 
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Figure 12. Contrast-enhanced shadow suggesting possible o v erhanging rims 
o v erlaid on the HiRISE image ESP 066942 1735 RED, which itself contains 
the MGC 

3 feature APC015. This is the same image as the one shown in Fig. 8 , 
with the directions of north and the Sun’s line of sight given for reference. 
The contrast of the shadow pixels was enhanced by cropping the HiRISE 

image to the extents of the shadow using the georeferenced shadow shapefile 
automatically extracted by PITS. 
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Applying PITS to multiple HiRISE red-band images containing
he same MGC 

3 APCs revealed the influence of ε on the variation
f h profiles that are calculated. Before performing any ε-correction,
h / ̄h was regularly exceeding 20 per cent in Fig. 10 . This can be
aused by either the Sun or the satellite’s position in the sky varying
ignificantly. Varying values of α and/or ϕ will result in the shadow’s
dge being cast into a different location of the pit floor, which can
ause a different h that is calculated for APCs with uneven floors or
ASTAI 2, 492–509 (2023) 
ims. High variation in h is also due to these multiple images of the
ame APC having a larger range of ε. This is supported by the fact
hat the σh / ̄h that was calculated after ε-correction was very low for
mages of the same APC that also had a low σα . In essence, the Sun’s
osition has not significantly changed, so the corrected h values are
ow consistent. 
The significant decreases in σh / ̄h pro v e the need for correcting

hadow widths measured from satellite imagery. However, σh / ̄h was
een to increase for six APCs despite ε-correction. APC075 is a
ufficiently deep pit that, despite a difference in α of nearly 20 ◦

etween the three HiRISE images, its floor was completely co v ered
n shadow in every image (i.e. S true did not change). As a result, the

led to a high σh / ̄h , which was then exacerbated when correcting
or ε. 

APC056, APC079, and APC108 were all contained within two
iRISE images each, with one of the two images having higher α

nd ε values than the other, and vice versa. The images taken of these
eatures also had γ values close to 0 ◦ or 180 ◦. This meant that while
he larger α was casting a wider shadow in one image, the larger ε 
as making this width appear thinner. This resulted in consistent S obs 

easurements despite the clear variation in α placing the shadow’s
dge at a different depth. Correcting for the change in ε then revealed
he correct S true , ultimately causing σh / ̄h to increase. 

For the features APC109 and APC117, there was only image for
hich γ was close to 180 ◦ that also had the largest ε, meaning that
 obs > S true . Whereas the other image containing the two features had
 smaller ε, or a γ close to 90 ◦, meaning that the difference between
 obs and S true was not as great in this particular image. Therefore, the
h / ̄h increased after applying ε-correction. 
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A comparison between the apparent depths provided in the MGC 

3 

atalogue for each MGC 

3 APC with those calculated by PITS has 
lso been made in Fig. 11 . While PITS and MGC 

3 agree on several
ccasions, there is also large disagreement (of more than 200 per 
ent). Where this occurred for both h c and h m , the shadows extracted
y PITS were individually inspected, which exhibited no visible 
rrors that would cause such deviation. Manual measurements of 
 obs , followed by the depth calculation and ε-correction procedure 
n this work, yielded similar results. This was also the case when the
orrection procedure utilized by Cushing et al. ( 2015 ) was followed
or only those images with ε > 5 ◦. 

It can be assumed that the MGC 

3 h values were produced upon
he same HiRISE RDRV11 image as PITS has been applied to if
t is the only such image containing that particular feature. The 

GC 

3 h could also have been produced from self-processed HiRISE 

xperiment data record images which, since the publication of the 
GC 

3 catalogue, are now available in the RDRV11 data set. Where 
ultiple HiRISE images contain the same feature, Cushing ( 2015 ) 

typically’ chose the one with the smallest α to calculate h . Since
his is not an absolute statement, multiple HiRISE observations of 
he same features have not been plotted. Hence, the Sun and shadow
hould have been in the same positions when the MGC 

3 and PITS
 values were produced. In addition, if the MGC 

3 depths are all
ruly apparent depths, they should not be noticeably greater than h m .
herefore, a likely explanation for this deviation is that occasionally 

he depths provided in MGC 

3 are estimates of the maximum depth 
f the pit – perhaps similar to the procedure used by Wyrick et al.
 2004 ). This is supported by the aforementioned statement in the

GC 

3 documentation that apparent depths were ‘generally’ derived, 
nd would explain why the majority of h c and h m values are less than
he corresponding MGC 

3 depths. 

 C O N C L U S I O N S  

he PITS tool described in this work has been tested with a range
f image segmentation methods in order to automatically extract 
hadows from remote-sensing images of pits. This is for the purpose 
f measuring the shadow’s width along its entire length which, along 
ith knowledge of the Sun’s position, returns a profile of the pit’s

pparent depth ( h ) – the relative depth at the edge of the shadow.
his is an automated approach to calculating h , which has been
erformed manually before in literature (Wyrick et al. 2004 ; Cushing
t al. 2015 ). In this work, we have also presented a generalization of
he correction applied by Cushing et al. ( 2015 ) such that PITS can
ccurately correct the observed shadow widths for all values of ε, ϕ,
nd ω. 

Otsu’s method and k -means clustering with silhouette analysis 
ere adapted and tested for automated shadow extraction from 

hadow-labelled HiRISE imagery of MGC 

3 APCs (19 red-band 
nd 12 colour images in total). This found that Otsu’s method 
enerated highly variable results, since only two classes (foreground 
nd background) were often insufficient to delineate the shadow 

ithout including non-shadow pixels within the detection. k -means 
lustering with silhouette analysis was also tested when maximizing 
he o v erall silhouette score of all clusters and when only maximizing
he silhouette coefficient of the darkest cluster ( ̄s 0 ). The latter 
chieved the highest and least variable F̄1 of 97.1 per cent (with an
D of 2.6 per cent) upon the 19 red-band images across all methods
f automated shadow extraction tested in this work. Therefore, k - 
eans clustering with silhouette analysis when maximizing s̄ 0 is the 
ethod that has been implemented into the PITS algorithm. 
A marginal impro v ement in F̄1 was also observ ed when applying
 -means clustering when maximizing s̄ 0 to the 12 colour images 
ompared to the performance on the corresponding red versions. 
et, this increase was not sufficiently large to be able to warrant the
ignificant increase in average run-time. This may not be true for
ata collected by other sensors or especially other bodies – perhaps 
here the intensity across all colour bands is more uniform. As such,
ITS can still be applied to multiband imagery of pits, despite red-
and imagery being the recommendation when applying the tool to 
iRISE imagery. 
PITS has also been applied to 123 HiRISE red-band observations 

f 88 MGC 

3 APCs. Across the entire data set, PITS exhibited a
inimum and maximum run-time of ≈ 5 and 500 s, respectively. 
his variation in run-time was a result of the tool being applied to a

ange of image sizes. These are clearly much shorter time-scales than
ould be achieved manually, considering the range of products that 
ITS can output. This also revealed that applying the ε-correction 
escribed in Section 3.2.2 significantly reduced the relative SD in 
he h calculated by PITS ( σh / ̄h ) for the majority of APCs which
ave multiple HiRISE observations. In the situations where σh / ̄h did 
ncrease after ε-correction, this is explained by the shadow’s edge 
eing cast to a location in the pit floor at a different depth, or the
it’s floor being fully co v ered in shadow o v er multiple images with
anging α. 

Without sufficient co v erage of high-resolution ele v ation data, the h
alues calculated by PITS for these 88 APCs have been compared to
he depths provided in the MGC 

3 catalogue. According to the rele v ant
ocumentation, these MGC 

3 h were ‘generally’ calculated using the 
pproach in Cushing et al. ( 2015 ), with a correction being applied
o all images with ε > 5 ◦ (Cushing 2015 ). Assuming that PITS
nd MGC 

3 have measured shadow widths from the same HiRISE 

mages, the h c and h m calculated by PITS upon images that are the
nly HiRISE RDRV11 image containing a given APC were plotted 
gainst their corresponding MGC 

3 h . This showed that PITS and
GC 

3 calculate comparable h in the majority of cases. Although for
he features where they disagreed most, it was found that there were
o visible errors with the extracted shadows. This suggests that some
f the MGC 

3 APC depths are instead estimates of the maximum
epth of the pit, as opposed to the apparent depth. This is supported
y the abo v e statement in the MGC 

3 documentation, as well as the
act that the h c and h m calculated by PITS are less than those in

GC 

3 in the majority of instances. 
The outputs upon these 123 HiRISE images have been used to

dentify 11 examples (taken of 10 APCs) whose h profiles, as well as
he conte xt pro vided by the image, suggest that they could be possible
ave entrances. The wider context came in the form of using PITS’
eoreferenced shapefiles of the detected shadows to enhance the 
ontrast of the shadow pixels, whereby any deeply shaded regions 
ay be due to steep or o v erhanging rims. These 10 APCs were

onsidered a possible cave entrances since their h profiles exhibited 
 decline towards one of these deeply shadowed regions (as shown in
igs 8 and 12 ). It was also considered whether wider shadows were

n fact being cast by an uneven pit rim, as opposed to being a result
f the pit’s topography. While it is impossible to definitively confirm
hat these features are indeed cave entrances without exploring 
hem on the surface, tools such as PITS will help us to narrow-
own the features with the highest priority for investigating Mar- 
ian cave entrances for astrobiological significance and habitability 
easibility. 

The approach of PITS is highly applicable to data from other
ensors observing Mars, provided that pits are visible with sufficient 
etail within the confines of the sensor’s resolution. Therefore, PITS 
RASTAI 2, 492–509 (2023) 
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hould be tested with the same procedure in this work upon data
rom the ExoMars Trace Gas Orbiter Colour and Stereo Surface
maging System (CaSSIS; Thomas et al. 2017 ). PITS may also be
sed for satellite imagery taken in orbit around other rocky Solar
ystem bodies – particularly the Moon. As such, preliminary results
ave been retrieved when applying PITS to Lunar Reconnaissance
rbiter (LRO) Narrow Angle Camera (NAC) imagery (Robinson

t al. 2010 ) containing Lunar Pits Atlas features (Wagner & Robinson
021 ), which indicate similarly high shadow detection performance.
ith repeat co v erage of the same features being far more common
ith LR O NA C images compared to HiRISE, future work will also

nvolve combining the h profiles from multiple images to derive a
D model. 
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RO HiRISE RDRV11 data (McEwan 2007 ) was acquired via the
ars Orbital Data Explorer (found at ht tps://ode.rsl.wust l.edu/ma

s/) of NASA’s Planetary Data System (PDS) Geosciences Node.
he cumulative PDS3 index file for the HiRISE RDRV11 data set
as also accessed from PDS (at https://hirise-pds.lpl.arizona.edu

PDS/). The Mars Global Cave Candidate Catalogue (MGC 

3 ) was
etrieved from the USGS Astropedia service (Cushing 2015 ). and
mported into JMARS (Christensen et al. 2009 ) in order to convert the
atalogue from CSV to ESRI shapefile format. A CSV file containing
he h c and h m calculated by PITS upon all 123 HiRISE images
f MGC 

3 APCs can be found in the online supporting material.
his file also includes the corresponding MGC 

3 code-name, HiRISE
roduct name, and sensing information (i.e. image resolution, α,
, ε, and ω). The h profiles derived from the 11 HiRISE images
f 10 APCs that suggest possible cave entrances are also given in
he online supporting material, along with the detected shadows as
eoreferenced shapefiles. The PITS tool itself is publicly available
hrough GitHub ( ht tps://github.com/dlecorre387/Pit - Topography- fr
m-Shadows ), where there is an installation guide and a user tutorial.
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PPENDI X  A :  D E R I VAT I O N  O F  U N C E RTA I N T Y  

N  T RU E  S H A D OW  W I D T H  (  � S T RU E 

)  

s discussed in Section 3.3 , the uncertainty in the true shadow width
 	 S true ) depends only on the uncertainties in the observed shadow
idth ( 	 S obs ) and the obliquity of the satellite parallel to the Sun’s

ine of sight ( 	ε � ). Hence, 	 S true is given by equation ( A1 ). 

S true = 

√ 

	 S obs 
2 

(
∂S true 

∂S obs 

)2 

+ 	 ε � 2 

(
∂S true 

∂ε � 

)2 

(A1) 
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	ε � can be found by knowing the range of possible ε v alues gi ven
he size of the image and using equation ( A2 ). 

ε � = 	ε 

(
∂ε � 

∂ε 

)

= 	ε 

(
∂ 

∂ε 

[
arctan ( v/d h ) 

])

= 	ε 

(
∂ 

∂ε 

[
arctan 

(| cos γ | tan ε 
)])

= 	ε 

( | cos γ | sec 2 ε 

cos 2 γ tan 2 ε + 1 

)
. (A2) 

In case (A), where 0 ◦ < γ < 90 ◦, S true is given by equation ( 17 )
nd the uncertainty is derived by the following. 

∂S true 

∂S obs 
= 

∂ 

∂S obs 

[
S obs 

cos ε � 
+ 

S obs tan ε � 
cos ε � ( tan α − tan ε � ) 

]

= 

1 

cos ε � 

(
1 + 

tan ε � 
cos ε � ( tan α − tan ε � ) 

)
∂S true 

∂ε � 
= 

∂ 

∂ε � 

[
S obs 

cos ε � 
+ 

S obs tan ε � 
cos ε � ( tan α − tan ε � ) 

]

= S obs 

(
∂ 

∂ε � 

[
1 

cos ε � 

]
+ 

∂ 

∂ε � 

[
tan ε � 

cos ε � ( tan α − tan ε � ) 

])

= 

S obs 

cos ε � 

(
sin ε � 
cos ε � 

+ 

sec 2 ε � 
cos ε � ( tan α − tan ε � ) 2 

+ 

sin ε � tan ε � 
tan α − tan ε � 

+ 

sec 2 ε � tan ε � 
( tan α − tan ε � ) 2 

)
. 
2023 The Author(s). 
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In case (B), where 90 ◦ < γ < 180 ◦, S true is given by equation ( 19 )
nd the uncertainty is derived by the following: 

∂S true 

∂S obs 
= 

∂ 

∂S obs 

[ 

S obs sin α

cos 
(
90 ◦ − α − ε � 

)
] 

= 

sin α

cos 
(
90 ◦ − α − ε � 

)
∂S true 

∂ε � 
= 

∂ 

∂ε � 

[ 

S obs sin α

cos 
(
90 ◦ − α − ε � 

)
] 

= S obs sin α

( 

∂ 

∂ε � 

[ 

1 

cos 
(
90 ◦ − α − ε � 

)
] ) 

= S obs sin α

( 

sin 
(
90 ◦ − α − ε � 

)
cos 2 

(
90 ◦ − α − ε � 

)
) 

. 

It is possible, albeit highly unlikely, that γ could equal exactly 
 

◦, 90 ◦, or 180 ◦. If γ = 0 or 180 ◦, ε ⊥ 

will be zero, meaning that ε � 
 ε and 	ε � = 	ε. This means that equations ( 17 ) and ( 19 ) would

educe to those used by Cushing et al. ( 2015 ) if γ = 0 ◦ or 180 ◦,
especti vely. Ho we ver, ε � will be zero if γ = 90 ◦ meaning that there
ould be no distortion in the shadow width (i.e. S true = S obs and
 S true = 	 S obs ). 
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