Software Self-adaptation and Industry:
Blame MAPE-K

Rogério de Lemos
University of Kent, UK
r.delemos @kent.ac.uk

Abstract—If software self-adaptation has to be widely adopted
by industry, we need to think big, embrace complexity, provide
easily deployed and cost-effective solutions, and justify trust. On
fairness, MAPE-K should not solely take the blame. MAPE-K
is one of the many interpretations of feedback loops apply to
systems for which mathematical models - mostly based on control
theory, are difficult to be synthesised. MAPE-K has provided
a basic and widely accepted framework for justifying the de-
ployment of feedback loops in software systems. Undoubtedly,
it has helped to promote and advance the whole area, but now
more concrete and resilient solutions are necessary. This position
paper argues that, first, industry has been adopting software
self-adaptation, perhaps in a way that may not be recognised by
the academic community, second, generic solutions are unfeasible
since every software system brings its own challenges, and thirdly,
the generic stages associated with a feedback loop, like MAPE-K,
are insufficient to solve specific challenges.

Index Terms—feedback loop, MAPE-K, micro-services,
human-in-the-loop, complexity, modelling, resilience

I. INTRODUCTION

Although there exists a wide range of reasons for industry
to be slow in adopting processes, techniques and mechanisms
emerging from the self-adaptive software systems community,
in this position paper, we focus on three fundamental reasons,
namely, industrial pragmatism, nature of software, and MAPE-
K loop .

The incentives for embracing self-adaptation can be con-
sidered from two perspectives: development and operational.
From the development perspective, part of the software evo-
lution lifecycle is shifted into operational time, and this has
implications on how software is developed, deployed and
evolved. From the operational perspective, it is the ability of
software to handle uncertainty at run-time. While the latter is
usually considered as the main benefit of self-adaptation, the
former is the price that needs to be paid to obtain that benefit
since software needs to be built in a different way. The inertia
for industry to be more receptive towards self-adaptation is
associated with the fact that software development practices
need to be changed in a cost effective way.

Before expanding the three identified reasons for industry
to be slow in embracing self-adaptation, we provide below a
brief introduction to these. The first reason is what we identify
as industrial pragmatism, that is, if it is not good enough why
bother to change? This is not restricted to the quality of the

IPurposely keeping away for those identified by ChatGPT: complexity, cost,
reliability, lack of standards and trust.

solutions, but also depends on the timing of the solutions.
Integrating new technologies into an industry can often take
time due to the additional costs involved, which can slow down
the realisation of the benefits.

The second reason that we identify is the nature of software.
Software can be incorporated or transformed into almost
anything, and to try to come up with generic solutions for
controlling a wide range of target software systems is a huge
enterprise.

Finally, the third reason is the MAPE-K loop. The quest
for implementing the four stages of the MAPE-K loop has
hindered the development of processes, techniques and mecha-
nisms for supporting self-adaptation. The end-to-end argument
between probes and effectors of the MAPE-K loop has steered
towards monolithic controllers, rather than flexible controllers
that would be more appropriate for self-adaptive software sys-
tems. The motivation for this is that, software self-adaptation
requires a wide range of specific tasks, and combination of
these, that goes beyond the abstract four stages of the MAPE-
K loop, which can be inspirational but not practical.

In the following, we delve in more detail into each of the
above identified reasons.

II. INDUSTRIAL PRAGMATISM

A key aspect of self-adaptive software systems is to cham-
pion the use of explicit feedback control loops for avoiding the
intricacies and risks of implicit feedback loops [5]. However,
software implementation of implicit feedback loops is quite
natural since these can easily be integrated into the software
systems. Abstracting away the controller from the targeting
system is challenging since it is quite difficult to separate, at
the code level, ‘what’ the software does from ‘how’ should
it be done [1]. Implicit control loops, in addition to be more
natural to code, they are cheaper and faster since they bundle
up the subject and its master, with a total disregard to technical
debt. On the other hand, explicit feedback control loops require
further system designs in which the manipulation of models
becomes a necessity, and this further complicates the case for
explicit feedback loops.

The reality is that, industry takes a more pragmatic approach
when developing software. Either they take the lead and come
up with their own solutions, or they are extremely selective
on what should be embraced. However, it is a mistake to put
in a single bucket all types of industries, and their approaches
to software development. There is a wide range of industries,



and each may face distinct goals and constraints, which usually
shape their pragmatics. Since software is making inroads into
a wide range of novel applications, those industries that rely
on software-based autonomy could be the first ones to embrace
self-adaptation based on explicit feedback loops.

The incorporation of a controller into a software system,
to make it self-adaptable, is something that needs to be
considered right from the software inception. It should be an
integral part of the system design, and not an afterthought.
Software can always be refactored [1], but this invariably
is one off situation. For a sustainable development of self-
adaptive software systems, there is the need for industry to
embrace the development of software systems that are truly
resilient.

In summary, it could be argued that industry has been quite
cautious in adopting some of the technologies coming out from
the engineering for self-adaptive software system community
perhaps because in their perception, these technologies do
not seem to bring significant benefits that justify industry to
change their practices. However, this may be revised if there is
a shift to move evolution costs to operational time that relies
on self-adaptation.

III. NATURE OF SOFTWARE

A key challenge when adapting software systems is that
each software has their own peculiarities in terms of its
structure, the services it provides, and the quality of these.
Since software lacks a strong mathematical underpinning, as
physical laws and rules of operation, it is difficult to synthesise
mathematical models that would allow to develop generic
solutions that could be easily manipulated. The search for a
formal underpinning has been the holy grail, in terms of safety
and security, when collecting formal evidence for building up
assurance cases [4].

Faced with a problem domain in which every system has its
own idiosyncrasies, we should not expect to be able to come up
with generic solutions. If there is no space for generic solutions
that can be adopted across different application domains or
systems, it becomes difficult for industry to embrace a new
technology that for many still has some drawbacks, mainly re-
garding assurances, when incorporating self-adaptation. Hence
it should not be a surprise if industry comes up with tailored
made solutions, depending on the application domain.

In summary, the nature of software hinders the search
for effective generic solutions that would enable controlling
software adaptation at run-time. Even if we had the ability
of manipulating formal representations that would enable the
synthesis of generic controllers, that would not be enough
since there are other layers on which these controllers depend.

IV. (NOT sO) INSPIRATIONAL MAPE-K Loop

Although MAPE-K loop, and all existing variants, have pro-
moted the use of feedback control loops in software systems,
they nevertheless trivialised the search for effective solutions.
The reason for this is in the details that each of the MAPE-K
stages abstracts from.

Some of the existing generic controllers, like Rainbow [3],
have been effective in controlling some of aspects of soft-
ware systems, which can either be structural or parametric.
However, if the evolutionary software lifecycle is mapped into
the four stages of the MAPE-K loop, new activities need
to be associated with each of the stages [2]. For example,
the analysis stage may include model checking or testing
architectural configurations, These specific activities that go
beyond the control of the target system, may need themselves
to be self-adaptive. The monolithic nature of the MAPE-K
loop has inspired current controllers, however these need to
be replaced by flexible structures that can be reconfigured
according to the needs of the target software system. For
industry, it would be easier to handle smaller controllers
that would enable flexible structures, rather than monolithic
complex controllers that rely on technologies that are not so
accessible.

In summary, although monolithic generic detectors will con-
tinue to be relevant for a certain class of problems, a promising
solution, for example, would be to implement controllers as
an ensemble of service-specific micro-controllers.

V. CONCLUSIONS

Whatever reasons there are for industry not to adopt the
scientific and technological contributions emanating, mainly,
from the self-adaptive software systems community, we shall
not be dishearten. We should strive to continue to find new
ideas, and push the boundaries of knowledge in order to
enable, in a future not too far, the successful industrial deploy-
ment of self-adaptive software systems that are resilient. For
this to be achieved, it is fundamental to engage with industry to
understand what is really important for them. However, if after
all the effort little progress is made, we shall wait, patiently,
for sure our time will arrive.

As a concrete outcome of this exercise, of questioning why
industry has been reluctant in embracing the contributions
from the community of self-adaptive software systems, we
should at least be able to identify other reasons beyond what is
currently accepted, and come up with pathways for confronting
challenges ahead.

REFERENCES

[1] J. Camara, P. Correia, R. de Lemos, D. Garlan, P. Gomes, B. R. Schmerl,
and R. Ventura. Incorporating architecture-based self-adaptation into an
adaptive industrial software system. J. Syst. Softw., 122:507-523, 2016.

[2] R. de Lemos and P. Potena. Chapter 14 - identifying and handling
uncertainties in the feedback control loop. In I. Mistrik, N. Ali,
R. Kazman, J. Grundy, and B. Schmerl, editors, Managing Trade-Offs
in Adaptable Software Architectures, pages 353—-367. Morgan Kaufmann,
Boston, 2017.

[3] D. Garlan, S.-W. Cheng, A.-C. Huang, B. R. Schmerl, and P. Steenkiste.
Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastruc-
ture. [EEE Computer, 37(10):46-54, 2004.

[4] P. J. Graydon, J. C. Knight, and E. A. Strunk. Assurance based
development of critical systems. In 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN’07), pages 347—
357, 2007.

[5] C. Perrow. Normal accidents. Basic Books, New York, NY, 1984.



