Egg Quality Index: A more accurate alternative to the Haugh unit to describe the internal quality of goose eggs

Valeriy G. Narushin a, b, **, Michael N. Romanov c, d, *, Attila Salamon e, f, John P. Kent g

a Research Institute for Environment Treatment, Zaporizhya, Ukraine
b Vita-Market Ltd, Zaporizhya, Ukraine
c School of Biosciences, University of Kent, Canterbury, UK
d L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk, Moscow Oblast, Russia
e Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
f ELTE NAP Canine Brain Research Group, Budapest, Hungary
g Ballyrichard House, Arklow, Co. Wicklow, Ireland

ARTICLE INFO

Keywords:
Goose eggs
Haugh unit
Egg quality index
Albumen index

ABSTRACT

Enhancing goose production for human consumption requires evaluating the quality of goose eggs based on their physical characteristics. Based on the theoretical and experimental studies, we developed two calculation formulae that enabled the computation of Egg Quality Index (EQI) as an alternative to the widely used Haugh unit (HU) score in assessing goose egg quality. In addition to the egg weight (W) and the height of thick albumen (H), this computation takes into account the indicators for the yolk, i.e., its diameter (d) and height (h). Depending on the research preferences when measuring d or h, one of the two proposed calculation equations can be employed. Using simulation methods that considered all possible combinations of W, H and d values, we created and analyzed a database of virtual goose eggs. As a result, we found that the use of EQI as compared to HU seems preferable due to the possibility to evaluate a greater number of options and nuances of variation in quality characteristics in goose eggs. The proposed novel index for defining the goose egg quality can be a promising and useful tool for linking structure and functionality in goose eggs and for further application in food and poultry industries.

1. Introduction

Contemporary goose farming is one of the leading segments of the poultry industry in the world that produces meat, liver and eggs for food (Kozák, 2021). Evaluation of the quality of goose eggs based on their physical properties is instrumental in enhancing the production, breeding and commercial use of geese (Tereshchenko et al., 2008; Romanov, 2018). In this respect, it seems important to employ and develop egg quality indices (Narushin, 2001) resulting from measuring, calculating and analyzing a suite of goose egg parameters and their interrelationships. This will be instrumental in tying together structure and functionality in goose eggs using novel experimental and modelling techniques.

1.1. Haugh unit as a quality index of egg interior

More than 85 years ago, an article by Raymond Haugh (1937) was published, in which the author presented a formula that enabled the mathematical expression of the quality of hen egg contents. It is undoubtedly an indispensable tool for both researchers and practitioners working in the poultry egg industry. Indeed, instead of purely descriptive characteristics, i.e., categorizing eggs as high quality, not so high quality or sometimes even bad quality, it enables egg quality gradation in a wide range. In addition, to calculate this, it was enough to identify only two physical properties, i.e., the egg weight (W) and the height of the thick albumen (H) when pouring the latter onto a flat surface and measuring H approximately in its center. Haugh (1937) proposed to refer to this index as the Haugh unit (HU).

Despite the wide popularity of this index, and perhaps because of it, a
number of publications appeared that criticized HU and/or were implied to improve it. Here, we did not aim to analyze the pros and cons of this index in detail, as we did this in our previous paper (Narushin et al., 2021a). Using goose eggs in the present study, we claim the deficiency of applying HU mainly because Haugh derived his formula from chicken eggs weighing from 42.5 to 62.5 g. However, the analysis of recent publications (e.g., Adamski et al., 2016; Dang et al., 2023; Gogoi et al., 2021; Kucharska-Gaca et al., 2022; Sari et al., 2019) shows that, despite such discrepancies, HU continues to be actively used as an indicator of goose egg quality. In this regard, there is great doubt about the adequacy of its use for goose eggs weighing at least three times more than that of chicken eggs (Narushin, 2001; Adamski et al., 2016; Dang et al., 2023; Kucharska-Gaca et al., 2022; Salamon & Kent, 2013, 2020).

1.2. EQI as an alternative to HU score

We decided to structure the theoretical foundations presented in this subsection in such a way as to make the derivation of EQI for goose eggs universal in terms of a similar derivation of this index for eggs of any other poultry species.

To make it easier to comprehend the logic of the authors when deriving mathematical dependencies and not constantly refer to our previous article (Narushin et al., 2021a); Narushin et al., 2021b number and/or were implied developed here specifically for goose eggs, akin to the Egg Quality Index (EQI) we previously deduced for chicken eggs (Narushin et al., 2021a). Some aspects in the derivation of mathematical dependencies will, however, be simplified and/or changed considering the differences in the morphological parameters of goose and chicken eggs, as well as the already accumulated experience in using EQI. Also, the goal of developing a quality index in this study was reduced to determining dependencies for calculating V_{ua} depending on W of goose eggs, as well as to analyze its possible use in comparison with HU.

2. Materials and methods

A total of 94 goose eggs originating from the Kuban, Gorky, Italian White, and Obrostino Gray breeds were used to measure their physical parameters. In particular, the eggs were weighed (W, in g) using an electronic balance. Their length (L) and maximum breadth (B) were measured with a vernier caliper in cm. Egg volume (V, cm3) and surface area (S, cm2) were determined using the calculation formulae described by Narushin et al. (2021b).

The eggs were broken, their contents were poured onto a flat surface, and d and H were measured with a vernier caliper in cm. After that, the yolk of each egg was carefully separated from the egg white and weighed (W_y). The yolk volume (V_y) values were determined with an accuracy of 0.5 ml by placing it in a volumetric flask. Similar measurements were carried out with the thick albumen by separating it from the thin fraction, weighing (W_{ua}) and placing it in a volumetric flask to identify its volume (V_{ua}).

For possible subsequent analysis and determination of correlations, we also produced shell measurements. In particular, shell volume, V_s was determined by the Archimedes’ principle. Then, it was dried in air for a day and weighed (W_s). The respective values for the egg interior were evaluated as the difference between the corresponding values of the whole egg and the shell, i.e., interior volume, $V_i = V - V_s$ and interior weight, $W_i = W - W_s$. Interior density (D_i) was calculated as the ratio of W_i to V_i.

The values of HU were calculated according to Haugh’s formula (Haugh, 1936), and EQI with Eqn(7).

The results were processed using the STATISTICA 5.5 program (StatSoft, Inc./TIBCO, Palo Alto, CA, USA), as well as computational applications in Microsoft Excel. At the same time, the validity of the obtained relationships was assessed by the value of the correlation coefficient (R), and that of regression models using the coefficient of determination (R^2) followed by confirmation of their significance at the level $p < 0.05$.

$\text{AI} = \frac{H}{D_s}$,

(1)

To go from AI to EQI, we multiplied Eqn(1) by 100, as suggested by Wilhelm and Heiman (1936) for making AI integer. Also, fully agreeing with Haugh that taking the logarithm of the resulting function will make its use more convenient, due to the change of the data in a linear dependence, and multiplying the logarithm again by 100 to get rid of decimal places after the logarithm operation, we got the original formula for calculating EQI, on the basis of which further mathematical transformations were performed:

$EQI = 100 \log \left(\frac{100H}{D_s} \right)$.

(2)

The D_s parameter can be expressed in terms of the surface area of the thick albumen (A) that, in turn, can be determined by the formula for the area of a circle minus the area occupied by the yolk. If we denote the mean yolk diameter as d, then

$A = \frac{\pi}{4} (D_s^2 - d^2).$

(3)

Given that the volume of the thick albumen (V_{ua}) is the product of A and H, i.e.:

$V_{ua} = AH,$

(4)

Eqn(4) can be further rewritten as follows:

$V_{ua} = \frac{\pi H}{4} (D_s^2 - d^2).$

(5)

Then, D_s will be expressed by the following dependence:

$D_s = \sqrt{\frac{4V_{ua}}{\pi H} + d^2}.$

(6)

As a result, formula (2) will be rewritten as

$EQI = 100 \log \left(\frac{100H}{\sqrt{\frac{4V_{ua}}{\pi H} + d^2}} \right).$

(7)

where H and d are measured in cm and V_{ua} in cm3.
3. Results and discussion

3.1. EQI derivation and its comparison with HU

The appropriate measured and calculated goose egg variables are given in Table 1.

Based on the experimental data, the desired dependence \(V_{eq} = f(W) \) was obtained and is presented graphically in Fig. 1.

The trend line of the graphic dependence (Fig. 1) was approximated by the following linear equation:

\[
V_{eq} = 0.264W - 3.84, \quad (8)
\]

with \(R^2 = 0.366 \) (\(p < 0.05 \)).

Taking into account the obtained equation (8), Eqn(7) can be rewritten as follows:

\[
EQI = 100 \log \left(\frac{100H}{\frac{0.336W - 4.889}{W} + d^2} \right). \quad (9)
\]

We noted a close correlation between the HU and EQI values at the level of 0.879 (\(p < 0.05 \)), which is illustrated in the form of a graphic dependence in Fig. 2.

The scatter of points on the graph (Fig. 2) around the trend line indicated that, in the framework of the current experiment, EQI had a much larger data spread than HU. For example, the value \(HU \approx 86 \) corresponds to seven EQI values ranging between 92 and 105. That is, as expected, we achieved the effect of a more flexible approach to the graduation of goose egg quality categories. Therefore, within the framework of our example (gradation of goose egg quality categories), we can safely recommend both formulae for their effective practical use.

In our previous study (Narushin et al., 2021a) aimed at developing the EQI formula for chicken eggs, we suggested the possibility of its alternative calculation using \(h \). This parameter is exploited in the indicator of the yolk index \((h/d)\) that is often used as an additional index to HU or just \(h \) and indirectly characterizes the quality of the egg interior. In this respect, some researchers may incline (perhaps, “psychologically”) more to the use of the \(h \) value than \(d \) in the computation of EQI. Such conversions are fairly simple to implement using \(V_y \) and the spherical cap volume calculation formula (e.g., Weisstein, 2020):

\[
V_y = \frac{\pi h^2}{3} (3d^2 + 4h^2). \quad (10)
\]

From Eqn(10) it is easy to get the desired transformation of \(d \) to \(h \):

\[
d = \sqrt{\frac{8V_y}{\pi h} - \frac{4h^2}{3}}. \quad (11)
\]

Taking into account (11), Eqn(9) will take the following form:

\[
EQI = 100 \log \left(\frac{100H}{\sqrt{\frac{0.336W - 4.889}{W} + \frac{8V_y}{2\pi h} - \frac{4h^4}{3\pi h}}} \right), \quad (12)
\]

where \(H \) and \(h \) are given in cm, \(W \) in g, and \(V_y \) in cm\(^3\).

In order to recalculate EQI successfully and according to Eqn(12), we will need to determine \(V_y \) via \(W \), i.e., similar to what we did with \(V_{eq} \) (Eqn(8)). Using the results of our measurements, a graphical interrelation for these two parameters was built (Fig. 3).

The trend line of the graphic dependence (Fig. 3) was approximated by the following linear equation:

\[
V_y = 0.325W + 6.591, \quad (13)
\]

with \(R^2 = 0.170 \) (\(p < 0.05 \)).

A rather low coefficient of determination (0.17) immediately called into question the possibility of using the above recalculation reliably. Nevertheless, with the value of the coefficient of determination being significant, we decided to evaluate the resulting error in the practical application of Eqn(13). After substituting it into Eqn(12):

\[
EQI = 100 \log \left(\frac{100H}{\sqrt{\frac{0.336W - 4.889}{W} + \frac{0.82W - 16.784}{2\pi h} - \frac{4h^4}{3\pi h}}} \right), \quad (14)
\]

Visualization of the interrelationship between equations (9) and (14) is shown in Fig. 4.

The correlation coefficient between the results of EQI calculation according to the two derived formulae (Eqns (9) and (14)) was 0.941 (\(p < 0.05 \)), which, in principle, was quite sufficient for practical application. Therefore, we can safely recommend both formulae for their effective practical use.

3.2. Simulation-based testing of EQI

At the same time, we decided to test on a larger and more variable database than the parameters of the 94 eggs involved in the present experiment. In our previous study (Narushin et al., 2021a), we successfully applied the simulation method to create a database of virtual eggs with all possible combinations of parameters that can, even if extremely rarely, occur in actual eggs. In this investigation, we decided to apply the same approach with regard to the parameters of goose eggs. Based on measurements of the parameters of goose eggs obtained both in our research and other studies (e.g., Adamski et al., 2016; Dang et al., 2023; Gogoi et al., 2021; Kucharska-Gaca et al., 2022; Mazanowski & Adamski, 2006; Sari et al., 2019; Tilki & Inal, 2004), we defined the following variation intervals for the parameters included in Eqn(9) that was chosen as a reference for the simulation database:

\[
W = [100 \ldots 200] \text{ g},
\]

\[
H = [5 \ldots 14] \text{ mm},
\]

\[
\begin{array}{l}
\text{Shell weight, } W_s (\text{g}) \quad 11.00 \quad 19.20 \quad 15.29 \quad 1.59
\end{array}
\]

\[
\begin{array}{l}
\text{Egg density, } D (\text{g/cm}^3) \quad 0.977 \quad 1.052 \quad 1.093 \quad 0.015
\end{array}
\]

\[
\begin{array}{l}
\text{Shell height, } h (\text{cm}) \quad 1.71 \quad 2.55 \quad 2.02 \quad 0.14
\end{array}
\]

\[
\begin{array}{l}
\text{Shell diameter, } d (\text{cm}) \quad 4.77 \quad 8.70 \quad 7.46 \quad 0.83
\end{array}
\]

\[
\begin{array}{l}
\text{Thick albumen weight, } W_{ta} (\text{g}) \quad 20.44 \quad 40.46 \quad 32.20 \quad 4.57
\end{array}
\]

\[
\begin{array}{l}
\text{Thick albumen volume, } V_{ta} (\text{cm}^3) \quad 19.33 \quad 38.26 \quad 30.45 \quad 4.32
\end{array}
\]

\[
\begin{array}{l}
\text{Thick albumen height, } H (\text{mm}) \quad 5.20 \quad 12.00 \quad 8.92 \quad 1.55
\end{array}
\]

\[
\begin{array}{l}
\text{Haugh units, } HU \quad 40.32 \quad 96.15 \quad 77.72 \quad 12.13
\end{array}
\]

Table 1: Data of measured and calculated goose egg variables.
Dividing each interval into subgroups, with an interval of 10 g for \(W \), 1 cm for \(d \) and 1 mm for \(H \), respectively, we generated 600 various combinations of virtual goose eggs with all different values of parameters that are possible in nature. For each combination, the computation of \(EQI \) and \(HU \) was performed.

Having a virtual sample with parameters corresponding to all possible combinations of goose eggs, we tested the representativeness of our experimental sample, according to which two fundamental dependencies (Eqns (8) and (13)) were obtained that formed the basis of the \(EQI \) calculation formula. As such, the computation formula for minimum sample from Cochran (1977) and an assumption on the margin of error (\(E \)) were used. Its maximum value, according to our assumption, should not exceed 5% of our sample (94 eggs), that is, it should not exceed 5 eggs. Thus, our task was reduced to calculating the value of \(E \) and comparing it with the admissible one. In this case, the calculation formula for minimum sample from Cochran (1977) can be converted to the following equation:

\[
E = \frac{(N-n)\sigma^2}{(N-1)n},
\]

where \(N \) is the number of different combinations in the simulation model corresponding to virtual goose eggs that can be found in nature (in our case \(N = 600 \)); \(n \) is the number of eggs in our experimental sample (i.e., \(n = 94 \)); and \(\sigma \) is the standard deviation of the parameters of our interest calculated for virtual eggs from the simulation model.

Of the parameters we were interested in, i.e., \(V_{ta} \) (Eqn(8)) and \(V_y \) (Eqn(13)), the latter had a higher \(\sigma \) value of 10.29, while it was equal to 8.36 for \(V_{ta} \). Therefore, the \(\sigma \) value for \(V_y \) was used in Eqn(15). After substituting the values of the parameters, we obtained \(E = 0.95 \) (or 1%) that, with a margin, satisfied our condition on the 5% threshold. Thus,
the experimental sample of 94 goose eggs examined here can be considered representative for the achievement of our research goals.

We also decided to investigate in more detail the interrelationship between \(EQI \) and \(HU \) obtained from the computation of simulation data and presented this in the form of the respective graphical dependence in Fig. 5.

Analysis of the dependence and the data obtained shows that the range of the obtained parameters for \(EQI \) was between 54 and 136 units, while for \(HU \) between 30 and 109. Negative and/or very small \(HU \) values were noted for relatively large eggs with a lower albumen height. Such \(HU \) values were even theoretically impossible for chicken eggs (Narushin et al., 2021a). This fact suggests that the use of the \(HU \) score for eggs with a set of parameters typical for goose eggs was, in principle, unacceptable, since it can easily mislead when interpreting the results. It is likely that an egg of good quality may be rejected due to lower calculated \(HU \) values. In addition, the much wider variation in possible \(EQI \) values for the same \(HU \) result can be observed as the number of points above and below the trend line (yellow line in the graph of Fig. 5). This provides much greater opportunities for analysis of goose egg quality indicators and selection for influencing parameters.

There may be a possible reluctance in the research community to abandon the established \(HU \) method of assessing qualitative characteristics in the case of goose egg interior. In view of this, the recalculation of the values of egg parameters will be relevant, and therefore we have approximated the trend line (yellow line in the graph in Fig. 5) with the following equation:

\[
EQI = 57.39e^{0.007HU},
\]

with \(R^2 = 0.881 \) (\(p < 0.05 \)).

However, the computation using Eqn (9) or 14 will be much more accurate, allowing a more adequate analysis of goose egg quality.

We also wondered how the produced \(EQI \) for goose eggs differs from its counterpart obtained earlier for chickens (Narushin et al., 2021a). In order not to confuse these indices, we assigned them the corresponding...
indices: 'g' (EQI_g) conforming to goose eggs, and 'h' (EQI_h) to chicken. For the convenience of this comparison, we decided to use a simpler, from our point of view, formula (Eqn(9)) that included data on such egg parameters as W, H and d. A similar calculation equation for chicken eggs (Narushin et al., 2021a) is as follows:

$$EQI_h = 100 \log \left(\frac{100\sqrt{H}}{\sqrt{0.5W - 5 + d^2H}} \right)$$ \hspace{1cm} (17)

To ensure the adequacy of the comparative analysis, we carried out the computation of EQI_g and EQI_h for the parameters of goose eggs obtained from the experiment and simulation. The comparison results are shown in the form of graphical dependences in Fig. 6.

The dependence analysis (Fig. 6) demonstrated that both parameters (EQI_g and EQI_h) have a fairly close correlation: R = 0.947 (p < 0.05) for the experimental data, and R = 0.954 (p < 0.05) for those obtained as a result of simulation. However, the EQI_h values for parameters typical of goose eggs are somewhat outside the normal range (approximately 30–120 units). In addition, one should also take into account the factor of variability, i.e., the ratio of the standard deviation to the mean (in percent). The higher this indicator, the more capacity it has in displaying various values and nuances of qualitative egg characteristics. In our case, the variability of EQI_g values was ±19.7%, while for EQI_h it was ±8.6%, which testified again in favor of using the calculation formulæ inferred for goose eggs. However, the tightness of the relationship between the two indices enables to apply them for mutual recalculation. The resulting trend lines were approximated by the following equations:

- for the experimental data (Fig. 6A)
 $$EQI_g = 0.992EQI_h - 108.77,$$
 with $R^2 = 0.898 \ (p < 0.05);$ \hspace{1cm} (18)

- for the simulation data (Fig. 6B)
 $$EQI_g = 0.995EQI_h - 113.45,$$
 with $R^2 = 0.911 \ (p < 0.05).$

The resulting equations (18) and (19) seem quite similar. However, for possible practical use, we propose to choose Eqn (19) generated as a
result of mathematical processing of a much larger number of variations than the initial experimental data.

The derivation of both dependences for \(EQIg \) and \(EQIq \) was based on a similar approach and, first of all, depended on the association between \(V_a \) and \(V_r \) in relation to \(W \). Because of that, a high correlation between the two \(EQI \) indices suggests that this relationship has a similar trend for both types of eggs. If we assume that for the eggs of other poultry species, e.g., turkeys, quails, ducks, guinea fowls and ostriches, the same trend of functional change in \(V_a \) and \(V_r \) depending on \(W \) is observed, we can safely use the formulae for calculating \(EQIg \) and/or \(EQIq \) to assess their qualitative characteristics. It should only be borne in mind that the numerical values in those cases will go beyond the usual limits, since they depend on \(W \). The \(W \) values for eggs of various species can differ by tens and for some species even hundreds of times. In this regard, it would be more appropriate, in our opinion, to implement a similar approach for a more thorough and detailed derivation of the corresponding quality indices for eggs of other bird species.

4. Conclusions

The data of this study in relation to goose eggs are an extension of our previous work (Narushin et al., 2021a) on the derivation of \(EQI \), which can be an adequate alternative to the widely used \(HU \). Our present findings resulted from the conducted theoretical, analytical and experimental studies suggest that:

(i) The use of \(HU \) for research and analytical purposes related to assessing the quality of the goose egg interior is not advisable, since the results obtained may lead to false or not entirely reliable conclusions. As a result of the experiment using simulation methods, a number of eggs had extremely low or even negative \(HU \) values, although the use of \(EQI \) as an alternative calculation indicated their acceptable quality.

(ii) The developed quality index, \(EQI \), can be a worthy alternative to \(HU \) because, in addition to \(W \) and \(H \), it also evaluates the yolk parameters \(d \) or \(h \). Subsequently, \(EQI \) can be recalculated according to the Eqn (9) or 14 we proposed here depending on which yolk parameter is preferable for a given study.

(iii) The detailed and theoretically substantiated \(EQI \) derivation algorithm we proposed can be taken as a basis for developing a similar calculation of the quality indicators for eggs of other poultry species that differ in size from goose or chicken, e.g., for quail, duck or even ostrich eggs.

In all, the study outcome will be instrumental for linking structure and functionality in goose eggs using novel experimental and modelling approaches, as well as for further research in the fields of egg-related research, goose reproduction and production, food science, engineering and quality control.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

CRediT authorship contribution statement

Valeriy G. Narushin: conceptualization, data curation, formal analysis, investigation, methodology, resources, software, visualization, writing – original draft, writing – review & editing. Michael N. Romanov: project administration, validation, writing – review & editing. Attila Salamon: validation, writing – review & editing. John P. Kent: validation, writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

References

