Can Price Collars Increase Insurance Loss Coverage?

Pradip Tapadar

Co-authors: Indradeb Chatterjee, MingJie Hao, R. Guy Thomas.
26th International Congress on Insurance: Mathematics and Economics, July 2023

Agenda

- Introduction
- Model Framework
- Results
- Conclusions

Background

Adverse selection:

If insurers cannot charge risk-differentiated premiums, then:

- higher risks buy more insurance, lower risks buy less insurance,
- raising the pooled price of insurance,
- lowering the demand for insurance, usually portrayed as a bad outcome, both for insurers and for society.

In practice:

Policymakers often see merit in restricting insurance risk classification

- EU ban on using gender in insurance underwriting.
- Moratoria on the use of genetic test results in underwriting.

Motivation: Two risk-groups $\mu_{L}=0.01$ and $\mu_{H}=0.04$

Scenario 1: No adverse selection: Risk-differentiated premiums: $\pi_{L}=0.01$ and $\pi_{H}=0.04$

Scenario 2: Some adverse selection: Pooled premiums: $\pi_{L}=\pi_{H}=0.028$

Insurance loss coverage: Pooling vs full risk-classification

Demand elasticity of low risk-group
Question: Can setting an explicit price collar increase loss coverage?

Agenda

- Introduction
- Model Framework
- Results
- Conclusions

Risk-groups

Suppose a population can be divided into n risk-groups where:

- risk of losses: $\mu_{1}<\mu_{2}<\cdots<\mu_{n}$;
- population proportions: $p_{1}, p_{2}, \ldots, p_{n}$;
- premiums offered: $\pi_{1}, \pi_{2}, \ldots, \pi_{n}$;
- iso-elastic demand:

$$
d_{i}\left(\pi_{i}\right)=\tau_{i}\left(\frac{\mu_{i}}{\pi_{i}}\right)^{\lambda_{i}}, \quad i=1,2, \ldots, n
$$

- fair-premium demand: $\tau_{i}=d_{i}\left(\mu_{i}\right)$ for $i=1,2, \ldots, n$;
- iso-elastic demand elasticities: $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.

Market equilibrium and loss coverage

In a perfectly competitive insurance market, we then have:

$$
\begin{gathered}
\text { Premium income }=\sum_{i=1}^{n} p_{i} d_{i}\left(\pi_{i}\right) \pi_{i} . \\
\text { (Expected) insurance claim }=\sum_{i=1}^{n} p_{i} d_{i}\left(\pi_{i}\right) \mu_{i} . \\
\text { (Expected) profit }: E(\underline{\pi})=\sum_{i=1}^{n} p_{i} d_{i}\left(\pi_{i}\right)\left(\pi_{i}-\mu_{i}\right) .
\end{gathered}
$$

Market equilibrium $\Rightarrow E(\underline{\pi})=0$.

Loss coverage (Population losses compensated by insurance)

Loss coverage (under equilibrium): $\sum_{i=1}^{n} p_{i} d_{i}\left(\pi_{i}\right) \mu_{i}$.

Political and regulatory constraints

Political: A politically acceptable premium regime needs to satisfy:

$$
\mu_{1} \leq \pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{n} \leq \mu_{n}
$$

Regulatory: Given a prescribed price collar, κ, any premium regime needs to satisfy:

$$
\pi_{H} \leq \kappa \pi_{L},
$$

where $\pi_{L}=\min _{i} \pi_{i}$ and $\pi_{H}=\max _{i} \pi_{i}$.

Guaranteed issue: Insurers are required to quote a price to all applicants. Nobody can be declined for insurance.

Agenda

- Introduction
- Model Framework
- Results
- Conclusions

The price collar equilibrium: Tripartite solution

For $1<\kappa<\mu_{n} / \mu_{1}$:

- super-group \mathcal{L} of "low" risk-groups all charged π_{L} (more than their fair premiums);
- super-group \mathcal{M} of "middle" risk-groups all charged their fair premiums;
- super-group \mathcal{H} of "high" risk-groups all charged π_{H} (less than their fair premiums);
$\kappa=1$: Pooling.
$\kappa=\mu_{n} / \mu_{1}$: Full risk-classification.

Two Risk-groups: Pooling vs full vs price collar

Boundary curves:
--
$\cdots \cdots \lambda_{2}=\lambda_{1}$

Maximum loss coverage:
\square Pooled
\square Full
\square Partial
\square Pooled or full

Generalistion to more than two risk-groups

For more than two risk-groups, tripartite structure under price collar creates:

- super-group \mathcal{L} of "low" risk-groups with demand elasticity, say λ_{L};
- super-group \mathcal{M} of "middle" risk-groups;
- super-group \mathcal{H} of "high" risk-groups with demand elasticity, say λ_{H}.

Risk-groups in \mathcal{M} do not contribute to cross-subsidies, so can be disregarded.

Analysis of loss coverage can then be re-stated in terms of the two super-groups \mathcal{L} and \mathcal{H}, with parameters set to their super-group values. The results of two risk-groups can then be extended to these two super-groups.

Agenda

- Introduction
- Model Framework
- Results
- Conclusions

Conclusions

- Loss coverage is a public policy criterion for comparing different risk-classification regimes.
- If low-risk elasticity is sufficiently low compared with high-risk elasticity, pooling is optimal.
- If low-risk elasticity is sufficiently high, full risk-classification is optimal.
- If the elasticities are not too far apart, a price collar is optimal, but only if both elasticities are greater than one.

Reference

Paper

Chatterjee, I., Hao, M., Tapadar, P. \& Thomas, R. G. 2023. Can price collars increase insurance loss coverage? Submitted. Link to paper.

https://blogs.kent.ac.uk/loss-coverage/

