
Bayesian hierarchical models for

ecological data: estimating population

size, spatial and temporal patterns

Fabian Ricardo Ketwaroo

School of Mathematics, Statistics and Actuarial Science

University of Kent

This dissertation is submitted for the degree of

Doctor of Philosophy

April 2023





This dissertation is dedicated to my late grandmother, Deowlene Harrilall, who has been a constant

source of inspiration and support throughout my life. Her unwavering love and kindness have been

instrumental in shaping who I am today and have been invaluable in helping me navigate the challenges

of my academic journey. This dissertation is a testament to her influence and a small tribute to the

impact she has had on my life.





Acknowledgements

I would like to express my deepest gratitude to my supervisor, Eleni Matechou, for her guidance,

support, and encouragement throughout my Ph.D. journey. Her expertise, knowledge, and willingness

to share her time and ideas have been instrumental in the successful completion of this thesis. I have

learned a great deal from her and I will always be thankful for her patience and kindness. I would

also like to acknowledge the funding I received for my Ph.D. from the University of Kent with the

vice chancellor’s research scholarships and also the School of Mathematics, Statistics, and Actuarial

Science.

On a personal note, to my parents, Pradeep and Salome, I would like to express my deepest

gratitude and appreciation for your unwavering support, encouragement, and sacrifices throughout my

academic journey. Without your love, guidance, and belief in my abilities, I would not have been able

to achieve this significant milestone in my life. You have supported me financially, emotionally and

always believed in me even when I doubted myself. To my siblings and other family members, thank

you for all your unwavering love and support.

I am equally grateful to my wife Afeena, for her unwavering support and love throughout my

academic journey. Her patience, understanding, and constant encouragement have been the pillars

of my success. She has been there for me in the good times and the bad, offering a listening ear, a

shoulder to cry on, and a cheerleader when I needed it the most. Her sacrifices and dedication have

made it possible for me to pursue this dream and I will always be grateful for her unwavering love

and support. Without you, this achievement would not have been possible.





Abstract

The work in this thesis presents three manuscripts, described in Chapters 2 to 4.

Chapter 2 presents an evaluation of the popular N-mixture model in a Bayesian framework

to corroborate and extend issues concerning N-mixture models previously discussed in a classical

framework. Specifically, the chapter focuses on prior specification, when no prior information is

available, as well as on model selection. For prior specification, a novel objective prior that is proper

is implemented and tested, and its performance is compared to approximations of the Jeffreys prior.

Model selection of an extensive class of N-mixture models is performed using the Watanable-Akaike

information criterion (WAIC) in a wide range of scenarios.

Chapter 3 presents a Bayesian hierarchical modelling framework for count data on species that

exhibit temporary emigration (TE) at a site with temporally replicated sampling. This modelling

framework accounts for observation error and models TE parametrically and non-parametrically

to provide estimates of temporal population size. Temporal models and Dirichlet process mixture

models are introduced to model TE parametrically and non-parametrically, respectively. Both of

these approaches give rise to interesting ecological interpretations of TE. Additionally, using an

efficient Bayesian variable selection algorithm, this modelling framework is further extended to

identify important predictors of observation error.

Chapter 4 presents a Bayesian spatial model that simultaneously models disease dynamics and

population dynamics using spatial capture-recapture data and imperfect diagnostic tests. Accounting

for observation error in both detection and diagnostic tests, this framework enables a better under-

standing of how disease dynamics relate to population demographics in spatiotemporal contexts at an

individual level. Specifically, disease transmission is modelled as a function of population density.

The supplementary material for each paper is presented in the appendix.
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Chapter 1

Introduction

With a growing number of wildlife species in decline (Almond et al., 2020; Thomas, 2013), coupled

with global warming, there is an increasing need to better understand changes in populations, how

environmental changes are affecting populations, identify species in need of protection, and develop

or evaluate management practices, policies and guidelines. This is essential to ensure the long-term

survival of many species and the maintenance of healthy ecosystems. Consequently, this thesis is a

collection of three manuscripts on novel Bayesian methods and their applications to statistical ecology

for different ecological data, providing novel and improved tools for better monitoring of wildlife

populations.

We consider one of the most popular/important metrics used to understand wildlife populations:

population size. Population size refers to the number of individuals of a species living in a given

area or habitat at a given time. Populations can be considered open or closed. In a closed population,

population size does not change during the study period, while in an open population, size can change

due to the BIDE concept (Carroll and Conroy, 2011): births (B), deaths (D), immigration (I), and

emigration (E). Consequently, in a closed population, individuals remain in the study area and there

are no births or deaths during the study period, whilst in an open population individuals may be born,

leave, and potentially return to, the study area, reproduce, and die during the study period. With closed

populations, the primary aim is to estimate population size while in open populations the aim is to

understand the dynamics of population size. Additionally, individual characteristics such as disease

state, sex, age, etc. can play a significant role in population dynamics.
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Changes in population size can occur in both time and space leading to temporal and spatial

patterns. Spatial patterns refer to the distribution of individuals, populations, and communities in space

whilst temporal patterns refer to the changes or variations in populations over time. Understanding

spatial patterns can help explain complex processes such as individual space use and understanding

temporal patterns can provide information on changes across time such as seasonality and species

behavior.

We consider population density to investigate spatial patterns. Population density refers to the

number of individuals in a population per unit of area or volume. It is a measure of how crowded or

dispersed a population is within its environment and can play an important role in many ecological

processes such as competition for resources, predation, disease transmission, and population growth.

For temporal patterns, we consider temporary emigration (TE). Emigration is when an individual

leaves the study area. This can be permanent or temporary. Thus, TE is when individuals can return

to the study area after emigration. A better understanding of TE can inform ecological processes such

as seasonal migration, temporary foraging, or breeding. If more than one site is sampled, the data can

be used to estimate the spatial patterns of individuals and if sites are sampled across time, the data can

be used to estimate temporal patterns.

The characteristics of the population, as well as time and financial constraints, determine the

choice of the sampling method. Capture-recapture (CR) is one popular sampling method that we

considered in this thesis. CR data involves sampling a location multiple times where a sample

of individuals is captured and then releasing them back into the population with newly captured

individuals marked in some way (e.g., tagging or banding). CR data provides an individual encounter

history that displays the occasions where an individual was captured and not captured. This allows

populations to be studied at an individual level and enables precise estimation of population size,

capture probability, and survival. Additionally, CR data with the geographic locations where sampling

was conducted is called spatial capture-recapture (SCR) data. Another commonly used sampling

method, which we consider in two of the chapters, is count data. Count data entails taking repeated

counts of unmarked individuals within a specific area. It is relatively less costly and time-consuming

than CR and in some cases more practical. Generally, estimates obtained from count data are less

precise than CR data but still allow accurate inference.
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Generally, sampling methods, especially those considered in this thesis produce observation

errors as the probability of observing, either capturing or counting, an individual that is present is

typically much lower than 1. Failure to account for observation error can lead to biased or inaccurate

estimates, with important implications for conservation and management efforts. Hence, statistical

models developed in the literature (Nichols (1992); Royle (2004b)) and in this thesis account for

observation errors. One way to account for observation error is by estimating the probability of

capture or detection, depending on the model, for each individual and each sampling occasion. The

detection probability can be a function of individual characteristics, such as sex, disease status, etc.,

and environmental covariates, such as temperature, precipitation, etc.

To perform inference, we use Bayesian hierarchical models (BHM). BHM are statistical models

that are well suited for statistical ecology as they can be used to analyze complex data structures

that have multiple levels of variation and dependence, such as longitudinal or spatial data, to provide

robust statistical inference on the underlying mechanisms driving observed patterns in the data. BHM

adopts the Bayesian approach to statistical inference which involves updating prior beliefs about

model parameters based on observed data, using Bayes’ theorem. The parameters of a BHM are

modelled as random variables with prior distributions and corresponding hyperparameters that can

themselves be modelled as random variables, resulting in a hierarchical structure. We employ Markov

chain Monte Carlo (MCMC) methods to fit the models to the data. MCMC is a type of Monte Carlo

method that generates random samples to estimate a quantity of interest. As a result, BHM allows for

the modeling of relationships between multiple levels of processes and data, while also incorporating

uncertainty and variability in both data and model parameters. In particular, they can account for

observation errors by including measurement error terms in the model and estimating uncertainty in

the parameters.

One of the main advantages of BHMs is that they allow prior knowledge to be incorporated

at each level of the hierarchy, which can improve the estimation of the parameters and reduce

uncertainty. However, care needs to be taken about how prior information is incorporated into the

prior distribution(s). When prior knowledge is not available, as is in most cases in ecology, vague

priors can be used to express the lack of knowledge. In more recent years, due to the increase in

popularity and accessibility, objective priors can also be used to express a lack of prior knowledge. In
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comparison to vague priors, objective priors are often chosen based on mathematical properties, such

as invariance under reparameterization. As a result, objective priors may be more appropriate in this

scenario.

Another key advantage of BHM is that model and variable selection can be performed within a

single framework. Model selection refers to the process of choosing the best model from a set of

candidate models, based on their ability to fit the data and make accurate predictions. BHM enables

model selection by using Bayesian model comparison techniques such as the Bayes factor (Kass and

Raftery, 1995) and Deviance Information Criterion (Spiegelhalter et al., 2002) that selects the most

parsimonious model that best explains the data by balancing model complexity with goodness of fit.

Similarly, BHM can perform variable selection which is the process of choosing the most important

variables from a larger set of potential predictor variables by assigning prior probabilities to each

possible set of variables and then calculating the posterior probabilities of each set of variables given

the data (O’hara and Sillanpää). Overall, BHM provides a rigorous and probabilistic framework for

performing model and variable selection. This helps to avoid overfitting and selection bias, allowing

for more accurate and reliable statistical inference of complex datasets.

Chapters 2 and 3 focus on BHM for count data. In the second chapter, we focus on spatially

replicated counts over time for closed populations whilst, in the third chapter, we focus on temporally

replicated counts without spatial replication for open populations. The fourth chapter focuses on

BHM for SCR data.

In the second chapter, we are concerned with fitting N-mixture models in a Bayesian framework.

Accounting for observation error, N-mixture models are a popular class of hierarchical models as

they provide an attractive framework to obtain estimates of population size using only count data.

However, due to the reduced information in count data, a number of modelling issues have been found

with N-mixture models in a classical inference setting. These issues include identifiability (Dennis

et al., 2015) and model selection (MKe). This chapter aims to tackle the issue of model selection

of N-mixture models in a Bayesian framework as well as the important choice of prior distributions

when prior information is not available. It is important to evaluate statistical models to ensure that

conclusions are accurate, reliable, suitable, and appropriately communicated. Chapter 2 has been

written as a paper to be submitted to the journal Methods in Ecology and Evolution.
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In the third chapter, we are interested in modelling TE from roost count data to estimate population

size. Roost count data is a type of count data where individuals of a species are counted whilst

exhibiting TE at their roost. Notably, not accounting for TE can result in positively biased estimates

of population size (Chandler et al., 2011). Chandler et al. (2011) developed an N-mixture model that

accounts for TE using count data. However, this model often assumes TE is constant throughout the

study or is modelled independently at each sampling occasion. Consequently, in this chapter, we aim

to extend this model by considering two classes of models for TE, a parametric and a non-parametric

model that assume TE heterogeneity, enabling an intuitive ecological interpretation of TE whilst

being parsimonious. Additionally, when accounting for observation error via a set of variables, the

identification of important variables can be a valuable tool to understand species behaviour as well

as to avoid overfitting. Overfitting can lead to high uncertainty around model parameters. Thus, to

accomplish this, we consider Bayesian variable selection on observation error. Chapter 3 has been

written as a paper to be submitted to the journal Annals of Applied Statistics.

In the fourth chapter, using SCR data and imperfect diagnostic tests, we are interested in modelling

disease dynamics with a particular focus on the effect of population density on disease transmission.

Disease dynamics is the study of how infectious diseases spread and evolve over time within a

population. It is important to understand the influence of population density on disease transmission

as this allows for the development of effective strategies for controlling and preventing the spread

of infectious diseases. However, this is challenging as modelling population density can be difficult

as the number of individuals and their spatial location are unobservable, whilst modelling disease

dynamics can be difficult as the disease status of individuals is typically imperfectly observed. Thus,

this chapter aims to tackle these challenges by proposing a novel spatially explicit capture-recapture

(SCR) model that allows for the simultaneous modelling of population demographics and disease

dynamics within a spatiotemporal context. SCR models are hierarchical models. They consider

the collection of individuals in a population as a latent point process of where an individual moves,

distributed within a region of interest. Accounting for the spatial nature of sampling together with

the spatial distribution of individuals, SCR models are a powerful tool for estimating population

size and population density. Chapter 4 has been written as a paper to be submitted to the journal

Environmetrics.





Chapter 2

Specifying and selecting N-mixture

models in a Bayesian framework





Abstract

Using only spatially replicated counts from unmarked individuals, N-mixture models provide an

attractive framework to obtain estimates of population size by accounting for imperfect detection.

The robustness of N-mixture models has been examined in detail in a classical inference framework.

However, to our knowledge, only a small number of such studies have been carried out on N-mixture

models in a Bayesian setting. In this paper, we consider fitting N-mixture models within a Bayesian

framework. To aid implementation, we apply a new proper objective prior distribution to N-mixture

models. Using simulated data, we compare this new proper objective prior to approximations of the

popular objective prior, Jeffreys prior, and find that these prior distributions perform similarly in terms

of model inference. Importantly, we find that when the detection probability is small, using priors

that are concentrated at zero, even with large variance, expected population size can be considerably

underestimated. Large estimates of expected population size were also found, evident by the bimodal

density of posterior medians obtained for simulated data. Additionally, we consider an extensive

class of N-mixture models and investigate model selection using the Watanable-Akaike Information

Criterion (WAIC) in a wide range of scenarios to examine the sensitivity of WAIC to likelihood

specification. We find that WAIC computed from the conditional likelihood produces misleading

results favoring more complicated models than the true model. Contrary, WAIC computed using the

marginal likelihood correctly selects the true model with a high probability. Hence, model selection of

N-mixture models should be obtained from WAIC using the marginal likelihood, not the conditional

likelihood. We demonstrate the usefulness/importance of employing these methods in two real

datasets. Hence, this work can be considered a template for how to specify and select N-mixture

models in a Bayesian context.



10 Specifying and selecting N-mixture models in a Bayesian framework

2.1 Introduction

A fundamental objective of many wildlife population monitoring programs and ecological studies

is to estimate the size of a population. This is essential for the development and communication of

management practices and guidelines. However, monitoring wildlife populations is challenging and

costly, as the probability of detecting individuals in the monitored population is typically less than

one. Survey sampling, which involves counting unmarked individuals in a given area over a specified

period of time is relatively lower in cost and effort in comparison with other sampling methods, such

as capture-recapture sampling and removal sampling.

Using count data from survey sampling, N-mixture models (Royle, 2004a) are a class of hier-

archical models that accounts for imperfect detection, allowing estimation of population size in a

cost-effective way. N-mixture models have been used for a number of purposes, including evaluation

of conservation actions (Romano et al., 2017), understanding population size and population dynamics

(Studds et al., 2017), population prediction to conservation scenarios (Ladin et al., 2016) and to

forecast shifts in species distributions (Hunter et al., 2017).

The performance of N-mixture models in a classical setting has been investigated in detail.

Dennis et al. (2015) showed that infinite estimates of population size can arise when the probability

of detection and the number of times the population is sampled are small. Barker et al. (2018)

demonstrated the inability of count data to discriminate between different hierarchical models, even

when these models yield substantially different estimates of population size. Knape et al. (2018)

highlighted that estimated population size can be severely i) underestimated if the fitted model does

not account for over-dispersion in the population process, when that is present or ii) overestimated if

the fitted model does not account for over-dispersion in the detection process, when that is present.

However, to our knowledge, only a small number of studies have investigated N-mixture models

in a Bayesian framework (see for example Link et al., 2018; Toribio et al., 2012, who studied the

robustness of the N-mixture model in a Bayesian setting). Thus, we consider fitting an extensive class

of N-mixture models in a Bayesian framework, specifically focusing on prior specification and model

selection, which are key aspects of Bayesian modelling.
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An important question in Bayesian model building is how does one choose a prior distribution

p(θ) for parameter θ? One can either be subjective: choosing priors that reflect some subjective

opinion about θ (before data are collected) or objective: finding prior distributions that formally

express ignorance about θ . Subjective priors have the appeal of using prior information to increase

estimation precision without compromising accuracy (Morris et al., 2015), resulting in larger effective

sample sizes and saved resources. However, care needs to be taken about how prior information is

incorporated into the prior distribution, especially where there is limited prior information as, in the

case of sparse data, which is often true in ecological applications, the prior can have a strong effect on

the posterior distribution. Additionally, it can be difficult to quantify prior effects in practice.

Contrarily, objective and vague priors are two classes of priors that allow Bayesian inference

when information about θ is not available. These priors aim to avoid bias in parameter estimation

by placing less emphasis on prior beliefs and more emphasis on the data. Based on mathematical

properties, objective priors are designed to reflect minimal information, and have certain mathematical

properties, discussed in this chapter. On the other hand, vague priors are deliberately chosen to convey

no prior knowledge about the parameter being estimated, such as a flat prior or one with a very long

tail, but without necessarily exhibiting the same mathematical properties as an objective prior. As a

result, an objective prior may be more appropriate to express prior ignorance. Uniform distributions

or normal distributions with large variances are common examples of vague priors. The Jeffreys prior

(Jeffreys, 1946) is a popular objective prior designed to be invariant under reparameterization.

Notably, the majority of objective priors are improper (Leisen et al., 2018). A proper prior is a

well-defined probability distribution as it integrates to 1 over the support of the parameter, whereas an

improper prior has an infinite integral over the support of the parameter. In general, improper priors

are not a problem as long as the resulting posterior is a proper probability distribution, from which

one can derive moments such as the posterior mean. However, as of present, general results that allow

one to assess if a given improper prior results in a proper posterior are yet to be developed (Leisen

et al., 2018). Hence, caution is needed when using improper objective priors as spurious inference can

be obtained. In addition, improper prior distributions cannot be applied in mixture models and model

selection via Bayes factors (Leisen et al., 2018). Thus, this limits the use of many objective priors.
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Banner et al. (2020) highlighted the use of priors in ecology and found vague priors are more

often used in ecology than subjective priors. Both vague and objective priors have been used in

N-mixture models: MKe demonstrated N-mixture models in a Bayesian framework by using priors

that are approximations to Jeffreys prior, Link et al. (2018) used improper objective priors to study

the robustness of N-mixture models, Toribio et al. (2012) used vague priors on the log and logit scale,

which in turn resembled the Jeffreys prior on the original scale, to study the robustness of a Bayesian

approach to fitting N-mixture models for pseudo-replicated count data. McCaffery et al. (2016) also

used vague priors on the log and logit scale to analyze Lek count data.

In this paper, using a recently developed proper objective prior (Walker and Villa, 2021) and vague

priors that are approximations to the Jeffreys prior, we test these priors and investigate the effect of

prior choice in N-mixture models via an extensive simulation study.

N-mixture models can be relatively easily built in a Bayesian setting, but different models can

result in substantially different estimates of population size (Ketwaroo, 2019). Therefore, it is

imperative to have measures that allow one to compare models. Predictive accuracy measures can be

used to compare models. Predictive accuracy measures simply compute how well a model estimated

from available data generalises to out-of-sample data. However, the availability of out-of-sample

data is often limited. One common way to overcome this deficiency is to use the sample data twice;

once to fit the statistical model and again to test its predictive power. The issue here is that this can

lead to over-fitting. Hence, predictive accuracy measures that use the data twice need to account for

over-fitting. One such predictive accuracy measure is the Watanable-Akaike information criterion

(WAIC, Watanabe and Opper, 2010). WAIC is often used in popular software such as NIMBLE

(de Valpine et al., 2017) and Stan (Carpenter et al., 2017). Importantly, Ariyo et al. (2020) recently

showed via an extensive simulation study that the marginal likelihood (averaging over latent variables)

is superior to the conditional likelihood (given latent variables) when using WAIC to select the true

longitudinal model. In addition, Millar (2018) showed using over-dispersed count data that WAIC

computed using the conditional likelihood is an unreliable tool for model selection and recommended

using WAIC computed using the marginal likelihood. Thus, in this paper, we investigate whether

WAIC can be used to select among the different N-mixture models considered and whether WAIC for

N-mixture models is sensitive to the likelihood specification in a wide range of scenarios.
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We fit N-mixture models considered using Markov Chain Monte Carlo (MCMC) methods provided

by the R package NIMBLE (de Valpine et al., 2017) version 0.10.0.

Finally, we consider two real data sets, yellow-bellied toads (Ketwaroo, 2019) and Swiss great tits

(MKe), and we investigate the usefulness/importance of employing these methods in each case.

The paper is organised as follows: Section 2.2 provides a detailed description of the different N-

mixture models considered, prior specification, and model selection. Simulation results are presented

in Section 2.3 and the results for the two case studies are presented in Section 2.4. Section 2.5

concludes the paper and provides ideas for potential future directions.

2.2 Materials and Methods

2.2.1 N-mixture Models

Assuming population closure, N-mixture models estimate population size and account for imperfect

detection using only replicated counts at multiple sites. N-mixture models are composed of two key

processes: a population size process describing the spatial variation in the number of individuals

among sites and a detection process describing the detection of individuals at each site (Royle, 2004b).

Count data (hereafter Ci j) are obtained at i = 1, . . . ,M sites with j = 1, . . . ,J sampling occasions at

each site.

For the population size process, it is assumed that the local population size at site i (hereafter Ni)

is an independent random variable with a chosen discrete probability function g. That is,

Ni ∼ g(N;λi,γ)

where λi represents the expected population size at site i and γ represents an optional parameter for

over-dispersion in the population size process. In order to avoid over-parametrization, λi may be

The work in this chapter is a continuation of the same author’s MSc project, but an extension of it in a number of ways.
Specifically, the N-mixture models considered were introduced in the MSc thesis, and the analysis of the yellow-bellied
toads data set was first presented in the MSc thesis. However, the introduction of the new proper objective prior within the
context of N-mixture models, the comparison between this prior and approximations to Jefferys prior using simulation and
real data, as well as the model selection discussion and results using conditional and marginal WAIC correspond to new
work presented in this chapter.
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common to all sites, or it may be expressed as a function of site-specific covariates. In this paper,

we consider the options introduced and considered in Ketwaroo (2019) for both the population size

process and the detection process. Specifically, the Poisson and Negative binomial distributions for g

as well as the lesser-known Discrete Weibull distribution (Nakagawa and Osaki, 1975).

The Discrete Weibull (DW) distribution developed by Nakagawa and Osaki (1975) is the discrete

form of the continuous Weibull distribution that is popular in survival analysis and failure time studies

(Peluso et al., 2019). In this paper, we focus on the type 1 DW distribution, the most commonly

used type in the literature. Let Y be a random variable that follows a (type 1) DW distribution, the

cumulative distribution is defined as:

F(y;q,b) =


1−q(y+1)b

for y = 0,1,2,3, . . . ,

0 otherwise

and the probability mass function is defined as:

f (y;q,b) =


qyb −q(y+1)b

for y = 0,1,2,3, . . . ,

0 otherwise

where 0 < q < 1 and b > 0.

Importantly, Kalktawi (2017) highlighted the flexibility of the DW distribution to model count

data; relative to the Poisson distribution, the DW distribution can be used to model over-, under-, and

equi-dispersed data. Regarding the parameters (q,b) of the DW distribution, Peluso et al. (2019) show

that if:

1. 0 < b ≤ 1 there is over-dispersion, regardless of the value of q,

2. b ≥ 3 there is under-dispersion, regardless of the value of q and

3. 1 < b < 3, depending on the value of q there is under-dispersion or over-dispersion.

For the detection process, it is assumed

Ci j ∼ h(C;Ni, pi j,ρ) (2.2.1)
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where h is a discrete probability distribution, pi j represents the probability of detecting an individual

at site i and sampling occasion j and ρ represents an optional parameter for over-dispersion in

the detection process. We consider the Binomial and the Beta-Binomial (BB) distributions for

h. The Binomial distribution is most commonly used to describe the detection process, assuming

independence of detection. Using a Binomial detection process, pi j can be assumed to be constant

across all sites and sampling occasions, or in a logistic regression framework, it can be expressed as a

function of site and sampling occasion specific covariates.

Martin et al. (2011) showed that the BB distribution can serve as a detection process for modelling

the correlating behaviour of individuals, thus relaxing the assumption of independent detection of

individuals by the Binomial distribution. The BB detection process accomplishes this by modelling

pi j ∼ Beta(α,β )

for α,β > 0. Therefore, the BB detection process can also be used to model heterogeneity in detection

probabilities (Ketwaroo, 2019; Martin et al., 2011). In addition, ρ represents the degree to which

individual behaviours or site attributes correlate with each other, which could affect detection (Martin

et al., 2011), and is defined as

ρ =
1

α +β +1

Notably, the BB distribution does not allow the distinction between correlations in individual behaviour

and attributes of the site that could affect detection.

Assuming Ni are independent random variables with discrete probability function g(Ni;λi,γ), and

Ci j are conditionally dependent on Ni with discrete probability function h(Ni, pi j,ρ), the marginal

likelihood can be written as:

L(pi j,λi,ρ,γ;Ci j) =
M

∏
i=1

{
∞

∑
Ni=max jCi j

( J

∏
j=1

h(Ci j;Ni, pi j,ρ)

)
g(Ni;λi,γ)

}
. (2.2.2)

This marginal likelihood takes into account all values for population size at each site and in reality,

an upper bound can be chosen when fitting N-mixture models using the marginal likelihood. In a
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Bayesian setting, Ni can be treated as a latent variable that can be sampled via MCMC methods, hence

avoiding the need for the infinite sum or truncation. The full conditional likelihood for N-mixture

models can then be written as:

L(pi j,ρ;Ni,Ci j) =
M

∏
i=1

( J

∏
j=1

h(Ci j;Ni, pi j,ρ)

)
. (2.2.3)

where there is no longer the need to marginalise over Ni, as in equation (2.2.2), and now g from

equation (2.2.2) serves as the prior distribution for Ni in this conditional model. Bayesian inference

using the marginal likelihood has the appeal of being similar to the maximum likelihood approach

and in some cases, faster than sampling latent variables using the conditional likelihood (Ponisio

et al., 2020). However, for N-mixture models, Ponisio et al. (2020) showed that in a Bayesian setting,

marginalization is generally less computationally efficient than sampling Ni. This is possibly due to

the computational cost of summing over the range of possible values of Ni when the chosen upper

bound is large.

Table 2.1 N-mixture models developed/implemented in Ketwaroo (2019) considered in this paper.

N-mixture model Model for population size process Model for detection process

P-B Poisson (λ ) Binomial(Ni, p)

DW-B Discrete Weibull (q, b) Binomial (Ni, p)

NB-B Negative Binomial (r, s) Binomial (Ni, p)

P-BB Poisson (λ ) Beta - Binomial (Ni, pi j, ρ)

DW-BB Discrete Weibull (q, b) Beta - Binomial (Ni, pi j, ρ)

Table 2.1 displays the list of N-mixture models investigated in this paper. We assume λi to be constant

for all sites for all models and for models with a Binomal detection process, we assume pi j to be

constant across sites and sampling occasions. The P-B model is one of the most popular N-mixture

models and it assumes equi-dispersion in the population size and detection processes. The NB-B

model is also popular as it accounts for over-dispersion in the population size process relative to the

Poisson distribution. The DW-B model offers more flexibility by accounting for over-, under-, and

equi-dispersion in the population size process relative to the Poisson distribution. The P-BB model
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accounts for over-dispersion in the detection process, and the DW-BB model has the advantage of

accounting for over-dispersion in the detection process as well as under -, equi-, or under-dispersion

in the population size process relative to the Poisson distribution.

2.2.2 Objective Prior Distributions

Jeffreys Prior (Jeffreys, 1946) - An obvious candidate for an objective prior is to use a flat prior

p(θ) ∝ c, c > 0 such that
∫

p(θ)dθ = ∞. This flat prior is an improper prior and not transformation

invariant. Instead, Jeffreys (1946) derived prior distributions that are transformation invariant. The

Jeffreys prior is the most popular objective prior and can be defined as:

p(θ) ∝
√

|I(θ)|

where I(θ) =−E
[

∂ 2logp(x|θ)
∂θ∂θ T |θ

]
is the Fisher information where p(x|θ) denotes the likelihood. For a

Poisson distribution with mean λ , the Fisher information I(λ ) = 1
λ

, and so the Jeffreys prior is the

improper prior, p(λ ) ∝
1

λ 2 . This prior can be approximated by a Gamma(ε1,ε2) where ε1,ε2 ≈ 0

such as Gamma(0.5,0.00001) (Spiegelhalter et al., 2003). The Jeffreys prior yields sensible posterior

distributions in scenarios where there is only one parameter of interest. However, it produces posteri-

ors with poor performance when the parameter space has two or more dimensions (Leisen et al., 2018).

Walker and Villa (2021) recently developed a novel proper objective (OB) prior for continuous

parameters by considering the connection between information, divergence and scoring rules. Let

Θ = (0,∞) be the parameter space of interest such that θ ∈ Θ. For some constant a > 0, the OB prior

can be defined as

p(θ) =
a

(a+θ)2 .

Setting a = 1 results in a heavy-tailed distribution as shown in Fig. 2.1. This distribution shape allows

it to behave similarly to standard improper objective priors such as Jeffreys priors and reference priors

(Berger et al., 2009), where a reference prior is an objective prior designed to maximize some measure

of distance between the posterior and prior to allow the data to have maximum effect on the posterior.

Measures such as the Kullback-Leibler divergence (Kullback and Leibler, 1951) or the Hellinger
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distance (Beran, 1977) can be used to construct reference priors. Reference priors and Jeffreys priors

are only equivalent for one-dimensional parameters.

Walker and Villa (2021) showed that this novel objective prior performed almost equivalently to

the Jeffreys prior on simulated data. Unlike improper objective prior distributions, this novel objective

prior distribution is proper, guaranteeing a proper posterior distribution.
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Fig. 2.1 The OB prior p(θ) = 1/(1+θ)2 for a parameter defined in (0,∞).

2.2.3 Model Selection via WAIC

WAIC, also called the “widely available information” criterion, is a fully Bayesian predictive accuracy

measure estimator based on the log posterior predictive distribution (Watanabe and Opper, 2010). To

mathematically define WAIC, let θ represent all model parameters, y1, . . . ,yn denote the sample data,

f be the true model, ỹ be the future data that could be observed, and ppost(ỹ) =
∫

p(ỹi|θ)p(θ |y)dθ

be the posterior predictive distribution where ỹi denotes future data point i. Since the future ỹi is

unknown, the expected log predicted density(elpd) can be used as a measure of predictive accuracy

(Gelman et al., 2014):

elpd = E f (log ppost(ỹi)) =
∫

log ppost(ỹi) f (ỹi)dỹi
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For the n new data points, elpd is computed for each data point to establish the predictive accuracy

measure of that data set:

Expected log pointwise predicted density (elppd) =
n

∑
i=1

E f (log ppost(ỹi))

However, the log posterior predictive density is unknown as the likelihood p(ỹi|θ) cannot be computed.

For this reason, the prediction accuracy of a fitted model can be summarised using the log pointwise

predictive density(lppd):

lppd = log
n

∏
i=1

ppost(yi) =
n

∑
i=1

log
∫

p(yi|θ)p(θ |y)dθ

In practice, draws from the posterior distribution can be used to evaluate lppd. Let θ s, for s = 1, . . . ,S

be the draws from the posterior distribution, then the computed lppd (l̂ppd) can be defined as:

l̂ppd =
n

∑
i=1

log
(

1
S

S

∑
s=1

p(yi|θ s)

)

Accordingly, WAIC estimates the expected log pointwise predictive density elppd as the log pointwise

predictive distribution lppd with a bias adjustment êlppdWAIC = l̂ppd− pWAIC. Two estimates of the

bias adjustment have been proposed in the literature (Gelman et al., 2014). In this paper, we use the

following bias adjustment:

pWAIC =
n

∑
i=1

varpost(log p(yi|θ)), (2.2.4)

which can be computed by:

computed pWAIC =
n

∑
i=1

V S
s=1(log p(yi|θ s))

where V S
s=1 represents the posterior sample variance. Thus, pWAIC can be easily computed by summing

the posterior variance of the log predictive density over all data points yi. See Gelman et al. (2014) for

more information on the other bias adjustment.
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Hence, WAIC can be generally expressed as

WAIC =−2(lppd− pWAIC). (2.2.5)

Specifically, conditional WAIC (cWAIC) and marginal WAIC (mWAIC) can be expressed as

cWAIC =−2(lppdc − pcWAIC) (2.2.6)

mWAIC =−2(lppdm − pmWAIC) (2.2.7)

where lppdc, pcWAIC are computed using the conditional likelihood (equation (2.2.3)) and lppdm, pmWAIC

are computed using the marginal likelihood (equation (2.2.2)). Both cWAIC and mWAIC can be

computed by using MCMC samples from the fitted conditional model, and this is the approach

employed in this work.

Notably, WAIC (equation (2.2.5)) is on the deviance scale, making it comparable with other

measures of deviance such as the Akaike information criterion (AIC), and the Deviance information

criterion (DIC). The model with the lowest WAIC is considered the best model considering all models.

In addition, as opposed to conditioning on a single point as is done in AIC and DIC, WAIC has the

advantage of averaging over the entire posterior distribution, making it more appropriate for Bayesian

models and particularly useful for complex models with many parameters. The notable weakness of

WAIC is that its calculation depends on the independence assumption of data given the parameters,

making it unclear how to compute for structured data settings such as time series, spatial, and network

data.

As WAIC is an information criterion, we assess the strength of evidence for each model using

delta WAIC and Akaike weights. Assuming there are M candidate models, delta WAIC for the mth

candidate model (∆m) can be computed as ∆m = WAICm −WAIC∗ where WAIC∗ is the minimum

WAIC among the M candidate models.

Akaike weights, denoted by ωm, can be computed as:

ωm =
exp(−0.5∆m)

∑
M
i=1 exp(−0.5∆i)

.
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That is, ωm, is the ratio of a candidate model’s delta WAIC relative to the sum of the delta WAICs for

all candidate models.

2.3 Simulation Study

We consider two extensive simulation cases: 1) to investigate model performance when using the OB

prior and priors that are approximations to the Jeffreys prior for λ in the P-B N-mixture model, and 2)

to investigate whether WAIC is a reliable tool for model selection of N-mixture models and whether

its performance depends on which likelihood calculation, conditional or marginal, is employed.

In both cases, we fit models using MCMC methods provided by R package NIMBLE (de Valpine

et al., 2017) version 0.10.0 and use the full conditional N-mixture model (Equation (2.2.2)) as it

was found to be more computationally efficient than the marginalized N-mixture model (Equa-

tion (2.2.3))(Ponisio et al., 2020). cWAIC and mWAIC are computed using MCMC samples from the

fitted conditional model. To evaluate inference quality, we use the posterior median for each parameter

since the conditional posterior distributions for λ and p were found to be skewed, and use λ̂ and p̂ to

denote the median of the posterior medians over the simulation set. We also calculate 95% posterior

credible interval coverage (Covθ ), residual mean square error
(

RSMEθ =

√
∑

nsim
i=1 (θ̂i−θ)2/nsim

θ

)
, and

median relative bias
(
Bθ = median

(
θ̂−θ

θ

))
, where θ is the true parameter value, θ̂ is the posterior

median and nsim is the number of simulation runs.

2.3.1 Case 1 - Comparison Of Prior Distributions

For λ , we use the OB prior, and the following approximations to the Jeffreys priors: Gamma(0.001,0.001)

and Gamma(0.5,0.00001), and for p we use a Uniform(0,1) prior. We set M = 20, J = 5, and

perform 100 simulation runs for each scenario: λ = (5,100,500) and p = (0.1,0.25,0.6). For

λ = (5,100), p = (0.1,0.25), we run 515000 MCMC iterations with burn-in of 15000 and thinning

of 10 for 1 chain. For λ = (5,100), p = 0.6, we run 115000 MCMC iterations with burn-in of 15000

and thinning of 10 for 1 chain. We run 815000 MCMC iterations with burn-in of 105000 and thinning

of 20 for 1 chain for λ = 500, p = (0.1,0.25,0.6). Different MCMC settings were chosen so that the

effective sample size was similar between the different simulation scenarios.
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Table 2.2 Simulation results using the OB prior.

λ p λ̂ Covλ RMSEλ Bλ p̂ Covp RMSEp Bp

5 0.1 3.215 92 0.399 −0.357 0.149 92 0.798 0.494

5 0.25 4.503 94 0.273 −0.099 0.284 97 0.284 0.135

5 0.6 4.934 96 0.154 −0.013 0.594 96 0.087 −0.009

100 0.1 57.000 89 0.441 −0.423 0.175 89 1.004 0.747

100 0.25 86.739 92 0.284 −0.133 0.291 91 0.369 0.167

100 0.6 100.326 96 0.115 0.003 0.605 97 0.096 0.008

500 0.1 315.925 90 0.415 −0.368 0.160 91 0.859 0.601

500 0.25 466.172 94 0.326 −0.067 0.268 93 0.322 0.073

500 0.6 498.572 97 0.108 −0.002 0.601 96 0.098 0.002

Table 2.3 Simulation results using the Gamma(0.001,0.001) prior.

λ p λ̂ Covλ RMSEλ Bλ p̂ Covp RMSEp Bp

5 0.1 3.862 95 0.468 −0.227 0.124 96 0.706 0.237

5 0.25 4.857 95 0.407 −0.028 0.268 97 0.297 0.072

5 0.6 5.001 96 0.169 0.000 0.591 96 0.092 −0.016

100 0.1 69.914 99 0.407 −0.300 0.138 98 0.778 0.380

100 0.25 92.502 92 0.358 −0.075 0.276 91 0.349 0.103

100 0.6 101.664 96 0.122 0.016 0.598 96 0.101 −0.003

500 0.1 348.831 96 0.367 −0.302 0.143 95 0.727 0.426

500 0.25 472.884 94 0.293 −0.054 0.263 94 0.297 0.052

500 0.6 501.903 96 0.109 0.004 0.598 95 0.099 −0.003
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Table 2.4 Simulation results using the Gamma(0.5,0.00001) prior.

λ p λ̂ Covλ RMSEλ Bλ p̂ Covp RMSEp Bp

5 0.1 5.187 95 1.055 0.037 0.092 98 0.669 −0.084

5 0.25 5.175 96 0.689 0.035 0.249 95 0.334 −0.003

5 0.6 5.045 96 0.181 0.009 0.589 96 0.095 −0.017

100 0.1 89.843 99 0.702 −0.101 0.115 99 0.639 0.145

100 0.25 102.855 94 0.549 0.028 0.249 95 0.365 −0.002

100 0.6 102.726 96 0.152 0.027 0.592 96 0.111 −0.013

500 0.1 503.416 97 1.151 0.007 0.099 97 0.558 −0.007

500 0.25 567.462 92 0.972 0.135 0.221 90 0.366 −0.113

500 0.6 507.927 95 0.124 0.016 0.591 95 0.107 −0.015

From Tables 2.2, 2.3, and 2.4 it can be seen that the OB prior and Gamma priors perform similarly

in terms of inference at high and low levels of detection probability. Notably, when p is small and

priors for λ are concentrated at zero, as is the case for all prior distributions considered here, λ can

be severely underestimated, as can also be seen in Fig. 2.2, which displays the density plots of the

posterior medians of λ from the 100 runs for the OB prior. In addition, looking at Fig. 2.2, we can

see that large estimates of λ are also obtained when p is low, evident in the tails/ bi-modal density

of the distribution of posterior medians. This corroborates the results found by Dennis et al. (2015)

in a classical setting, who found that the maximum likelihood estimates of population size can tend

to infinity when detection probability is small. Additionally, looking at Fig.2.2, it can also be seen

that there are cases when λ is estimated well. Hence, the results demonstrate that the distribution of

posterior medians obtained for λ has two or maybe even three modes, for the first time demonstrating

the substantial risk of underestimating λ when detection probability is small.
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Fig. 2.2 Density plots of the posterior medians of λ obtained using the OB prior.

2.3.2 Case 2 - Model Selection via WAIC

We consider four simulation scenarios:

• Scenario 1: Over-dispersion in the population size process; the true model is the Discrete

Weibull Binomial (DW-B) N-mixture model.

• Scenario 2: Over-dispersion in the detection process; the true model is the Poisson Beta-

Binomial (P-BB) N-mixture model.

• Scenario 3: Equi-dispersion in the population size process; the true model is the Poisson

Binomial (P-B) N-mixture model.
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• Scenario 4: Under-dispersion in the population size process; the true model is the DW-B

N-mixture model.

In each scenario, 100 data sets were simulated from the true model, and the class of N-mixture models

considered in this paper (Table 2.1) are fitted to each data set. Setting M = 50, J = 5, data generating

model parameters for each case are shown in Table 2.5. For cases 1,3 and 4 data were simulated

using p = (0.25,0.6) to investigate model selection when p is high and low. Similarly, for case 2,

the Beta-Binomial parameters α = (3,1) and β = (2,3) were chosen such that the mean detection

probability is 0.25,0.6 respectively. For scenarios 1 and 4, data were generated with an expected

population size of 4.325 and 9.564 respectively. Parameters in the parameter space (0,∞) were

assigned the OB prior, and parameters in the parameter space (0,1) were assigned a Uniform(0,1)

prior. MCMC settings for each scenario are given in A.1 of the Supplementary material. In each

scenario, we compute the cWAIC and mWAIC for each N-mixture model, report the proportion of

times each model was selected %WAIC, median ∆ WAIC and median WAIC weights (ωWAIC) for

both cWAIC and mWAIC. We use expected population size (λ ) and p to compare inference quality

between models. For simplicity, we let p represent the mean detection probability for BB models. We

define ‘Best by mWAIC’ and ‘Best by cWAIC’ to be inferences of models selected by mWAIC and

cWAIC respectively.

Table 2.5 Data generating model parameters for each model.

Scenario Model Parameters

1 DW-B q = 0.75,b = 0.95

2 P-BB λ = 5

3 P-B λ = 5

4 DW-B q = 0.9999,b = 4

Scenario 1- Over-dispersion in the population size process

As can be seen from Tables 2.6 and 2.7, when there was over-dispersion in the population size

process, cWAIC strongly favoured the more complicated model, the P-BB model, which gave poor

inference, instead of the true model. On the other hand, mWAIC selected the correct model with
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higher probability and better inference. The ability of mWAIC to select the true model was reduced

with low p, but it selected a similar model that accommodates overdispersion in the population size

process and produced good inference. Model inference results (Table 2.7) also agree with the findings

of Knape et al. (2018), that is, models that do not accommodate overdispersion in the population size

process, when overdispersion is present, underestimate expected population size.

Table 2.6 Scenario 1 model selection results when the true model is the DW-B N-mixture model.

p Model %cWAIC %mWAIC ∆cWAIC ∆ mWAIC ωcWAIC ωmWAIC

0.6 P-B 0 0 25.133 203.843 0 0

DW-B 0 87 31.056 0 0 0.549

NB-B 0 8 30.497 0.419 0 0.419

P-BB 98 0 0 203.388 1 0

DW-BB 2 5 162.001 135.517 0 0

0.25 P-B 0 0 35.974 26.222 0 0

DW-B 0 29 41.345 0.205 0 0.421

NB-B 0 64 40.645 0 0 0.453

P-BB 100 1 0 16.553 0.999 0

DW-BB 0 6 16.938 2.909 0 0.102
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Table 2.7 Scenario 1 model inference results when the true model is the DW-B N-mixture model.

p Model λ̂ Covλ RMSEλ Bλ p̂ Covp RMSEp Bp

0.6 P-B 3.005 7 0.334 −0.305 0.668 36 0.126 0.114

DW-B 4.450 93 0.144 0.029 0.600 95 0.071 0.0003

NB-B 3.377 68 0.276 −0.220 0.603 95 0.070 0.006

P-BB 2.907 5 0.355 −0.328 0.683 18 0.145 0.138

DW-BB 4.963 62 0.217 0.147 0.633 84 0.075 0.055

Best by mWAIC 4.259 93 0.146 −0.015 0.603 95 0.070 0.005

Best by cWAIC 2.908 5 0.355 −0.327 0.681 19 0.144 0.136

0.25 P-B 2.005 1 0.537 −0.537 0.416 8 0.679 0.663

DW-B 4.356 90 0.312 0.007 0.254 96 0.278 0.016

NB-B 3.159 81 0.353 −0.269 0.267 95 0.275 0.067

P-BB 1.828 0 0.579 −0.577 0.440 2 0.777 0.762

DW-BB 3.335 76 0.256 −0.228 0.358 66 0.490 0.433

Best by mWAIC 3.467 78 0.424 −0.198 0.254 96 0.289 0.055

Best by cWAIC 1.828 0 0.579 −0.577 0.440 2 0.777 0.762

Scenario 2 - Over-dispersion in the detection process

Looking at Tables 2.8 and 2.9, it can be seen that the cWAIC again strongly favoured the more

complicated model, ie the DW-BB model, whilst mWAIC selected the correct model at least 3 times

more and produced better inference than models selected by cWAIC. In addition, models that did

not accommodate over-dispersion in the detection process over-estimated expected population size,

agreeing with Knape et al. (2018).
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Table 2.8 Scenario 2 model selection results when the true model is the P-BB N-mixture model.

p Model %cWAIC %mWAIC ∆cWAIC ∆ mWAIC ωcWAIC ωmWAIC

0.6 P-B 0 1 134.983 18.899 0 0

DW-B 0 0 132.142 12.376 0 0.002

NB-B 0 3 135.862 11.597 0 0.002

P-BB 26 83 2.742 0 0.202 0.643

DW-BB 74 13 0 1.600 0.798 0.291

0.25 P-B 0 0 154.726 38.776 0 0

DW-B 0 0 141.092 25.334 0 0

NB-B 0 0 139.177 20.955 0 0

P-BB 23 61 8.565 0 0.014 0.644

DW-BB 77 39 0 1.185 0.986 0.357
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Table 2.9 Scenario 2 model inference results when the true model is the P-BB N-mixture model.

p Model λ̂ Covλ RMSEλ Bλ p̂ Covp RMSEp Bp

0.6 P-B 7.644 6 0.655 0.528 0.388 1 0.367 −0.353

DW-B 9.603 0 1.044 0.921 0.337 0 0.436 −0.437

NB-B 8.687 2 0.930 0.737 0.342 0 0.440 −0.429

P-BB 4.953 96 0.086 −0.009 0.591 96 0.053 -0.015

DW-BB 5.852 25 0.208 0.170 0.593 96 0.051 −0.012

Best by mWAIC 5.182 84 0.129 0.036 0.591 92 0.077 −0.015

Best by cWAIC 5.736 41 0.188 0.147 0.593 96 0.050 −0.0108

0.25 P-B 11.280 1 1.798 1.608 0.111 7 0.568 −0.556

DW-B 26.937 0 5.226 4.387 0.046 0 0.812 −0.814

NB-B 38.048 0 7.619 6.609 0.031 0 0.864 −0.874

P-BB 4.774 96 0.283 −0.045 0.263 96 0.228 0.051

DW-BB 5.563 86 0.220 0.113 0.273 96 0.206 0.093

Best by mWAIC 4.251 96 0.232 −0.149 0.267 97 0.198 0.071

Best by cWAIC 4.219 94 0.244 −0.156 0.277 96 0.213 0.109

Scenario 3: Equi-dispersion in the population size process

Tables 2.10 and 2.11 show cWAIC strongly favouring the more complicated model, the DW-BB model

which, compared to the true model, gave poorer inference while mWAIC selected the true model more

often, in favour of models that fit the data best. In addition, models selected by mWAIC produced

better inference than models selected by cWAIC.
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Table 2.10 Scenario 3 model selection results when the true model is the P-B N-mixture model.

p Model %cWAIC %mWAIC ∆cWAIC ∆ mWAIC ωcWAIC ωmWAIC

0.6 P-B 0 63 28.854 0 0 0.360

DW-B 0 14 25.960 1.514 0 0.179

NB-B 0 17 29.521 0.360 0 0.320

P-BB 12 4 2.715 3.722 0.205 0.060

DW-BB 88 2 0 4.559 0.795 0.041

0.25 P-B 0 70 35.211 0 0 0.463

DW-B 0 9 31.197 2.201 0 0.171

NB-B 0 6 39.293 2.513 0 0.144

P-BB 2 5 13.148 4.392 0.001 0.059

DW-BB 98 10 0 4.034 0.998 0.006
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Table 2.11 Scenario 3 model inference results when the true model is the P-B N-mixture model.

p Model λ̂ Covλ RMSEλ Bλ p̂ Covp RMSEp Bp

0.6 P-B 5.036 94 0.095 0.007 0.593 93 0.062 −0.012

DW-B 5.944 33 0.212 0.188 0.599 93 0.059 0.000

NB-B 5.050 94 0.097 0.010 0.590 92 0.064 −0.016

P-BB 4.635 90 0.098 −0.073 0.640 82 0.082 0.067

DW-BB 5.525 61 0.133 0.104 0.647 72 0.090 0.080

Best by mWAIC 5.168 84 0.119 0.034 0.598 91 0.065 −0.002

Best by cWAIC 5.422 65 0.126 0.084 0.645 70 0.090 0.080

0.25 P-B 4.786 96 0.197 −0.043 0.259 94 0.214 0.036

DW-B 5.317 94 0.195 0.063 0.282 92 0.260 0.128

NB-B 6.056 96 0.476 0.211 0.209 94 0.295 −0.165

P-BB 4.774 96 0.283 −0.045 0.262 96 0.228 0.051

DW-BB 4.145 74 0.189 −0.171 0.273 96 0.206 0.093

Best by mWAIC 4.845 92 0.177 −0.031 0.260 93 0.212 0.039

Best by cWAIC 4.185 75 0.193 −0.165 0.263 95 0.202 0.090

Scenario 4: Under-dispersion in the population size process

As shown in Tables 2.12 and 2.13, cWAIC once again favoured the more complicated model instead

of the true whereas mWAIC had a stronger preference for the true model and a better preference for

models with good inference than models selected by cWAIC.
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Table 2.12 Scenario 4 model selection results when the true model is the DW-B N-mixture model.

p Model %cWAIC %mWAIC ∆cWAIC ∆ mWAIC ωcWAIC ωmWAIC

0.6 P-B 0 79 36.733 0 0 0.581

DW-B 0 16 33.225 2.103 0 0.216

NB-B 0 0 38.395 4.846 0 0.054

P-BB 6 2 8.202 4.560 0.016 0.062

DW-BB 94 3 0 5.111 0.984 0.045

0.25 P-B 0 84 42.759 0 0 0.618

DW-B 0 5 41.055 3.900 0 0.083

NB-B 0 5 45.617 2.958 0 0.155

P-BB 0 1 25.645 8.039 0 0.011

DW-BB 100 5 0 5.174 1 0.047
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Table 2.13 Scenario 4 model inference results when the true model is the DW-B N-mixture model.

p Model λ̂ Covλ RMSEλ Bλ p̂ Covp RMSEp Bp

0.6 P-B 8.807 77 0.112 −0.079 0.584 96 0.064 −0.025

DW-B 9.409 94 0.068 −0.016 0.600 96 0.058 0.001

NB-B 8.979 86 0.102 −0.061 0.578 92 0.073 −0.034

P-BB 7.795 31 0.185 −0.185 0.657 77 0.103 0.095

DW-BB 8.450 51 0.118 −0.116 0.673 57 0.125 0.122

Best by mWAIC 8.818 78 0.111 −0.078 0.594 92 0.074 −0.009

Best by cWAIC 8.369 47 0.124 −0.125 0.710 6 0.182 0.184

0.25 P-B 9.084 94 0.271 −0.050 0.238 93 0.238 −0.047

DW-B 5.562 54 0.415 −0.418 0.305 86 0.311 0.219

NB-B 12.116 91 0.635 0.266 0.179 85 0.356 −0.285

P-BB 6.149 62 0.363 −0.357 0.349 75 0.477 0.397

DW-BB 5.747 7 0.401 −0.399 0.445 7 0.814 0.781

Best by mWAIC 8.630 86 0.324 −0.097 0.239 84 0.373 −0.040

Best by cWAIC 5.747 7 0.401 −0.399 0.445 7 0.814 0.781

From this extensive simulation study, it can be seen that mWAIC selected the correct model with

a high probabiliy while cWAIC favoured the more complicated model that often gave poor inference.

Hence, model selection via WAIC for N-mixture models should be performed using the marginal

likelihood as cWAIC can favour unnecessarily complicated models. Importantly, these scenarios

demonstrate that one can select between different N-mixture models with different model inferences

using mWAIC.

2.4 Case Studies

We consider two case studies: yellow-bellied toads and Swiss great tits. We apply all N-mixture

models defined in Table 2.1 to both data, assuming the expected population size to be constant across

sites and detection probability for Binomial models to be constant across sites and sampling occasions.
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We fit models using the conditional likelihood (Equation (2.2.3)) and using MCMC samples from

the fitted model, we perform model selection using both cWAIC and mWAIC. We choose the OB prior

for continuous parameters with parameter space (0,∞), whereas parameters with parameter space

(0,1) are assigned a Uniform(0,1) prior. Additionally, for the yellow-bellied toad, we investigate

the prior sensitivity of parameters with parameter space (0,∞) by using an approximation to the

Jeffreys prior, Gamma(0.001,0.001). To assess model fit, we use posterior predictive goodness of

fit: we define τi = ∑
J
j=1 Ci, j and using MCMC samples, we simulate counts, and hence τi, from our

model and compare these to the observed data. A model fits the data well if it produces similar τi

values to the observed data. MCMC settings used for both case studies are presented in A.2 of the

Supplementary material. We assess convergence using Gelman and Rubin’s convergence diagnostic

(Gelman and Rubin, 1992).

2.4.1 Yellow-bellied Toads

In 2018, survey sampling of five populations of yellow-bellied toads (Bombina variegata) was

conducted at 27 sites from the end of May to the beginning of July. Each site was sampled 4 times

during the period of study. Sites were represented by ponds or tanks located in a variety of habitats,

mainly vineyards, and meadows, in the Italian Alps.

With convergence achieved for all model parameters, it can be seen from Table 2.14 that all

models considered produce different estimates of expected population size and detection probability,

highlighting the need to select the correct model to avoid erroneous inference. Notably, both cWAIC

and mWAIC were in agreement strongly favoring the DW-BB model with cWAIC and mWAIC weights

of 1.0 and the least support to the P-B model with cWAIC and mWAIC weights of 0. Additionally, the

OB prior and the Jeffreys prior approximation (Gamma(0.001,0.001)) give similar model inference

and WAIC values. Posterior predictive goodness of fit indicated all models except the P-BB fitted the

data well. Fig. 2.3 displays the GOF plot for the DW-BB model and it can be seen that the true value

is captured between the 5th and 95th quantile for all sites for the DW-BB model. The P-BB model

lack of fit is evident in the large estimates of expected population size.
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Table 2.14 Model results from analysing yellow-bellied toads data. Values within the brackets
represent the 95% posterior credible interval. For BB models, detection probability represents mean
detection probability.

Prior Model cWAIC mWAIC Detection Probability Expected population size p correlation.

OB

P-B 542.328 905.735 0.637(0.585,0.686) 10.759(9.375,12.218) -

DW-B 461.211 528.078 0.186(0.051,0.360) 38.825(16.730,145.290) -

NB-B 461.535 529.078 0.201(0.054,0.371) 34.574(15.847,130.823) -

P-BB 491.621 654.837 0.038(0.010,0.085) 238.333(83.459,653.727) 0.049(0.013,0.109)

DW-BB 338.121 502.857 0.662(0.555,0.743) 11.111(7.360,18.410) 0.182(0.085,0.289)

Gamma(0.001,0.001)

P-B 544.649 907.358 0.635(0.579,0.688) 10.818(9.401,12.341) -

DW-B 461.215 528.126 0.193(0.054,0.365) 37.553(16.39,137.21) -

NB-B 461.377 529.158 0.197(0.053,0.366) 45.425(15.977,132.666) -

P-BB 494.398 654.739 0.018(0.003,0.057) 672.845(122.529,1951.403) 0.023(0.004,0.073)

DW-BB 344.243 507.252 0.649(0.511,0.738) 11.328(7.460,19.100) 0.163(0.061,0.280)
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Fig. 2.3 GOF plot for the DWBB model. Red diamonds represent the observed values and boxplots
represent the simulated values.
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2.4.2 Swiss Great Tits

The Swiss great tits data were collected in the Swiss breeding bird survey MHB from 2013. The Swiss

common bird breeding survey MHB is based on a sample of 267 1-km2 areas. Volunteers survey a

quadrant-specific route, composed of 263 sites, three times during the breeding season.

The Swiss great tits data was analysed by Kéry and Royle (2017) where they highlighted the

good-fit-bad-prediction dilemma. Using covariates on both expected population size and detection

probability, they analysed this data set using three models: P-B, ZIP-B and NB-B where they found

that the best-fitted model (NB-B) via AIC produced unrealistic estimates of population size. To come

to this conclusion, they performed residual diagnostic checks. They found that the residual diagnostic

checks for the P-B and ZIP-B models looked much better than those of the NB-B model, despite the

much better fit (GOF test) and predictive ability (measured by AIC) of the NB-B model. Thus, we

investigate this good-fit-bad-prediction dilemma in a Bayesian framework using methods considered

in this paper.

Convergence was achieved for all model parameters. From Table 2.15, we also find that the NB-B

model was favored by both cWAIC and mWAIC over the P-B model, and the NB-B also produced

large values of expected population size. To evaluate model fit, we simulate data from the model and

compute the 95% coverage of τ1:M. For the P-B model, 33.34% of the sites captured the observed

values while for the NB-B model, 72.09% of the sites captured the observed values. Contrary to

MKe, we consider BB models, and as can be seen from Table 2.15, the DW-BB model was strongly

supported as the best model amongst all models by both cWAIC and mWAIC with weights of 1.0.

The DW-BB model produced inference similar to the P-B model but fitted the data well with 72.09%

of the sites capturing the true value. This motivates the use of the DW-BB model as the good-fit-bad

prediction dilemma observed by MKe may be due to the violation of the independence detection

assumption in the Binomial detection process. Hence, our findings in both case studies suggest that

model selection and model fit are in agreement with model selection favouring the model with the

better fit.
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Table 2.15 Model results from analysing Swiss great tits data. Values within the brackets represent the
95% credible interval. For BB models, detection probability represents mean detection probability.

Model cWAIC mWAIC Detection Probability Expected population size p correlation

P-B 3689.985 6020.880 0.641(0.621,0.661) 10.142(9.679,10.616) -

DW-B 2968.517 3600.062 0.063(0.016,0.132) 123.412(53.72,460.90) -

NB-B 2954.897 3579.046 0.045(0.011,0.103) 202.140(61.714,624.950) -

P-BB 2663.500 4311.279 0.298(0.262,0.335) 20.131(18.184,22.558) 0.476(0.425,0.526)

DW-BB 2606.225 3564.125 0.416(0.249,0.560) 17.799(12.550,30.460) 0.054(0.015,0.116)

2.5 Discussion

As N-mixture models provide an attractive framework to gain inference on population size by using

only replicated counts from unmarked individuals. A large number of studies have been carried out on

N-mixture models in a classical setting, resulting in the identification of issues such as computational

aspects of model fitting, model selection, sensitivity to overdispersion, etc. However, to our knowledge,

few studies have been conducted in a Bayesian setting to investigate N-mixture models. N-mixture

models have also become easier to fit in a Bayesian framework with the advent of software such

as NIMBLE (de Valpine et al., 2017) and Stan (Carpenter et al., 2017). Hence, in this paper, we

considered fitting an extensive class of N-mixture models in a Bayesian framework to corroborate and

extend issues concerning N-mixture models obtained in a classical framework.

Moreover, we have performed extensive simulation studies to investigate the choice of prior

distributions and model selection in N-mixture models. We implemented a novel proper objective

prior, the OB prior, and compared its performance to approximations of the popular Jeffreys priors. We

found these priors performed similarly in terms of inference. Importantly, when p is small, we found

that λ can be considerably underestimated in addition to well-known cases of λ being overestimated,

a finding we believe to be previously unknown. We further investigated model selection via WAIC,

considering both the conditional and marginal WAIC criteria, cWAIC and mWAIC, respectively.

We found that cWAIC can lead to misleading results that favour the more complicated model while

mWAIC selected the true model with a high probability. Hence, mWAIC should be used instead of

cWAIC to select between competing N-mixture models.
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Finally, we considered these methods in two case studies. We found the OB prior and a Jeffreys

prior approximation produced similar inference results and model selection results as cWAIC and

mWAIC were in agreement for the case study considered. In addition, contrary to the good-fit-

bad-prediction highlighted by Kéry and Royle (2017), we find model selection via WAIC to be

in agreement with the model goodness of fit when the DW-BB model is considered in the model

list. Future work can be focused on developing Bayesian goodness-of-fit measures to check model

assumptions of N-mixture models.

Notably, Vehtari et al. (2017) highlighted checks that can be done to investigate the stability of

WAIC. Ariyo et al. (2022b) highlighted WAIC sensitivity to the choice of prior in Bayesian linear

mixed models for longitudinal data. Thus, a possible avenue for future work can be to investigate the

stability of cWAIC and mWAIC and WAIC sensitivity to the choice of prior in N-mixture models.

Another important avenue for future work is the identifiability of N-mixture models in a Bayesian

framework as identifiability issues have been found in a classical setting (Barker et al., 2018; Dennis

et al., 2015). Thus, future work can be focused on investigating identifiability of N-mixture models in

a Bayesian setting using methods such as data cloning (Lele et al., 2007).

Overall, N-mixture models are a powerful tool for estimating population size. However, like any

tool, care must be taken. This work highlights that in a Bayesian framework, care needs to be taken

with the choice of prior distributions and advocates the use of mWAIC to select between models.



Chapter 3

A new modelling framework for roost

count data





Abstract

Roost counts, where individuals of a species are counted whilst arriving or departing from their

roost site, are an important monitoring tool for several species around the world. However, the raw

count data are an underestimate of the size of the monitored population at any one time because of

individuals temporarily not using the roost (temporary emigration, TE) and because the probability of

detection of individuals, even when using the roost, is typically much lower than one (observation

error). In this paper, we develop a novel modelling framework for estimating population size, from

roost count data, while accounting for both TE and observation error. Our framework builds on the

popular class of N-mixture models but extends them in a number of ways. Specifically, we introduce

two model classes for TE, a parametric, which relies on temporal models, and a non-parametric, which

relies on Dirichlet process mixture models. Both model classes give rise to interesting ecological

interpretations of the TE pattern while being parsimonious in terms of the number of parameters

required to model the pattern. When accounting for observation error, we use mixed-effects models

and implement an efficient Bayesian variable selection algorithm for identifying important predictors

for the probability of detection. We demonstrate our new modelling framework using an extensive

simulation study, which highlights the importance of using mixed-effects models for the probability of

detection and illustrates the performance of the model when estimating population size and underlying

TE patterns. We also assess the ability of the corresponding variable selection algorithm to identify

important predictors under different scenarios for observation error and its corresponding model.

When fitted to two motivating data sets of parrots, our results provide new insights into how each

species uses the roost throughout the year, on changes in population size between and within years,

and on important predictors for observation error.
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3.1 Introduction

The loss of Earth’s biological diversity negatively impacts ecosystem services that are vital for

human health and prosperity (Cardinale et al., 2012). This global issue is recognised by International

agreements and policy frameworks including the Convention on Biological Diversity (CBD) and

the United Nations Sustainable Development Goals (SDGs), which call upon all United Nations

Member States to take urgent action to restore and protect habitats and to halt further biodiversity loss

(sdgs.un.org).

With an increasing number of species suffering population declines (Almond et al., 2020; Thomas,

2013), it is paramount to develop innovative monitoring methods in order to characterise population

dynamics, understand how environmental changes affect populations, identify species that require

protection, and develop or appraise management practices, policies and guidelines (Jetz et al., 2019).

However, some highly mobile species such as parrots (Dénes et al., 2018) and bats (Kunz, 1982) can be

challenging to monitor because they are not individually identifiable and they often feed and nest in low

densities among inaccessible habitats such as forest canopies (Dénes et al., 2018). Consequently, one

of the only opportunities to survey such species at scale is at communal roosts where large numbers

of individuals may regularly come together and interact socially for reasons including predator

avoidance, cooperative breeding, information exchange, informing foraging strategy and meeting

thermoregulatory demands (Beauchamp, 1999; Kunz, 1982; Salinas-Melgoza et al., 2013; Seixas and

Mourao, 2018). During these surveys, individuals are observed and counted as they arrive or depart

from their roost, which is a more cost-effective method than others, such as capture-mark-recapture,

which can be impractical for such species (Kunz, 1982).

In practice, the specific methodology includes multiple simultaneous counts obtained by one

or more observers positioned at one or more vantage points. In addition, due to the challenging

nature of performing roost counts and the costs and challenges of identifying and accessing a roost,

only a single roost is often monitored for a given species, with counts typically collected under

different environmental conditions (Berg and Angel, 2006; Cougill and Marsden, 2004; Matuzak

and Brightsmith, 2007). These roost survey counts cannot serve as an index of population size due

to individuals exhibiting TE, and hence becoming temporarily unavailable for detection, and due to
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observation error, with the probability of detecting individuals that are available for detection typically

being much lower than one. Therefore, statistical modelling needs to be employed for inferring

population size and TE patterns from roost count data. This is the aim of this paper, as we describe

below.

Count data for closed populations that do not exhibit TE are often analyzed using standard N-

mixture models (Royle, 2004b), which can estimate population size using spatially-replicated counts

over time by accounting for observation error. The time-for-space substitution N-mixture model

(Kéry and Royle, 2015) uses temporally replicated counts without spatial replication, giving temporal

estimates of population size and enabling estimation of a single population trend, but also does not

account for TE. However, Chandler et al. (2011) showed that failure to account for TE can result in

positively biased estimates of population size.

Roost survey sampling usually takes place under Pollock’s robust design (Pollock, 1982), with

several short secondary periods, eg days, across various primary periods, eg months. The population

size is then assumed constant across secondary periods within the same primary period (closed popu-

lation) but can change between primary periods (open population) due to births, deaths, immigration,

or permanent emigration. In this case, Chandler et al. (2011) extended the standard N-mixture models

to account for TE. This model has two processes: an ecological process for the latent number of

individuals present and available for detection, and an observation process, for the available indi-

viduals detected. The proportions of individuals in the population in any given primary period that

are available for detection on each secondary period are either assumed constant for the duration

of the study period (Chandler et al., 2011) or are estimated separately of each other, requiring one

parameter to be estimated for each primary period (Kéry and Royle, 2020). However, the first option

may be too restrictive and the latter is parameter-greedy, and does not allow for an intuitive ecological

interpretation of the results. Finally, existing models do not provide information on TE cyclical

patterns, where certain primary periods of each year correspond to certain levels of TE. Identifying

and inferring these cyclical patterns can give new insights into the behaviors of the species, such as

breeding patterns and seasonal availability of foods.

Naturally, detection probability, and hence observation error (with the two terms used interchange-

ably in this paper), is expected to vary between sampling occasions as a response to changes in
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environmental and weather conditions or effort. This variation can be captured within a logistic regres-

sion model accounting for the effect of covariates, such as time of sampling and weather conditions

at the time of surveying (see for example Kéry and Royle, 2020; Neubauer et al., 2022). All of the

existing modelling approaches can account for the effect of covariates (referred to as variables or

predictors in the literature and in this paper) on detection probability through fixed effects models for

a given variable set. However, it is unlikely that these fixed effects will capture all of the variation in

detection, as other, unobserved or unobservable effects, such as the behaviour of the surveyed species,

can have a substantial impact on observation error. The impact of using fixed-effects is unclear when

the model for observation error is misspecified, that is when important variables for observation error

are omitted, which is likely to be the case in reality. Additionally, the potential set of variables to be

considered as predictors for observation error can be large, and hence corresponding tools are required

to identify the subset of important variables in the model.

Motivated by two roost count survey data sets of parrots, in this paper we develop a novel modeling

framework that can be used to estimate time-varying population size at a site, while accounting for

TE and observation error. We extend the TE N-mixture model developed by Chandler et al. (2011)

by proposing two model classes: a parametric approach, which employs different temporal models

that account for temporal auto-correlation of different order, and a non-parametric approach based

on the Dirichlet process (DP) prior (Ferguson, 1973) that allows us to cluster the primary periods

according to roost use by the surveyed individuals, and leads to interesting ecological insights about

the behavior of the population.

To account for variation in observation error, in addition to that captured by a fixed-effects model,

we introduce a mixed-effects logistic regression model on the detection probability. Additionally, we

implement a recent efficient Bayesian variable selection (BVS) algorithm, the Bayesian Group Lasso

Spike and Slab (BGLSS) (Liquet et al., 2017; Xu and Ghosh, 2015), to perform variable selection for

the probability of detection in this mixed-effects model framework.

We implement our novel modelling framework in a Bayesian setting using Markov Chain Monte

Carlo (MCMC) methods via R package NIMBLE (de Valpine et al., 2017) version 0.13.0.

We present an extensive simulation study that assesses the performance of the proposed models

in estimating population size and TE patterns under different scenarios, such as when the model for
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observation error is misspecified. For the first time in N-mixture models and related literature, we

highlight the risks of using misspecified fixed-effects models for observation error and demonstrate

how the risks are mitigated by instead using mixed-effects models, as we propose in this paper.

We also demonstrate the performance of our proposed variable selection approach in identifying

important predictors for observation error in our novel mixed-effects modelling framework under

these scenarios.

Finally, we apply our new modelling framework to two case studies, considering roost count data

on Ecuadorian Amazon parrots Amazona lilacina and on Orange-winged Amazon parrots Amazona

amazonica. We use cross-validation to select the most appropriate model for the TE pattern in each

case and obtain interesting ecological results on temporal population sizes, TE trends, and cyclical

patterns and identify important predictors affecting observation error.

The paper is organized as follows. In Section 3.2 we define our new modelling framework,

including background on the methods on which it builds. Simulation results are presented in Section

3.3 and the results for the two case studies are presented in Section 3.4. Section 3.5 concludes the

paper and provides ideas for potential future directions.

3.2 Models

Sampling follows Pollock’s robust design (Pollock, 1982) with T open primary periods (e.g. months)

and J closed secondary periods (e.g. days within a month). Often, studies can have Y additional

top-level primary periods, e.g. Y years, with T primary periods, e.g. months, and J secondary periods,

e.g. days within them. The data are summarised in counts C j,t,y of individuals detected on secondary

occasion j, primary period t, within top-level primary period y.

We assume there is an overall super-population of M individuals that can visit the roost at least

once during the survey period. These M individuals can contribute to the Y super-population sizes

(κy, y = 1, . . . ,Y ), indicating the number of individuals that can visit the roost at least once in each top-

level primary period and denote the probability that an individual from the super-population has used

the roost at least once in top-level primary period y by δy. Conditional on κy, we denote the number of

individuals using the roost in primary period t within top-level primary period y by Nt,y ∼ Bin(κy,θt,y)
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(temporal population size), with θt,y referred to as the availability parameters (meaning that these

individuals are available for detection in that primary period). Finally, individuals that use the roost

in primary period t within top-level primary period y are detected on secondary occasion j with

probability p j,t,y. The hierarchical representation of the model is given in equation (3.2.1), while a

graphical representation of the model is given in Fig 3.1.

M ∼ Poisson(λ )

κy ∼ Binomial(M,δy)

Nt,y ∼ Binomial(κy,θt,y)

C j,t,y ∼ Binomial(Nt,y, p j,t,y) (3.2.1)

The κy variables allow us to study the availability pattern within each top-level primary period,

conditional on the corresponding population size, and hence identify changes in availability patterns

across top-level primary periods, without these changes being confounded to changes in population

size. When there are no top-level primary periods, this model can be simplified by dropping the κy

level, i.e. setting κy = M ∀y, and the y subscript in all subsequent levels.

The main novelty of our proposed framework lies in the way in which we model detection

probability, as described in Section 3.2.1, and the availability parameters, as described in Section

3.2.2.

M κy Nt,y C j,t,y
δy θt,y p j,t,y

Fig. 3.1 Graphical model representation

3.2.1 Detection Probability

The model of equation (3.2.1) is a function of the detection probability on secondary occasion j,

primary period t, top-level primary period y, p j,t,y. This probability cannot be freely varying, as

that introduces more parameters than we can estimate into the model. Instead, it can be assumed as

constant for all j, t,y or, more realistically, as a function of variables (covariates), which can vary

between secondary and/or primary periods, within a logistic regression framework, as for example in
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Kéry and Royle (2020). However, it is likely that, in practice, such models are misspecified, and that

the variables considered are only a subset of the variables that affect detection probability in the field.

In such cases, as we demonstrate in our simulation study in Section 3.3, the estimation of population

size can be substantially biased, and for that reason we propose the use of a mixed effects model:

logit(p j,t,y) = η j,t,y = µ +
G

∑
g=1

X j,t,y,gβg + ε j,t,y (3.2.2)

where g = 1, . . . ,G are continuous/categorical variables, such that variable g requires Cg coefficients

to model its effect, so that if g is a continuous variable, Cg = 1, and if g is a categorical variable, Cg

is its number of levels (excluding baseline). Finally, βg is the (Cg ×1) vector corresponding to the

logistic regression coefficients for variable g, X j,t,y,g is the vector of length Cg containing variable g

on occasion t,y, j, and ε j,t,y ∼ Normal(0,σ2
ε ) are corresponding independent random effects.

The inclusion of the random effect terms allows for any variability in detection probability that

is not captured by the variables considered by the fixed effects to be absorbed by the random effect

variance, which, as we demonstrate using simulation, leads to reliable inference on population size,

even when the detection probability model is misspecified. However, an overparameterised fixed

effects model can lead to increased uncertainty around variable effects and population size, and

therefore, we suggest the use of a Bayesian variable selection algorithm, and specifically of the

Bayesian Group Lasso Spike-and-Slab (BGLSS) algorithm (Xu and Ghosh, 2015), for identifying

important predictor variables for p. The BGLSS places a prior on each group of coefficients, where

a group can consist of coefficients introduced to model the effect of a categorical variable and can

number a single coefficient in the case of continuous variables. This prior is given in equation (3.2.3)

below, and more details are provided in B.2 of the Supplementary material.

βg|τ2
g ∼ (1− γg)δ0(βg)+ γgN(0,τ2

g ICg)

τ
2
g ∼ Gamma

(
Cg +1

2
,
ψ2

2

)
γg ∼ Bernoulli(φg)

ψ ∼ Gamma(a,b) (3.2.3)
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where γg is a binary variable that indicates whether variable g is included (1) in the model or not

(0), δ0(βg) denotes a point mass at 0 ∈ RCg , ICg is the identity matrix (Cg ×Cg), ψ is the shrinkage

parameter, and φg is the prior inclusion probability, which can be fixed to 0.5 or can be assigned a

uniform or Beta prior distribution.

The BGLSS accommodates group-level variable selection by using a spike and slab prior (Mitchell

and Beauchamp, 1988), with coefficients exactly zero for excluded variables, and the Bayesian group

lasso (BGL) (Casella et al., 2010) for included variables, enforcing the L1 penalization (Tibshirani,

1996), giving more parsimonious models. This Bayesian formulation can reduce the computational

cost by proposing a prior on ψ rather than testing several values and choosing the best value by

cross-validation. In addition, the BGLS produces reliable standard errors of coefficients without any

extra cost in comparison to the frequentist group lasso (Yuan and Lin, 2006).

3.2.2 Availability Parameters

We propose two model classes for modelling the availability parameters, a nonparametric approach and

a parametric approach, both of which are described below. We define θℓ = θt,y, with ℓ= t +T (y−1)

for ℓ= 1, . . .T ·Y to model correlation in the availability parameters for the whole time series, across

primary periods. When there are no top-level primary periods, Y = 1 and θℓ = θt for ℓ = 1, . . . ,T .

Table 3.1 provides the terminology used hereafter for each model considered for the availability

parameters.

Table 3.1 Models proposed for availability parameters.

Notation Model

DP Dirichlet process (DP) mixture model

RW1 Random walk of order 1

RW2 Random walk of order 2

Cor Across level correlation model

AR1 Auto-regressive model of order 1
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Nonparametric approach

We model availability non-parametrically via a Beta-Dirichlet process (DP) mixture model (Kottas,

2006). This formulation expresses the distribution of availability parameters as a mixture model, and

provides a flexible and robust specification of the corresponding density, by describing it as a mixture

model with an unknown number of components, with primary periods clustered according to their

corresponding availability parameters, eg low, medium, and high. This is ecologically relevant as it

enables the study of TE trends and hence roost use patterns throughout the season(s).

The Beta DP mixture model can be represented using the Chinese restaurant process (CRP)

algorithm, which relies on the inferred cluster allocation variables, zℓ, ℓ= 1, . . . ,T ·Y , indicating the

cluster to which primary period ℓ has been allocated. The CRP is used to represent the sequential way

in which cases, i.e. periods in our case, are allocated to clusters, with the number of clusters being

infinite a priori, but finite in practice and inferred as part of the process. The corresponding model for

the availability parameters is given in equation (3.2.4).

θℓ|γ̃, ψ̃,zℓ ∼ Beta(γ̃zℓ , ψ̃zℓ), ℓ= 1, . . . ,(T ·Y )

zℓ ∼ CRP(α), α ∼ Gamma(ζ ,τ)

γ̃k ∼ Gamma(µ,ν), ψ̃k ∼ Gamma(ϑ ,ω), k = 1, . . . ,K.

(3.2.4)

where ζ ,τ,µ,ν ,ϑ ,ω ∈ R and K ≤ (T ·Y ). More details are provided in B.1 of the Supplementary

material.

Parametric approach

Alternatively, availability can be modelled parametrically using temporal models, specifically random

walk models and auto-regressive models. These temporal models share information across primary

periods by accounting for temporal auto-correlation, which is meaningful ecologically as, as also

mentioned above, the availability pattern is expected to be smooth and allows for borrowing strength

in cases where the data are sparse.
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1. Random walk models, which enable estimation of non-linear temporal trends retaining the

smoothing-varying feature that is present in observed time series data. As highlighted in

Fahrmeir and Lang (2001), random walk models can be rewritten in an undirected symmetric

form, as a one-dimensional version of the spatial intrinsic conditional autoregressive (ICAR)

model (Besag, 1974). Generally, random walk models can be defined as a set of conditional

probability distributions under the ICAR models as

θℓ|θ−ℓ,σ
2,W RW ∼ N

[
∑

T ·Y
n=1 wℓnθn

wℓ+
,

σ2

wℓ+

]
, ℓ= 1, . . . ,T ·Y. (3.2.5)

where W RW represents the temporal weights matrix with entry ωℓn in the ℓth row and the nth

column, wℓ+ is the sum of the elements in the ℓth row, σ2 is the ICAR variance and σ2/ωℓ+ is

the conditional variance.

Consequently, random walk models possess the same set of properties as the ICAR model. That

is, positive auto-correlation is assumed via a chosen W that imposes a neighbourhood structure

on time points in the study period and determines the amount of information borrowed from

other time points. This shared information across temporal neighbours results in temporally

smooth time trends, with estimation of θℓ borrowing information from past time points eg.

(ℓ−1, ℓ−2) but also from future time points eg. (ℓ+1, ℓ+2), provided that these time points

are within the study period. In addition, as the conditional variance increases, θℓ can deviate

more from its neighbours, producing a temporal pattern that is less smooth but more flexi-

ble. This model representation allows us to infer the variance of the ICAR model (σ2) and θℓ ∀ℓ.

• Random walk of order 1 (RW1) can be defined as an ICAR model with binary weights,

W RW1, such that the entry ωℓ,n = 1 if points ℓ,n are neighbours and 0 otherwise. In the

RW1 model, each ℓ has 2 neighbours ℓ− 1, ℓ+ 1, except the first and the last, which

only have one neighbour, adjacent to the right and left respectively. The binary temporal

weights matrix, W RW1, assumes that equal strength of information is borrowed from
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adjacent neighbours.

• Random walk of order 2 (RW2). Similarly, the RW2 model can be defined as an ICAR

model but with a general weights matrix (W RW2). The elements in W RW2 are derived from

the conditional distributions of each θℓ conditioned on all other parameters in θ and the

variance σ2 (conditional distributions listed in B.4.2 of the Supplementary material). The

elements are the coefficients in the numerator of the conditional mean for θℓ. As can be

seen in equation (3.2.5), the conditional variance depends on the number of neighbours,

hence, the RW2 model generally produces smoother temporal trends than the RW1 model

as it borrows information from more time points. In addition, using a general weights ma-

trix instead of a binary weights matrix specifies the strength of the information borrowed,

with more information borrowed from close neighbours.

• Across level correlation (Cor) model. We extend the RW1 model to allow a time point

to borrow information from other specific time points, in addition to ℓ− 1, ℓ+ 1 time

points given time points are within the study period. For instance, this allows a specific

month in a year to be correlated to months directly before and after that month, but also

the same month across years. This model is defined similarly to the RW1 model with a

binary weights matrix (W Cor) such that the entry ωℓ,n = 1 if points ℓ,n are neighbours

and 0 otherwise, where neighbours in this case are the adjacent time points, but also time

points that are c time periods apart, where c = 12 in the case of monthly patterns across

years. Therefore, the first time point are neighbour with (ℓ+1, ℓ+qc) time points, the

last time point with (ℓ− 1, ℓ− qc) neighbours and others with (ℓ− 1, ℓ+ 1, ℓ± qc) for

q = 1, . . . ,((T ·Y )/c)−1, provided time points are within the study period.
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2. Auto-regressive models. An auto-regressive model of order 1 (AR1) on the set of time-specific

parameters can be defined as

θℓ = ρθℓ−1 + εℓ, ℓ= 2, . . . ,T ·Y, (3.2.6)

θ1 ∼ N(0,σ2
1 (1−ρ

2))

where ρ is the temporal correlation coefficient (|ρ|< 1) and εℓ ∼ N(0,σ2) are iid noise effect

terms. The RW1 model is a subset of the AR1 model when ρ = 1. As such, the AR1 is a

more flexible model as it accommodates both positive and negative temporal auto-correlation.

However, if positive auto-correlation is present, the RW1 model is preferable as one fewer

parameter needs to be estimated.

3.2.3 Inference

We fit models in a Bayesian framework using MCMC methods via R package NIMBLE (de Valpine

et al., 2017) version 0.13.0. Specifically, for variables assigned an ICAR model, we follow NIMBLE’s

recommendation and update these variables without the zero constraints and then centering (Paciorek,

2009). We implement the Beta mixture DP model by using the collapsed sampler (Neal, 2000)

provided in NIMBLE. We use methods developed by Wade and Ghahramani (2018) to summarise DP

cluster results. We employ median thresholding in variable selection (Barbieri and Berger, 2004), that

is, Pr(γg = 1|y)> 0.5, g = 1 . . . ,G to identify significant variables.

3.3 Simulation Study

In this section, we present an extensive simulation study to explore a number of different cases, listed

in Table 3.2. For each case, we perform 50 simulation runs and we set T = 36,J = 8, assuming no

top-level primary periods with λ = 100 and consider high and low detection levels, p ≈ (0.6,0.3),

with p as a function of covariates (variables). The coefficients for fixed effects are set as: β = (β1 =

1.25,β2 = 0.2,β3 = 2,β4 = 0,β5 =−0.6,β6 = 0.5,β7 =−1,β8 = 0) with the first five corresponding

to continuous variables, x1, . . . ,x5, and last three to categorical variables, x6 and x7, with two and three



3.3 Simulation Study 53

levels, respectively. Continuous variables were generated from a standard normal distribution and

categorical variables from a multinomial distribution with equal probabilities. To obtain the desired

level of average detection, as stated above, the intercepts, β0, were set to (0.75,−1.5), for high and

low detection probability, respectively. To introduce misspecification in the model for detection,

variables x1 and x7 were not included in the model in each of the two cases described in Table 3.2.

When the DP model was used to generate the data, we specified two clusters of equal size (18) from

Beta(10,10) and Beta(10,1) respectively. When the RW1 model was used to generate data, we set

σ = 1.

The following prior distributions were used in all cases: λ ∼ Gamma(0.01,0.01),

ψ ∼ Gamma(0.001,0.001), φg = 0.5,β1 ∼ Normal(0,2),σ ∼ Uniform(0,15),α ∼ Gamma(1,1),

γ̃k ∼ Gamma(2,0.1), ψ̃k ∼ Gamma(2,0.1). The MCMC settings in terms of the number of iterations,

burn-in, and thinning in each case are reported in B.5 of the Supplementary material.

Table 3.2 Simulation settings.

Case Description
1 Comparing estimation of population size under different models for the availability

parameters when the correct model for these parameters is fitted to the data and we
do not perform variable selection and
a) the model for detection probability is correctly specified.
b) the model for detection probability is misspecified (fixed vs mixed effects
models).

2 Assessing the performance of BGLSS in variable selection under the RW1 model
for the availability parameters when
a) the model for detection probability is correctly specified.
b) the model for detection probability is misspecified (mixed effects model).

We use median relative bias and median 95% credible interval (CI) coverage to summarise the

estimation of population size and of covariate effects. We also use median misclassification rate for

summarising the DP mixture clustering and the BGLSS performance. The detailed results of the

simulation study for each case are presented in B.5 of the Supplementary material and the key findings

are summarised in Table 3.3 and discussed below.
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Table 3.3 Median relative bias and median 95% CI coverage of population size and covariate coeffi-
cients for each simulation scenario and setting for detection probability, as described in Table 3.2.
CS: correctly specified; MS: misspecified; FE: fixed effects; ME: mixed effects.

Case Model for θ Model for p Average p Parameters RB Coverage

1. a)

DP CS - FE

0.6
Coefficients 0.008 94

Population size −0.001 100

0.3
Coefficients 0.002 98

Population size −0.002 98

RW1 CS - FE

0.6
Coefficients 0.003 96

Population size −0.001 98

0.3
Coefficients −0.003 96

Population size −0.005 98

1. b)

DP MS - FE

0.6
Coefficients −0.787 2

Population size 8.928 0

0.3
Coefficients −0.590 4

Population size 4.417 0

RW1 MS - FE

0.6
Coefficients −0.745 4

Population size 6.066 2

0.3
Coefficients −0.502 12

Population size 3.347 4

DP MS - ME

0.6
Coefficients 0.036 94

Population size −0.005 98

0.3
Coefficients 0.011 90

Population size −0.019 90

RW1 MS - ME

0.6
Coefficients 0.046 98

Population size −0.004 100

0.3
Coefficients 0.043 96

Population size 0.013 92

2. a)

RW1 CS - FE

0.6
Coefficients 0.001 96

Population size −0.001 98

0.3
Fixed effects −0.006 96

Population size −0.001 98

2. b)

RW1 MS - ME

0.6
Coefficients

Population size −0.005 100

0.3
Coefficients

Population size 0.031 90
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Case 1

When the model for detection probability is correctly specified (a), both the DP and the RW1 models

perform well in terms of inference, with low median relative bias and high coverage for covariate

coefficients and population size. The DP mixture model has a low misclassification rate, on average

equal to 0.055 for both levels of detection. In addition, the standard deviation of the RW1 model

(σ ) is also estimated well with low relative bias (0.011,−0.035) and high coverage (0.98,1) at high

and low levels of detection respectively. Consequently, this scenario shows that both models for the

availability parameters perform well in terms of inference when the model for detection probability is

correctly specified.

However, when the model for detection probability is misspecified (b) and a fixed effects detection

model is used, estimation of population size is considerably positively biased with very poor coverage

in all cases. Similarly, covariate coefficients are estimated with high bias and low coverage and the DP

mixture model performs poorly, with a misclassification rate on average equal to (0.111,0.444) for

high and low detection probability, respectively. However, using a mixed effects model for detection

probability corrects for the misspecification and produces population size and covariate coefficient

estimates with negligible bias and high coverage. The DP mixture model also performs better, with

a misclassification rate on average equal to (0.055,0.111) for high and low detection probability,

respectively.

Case 2

Similarly, when the model for detection probability is correctly specified (a), BGLSS performs well in

identifying both significant (strong and weak) and non-significant effects with mean misclassification

rates of 0 across both levels of detection. As such, population size and covariate coefficients are

estimated well in all cases.

When the model for detection probability is misspecified (b) and a mixed effects detection model

is employed, BGLSS has, as expected, lower power to identify weak effects (β2 = 0.2) with average

misclassification rate (0.38,0.4) at high and low detection probability, respectively, but still high

power to identify strong effects with average misclassification rate 0 at both levels of detection. In
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addition, the power to identify non-significant variables also declines, with a mean misclassification

rate (0.1,0.06) at high and low detection levels respectively. However, importantly, inference on

population size is unaffected in all cases when mixed effects models for detection probability are

employed.

3.4 Case Studies

3.4.1 Ecuadorian Amazon Parrots

We consider roost count data collected as part of an ongoing conservation project for the Ecuadorian

Amazon parrot (Amazona lilacina) in Ecuador (Biddle et al., 2020, 2021a,b). Counts were obtained

from a single site close to the El Salado Mangrove Reserve, where parrots roost overnight, for 36

consecutive months between 2016 and 2019. Each year, surveys took place between November and

October, with surveys taking place on three to five days within each month, and two surveys being

performed each day, AM and PM. We assume that the population is closed within each month, but

open between months.

We model the data using the model defined in equation (3.2.1), fitting all models listed in Table

3.1 and use k-fold cross-validation to select the most appropriate model for the availability parameters.

In each case, we consider a mixed effects model for detection probability, and perform variable

selection via BGLSS, considering the following variables: median temperature, average relative

humidity, visibility, average wind speed, rain/drizzle, storm/thunder (taken from the Simon Bolivar

weather station approximately 14km from the roost site (https://www.tutiempo.net/clima/01-1999/ws-

842030.html), time of sampling (AM/PM), and weather recorded by the observer at the roost site

(clear, cloud, rain, sunshine). The prior distributions were set as described in the simulation study.

k-fold cross-validation was performed by splitting the data into monthly subsets (k = 36) and

using root mean square error (RMSE) to evaluate the predictive accuracy of the models considered

when leaving one month out at a time. RW1 was selected as the model with the lowest RMSE,

as seen in Table 3.4. RW1, RW2, and Cor are the top three models, having similar RMSE values.

Notably, all these models considered produced similar estimates of population size, BVS results, and

model fit. Consequently, we display the results obtained from the RW1 model in the paper, while the
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results obtained from the other models are presented in B.6.1 of the Supplementary material, with

the exception of the DP model clustering results, which are shown in Table 3.5 and discussed as they

provide us with new insights about the use of the roost throughout and across years.

Table 3.4 Ecuadorian Amazon parrots case study. Cross-validation results.

Model DP RW1 RW2 Cor AR1

RMSE 66.850 59.925 61.157 62.599 66.436

Fig 3.2a shows posterior summaries of the month-specific population sizes, N1, . . . ,N36, obtained

from the RW1 model. The pattern suggests two peaks in the year, January/February/March and

then June/July/August. The first peak, which is more consistent across years, could represent chicks

fledging and returning to the roost with the adults, while the second peak, which varies more between

years, could represent social gathering before the breeding season, giving opportunities for time to

create breeding pairs and highlighting the importance of these communal roosts for the formation of

new breeding pairs.

We assessed the fit of models using posterior predictive goodness of fit. For that, we define

monthly rate to be the sum of the counts obtained in a month divided by the number of surveys in that

particular month. Using MCMC samples, we simulated counts, and hence rates, from our models

and compared these to the observed rates. Fig 3.2b displays that the RW1 model fits the data well as

it produces similar monthly rates to the observed rates, with the true values falling within the 95%

posterior credible interval of simulated values and with no consistent pattern of bias observed.
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(b) GOF

Fig. 3.2 Ecuadorian Amazon parrots case study. (a) The black dots represent the posterior mean
population size for each month and the thick bands represent the corresponding 95% posterior credible
interval. (b) The diamonds are the observed monthly rates and the thick bands represent the 95%
intervals of simulated monthly rates. In both cases, the x-axis represents the months in each year with
months ending in 1, 2, and 3 denoting months in the 1st, 2nd, and 3rd year, respectively.

The results of the RW1 model are consistent with the clustering output of the DP model (Table

3.5), where two clusters of equal size (18) have been identified for each year. These correspond to

months with low (L) and months with high (H) availability probabilities, with the clustering pattern

fairly consistent across years and agreeing with the general trend identified by the RW1 model.

Locating and observing individual nests for this species can be difficult, and hence this clustering

pattern of the overall roosting population provides supportive evidence to reports of seasonal breeding

behaviour. The first peak corresponds with months when chicks fledge from nests (January / February

/ March) and so is likely to represent population recruitment, whilst the second peak in October

occurs just before breeding pairs start to nest together in the dry forest and could represent an increase

in attendance at the social roost to form or strengthen pair bonds. Due to the fluctuating nature of

this particular roost site, accounting for detection probability allows us to identify robust patterns

for ecological interpretation that would not be visible clearly in the raw data, helping conservation

managers to determine breeding phenology more broadly so that efforts can be more focused on

finding nest cavities and documenting breeding success at the right time of year. In other Amazon

parrot species roost attendance is also linked with food availability (i.e. in times of food scarcity,
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roost attendance is greater to allow information sharing) so it is also possible that fluctuating food

availability in this seasonal climate may drive high/low distinction.

Table 3.5 Ecuadorian Amazon parrots case study. Cluster allocations from the DP model.

Months

Year Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

1 L L H H H L L H L H L H

2 L L H H H L L L H L H H

3 L L H H L L H H H L L H

Baseline detection probability is fairly low (posterior mean = 0.365 with (0.261,0.460) 95%

posterior credible interval). Rain, storm, and time of sampling are identified as important predictors

for observation error with posterior inclusion probabilities (PIP): 0.562,0.613, and 0.691 respectively,

but all with 95% posterior credible intervals covering 0 (Table 3.6). Rain, storm, and surveying in PM

instead of AM have an estimated positive effect on the probability of detection. The presence of rain

and storm can force parrots to fly lower down in the sky and land close to the observation point to

gain shelter, increasing the probability of detection. Higher detection probability in PM than in AM is

possibly due to the character of final destination: in the PM parrots are flying to one communal roost

while in the AM parrots fly in multiple directions based on food dispersal and nest location, making it

more difficult to detect them.
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Table 3.6 Ecuadorian Amazon parrots case study. Posterior summaries of coefficients for the detection
probability model.

Coefficient Mean SD 95% PCI

Intercept −0.553 0.229 (−1.040, −0.159)

Median Temperature 0.006 0.028 (−0.039, 0.091)

Humidity 0.003 0.027 (−0.049, 0.076)

Visibility −0.001 0.026 (−0.067, 0.056)

Wind Speed −0.022 0.056 (−0.211, 0.029)

Rain 0.049 0.105 (−0.034, 0.355)

Storm 0.164 0.308 (−0.034, 1.050)

Time-PM 0.106 0.139 (−0.011, 0.438)

Weather-Cloud −0.011 0.045 (−0.144, 0.028)

Weather-Rain 0.000 0.045 (−0.078, 0.085)

Weather-Sunshine −0.001 0.043 (−0.087, 0.078)

3.4.2 Orange-Winged Amazon Parrots

We next consider roost count data from Orange-winged Amazon parrots (Amazona amazonica) in

Brazil. Counts were collected from a single site at an island near Belém, Pará between September

2004 and September 2005, with 96 surveys conducted (54 in the afternoon and 42 in the morning)

across 50 weeks. More details can be found in De Moura et al. (2010). We assume that the population

is closed within each week, but open between weeks. Therefore, in this case, the primary periods

correspond to weeks, and there are no top-level primary periods. Detection probability is modelled as

a function of the following categorical covariates: Cloud (cloudy, partially cloudy, no cloud), wind

(strong wind, medium wind, low wind), rain (yes, no) and time of sampling (AM or PM).

k-fold cross-validation, performed by leaving one week out at the time (k = 50), again selected

RW1 as the best model as seen in Table 3.7. We note that the Cor model is not an option in this case as

the data are collected in a single year, so we cannot model correlation between weeks across different

years. All models considered produced similar estimates of temporal population size, with a similar
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model fit. We display the results produced from the RW1 model in the main body of the paper, with

the results obtained from the other models in B.6.2 of the Supplementary material.

Table 3.7 Orange-winged Amazon parrots case study. Cross-validation results.

Model DP RW1 RW2 AR1

RMSE 1283.779 1267.940 1345.571 1277.701
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Fig. 3.3 Orange-winged Amazon parrots case study. (a) The black dots represent the posterior mean
population size each week and the thick bands represent the corresponding 95% posterior credible
interval. (b) The diamonds are the observed weekly rates and the thick bands represent the 95%
intervals of simulated weekly rates.

Fig 3.3a shows the posterior summaries of the temporal population size estimates obtained for

each week using the RW1 model. The primary factor influencing the fluctuation in population size

at the roosting site is the breeding season (De Moura et al., 2010). Consequently, the period of low

population size (weeks 1-31) is possibly when paired individuals leave the roost in search of a nest,

where they breed, nest, and rear young until the nestlings can fly. This long period of low population

size may be due to the asynchronous reproduction of Orange-winged Amazons. The period of high

population size (weeks 41-48) corresponds to the return of pairs with young, while the period of

medium population size (weeks 32-40 and 49-50) corresponds to the time when individuals start

returning with young (weeks 32-40) and when individuals start to disperse (weeks 49-50). Finally,

like the Ecuadorian Amazon parrots, we use posterior goodness of fit to assess model fit, defining
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weekly rate to be the sum of counts obtained in a week divided by the number of surveys in that

particular week. Fig 3.3b suggests that the RW1 model fits the data well as it produced similar weekly

rates to the observed rates for the majority of the weeks.

Baseline detection probability was estimated as high (posterior mean = 0.862 with (0.789,0.913)

95% posterior credible interval), possibly because in this case parrots were counted from a boat by

a minimum of three teams of two observers, each team oriented in a different direction. Predictors

cloud, rain and time were the only ones with PIP>0.5, but only marginally so (0.535,0.511,0.511,

respectively), and their coefficients are estimated close to 0. In this case, rain and surveying PM

instead of AM decreased the probability of detection (Table 3.8), and we discuss this result and

compare it to that obtained for the Ecuadorian Amazon parrots in Section 3.5.

Table 3.8 Orange-winged Amazon parrots case study. Posterior summaries of coefficients for detection
probability.

Coefficient Mean SD 95% PCI

Intercept 1.830 0.279 (1.320, 2.350)

Partially cloudy 0.007 0.049 (−0.061, 0.149)

Cloudy −0.019 0.071 (−0.268, 0.040)

Low wind 0.009 0.048 (−0.034, 0.176)

Strong wind 0.001 0.030 (−0.059, 0.074)

Rain-Yes −0.016 0.078 (−0.288, 0.046)

Time-PM −0.002 0.039 (−0.116, 0.096)

3.5 Discussion

Roost count surveys are widely used and, for certain populations, are the only viable monitoring

tool, as individuals may nest in elevated cavities in trees or cliffs that are difficult to find, reach, and

capture (Dénes et al., 2018). In this paper, we have developed a new modelling framework for roost

count survey data that accounts for observation error and TE, non-parametrically and parametrically

to provide key estimates of population size, information on TE trends, and predictors of detection
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via variable selection. All of these estimates can serve as fundamental tools in adaptive wildlife

monitoring, conservation, and management.

Moreover, we have performed an extensive simulation study to assess the performance of our

novel modelling framework under different scenarios. When the model for detection probability is

correctly specified, reliable estimates of population size and patterns of TE are obtained using both

the nonparametric and parametric approaches introduced in the paper, even when the probability of

detection is low. However, when the model for detection probability is misspecified, which is likely

to be the case in practice, our results demonstrate the importance of using a mixed effect model for

the probability of detection, so that the random effects part can absorb the lack of fit introduced by

omitting important predictors for observation error. Failure to employ a mixed-effects model, in this

case, gives rise to highly biased estimates of population size.

We applied our modelling framework to two case studies on parrots. We found substantially

different sizes of detection probabilities and variable effects on detection. The observation methods

and roost site characteristics for each parrot species can explain in part these differences. Detection

probability was much higher for the Orange-winged amazons, which were counted by a team of six

people from a boat directly under the flight path between the mainland and an island roost, vastly

reducing the chance of missing individuals. Detection however was lower for the Ecuadorian Amazon

parrots, which were counted by two people from an observation tower on the mainland, where birds fly

over and amongst buildings and human development to patches of scattered mangroves interspersed

with aquaculture. Detection probability was higher for the Ecuadorian Amazon parrots when surveyed

in the afternoon, whereas for the Orange-winged amazons, they were marginally more detectable

during morning surveys. This again corresponds to the observation methods and direction of travel

associated with the AM and PM surveys - with both cases showing higher detection probability when

observers are at closest proximity to the roost i.e. on the observation tower when birds are departing

from the mainland dry forest (Ecuadorian amazon parrots), on the boat when birds are departing

from the mangrove roost (Orange-winged amazons). The effect of rain also differed, increasing the

detection probability for the Ecuadorian Amazon parrots but decreasing it for the Orange-winged

Amazon parrots. This can be attributed to the differing flight path birds have to make, with a 1km

flight over a water body not possible in the rain (orange-winged Amazon parrots), thus lowering
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detection probability, whereas a shorter flight that can be taken lower down and in shorter stages by

landing on trees on the edge of the town close to the observation tower (Ecuadorian Amazon parrots)

making birds more detectable.

Similarly, we identified differences in phenology between the two species, with the roost use

pattern of Ecuadorian Amazon parrots being described by a two-mixture model, whereas that of

Orange-winged Amazon parrots by a three-mixture model, when the DP approach is used to describe

TE. This can be due to different levels of population and habitat fragmentation. There was a large

difference in the population size between the two species, with the Ecuadorian Amazon parrots being

just a few hundred birds, whilst the Orange-winged Amazon parrots population consists of over ten

thousand birds. The Ecuadorian Amazon parrots have faced a 60 percent population decline at this

roost site in the past two decades, in part attributed to habitat fragmentation, with the feeding, nesting,

and roosting areas now occurring amongst a highly transformed landscape on the edges of a large city,

vastly different to the relatively undisturbed roosting habitat of the Orange-winged Amazon parrots.

We have demonstrated our new modelling framework on parrot data, but bats and other species

are also routinely monitored in the same way. The model can be readily fitted to such data and can be

extended to account for data from multiple sites, when these are available, and to account for spatial

correlation between sites. Spatial models such as the ICAR and the Besag, York and Mollié (BYM)

model (Besag et al., 1991) can be considered to account for spatial correlation.

Variable selection on detection probability via BGLSS performed well when the model is correctly

specified or when misspecified and a mixed effect model is used for detection. BGLSS had lower

power to identify weaker effects when using a mixed effect model for observation error. Additionally,

BGLSS can only identify significant categorical covariates not significant levels of categorical

variables. We also considered Bayesian Sparse Group selection (BSGS). BSGS developed by Chen

et al. (2016) enables variable selection of both continuous and categorical variables. It has the

advantage of identifying both significant categorical covariates and their relative levels. However,

results shown in B.3 of the Supplementary material suggest that BGLSS generally outperforms BSGS.

Performance of other BVS methods such as the variable selection method of Griffin et al. (2020) can

also be investigated in this scenario. Thus, future work can be focused on investigating/improving

BVS methods when using a mixed-effect model.
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The Beta DP mixture model in this framework enables our model to perform clustering of primary

periods independently for top-level primary periods, and hence treats the observations as being from

one long time series, with clusters, as a result, independent across top-level primary periods. An

alternative would be to implement a hierarchical Dirichlet process (HDP) model (Teh et al., 2004),

which allows clusters with the same locations but potentially different weights to be identified across

top-level primary periods, providing a natural way to capture dependence between top-level primary

periods.

Another direction of future work is model selection. The proposed options for modelling the

availability patterns define different, competing models (Table 3.1), for the TE pattern, each with

its own advantages. We use the well-established approach of cross-validation to select between

competing models. However, cross-validation can be computationally intensive as it requires fitting

the model multiple times. Other model selection methods such as the Watanabe-Akaike information

criterion (WAIC) (Watanabe and Opper, 2010) only require fitting the model once and can be easily

computed using popular software, such as NIMBLE and Stan (Carpenter et al., 2017). Notably, WAIC

computation relies on the independence assumption of data given the parameters. This assumption

is often violated in temporal models where dependence among the data is a key modelling feature.

Hence, future work can be focused on investigating/developing efficient model selection methods for

temporally correlated data.





Chapter 4

Modelling disease dynamics from

spatially explicit capture-recapture data





Abstract

One of the main aims of wildlife disease ecology is to identify how disease dynamics vary over

space and time and as a function of population density. However, monitoring spatio-temporal and

density-dependent disease dynamics in the wild is challenging because the number of individuals,

their disease status and their spatial locations are unobservable, or only imperfectly observed. In

this paper, we develop a novel spatially explicit capture-recapture (SCR) model motivated by an

SCR data set on European badgers (Meles Meles), naturally infected with bovine tuberculosis (bTB).

Our model accounts for the observation process of individuals as a function of their latent activity

centres, and for their imperfectly observed disease state and its effect on demographic rates and

behaviour. This framework has the advantage of simultaneously modelling population demographics

and disease dynamics within a spatial context. It can therefore give estimates of critical parameters

such as population size; local and global density by disease status and hence spatially-explicit disease

prevalence; disease transmission probabilities as functions of density; and demographic rates as

functions of disease status. Our findings for the badger population suggest that infected individuals

have a lower survival probability but a wider home range than uninfected individuals, whereas we

find no clear evidence of density-dependence in disease transmission. We also present an extensive

simulation study, considering different scenarios of disease transmission within the population, and

our findings highlight the importance of accounting for spatial variation in disease transmission and

individual disease or general disease states when these affect demographic rates. Therefore, our

new model enables a better understanding of how wildlife disease dynamics are linked to population

demographics within a spatio-temporal context.
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4.1 Introduction

Linking host population and disease dynamics is a key aim of wildlife disease ecology. Infectious

disease can directly influence host population density through impacts on demographic vital rates

(Manlove et al., 2016; McCallum et al., 2007; Vredenburg et al., 2010), but in turn disease dynamics

can also vary over space and time and with population density. Quantifying how pathogen transmission

varies with population density is important because of its implication for the conservation and

management of wildlife populations (McCallum, 2016; Silk et al., 2019). For example, pathogen

transmission can vary across a continuum from being greater at higher population densities (density-

dependent) to independent of population density (frequency-dependent) (Hopkins et al., 2020).

Pathogens with density-dependent transmission are unlikely to drive their hosts to extinction, while

this is not true when transmission is instead frequency-dependent (De Castro and Bolker, 2005;

McCallum, 2012)).

Despite the value of information on the relationship between infection dynamics, demographic

rates, and population density, we still lack detailed knowledge of wildlife populations due to two

main challenges in this context. Challenge I is the difficulty of estimating population size, and hence

population density, and demographic rates of wild populations where not every individual is captured

or known about at different points in time. Challenge II is associated with the study of incidence and

prevalence of infectious disease in a host population, often in situations where diagnostic tests vary in

their sensitivity and specificity (Choquet et al., 2013; Drewe et al., 2010; Enøe et al., 2000).

Capture-recapture (CR) models have been one of the main tools developed to deal with Challenge

I. Traditional capture-recapture (CR) models essentially represent “fish bowl” sampling, that is, a

system that is unconnected to the spatial structure of the population. These models do not account

for the spatial nature of sampling nor the spatial distribution of individuals (Royle et al., 2018).

Consequently, they do not allow for study of many vital spatial processes of the population, such as

density, movement and dispersal of individuals. This weakness of CR models has been overcome by

the development of spatially-explicit capture-recapture (SCR) models (Borchers and Efford, 2008;

Efford, 2004). SCR models are hierarchical models that consider the collection of individuals in a
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population as a latent point process of where an individual moves (home range), which is centred on

their individual activity centre (AC), distributed within some region of interest.

In SCR data, individual ACs are unknown, and thus are considered latent variables in correspond-

ing models. SCR models can be fitted in a classical framework, where the ACs are marginalised from

the likelihood by integration (Borchers and Efford, 2008), or in a Bayesian framework, where the ACs

are explicitly estimated along with other unknown parameters and random variables using Markov

chain Monte Carlo (MCMC) methods (Royle and Young, 2008). Once inferred, the ACs can be used

to estimate spatial population processes such as density, which is the number of ACs per unit area

of the region of interest. Additionally, conditional on the latent ACs, the probability of observing or

encountering an individual is modelled as a function of the distance between the individual’s AC and

the location of each trap. Consequently, SCR models take into consideration the spatial nature of

sampling as well as spatial distribution of individual ACs to allow for the study of spatial population

processes, which is arguably equally important to the study of demographic population rates, with the

formal link between state model and observational model allowing for better inference on the former

and more robust accommodation of the latter (Sutherland et al., 2019).

However, existing SCR models do not currently deal with Challenge II, and hence do not account

for additional data targeting disease status that are collected on each captured individual when aiming

to study disease dynamics. These data can be in the form of individual measurements or of test results,

and are typically also prone to error, and hence are only an imperfect observation of an individual’s

status. Additionally, as is always the case in CR data, these individual-level measurements are only

available when individuals are caught on a particular occasion, and are missing for all others.

In this paper, we develop a novel SCR model that accounts for the observation process of

individuals, tackling Challenge I, as well as their imperfectly observed disease status, hence also

tackling Challenge II. Our new modelling framework allows the simultaneous modelling of population

demographics and disease dynamics within a spatiotemporal context. This makes it possible to

simultaneously test hypotheses related to spatial and density-related variation in disease transmission

alongside examining variation in survival and individual detection probabilities as a function of

individual (latent) disease state.
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We perform an extensive simulation study to assess model performance for a number of scenarios.

Our results demonstrate the quality of inference in our proposed model, but also reveal the require-

ments in terms of data size and effect size to have sufficient power to identify density-dependence

in disease transmission. We highlight that, when demographic rates are dependent upon individual

disease status, existing SCR models, which do not account for that dependence, yield substantially

biased estimates of population density.

When fitted to a motivating case study of European badgers (Meles meles), naturally infected with

bovine tuberculosis (bTB) at Woodchester Park in Gloucestershire, UK (Delahay et al., 2013; McDon-

ald et al., 2018), our findings highlight that infected individuals have a lower survival probability, but

a larger home range. We also infer that population size has been steadily decreasing in recent years

but that disease prevalence has remained constant, finding no clear evidence of density-dependence in

disease trasmission in the population during this recent period.

The paper is structured as follows: in Section 4.2 we describe the case study that motivated the

work in this paper, in Section 4.3 we introduce the new model and discuss our inference approach,

while Sections 4.4 and 4.5 present simulation and case study results, respectively. Section 4.6 discusses

the results from our simulations and case study in the context of wildlife disease ecology, and suggests

directions for future work.

4.2 Data Collection and Processing

The Woodchester Park study area is located on the Cotswold limestone escarpment in Gloucestershire,

South-west England. Approximately 7 km2 of its area has been used to monitor badgers in a consistent

manner since 1981 (Rogers et al., 1998). The majority of this study area comprises of mixed woodland,

grassland and arable farmland (Delahay et al., 2006). Badger population density at Woodchester Park

is particularly high (McDonald et al., 2018) and main badger setts are relatively regularly spaced

throughout the study area.

The badger population is monitored by CR sampling, which enables demographic and epidemio-

logical data collection on the resident badger population. To enable consistent trapping, the study area

has been divided into three zones of approximately equal size, and each zone is trapped four times
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each year from May to January. Trapping is suspended each year in the spring, February to April

inclusive, to avoid catching dependent cubs that cannot be left underground for protracted periods

(Woodroffe et al., 2006). To determine which setts are active and how many traps to deploy, a sett

activity survey is conducted in each zone before each trapping event. More traps than that which are

likely to be needed (i.e. saturation trapping) are used as a general guideline for the number of traps

deployed per sett.

Box traps constructed of steel mesh with spring-loaded doors are used as traps. They are dug

into the substrate close to each active sett and baited with peanuts for four to eight days to habituate

badgers to their presence (Rogers et al., 1997). On the last day of baiting, the traps are set for two

consecutive nights and each trap is checked on the following morning. Once captured, newly caught

badgers are permanently marked with a unique ID tattoo on the abdomen (Cheeseman et al., 1982).

Once captured, three tests are currently used to test for bovine tuberculosis (bTB): interferon-

gamma immunoassay (Ifn, Dalley et al., 2008), used since 2006 to detect a cell-mediated immune

response, Dual Path Platform test (DPP®, Chembio.inc), used since 2015 to test for antibodies and

M. bovis culture (Cul, Gallagher and Horwill, 1977) used since 1976. Ifn and DPP® use blood

samples whilst Cul use samples of sputum, feces, urine, and swabs of abscesses and wounds. Each

test is imperfect, resulting in false positive and false negative errors, making it difficult to infer an

individual’s disease state from the tests alone (Ashford et al., 2020; Drewe et al., 2010).

Following examination and disease diagnostic testing, badgers caught during the first night of

trapping are held overnight and released the following morning. This prevents badgers from being

re-captured on the second trapping night. Badgers caught during the second night are released the

following day. Badgers are released where captured, following a period of recovery and following

approval by the Named Animal Care and Welfare Officer (NACWO), Named Veterinary Surgeon

(NVS), or another experienced person with delegated authority.

4.3 Model

SCR models assume that a population of i = 1, . . . ,Nt individuals are monitored at t = 1, . . . ,T

sampling occasions and j = 1, . . . ,J sampling locations, and each individual has an associated spatial
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location within a spatial domain (S), representing its AC si,t = [si,t,x,si,t,y]. The collection of ACs can

be thought of as a statistical spatial point pattern that describes how individuals are distributed within

S. This statistical point process is often referred to as the state model. Here, we define our model in a

Bayesian framework using data augmentation (DA, Royle and Dorazio, 2012) and let i = 1, . . . ,M

be “pseudo-individuals” that potentially could belong to Nt . In what follows, i = 1, . . . ,M indexes

individuals, t = 1, . . . ,T sampling occasions and j = 1 . . . ,J sampling locations.

Our model has two key latent states: presence, zi,t , and disease status, di,t , defined as

zi,t =


1 alive

0 unrecruited/dead

di,t |zi,t=1 =


1 infected and alive

0 uninfected and alive.

We assume that individual ACs do not change over time by modelling

sit = si ∼ Uniform(S) ∀i, t

Naturally, observation yi, j,t (equal to 1 if individual i was caught on sampling occasion t and

sampling location j and 0 otherwise) depends on the corresponding presence state and AC

yi, j,t |zi,t ∼ Bernoulli(p(x j,si)zi,t)

where here p(x j,si), which corresponds to the probability that individual i is caught on sampling

occasion t and sampling location j, conditional on being present, is modelled by the half-normal

function (Efford, 2004)

p(x j,si) = p0di,t
exp

(
− 1

2σ2
di,t

∥ x j − si ∥2
)
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where p0di,t
is the baseline encounter probability and σdi,t represents the rate at which detection

probability declines as Euclidean distance from the AC increases. We model both of these parameters

dependent on the individual disease status at occasion t, allowing disease status to potentially affect

behaviour in terms of space use.

Finally, we model the result of test Q, ω
Q
i,t , for individual i on occasion t, conditional on their

disease status, as a Bernoulli(ωQ
i,t) random variable, with

ω
Q
i,t |di,t =


1−qQ

00, di,t = 0

qQ
11, di,t = 1

where we refer to the probability of a true positive result by test Q as qQ
11 (sensitivity of test Q)

and to the corresponding probability of a true negative result as qQ
00 (specificity of test Q), and

Q ∈ {DPP®, Ifn,Cul}. Following Buzdugan et al. (2017), we assume independence between tests and

hence define the joint distribution of the three test results as the product of the marginal Bernoulli

distributions. The sensitivity and specificity of each test are inferred parameters, thus, enabling the

diagnostic accuracy of each test to be evaluated. This formulation accounts for imperfect tests and

enables a higher diagnostic accuracy than single test use (Drewe et al., 2010).

We model the transition between latent states accordingly, so that at t = 1

zi,1 ∼ Bernoulli(γ1)

di,1|zi,1 ∼ Bernoulli(zi,1δI)

where γ1 is the recruitment probability that a “pseudo-individual” is in the population at the start of

the study and δI is the probability of being infected at the start of the study. For t ≥ 2,

zi,t ∼ Bernoulli(φdi,t−1zi,t−1 + γtαi,t)

di,t ∼ Bernoulli(zi,t [di,t−1 +{(1−di,t−1)ψi,t−1}])

where φdi,t−1 is the probability of survival from occasion t −1 to t conditional on disease status on

occasion t −1 for individual i, ψi,t is the disease transmission probability, that is the probability that
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an individual that is uninfected on occasion t −1 becomes infected by occasion t, γt is the recruitment

probability that a “pseudo-individual” is first recruited, and hence is first available for capture, on

occasion t and αi,t is a latent indicator variable of whether an individual is available to be recruited

or not on occasion t. We define αi,t =
(

1− I
(

∑
t−1
t=1(zi,t) > 0

))
such that αi,t = 1 if individual i is

available to be recruited on occasion t, αi,t = 0 otherwise to ensure an individual can only be recruited

once.

We note that, clearly, only individuals that are alive and uninfected can become infected and, as is

the case in our motivating data, once infected, individuals cannot become uninfected. To investigate

the relationship between density and disease transmission, we model ψi,t as a function of population

density on each occasion. We discretize the study space using a grid, and create R non-overlapping

habitat cells. We denote the cell in which individual AC i falls by ci, with ci ∈ {1, . . . ,R}. Local

density of grid cell r, r = 1, . . . ,R, on occasion t is defined as ℓr,t = ∑
M
i=1 I(zi,t = 1,ci = r), where

I(zi,t = 1,ci = r) is an indicator variable equal to 1 if individual i is alive and its AC falls within cell r,

and 0 otherwise. Thus, we build a logistic regression model for the probability of disease transmission

logit(ψi,t) = β0 +β1ℓci,t (4.3.1)

such that an uninfected individual can become infected due to its local density (ℓci,t) at the individual

AC location in its habitat cell. The coefficient, β1 determines the direction and size of the effect of

local density on disease transition probability.

Finally, population size on occasion t, Nt , can be estimated as Nt = ∑i zi,t and population density

on occasion t, Dt , as Dt = Nt/area(S), while the corresponding sizes of the infected population (Ni
t )

and of the uninfected population (Nu
t ) can be estimated as Ni

t = ∑i zi,tdi,t and Nu
t = ∑i zi,t(1− di,t),

respectively. Hence, disease prevalence (Di
t) can be estimated as Di

t = Ni
t/Nt . Density estimates for

infected/uninfected individuals can be easily computed as well as realized disease density maps.

We fit models in a Bayesian framework using MCMC methods via R package NIMBLE (de Valpine

et al., 2017) version 0.13.0. Additionally, to increase the computational efficiency of using a Bayesian

implementation via DA, we skip unnecessary calculations, vectorized computation and performed

block sampling on correlation parameters (Turek et al., 2021) when appropriate. We employ user-
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defined NIMBLE functions to reduce the total number of nodes in the model and improve MCMC

efficiency. We use the R package nimbleSCR (Bischof et al., 2020) version 0.2.1 to create habitat

grids and for the computation of local density. To improve convergence and mixing, we use a coarse

habitat grid to provide the model with a large number of latent density points to serve as a covariate

on disease transmission probability. We also center latent density to improve computation by reducing

the correlation between the intercept and fixed effect. Random walk block samplers are assigned to

(qDPP ®

11 ,qIfn
11 ,q

Cul
11 ), (qDPP ®

00 ,qIfn
00 ,q

Cul
00 ) and (p0di ,σdi) to improve MCMC efficiency.

4.4 Simulation Study

We performed a simulation study to assess the performance of the proposed modelling framework in

estimating population density and all other model parameters, as well as the impact on estimation when

the effect of (local) population density on transmission probability is ignored and, more importantly,

when density dependent disease transmission, disease status and its effect on other model parameters

are ignored altogether.

We refer to our proposed model as M(ψℓ), to the model that does not account for density-

dependence in ψ as model M(ψ0) and to the standard open SCR model that does not account for

density dependence and disease status as model M(SRC0).

We investigate model performance at both high and low population levels, M = (1000,500), given

high and low density effects on disease transmission, β1 = (0.25,0.1). We set T = 8 and the rest

of the parameter values are set as: φdi=0 = 0.9, φdi=1 = 0.8, γ1 = 0.4, γ2 = γ2:4 = 0.1, γ3 = γ5 = 0.2,

γ4 = γ6:T = 0.15, p0di=0 = 0.5, p0di=1 = 0.2, σdi=0 = 0.5, σdi=1 = 1, δI = 0.15, β0 = −2.5, qDPP
11 =

0.492,qIfn
11 = 0.809,qCul

11 = 0.1,qDPP
00 = 0.931,qIfn

00 = 0.936 and qCul
00 = 0.999. This setting results in

mean(N1:T)≈ (400,200) for high and low density, respectively.

We use an 11×11 habitat grid in which we center a 7×7 trapping grid resulting in a buffer width

of 2 distance units. For each case, we perform 10 simulation runs and use relative bias
(
RB = θ̄−θ

θ

)
to

measure relative error and coefficient of variation
(
CV = SD(θ̂)

|θ̄ |
)

to measure relative precision, where

θ is the true parameter value, θ̄ is the mean and SD(θ̂) is the standard deviation of the posterior

distribution obtained, across the 10 runs.
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From Tables C.1 and C.2 in the Supplementary material and Fig. 4.1, we can see that our

proposed modelling approach performs well in estimating all demographic and disease-dynamics

related parameters. Estimation of the density effect (β1) is possible but is more challenging than of

other parameters, as also reported by Milleret et al. (2023). As expected, the quality of inference is

best in larger populations and when density effects are high. When the population size is low and/or

the true value of β1 is low, estimation of β1 is computationally challenging, requiring more MCMC

samples to reach convergence and to obtain sufficient effective sample sizes. Consequently, this

simulation study demonstrates our model’s ability to simultaneously model population demographics

and disease dynamics within a spatio-temporal context.
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Fig. 4.1 Violin plots of RB, (a), and CV, (b), for β1 when using our proposed model, M(ψℓ). Dots
represent the median in each case.

From Figs. 4.2 and 4.3, it can be seen that the M(SCR0) model underestimates population size

for the first half of the study period, but tends to overestimate it at the end in all cases. This result

highlights the need to account for the spatial variation in disease transmission and the disease status

of individuals when that is linked to demographic parameters and/or space use. All three models had

similar CV for N. The M(ψ0) model shows a small RB for N in some cases, but overall has a similar

performance to model M(ψℓ). As shown in the Supplementary material Fig. C.1, we simulated the

density values, which serve as the latent covariate in model M(ψℓ), using a realistic scenario of small

and gradual changes over time, with activity centres simulated from a homogeneous Poisson process,

as is the standard assumption of SCR models, including the one in this paper. As a result, especially
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when the true value for β1 is low, density does not vary dramatically between sampling occasions or

between grid cells, and hence, ignoring its effect in the M(ψ0) model does not lead to substantial bias

in the estimation of N.
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Fig. 4.2 RB and CV of population size, N, at high population size data (N ≈ 400), high and low
density effect levels (β1 = 0.25, and β1 = 0.1, respectively) for three models: our proposed model,
M(ψℓ), the model that does not account for density-dependence in disease transmission, M(ψ0) and
the model that does not account for disease status, M(SCR0).
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Fig. 4.3 RB and CV of population size, N, at low population size data (N ≈ 200), high and low density
effect levels (β1 = 0.25, and β1 = 0.1, respectively) for three models: our proposed model, M(ψℓ),
the model that does not account for density-dependence in disease transmission, M(ψ0) and the model
that does not account for disease status, M(SCR0).
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4.5 Case Study

We analyse SCR data from the badger case study from 2014-2018 using the modelling framework

defined in Section 4.3. These years were selected as they correspond to a period when the population

was undisturbed by management interventions and the types of tests for TB employed did not change,

as opposed to the pre-2014 years where different tests were employed and the post-2018 years where

management interventions started to take place in the surrounding area. We use an 11×8 habitat grid

in which we place a 7×7 trapping grid. Prior settings are provided in C.2.2 of the Supplementary

material where informative priors for the sensitivity and specificity of each test were used by taking

information from Drewe et al. (2010) and Ashford et al. (2020).

Table 4.1 displays some of the posterior estimates obtained. Caterpillar plots of these parameter

posterior summaries are also shown in C.2.3 of the Supplementary material. All parameters converged

according to Gelman and Rubin’s convergence diagnostic (Gelman and Rubin, 1992), displayed good

mixing, and had effective sample size (ESS) ≥ 500, with the exception of the coefficients in the model

for disease transmission (ESS ≈ 100).

Our results indicate that during the study period (2014-2018) the Woodchester badger population

was in decline (Fig. 4.4a), with both the number of uninfected (Fig. 4.4b) and infected individuals

(Fig. 4.4c) decreasing over the course of the study. Disease prevalence during this period remained

relatively stable, albeit with some weak evidence for a decline from approximately 20% to closer to

15% (Fig. 4.4d).

Model results also confirmed known differences between infected and uninfected badgers in

their behaviour and survival. There was a significant difference between baseline detection and scale

parameter for uninfected and infected individuals as shown in Table 4.1. That is, infected individuals

are less likely to be caught at their activity center and have a larger home range area than uninfected

individuals. Specifically, assuming a circular home range area, the effective home range area for an

uninfected badger was found to be 0.334 km2 ( 95% PCI : (0.297 km2,0.377 km2)) while the effective

home range area for an infected badger was found to be 1.586 km2 ( 95% PCI : (1.234 km2,2.08 km2)).

Infected individuals also had a lower survival probability (φ ) than uninfected individuals (Table 4.1),

with the lack of overlap of the 95% PCIs indicating that these differences are statistically significant.
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Table 4.1 Case study. Posterior summaries of model parameters.

Parameters Mean St.Dev 95% PCI
γ1 0.329 0.028 (0.274,0.384)
γ2 0.011 0.008 (0.001,0.031)
γ3 0.115 0.029 (0.062,0.173)
γ4 0.006 0.005 (0.002,0.020)
γ5 0.066 0.027 (0.020,0.123)
γ6 0.030 0.013 (0.009,0.057)
γ7 0.134 0.037 (0.069,0.217)
γ8 0.010 0.009 (0.002,0.035)

φdi=0 0.901 0.012 (0.877,0.925)
φdi=1 0.811 0.029 (0.754,0.867)

p0di=0 0.782 0.048 (0.693,0.878)
p0di=1 0.185 0.029 (0.134,0.248)
σdi=0 0.267 0.008 (0.251,0.283)
σdi=1 0.581 0.038 (0.512,0.664)

δ 0.210 0.043 (0.134,0.298)
β0 −3.712 0.573 (−5.474,−2.925)
β1 0.065 0.195 (−0.286,0.508)

qDPP
11 0.520 0.026 (0.471,0.573)

qIfn
11 0.656 0.038 (0.587,0.730)

qCul
11 0.182 0.031 (0.126,0.243)

qDPP
00 0.978 0.007 (0.961,0.990)

qIfn
00 0.907 0.013 (0.879,0.931)

qCul
00 0.991 0.005 (0.978,0.998)

Overall, the survival probability of infected individuals was approximately 10% lower than uninfected

individuals, albeit with more error around this estimate - potentially caused by the smaller sample

size of infected individuals or greater variability in their survival. The sensitivity (q11) and specificity

(q00) estimates of each test also provide valuable information on test performance. Specifically, Cul

was found to have low sensitivity (18.2%) but had the best specificity (99.1%), Ifn showed the best

sensitivity (65.6%) and good specificity (90.7%), and DPP had good sensitivity (52.0%) and very

high specificity (97.8%). These estimates are similar to those obtained by Ashford et al. (2020) for

DPP and Drewe et al. (2010) for Ifn and Cul and reflect known differences in the performance and
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purposes of the tests used (e.g. Ifn detecting an initial response to infection while Cul only detects

only infectious individuals).

Fig. 4.5 displays the population density maps for infected and uninfected individuals across

years at the first sampling occasion (spring). These plots are standardized across years with the black

dots representing the setts trapped. These outputs reveal spatio-temporal variation in the density of

uninfected and infected individuals across the population. High densities of infected badgers were

concentrated in the central (and northern) and western area of the study site at the start of our study

period, becoming more diffuse over time. The eastern parts of the study site maintained consistently

higher densities of uninfected badgers throughout the period.

Finally, density is estimated to have a weak positive effect on the probability of disease trans-

mission that is not clearly different from zero (wide 95% PCI that includes 0). Naively this could be

interpreted as transmission being independent of local population density during our study period.

However, as discussed in Section 4.4, density is a latent variable with an unknown effect, and hence

the power to detect small effects relies heavily on the number of sampling occasions and the number

of individuals. Consequently, for now we can interpret this finding as indicating that strong density-

dependence of transmission is highly unlikely, but that transmission could instead either be weakly

density-dependent or close to frequency-dependent.



84 Modelling disease dynamics from spatially explicit capture-recapture data

150

200

250

300

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16
 

H
P

D

 

(a) Total population size

100

150

200

250

Nu
1 N u

2 N u
3 N u

4 Nu
5 Nu

6 Nu
7 N u

8 Nu
9 Nu

10 Nu
11 Nu

12 Nu
13 Nu

14 Nu
15 Nu

16
 

H
P

D

 

(b) Population size of uninfected individuals

20

40

60

80

Ni
1 N i

2 N i
3 N i

4 Ni
5 Ni

6 Ni
7 N i

8 Ni
9 Ni

10 Ni
11 Ni

12 Ni
13 Ni

14 Ni
15 Ni

16
 

H
P

D

 

(c) Population size of infected individuals

0.10

0.15

0.20

0.25

Di
1 Di

2 D i
3 D i

4 Di
5 Di

6 Di
7 D i

8 Di
9 Di

10 Di
11 Di

12 Di
13 Di

14 Di
15 Di

16
 

H
P

D

 

(d) Disease prevalence

Fig. 4.4 Caterpillar plots of posterior samples of total (a), uninfected, (b), infected, (c) population
size and, (d), disease prevalence at each sampling occasion. The black dot in each case represents the
posterior mean and the bands represent the 95% posterior credible interval.
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Fig. 4.5 Standardized Density maps for infected, (a), and uninfected, (b), individuals across years in
Spring each year. Black dots represent the setts trapped and higher level values indicate higher density
and vice-versa.
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4.6 Discussion

We have developed a novel SCR model that uses disease data from multiple imperfect tests together

with SCR data to simultaneously model population demographics and disease dynamics within a

spatiotemporal context. Accounting for observation error in both the individual detection process

and the disease testing process, our modelling approach accounts for spatial variation in survival and

individual detection probabilities as a function of individual (latent) disease state as well as variation

in disease transmission as a function of population density. This allows for a better understanding of

disease dynamics related to population demographics in a spatiotemporal context at the individual

level.

We also conducted an extensive simulation study to assess model performance for a number of

scenarios. Our simulations generated encouraging results for our modelling approach and highlighted

that, if spatial variation in disease transmission and heterogeneity in demographic rates (detection and

survival) induced by individual disease status are not accounted for, biased estimates of population

density can be produced. Notably, there are existing models that use finite mixtures to model

heterogeneity in these demographic rates (Pledger et al., 2010). We have not considered these models

but it is likely that such models might return similar inference on population density to our proposed

model. However, such models do not provide information on density-dependent disease transmission

and information on individual disease status effect on such demographic parameters.

Applying this new model to a dataset on European badgers, naturally infected with bTB, our

model provided novel insights into badger-bTB ecology with broader implications for wildlife disease

ecology in general. Our model results agreed closely with previous findings from the Woodchester

Park study system. Estimates of population size align with those from the long-term study (Delahay

et al., 2013; McDonald et al., 2018) and support the idea that the population has recently declined.

Our estimate of home range area for individual badgers is also similar to previous studies from

Woodchester Park (Tuyttens et al., 2000). Finally, our estimates of disease prevalence and incidence,

as well as disease-associated changes in survival are similar to those found in previous work in this

study population (prevalence: Delahay et al. (2013); incidence and changes in survival: Graham et al.
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(2013). However, the approach considered in this paper is the first to simultaneously model all these

processes from the available SCR data.

By separately estimating the density of uninfected and infected badgers in the population, our SCR

approach provides an intuitive approach to analyse spatiotemporal variation in bTB epidemiology in

the population while accounting for uncertainty generated from the use of capture-recapture data (i.e.

imperfect detection of badgers) and limitations in diagnostic testing data (i.e. imperfect knowledge of

disease state). The local density maps generated (Fig. 4.5) can provide a useful tool for stakeholders

keen on identifying hotspots of disease (i.e. areas with a high prevalence of infected individuals)

or guiding surveillance (e.g. by revealing areas with rapidly increasing or decreasing prevalence).

Consequently, our study highlights the value of integrating disease status within an SCR framework

for applied disease ecology more generally.

Another key advantage of our modelling framework is that by using longitudinal diagnostic test

results to infer the (unobservable) disease status of an individual we are able to gain insight into how

the movement of individuals changes on infection. Specifically, we showed that infected badgers

ranged over larger areas than uninfected badgers. Previous research has detected a tendency for

test-positive individuals (i.e. those likely to be infected) to make greater use of outlying setts (Weber

et al., 2013a) and more between-group contacts (Silk et al., 2018; Weber et al., 2013b), which are both

traits expected to be linked with greater ranging behaviour. The tendency for infected badgers to start

ranging further likely has important implications for the epidemiology of the badger-Mycobacterium

bovis host-pathogen system. Due to the modular nature of badger contact networks (Rozins et al.,

2018) movements between groups offer important opportunities for transmission between groups that

enable wider pathogen spread. Therefore, changes in the behaviour of infected badgers could play an

important role in the longer-term persistence of the disease. Previous research in the Woodchester

system has revealed a positive association between new individuals arriving in a group and the

incidence of disease (Vicente et al., 2007). Infected badgers ranging over larger areas than uninfected

badgers which is larger than typically social group territory size would provide a mechanism to

explain these findings; it is disproportionately likely that an individual moving between groups is

infected relative to the overall population.
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Our results also indicate no clear relationship between local population density and the incidence

of infection in the Woodchester Park badger population. Historically, many infections spread by (non-

sexual) close contact were assumed to display density-dependent (as opposed to frequency-dependent)

transmission, and this principle of density-dependence underlies multiple interventions in wildlife

disease management (McCallum, 2016). More recently, studies have more commonly considered

a continuum between frequency-dependent and density-dependent transmission driven by changes

in individual behaviour (Hopkins et al., 2020). For example, this result suggested that it may be

best to consider the transmission of many infectious diseases including tuberculosis to be a function

of population density at low population densities (i.e. density-dependent) but independent of it (i.e.

frequency-dependent) at high population densities (Hu et al., 2013). Our results fit nicely with this

general pattern given that the Woodchester Park badger population is high density compared with

badger populations in other areas. At this population scale, it is likely that the social structure of

the population plays an important role and it would be valuable for future research to focus on this

question at finer social and spatial scales.

The choice of grid size is a crucial factor in this modelling framework as it can impact accuracy

and computational efficiency. A smaller grid size provides finer resolution, capturing intricate details

and small-scale patterns in density. However, using a smaller grid size comes at the cost of increased

computational complexity and memory requirements. On the other hand, a larger grid size provides

a coarser resolution that can overlook smaller-scale patterns but reduces the computational burden.

Thus, it is important to strike a balance between accuracy and computational efficiency when selecting

grid size. To achieve this, a sensitivity analysis can be carried out. Varying the grid size helps

determine the most appropriate grid size and also helps ensure that the chosen grid size does not

unduly influence the results, while at the same time since disease transmission is dependent on latent

density, the grid size needs to be chosen such that there are adequate latent density points to serve as a

covariate on disease transmission.

One caveat to our model is that we assumed individual activity centres are independent and

do not change over the period of study. This is due to limited badger movement as highlighted by

Rogers et al. (1998) and in C.2.1 of the Supplementary material. However, this assumption will be

violated for species that change activity centres frequently. Our modelling approach can be extended
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to accommodate such movement by using different state models such as the independent (Royle

et al., 2014) and the Markovian random walk models (Raabe et al., 2014). Equally important, this

assumption assumes local density, and in turn, disease transmission probability does not change

dramatically between grids and sampling occasions. Thus, the state model definition plays a big

role in modelling disease transmission. Other populations can exhibit attraction or repulsion, which

leads to substantial changes in local density. However, this violates the assumption of independence

between individuals and hence the point pattern of ACs being described by a homogeneous Poisson

process. In these cases, our model would need to be extended, using models such as the repulsion

(Diana et al., 2022) and attraction (McLaughlin and Bar, 2021) models.

Another avenue for future work is the modelling of disease transmission. Here we assumed that

once infected an individual remained so for the rest of its life, consistent with the normal approach

when modelling Mycobacterium bovis transmission in badgers. However, in other cases it may be

important to introduce further states to the disease model, such as a recovered state to represent

individuals that have been infected and are now immune to re-infection or a vaccinated state for

populations currently experiencing management interventions. Such multistate disease models have

been fitted to capture-recapture data (e.g. Marescot et al. (2018)), and could be easily incorporated

within our modelling framework.

It could also be possible to vary how disease transmission probability is associated with the

spatiotemporal distribution of infected and uninfected individuals. In this paper, we have used a

logistic regression to investigate the effect of (latent) local density on disease transmission probability

and induce heterogeneity. However, other latent variables of this type could also be considered. For

example, we roughly introduce the idea of two alternative models: the half-normal model and the

overlap model. The half-normal model assumes that an uninfected individual is more likely to become

infected the closer it is to infected individuals. The overlap model considers disease transmission

probability as a function of the overlap of home range areas between an uninfected individual and

surrounding infected individuals. Thus, future work can be done to investigate these models.

In conclusion, our SCR model provides a novel tool to investigate the relationship between

population demographics, spatial behaviour, and infectious disease dynamics in imperfectly sampled

systems. By applying it in new contexts, it will be possible to gain valuable insight into how spatial
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behaviour and pathogen epidemiology are interwoven with important implications for wildlife disease

ecology and management.



Chapter 5

Discussion

Three manuscripts, described in Chapters 2, 3 and 4, have been presented in this thesis. In this chapter,

the work presented in the thesis is discussed and ideas for future work, in some cases with preliminary

results, are presented. The chapter closes with a short conclusion.

Chapter 2: Specifying and selecting N-mixture models in a Bayesian

framework.

Chapter 2 presented an evaluation of N-mixture models in a Bayesian framework, specifically prior

specification and model selection. We implemented and tested a novel objective prior that is proper,

the OB prior. This objective prior performed similarly in terms of inference to popular approximations

of the Jeffreys priors. Importantly, as is well known in the classical setting (Dennis et al., 2015), we

observed very large estimates of expected population size when the detection probability is small.

However, in this case, we also found that expected population size can be severely underestimated

when using priors that are concentrated at zero with a long tail, a finding we believe to be previously

largely unknown.

We further investigated model selection via WAIC on an extensive class of N-mixture models. We

considered both the conditional and marginal WAIC criteria, advocating the use of the marginal WAIC

to select between N-mixture models as it was observed that conditional WAIC can lead to misleading

results that favour the complicated models rather than the true, while the marginal WAIC selected
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the true model with a high probability. To improve this research, the stability of both conditional and

marginal WAIC can be investigated using guidelines by Vehtari et al. (2017). WAIC sensitivity to

prior choice in N-mixture models can also be pursued, as Ariyo et al. (2022b) highlighted WAIC prior

sensitivity in Bayesian linear mixed models for longitudinal data.

The identifiability of N-mixture models in a Bayesian framework is another important avenue

for future work. Non-identifiability is the scenario where models can be fitted to data without all

model parameters being estimable. Identifiability issues have been found with N-mixture models in a

classical setting. Dennis et al. (2015) showed that when the probability of detection and the number

of sampling occasions are small, infinite estimates of population size can be obtained. Barker et al.

(2018) highlighted that compared to capture-recapture surveys, the loss of individual information

resulting from count surveys is critical and causes problems in estimated parameters in Binomial

N-mixture models. Kéry (2018) responded to some of these problems of parameter identifiability

in a classical framework and called for more research to be done on the parameter identifiability of

N-mixture models.

Thus, we investigated parameter identifiability of the set of N-mixture models considered in this

thesis using data cloning (DC) (Lele et al., 2007). DC is a statistical computing method introduced

by Lele et al. (2007). Cloning the data K times, DC takes advantage of the computational simplicity

of the MCMC algorithms that are used in a Bayesian framework to provide maximum likelihood

point estimates and their standard errors for complex hierarchical models. Importantly, Lele et al.

(2010) proved that for estimable parameters in the model, the scale posterior variance should be

approximately 1/K. If parameters do not follow this trend then parameters are non-identifiable. This

is primarily a method of detecting extrinsic parameter identifiability, that is, this method is used to

detect parameter identifiability for a specific data set.

Consequently, an important component in using DC to investigate parameter identifiability is the

choice of K. Ponciano et al. (2012) showed that if parameters are weakly estimable, a large number

of clones is needed as the parameters mean and variance may increase at the beginning but as the

number of clones increases, the variance will converge to zero. Parameters that are weakly estimable

produce likelihoods that are relatively flat resulting in parameter estimation with large variance.
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To determine whether DC can be used to assess parameter identifiability in the P-B N-mixture

model we compare DC to the covariance diagnostic proposed by Dennis et al. (2015). We simulate

data with p = 0.1, λ = 5, M = 20, J = 3 and select data sets such that the P-B model is identifiable

for 10 data sets (“identifiable cases”) and non-identifiable for 10 data sets (“non-identifiable case”)

according to the covariance diagnostic. At the same time, we also investigate the prior effects on

the performance of DC. Three types of priors were investigated: the OB prior, an approximation to

Jeffreys prior (Gamma(0.5,0.00001)), and an informative prior (Gamma(5,1)). For p, a Uniform(0,1)

prior was assigned. We focus on the identifiability of λ and set K = 10. For K = 1, we run 505000

MCMC iterations with a burn-in of 40000 and thinning of 5 for 2 chains. For K ≥ 1, we run 705000

MCMC iterations with a burn-in of 50000 and thinning of 5 for 2 chains.

For the “identifiable cases”, DC indicated the identifiability of λ in all data sets. Fig. 5.1 displays

4 such DC plots indicating parameter identifiability. For the “non-identifiable cases”, DC indicated

the non-identifiability of λ in all data sets. Fig. 5.2 displays DC plots for 4 data sets indicating non-

identifiability. In this case, λ was severely overestimated giving unrealistic estimates of population

size. Additionally, from these Figs., it can be seen that DC results are similar for the different types

of prior considered for both “identifiable cases” and “non-identifiable cases”, indicating DC is not

sensitive to prior specification in this scenario.
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Fig. 5.1 Data cloning identifiability diagnostic plots for 4 “identifiable cases”.
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Fig. 5.2 Data cloning identifiability diagnostic plots for 4 “ non-identifiable cases”.

We further investigated the identifiability of over-dispersion N-mixture models using DC. We

perform 10 simulation runs for each N-mixture model: DW-B, NB-B, P-BB and DW-BB for p = 0.1,

λ = 20, M = 20,J = 3,K = 20. The OB prior was assigned to parameters in the parameter space

(0,∞), and a Uniform(0,1) prior was assigned to parameters in the parameter space (0,1).
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For the NB-B model, 8/10 datasets DC indicated non-identifiability issues for the size parameter

of the NB distribution. These estimates of the size parameter were unrealistic large estimates but

estimates of expected population size and p were realistic indicating identifiability. For the DW-B

model, 10/10 datasets DC indicated parameter identifiability with realistic inference. For the P-BB

model, 8/10 datasets DC indicated the identifiability of all parameters. Two datasets indicated the

non-identifiability of λ and β , where these were over-estimated and the mean detection probability

and ρ were underestimated suggesting non-identifiability. For the DW-BB model, 6/10 datasets DC

indicated the identifiability of all parameters. In the other 4 datasets, there were identifiability issues

for β as it was severely underestimated. However, there were no obvious signs of non-identifiability

as inference on mean detection probability and expected population size was not unrealistic.

All in all, these results show that DC can be a valuable tool for investigating the identifiability

of the P-B N-mixture model in a Bayesian setting. However, for over-dispersion N-mixture models,

parameter identifiability via DC was not straightforward as in this case DC can indicate that either one

or both parameters of the distribution for N are non-identifiable, but inference on N itself is reliable,

suggesting that perhaps there exist several combinations of values or ranges of values for these

parameters that yield similar inference for N. Dennis et al. (2015) also proposed two diagnostics to

identify identifiability issues in the NB-B N-mixture model but these were found to be unreliable when

used singly or in combination. Hence, future work is needed to investigate parameter identifiability in

N-mixture models.

Chapter 3: A new modelling framework for roost count data

In Chapter 3, a novel Bayesian modelling framework for the estimation of population size from

roost count data is presented that accounts for both temporary emigration (TE) and observation error.

We model TE using two classes of models, a parametric one, which is based on temporal models,

and a non-parametric one, which relies on Dirichlet process (DP) mixture models. The DP mixture

model provides information on temporary emigration cyclical patterns that can give new insights

into the behaviors of the species, such as breeding patterns and seasonal availability of foods. The
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temporal models increase the strength of estimation by sharing information across primary periods by

accounting for temporal auto-correlation, enabling an intuitive ecological interpretation of TE.

We also highlight the importance of a mixed-effects model for the observation error when the

observation error is misspecified as significant positive bias in the estimation of the population

size can be obtained when not accounted for. To identify important predictors of observation error,

we implemented an efficient Bayesian variable selection algorithm, BGLSS. This method has the

advantage of identifying both categorical and continuous predictors to reduce uncertainty around

predictor effects and population size.

An important constraint to consider in this framework is model selection. We use the well-

established model selection tool, cross-validation, to select between competing models. However,

cross-validation can be computationally intensive as it requires multiple fitting of the data. Other

model selection methods such as the Watanable-Akaike information criterion (WAIC) (Watanabe and

Opper, 2010) and the log pseudo marginal likelihood (LPML) criterion (Geisser and Eddy, 1979)

only require fitting the data once and can be easily computed using MCMC samples from popular

software such as NIMBLE and Stan (Carpenter et al., 2017). Consequently, we investigate model

selection via WAIC and LPML in this framework. We consider these criteria at both the conditional

(cLPML,cWAIC) and marginal (mLPML,mWAIC) levels as Ariyo et al. (2022a) and Millar (2018)

advocated that the marginal criterion should be used instead of the conditional criterion. We define

∆cLPML,∆cWAIC, ∆mLPML, and ∆mWAIC to be the difference between the true and competing

model at the conditional and marginal level for LPML and WAIC respectively. We set the DP as the

true model and compared it to the RW1 model. We perform 10 simulation runs using the mixed effect

detection model settings defined in the simulation section of Chapter 3. We fit the conditional model

as it was found to be more computationally efficient than the marginal model and use MCMC samples

to compute WAIC and LPML.

At the high detection probability setting, model selection via cLPML selected the true model 40%

of the time, and the RW1 model 60%, with ∆cLPML =−1.711. cWAIC selected the true model 30%

of the time, and the RW1 model 70%, with ∆cWAIC = 0.227. Finally, mLPML and mWAIC selected

the true model 20% of the time, and the RW1 model 80%, with ∆mLPML = −5.636,∆mWAIC =
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78.235 respectively. Both models gave similar estimates of population size, with median relative bias

(−0.005,−0.004) and median coverage (1,1) for the DP and RW1 model respectively.

At the low detection probability setting, model selection via cLPML selected the true model 60%

of the time, and the RW1 model 40%, with ∆cLPML = 2.937. cWAIC selected the true model 80% of

the time, and the RW1 20%, with ∆cWAIC =−1.269. Finally, mLPML selected the true 0% and the

RW1 100% with ∆mLPML =−342.668 and mWAIC selected the true model 20% of the time, and the

RW1 80%, with ∆mWAIC = 2866.5. In addition, both models gave similar estimates of population

size, with median relative bias (0.020,0.055) and median coverage (1,1) for the DP and RW1 model

respectively. Additionally, at the low detection probability level for some data sets, the computation

of mLPML and mWAIC led to numerical issues, with probabilities rounded to 0, and hence returning

−∞ value on the log scale. These datasets were discarded from the simulation study.

Hence, this small simulation study seems to suggest that WAIC and LPML are not viable model

selection tools in this temporally correlated framework. The poor performance of WAIC and LPML

may be due to the independence assumption of data given the parameters needed for computation.

This assumption is often violated in temporal models where dependence among the data is a key

modelling feature. Hence, future work can be focused on investigating/developing efficient model

selection methods for temporally correlated data.

Chapter 4: Modelling disease dynamics from spatially explicit capture-

recapture data

Chapter 4 presents a novel spatially explicit capture-recapture (SCR) model that models disease

dynamics using disease data from multiple imperfect tests together with SCR data with a focus on

population density effect on disease transmission probability. Accounting for observation errors in

both detection and disease tests, this model simultaneously models population demographics and

disease dynamics in a spatial context enabling the estimation of critical parameters, such as population

size, local and global density by disease status, disease prevalence, and demographic rates as functions

of disease status, etc. Notably, this framework models disease transmission probability as a function

of local density, enabling inference on the impact of density on disease transmission. Thus, this
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model provides a better understanding of how disease dynamics relate to population demographics in

spatiotemporal contexts at an individual level.

In our simulation study and real data analysis of chapter 4, we assumed a constant state model,

that is, individual activity centres (ACs) are independent and do not change over the period of study

due to species behaviour. This assumption implies local density does not change dramatically between

grids and sampling occasions. Thus, the state model definition plays a big role in modelling disease

transmission and future work can be focused to assess model sensitivity to different state models.

Other state models such as the independent (Royle et al., 2014) and the Markovian random walk

models (Raabe et al., 2014) can be easily adopted. Repulsion (Diana et al., 2022) and attraction

(McLaughlin and Bar, 2021) models can also be considered to relax the independence assumption

among individual ACs.

We perform a short simulation study to assess our model sensitivity when 1/3 of the population at

the start of the study is clustered into one group as depicted in Fig. 5.3. This cluster will result in

local density, and in turn disease transmission probability, varying substantially between grids. We

perform 5 simulation runs using the simulation settings of high population size and density effect

given in Chapter 4. We run 15000 MCMC iterations, burn-in of 10000 iterations, and thinning of 5

for 2 chains.

As can be seen from Table 5.1, when individual ACs are not independently distributed, as the

model of Chapter 4 assumes, inference is biased, particularly for the population size (N1:T ) and the

population size of uninfected individuals (Nu
1:T ). Hence, future work can be focused on extending this

primary study to investigate model sensitivity to state models.
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Fig. 5.3 Individual ACs at the start of the study



101

Table 5.1 Model simulation results for clustered population. The table shows the relative bias (RB),
coefficient of variation (CV), and coverage with values within brackets showing the 95% quantiles.

Parameters RB CV Coverage

γ1 0.418(0.163,0.548) 0.069(0.058,0.069) 20

γ2 −0.029(−0.624,0.197) 0.242(0.213,0.676) 80

γ3 0.177(−0.054,0.662) 0.249(0.204,0.357) 80

γ4 0.613(0.018,0.850) 0.258(0.223,0.291) 60

φdi=0 0.011(−0.008,0.025) 0.019(0.018,0.025) 100

φdi=1 −0.030(−0.042,−0.014) 0.022(0.020,0.024) 100

p0di=0
−0.119(−0.165,0.082) 0.071(0.065,0.086) 80

p0di=1
0.020(−0.009,0.047) 0.048(0.046,0.053) 100

σdi=0 −0.027(−0.072,0.020) 0.028(0.027,0.036) 80

σdi=1 0.007(−0.013,0.018) 0.018(0.017,0.019) 100

δ −0.121(−0.357,0.156) 0.212(0.203,0.239) 80

β0 −0.079(−0.208,−0.013) 0.109(0.103,0.141) 60

β1 0.831(0.561,1.715) 0.238(0.226,0.274) 20

q1
11 0.012(−0.024,0.052) 0.033(0.032,0.034) 100

q2
11 −0.015(−0.025,0.043) 0.021(0.019,0.022) 80

q3
11 −0.144(−0.202,0.232) 0.123(0.106,0.129) 80

q1
00 0.001(−0.022,0.0203) 0.015(0.013,0.017) 100

q2
00 −0.001(−0.005,0.008) 0.017(0.014,0.018) 100

q3
00 −0.001(−0.003,−0.001) 0.002(0.002,0.004) 100

N1:T 0.127(0.051,0.396) 0.048(0.041,0.063) 0

Nu
1:T 0.202(0.004,0.519) 0.083(0.065,0.101) 0

Ni
1:T 0.058(−0.065,0.313) 0.070(0.063,0.197) 100

Alternative models for disease transmission probability can also be considered. For example, we

define and test two alternative models: the half-normal (HN) model and the overlap (OV) model.

Spatial covariates can also be used to model disease transmission probability.
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Half Normal (HN) model

Let θi,l be the probability that an uninfected individual i becomes infected by an infected individual l.

We let

θi,l = exp
(
− 1

2σ2
di=0

∥ si − sl ∥2
)

Then the disease transmission probability of an uninfected individual i being infected at occasion t

(ψi,t) can be written as

ψi,t = 1−
( L

∏
l=1

1−θi,l

)
for l = 1, . . . ,L infected individuals. Thus, the HN model assumes that an uninfected individual is

more likely to become infected the closer it is to infected individuals conditional on the movement of

uninfected individuals.

To test the validity of the model proposed, we perform a simulation study of 15 runs with the

following parameter values: M = 500,T = 8,φdi=0 = 0.9,φdi=1 = 0.8, p0di=0
= 0.5, p0di=1

= 0.2,σdi=0 =

0.3,σdi=1 = 1, δ = 0.2,q1
11 = 0.492,q2

11 = 0.809,q3
11 = 0.1,q1

00 = 0.931,q2
00 = 0.936,q3

00 = 0.999,

γ1 = 0.4, γ2 = γ2:4 = 0.05, γ3 = 0.2, γ4 = γ6:T = 0.05. We run 10000 MCMC iterations, burn-in of

4000 iterations, and thinning of 5 for 2 chains.

As can be seen from Table 5.2, the HN model performs well. However, the limitation of this

approach is that it only considers movement in one direction, the direction of uninfected to infected

individuals. However, infected individuals also move and, as shown in Chapter 4, in some cases their

home range can be wider than that of uninfected individuals.
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Table 5.2 HN model simulation results. The table shows the median of posterior means, coverage,
median values of the residual mean square, and relative bias (RB).

Parameters Mean Coverage Residual Mean Square Relative Bias

γ1 0.409 100 0.086 0.023

γ2 0.063 100 0.478 0.270

γ3 0.149 93 0.440 −0.252

γ4 0.056 100 0.518 0.126

φdi=0 0.920 100 0.049 0.023

φdi=1 0.789 93 0.045 −0.018

p0di=0
0.472 100 0.114 −0.051

p0di=1
0.191 93 0.092 −0.045

σdi=0 0.300 93 0.065 0.002

σdi=1 1.003 100 0.033 0.003

δ 0.198 100 0.237 −0.009

q1
11 0.491 100 0.023 −0.003

q2
11 0.800 100 0.033 −0.003

q3
11 0.098 100 0.169 −0.012

q1
00 0.927 87 0.032 −0.003

q2
00 0.933 100 0.025 −0.003

q3
00 0.994 100 0.005 −0.004
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Overlap (OV) Model

Fig. 5.4 An uninfected (UI) individual surrounded by three infected individuals (I) with the intersection
of home range areas highlighted in red.

Another approach considered is to model disease transmission probability as a function of the overlap

of home range areas between an uninfected individual and surrounding infected individuals. Fig. 5.4,

shows an uninfected individual being surrounded by 3 infected individuals with home range overlap

shown in red. Consequently, we model disease transmission as

logit(ψi,t) = β0 +β1 ·Ai,t−1 (5.0.1)

where Ai,t−1 is the sum of the overlap area between the uninfected individual i and all infected

individuals at the previous time point and β1 is the coefficient describing the relationship between the

overlap of home range areas and disease transmission probability.

Assuming circular individual home range areas, to compute the overlap of home range area between

an uninfected and an infected individual, we let C1 and C2 be the two circular individual home ranges
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with radii r1 and r2 respectively whose centers are at a distance d from each other as depicted in Fig.

5.5. Assume, that r1 ≥ r2, the overlap of home range area between an uninfected and an infected

individual can be computed using equation (5.0.2). This approach enables movement to be considered

in both directions and the individual with the larger home range area is assigned to C1.

Fig. 5.5 Overlap of two circular individual home ranges, C1 and C2 with radii r1 and r2 respectively
whose centers are at a distance d from each other.

Overlap area = r2
1cos−1

(
d1

r1

)
−d1

√
r2

1 −d2
1 + r2

2cos−1
(

d2

r2

)
−d2

√
r2

2 −d2
2 , (5.0.2)

where

d1 =
r2

1 − r2
2 +d2

2d
and d2 = d −d1 =

r2
2 − r2

1 +d2

2d

Consequently, the overlap of the home range area of an uninfected and infected individual is:

• zero, if d ≥ r1 + r2, since in this case the circles intersect at most up to a point.

• πr2
2 , if d ≤ r1 − r2, since in this case C2 is entirely contained within C1.

• equation (5.0.2) in all other cases.
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To assess the overlap model performance a short simulation of 10 runs was carried out with parameter

values: M = 500,T = 8,φdi=0 = 0.9,φdi=1 = 0.8, p0di=0
= 0.65, p0di=1

= 0.75,σdi=0 = 0.75,σdi=1 = 1,

δ = 0.2,β0 = −5.5,β1 = 0.1,q1
11 = 0.492,q2

11 = 0.809,q3
11 = 0.1,q1

00 = 0.931,q2
00 = 0.936,q3

00 =

0.999, γ1 = 0.4, γ2 = γ2:4 = 0.05, γ3 = 0.2, γ4 = γ6:T = 0.05. We run 10000 MCMC iterations,

burn-in of 4000 iterations, and thinning of 5 for 2 chains.
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Table 5.3 OV model simulation results. The table shows the median of posterior means, coverage,
median values of the residual mean square, and relative bias (RB).

Parameters Mean Coverage Residual Mean Square Relative Bias

γ1 0.400 90 0.060 0.001

γ2 0.053 100 0.226 0.071

γ3 0.202 100 0.158 0.012

γ4 0.046 90 0.282 −0.085

φdi=0 0.936 40 0.040 0.040

φdi=1 0.767 50 0.068 −0.041

p0di=0
0.626 100 0.051 −0.044

p0di=1
0.734 100 0.026 −0.017

σdi=0 0.745 90 0.026 −0.006

σdi=1 0.993 100 0.016 −0.007

δ 0.226 70 0.298 0.130

β0 −4.783 100 −0.160 −0.139

β1 0.083 60 0.230 −0.167

q1
11 0.471 100 0.048 −0.041

q2
11 0.761 40 0.061 −0.059

q3
11 0.093 100 0.106 −0.069

q1
00 0.931 90 0.013 0.002

q2
00 0.940 100 0.007 0.004

q3
00 0.998 90 0.002 −0.001

Looking at Table 5.3, it can be seen that the overlap model estimated parameters well where

φdi=0 ,φdi=1 and q2
11 were estimated with narrow credible intervals but still estimated well, β1 and δ

were also estimated well even with higher bias and lower coverage. It is highly plausible that these
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biases may be due to the low population size simulated. Future work can be focused to investigate the

robustness of this model especially with a larger population size.

Notably, all three models considered for disease transmission probability are very computa-

tionally demanding and resulted in convergence issues and poor mixing, requiring long run times.

Consequently, future work can be done to improve computational efficiency.

In this thesis, 100, 50, and 10 simulation runs were performed in the simulation studies for

chapters 2, 3, and 4 respectively. These numbers of runs were chosen due to model complexity

in combination with the computational burden of Bayesian inference and the range of simulation

scenarios considered. For example, the proposed model in chapter 4 took approximately 12 hours for

1 simulation run. Consequently, Monte Carlo error is only averaged across the simulation runs for

each chapter. Hence, care needs to be taken on how the results are interpreted, especially in cases

where simulation runs are low and where models are performing similarly in different scenarios.

Conclusion

Ecological data of the type considered in this thesis will continue to be key for monitoring wildlife

populations, and this thesis has contributed to the statistical ecology literature by developing a suite

of BHM that provide valuable information on some of the key topics in ecology and population

dynamics, including observation error, temporary emigration and the complex relationships between

disease dynamics and population demographics. These models can be further extended in a number

of directions as described. Additionally, future work can be focused on dealing with the challenges of

increasingly large data sets, or complex observation processes that arise due to advances in technology

for collecting data, such as remote sensing, DNA sequencing, and autonomous systems.



References

Rosamund EA Almond, Monique Grooten, and T Peterson. Living Planet Report 2020-Bending the
curve of biodiversity loss. World Wildlife Fund, 2020.
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Marc Kéry and J Andrew Royle. Applied hierarchical modeling in ecology: analysis of distribution,
abundance and species richness in R and BUGS. (No Title), 2017.

Marc Kéry and J Andrew Royle. Applied Hierarchical Modeling in Ecology: Analysis of distribution,
abundance and species richness in R and BUGS: Volume 2: Dynamic and Advanced Models.
Academic Press, 2020.

Fabian R. Ketwaroo. N-mixture models from a Bayesian perspective. Unpublished MSc. Thesis,
2019.

Jonas Knape, Debora Arlt, Frédéric Barraquand, Åke Berg, Mathieu Chevalier, Tomas Pärt, Alejandro
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Gláucia Helena Fernandes Seixas and Guilherme Mourao. Communal roosts of the blue-fronted
amazons (amazona aestiva) in a large tropical wetland: Are they of different types? PloS one, 13
(10):e0204824, 2018.

Jayaram Sethuraman. A constructive definition of Dirichlet priors. Statistica sinica, pages 639–650,
1994.

Matthew J Silk, Nicola L Weber, Lucy C Steward, David J Hodgson, Mike Boots, Darren P Croft,
Richard J Delahay, and Robbie A McDonald. Contact networks structured by sex underpin
sex-specific epidemiology of infection. Ecology letters, 21(2):309–318, 2018.

Matthew J Silk, David J Hodgson, Carly Rozins, Darren P Croft, Richard J Delahay, Mike Boots, and
Robbie A McDonald. Integrating social behaviour, demography and disease dynamics in network
models: applications to disease management in declining wildlife populations. Philosophical
Transactions of the Royal Society B, 374(1781):20180211, 2019.

David Spiegelhalter, Andrew Thomas, Nicky Best, and Dave Lunn. WinBUGS user manual, 2003.

David J Spiegelhalter, Nicola G Best, Bradley P Carlin, and Angelika Van Der Linde. Bayesian
measures of model complexity and fit. Journal of the royal statistical society: Series b (statistical
methodology), 64(4):583–639, 2002.

Colin E Studds, Bruce E Kendall, Nicholas J Murray, Howard B Wilson, Danny I Rogers, Robert S
Clemens, Ken Gosbell, Chris J Hassell, Rosalind Jessop, David S Melville, et al. Rapid population
decline in migratory shorebirds relying on yellow sea tidal mudflats as stopover sites. Nature
communications, 8:14895, 2017.

Chris Sutherland, J Andrew Royle, and Daniel W Linden. oscr: A Spatial Capture-Recapture R
package for inference about spatial ecological processes. Ecography, 2019.

Yee Teh, Michael Jordan, Matthew Beal, and David Blei. Sharing clusters among related groups:
Hierarchical dirichlet processes. Advances in neural information processing systems, 17, 2004.

Chris D Thomas. Local diversity stays about the same, regional diversity increases, and global
diversity declines. Proceedings of the National Academy of Sciences, 110(48):19187–19188, 2013.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

SG Toribio, BR Gray, and S Liang. An evaluation of the Bayesian approach to fitting the N-mixture
model for use with pseudo-replicated count data. Journal of Statistical Computation and Simulation,
82(8):1135–1143, 2012.

Daniel Turek, Cyril Milleret, Torbjørn Ergon, Henrik Brøseth, Pierre Dupont, Richard Bischof, and
Perry De Valpine. Efficient estimation of large-scale spatial capture–recapture models. Ecosphere,
12(2):e03385, 2021.



References 117

FAM Tuyttens, RJ Delahay, DW Macdonald, CL Cheeseman, B Long, and CA Donnelly. Spatial
perturbation caused by a badger (Meles meles) culling operation: implications for the function
of territoriality and the control of bovine tuberculosis (Mycobacterium bovis). Journal of Animal
Ecology, 69(5):815–828, 2000.

Aki Vehtari, Andrew Gelman, and Jonah Gabry. Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and computing, 27:1413–1432, 2017.

J Vicente, RJ Delahay, NJ Walker, and CL Cheeseman. Social organization and movement influence
the incidence of bovine tuberculosis in an undisturbed high-density badger meles meles population.
Journal of Animal Ecology, 76(2):348–360, 2007.

Vance T Vredenburg, Roland A Knapp, Tate S Tunstall, and Cheryl J Briggs. Dynamics of an
emerging disease drive large-scale amphibian population extinctions. Proceedings of the National
Academy of Sciences, 107(21):9689–9694, 2010.

Sara Wade and Zoubin Ghahramani. Bayesian cluster analysis: Point estimation and credible balls
(with discussion). Bayesian Analysis, 13(2):559–626, 2018.

Stephen Walker and Cristiano Villa. An objective prior from a scoring rule. Entropy, 23:833, 06 2021.
doi: 10.3390/e23070833.

Sumio Watanabe and Manfred Opper. Asymptotic equivalence of Bayes cross validation and widely
applicable information criterion in singular learning theory. Journal of machine learning research,
11(12), 2010.

Nicola Weber, Stuart Bearhop, Sasha RX Dall, Richard J Delahay, Robbie A McDonald, and Stephen P
Carter. Denning behaviour of the European badger (Meles meles) correlates with bovine tuberculosis
infection status. Behavioral Ecology and Sociobiology, 67(3):471–479, 2013a.

Nicola Weber, Stephen P Carter, Sasha RX Dall, Richard J Delahay, Jennifer L McDonald, Stuart
Bearhop, and Robbie A McDonald. Badger social networks correlate with tuberculosis infection.
Current Biology, 23(20):R915–R916, 2013b.

Rosie Woodroffe, Christl A Donnelly, DR Cox, F John Bourne, CL Cheeseman, RJ Delahay, George
Gettinby, John P Mcinerney, and W Ivan Morrison. Effects of culling on badger Meles meles spatial
organization: implications for the control of bovine tuberculosis. Journal of Applied Ecology, 43
(1):1–10, 2006.

Xiaofan Xu and Malay Ghosh. Bayesian variable selection and estimation for group lasso. Bayesian
Analysis, 10(4):909–936, 2015.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.





Appendix A

Supplementary material for Specifying

and selecting N-mixture models in a

Bayesian framework.

A.1 Case 2-Model selection via WAIC MCMC settings

Table A.1 MCMC settings for scenario 1.

p Model MCMC iterations Burn-in Thinning Chains

0.6 P-B 25000 500 5 1

DW-B 65000 5000 15 1

NB-B 125000, 5000 15 1

P-BB 155000 5000 30 1

DW-BB 155000 5000 30 1

0.25 P-B 225000 5000 30 1

DW-B 205000 5000 50 1

NB-B 405000 5000 100 1

P-BB 125000 5000 10 1

DW-BB 205000 5000 100 1
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Table A.2 MCMC settings for scenario 2.

p Model MCMC iterations Burn-in Thinning Chains

0.6 P-B 125000 5000 30 1

DW-B 205000 5000 50 1

NB-B 405000 5000 100 1

P-BB 125000 5000 10 1

DW-BB 205000 5000 100 1

0.25 P-B 225000 5000 30 1

DW-B 205000 5000 50 1

NB-B 405000 5000 100 1

P-BB 125000 5000 10 1

DW-BB 205000 5000 100 1

Table A.3 MCMC settings for scenario 3.

p Model MCMC iterations Burn-in Thinning Chains

0.6 P-B 25000 5000 5 1

DW-B 85000 5000 20 1

NB-B 805000 5000 200 1

P-BB 205000 5000 100 1

DW-BB 205000 5000 100 1

0.25 P-B 85000 5000 20 1

DW-B 85000 5000 20 1

NB-B 805000 5000 200 1

P-BB 505000 5000 100 1

DW-BB 505000 5000 100 1
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Table A.4 MCMC settings for scenario 4.

p Model MCMC iterations Burn-in Thinning Chains

0.6 P-B 125000 5000 30 1

DW-B 405000 5000 100 1

NB-B 805000 5000 200 1

P-BB 805000 5000 200 1

DW-BB 805000 5000 200 1

0.25 P-B 125000 5000 30 1

DW-B 405000 5000 100 1

NB-B 805000 5000 200 1

P-BB 805000 5000 200 1

DW-BB 805000 5000 200 1

A.2 Case Studies

Table A.5 MCMC settings used for analyzing yellow-bellied toads.

Model MCMC iterations Burn-in Thinning Chains

P-B 25000 5000 5 2

DW-B 900000 40000 25 2

NB-B 700000 50000 15 2

P-BB 605000 50000 15 2

DW-BB 605000 50000 15 2
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Table A.6 MCMC settings used for analyzing Swiss great tits.

Model MCMC iterations Burn-in Thinning chains

P-B 25000 5000 5 2

DW-B 900000 40000 25 2

NB-B 350000 50000 15 2

P-BB 605000 50000 15 2

DW-BB 305000 60000 15 2



Appendix B

Supplementary material for A new

modelling framework for roost count

data.

B.1 Dirichlet Process (DP) Mixture Model

The Dirichlet process (DP) mixture model can be viewed as an infinite dimensional mixture model

which represents an unknown density F(y) taking the form

F(y) =
∫

k(y|θ)p(θ |G)dθ ,

G|α,G0 ∼ DP(α,G0)

where k(.|θ) is a suitable mixture kernel with parameter vector θ . The mixing distribution/random

measure G is a Dirichlet process prior with α and G0 as the concentration parameter and baseline

distribution respectively. Any prior knowledge about F(y) is summarised in the baseline distribution

while the concentration parameter specifies the prior variance and controls relatively how much the

prior and the data contribute to the posterior. More information on the DP can be found in Escobar

and West (1995).
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One approach to implement the DP mixture model is to integrate out the random measure G from

the model. This allows the DP mixture model to be written using latent or membership variables, zi,

following a Chinese Restaurant Process (CRP) distribution (Blackwell and MacQueen, 1973). As a

result, for i = 1, . . . ,N data points, the DP mixture model takes the form

F(y)|θ̃ ,zi ∼ k(.|θ̃zi),

z|α ∼ CRP(α), θ̃ j ∼ G0,

where CRP(α) denotes the CRP distribution with concentration parameter α . The CRP can be

described as a stochastic process. Customers arrive at a restaurant one at a time with a potentially

infinite number of tables and are seated in the order in which they arrive. The first customer will sit at

the first table. The second customer will be seated at the first table with a probability of 1/(1+α) or

at the second (empty) table with a probability of α/(1+α) where α ∈ R+. Following customers can

sit at any of the occupied tables with a probability that is proportional to the number of customers

who are already sitting there or with a probability proportional to α at the next unoccupied table. In

this way, the CRP partitions the set of customers by assigning them to the tables in the restaurant. The

stick-breaking representation (Sethuraman, 1994) is another approach that can be used to implement

DP mixture models.

Another advantage of DP mixture models is that different choices for kernel k and baseline

distribution G0 can be chosen. In a real space, a univariate or multivariate Gaussian mixture is

often used. However, this kernel is not an appropriate application when considering distributions

with bounded intervals [0,T ] or survival analysis. Consequently, Kottas (2006) considered Dirichlet

process mixtures of Beta distributions for the non-parametric estimation of continuous distributions

that are defined on a bounded interval, [0,T ].

B.2 Bayesian Group Lasso Spike and Slab (BGLSS)

Consider the simple model
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Ys ∼ Binomial(K, ps)

logit(ps) = η = µ +
G

∑
g=1

Xs,gβg (B.2.1)

for s = 1, . . . ,S data points, g = 1, . . . ,G are continuous/categorical variables, such that variable g

requires Cg coefficients to model its effect, so that if g is a continuous variable, Cg = 1, and if g is a

categorical variable, Cg is its number of levels (excluding baseline). Finally, βg is the (Cg ×1) vector

corresponding to the logistic regression coefficients for variable g, Xs,g is an (S×G) dimensional

design matrix relative to variable g.

Within such a logistic regression setting, Bayesian variable selection (BVS) methods can be

used to understand and identify significant covariate effects on observation error. Bayesian Group

Lasso Spike and Slab (BGLSS) is one BVS technique that can be used within a logistic regression

to understand covariate effects. Bayesian group lasso spike and slab (BGLSS) is a BVS method

specifically developed to perform variable selection on categorical variables, but it can also perform

variable selection on continuous variables. Essentially, it employs a spike and slab prior where the

slab density is the Bayesian group lasso density (Casella et al., 2010).

The spike and slab prior introduced by Mitchell and Beauchamp (1988), typically in a logistic

regression setting has the form

p(β |γ) =
G

∏
g=1

[(1− γg)δ0(βg)+ γg p(βg)],

p(γ|φ) =
G

∏
g=1

φ
γg(1−φ)1−γg ,

φ ∼ p(φ)

where the slab, p(βg), is a diffuse and/or heavy-tailed density to model the distribution of coefficients

of covariates included in the model, the spike, δ0, is a point mass at zero used to model excluded

covariates, γ is a binary vector that indexes the 2G possible models, and φ ∈ (0,1) is a mixing

proportion. Importantly, with a well-chosen prior on φ , this prior avoids the curse of dimensionality
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by automatically favouring parsimonious models in high dimensions (Bai et al., 2021). The mixing

proportion can be fixed to 0.5 or can be assigned a uniform or Beta prior distribution. However, in

high dimensions, this point-mass spike and slab prior can be computationally expensive to explore the

full posterior mainly due to the combinatorial challenge of updating γ .

The Bayesian group lasso is the Bayesian formulation of the group lasso (Yuan and Lin, 2006)

which was developed to facilitate group-level selection in a frequentist setting. This Bayesian

formulation allows the shrinkage parameter (ψ) to be estimated simultaneously with model parameters,

possibly reducing computational cost by rather testing several values of ψ via cross-validation as

done in a classical setting. For G categorical predictors with each categorical covariate g contains mg

levels such that ∑
G
g=1 mg = ρ , The Bayesian group lasso density can be defined as

π(βg|ψ) = mgψ
Cg exp(−ψ ∥ βg ∥2)

where mg = 2−Cgπ−(Cg−1)/2[Γ((Cg +1)/2)]−1, βg is the vector regression effects relating to covariate

g, and for v ∈Rρ , ||v||2 =
√

∑
ρ

i=1 v2
i (Bai et al., 2020). Casella et al. (2010) and Xu and Ghosh (2015)

both used this prior for Bayesian inference in a grouped regression model. Importantly, Casella et al.

(2010) showed that the Bayesian group lasso in a linear regression framework can be written as a

scaled mixture of a Normal distribution with a Gamma distribution on the hyper parameter. In a

logistic regression framework this can be expressed as:

βg|τg ∼ Nmg(0,τ
2
g ICg)

τ
2
g ∼ Gamma

(
Cg +1

2
,
ψ2

2

)
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Unfortunately, this prior does not provide null regression effects. Consequently, Xu and Ghosh

(2015) proposed a point mass spike and slab prior:

βg|τ2
g ∼ γgN(0,τ2

g Img)+(1− γg)δ0(βg)

τ
2
g ∼ Gamma

(
Cg +1

2
,
ψ2

2

)
γg ∼ Bernoulli(φg)

ψ ∼ Gamma(a,b)

where δ0 is the Dirac distribution on 0, γg is a binary variable which indicates whether factor g

was included or not, and ICg is the identity matrix (Cg ×Cg). This approach can easily be implemented

using MCMC methods. The prior inclusion probability φg can be fixed to 0.5 or can be assigned a

uniform or Beta prior distribution. The advantage of BGLSS is that it requires little tuning by the user.

In addition, Jreich et al. (2021) showed the BGLSS preformed better than the Bayesian Group Lasso.

The disadvantage is that BGLSS can only identify significant categorical covariates not significant

levels of categorical variables. In addition, Xu and Ghosh (2015) reported poor selection performance

for high-dimensional predictors, in particular when most levels of categorical predictors have no

effect.

B.3 Bayesian Sparse Group Selection (BSGS)

Bayesian Sparse Group selection (BSGS) developed by Chen et al. (2016) enables variable selection

of both continuous and categorical variables. It has the advantage of identifying both significant

categorical covariates and their relative levels. BSGS models the joint behaviour of binary indicators

for grouped levels by adding a hierarchical layer to the stochastic search variable selection (SSVS)

method by George and McCulloch (1993). These two levels of binary indicators are nested so that if a

categorical variable is removed from the model, all its levels are also removed. Hierarchically, for

each level l, l = 1, . . . ,Cg of a categorical covariate g, g = 1, . . . ,G the prior distribution of νlg (the

binary indicator relative to level l within the group g) and γg (the binary indicator of covariate g) are
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defined as follows:

γg ∼ Bernoulli(pg)

νlg|γg ∼ (1− γg)δ0 + γgBernoulli(plg)

where δ0 is the Dirac distribution on 0, pg and plg are the prior inclusion probabilities for categorical

covariate g and level l within covariate g, respectively. For the regression effects, a zero inflated

mixture Gaussian prior is proposed:

βlg|νlgγg ∼ (1−νlgγg)δ0 +νlgγgN(0,τ2
lg)

This approach requires user tuning on three parameters: pg, plg and τlg. For the inclusion probabilities,

they can be set to 0.5 or a Beta or Uniform distribution can be assigned. A prior can be assigned

to τlg or cross validation techniques can be employed to select τlg. Importantly, the performance of

the BSGS is sensitive to τlg and the total number of levels considered within a categorical covariate

(Jreich et al., 2021). As βlg is inversely proportional to τlg and the number of levels, a large value of

τlg or an important number of levels can decrease the prior inclusion probability. Barbieri and Berger

(2004) posterior median model is often used as the model selection criterion in BSGS.

We investigate BSGS performance using the same simulation settings as case 2 in Chapter 3 but

with β = (1,1.25,0.2,2,0,−0.6,−0.5,−0.3,0) used for p≈ 0.6 and β = (−1.5,−0.2,−0.6,0,−0.5,

−0.8,0.8,0.3,0) used for p ≈ 0.3. Also, 30 simulation runs were conducted for p ≈ 0.6 and 50 for

p ≈ 0.3. To introduce misspecification in the model for detection, variables x5 and x6 were not

included in the model

As can be seen from Tables B.1 and B.2, λ and σ are estimated well in both cases at both

levels of detection with good coverage, low RMSE and relative bias. In addition, weak effects are

estimated poorly in case b) for both levels of detection with low coverage, high RMSE and relative

bias. Contrary, in case a), these weak effects are estimated well with high coverage, low RMSE and

relative bias. Notably, as can be seen in Fig. B.1, population size is estimated well with relatively low
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relative bias in both cases for both levels of detection. In these cases, population size coverage was

≥ 80.

In case a) and b), for both levels of detection, all strong significant variables were correctly

identified by BSGS within the global covariate (γg) and local covariate level (νlg) in all runs. In

addition, in case a), 1/30 and 2/50 simulation runs a non-significant variable was identified as

significant for p ≈ (0.6,0.3) respectively within the global covariate level. In case b), 0/30 and 1/50

runs a non-significant variable was identified as significant for p ≈ (0.6,0.3) respectively with the

global covariate level. At the local covariate level, in case a), 2/30,1/50 runs a non-significant variable

was identified as significant for p ≈ 0.6,0.3 respectively. In case b), at the local covariate level, 3/30

and 4/50 runs a non-significant variable was identified as significant for p ≈ 0.6,0.3 respectively.

For p ≈ 0.6, β = 0.2 was correctly identified in 30/30 runs at the global and local level in case

a) whilst, in case b), this weak effect was correctly identified in 22/30, 13/30 runs at the global and

local level respectively. For the weak categorical covariate, β = (−0.3,0), β =−0.3 was correctly

identified 29/30, 28/30 runs at the global and local level in case a) whilst, in case b), 11/30, 10/30

runs were correctly identified at the global and local level. For the non-significant categorical level,

28/30 and 27/30 runs were correctly identified as non-significant in cases a) and b) respectively.

For p ≈ 0.3, β =−0.2 was correctly identified in 50/50 runs at the global and local level in case

a) whilst, in case b), this weak effect was correctly identified in 38/50, 22/50 runs at the global and

local level respectively. The weak categorical covariate effect β = 0.3 was correctly identified 50/50,

48/50 runs at the global and local level in case a) whilst, in case b), 24/50, 15/50 runs were correctly

identified at the global and local level. The non-significant categorical level was correctly identified

as non-significant in case a) and b), 49/50 and 46/50 runs respectively.

This simulation study demonstrated that BSGS can be used as a BVS technique when covariates

fully explain detection. Notably, like the BGLSS, with the addition of random effect, the strength

to identify weak effects in both cases of p decreased, while strong effects are correctly identified

irrespective of random effects. This simulation seems to suggest that BGLSS performs better than

BSGS as BGLSS estimated weak effects better. The main reason why BSGS performed worse is

most likely due to the sensitivity present with the slab standard deviation (Jreich et al., 2021). A

prior was used in this simulation but it was found that reducing the standard deviation by using fixed
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values improved the ability of BSGS to identify weak effects but also increased opportunities for

non-significant variables to be identified as significant. Hence, it was hard to select fixed values of the

slab standard deviation.

Table B.1 Simulation results for BSGS for p ≈ 0.6.

Case Parameters Median Coverage Residual Mean Square Relative Bias

a) β0 1.011 87 0.044 0.011

β1 1.257 93 0.026 0.006

β2 0.203 93 0.126 0.015

β3 2.003 100 0.015 0.002

β4 0 0 − −

β5 −0.603 93 −0.054 0.005

β6 −0.502 93 −0.052 0.004

β7 −0.306 87 −0.301 0.02

β8 0 0 − −

λ 93.381 90 0.105 −0.066

σ 0.982 100 0.143 −0.018

b) β0 0.911 97 0.104 −0.089

β1 1.247 97 0.051 −0.002

β2 0 70 0.788 −1

β3 1.994 93 0.044 −0.003

β4 0 0 − −

β7 0 63 −0.877 −1

β8 0 6.7 − −

λ 93.971 90 0.103 −0.060

σ 0.986 100 0.156 −0.014
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Table B.2 Simulation results for BSGS for p ≈ 0.3.

Case Parameters Median Coverage Residual Mean Square Relative Bias

a) β0 −1.506 96 −0.039 0.004

β1 −0.195 100 −0.103 −0.023

β2 −0.594 98 −0.049 −0.009

β3 0 0 − −

β4 −0.499 92 −0.062 −0.005

β5 −0.802 92 −0.046 0.003

β6 0.799 94 0.038 −0.003

β7 0.302 94 0.256 0.008

β8 0 42 − −

λ 91.606 94 0.135 −0.84

σ 1.016 100 0.242 0.016

b) β0 −1.496 94 −0.096 −0.002

β1 0 82 −0.787 −1

β2 −0.586 96 −0.132 −0.023

β3 0 0 − −

β4 −0.472 96 −0.170 −0.056

β7 0 72 0.891 −1

β8 0 56 − −

λ 90.325 88 0.153 −0.097

σ 1.164 94 2.369 0.164
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(a) Case a) p ≈ 0.6
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(b) Case b) p ≈ 0.6
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(c) Case a) p ≈ 0.3
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(d) Case a) p ≈ 0.3

Fig. B.1 Population size median relative bias obtained for BSGS at case a) and b) when p ≈ (0.6,0.3).

B.4 Temporal Models

B.4.1 Random Walk Order 1 (RW1)

In this case, θℓ, ℓ= 2, . . .T ·Y can be defined as

θℓ = θℓ−1 + εℓ (B.4.1)
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where εℓ ∼ N(0,σ2) are independent and identically distributed random noise effect terms. In a

Bayesian framework, θ1 can be assigned a vague prior (Fahrmeir and Lang, 2001). For T ·Y ≥ 3, the

conditional distributions of equation (B.4.1) can be written as

θℓ|θ−ℓ,σ
2 =



N(θℓ+1,σ
2) t = 1

N
(

θℓ−1+θℓ+1
2 , σ2

2

)
t = 2, . . . ,(T ·Y )−1

N(θℓ−1,σ
2) t = T ·Y

B.4.2 Random Walk Order 2 (RW2)

In this case, θℓ, T ·Y ≥ 3, ℓ= 3, . . . ,T ·Y can be defined as

θℓ = 2θℓ−1 −θℓ−2 + εℓ (B.4.2)

where εℓ ∼ N(0,σ2) are iid noise effect terms. Vague priors can be assigned to θ1 and θ2. Like the

RW1 model, the RW2 model (equation (B.4.2)) can be defined as a set of conditional probability

distributions
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θℓ|θ−ℓ,σ
2 =



N(2θℓ+1 −θℓ+2,σ
2) t = 1

N
(

2θℓ−1+4θℓ+1−θℓ+2
5 , σ2

5

)
t = 2

N
(

−θℓ−2+4θℓ−1+4θℓ+1−θℓ+2
6 , σ2

6

)
t = 3, . . . ,(T ·Y )−2

N
(

−θℓ−2+4θℓ−1+2θℓ+1
5 , σ2

5

)
t = (T ·Y )−2

N(−θℓ−2 +2θℓ−1,σ
2) t = T ·Y

B.5 Simulation Study

For case 1. a) 55000 MCMC iterations, burn-in of 10000 and thinning of 20 was used at both levels

of detection, and for case 1. b) 55000 MCMC iterations, burn-in of 10000 and thinning of 20 was

used at high detection level while 150000 MCMC iteration, burn-in of 35000, thinning of 20 was

used at low detection level. For case 2. a) and b) 55000 MCMC iterations, burn-in of 10000 and

thinning of 20 was used at the high detection level while 150000 MCMC iterations, burn-in of 35000,

thinning of 20 was used at the low detection level. In both cases, 2 MCMC chains were run and

convergence was assessed using the Gelman-Rubin statistic (Rhat) which compares within-chain

variance to between-chain variance (Gelman and Rubin, 1992). Rhat value below 1.1 indicated

convergence.
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B.5.1 Case 1. a)

Table B.3 Case 1. a) simulation results for p ≈ 0.6.

Model Parameters Median Coverage Residual Mean Square Relative Bias

DP β0 0.754 92 0.069 0.005

β1 1.260 94 0.024 0.008

β2 0.199 96 0.109 −0.001

β3 2.005 92 0.022 0.003

β4 −0.005 90 − −

β5 −0.597 88 −0.046 −0.004

β6 0.494 96 0.079 −0.012

β7 −0.999 92 −0.054 −0.001

β8 −0.005 94 − −

λ 104.511 94 0.104 0.045

RW1 β0 0.744 92 0.076 −0.008

β1 1.254 96 0.028 0.003

β2 0.204 94 0.118 0.021

β3 1.999 98 0.021 −0.000

β4 −0.002 96 − −

β5 −0.602 100 −0.040 0.002

β6 0.509 98 0.100 0.018

β7 −0.986 96 −0.062 −0.014

β8 0.008 88 − −

λ 91.542 92 0.1222 −0.084

σ 1.011 98 0.158 0.012
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Table B.4 Case 1. a) simulation results for p ≈ 0.3.

Model Parameters Median Coverage Residual Mean Square Relative Bias

DP β0 −1.493 96 −0.030 −0.004

β1 1.252 98 0.024 0.002

β2 0.203 98 0.114 0.015

β3 2.017 96 0.020 0.008

β4 0.003 94 − −

β5 −0.602 98 −0.042 0.004

β6 0.493 100 0.067 −0.012

β7 −1.009 98 −0.060 0.009

β8 −0.004 96 − −

λ 106.546 94 0.121 0.065

RW1 β0 −1.485 96 −0.048 −0.009

β1 1.246 96 0.030 −0.003

β2 0.202 96 0.122 0.013

β3 2.002 98 0.024 0.001

β4 −0.004 94 − −

β5 −0.603 94 −0.056 0.004

β6 0.483 98 0.103 −0.034

β7 −1.011 96 −0.076 0.011

β8 0.009 90 − −

λ 93.803 92 0.123 −0.062

σ 0.964 100 0.161 −0.035
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(a) DP p ≈ 0.6
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(b) DP p ≈ 0.3
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(c) RW1 p ≈ 0.6
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(d) RW1 p ≈ 0.3

Fig. B.2 Case 1. a) Population size (N) median relative bias obtained from DP and RW1 model when
p ≈ (0.6,0.3).
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B.5.2 Case 1. b)

Table B.5 Case 1. b) Simulation results for p ≈ 0.6 for the DP model.

Model Parameters Median Coverage Residual Mean Square Relative Bias

Fixed β0 −2.735 0 4.607 −4.647

β2 0.042 2 0.776 −0.787

β3 0.492 0 0.747 −0.754

β4 0.001 60 − −

β5 −0.151 0 −0.747 −0.747

β6 −0.251 0 −0.735 −0.749

β8 0.027 46 − −

λ 1162.675 0 11.093 10.626

Mixed β0 0.890 78 0.294 0.187

β2 0.207 94 0.445 0.036

β3 1.993 96 0.062 −0.003

β4 −0.004 100 − −

β5 −0.593 96 −0.145 −0.012

β6 −0.917 96 −0.222 −0.083

β8 0.103 86 − −

λ 106.501 94 0.117 0.065
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Table B.6 Case 1. b) Simulation results for p ≈ 0.3 for the DP model.

Model Parameters Median Coverage Residual Mean Square Relative Bias

Fixed β0 −3.085 2 −1.017 1.057

β2 0.082 4 0.647 −0.544

β3 0.912 0 0.542 −0.544

β4 −0.003 46 − −

β5 −0.268 0 −0.541 −0.554

β6 −0.457 0 −0.532 −0.543

β8 0.008 44 − −

λ 800.167 0 7.553 7.002

Mixed β0 −1.108 34 −0.273 −0.261

β2 0.202 90 0.506 0.011

β3 2.032 92 0.065 0.016

β4 −0.008 100 − −

β5 −0.609 98 −0.148 0.016

β6 −1.088 94 −0.213 0.088

β8 0.090 92 − −

λ 112.898 92 0.188 0.129
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Table B.7 Case 1. b) Simulation results for p ≈ 0.6 for the RW1 model.

Model Parameters Median Coverage Residual Mean Square Relative Bias

Fixed β0 −2.432 0 4.105 −4.243

β2 0.051 4 0.728 −0.744

β3 0.508 0 0.723 −0.745

β4 0.009 56 - −

β5 −0.156 2 −0.731 −0.740

β6 −0.286 0 −0.708 −0.713

β8 0.002 62 − −

λ 815.879 6 7.709 7.158

σ 0.984 94 0.232 −0.016

Mixed β0 0.888 90 0.248 0.018

β2 0.209 98 0.451 0.046

β3 1.952 96 0.060 −0.023

β4 −0.018 90 − −

β5 −0.574 98 −0.147 −0.043

β6 −0.880 86 −0.257 −0.120

β8 0.089 88 − −

λ 91.641 90 0.122 −0.084

σ 1.002 96 0.171 0.002
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Table B.8 Case 1. b) Simulation results for p ≈ 0.3 for the RW1 model.

Model Parameters Median Coverage Residual Mean Square Relative Bias

Fixed β0 −2.789 0.04 −0.872 0.859

β2 0.010 12 0.593 −0.502

β3 0.971 0 0.509 −0.514

β4 0.012 50 − −

β5 −0.292 2 −0.523 −0.512

β6 −0.507 0 −0.522 −0.493

β8 −0.003 50 − −

λ 537.499 0 5.519 4.375

σ 0.982 90 0.238 −0.017

Mixed β0 −1.169 42 −0.231 −0.220

β2 0.208 96 0.507 0.043

β3 1.953 80 0.078 −0.023

β4 0.008 94 − −

β5 −0.574 92 −0.166 −0.042

β6 −1.042 94 −0.207 0.042

β8 −0.129 98 − −

λ 90.324 90 0.139 −0.097

σ 1.012 94 1.532 0.012
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(a) DP Fixed p ≈ 0.6
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(b) DP Mixed p ≈ 0.6
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(d) DP Mixed p ≈ 0.3

Fig. B.3 Case 1. b) population size median relative bias obtained from DP model when p ≈ (0.6,0.3).
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(b) RW1 Mixed p ≈ 0.6
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(c) RW1 Fixed p ≈ 0.3
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(d) RW1 Mixed p ≈ 0.3

Fig. B.4 Case 1. b) population size median relative bias obtained from the RW1 model when
p ≈ (0.6,0.3).



144 Supplementary material for A new modelling framework for roost count data.

B.5.3 Case 2

Table B.9 Case 2 simulation results for BGLSS for p ≈ 0.6.

Case Parameters Median Coverage Residual Mean Square Relative Bias

a) β0 0.748 96 0.075 −0.003

β1 1.251 96 0.028 0.001

β2 0.203 92 0.119 0.016

β3 1.998 96 0.021 −0.001

β4 0 2 − −

β5 −0.601 98 −0.040 0.002

β6 0497 100 0.102 −0.006

β7 −0.980 96 −0.063 −0.019

β8 0.003 90 − −

λ 91.873 90 0.126 −0.081

σ 1.011 98 0.159 0.011

b) β0 0.923 90 0.284 0.231

β2 0.120 74 0.711 −0.399

β3 1.954 96 0.059 −0.023

β4 0 70 − −

β5 −0.563 96 −0.156 −0.062

β6 −0.872 86 −0.289 −0.128

β8 0.067 98 − −

λ 91.789 90 0.125 −0.082

σ 1.003 98 0.170 0.003
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Table B.10 Case 2 simulation results for BGLSS for p ≈ 0.3.

Case Parameters Median Coverage Residual Mean Square Relative Bias

a) β0 −1.504 96 −0.043 0.003

β1 1.242 96 0.031 −0.006

β2 0.199 96 0.118 −0.001

β3 1.996 96 0.024 −0.002

β4 0 4 − −

β5 −0.597 94 −0.054 -0.004

β6 0.484 98 0.105 −0.032

β7 −0.981 90 −0.076 −0.019

β8 0.021 90 − −

λ 94.010 92 0.122 −0.059

σ 0.971 100 0.169 −0.028

b) β0 −1.351 94 −0.126 −0.099

β2 0.098 76 0.746 −0.505

β3 1.918 80 0.084 −0.040

β4 0 72 − −

β5 −0.555 94 −0.175 −0.074

β6 −0.846 90 −0.296 −0.153

β8 0.018 98 − −

λ 90.558 86 0.142 −0.094

σ 1.027 100 1.562 0.027



146 Supplementary material for A new modelling framework for roost count data.

0 5 10 15 20 25 30 35

-0
.0
05

0.
00
0

0.
00
5

0.
01
0

Index

y

(a) Case 2. a) p ≈ 0.6

0 5 10 15 20 25 30 35

-0
.0
10

-0
.0
05

0.
00
0

0.
00
5

Index
y

(b) Case 2. b) p ≈ 0.6
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(c) Case 2. a) p ≈ 0.3
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(d) Case 2. b) p ≈ 0.3

Fig. B.5 Population size median relative bias obtained for case 2 when p ≈ (0.6,0.3).



B.6 Case Studies 147

B.6 Case Studies

B.6.1 Ecuadorian Amazon Parrots
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(a) Population size
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(b) GOF

Fig. B.6 Amazon parrots case study. (a) The black dots represent the posterior mean population size
each month and the thick bands represent the corresponding 95% posterior credible interval. (b) The
diamonds are the observed monthly rates and the thick bands represent the 95% intervals of simulated
monthly rates. In both cases, the x-axis represents the months in each year with months ending in 1, 2,
and 3 denoting months in the 1st, 2nd, and 3rd year, respectively.

Rain, storm, and time of sampling are identified as important predictors for observation error with pos-

terior inclusion probabilities (PIP): 0.587,0.734 and 0.7548 respectively. Rain, storm, and surveying

in PM instead of AM have an estimated positive effect on the probability of detection.
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(b) GOF

Fig. B.7 Amazon parrots case study. (a) The black dots represent the posterior mean population size
each month and the thick bands represent the corresponding 95% posterior credible interval. (b) The
diamonds are the observed monthly rates and the thick bands represent the 95% intervals of simulated
monthly rates. In both cases, the x-axis represents the months in each year with months ending in 1, 2,
and 3 denoting months in the 1st, 2nd, and 3rd year, respectively.

Rain, storm, and time of sampling are identified as important predictors for observation error with

posterior inclusion probabilities (PIP): 0.531,0.573 and 0.637 respectively. Rain, storm, and surveying

in PM instead of AM have an estimated positive effect on the probability of detection.
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(b) GOF

Fig. B.8 Amazon parrots case study. (a) The black dots represent the posterior mean population size
each month and the thick bands represent the corresponding 95% posterior credible interval. The
x-axis represents the months in each year with months ending in 1, 2 and 3 denoting months in the
1st, 2nd and 3rd year, respectively. (b) The diamonds are the observed monthly rates and the thick
bands represent the 95% intervals of simulated monthly rates. In both cases, the x-axis represents the
months in each year with months ending in 1, 2, and 3 denoting months in the 1st, 2nd, and 3rd year,
respectively.

Rain, storm, and time of sampling are identified as important predictors for observation error with

posterior inclusion probabilities (PIP): 0.519,0.651 and 0.7214 respectively. Storm and surveying in

PM instead of AM have an estimated positive effect on the probability of detection while rain has an

estimated negative effect.
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(b) GOF

Fig. B.9 Amazon parrots case study-AR1. (a) The black dots represent the posterior mean population
size each month and the thick bands represent the corresponding 95% posterior credible interval. The
x-axis represents the months in each year with months ending in 1, 2 and 3 denoting months in the
1st, 2nd and 3rd year, respectively. (b) The diamonds are the observed monthly rates and the thick
bands represent the 95% intervals of simulated monthly rates. In both cases, the x-axis represents the
months in each year with months ending in 1, 2, and 3 denoting months in the 1st, 2nd, and 3rd year,
respectively.

Rain, storm, and time of sampling are identified as important predictors for observation error with

posterior inclusion probabilities (PIP): 0.566,0.622 and 0.693 respectively. Storm and surveying in

PM instead of AM have an estimated positive effect on the probability of detection while rain has an

estimated negative effect.
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B.6.2 Orange-Winged Amazon Parrots
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(b) GOF

Fig. B.10 Orange-winged Amazon parrots case study, DP model results. (a) The black dots represent
the posterior mean population size each week and the thick bands represent the corresponding 95%
posterior credible interval. (b) The diamonds are the observed weekly rates and the thick bands
represent the 95% intervals of simulated weekly rates.

Three clusters weeks (1-31), (32-40, 49-50) and (41-48) were found. For variable selection, only rain

was found to be a significant predictor of observation error with a PIP of 0.511.
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(b) GOF

Fig. B.11 Orange-winged Amazon parrots case study, RW2 model results. (a) The black dots represent
the posterior mean population size each week and the thick bands represent the corresponding 95%
posterior credible interval. (b) The diamonds are the observed weekly rates and the thick bands
represent the 95% intervals of simulated weekly rates.

Cloud, wind, rain, and time of sampling were found to be significant predictors of observation error

with PIP of 0.533,0.514,0.504, and 0.528 respectively.
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(b) GOF

Fig. B.12 Orange-winged Amazon parrots case study, AR1 model results. (a) The black dots represent
the posterior mean population size each week and the thick bands represent the corresponding 95%
posterior credible interval. (b) The diamonds are the observed weekly rates and the thick bands
represent the 95% intervals of simulated weekly rates.
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For variable selection, only rain was found to be a significant predictor of observation error with PIP

of 0.508.
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Appendix C

Supplementary material for Modelling

disease dynamics from spatially explicit

capture-recapture data

C.1 Simulation Study
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Fig. C.1 Local density violin plot for each scenario considered: (1- high N, high density effect, 2-
high N, low density effect, 3- low N, high density effect,4- low N, low density effect). Dots are the
median values
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(a) High population size high density effect.
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(b) High population size low density effect.
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(c) Low population size high density effect.
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(d) Low population size low density effect.

Fig. C.2 Expected ψit for each case considered.
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Table C.1 High population size. Posterior median with values within brackets showing the 95%
quantiles.

Density effect

High Low

Parameter RB CV Coverage RB CV Coverage

γ1 0.04(−0.08,0.190) 0.08(0.07,0.09) 90 0.02(−0.16,0.13) 0.08(0.07,0.09) 90

γ2 0.03(−0.24,0.28) 0.19(0.14,0.26) 100 0.08(−0.17,0.34) 0.18(0.15,0.23) 100

γ3 −0.05(−0.56,0.31) 0.25(0.19,0.48) 90 −0.01(−045,0.42) 0.25(0.2,0.43) 90

γ4 −0.07(−0.19,0.11) 0.21(0.19,0.26) 100 −0.03(−0.31,0.42) 0.22(0.19,0.27) 90

φdi=0 −0.01(−0.04,0.02) 0.20(0.01,0.2) 80 −0.00(−0.03,0.04) 0.02(0.01,0.02) 90

φdi=1 0.02(−0.02,0.04) 0.03(0.02,0.03) 100 −0.03(0.09,0.02) 0.03(0.03,0.05) 80

p0di=0 −0.04(−0.18,0.08) 0.08(0.07,0.09) 90 0.02(−0.10,0.09) 0.06(0.5,0.07) 90

p0di=1 −0.03(−0.08,0.07) 0.06(0.05,0.07) 100 0.00(−0.08,0.08) 0.08(0.07,0.09) 100

σdi=0 0.02(−0.04,0.06) 0.03(0.03,0.03) 100 −0.00(−0.04,0.05) 0.03(0.02,0.03) 90

σdi=1 0.01(−0.05,0.03) 0.02(0.02,0.03) 90 0.00(−0.03,0.01) 0.03(0.03,0.04) 100

δ 0.02(−0.42,0.44) 0.25(0.18,0.34) 80 0.15(−0.38,0.52) 0.23(0.17,0.31) 90

β0 −0.36(−0.49,−0.19) 0.13(0.11,0.14) 30 −0.18(−0.28,0.01) 0.09(0.08,0.13) 40

β1 0.21(−0.61,0.94) 0.47(0.38,1.73) 100 −0.61(−1.88,1.69) 3.15(0.69,9.57) 100

qDPP
11 −0.01(−0.05,0.04) 0.04(0.04,0.04) 100 −0.00(−0.04,0.05) 0.04(0.04,0.05) 100

qIfn
11 −0.01(−0.04,0.03) 0.03(0.02,0.3) 100 −0.01(−0.05,0.02) 0.03(0.02,0.04) 100

qCul
11 −0.03(0.27,0.12) 0.14(0.12,0.16) 90 −0.02(−0.27,0.25) 0.16(0.14,0.19) 90

qDPP
00 −0.01(−0.02,0.02) 0.01(0.01,0.02) 100 0.01(−0.00,0.02) 0.01(0.01,0.01) 100

qIfn
00 0.00(−0.03,0.02) 0.02(0.01,0.02) 100 0.00(−0.03,0.01) 0.01(0.01,0.02) 90

qCul
00 −0.00(−0.00,−0.00) 0.00(0.00,0.00) 100 −0.00(−0.00,−0.00) 0.00(0.01,0.01) 100

N1:T 0.01(−0.08,0.09) 0.05(0.04,0.08) 100 −0.00(0.09,0.07) 0.06(0.05,0.08) 100

Nu
1:T −0.05(−0.17,0.11) 0.09(0.07,0.11) 100 0.00(−0.13,0.11) 0.08(0.06,0.10) 100

Ni
1:T 0.04(−0.19,0.32) 0.08(0.06,0.23) 100 0.00(−0.23,0.16) 0.10(0.08,0.23) 100
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Table C.2 Low population size. Posterior median with values within brackets showing the 95%
quantiles.

Density effect

High Low

Parameter RB CV Coverage RB CV Coverage

γ1 −0.02(−0.26,0.12) 0.12(0.11,0.14) 90 −0.04(−0.19,0.24) 0.12(0.11,0.14) 90

γ2 0.18(−0.10,0.61) 0.26(0.18,0.30) 90 0.11(−0.21,0.33) 0.26(0.22,0.43) 100

γ3 −0.04(−0.48,0.44) 0.38(0.27,0.63) 100 −0.09(−0.27,0.93) 0.38(0.27,0.46) 90

γ4 0.01(−0.31,0.52) 0.35(0.31,0.42) 100 −0.14(0.43,0.65) 0.36(0.29,0.55) 90

φdi=0 −0.01(−0.02,0.02) 0.03(0.02,0.03) 100 0.01(−0.04,0.03) 0.02(0.02,0.03) 100

φdi=1 0.02(−0.06,0.04) 0.04(0.03,0.05) 100 0.01(−0.07,0.07) 0.05(0.04,0.06) 100

p0di=0 −0.04(−0.12,0.16) 0.09(0.08,0.10) 100 −0.02(−0.18,0.08) 0.08(0.08,0.09) 90

p0di=1 −0.07(−0.18,0.13) 0.11(0.09,0.13) 100 0.00(−0.19,0.24) 0.11(0.10,0.13) 90

σdi=0 0.01(−0.05,0.06) 0.04(0.03,0.05) 100 0.01(−0.04,0.06) 0.03(0.03,0.04) 90

σdi=1 0.01(−0.05,0.07) 0.04(0.04,0.05) 100 0.01(−0.03,0.09) 0.05(0.04,0.05) 100

δ 0.11(−0.24,0.72) 0.33(0.23,0.38) 90 −0.16(−0.31,0.43) 0.34(0.28,0.44) 100

β0 −0.12(−0.26,0.16) 0.22(0.17,0.33) 90 −0.03(−0.28,0.41) 0.21(0.14,0.31) 100

β1 0.64(−0.86,2.24) 1.07(0.71,8.52) 100 1.09(−8.64,11.57) 1.58(0.58,12.78) 90

qDPP
11 −0.01(−0.03,0.04) 0.05(0.04,0.05) 100 −0.00(−0.03,0.04) 0.05(0.05,0.05) 100

qIfn
11 0.01(−0.07,0.04) 0.04(0.034,0.05) 100 0.00(−0.07,0.03) 0.04(0.04,0.05) 90

qCul
11 −0.07(−0.36,0.25) 0.22(0.19,0.27) 90 −0.08(−0.32,0.58) 0.24(0.18,0.30) 90

qDPP
00 0.00(−0.01,0.02) 0.02(0.01,0.02) 100 0.00(−0.02,0.03) 0.02(0.01,0.02) 90

qIfn
00 −0.01(−0.04,0.04) 0.02(0.01,0.024) 80 −0.00(−0.03,0.01) 0.02(0.01,0.02) 100

qCul
00 −0.00(−0.01,−0.00) 0.00(0.00,0.01) 90 −0.00(−0.01,−0.00) 0.00(0.00,0.00) 90

N1:T 0.02(−0.11,0.13) 0.08(0.06,0.12) 100 −0.01(−0.14,0.16) 0.08(0.07,0.12) 100

Nu
1:T −0.02(−0.18,0.16) 0.11(0.09,0.15) 100 −0.01(−0.19,0.20) 0.11(0.09,0.14) 100

Ni
1:T 0.05(−0.17,0.41) 0.13(0.10,0.31) 100 0.02(−0.21,0.37) 0.14(0.11,0.33) 100
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Fig. C.3 RB and CV of population size, N, at high and low density effect levels (β1 = 0.25, and
β1 = 0.1, respectively) at high and low levels of population size (N ≈ (400,200) respectively).
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Fig. C.4 RB and CV of Uninfected population size, NU , at high and low density effect levels (β1 = 0.25,
and β1 = 0.1, respectively) at high and low levels of population size (N ≈ (400,200) respectively).
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Fig. C.5 RB and CV of Infected population size, NI , at high and low density effect levels (β1 = 0.25,
and β1 = 0.1, respectively) at high and low levels of population size (N ≈ (400,200) respectively).
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Ignoring Disease transmission heterogeneity
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Fig. C.6 RB and CV of Uninfected population size, NU , at high population size data (N ≈ 400), high
and low density effect levels (β1 = 0.25, and β1 = 0.1, respectively) for two models: our proposed
model, M(ψℓ) and the model that does not account for density-dependence in disease transmission,
M(ψ0).
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Fig. C.7 RB and CV of Uninfected population size, NU , at low population size data (N ≈ 200), high
and low density effect levels (β1 = 0.25, and β1 = 0.1, respectively) for two models: our proposed
model, M(ψℓ) and the model that does not account for density-dependence in disease transmission,
M(ψ0).
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Fig. C.8 RB and CV of Infected population size, NI , at high population size data (N ≈ 400), high and
low density effect levels (β1 = 0.25, and β1 = 0.1, respectively) for two models: our proposed model,
M(ψℓ) and the model that does not account for density-dependence in disease transmission, M(ψ0).
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Fig. C.9 RB and CV of Infected population size, NI , at low population size data (N ≈ 200), high and
low density effect levels (β1 = 0.25, and β1 = 0.1, respectively) for two models: our proposed model,
M(ψℓ) and the model that does not account for density-dependence in disease transmission, M(ψ0).

C.2 Real Data Analysis

C.2.1 Badger Movement

To better understand the movement of badgers between setts, we use static directed network graphs.

Networks are made up of nodes that are connected by edges, where nodes can represent individuals,

groups, classes of individuals, or other entities and edges generally represent the relationship between

two nodes and can be used to describe how often they connect or interact. In a directed network,

edges represent the direction of the relationship between nodes. In a static network, nodes and edges
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do not vary temporally. Hence, static directed networks are networks where edges are directional and

the network structure does not change dynamically over time.

We define the nodes as the setts and edges representing the frequency of movement of a badger

from one sett to another. We produce static directed networks for each badger year from 2010-2018.
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Fig. C.12 Static directed Network graph plot for badger years 2010-2011, 2011-2012, 2012-2013,
2013-2014 ,2014-2015, 2015-2016, 2016-2017, and 2017-2018 respectively.
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In Fig. C.12 the nodes/setts are representative of their true geographical locations. It should also be

noted that there are different nodes in some sub-Figs. This is due to the fact that some setts were not

active in a particular badger year. The edges represent the frequency/strength of movement between

setts, for example, there is edge weight of 1 connecting Old Oak and Nettle. This represents that

a badger was originally caught at Old Oak and then caught at Nettle. Hence, these network plots

indicated that badgers seldom move between setts.

C.2.2 Priors Settings

δ ∼ Uniform(0,1),β0 ∼ Normal(0,0.1),β1 ∼ Normal(0,0.1),qDPP
11 ∼ Beta(127.02,131.12), qDPP

00 ∼

Beta(10.22,1.68),qIfn
11 ∼Beta(26.41,7), qIfn

00 ∼Beta(9.95,1.6), qCul
11 ∼Cul(2.25,12.26),qCul

00 ∼Beta(60.61,1.06),

γt ∼ Uniform(0,1) for t = 1, . . . ,T , logit(φdi) = αdi ,αdi ∼ Normal(0,0.1), logit(p0di
) = α1di

,α1di
∼

Normal(0,0.1),σdi ∼ Uniform(0,15).

C.2.3 Demographic Parameters

In Figs. C.13, C.14, C.15, C.16, the black dot is the posterior median and the thick line represents the

95% credible interval. Fig. C.17 displays the standardized density maps for population density across

years in spring each year, where the black dots represent the setts trapped.
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Fig. C.13 Caterpillar plots of posterior samples for survival probabilities and recruitment probabilities.
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Fig. C.14 Caterpillar plots of posterior samples for baseline detection probabilities and for scale
parameter (σ ).
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Fig. C.15 Caterpillar plots of posterior samples for β0 and β1
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Fig. C.16 Standardized Density maps for density across years in Spring each year.

2016-2017 2017-2018

2014-2015 2015-2016

Level

(0.000, 0.125]
(0.125, 0.250]
(0.250, 0.375]
(0.375, 0.500]
(0.500, 0.625]
(0.625, 0.750]
(0.750, 0.875]
(0.875, 1.000]

Fig. C.17 Standardized Density maps for density across years in Spring each year, where the black
dots represent the trapping location.
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