Can Price Collars Increase Insurance Loss Coverage?

Pradip Tapadar

Co-authors: Indradeb Chatterjee, MingJie Hao, R. Guy Thomas.

26th International Congress on Insurance: Mathematics and Economics, July 2023

- Introduction
- Model Framework •
- Results ۲
- Conclusions

5990

Background

Adverse selection:

If insurers cannot charge **risk-differentiated** premiums, then:

- higher risks buy more insurance, lower risks buy less insurance,
- raising the **pooled** price of insurance,
- lowering the demand for insurance,

usually portrayed as a bad outcome, both for insurers and for society.

In practice:

Policymakers often see merit in restricting insurance risk classification

- EU ban on using gender in insurance underwriting.
- Moratoria on the use of genetic test results in underwriting.

Motivation: Two risk-groups $\mu_{L} = 0.01$ and $\mu_{H} = 0.04$

Scenario 2: Some adverse selection: Pooled premiums: $\pi_L = \pi_H = 0.028$

Pradip Tapadar (University of Kent)

IME 2023 4/16

nar

Insurance loss coverage: Pooling vs full risk-classification

Demand elasticity of low risk-group

Question: Can setting an explicit price collar increase loss coverage?

Pradip Tapadar (University of Kent)

Insurance Loss Coverage

IME 2023 5/16

nar

Introduction ٠

- Model Framework
- Results ۲
- Conclusions

5990

Risk-groups

Suppose a population can be divided into *n* risk-groups where:

- risk of losses: $\mu_1 < \mu_2 < \cdots < \mu_n$;
- population proportions: p_1, p_2, \ldots, p_n ;
- premiums offered: $\pi_1, \pi_2, \ldots, \pi_n$;
- iso-elastic demand:

$$d_i(\pi_i) = \tau_i \left(\frac{\mu_i}{\pi_i}\right)^{\lambda_i}, \quad i = 1, 2, \dots, n;$$

- fair-premium demand: $\tau_i = d_i(\mu_i)$ for i = 1, 2, ..., n;
- iso-elastic demand elasticities: $\lambda_1, \lambda_2, \ldots, \lambda_n$.

Market equilibrium and loss coverage

In a perfectly competitive insurance market, we then have:

Premium income =
$$\sum_{i=1}^{n} p_i d_i(\pi_i) \pi_i$$
.
(Expected) insurance claim = $\sum_{i=1}^{n} p_i d_i(\pi_i) \mu_i$.
(Expected) profit : $E(\underline{\pi}) = \sum_{i=1}^{n} p_i d_i(\pi_i) (\pi_i - \mu_i)$.
Market equilibrium $\Rightarrow E(\underline{\pi}) = 0$.

Loss coverage (Population losses compensated by insurance)

Loss coverage (under equilibrium): $\sum_{i=1}^{n} p_i d_i(\pi_i) \mu_i$.

Pradip Tapadar (University of Kent)

MQ (2)

• □ ▶ • □ ▶ • = ▶

Political and regulatory constraints

Political: A politically acceptable premium regime needs to satisfy:

$$\mu_1 \leq \pi_1 \leq \pi_2 \leq \cdots \leq \pi_n \leq \mu_n.$$

Regulatory: Given a prescribed **price collar**, κ , any premium regime needs to satisfy:

$$\pi_H \leq \kappa \, \pi_L,$$

where $\pi_L = \min_i \pi_i$ and $\pi_H = \max_i \pi_i$.

Guaranteed issue: Insurers are required to quote a price to all applicants. Nobody can be declined for insurance.

Sar

- Introduction ٠
- Model Framework •
- Results
- Conclusions

5990

Results The price collar equilibrium

The price collar equilibrium: Tripartite solution

For $1 < \kappa < \mu_n / \mu_1$:

- super-group \mathcal{L} of "low" risk-groups all charged π_L (more than their fair premiums);
- super-group \mathcal{M} of "middle" risk-groups all charged their fair premiums;
- super-group \mathcal{H} of "high" risk-groups all charged π_H (less than their fair premiums);

 $\kappa = 1$: Pooling.

 $\kappa = \mu_n/\mu_1$: Full risk-classification.

Sac

Results Pooling vs full risk-classifcation vs price collar

Two Risk-groups: Pooling vs full vs price collar

Generalistion to more than two risk-groups

For more than two risk-groups, tripartite structure under price collar creates:

- super-group \mathcal{L} of "low" risk-groups with demand elasticity, say λ_L ;
- super-group \mathcal{M} of "middle" risk-groups;
- super-group \mathcal{H} of "high" risk-groups with demand elasticity, say λ_{H} .

Risk-groups in \mathcal{M} do not contribute to cross-subsidies, so can be disregarded.

Analysis of loss coverage can then be re-stated in terms of the two super-groups \mathcal{L} and \mathcal{H} , with parameters set to their super-group values. The results of two risk-groups can then be extended to these two super-groups.

- Introduction •
- Model Framework •
- Results ۲
- Conclusions

(二)、

Conclusions

- Loss coverage is a public policy criterion for comparing different risk-classification regimes.
- If low-risk elasticity is sufficiently low compared with high-risk elasticity, pooling is optimal.
- If low-risk elasticity is sufficiently high, full risk-classification is optimal.
- If the elasticities are not too far apart, a price collar is optimal, but only if both elasticities are greater than one.

Paper

CHATTERJEE, I., HAO, M., TAPADAR, P. & THOMAS, R. G. 2023. Can price collars increase insurance loss coverage? Submitted. Link to paper.

https://blogs.kent.ac.uk/loss-coverage/

Pradip Tapadar (University of Kent)

Insurance Loss Coverage

IME 2023 16/16

Sac