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A B S T R A C T

We model and solve a deterministic multi-period single-product green supplier selection and order allocation
problem in which the considered suppliers’ availability, cost, and green performance change from one period
to another in the planning horizon. Moreover, the available suppliers may offer an all-unit or an incremental
quantity discount (QD) scheme, resulting in three problem configurations. In one configuration, all suppliers
offer all-unit QD. In the second, all suppliers offer incremental QD. In the third, some suppliers offer all-unit
QD, and others offer incremental QD. The problem is modeled using a bi-objective integer linear programming
formulation that maximizes the total green value of the purchased items from all the suppliers and minimizes
their total corresponding cost, including the fixed cost, variable cost, inventory holding cost, and shortage
cost. The proposed bi-objective model is scalarized and solved using the branch-and-cut algorithm and a
population-based heuristic. A numerical analysis is conducted, which allows first to validate the heuristic
approach using small-size instances by comparing its results with those of the exact approach. Moreover,
an extensive comparison between the exact and heuristic solution approaches is carried out. The results
reveal different findings. First, the economic and environmental solutions of an instance are different, and
the environmental solution is independent of the suppliers’ pricing schemes. Second, the maximum difference
between the heuristic approach and the exact approach in terms of the bi-objective function value is 4.72%,
which makes the proposed heuristic recommended for large-size instances due to its short computation time
and good accuracy. Third, there is no difference in terms of the heuristic performance between the combined
model and the models with a single type of discount. Fourth, the all-unit discount scheme seems to be generally
better in terms of the trade-off between the green value of purchasing and cost.
1. Introduction

Recently, effective and efficient supply chain management (SCM)
has become crucial especially for large and multi-national companies
to keep improving their economic but also environmental performance
in order to remain competitive in a changing global market. In addi-
tion, the importance of sustainability and environment protection has
become essential for businesses and for the society in general. For
instance, at least four out of the 17 Sustainable Development Goals
that the United Nations has adopted are related to the management of
companies’ operations (United Nations, 2021): SDG-9, SDG-11, SDG-
12, and SDG-13. This pressure has led many companies worldwide to
adopt more environmental friendly operations and therefore to rely on
green SCM. Moreover, in the particular context of the 2019 coronavirus
pandemic, many companies could have regretted their reliance on a
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single supplier, which led some factories to close due to the shortage
of supplies that resulted because of the lockdowns that happened in
many countries. This fact confirms the necessity of increasing supply
chain resilience by relying on more than one supply source especially
for important items.

In this context, supplier selection is a tactical tool of SCM that
organizations use to reduce their costs, minimize disruption risks, and
improve the quality of their products (Alkahtani and Kaid, 2018).
Choosing the best suppliers whether for manufacturing or service orga-
nizations has become a complex task that depends on multiple-criteria
such as cost, quality, reliability, risk, social and environmental per-
formance etc. On the other hand, due to awareness, governmental
regulations, and globalization, organizations are considering more and
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more the environmental aspects in their supplier selection process. As
mentioned earlier, international competition but also national regula-
tions are constraining companies to achieve sustainability objectives in
their operations.

Indeed, international competition has led companies to prioritize
environmental factors in various SCM stages (Akman, 2015; Hafeza-
lkotob, 2015; Zhang et al., 2014). As a result, the process of choosing
the best supplier(s) to contract with from a panel of available suppliers
while considering the environmental aspects is known as green supplier
selection. Moreover, on a tactical level, in addition to choosing the best
supplier(s), the decision of determining the quantities to be purchased
from each selected supplier leads to a problem known as the supplier
selection and order allocation (SSOA) problem. In the literature, it is
formulated as an optimization problem (Kaviani et al., 2020). This
problem is shown to be NP-hard and solved using heuristics approaches
such as genetic algorithms (GA) in Basa et al. (2020) and Hashemzahi
et al. (2020). Usually, the SSOA problem considers variable parameters,
such as demand, capacity and cost, in a fixed planning horizon.

Suppliers usually offer to their customers, especially in a business-
to-business environment, quantity discounts (QD) that can take dif-
ferent forms, such as the ‘‘all-unit’’ QD, ‘‘incremental’’ QD or other
forms (Ayhan and Kilic, 2015). Most of the works in the literature
(as it will be shown in the literature review section) have focused on
one type of QD assuming that all suppliers offer the same policy while
in reality, it may differ. Moreover, the QD problem formulations may
not be solved optimally for large-size instances. Therefore, this paper
attempts to bridge these gaps in the literature. Indeed, the contribution
of this paper compared to the existing literature is threefold. First, this
paper extends the green multiple-period and multiple-supplier SSOA
problem by proposing a formulation that considers three QD policies:
all-unit, incremental, and both (comprehensive or combined). This
formulation integrates both discount schemes while considering the
dynamic nature of the problem allowing, for example, the supplier
availability to vary from one period to another in the planning horizon
and therefore the available number of suppliers may vary from one
period to another. Second, this work proposes a new population-based
heuristic to solve large-size instances of the formulated problem and
provides an extensive comparative analysis that shows the effectiveness
of the proposed heuristic for large-size instances allowing to obtain
good quality solutions in a reasonable time and with a good level of
accuracy. Third, this paper proposes a decision support system that
implements the mathematical formulation which helps procurement
managers in the supplier selection and order allocation process in
practice while allowing them to consider the practiced QD schemes and
the green aspect. Therefore, the objectives of this study are as follows:

• To propose a new formulation of the multiple-period and
multiple-supplier dynamic SSOA problem that considers the en-
vironmental performance of suppliers in addition to three QD
schemes: all-unit, incremental, and both.

• To develop a heuristic solution approach to solve large-size in-
stances of the formulated problem in a reasonable time and with
a good level of accuracy.

• To develop a computer software that implements the proposed
approach so that it can be used by decision-makers in the indus-
try.

The rest of this paper proceeds as follows: In Section 2, we provide
literature review on the SSOA problem. In Section 3, we explain

he mathematical formulation and the developed software. In addition,
e present the bi-objective solution technique and the population-
ased heuristic used to solve large-sized instances and we illustrate the
eveloped software in Section 4. In Section 5, we conduct a numerical
tudy and discuss the results. Finally, Section 6 provides concluding
2

emarks.
2. Literature review

The SSOA problem is a critical tactical tool in SCM. Indeed, for
every organization, the accurate evaluation of the available suppliers to
procure a good or a service and the selection process of the best one(s)
to fulfill the organization needs and objectives is very important since
it usually lasts for months and sometimes years. In this process, order
allocation to the selected suppliers is often neglected, and considered
as a supplementary part (Pasquale et al., 2020). However, SSOA is
a core process in supply chain planning and with high complexity,
because it should meet qualitative and quantitative criteria such as
cost, quality, environmental aspects, etc. (Polat et al., 2017; Chen et al.,
2016). Therefore, researchers have used multi-criteria decision-making
(MCDM) models to address SSOA problem. SSOA problems have been
widely investigated in the literature. The focus of this literature review
is on studies related to SSOA, QD policies, and the use of green
(environmental) criteria in SSOA. The scope of the literature review
is mainly including the works published in the last two decades given
that a very large number of related works has been published recently.
The literature review comprises six sections: supplier selection, green
supplier selection, SSOA, QD policies, datasets for the SSOA problem,
and the research gap.

2.1. Supplier selection

Supplier selection has been studied for more than a decade uti-
lizing various methods and criteria considerations. Researchers have
employed integrated MCDM methods extensively in assessing suppliers
and rating criteria in a variety of perspectives, including different work-
ing environments such as industry, small and medium businesses, and
government. Thus, the supplier selection problem has been viewed and
studied as an MCDM problem. Sorting, ranking, and selection, as well
as determining criteria weight, are the key selection tasks addressed
by these MCDM methods (Hashemi et al., 2015). For example, the
analytic hierarchy process (AHP) has been used by Levary (2008) to
rank and evaluate the available suppliers based on the risk criteria.
Another well-known MCDM method, namely VIseKriterijumska Opti-
mizacija I Kompromisno Resenje (VIKOR), has been used by Chen and
Wang (2009) to evaluate suppliers and rank them to find the preferred
suppliers. Kannan et al. (2014a) have used fuzzy axiomatic design. In
addition, Saen (2010) and Rouyendegh et al. (2020) have used the tech-
nique for order of preference by similarity to ideal solution (TOPSIS) to
rank and select the suppliers using real application data in a convenient
way. Other researchers have used the analytic network process (ANP)
to figure out the determinants in the supplier selection problem for
a sustainable transportation case and to evaluate the transportation
policies respectively (Sayyadi and Awasthi, 2018, 2016). Banaeian et al.
(2018) presented a comparative study between fuzzy TOPSIS, fuzzy
VIKOR, and fuzzy grey relational analysis (GRA) in the context of
supplier selection. Sevkli (2010) has proposed the elimination choice
translating reality and cross-industry standard process methods and
compared them based on real data of three suppliers from a manufac-
turing company. Rahimi et al. (2021) introduced an intuitionistic fuzzy
entropy measure, a novel fuzzy decision-making technique for selecting
and ranking suppliers based on attributes. Finally, the decision-making
trial and evaluation laboratory (DEMATEL) method has been used
in Chang et al. (2011) to illustrate the factors and criteria that affect
the supplier selection process.

Moreover, instead of using a single MCDM approach to assess
and select the best suppliers, some researchers have used hybrid
approaches, which consist of combinations of methods. An example
is the combination of the weighted aggregated sum product assess-
ment method and interval fuzzy sets (Ghorabaee et al., 2016). Other
examples integrate composite indicators, data envelopment analysis,
and common weights analysis (Dobos and Vörösmarty, 2014), ANP

and improved GRA (Hashemi et al., 2015), Kano model and fuzzy
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MCDM (Ghorbani et al., 2013), best worst method (BWM) and extended
VIKOR (Wu et al., 2019), and BWM and fuzzy TOPSIS (Javad et al.,
2020). Readers can refer to the work of Manucharyan (2021) for a
recent review.

Recently, with the growth in the use of artificial intelligence algo-
rithms, some researchers have utilized them in supplier evaluation and
classification. For example, neural networks have been used for price
forecasting and supplier evaluation (Lee et al., 2009), while grey system
theory has been used in analyzing and evaluating suppliers’ criteria (Li
et al., 2007; Wu, 2009). Guo et al. (2009) have applied the support
vector machine to classify suppliers with less computation time and
high performance. GA has been used as a heuristic algorithm in the
supplier selection problem to find the optimal solution, and as an ex-
ample, Yeh and Chuang (2011) have developed a multi-objective model
using GA that aims to minimize the cost and time while maximizing
product quality and environmental criteria. While Jouida and Krichen
(2020) designed a hybrid GA to assist each organization in making
the best procurement policy decision possible. They considered two
scenarios for the single objective model that aims to minimize the cost
when dealing with different businesses and suppliers: first, allocating
each firm to one supplier separately, and second, accumulating the
amounts of the participating firms and then assigning each coalition
to the proper provider.

Moreover, optimization techniques have been used in different con-
texts involving supplier selection. For instance, Amorim et al. (2016)
have proposed a mixed-integer linear programming (MILP) model to
maximize a food organization’s profit and minimize the risk. The
authors indicated that the proposed model improved the solutions
in the supplier selection problem, especially in large instances. Fur-
thermore, Yoon et al. (2018) have proposed a multi-objective MILP
model to address the supplier selection problem in a multi-period
framework. Some studies, such as Torabi et al. (2015), have used a bi-
objective model with stochastic programming aiming to improve the
organization’s response while considering uncertainties and disruption
risks in a supplier selection problem. They have used a real case study
to show the applicability of their approach. Finally, goal programming
has been used for different objectives, which are minimizing price,
rejected items, lead-time, and to evaluate the risks and product life
cycles in a supplier selection problem respectively (Jadidi et al., 2015;
Kull and Talluri, 2008). In pharmaceutical industries and using fuzzy
TOPSIS, Modibbo et al. (2022) proposed a MILP model to choose the
best supplier. A numerical example was used to show the effectiveness
of the presented model. The proposed model is simple, and it can be
solved using readily available commercial software such as LINDO/
LINGO and GAMS. Several supplier selection literature reviews have
been published recently. These authors focused on sourcing strategy,
decision scope, selection criteria, and solution methods as key elements
in supplier selection and evaluation, see for instance Dutta et al. (2022)
and Saputro et al. (2022).

2.2. Green supplier selection

In recent years, green criteria have been playing a major role in
supplier selection, due to customer concerns and government rules.
Therefore, many researchers have focused on the consideration of green
criteria, such as the amount of recycled materials, mode of transporta-
tion, environmental certification, etc. in the evaluation of suppliers
using different techniques. For instance, Yeh and Chuang (2011) have
developed a multi-objective model to maximize product quality and
environmental criteria in a supplier selection problem. Kannan et al.
(2014b) have tried to consider green and capacity criteria while mod-
eling the supplier selection problem. Moreover, Büyüközkan and Çifçi
(2012) have applied fuzzy DEMATEL, fuzzy ANP, and fuzzy TOP-
SIS to evaluate and select suppliers based on environmental aspects.
In addition, Darabi and Heydari (2016) have proposed an interval-
valued hesitant fuzzy approach to rank the green suppliers. Further-
3

more, Galankashi et al. (2015) used the nominal group technique to
measure the critical performance of the suppliers and select based on
green criteria. Liao et al. (2016) have proposed new integrated fuzzy
techniques and fuzzy additive ratio assessment with multi-segment goal
programming model to evaluate and select the green suppliers. In the
last two years, many studies have considered environmental criteria in
the supplier selection process for different purposes and applications.
We refer the reader to Ecer (2022), Gupta et al. (2019), Haeri and
Rezaei (2019), Kilic and Yalcin (2020), Krishankumar et al. (2020),
Javad et al. (2020), Rouyendegh et al. (2020), Watróbski (2019),
Wu et al. (2019), nar et al. (2021), Tirkolaee et al. (2021) and Wei
et al. (2021). Recently, many publications have done a comprehensive
assessment of existing literature on supplier selection by highlighting
the inclusion of green aspects into supplier selection, with the goal
of presenting a summary of the developed models and approaches to
support different industries in identifying the best green/sustainable
suppliers such as Zhang et al. (2020) and Ograh et al. (2021). The two
works studied and analyzed publications from 2009 to 2020.

2.3. Green SSOA

Supplier capacity is an important factor that determines whether a
single supplier or multiple suppliers are required to fulfill the demand.
While MCDM tools only rank suppliers based on multiple criteria,
researchers have developed different optimization models that consider
multiple factors and at the same time specific constraints that translate
features of the systems. These models aim at selecting the optimal
suppliers and allocating the orders to the selected suppliers while
considering the supplier capacities. For example, Lin et al. (2011) have
used a linear programming (LP) approach to allocate orders after the
supplier is evaluated and selected, while non-linear programming is
used in Hsu et al. (2010). In addition, order allocation is considered
as a critical and complicated process especially within multi-product
and multi-period frameworks. For that reason, there are some studies
that have focused on the order allocation problem separately such
as Basnet and Leung (2005) and Ruiz-Torres and Mahmoodi (2006).
In addition, Xiang et al. (2014) have developed a mathematical model
based on capacity and load equilibrium for multi-period and multi-
suppliers that uses two order allocation strategies. Another proposed
model clusters suppliers and evaluates order allocation strategies in
a way that considers the market conditions and environmental crite-
ria (Renna and Perrone, 2015). Recently, Gupta et al. (2018) have
developed a multi-objective optimization model for order allocation
using goal programming. The authors considered fuzzy demand and
aimed to maximize the satisfaction of suppliers and customers. Zheng
et al. (2021) studied the SSOA problem under stochastic demand and
project life cycle using the scenario tree approach and used chaos
optimization algorithm and maximum similarity method to solve the
problem. Sun et al. (2022) considered a stochastic Poisson demand
in a multi-echelon order-splitting optimization model for the SSOA
problem.

However, given the dynamic nature of the market and the capacity
limitations of the suppliers, it is very common to decide on a tactical
level about the selection of the suppliers and the allocation of the orders
in a SSOA context. Most of the studies on the SSOA problem use com-
bined supplier evaluation approaches along with multiple objectives.
In addition, with the recent development of green SCM, researchers
have started to consider the green criteria in supplier evaluation as
mentioned earlier, which led to some works focusing on green SSOA.
For example, capacity limitations of suppliers have been considered
by Kannan et al. (2014b) in a model that is based on fuzzy TOPSIS
and fuzzy multi-objective optimization. Mafakheri et al. (2011) have
introduced a SSOA model considering green criteria and using fuzzy
AHP (FAHP) and bi-objective integer LP model. Hamdan and Jarndal
(2017) have proposed a two-stage SSOA using GA. Sadeghi (2018)
has introduced a multi-objective model using FAHP and fuzzy TOPSIS

while considering green criteria instead of traditional criteria to address
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SSOA. Aiming to generalize the SSOA problem, Mirzaee et al. (2018)
have proposed a multi-objective model for multiple periods, multiple
products, and multiple suppliers using fuzzy goal programming. Addi-
tionally, Lo et al. (2018) have developed a multi-objective LP model
that integrates BWM, and modified fuzzy TOPSIS, to address SSOA with
green criteria.

Recently, Torğul and Paksoy (2019) have introduced a multi-
objective LP model integrating lean and green paradigms for SSOA
using fuzzy TOPSIS. Moreover, Kilic and Yalcin (2020) and many other
studies have tried to overcome the weaknesses of previous models
by developing two-phase approaches using fuzzy goal programming
with intuitionistic fuzzy TOPSIS to address multi-period, multi-supplier,
and multi-product SSOA. In addition, by combining AHP, non-linear
programming, and GA approaches, Hashemzahi et al. (2020) have
developed a green SSOA model with multiple suppliers. Ali and Zhang
(2023) introduced a holistic model for global green SSOA, which com-
bines the international transportation risk criteria with economic and
environmental aspects. They used fuzzy TOPSIS and multi-objective
linear programming to solve and validate the problem through a real
case study. Table 1 summarizes the SSOA-related studies and shows
the used criteria and approaches of each study. In the topic of SSOA,
several authors have written literature review papers, and Naqvi and
Amin (2021) wrote the most recent one.

2.4. SSOA with QDs

Based on a win-win relationship that can provide benefits to sup-
pliers and customers, the QD offered by suppliers to customers plays
a determining role in product pricing and the size of orders placed
by customers. Many researchers have considered different QD policies
(linear, total business, all-unit, and incremental). Burke et al. (2008)
studied three supplier pricing schemes (linear, all-unit, and incremen-
tal) while considering the supplier’s capacities using three different
models for one period. Ebrahim et al. (2009) developed an optimization
model for SSOA considering three QD policies. Razmi and Maghool
(2010) proposed a bi-objective multi-product multi-period fuzzy op-
timization model considering all-unit, total business, and incremental
QD. The literature review revealed that total or all-unit QD stands out
as the most popular form among other recently used policies. Some
works, such as that by Kamali et al. (2011), have considered only
one type of QD policies. Kamali et al. (2011) addressed the multi-
objective SSOA problem using a MILP model considering all-unit QD.
In addition, AHP and fuzzy compromise programming have been used
to formulate a mathematical model considering all-unit QD (Wang and
Yang, 2009). Ayhan and Kilic (2015) developed an integrated approach
of fuzzy TOPSIS, AHP, and a multi-objective MILP model in a single
period framework with one QD policy. Mirzaee et al. (2018) developed
an MILP model using fuzzy goal programming considering incremental
discount. Hammami et al. (2014) developed a stochastic model that
considers all-unit QD and exchange rate uncertainties. Cheraghalipour
and Farsad (2018) utilized the best worst method and revised multi-
choice goal programming to solve the SSOA with QD. Hamdan and
Cheaitou (2017b) also considered all-unit QD and varying suppliers
in the green SSOA problem. Hamdan and Cheaitou (2017c) modified
the model presented in Hamdan and Cheaitou (2017b) to consider
incremental QD. Stadtler (2007) proposed a single-objective general
QD model for the SSOA problem. The author used CPLEX with a time
limit to obtain near-optimal solutions. On the other hand, total QD
is another scheme similar to all-unit QD. In total QD, a discount is
provided on all purchased quantities. Goossens et al. (2007) studied
the total QD and demonstrated its NP-hardness. Goossens et al. (2007)
presented a branch-and-bound approach based on a reformulation of
the min-cost flow to solve the problem. Manerba and Mansini (2012)
used a heuristic enhancement from LP, and Manerba and Mansini
(2014) used an integer linear programming (ILP) refinement approach
4

to solve the capacitated total QD problem. In Manerba et al. (2018),
the authors extended the problem by utilizing a two-stage stochastic
programming formulation with recourse, which helps in adaptation
actions when product prices or product demand are stochastic. They
considered uncertainty conditions and activation costs. Later, by using
several scenarios with large numbers of up to 20 suppliers and 30 prod-
ucts, Manerba and Perboli (2019) successfully solved the same problem
using Stochastic Programming with multiple versions of a Progressive
Hedging-based heuristic technique, as well as the Benders algorithm, in
the testing process. On the other hand, the all-unit QD policy can also
be found in several routing or purchasing problems for inbound and
outbound logistics that are not covered in the existing literature. Lee
et al. (2013) and other scholars considered all-unit or incremental QD
using MILP models with GA algorithms for multiple suppliers and in
multiple-period environments. Pereira and Costa (2015), who covered
the most relevant literature from 1995 to 2013, was one of the few
articles that provided a literature review on models developed for
the economic order quantity and the applicable QD policies. Readers
can refer to Munson and Jackson (2014) for a literature review on
QD policies, with an emphasis on the differences between theoretical
concepts and actual applications and considering all QD scenarios.

2.5. Datasets for the SSOA problem

In order to verify and validate the developed model, we have
thoroughly investigated real-world datasets or benchmark instances uti-
lized in SSOA problems in the literature review. The available datasets
are categorized into two categories: random designed data and real
data. For instance, Goossens et al. (2007) provided some randomly
generated benchmark instances for the non-capacitated total QD prob-
lem. Manerba et al. (2018) described how structured instances can
be randomly generated for the SSOA problem with total QD. Other
scholars used simple numerical examples to test their models, such
as Abrishami et al. (2020), Baek and Kim (2020), Beauchamp et al.
(2015), and Hamdan and Cheaitou (2017a). On the other hand, many
researchers used real data to test their models, such as data from the
plastic industry (Cheraghalipour and Farsad, 2018), electronic medical
device industry (Ghadimi et al., 2018), packaging industry (Nourmo-
hamadi Shalke et al., 2018), auto parts (Amin et al., 2011), and metal
industry (Mohammed et al., 2019). Table 1 classifies articles based
on data source and availability. Note that not all datasets can be
used for testing, as either the models’ structures and assumptions are
incompatible (Mohammed et al., 2019; Torres-Ruiz and Ravindran,
2019; Hashemzahi et al., 2020), or the datasets are not completely
available in the articles, requiring some assumptions to be useful in
the testing process, such as Li et al. (2021).

2.6. Findings and research gap

Based on the literature review, Table 2 shows a comparison between
the current study and the studies related to the SSOA problem ranked
based on the year of publication for the last two decades. This compar-
ison presents the research gap especially when our work is compared
to the study (Kilic and Yalcin, 2020) which has introduced a multi-
supplier, multi-period, and multi-item model but without considering
any QD policy. Indeed, the contribution of this paper fills the gap
illustrated in Table 1 by proposing a multi-objective MILP model with
multiple periods and multiple suppliers that considers green criteria
to address the SSOA problem with three QD policies, namely all-unit,
incremental, and both (comprehensive or combined). It extends the
works of the literature on green SSOA (Hamdan and Cheaitou, 2015,
2017b,d) by considering the QD policies and solving the resulting
model using a GA based approach. In addition, Table 2 demonstrates
that most works considered all-unit QD scheme in SSOA models, while
fewer considered incremental QD. To summarize, our contribution is
twofold. First, conceptual, since we model and solve a variant of SSOA
problem in which a comprehensive QD policy is considered. Second,
practical, with the easy-to-use software that allows managers to use the

proposed approach.
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Table 1
Datasets for SSOA models.

Authors Data availability
in the article

Data source

Stadtler (2007) ✓ Randomly designed datasets
Goossens et al. (2007) ✓ Randomly designed datasets
Demirtas and Üstün (2008) ✓ Real data from four different plastic molding firms

working with a refrigerator plant are evaluated
according to 14 criteria

Amin et al. (2011) ✓ Real data from company of auto parts (S.G.
Company) in Iran

Shaw et al. (2012) ✓ Indian based garment manufacturing company
Kannan et al. (2013) ✓ Iranian automobile manufacturing company
Choudhary and Shankar
(2014)

✓ Illustrative case

Beauchamp et al. (2015) ✓ Randomly designed datasets
Torabi et al. (2015) Randomly designed datasets
Hamdan and Cheaitou (2017a) ✓ Randomly designed datasets
Manerba et al. (2018),
Manerba and Mansini (2014)

Benchmark instances with a generation algorithm

Sabouhi et al. (2018) Real data from pharmaceutical company (APC) in
Iran

Vahidi et al. (2018) ✓ Randomly designed datasets
Lo et al. (2018) ✓ Actual data provided by an electronics company in

Taiwan
Nourmohamadi Shalke et al.
(2018)

✓ Real data from the protein materials packaging
industry in Iran

Cheraghalipour and Farsad
(2018)

✓ Real data from plastic industry in Iran

Mirzaee et al. (2018) ✓ Data from literature
Ghadimi et al. (2018) ✓ Real data from an industrial case study operating

in the electronics sector in medical device industry
in Ireland

Lamba and Singh (2019) ✓ Randomly generated datasets
Mohammed et al. (2019) Real data from raw materials for a metal factory

in Saudi Arabia
Torres-Ruiz and Ravindran
(2019)

✓ Data obtained from an international auto parts
manufacturer in Mexico

Abrishami et al. (2020) ✓ A designed numerical example based on
manufacturer data

Baek and Kim (2020) ✓ Randomly designed datasets
Hashemzahi et al. (2020) ✓ Real data from steel baskets manufacturer in

Malaysia
Suprasongsin et al. (2020) ✓ Randomly designed experiments
Rezaei et al. (2020) Real data from car manufacturing case study in

Iran
Jia et al. (2020) ✓ Real data from steel company in China
Feng and Gong (2020) ✓ Real data from automotive manufacturing

enterprise in China
Sahebjamnia (2020) ✓ Real data from furniture company in Iran
Li et al. (2021) ✓ Real data from new energy vehicles industry
Beiki et al. (2021) ✓ Real data from automotive manufacturing company
Kaur and Singh (2021) ✓ Real data from automobile company in India
Khalili Nasr et al. (2021) ✓ Real data from suit production and distribution

chain
Sun et al. (2022) ✓ Randomly designed experiment
Ahmad et al. (2022) ✓ Real data from major belt conveyor company in

India
3. Model

The studied problem consists in selecting the best suppliers and
determining the quantities to buy from them in order to satisfy the
deterministic demand of a single product in every period of a fixed
planning horizon. If the demand in a given period exceeds the available
amount of items, then a shortage happens and a corresponding penalty
shortage cost is incurred. On the other hand, if the available amount at
5

the end of a period is positive, then it is carried out to the next period
and an inventory holding cost is incurred. The selection of the suppliers
is based on maximizing the total green value of the purchased products
and at the same time minimizing the total cost. The green value of the
products is based on an assessment of the suppliers green performance
using fuzzy TOPSIS while the total cost includes the fixed and variable
purchasing costs, the inventory holding cost and the shortage cost.
The supplier’s availability changes from period to period as well as
the corresponding supply capacities, their fixed and variable costs,

and their green performance. In addition, each supplier proposes a
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Table 2
SSOA studies comparison and the research gap.

Authors Criteria Multiple QD policy Models and approaches

Economic Environmental Periods Suppliers All unit Incremental Combined

Stadtler (2007) ✓ ✓ ✓ ✓ ✓ MIP
Wang et al. (2008) ✓ ✓ ILP
Demirtas and Üstün
(2008)

✓ ✓ ANP and MILP

Lee and Ou-Yang
(2009)

✓ ✓ ✓ Neural networks

Ebrahim et al.
(2009)

✓ ✓ ✓ ✓ mathematical model

Wang and Yang
(2009)

✓ ✓ ✓ AHP and MILP

Lin (2009) ✓ ✓ Fuzzy ANP and LP
Razmi and Maghool
(2010)

✓ ✓ ✓ ✓ ✓ meta-heuristic model

Fazlollahtabar et al.
(2011)

✓ ✓ ✓ AHP and TOPSIS

Kamali et al. (2011) ✓ ✓ ✓ mixed-integer non-linear programming
model

Mafakheri et al.
(2011)

✓ ✓ AHP and multiple criteria dynamic
programming

Manerba and
Mansini (2012)

✓ ✓ ✓a Heuristic enhancement from LP

Büyüközkan and
Çifçi (2012)

✓ ✓ ✓ ANP, TOPSIS and DEMATEL

Lee et al. (2013) ✓ ✓ ✓ ✓ ✓ MIP and GA
Kannan et al.
(2014a)

✓ ✓ ✓ fuzzy axiomatic design

Manerba and
Mansini (2014)

✓ ✓ ✓a ILP refinement approach

Hammami et al.
(2014)

✓ ✓ ✓ mixed integer scenario-based stochastic
programming

Dobos and
Vörösmarty (2014)

✓ ✓ ✓ composite indicators, data envelopment
analysis and common weights analysis

Kazemi et al. (2014) ✓ ✓ ✓ fuzzy preference programming, interval
based TOPSIS and LP

Singh (2014) ✓ ✓ MILP and TOPSIS
Galankashi et al.
(2015)

✓ ✓ ✓ nominal group technique and fuzzy ANP

Torabi et al. (2015) ✓ ✓ stochastic programming
Hashemi et al.
(2015)

✓ ✓ ✓ ANP and traditional GRA

Ayhan and Kilic
(2015)

✓ ✓ ✓ FAHP and MILP

Tsai (2015) ✓ ✓ mixed-integer non-linear programming
Moghaddam (2015) ✓ ✓ Monte Carlo simulation integrated with

fuzzy goal programming
Scott et al. (2015) ✓ ✓ AHP and quality function deployment
Hamdan and
Cheaitou (2015)

✓ ✓ ✓ Fuzzy TOPSIS, AHP and integer
programming

Ghorabaee et al.
(2016)

✓ ✓ Type-2 fuzzy sets and weighted
aggregated sum product assessment

Darabi and Heydari
(2016)

✓ ✓ interval-valued hesitant fuzzy ranking

Liao et al. (2016) ✓ ✓ ✓ FAHP, fuzzy additive ratio assessment
and multi-segment goal programming

Meena and Sarmah
(2016)

✓ ✓ ✓ Analytical model and solution procedure

Hamdan and
Cheaitou (2017d)

✓ ✓ ✓ ✓ fuzzy TOPSIS, AHP and integer
programming

Hamdan and
Cheaitou (2017b)

✓ ✓ ✓ ✓ ✓ fuzzy TOPSIS, and integer programming

Banaeian et al.
(2018)

✓ ✓ Fuzzy TOPSIS, VIKOR and GRA

Manerba et al.
(2018)

✓ ✓ ✓a two-stage stochastic programming
formulation with recourse

(continued on next page)
6
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Table 2 (continued).
Authors Criteria Multiple QD policy Models and approaches

Economic Environmental Periods Suppliers All unit Incremental Combined

Sadeghi (2018) ✓ ✓ ✓ FAHP and mathematical programming
Mirzaee et al.
(2018)

✓ ✓ ✓ ✓ MILP and fuzzy goal programming

Lo et al. (2018) ✓ ✓ ✓ BWM, fuzzy TOPSIS and LP
Nasiri et al. (2018) ✓ ✓ ✓ MILP
Torğul and Paksoy
(2019)

✓ ✓ ✓ fuzzy TOPSIS

Alegoz and
Yapicioglu (2019)

✓ ✓ ✓ fuzzy TOPSIS, trapezoidal type-2 FAHP
and goal programming

Manerba and
Perboli (2019)

✓ ✓ ✓a Stochastic mathematical model using
Progressive Hedging based heuristic and
a Benders algorithm

Govindan et al.
(2020)

✓ ✓ ✓ fuzzy ANP, fuzzy DEMATEL and MILP

Basa et al. (2020) ✓ ✓ ✓ mixed-integer non-linear program and
GA

Hashemzahi et al.
(2020)

✓ ✓ ✓ FAHP, non-linear LP and GA

Kaviani et al.
(2020)

✓ ✓ intuitionistic FAHP and fuzzy multi
objective optimization

Wang et al. (2020) ✓ ✓ ✓ ANP and integer programming
Kilic and Yalcin
(2020)

✓ ✓ ✓ ✓ intuitionistic fuzzy TOPSIS and fuzzy
goal programming

Qazvini et al.
(2021)

✓ ✓ ✓ ✓ FAHP and MILP

Rezaei et al. (2021) ✓ ✓ ✓ mixed-integer non-linear programming
models, risk reduction strategies and
grasshopper optimization algorithm

Esmaeili-Najafabadi
et al. (2021)

✓ ✓ mixed-integer non-linear programming
and particle swarm optimization

Firouzi and Jadidi
(2021)

✓ ✓ fuzzy multi-objective model

Alejo-Reyes et al.
(2021)

✓ ✓ ✓ particle swarm optimization and
differential evolution

Kaur and Singh
(2021)

✓ ✓ ✓ data envelopment analysis,
FAHP-TOPSIS and MIP

Ecer (2022) ✓ ✓ ✓ Type 2 FAHP
Lakshmanpriya
et al. (2022)

✓ ✓ ✓ ✓ grey theory and updated MCDM with
multi-objective mixed-integer non-linear
program

Amin-Tahmasbi
et al. (2023)

✓ ✓ ✓ multi-objective particle swarm
optimization and multi-objective
vibration damping optimization

Jadidi et al. (2022) ✓ ✓ TOPSIS and optimization algorithm
This work ✓ ✓ ✓ ✓ ✓ ✓ ✓ Fuzzy TOPSIS and ILP, branch-and-cut

algorithm and population-based heuristic

aKnown as total QD since the policy considers the discount on the total purchased quantity of different products.
QD scheme that can be either of the type ‘‘all-unit’’ or ‘‘incremental’’.
A supplier offering ‘‘all-unit’’ QDs in one period cannot change to
‘‘incremental’’ QDs in the other periods and vice-versa. Thus, the QD
scheme is used as an input to the mathematical model. A generalization
of this model that optimizes the QD scheme selection is provided in
the Appendix for interested readers. We model this problem using a
bi-objective integer LP approach in which the total green value of the
purchased items (TGVP) from all selected suppliers in all the periods
is maximized while the total cost of purchasing (TCP) is minimized.
The model considers the constraints of availability and capacity of the
suppliers as well as the dynamic behavior of the system.

3.1. Model notations

3.1.1. Model parameters
• 𝑇 : Number of discrete periods of same duration in the planning

horizon.
• 𝑎𝑡 and 𝑏𝑡 : Set of suppliers offering all-unit QD in period 𝑡 and
7

increment QD in period 𝑡, respectively.
• 𝑛𝑡: Total number of available suppliers in period 𝑡. 𝑛𝑡 = |𝑎𝑡|+ |𝑏𝑡|;
𝑡 = 1,… , 𝑇 . Note that the elements in 𝑎𝑡 and 𝑏𝑡 are non-repeated
integers from 1 to 𝑛𝑡 representing the available suppliers who can
either be in 𝑎𝑡 or 𝑏𝑡.

• 𝑅𝑖: Number of QD interval ranges (all-unit or incremental) for
supplier 𝑖; 𝑖 = 1 , ..., 𝑛𝑡.

• 𝐺𝑊𝑖𝑡: Green performance of supplier 𝑖 in period 𝑡 obtained using
fuzzy TOPSIS with 𝑖 = 1, ..., 𝑛𝑡 and 𝑡 = 1,… , 𝑇 .

• 𝑣𝑐𝑖𝑡𝑟: Unit variable cost of supplier 𝑖, 𝑖 = 1,… , 𝑛𝑡 in period 𝑡
corresponding to the QD interval 𝑟, 𝑟 = 1,… , 𝑅𝑖.

• 𝐹𝐶𝑖𝑡: Fixed ordering cost per period incurred if a positive quantity
is ordered from supplier 𝑖, 𝑖 = 1,… , 𝑛𝑡 in period t; 𝑡 = 1,… , 𝑇 .

• 𝐻𝑡: Unit inventory storage cost in period 𝑡 ; 𝑡 = 1,… , 𝑇 .
• 𝑆𝑡: Unit penalty shortage cost in period 𝑡; 𝑡 = 1,… , 𝑇 .
• 𝑙𝑖𝑡𝑟, 𝑢𝑖𝑡𝑟: Lower and upper limits of the QD interval (‘‘all-unit’’ or

‘‘incremental’’) 𝑟, 𝑟 = 1,… , 𝑅𝑖 of supplier 𝑖, 𝑖 = 1,. . . , 𝑛𝑡 in
period 𝑡 ; 𝑡 = 1,… , 𝑇 . Note that we define 𝑢𝑖𝑡0 = 0 for modeling

purposes.
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Table 3
Criterion rating scale.

Linguistic variable TFN

Little importance (LI) (0.00, 0.00, 0.25)
Moderately important (MI) (0.00, 0.25, 0.50)
Important (I) (0.25, 0.50, 0.75)
Very important (VI) (0.50, 0.75, 1.00)
Absolutely important (AI) (0.75, 1.00, 1.00)

• 𝐷𝑡: Deterministic demand of the product to be fulfilled in period
𝑡, 𝑡 = 1,… , 𝑇 .

• 𝑀 : A big positive number; it can be equal to a factor (larger than
or equal to one) multiplied by the total demand.

• 𝜖: A positive number less than one. We assume it equal to 0.5.

.1.2. Decision variables
• 𝑄𝑖𝑡𝑟: Amount purchased from supplier 𝑖, 𝑖 = 1,… , 𝑛𝑡 in period
𝑡, 𝑡 = 1,… , 𝑇 within the QD interval range 𝑟, 𝑟 = 1,… , 𝑅𝑖.

• 𝑌𝑖𝑡𝑟: A binary decision variables equals to 1 if a non-zero amount
is purchased from supplier 𝑖, 𝑖 = 1,… , 𝑛𝑡 in period 𝑡, 𝑡 = 1,… , 𝑇
within the QD range 𝑟, 𝑟 = 1,… , 𝑅𝑖 (𝑌𝑖𝑡𝑟 = 1) or not (𝑌𝑖𝑡𝑟 = 0).

3.1.3. State variables
• 𝐼𝐻𝑡 : Inventory level available at the end of period 𝑡, 𝑡 = 1,… , 𝑇 .
𝐼0 is the initial inventory level that is available at the beginning
of the first period.

• 𝐼𝑆𝑡 : Unsatisfied demand units (shortage) at the end of period
𝑡, 𝑡 = 1,… , 𝑇 .

• 𝑌 𝐻𝑡 : A binary variable that is equal to one (𝑌 𝐻𝑡 = 1) if the
inventory at the end of period 𝑡, 𝑡 = 1,… , 𝑇 is positive and zero
otherwise (𝑌 𝐻𝑡 = 0).

• 𝑌 𝑆𝑡 : A binary variable that is equal to one (𝑌 𝑆𝑡 = 1) if the
inventory at the end of period 𝑡, 𝑡 = 1,… , 𝑇 is negative and zero
otherwise (𝑌 𝑆𝑡 = 0).

3.2. Fuzzy TOPSIS

We use fuzzy TOPSIS in a way similar to the way that it was
used by Hamdan and Cheaitou (2017d) in order to estimate the green
performance of supplier 𝑖 in period 𝑡, i.e. 𝐺𝑊𝑖𝑡. In order to do so,
we express the fuzziness in the decision-makers’ assessment of the
environmental performance of suppliers using the most widely used
format of fuzzy numbers, i.e. triangular fuzzy numbers (TFNs). A TFN
can be defined as a triplet (ℒ , ℳ, 𝒰), with a membership function as
defined in Hamdan and Cheaitou (2017d) where ℒ is the minimum
possible value, ℳ is the most possible value, and 𝒰 is the maximum
possible value. Moreover, linguistic variables are used to account for
the uncertainty in the decision-makers judgment since they are simple
enough to be represented as fuzzy numbers. In this work, we use the
five-point linguistic scale proposed by Lau et al. (2003) as shown in
Tables 3 and 4. The decision makers assign a weight to every green
criterion considered in the assessment of the green performance of the
suppliers such as having an environmental management system, using
recycled materials, using renewable energy, etc. Moreover, the decision
makers also assign a weight to every supplier with respect to each
criterion. The assignment of the weights to the criteria is based on the
available knowledge and expertise of the decision makers as well as the
relative importance of each criterion to the company. The assignment
of weights to the suppliers with respect to the criteria can be done using
available historical data, the capability studies on the suppliers, and the
laboratory testing and analysis of the product to be purchased.

Fuzzy TOPSIS calculations are then done in five steps.
Step 1: In every period 𝑡, 𝑡 = 1,… , 𝑇 of the planning horizon,

each decision maker DM𝑘, 𝑘 = 1,… , 𝐾, uses the linguistic variables
defined in Table 3 to assign a weight transformed into TFN, 𝑤𝑘, to
8

𝑐

Table 4
Alternative rating scale.

Linguistic variable TFN

Very low (VL) (0.00, 0.00, 0.25)
Low (L) (0.00, 0.25, 0.50)
Good (G) (0.25, 0.50, 0.75)
High (H) (0.50, 0.75, 1.00)
Very high (VH) (0.75, 1.00, 1.00)

each criterion 𝑐, 𝑐 = 1,… , 𝐶. The decision makers use also the linguistic
variables defined in Table 4 to assign a linguistic weight transformed
into TFN, 𝑥𝑘𝑐𝑖𝑡, to each supplier 𝑖 = 1,… , 𝑛𝑡 available in period 𝑡 with
respect to each criterion 𝑐. The weights are then aggregated according
to the following equations:

𝑤𝑐 =
(

ℒ 𝑐 ,ℳ𝑐 ,𝒰 𝑐

)

= 1
𝐾

(

𝑤1
𝑐 +𝑤

2
𝑐 +⋯ +𝑤𝐾𝑐

)

, (1)

𝑥𝑐𝑖𝑡 =
(

ℒ 𝑐𝑖𝑡,ℳ𝑐𝑖𝑡,𝒰 𝑐𝑖𝑡

)

= 1
𝐾

(

𝑥1𝑐𝑖𝑡 + 𝑥
2
𝑐𝑖𝑡 +⋯ + 𝑥𝐾𝑐𝑖𝑡

)

, (2)

here 𝑤𝑘𝑐 =
(

ℒ 𝑘
𝑖 ,ℳ

𝑘
𝑖 ,𝒰

𝑘
𝑖
)

, a fuzzy number, is the weight of criterion
given by decision maker DM𝑘, and 𝑥𝑘𝑐𝑖𝑡 =

(

ℒ 𝑘
𝑐𝑖𝑡,ℳ

𝑘
𝑐𝑖𝑡,𝒰

𝑘
𝑐𝑖𝑡
)

, a fuzzy
umber, is the weight of supplier 𝑖 available in period 𝑡 with respect to
riterion 𝑐 given by decision maker DM𝑘.

Step 2: A normalization approach is then used to eliminate the
different units of measurement of the weights 𝑥𝑐𝑖𝑡 as follows:

ℛ𝑐𝑖𝑡 =

(

ℒ 𝑐𝑖𝑡
𝒰𝑖𝑡

,
ℳ𝑐𝑖𝑡
𝒰𝑖𝑡

,
𝒰 𝑐𝑖𝑡
𝒰𝑖𝑡

)

, (3)

for every benefit criterion 𝑐, and

ℛ𝑐𝑖𝑡 =

(

ℒ𝑖𝑡

𝒰 𝑐𝑖𝑡

,
ℒ𝑖𝑡

ℳ𝑐𝑖𝑡

,
ℒ𝑖𝑡

ℒ 𝑐𝑖𝑡

)

, (4)

for every cost criterion, 𝑐, where ℛ𝑐𝑖𝑡 is the normalized value of 𝑥𝑐𝑖𝑡
nd 𝒰𝑖𝑡 = 𝑚𝑎𝑥𝑐𝒰𝑐𝑖𝑡 and ℒ𝑖𝑡 = 𝑚𝑖𝑛𝑐ℒ𝑐𝑖𝑡. We then combine the matrix

[ℛ𝑐𝑖𝑡](𝐶×𝑛𝑡) with the vector [𝑤𝑐 ](1×𝐶) to form the decision matrix.
Step 3: In this step, the weight of each supplier in each period

is multiplied by the weight of each criterion to obtain the weighted
normalized fuzzy decision matrix as in the following equation:

𝑉 = [𝑣𝑐𝑖𝑡](𝐶×𝑛𝑡), where 𝑣𝑐𝑖𝑡 = ℛ𝑐𝑖𝑡 ⊗𝑤𝑐 . (5)

Indeed, 𝑉 is the result of the multiplication of the last row in the
ecision matrix obtained in Step 2, 𝑤𝑐 , by each row of that matrix.

Step 4: The fuzzy positive ideal solution (FPIS) and the fuzzy neg-
ative ideal solution (FNIS) are then identified. Given that normalized
values of 𝑣𝑐𝑖𝑡 are from 0 to 1, the FPIS is defined as (1,1,1), while the
FNIS is defined as (0,0,0). These values are then used to determine the
distance from the positive ideal (dist+𝑖𝑡 ) and the negative ideal (dist−𝑖𝑡 )
solutions for each supplier 𝑖 in each period 𝑡 as follows:

dist+𝑖𝑡 =
∑

𝑐
dist(𝑣𝑐𝑖𝑡, FPIS), (6)

dist−𝑖𝑡 =
∑

𝑐
dist(𝑣𝑐𝑖𝑡, FNIS). (7)

The distances dist+𝑖𝑡 and dist−𝑖𝑡 are estimated using following the
quation that calculates the distance between the two fuzzy numbers
= (ℒ𝐴,ℳ𝐴,𝒰𝐴) and 𝐵 = (ℒ𝐵 ,ℳ𝐵 ,𝒰𝐵):

dist(𝐴,𝐵) =
√

1
3
[

(ℒ𝐴 −ℒ𝐵)2 + (ℳ𝐴 −ℳ𝐵)2 + (𝒰𝐴 −𝒰𝐵)2
]

. (8)

Step 5: Finally, the closeness coefficient, i.e. the green weight of
each supplier 𝑖 available in each period 𝑡, 𝐺𝑊𝑖𝑡, is calculated as follows:

𝐺𝑊𝑖𝑡 =
dist−𝑖𝑡
− + . (9)
dist𝑖𝑡 + dist𝑖𝑡
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3.3. Mathematical model

The bi-objective integer LP model is defined as follows:

maxTGVP =
𝑇
∑

𝑡=1

𝑛𝑡
∑

𝑖=1

𝑅𝑖
∑

𝑟=1
𝐺𝑊𝑖𝑡 ×𝑄𝑖𝑡𝑟, (10)

minTCP =
𝑇
∑

𝑡=1

𝑛𝑡
∑

𝑖=1

(

𝑉
(

𝑄𝑖𝑡
)

+
𝑅𝑖
∑

𝑟=1
𝑌𝑖𝑡𝑟 × 𝐹𝐶𝑖𝑡

)

+
𝑇
∑

𝑡=1

(

𝐻𝑡 × 𝐼𝐻𝑡 + 𝑆𝑡 × 𝐼𝑆𝑡
)

,

(11)

here
(

𝑄𝑖𝑡
)

=

⎧

⎪

⎨

⎪

⎩

∑𝑅𝑖
𝑟=1 𝑣𝑐𝑖𝑡𝑟𝑄𝑖𝑡𝑟, for 𝑖 ∈ 𝑎𝑡

∑𝑅𝑖
𝑟=1

(

𝑣𝑐𝑖𝑡𝑟
(

𝑄𝑖𝑡𝑟 − 𝑢𝑖𝑡(𝑟−1)𝑌𝑖𝑡𝑟
)

+
(

𝑌𝑖𝑡𝑟
∑𝑟−1
𝑘=1 𝑣𝑐𝑖𝑡𝑘

(

𝑢𝑖𝑡𝑘 − 𝑢𝑖𝑡(𝑘−1)
)

))

, for 𝑖 ∈ 𝑏𝑡

(12)

Subject to
𝑅𝑖
∑

𝑟=1
𝑌𝑖𝑡𝑟 ≤ 1, ∀𝑖 = 1,… , 𝑛𝑡, 𝑡 = 1,… , 𝑇 , (13)

𝑖𝑡𝑟𝑙𝑖𝑡𝑟 ≤ 𝑄𝑖𝑡𝑟 ≤ 𝑌𝑖𝑡𝑟𝑢𝑖𝑡𝑟 ∀𝑖 = 1,… , 𝑛𝑡, 𝑡 = 1,… , 𝑇 , 𝑟 = 1,… , 𝑅𝑖, (14)

𝐻
𝑡−1 − 𝐼

𝑆
𝑡−1 +

𝑛𝑡
∑

𝑖=1

𝑅𝑖
∑

𝑟=1
𝑄𝑖𝑡𝑟 − 𝐼𝐻𝑡 + 𝐼𝑆𝑡 = 𝐷𝑡, (15)

𝑇
∑

𝑡=1

𝑛𝑡
∑

𝑖=1

𝑅𝑖
∑

𝑟=1
𝑄𝑖𝑡𝑟 + 𝐼0 =

𝑇
∑

𝑡=1
𝐷𝑡, (16)

𝑌 𝑆𝑡 ≤ 𝐼𝑆𝑡 ≤ 𝑀𝑌 𝑆𝑡 , ∀𝑡 = 1,… , 𝑇 , (17)

𝑌 𝐻𝑡 ≤ 𝐼𝐻𝑡 ≤ 𝑀𝑌 𝐻𝑡 , ∀𝑡 = 1,… , 𝑇 , (18)

𝐻
𝑡 + 𝑌 𝑆𝑡 ≤ 1, ∀𝑡 = 1,… , 𝑇 , (19)

𝑖𝑡𝑟 ∈ N, 𝑌𝑖𝑡𝑟 ∈ {0, 1} , ∀𝑖 = 1,… , 𝑛𝑡 , 𝑡 = 1,… , 𝑇 , 𝑟 = 1,… , 𝑅𝑖,

(20)

𝐻
𝑡 ∈ N, 𝐼𝑆𝑡 ∈ N, 𝑌 𝐻𝑡 ∈ {0, 1} , 𝑌 𝑆𝑡 ∈ {0, 1} , ∀𝑡 = 1,… , 𝑇 . (21)

Although the model proposed in this paper considers two QD poli-
ies allowing some suppliers to provide the ‘‘all-unit’’ policy and some
thers to provide the ‘‘incremental’’ policy, it can also be used as a pure

‘all-unit’’ or pure ‘‘incremental’’ QD model. The choice implementation
f one of the three possible configurations of the model can simply
e achieved by changing the set of suppliers offering the two types of
iscounts and the number of suppliers in these sets, i.e. 𝑎𝑡 and 𝑏𝑡.

The model maximizes the TGVP (Eq. (10)) and minimizes the TCP
Eq. (11)) of the products purchased from all suppliers in all periods.
q. (10) is a weighted sum of the purchased amounts in which the
uantities are multiplied by the green performance levels of the cor-
esponding suppliers. The first part of Eq. (11) represents the total
ariable and fixed costs of the purchased items, while the second part
epresents the inventory holding and shortage costs. Moreover, Eq. (12)
epresents the total variable cost as function of the QD policy. The first
art of Eq. (12) represents the variable cost for the planning horizon
nd all suppliers offering an ‘‘all-unit’’ QD scheme while the second
art applies on suppliers offering ‘‘incremental’’ QDs.

Constraint (13) ensures that only one QD interval range, at most,
s chosen for every supplier in each period. In addition, constraint
14) ensures that the quantity from every selected supplier lies within
he corresponding chosen QD interval range. Constraint (15) controls
9

he dynamic behavior of the inventory levels in the periods of the
lanning horizon, while constraint (16) guarantees that, at the end of
he planning horizon, all the deterministic demand is fulfilled either
sing the initial inventory or the ordered quantities from the suppliers
uring the planning horizon periods.

Constraints (17) and (18) ensure respectively that 𝑌 𝑆𝑡 and 𝑌 𝐻𝑡 are
qual to one if 𝐼𝑆𝑡 and 𝐼𝐻𝑡 are positive. Constraint (19) ensures that
t most one of the two binary variables representing the status of the
nventory at the end of each period (positive inventory or shortage)
ay equal to one. Finally, Constraints (20) and (21) ensure that the
ecision variables 𝑄𝑖𝑡𝑟, 𝐼𝐻𝑡 and 𝐼𝑆𝑡 are non-negative integers, and
𝑖𝑡𝑟, 𝑌 𝐻𝑡 and 𝑌 𝑆𝑡 are binary.

Moreover, although the proposed model considers the backlog case,
he lost sales case can be also considered by incorporating few changes
nto the model. Indeed, removing 𝐼𝑆𝑡−1 from the left-hand side of con-
traint (15) and ignoring constraint (16) will result in a lost sales
odel.

emark 1. The model presented in this section can be extended to
ptimize the QD scheme (as shown in Appendix). This extension is
chieved by introducing another index 𝑗 to the decision variables 𝑄𝑖𝑡𝑟
nd 𝑌𝑖𝑡𝑟. This index accounts for the different QD schemes. For instance,
= 1 represents an all-unit QD scheme, and 𝑗 = 2 represents an

ncremental QD scheme. Then, Constraint (13) in Appendix can be
odified to ensure that at most one range and one scheme is chosen. To

btain meaningful results, the buyer-oriented objective function must
e replaced to consider both the buyer’s and the suppliers’ interests.
his aspect is beyond the scope of this paper.

.4. Bi-objective solution

In order to determine the Pareto front and the corresponding Pareto
olutions of the model defined in Eqs. (10)–(21), we use a scalariza-
ion technique called the weighted comprehensive criterion method
WCCM) (Kamali et al., 2011; Hamdan and Cheaitou, 2017b; Abdallah
t al., 2021; Alsyouf et al., 2021). This method requires solving the
odel in three steps.

Step 1:
The model that maximizes the TGVP only is solved, i.e. Eq. (10), subject
to constraints (13)–(21). This step gives the optimal value TGVPmax.

Step 2:
The model that minimizes the TCP only is solved, i.e. Eqs. (11) and
(12), subject to constraints (13)–(21). This step results in the optimal
value TCPmin.

Step 3:
Steps 1 and 2 focus on single objective formulation to obtain the two
ideal values TGVPmax and TCPmin. These two values will be used in
defining a new objective function that solves the cost and the value
simultaneously by combining them. Since the two objective functions
have different order of magnitudes and units, their optimal values
(TGVPmax and TCPmin) are used to normalize the objective functions.
These normalize functions are:

𝑓TGVP =
TGVPmax − TGVP

TGVPmax
, (22)

𝑓TCP =
TCP − TCPmin

TCPmin
, (23)

Eq. (22) calculates the relative difference between the ideal green
value (TGVPmax) obtained from Step 1 and the TGVP calculated using
Eq. (10). Similarly, Eq. (23) calculates the relative difference between
the TCP calculated using Eq. (11) and ideal cost (TCPmin) obtained
from Step 2. Eqs. (22) and (23) target to bring objective functions
(10) and (11) when combined together close to their optimal values
after eliminating the effect of the units. Thus, a model consisting of a
weighted combination of Eqs. (22) and (23), as given in Eq. (24) and
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Fig. 1. The quantity chromosome with the rows for the individuals and columns for the suppliers and periods. The cells contain the quantity value 𝑄𝑖𝑡𝑟.
Fig. 2. The inventory chromosome with the rows for the individuals and columns for the periods. The cells contain the inventory levels (positive inventory, 𝐼𝐻𝑡 , and unsatisfied
demand, 𝐼𝑆𝑡 ).
the same constraints defined in Eqs. (13)–(21) is solved. The solution
of this model gives the bi-objective optimal solution.

min 𝑓 = 𝛼1𝑓TGVP + 𝛼2𝑓TCP. (24)

𝛼1 and 𝛼2 are two weights between 0 and 1 with 𝛼1+𝛼2 = 1. Varying
the values of 𝛼1 and 𝛼2 and solving (24) subject to (13)–(21) results in
different Pareto solutions that help identify the problem Pareto front.

3.5. Solution approach

We propose a population-based heuristic to solve large-sized in-
stances within a reasonable computation time as shown in Algorithm
1. This heuristic starts by generating 𝛹 individuals (𝛹 is a multiple
of eight), each of which (𝜓 = 1,… , 𝛹) consisting of a random fea-
sible solution (i.e., selected suppliers, quantities to be ordered and
inventory levels) for each period 𝑡 (𝑡 = 1,… , 𝑇 ). The design of the
used chromosomes is given in Figs. 1 and 2. Note that the inventory
chromosome is created based on the quantity chromosome for each
individual. For each individual 𝜓 , a list of suppliers and periods (𝜔𝜓 )
is randomly generated, such that the selected suppliers and periods
are enough to fulfill the demand (Constraint (16)). Then, a quantity
is randomly assigned for each period and supplier in the list while
not exceeding the capacity of supplier 𝑖 in period 𝑡 (𝑢𝑖𝑡𝑅𝑖 ). That is,
constraint (14) is respected. A feasible solution is ensured by randomly
modifying the assigned quantities such that constraint (16) is satisfied.
After that the inventory level chromosome in each period 𝑡 is created
using ∑𝑛𝑡

𝑖=1
∑𝑅𝑖
𝑟=1𝑄𝑖𝑡𝑟−𝐷𝑡, which results in the decision variables 𝐼𝐻𝑡 and

𝐼𝑆𝑡 in Constraint (15).
The algorithm then sets the ideal TGVP (TGVPmax), the ideal TCP

(TCPmin), and the global total variation (𝑓𝐺) to −∞, +∞ and +∞,
respectively. In each iteration 𝛿, 𝛿 = 1,… , 𝛥, the heuristic performs the
following steps:

1. It computes the TGVP for each individual (TCP ) using Eq. (10).
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𝜓

2. It identifies the best TGVP among the individuals in the iteration
as max𝜓=1,…,𝛹 TGVP𝜓 and saves its value in TGVP𝐵 .

3. It computes the TCP for each individual (TCP𝜓 ) using Eq. (11).
4. It identifies the best TCP among the individuals in the iteration

as min𝜓=1,…,𝛹 TCP𝜓 and saves its value in TCP𝐵 .
5. It then compares TGVP𝐵 and TCP𝐵 with the current ideal values

(TGVPmax, TCPmin) and updates the ideal values if better values
are found and recalculates 𝑓min.

6. Next, it computes the total variation for each individual (𝑓𝜓 )
using Eq. (24).

7. Finally, it selects the best total variation (𝑓𝐵) as min𝜓=1,…,𝛹 𝑓𝜓
and updates the ideal total variation 𝑓min.

If the best total variation 𝑓𝐵 in any iteration is better than the
global total variation 𝑓min, then the algorithm updates 𝑓min and resets
the counter 𝜏 to zero. When 𝑓min is not updated, then the counter 𝜏
is increased by one. The counter 𝜏 stores the consecutive number of
iterations without improvement in 𝑓min. This technique allows escaping
local optimum solutions and enhances the solution diversity.

To explore other potential solutions, the heuristic in each iteration
splits the 𝛹 individuals into subgroups, each of eight individuals. It then
performs the following steps on each subgroup:

1. It selects the best individual based on 𝑓𝜓
2. It performs eight operations on best individual to create eight

new individuals.
3. It replaces the individuals with the new ones.

The eight operations used to create new individuals are:

1. Do nothing, that is keep the best.
2. Change quantity 𝑄𝑖𝑡𝑟 between two locations (suppliers and peri-

ods) on the quantity chromosome.
3. Change quantity 𝑄𝑖𝑡𝑟 between two suppliers in the same period

𝑡.
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4. Change quantity 𝑄𝑖𝑡𝑟 between two periods from the same sup-
plier 𝑖.

5. Increase the capacity utilization of supplier 𝑖.
6. Decrease the shortage in a randomly selected period.
7. Decrease the amount of inventory holding in a randomly selected

period.
8. Switch the quantities for a randomly selected supplier between

different periods.

If 𝜏 reaches the maximum predefined number of iterations al-
lowed without change (𝜏max), then all individuals are removed and new
individuals are generated randomly.

Moreover, in order to guarantee a stable heuristic solution and
to reduce the randomness impact when comparing it with the exact
approach, the heuristic is solved a certain number of times for each
instance and the average objective value of the solutions is considered
and compared with the corresponding exact objective value.

4. Implementation software

In order to facilitate the implementation of the proposed mathemati-
cal model and the solution approach in practice for decision-makers and
users in the industry, a MATLAB-based software has been developed.
The software has a graphical user interface that was designed using
the ‘‘App Designer’’ package available in MATLAB 2021a. Fig. 3 shows
the fuzzy TOPSIS tab in the developed software. The software requires
the user to input the fuzzy TOPSIS scale and the evaluations in Excel
format ‘‘.xlsx’’. It returns the green (and non-green) weights.

Fig. 4 illustrates the optimization tab in the software. The user must
upload inventory data (holding and shortage costs), demand data and
suppliers’ data (green weights, fixed costs, variable costs for each QD
interval range, capacity details, QD type, and availability) as Excel files
‘‘.xlsx’’. The user also needs to specify the weight of the TCP objective
function, and consequently, the importance of the TGVP objective
function will be automatically calculated. The user needs to identify
whether the QD scheme is uniform for all suppliers or mixed and to
select the desired optimization method. The software returns the chosen
supplier selection and the order allocation decisions for every period as
shown in Fig. 4.

5. Numerical study

In Section 5.1, we construct an illustrative example using the case
study data presented in Choudhary and Shankar (2014). We show the
impact of different QD schemes on the selected suppliers, inventory
levels, TCP value, and TGVP value using this illustrative example.
In addition, we generate the Pareto frontier and illustrate the trade-
offs between TCP and TGVP under different QD schemes. Then, in
Section 5.2, we generate large-sized instances to test the developed
model and the solution approaches. The instance generation technique
is similar to the one discussed in Manerba et al. (2018) and adapted
for our problem. Table 5 provides details on the parameter generation
rules used to generate the parameter values used in this section. For
each instance, three QD scenarios have been considered:

• Scenario 1: all suppliers offer ‘‘all-unit’’ QDs.
• Scenario 2: all the suppliers offer ‘‘incremental’’ QDs.
• Scenario 3: some suppliers offer ‘‘all-unit’’ QD while others offer

‘‘incremental’’ QDs.

We use the notation P𝑁 − 𝑇 − 𝜆 −  to represent different instance
configurations and problem sizes, where 𝑁 represents the maximum
number of suppliers in the instance, 𝑇 is the number of periods, 𝜆 repre-
sents the level of the number of suppliers required to fulfill the demand.
The values of 𝜆 are defined as follows: ‘‘L’’ for low, ‘‘M’’ for medium
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and ‘‘H’’ (see Table 5). The last letter in the notation, , represents
Algorithm 1: Population-based heuristic.
input : Sets and parameters defined in the Section 3.1.1
output : Selected suppliers and corresponding orders and

inventory levels
1 set TGVPmax = −∞, TCPmin = ∞, 𝑓min = ∞, 𝜏 = 0, 𝜏max = 2000

and 𝛥 = 200, 000 ;
2 initialize 𝛹 individuals;
3 for 𝜓 ← 1 to 𝛹 do
4 generate a random list of suppliers and periods (𝜔𝜓 );
5 assign random 𝑄𝑖𝑡𝑟 for suppliers and periods in 𝜔𝜓 ;
6 calculate 𝐼𝐻𝑡 and 𝐼𝑆𝑡 for each 𝑡 = 1,… , 𝑇 ;
7 check and fix violations in Constraints (14)–(16)
8 end
9 for 𝛿 ← 1 to 𝛥 do
10 for 𝜓 ← 1 to 𝛹 do
11 calculate TGVP𝜓 and TCP𝜓 using Eqs. (10) and

(11)–(12), respectively;
12 end
13 set TGVP𝐵 = max𝜓=1,…,𝛹 TGVP𝜓 ;
14 set TCP𝐵 = min𝜓=1,…,𝛹 TCP𝜓 ;
15 if TGVP𝐵 > TGVPmax then
16 set TGVPmax = TGVP𝐵 ;
17 if 𝛿 ≠ 1 then
18 recalculate 𝑓min using the updated TGVPmax;
19 end
20 end
21 if TCP𝐵 < TCPmin then
22 set TCPmin = TCP𝐵 ;
23 if 𝛿 ≠ 1 then
24 recalculate 𝑓min using the updated TCPmin;
25 end
26 end
27 foreach 𝜓 ← 1 to 𝛹 do
28 calculate 𝑓𝜓 using Eq. (24);
29 end
30 set 𝑓𝐵 = min𝜓=1,…,𝛹 𝑓𝜓 ;
31 if 𝑓𝐵 < 𝑓min then
32 set 𝑓min = 𝑓𝐵 ;
33 store the best individual as the global best;
34 set 𝜏 = 0
35 else
36 set 𝜏 = 𝜏 + 1
37 end
38 for 𝑘 ← 1 to 𝛹∕8 do
39 select randomly eight individuals with their

corresponding TCP𝜓 , TGVP𝜓 , and 𝑓𝜓 ;
40 identify best individual in the subgroup based on

𝑓𝜓 ;
41 perform the eight operations listed in Section 3.5;
42 replace the individuals in the subgroup with the

newly created ones;
43 end
44 if 𝜏 ≥ 𝜏max then
45 discard all individuals and create new ones;
46 end
47 end
48 return the global best solution.

the studied scenario, with ‘‘A’’ for Scenario 1, ‘‘I’’ for Scenario 2 and
‘‘C’’ for Scenario 3. The asterisk (*) indicates that the exact solution
is not optimal as the solver reached the maximum time limit without
providing the optimal solution (three hours in this work). For example,
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Fig. 3. Fuzzy TOPSIS tab in the developed decision-making software.
Fig. 4. Optimization tab in the developed decision-making software.
P10-40-L-I* is an instance with ten suppliers using only incremental
QDs (Scenario 2), forty periods and low number of suppliers required
to fulfill the demand. The solver did not reach the optimal solution
for this instance due to the time limit. All instances have been solved
using the exact approach and the proposed population-based heuristic.
In the heuristic approach, the maximum number of iterations (𝛥) and
the number of individuals, i.e. solutions (𝛹 ), are 200,000 and 24,
respectively. All experiments were conducted using a laptop equipped
with Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz 2.59 GHz, 16.0 GB
of RAM and Windows 11. CPLEX 12.6 was used to obtain the exact
solution.

5.1. Illustrative example

We utilize the data presented in Choudhary and Shankar (2014) to
demonstrate the impact of the QD scheme on various parameters. The
12
demand is given as 𝐷𝑡 = {650, 520, 500, 650} for 𝑡 = 1,… , 4. The example
in Choudhary and Shankar (2014) employs a fixed discount of 1 per
unit for each QD interval, which we refer to as ‘‘Case Study 1’’. We
then introduce ‘‘Case Study 2’’, which uses the same parameters as in
‘‘Case Study 1’’ but with variable costs for different QD intervals. In this
case, we assume distinct discount levels for each supplier, as shown in
Table 6. For Scenario 3, titled ‘‘Combined QD’’, suppliers are assumed
to employ different QD schemes. We define six sub-scenarios, ranging
from ‘‘Combined-1’’ to ‘‘Combined-6’’, each with variations in the two
sets 𝑎𝑡 and 𝑏𝑡 (Table 7).

Table 8 displays the optimal quantities and inventory levels in each
period for Cases 1 and 2. In Case Study 1, the ordered quantities
and selected suppliers remain unchanged despite alterations in the QD
schemes. This can be attributed to the cost structure, where Supplier
1 is the most affordable option across all price intervals, followed by
Supplier 3. Moreover, a positive inventory level can be noticed at the
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Table 5
Instance generation rules.

Parameter Formula Explanation

𝑛𝑡 𝑛𝑡 ∼ 𝑈 ( 𝑁
3
, 𝑁) 𝑈 : a discrete uniform distribution

𝑁 : maximum number of suppliers

𝑅𝑖 𝑅𝑖 ∼ 𝑈 (3, 5)

𝑢𝑖𝑡𝑅𝑖 𝑢𝑖𝑡𝑅𝑖 ∼ 𝑈 (1, 15)

𝑙𝑖𝑡𝑟 ⌊𝜃𝑖𝑟𝑢𝑖𝑡𝑅𝑖 ⌋
𝜃𝑖𝑟 ∼  (0.6, 1)

 : a continuous uniform distribution
𝜃𝑖𝑟: a percentage to define the lower limit
of the QD interval

𝑣𝑐𝑖𝑡𝑟 𝑣𝑐𝑡 ∼  (10, 18)
𝑣𝑐𝑖𝑡 ∼  (0.9𝑣𝑐𝑡 , 1.1𝑣𝑐𝑡)
𝑣𝑖𝑡𝑟 = (1 − 𝜇𝑖𝑟)𝑣𝑐𝑖𝑡
𝜇𝑖𝑟 ∈ {0, 0.1, 0.15, 0.2, 0.25, 0.3}

𝜇𝑖𝑟 ∶ discount rate

𝐷𝑡 𝜆 ∼  (0, 1)
𝐷′
𝑡 = ⌈𝜆max𝑖 𝑢𝑖𝑡𝑅𝑖 + (1 − 𝜆)

∑

𝑖 𝑢𝑖𝑡𝑅𝑖 ⌉
𝐷𝑡 = ⌈𝐷′

𝑡 − (𝐷′
𝑡 − 1) ∗ 𝑣𝑐𝑡

∑

𝑡 𝑣𝑐𝑡
⌉

𝐷𝑡 is a function of variable cost, maximum capacity and 𝜆
𝜆: factor affecting number of required suppliers

𝐹𝐶𝑖𝑡 𝑣𝑐𝑖 =
∑

𝑡 𝑣𝑐𝑖𝑡
𝑇

, 𝑣𝑐 =
∑

𝑖
∑

𝑡 𝑣𝑐𝑖𝑡
𝑁×𝑇

𝐶𝐹𝑖𝑡 =
(

𝑣𝑐 + 𝑣𝑐
𝑣𝑐𝑖

)

× 𝛾
∑

𝑡 𝑢𝑖𝑡𝑅𝑖

𝐹𝐶𝑖𝑡 is a function of the average variable cost
and the maximum capacity

𝐻𝑡 𝐻𝑡 ∼  ( 10%
12
𝑣𝑐, 20%

12
𝑣𝑐) The annual inventory cost is between

10% and 20% of the purchasing cost

𝑆𝑡 𝑆𝑡 ∼  ( 25%
12
𝑣𝑐, 35%

12
𝑣𝑐) The annual shortage cost is between

25% and 35% of the purchasing cost

𝐺𝑊𝑖𝑡 𝐺𝑊𝑖𝑡 ∼  (0.2, 0.7)

𝛼1 and 𝛼2 𝛼1 = 0.5, 𝛼2 = 0.5 Equal importance
Table 6
Parameters used in the illustrative example.

QD intervals 𝑣𝑐𝑖𝑡𝑟 𝐹𝐶𝑖𝑡 𝐺𝑊𝑖𝑡

Case Study 1 Case Study 2

Supplier 1
𝑄 ≤ 149 62 62

1000 0.19150 ≤ 𝑄 ≤ 299 61 61
300 ≤ 𝑄 ≤ 500 60 57

Supplier 2
𝑄 ≤ 199 72 72

1500 0.46200 ≤ 𝑄 ≤ 349 71 65
350 ≤ 𝑄 ≤ 450 70 55

Supplier 3
𝑄 ≤ 249 68 68

1400 0.32250 ≤ 𝑄 ≤ 399 67 60
400 ≤ 𝑄 ≤ 620 66 59

Table 7
Sub-scenarios under the combined QD scheme.

𝑎𝑡 𝑏𝑡
Combined-1 {Supplier 1, Supplier 2} {Supplier 3}
Combined-2 {Supplier 1, Supplier 3} {Supplier 2}
Combined-3 {Supplier 2, Supplier 3} {Supplier 1}
Combined-4 {Supplier 3} {Supplier 1, Supplier 2}
Combined-5 {Supplier 2} {Supplier 1, Supplier 3}
Combined-6 {Supplier 1} {Supplier 2, Supplier 3}

end of periods 1 through 3. The reason may be attributed to the savings
that can be generated from ordering larger quantities than the demand
and storing part of the ordered quantities to benefit from the QD. The
savings related to QD are more important than the additional inventory
holding costs.

Under Case Study 2, and in the all-unit QD scheme, Supplier 2
is mainly used to fulfill the demand followed by Supplier 1 as they
are the least expensive suppliers in the third QD interval. The same
applies to ‘‘Combined-1’’ as both suppliers offer all-unit QD in this case.
In the incremental QD scheme, Supplier 1 is the main used source
followed by Supplier 3. This result is related to the price structure,
as the price impact is cumulative depending on the ordered quantity.
Consequently, utilizing Supplier 1 is ideal due to the least expensive
price in the first interval, and the second least expensive price in
the second and third intervals. A similar situation can be seen in the
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‘‘Combined-6’’ scenario. In the combined scenarios, the general trend
is to rely on one main supplier offering all-unit QD as this results in
a less expensive procurement plan than relying on suppliers offering
incremental QD. Moreover, almost all the cases, the inventory levels are
positive throughout the planning horizon, except in the last period, due
to the quantities ordered and that are larger than the demand so that
price discounts can be achieved. Only for the scenario ‘‘Combined-4’’,
it is less expensive to have shortages in the first period than ordering
larger quantities and storing for the following period. Note that in the
case of maximizing the TGVP objective function, Supplier 2 is mainly
used followed by Supplier 3 regardless of the QD scheme. The reason
is related to the fact that 𝐺𝑊𝑖𝑡 has the highest value for Supplier
2 followed by Supplier 3 and that the TGVP objective function is
independent of the unit price of the products and therefore of the QD
schemes.

The bi-objective behavior is studied through the Pareto frontier by
varying 𝛼1 from 0 to 1 with a step of 0.01. Fig. 5 shows the TCP and
TGVP values for the two cases, Case Study 1 and Case Study 2. For both
cases, Scenarios 1 and 2 are the two extreme scenarios, and the dif-
ferent combined sub-scenarios within Scenario 3 are bounded between
them. The first observation that one can draw from the results is that
the all-unit QD scheme allows the customer company to reconcile cost
and environmental performance in an easier way that the incremental
QD scheme. This result can be seen from the Pareto frontiers in both
cases, Case Study 1 and Case Study 2, where the Pareto frontier course
of the all-unit scheme is the lowest allowing a better trade-off between
the two objective functions, TCP and TGVP. Moreover, the average
trade-off between the TCP and the TGVP is calculated and reported in
Table 9. As a confirmation to the better performance of the all-unit
scheme in terms of reconciliation of the economic and environmental
performances, an average of 25.85% improvement of the TGVP of the
purchased products can be achieved in Case Study 2 for an increase in
the TCP by only 1%. Moreover, increasing the TCP by 1% in Case Study
1 enhances the TGVP by 6.07% on the average. An increase in the TGVP
between 3.18% and 25.85% can be observed in Case Study 2 for an
increase of the TCP by 1%. Note that in the sub-scenario ‘‘Combined-
3’’ of Case Study 2, no trade-off exists since the optimal solution in
the case of cost minimization is the same as that in the case of TGVP

maximization.
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Table 8
Optimal solution for minimizing the TCP under Case Study 1 and Case Study 2.

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4

Case Study 1 All schemes
Quantities 𝑄113 = 500

𝑄312 = 320
𝑄123 = 500 𝑄133 = 500 𝑄143 = 500

Inventory 𝐼𝐻1 = 170 𝐼𝐻2 = 150 𝐼𝐻3 = 150 𝐼𝐻4 = 0

Case Study 2

All unit
Quantities 𝑄113 = 470

𝑄213 = 450
𝑄223 = 450 𝑄233 = 450 𝑄143 = 500

Inventory 𝐼𝐻1 = 270 𝐼𝐻2 = 200 𝐼𝐻3 = 150 𝐼𝐻4 = 0

Incremental
Quantities 𝑄113 = 500

𝑄312 = 320
𝑄123 = 500 𝑄133 = 500 𝑄143 = 500

Inventory 𝐼𝐻1 = 170 𝐼𝐻2 = 150 𝐼𝐻3 = 150 𝐼𝐻4 = 0

Combined-1
Quantities 𝑄113 = 470

𝑄213 = 450
𝑄223 = 450 𝑄233 = 450 𝑄143 = 500

Inventory 𝐼𝐻1 = 270 𝐼𝐻2 = 200 𝐼𝐻3 = 150 𝐼𝐻4 = 0

Combined-2
Quantities 𝑄113 = 420

𝑄313 = 400
𝑄123 = 500 𝑄133 = 500 𝑄143 = 500

Inventory 𝐼𝐻1 = 170 𝐼𝐻2 = 150 𝐼𝐻3 = 150 𝐼𝐻4 = 0

Combined-3
Quantities 𝑄213 = 450

𝑄313 = 520
𝑄223 = 450 𝑄233 = 450 𝑄243 = 450

Inventory 𝐼𝐻1 = 320 𝐼𝐻2 = 250 𝐼𝐻3 = 200 𝐼𝐻4 = 0

Combined-4 Quantities 𝑄313 = 620 𝑄323 = 580 𝑄133 = 500 𝑄343 = 620
Inventory 𝐼𝑆1 = 30 𝐼𝐻2 = 30 𝐼𝐻3 = 30 𝐼𝐻4 = 0

Combined-5
Quantities 𝑄113 = 500

𝑄213 = 450
𝑄223 = 450 𝑄233 = 450 𝑄141 = 20

𝑄243 = 450
Inventory 𝐼𝐻1 = 300 𝐼𝐻2 = 230 𝐼𝐻3 = 180 𝐼𝐻4 = 0

Combined-6
Quantities 𝑄113 = 500

𝑄312 = 320
𝑄123 = 500 𝑄133 = 500 𝑄143 = 500

Inventory 𝐼𝐻1 = 170 𝐼𝐻2 = 150 𝐼𝐻3 = 150 𝐼𝐻4 = 0
Fig. 5. Pareto frontier for Case Study 1 and Case Study 2.
5.2. Heuristic performance

The population-based heuristic (Algorithm 1) is compared with the
exact approach to judge its performance. We generated instances, as
explained in Section 5 and used a time limit of three hours as a stopping
criterion for the exact approach. All the instances have been solved
following the three scenarios defined in Section 5. Table 10 provides
14
the percentage difference between the objective function values ob-
tained using the exact and the heuristic approaches. More precisely,
the percentage difference between the TCP values obtained from the
exact and heuristic bi-objective solutions, 𝐸TCP, is calculated as 𝐸TCP =
100 × TCP𝐻−TCP𝐸𝑥

TCP𝐸𝑥
. Moreover, the percentage difference for the TGVP

value between the exact and heuristic bi-objective solutions, 𝐸TGVP, is
obtained using 𝐸TGVP = 100× TGVP𝐸𝑥−TGVP𝐻

TGVP𝐸𝑥
. Note that the subscript 𝐸𝑥
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Fig. 6. Heuristic computation time under the three scenarios.
Table 9
Increase in the TGVP for 1% of TCP increase in Case Study 1 and Case Study 2.

Case Study 1 Case Study 2

All-unit 6.12% 25.85%
Incremental 6.00% 9.17%
Combined-1 6.00% 8.56%
Combined-2 5.79% 5.99%
Combined-3 6.57% 𝑛∕𝑎
Combined-4 6.13% 3.18%
Combined-5 6.47% 7.02%
Combined-6 5.47% 6.68%

and 𝐻 denote the exact and the heuristic solutions. The exact solution
is either the optimal one or the best solution within the time limit. The
bi-objective error (𝐸𝑓 ) is calculated as 𝛼1𝐸TCP + 𝛼2𝐸TGVP, which is also
equivalent to the difference between 𝑓𝐸𝑥 and 𝑓𝐻 . This is because the
bi-objective solution is characterized by two values (TCP and TGVP).

Table 10 shows that the average bi-objective error (𝐸𝑓 ) is equal to
2.96%, 2.51% and 2.28% for Scenarios 1, 2 and 3 respectively. This in-
dicates that the heuristic approach provides solutions with comparable
quality for the different QD schemes. In addition, for some instances,
the percentage difference between the exact and heuristic objective
function is found to be high for one objective function while it is low for
the other objective function, resulting in an overall acceptable (i.e. for
the bi-objective function). This is the case for example for P20-40-H-
A* and P10-60-M-A. This is due to the contribution of each objective
function in the final solution, i.e. due to values of 𝛼1 = 𝛼2 = 0.5.

Table 11 reports the computation time in seconds for the exact
and heuristic approaches (𝑇𝐸𝑥 and 𝑇𝐻 respectively). The time saving
is calculated as a percentage using 100 × 𝑇𝐸𝑥−𝑇𝐻

𝑇𝐸𝑥
. It is worth noting

that if the exact approach reaches the optimal solution faster than the
heuristic approach then the time saving is labeled as 𝑛∕𝑎. Moreover, for
the instances for which the exact solver could not reach and optimal
solution after three hours of run time, then 𝑇𝐸𝑥 = 10800 seconds. The
results suggest that the heuristic may yield a time saving between 4.2%
and 98% with an average of 87.3% compared to the exact approach for
large-sized instances when the solver time limit is set to three hours.
Note that the 4.2% time saving corresponds to the instance ‘‘P25-60-
M-I’’, which took 550 s in the exact approach to reach optimality.
Fig. 6 shows the dispersion of the computation time of the heuristic
approach based on all the considered instances for the three scenarios.
Fig. 6 indicates that the median computation time is 421, 408, and
1318 seconds for the all-unit, incremental and combined QD schemes
respectively. The combined scenario requires the longest computation
15
time with the largest computation time variability, which reflects the
high impact of the problem size on the computation time. In contrast,
the all-unit QD scheme is the least sensitive to problem size changes.

6. Conclusion

In this paper, we have proposed a SSOA model that considers
two schemes of QDs, i.e. the all-unit and incremental QD schemes
in addition to their combination. The proposed model can be easily
used with only ‘‘all-unit’’ or only ‘‘incremental’’ discounts or with both
schemes for different suppliers. The proposed model considers also the
variable availability and performance of suppliers in terms of cost and
green aspects over a predetermined planning horizon. The objective is
to select the suppliers to contract with and the quantities to be ordered
for every period of the planning horizon in order to satisfy a deter-
ministic single-product demand. The problem has been modeled using
a bi-objective MILP formulation and the model has been solved using
the weighted comprehensive criterion method with an exact approach
based on the branch-and-cut algorithm and a population-based heuris-
tic approach. Moreover, a numerical analysis has been conducted to
analyze the results including the obtained solutions and the correspond-
ing computation time of the exact and heuristic approaches. The exact
approach has been effective for the all-unit, incremental, and combined
QDs models but only for small to medium-size problems. The optimal
solution could not be reached even after a quite long computation
time for large-size instances. In addition, the comparison between exact
and heuristic approaches has shown that the percentage difference in
terms of cost and green value has been small, especially for a large
number of iterations of the heuristic approach which led to conclude
that the exact approach can be used for small to medium size problems
while the heuristic approach is recommended for large size problems,
and without any difference in the quality of the heuristic solutions
between the considered discount schemes. Moreover, the results have
shown that the cost-based solutions and the green-value-based solutions
are different and the latter is not sensitive to the discount scheme,
which can be expected. Moreover, the all-unit discounts appeared to be
better for the green-oriented solutions in the bi-objective configuration.
Finally, different avenues for future research can be suggested based on
the findings of this paper. First, considering stochastic demand instead
of deterministic demand would make the model more realistic although
it would become more challenging to be solved. Second, consider-
ing other sustainability aspects such as the social performance of the
suppliers would be of interest. In addition, considering this problem

along with the routing problem between the suppliers to collect the
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Table 10
Difference between the exact and heuristic approaches.

Instance 𝐸TCP (%) 𝐸TGVP (%) 𝐸𝑓 (%) Instance 𝐸TCP (%) 𝐸TGVP (%) 𝐸𝑓 (%)

P10-40-H-A 4.00 0.62 2.31 P10-60-H-A* 3.01 2.91 2.96
P10-40-M-A 0.78 1.42 1.10 P10-60-M-A 9.29 −3.76 2.77
P10-40-L-A 2.90 1.55 2.22 P10-60-L-A* 3.60 1.81 2.70
P15-40-H-A 3.91 0.80 2.36 P15-60-H-A* 3.18 5.28 4.23
P15-40-M-A 5.11 0.49 2.80 P15-60-M-A* 6.48 2.47 4.47
P15-40-L-A 4.13 0.62 2.38 P15-60-L-A* 1.89 3.95 2.92
P20-40-H-A* 8.74 −1.68 3.53 P20-60-H-A 3.60 0.15 1.87
P20-40-M-A 8.73 0.71 4.72 P20-60-M-A* 5.10 2.65 3.88
P20-40-L-A 3.37 3.42 3.40 P20-60-L-A* 3.39 0.40 1.89
P25-40-H-A 7.43 0.97 4.20 P25-60-H-A 1.74 3.84 2.79
P25-40-M-A 7.45 0.74 4.10 P25-60-M-A* 6.30 −0.73 2.79
P25-40-L-A 4.30 3.38 3.84 P25-60-L-A* 3.04 −0.35 1.34
P30-40-H-A 2.27 0.93 1.60 P30-60-H-A* 4.65 3.09 3.87
P30-40-M-A 5.45 0.74 3.09 P30-60-M-A* 6.31 1.82 4.07
P30-40-L-A 3.11 2.50 2.81 P30-60-L-A* 2.50 1.16 1.83

P10-40-H-I* −0.49 2.38 0.94 P10-60-H-I* 3.17 3.06 3.11
P10-40-M-I 2.72 0.03 1.37 P10-60-M-I 3.99 0.13 2.06
P10-40-L-I 0.80 0.00 0.40 P10-60-L-I* 5.39 0.62 3.00
P15-40-H-I 0.84 −0.09 0.38 P15-60-H-I 3.96 2.05 3.00
P15-40-M-I 3.53 −0.04 1.74 P15-60-M-I* 3.88 0.99 2.44
P15-40-L-I 2.29 3.94 3.12 P15-60-L-I 2.43 −0.02 1.20
P20-40-H-I 3.82 −0.11 1.86 P20-60-H-I 3.72 1.83 2.77
P20-40-M-I 6.14 −1.32 2.41 P20-60-M-I* 7.41 1.73 4.57
P20-40-L-I 3.87 2.07 2.97 P20-60-L-I 4.20 4.26 4.23
P25-40-H-I 2.90 0.56 1.73 P25-60-H-I 3.13 2.20 2.66
P25-40-M-I 5.19 0.67 2.93 P25-60-M-I 4.85 1.49 3.17
P25-40-L-I 4.35 3.20 3.77 P25-60-L-I* 3.50 0.65 2.08
P30-40-H-I* 2.63 0.33 1.48 P30-60-H-I* 6.62 1.73 4.17
P30-40-M-I 2.65 4.13 3.39 P30-60-M-I* 6.64 2.56 4.60
P30-40-L-I 1.82 1.56 1.69 P30-60-L-I* 3.52 0.66 2.09

P10-40-H-C 3.70 −2.18 0.76 P10-60-H-C* 1.26 4.23 2.74
P10-40-M-C 0.61 1.70 1.15 P10-60-M-C 7.36 −1.46 2.95
P10-40-L-C 0.09 0.00 0.04 P10-60-L-C* 1.99 0.16 1.07
P15-40-H-C* 0.14 0.34 0.24 P15-60-H-C* 8.16 −1.29 3.44
P15-40-M-C 0.86 1.22 1.04 P15-60-M-C* 2.23 2.10 2.16
P15-40-L-C 0.64 5.31 2.98 P15-60-L-C 4.34 −0.23 2.06
P20-40-H-C* 2.91 −0.88 1.02 P20-60-H-C 2.81 0.87 1.84
P20-40-M-C 6.38 2.13 4.25 P20-60-M-C* 7.61 −3.90 1.85
P20-40-L-C* 5.49 0.01 2.75 P20-60-L-C* 3.82 3.39 3.61
P25-40-H-C 7.03 −1.03 3.00 P25-60-H-C* 6.61 −1.43 2.59
P25-40-M-C 6.56 −2.36 2.10 P25-60-M-C 5.50 1.36 3.43
P25-40-L-C* 3.66 2.25 2.95 P25-60-L-C* 3.68 0.19 1.93
P30-40-H-C 2.74 1.92 2.33 P30-60-H-C* 7.10 −1.09 3.00
P30-40-M-C 4.45 1.41 2.93 P30-60-M-C* 6.93 −0.49 3.22
P30-40-L-C 1.11 2.70 1.90 P30-60-L-C* 4.93 0.91 2.92
purchased products, while minimizing cost and the 𝐶𝑂2 emissions from
the transportation vehicles is worth investigating.
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Appendix. Mathematical model with optimal QD scheme selection

The bi-objective integer LP model that allows to optimize the selec-
tion of the QD scheme is defined by introducing a new index 𝑗 = 1,… , 𝐽
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that represents the QD scheme. We use 𝑗 = 1 to indicate ‘‘all-unit’’ QD
and 𝑗 = 2 to indicate ‘‘incremental’’ QD. The formulation can be given
as follows:

maxTGVP =
𝑇
∑

𝑡=1

𝑛𝑡
∑

𝑖=1

𝑅𝑖
∑

𝑟=1
𝐺𝑊𝑖𝑡 ×

𝐽
∑

𝑗=1
𝑄𝑗𝑖𝑡𝑟, (25)

minTCP =
𝑇
∑

𝑡=1

𝑛𝑡
∑

𝑖=1

(

𝑉
(

𝑄𝑖𝑡
)

+
𝑅𝑖
∑

𝑟=1

𝐽
∑

𝑗=1
𝑌 𝑗𝑖𝑡𝑟 × 𝐹𝐶𝑖𝑡

)

+
𝑇
∑

𝑡=1

(

𝐻𝑡 × 𝐼𝐻𝑡 + 𝑆𝑡 × 𝐼𝑆𝑡
)

, (26)

where

𝑉
(

𝑄𝑖𝑡
)

=
𝑅𝑖
∑

𝑟=1
𝑣𝑐𝑖𝑡𝑟𝑄

𝑗=1
𝑖𝑡𝑟 +

𝑅𝑖
∑

𝑟=1

(

𝑣𝑐𝑖𝑡𝑟
(

𝑄𝑗=2𝑖𝑡𝑟 − 𝑢𝑖𝑡(𝑟−1)𝑌
𝑗=2
𝑖𝑡𝑟

)

+
(

𝑌 𝑗=2𝑖𝑡𝑟

𝑟−1
∑

𝑘=1
𝑣𝑐𝑖𝑡𝑘

(

𝑢𝑖𝑡𝑘 − 𝑢𝑖𝑡(𝑘−1)
)

)

)

(27)

Subject to
𝐽
∑

𝑅𝑖
∑

𝑌 𝑗𝑖𝑡𝑟 ≤ 1, ∀𝑖 = 1,… , 𝑛𝑡 , 𝑡 = 1 ,… , 𝑇 , (28)

𝑗=1 𝑟=1
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𝐼

𝜖

𝜖

𝑌

𝑄

Table 11
Computation time of the exact and heuristic approaches under all scenarios.

Instance 𝑇𝐸𝑥 (s) 𝑇𝐻 (s) Time
saving (%)

Instance 𝑇𝐸𝑥 (s) 𝑇𝐻 (s) Time
saving (%)

P10-40-H-A 3651.98 234.88 93.57 P10-60-H-A* 10800.00 278.26 97.42
P10-40-M-A 42.69 239.04 n/a P10-60-M-A 728.59 242.68 66.69
P10-40-L-A 104.32 242.95 n/a P10-60-L-A* 10800.00 253.84 97.65
P15-40-H-A 825.61 287.40 65.19 P15-60-H-A* 10800.00 425.46 96.06
P15-40-M-A 47.23 297.59 n/a P15-60-M-A* 10800.00 397.39 96.32
P15-40-L-A 2529.10 291.17 88.49 P15-60-L-A* 10800.00 396.80 96.33
P20-40-H-A* 10800.00 382.82 96.46 P20-60-H-A 679.91 441.06 35.13
P20-40-M-A 3670.37 353.91 90.36 P20-60-M-A* 10800.00 445.10 95.88
P20-40-L-A 1473.76 378.27 74.33 P20-60-L-A* 10800.00 470.79 95.64
P25-40-H-A 309.80 416.98 n/a P25-60-H-A 4095.77 537.43 86.88
P25-40-M-A 4068.48 430.01 89.43 P25-60-M-A* 10800.00 531.43 95.08
P25-40-L-A 4216.13 448.89 89.35 P25-60-L-A* 10800.00 522.15 95.17
P30-40-H-A 5338.03 517.29 90.31 P30-60-H-A* 10800.00 537.52 95.02
P30-40-M-A 293.41 459.37 n/a P30-60-M-A* 10800.00 551.12 94.90
P30-40-L-A 4301.07 452.13 89.49 P30-60-L-A* 10800.00 538.27 95.02

P10-40-H-I* 10800.00 209.44 98.06 P10-60-H-I* 10800.00 253.12 97.66
P10-40-M-I 34.88 200.35 n/a P10-60-M-I 46.66 267.29 n/a
P10-40-L-I 14.82 220.68 n/a P10-60-L-I* 10800.00 254.74 97.64
P15-40-H-I 39.07 255.46 n/a P15-60-H-I 5490.46 385.90 92.97
P15-40-M-I 2189.51 256.55 88.28 P15-60-M-I* 10800.00 444.87 95.88
P15-40-L-I 2529.10 265.83 89.49 P15-60-L-I 4168.23 393.51 90.56
P20-40-H-I 85.82 355.06 n/a P20-60-H-I 310.86 461.81 n/a
P20-40-M-I 3670.37 371.93 89.87 P20-60-M-I* 10800.00 451.09 95.82
P20-40-L-I 78.66 372.04 n/a P20-60-L-I 3921.00 468.96 88.04
P25-40-H-I 111.54 404.70 n/a P25-60-H-I 5185.49 524.43 89.89
P25-40-M-I 4049.77 410.99 89.85 P25-60-M-I 550.70 527.58 4.20
P25-40-L-I 154.45 431.25 n/a P25-60-L-I* 10800.00 549.67 94.91
P30-40-H-I* 10800.00 453.10 95.80 P30-60-H-I* 10800.00 582.02 94.61
P30-40-M-I 240.34 446.47 n/a P30-60-M-I* 10800.00 605.53 94.39
P30-40-L-I 224.68 476.60 n/a P30-60-L-I* 10800.00 657.29 93.91

P10-40-H-C 3651.98 425.45 88.35 P10-60-H-C* 10800.00 695.46 93.56
P10-40-M-C 120.62 365.84 n/a P10-60-M-C 220.38 552.47 n/a
P10-40-L-C 32.49 383.16 n/a P10-60-L-C* 10800.00 603.80 94.41
P15-40-H-C* 10800.00 612.54 94.33 P15-60-H-C* 10800.00 1163.64 89.23
P15-40-M-C 85.86 636.29 n/a P15-60-M-C* 10800.00 941.24 91.28
P15-40-L-C 2529.10 629.77 75.10 P15-60-L-C 379.87 1089.40 n/a
P20-40-H-C* 10800.00 778.69 92.79 P20-60-H-C 296.95 1611.30 n/a
P20-40-M-C 3670.37 969.17 73.59 P20-60-M-C* 10800.00 1363.03 87.38
P20-40-L-C* 10800.00 1093.63 89.87 P20-60-L-C* 10800.00 1336.90 87.62
P25-40-H-C 527.78 1231.29 n/a P25-60-H-C* 10800.00 1754.27 83.76
P25-40-M-C 4049.77 1099.86 72.84 P25-60-M-C 1120.13 1735.81 n/a
P25-40-L-C* 10800.00 1364.81 87.36 P25-60-L-C* 10800.00 1671.17 84.53
P30-40-H-C 3463.71 1344.02 61.20 P30-60-H-C* 10800.00 1803.32 83.30
P30-40-M-C 179.43 1240.10 n/a P30-60-M-C* 10800.00 1781.55 83.50
P30-40-L-C 696.76 1350.19 n/a P30-60-L-C* 10800.00 1833.46 83.02
R

A

A

A

A

A

A

A

A

𝑌 𝑗𝑖𝑡𝑟𝑙𝑖𝑡𝑟 ≤ 𝑄𝑗𝑖𝑡𝑟 ≤ 𝑌 𝑗𝑖𝑡𝑟𝑢𝑖𝑡𝑟

∀𝑖 = 1,… , 𝑛𝑡 , 𝑡 = 1 ,… , 𝑇 , 𝑗 = 1,… , 𝐽 , 𝑟 = 1 ,… , 𝑅𝑖, (29)

𝐻
𝑡−1 − 𝐼

𝑆
𝑡−1 +

𝑛𝑡
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅𝑖
∑

𝑟=1
𝑄𝑗𝑖𝑡𝑟 − 𝐼

𝐻
𝑡 + 𝐼𝑆𝑡 = 𝐷𝑡, (30)

𝑇
∑

𝑡=1

𝑛𝑡
∑

𝑖=1

𝐽
∑

𝑗=1

𝑅𝑖
∑

𝑟=1
𝑄𝑗𝑖𝑡𝑟 + 𝐼0 =

𝑇
∑

𝑡=1
𝐷𝑡, (31)

𝑌 𝑆𝑡 ≤ 𝐼𝑆𝑡 ≤ 𝑀𝑌 𝑆𝑡 , ∀𝑡 = 1 ,… , 𝑇 , (32)

𝑌 𝐻𝑡 ≤ 𝐼𝐻𝑡 ≤ 𝑀𝑌 𝐻𝑡 , ∀𝑡 = 1 ,… , 𝑇 , (33)

𝐻
𝑡 + 𝑌 𝑆𝑡 ≤ 1, ∀𝑡 = 1 ,… , 𝑇 , (34)

𝑗
𝑖𝑡𝑟 ∈ N, 𝑌 𝑗𝑖𝑡𝑟 ∈ {0, 1} , ∀𝑖 = 1,… , 𝑛𝑡, 𝑡 = 1 ,… , 𝑇 , 𝑟 = 1 ,… , 𝑅𝑖,

(35)

𝐻 𝑆 𝐻 𝑆
17

𝐼𝑡 ∈ N, 𝐼𝑡 ∈ N, 𝑌𝑡 ∈ {0, 1} , 𝑌𝑡 ∈ {0, 1} , ∀𝑡 = 1 ,… , 𝑇 . (36)
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