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Simple Summary: A collection of native farm animal breeds can be considered as a gene pool and a
national heritage. Long-term artificial selection in domesticated animals has certain effects on their
genomes, which can be investigated using genome-wide screens for DNA sequence variation, that
is, so-called single nucleotide polymorphism (SNP) screens. Here, we looked at the genomes of
19 Russian chicken gene pool breeds, both native and imported, evaluating the contrasting egg, meat
and dual-purpose types. Based on genetic diversity statistics, we identified differences between the
breeds using many DNA markers (SNPs) that may represent genomic regions that are being selected
for, either within a specific breed or shared between breeds. Our research will be helpful for further
understanding the genomic diversity and demographic history of Russian domestic chickens. This
would be essential for their successful breeding.

Abstract: A study for genomic variation that may reflect putative selective signaling and be associated
with economically important traits is instrumental for obtaining information about demographic
and selection history in domestic animal species and populations. A rich variety of the Russian
chicken gene pool breeds warrants a further detailed study. Specifically, their genomic features can
derive implications from their genome architecture and selective footprints for their subsequent
breeding and practical efficient exploitation. In the present work, whole genome genotyping of
19 chicken breeds (20 populations with up to 71 samples each) was performed using the Chicken 50
K BeadChip DNA chip. The studied breed sample included six native Russian breeds of chickens
developed in the 17th–19th centuries, as well as eight Russian chicken breeds, including the Russian
White (RW), created in the 20th century on the basis of improving local chickens using breeds of
foreign selection. Five specialized foreign breeds of chickens, including the White Leghorn (WL),
were used along with other breeds representing the Russian gene pool. The characteristics of the
genetic diversity and phylogenetic relationships of the native breeds of chickens were represented
in comparison with foreign breeds. It was established that the studied native breeds demonstrate
their own genetic structure that distinguishes them from foreign breeds, and from each other. For
example, we previously made an assumption on what could cause the differences between two RW
populations, RW1 and RW2. From the data obtained here, it was verified that WL was additionally
crossed to RW2, unlike RW1. Thus, inherently, RW1 is a purer population of this improved Russian
breed. A significant contribution of the gene pool of native breeds to the global genetic diversity
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of chickens was shown. In general, based on the results of a multilateral survey of this sample of
breeds, it can be concluded that phylogenetic relationships based on their genetic structure and
variability robustly reflect the known, previously postulated and newly discovered patterns of
evolution of native chickens. The results herein presented will aid selection and breeding work using
this gene pool.

Keywords: chicken; Russian gene pool breeds; SNPs; whole genome screening; genetic diversity;
phylogenetic relationships; demographic history

1. Introduction

The human-driven evolution of domesticated animals, including the chicken (Gallus
gallus (Linnaeus, 1758); GGA; [1,2]), resulted in a wide variety of breeds. Historically,
the dispersion of domestic animals on the planet, unlike wild species, has been driven by
humans and correlated with migration and settlement of peoples, trade, military campaigns
and other circumstances [3–7]. The formation of local (or indigenous) gene pools of farm
animals has occurred, and continues to occur, under the influence of specific geographic,
climatic, landscape, fodder, historical, economic and breeding conditions (e.g., [8–15]).
Tixier-Boichard et al. [16] performed a component analysis of the factors influencing the
topography of the location of numerous chicken populations of the global gene pool in the
space of multidimensional scaling. Therewith, it turned out that the degree of selection
pressure and the purpose of use of chicken breeds, i.e., factors associated with human
activity, made the greatest contribution to interpopulation variability. As reviewed by
Moiseyeva et al. [3], when dividing chicken breeds by origin into European and Asian
categories (e.g., [17]), European breeds have a lower diversity (heterozygosity) in terms
of morphological, biochemical and molecular markers. A lower genetic variability of
European egg-type chickens as compared to meat-type breeds of Asian roots has been
noted in several studies (e.g., [18–21]). Moiseyeva et al. [3] suggested two possible reasons
for this phenomenon. Firstly, the Asian region is characterized by a higher diversity of
climatic, landscape and animal fodder factors. Secondly, it is inhabited by more numerous
ethnic groups with an ancient and diverse culture and, consequently, unequal interests
and needs in the selection of chickens and other species of domestic animals as compared
to the European territory. It is no coincidence that it is in Asia that most of the centers of
domestication of wild animals and origins of cultivated plants are located (e.g., [3,22,23]).

Poultry production is an important sector of agriculture that supplies valuable food-
stuffs, such as eggs and meat [24–26]. In the context of sustainable food security in indi-
vidual countries, available poultry genetic resources, their genetic potential assessment as
well as their conservation and practical use by introducing highly effective biotechnolo-
gies are of an increasing importance [27–31]. Currently, breeds of the Russian chicken
gene pool heritage that have been divergently selected for contrasting performance and
other phenotypic traits are maintained at the two research institutions, All-Russian Poultry
Research and Technological Institute (ARPRTI), Sergiev Posad, Moscow Oblast [32] and
Russian Research Institute of Farm Animal Genetics and Breeding (RRIFAGB), Pushkin,
St. Petersburg [33]. Some of these breeds, e.g., Orloff Mille Fleur (OMF; [32,33]), Yurlov
Crower (YC; [32–36]), Ushanka (Ush; [32,33,37]) and Poltava Clay (PC; [32,33,38–41]), were
created ~150–200 years ago or even earlier in the conditions of Russian local farms. Pre-
viously, we successfully implemented the whole genome screen technology to evaluate
selection footprints and key candidate genes for egg and meat performance, adaptation
and other phenotypic traits in a few Russian chicken gene pool breeds [37,42]. Further
genome-wide examination of many other chicken breeds in Russia is urgently needed and
anticipated to reveal more unique features of their genetic blueprint useful for creating
reference populations subject to subsequent genomic prediction and selection.
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In this regard, the present investigation was aimed at comparing the genomic archi-
tecture of the Russian chicken gene pool, which includes breeds of different utility and
demographic history. In the course of this study, we performed genome-wide genotyping of
various chicken breeds (populations) using the Chicken 50 K BeadChip DNA chip. A com-
parative assessment of the biodiversity of the studied breeds was carried out using indices
of observed and expected heterozygosity, allelic diversity, inbreeding coefficient FIS, etc. The
effective population size (Ne) at the present time and its change over 50–500 generations
were explored. Genetic distances were calculated, and genetic relationships between breeds
were established, with the genetic structure of the studied breeds being assessed. The ob-
tained data of the single nucleotide polymorphism (SNP)-based analysis were considered in
the aspect of the demographic history of the breeds and directions of selection and breeding
work with the breeds.

2. Materials and Methods
2.1. Breeds, Sampling and Ethics Statement

To study the genomic architecture of the Russian chicken gene pool, we surveyed a
total of 19 breeds (20 populations). These embraced the following six indigenous breeds
developed in the 17th–19th centuries: OMF, PC, Russian Black Bearded (RBB), Russian
Crested (RC), Ush and YC, in the creation of which imported breeds could also be used.
There were also eight native chicken breeds developed in the 20th century based on the
improvement of local breeds by crossing them to breeds of foreign origin and selection as
follows: Adler Silver (AS), Kotlyarevsky (Kt), Kuchino Jubilee (KJ), Leningrad Mille Fleur
(LMF), Pervomai (Pm), Russian White (RW, of two populations, RW1 and RW2 kept at
ARPRTI and RRIFAGB, respectively), Ushanka Foot-feathered (UshF) and Zagorsk Salmon
(ZS). Along with the above breeds representing the Russian gene pool, the following five
specialized foreign breeds of chickens were used: Australorp Black (AoB), Cornish White
(CW), New Hampshire (NH), Rhode Island Red (RIR) and White Leghorn (WL). In terms of
utility type, RW and WL belonged to the egg-type breeds (ETBs) and CW to the meat-type
breeds (MTBs), with all others being dual-purpose breeds (DPBs), of meat-egg (MEB; with
meat traits being more targeted by selection) or egg-meat (EMB; with egg performance traits
being predominantly selected) subtypes [33]. A detailed description of the studied breeds
is given in Table 1. These involved a number of famous breeds created in pre-revolutionary
Russia and differing in their unique phenotypes and features, e.g., OMF (descended from
game breed (GB) chickens, among others; [43]), YC [34,35] and PC [38–40]. In addition,
there were breeds that have been subjected to long-term breeding for egg and/or meat
productivity, e.g., the specialized breeds RW and CW [42].

Birds of the Ush, OMF and CW breeds were purchased from the Breeding and Genetic
Center “Zagorsk Experimental Breeding Farm”—Branch of the Federal Research Centre
“ARPRTI” and housed in the bioresource Gene Pool Collection of Farm and Wild Animals
and Birds at the L. K. Ernst Federal Research Centre for Animal Husbandry (LKEFRCAH).
Samples of other breeds were obtained from the ARPRTI farm. The RRIFAGB supplied
samples of the RW breed, and the Institute of Farm Animal Genetics/Friedrich-Loeffler-
Institut (IFAG/FLI) those of the WL line G11. A total of 528 individual samples (up to
71 per population) were used in this study, a majority of them being feather pulp samples
and fewer blood or DNA (G11) samples. In order to minimize any potential bird discomfort
or distress, feather and blood samples were collected by trained lab staff as adherent to the
LKEFRCAH and IFAG/FLI ethical guidelines.
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Table 1. Chicken breeds (populations) screened in the present genome-wide study.

Breed (Population) Code n Breed Type Origin Refs Image Source

Old Russian indigenous breeds
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ARPRTI, Zagorsk, 
USSR in 1948 

[32–36] a 

Improved Russian breeds 

Ushanka (or
Ukrainian Muffed) Ush 30

DPB/MEB and
fancy,

sex-linked
early

feathering in
chicks, cold

tolerant,
incubation

instinct

South Russia
and territory of
Ukraine, 17th

century to
1880s, from

local chickens,
probable
random

mating to other
breeds

[32,33,37] a
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crowing, of two 
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golden), sex-linked 
late feathering in 
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Russia, 19th 
century (2nd half), 
from local and GB 
chickens, Brahma, 

Cochin and 
Langshan, almost 
extinct in 1941–
1945, brought to 

ARPRTI, Zagorsk, 
USSR in 1948 

[32–36] a 

Improved Russian breeds 

Yurlov Crower YC 36

DPB/MEB,
long crowing,

of two varieties
(silver and

golden),
sex-linked late
feathering in

chicks

Russia, 19th
century (2nd
half), from

local and GB
chickens,
Brahma,

Cochin and
Langshan,

almost extinct
in 1941–1945,

brought to
ARPRTI,

Zagorsk, USSR
in 1948

[32–36] a
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Adler Silver AS 30 DPB/MEB 

Adler Poultry 
Farm, Krasnodar 
Krai, USSR, 1951–

1965, from Pm, 
RW, NH, White 
Plymouth Rock 

and YC 

[32] a 

 

Kotlyarevsky Kt 28 DPB/MEB 

Kotlyarevsky 
Breeding Farm, 

Kabardino-
Balkarian ASSR, 

USSR, 20th 
century (2nd half), 
from NH, RW, ZS, 
Naked Neck and 
Barred Plymouth 

Rock 

[32] b 

 

Kuchino 
Jubilee 
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early feathering in 
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Kuchinsky State 
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Moscow Oblast, 

USSR, 1947–1990, 
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Plymouth Rock 

White, YC, Brown 
Leghorn (Italian 
Partridge) and 

Livny 

[32] a 

 

Leningrad 
Mille Fleur 

LMF 7 DPB/EMB 

RRIFAGB, 
Pushkin, 

Leningrad Oblast, 
USSR, 1985, from 
Australorp Black 

Speckled, NH and 
PC 

[33] a 

 

Pervomai Pm 30 DPB/MEB 

Pervoe Maya State 
Farm, Kharkov 

Oblast, Ukrainian 
SSR, USSR, 1935–
1941; Pachelma 

State Farm, Penza 
Oblast, RSFSR, 

USSR, 1942–1963; 
from White 

Wyandotte, RIR 
and YC 

[32,33] a 

 

Russian White 
(ARPRTI) 

RW1 29 ETB 

USSR, 1929–1953, 
from local white 

chickens and WL, 
bred at ARPRTI, 
Zagorsk/Sergiev 

Posad, 
USSR/Russia 

[32,37,42] b 

Adler Silver AS 30 DPB/MEB

Adler Poultry
Farm,

Krasnodar
Krai, USSR,
1951–1965,

from Pm, RW,
NH, White

Plymouth Rock
and YC

[32] a
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Pervoe Maya State 
Farm, Kharkov 

Oblast, Ukrainian 
SSR, USSR, 1935–
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(RRIFAGB) 

RW2 71 ETB, cold tolerant 

Bred at RRIFAGB, 
Pushkin, 

USSR/Russia since 
1952, a single telic 

mating of an 
RRIFAGB inbred 

line of RW, 
selected for cold 
tolerance, to WL 

[32,33,37,42,
44–46] 

a 

Kotlyarevsky Kt 28 DPB/MEB

Kotlyarevsky
Breeding Farm,

Kabardino-
Balkarian

ASSR, USSR,
20th century

(2nd half),
from NH, RW,

ZS, Naked
Neck and

Barred
Plymouth Rock

[32] b

Biology 2023, 12, x FOR PEER REVIEW 5 of 27 
 

 

 

Adler Silver AS 30 DPB/MEB 

Adler Poultry 
Farm, Krasnodar 
Krai, USSR, 1951–

1965, from Pm, 
RW, NH, White 
Plymouth Rock 

and YC 

[32] a 

 

Kotlyarevsky Kt 28 DPB/MEB 

Kotlyarevsky 
Breeding Farm, 

Kabardino-
Balkarian ASSR, 

USSR, 20th 
century (2nd half), 
from NH, RW, ZS, 
Naked Neck and 
Barred Plymouth 

Rock 

[32] b 

 

Kuchino 
Jubilee 

KJ 29 
DPB/MEB, sex-linked 

early feathering in 
chicks 

Kuchinsky State 
Breeding Farm, 
Moscow Oblast, 

USSR, 1947–1990, 
from RW, NH, 

RIR, AoB, 
Plymouth Rock 

White, YC, Brown 
Leghorn (Italian 
Partridge) and 

Livny 

[32] a 

 

Leningrad 
Mille Fleur 

LMF 7 DPB/EMB 

RRIFAGB, 
Pushkin, 

Leningrad Oblast, 
USSR, 1985, from 
Australorp Black 

Speckled, NH and 
PC 

[33] a 

 

Pervomai Pm 30 DPB/MEB 

Pervoe Maya State 
Farm, Kharkov 

Oblast, Ukrainian 
SSR, USSR, 1935–
1941; Pachelma 

State Farm, Penza 
Oblast, RSFSR, 

USSR, 1942–1963; 
from White 

Wyandotte, RIR 
and YC 

[32,33] a 

 

Russian White 
(ARPRTI) 

RW1 29 ETB 

USSR, 1929–1953, 
from local white 

chickens and WL, 
bred at ARPRTI, 
Zagorsk/Sergiev 

Posad, 
USSR/Russia 

[32,37,42] b 

 

Russian White 
(RRIFAGB) 

RW2 71 ETB, cold tolerant 

Bred at RRIFAGB, 
Pushkin, 

USSR/Russia since 
1952, a single telic 

mating of an 
RRIFAGB inbred 

line of RW, 
selected for cold 
tolerance, to WL 
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DPB/MEB,
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chicks

Kuchinsky
State Breeding
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Oblast, USSR,

1947–1990,
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RIR, AoB,
Plymouth Rock

White, YC,
Brown

Leghorn
(Italian

Partridge) and
Livny

[32] a
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Black Speckled,
NH and PC

[33] a
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and WL, bred

at ARPRTI,
Zagorsk/Sergiev

Posad,
USSR/Russia

[32,37,42] b
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(RRIFAGB) 

RW2 71 ETB, cold tolerant 
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Pushkin, 

USSR/Russia since 
1952, a single telic 

mating of an 
RRIFAGB inbred 

line of RW, 
selected for cold 
tolerance, to WL 

[32,33,37,42,
44–46] 

a 
Russian White

(RRIFAGB) RW2 71 ETB, cold
tolerant

Bred at
RRIFAGB,
Pushkin,

USSR/Russia
since 1952, a
single telic

mating of an
RRIFAGB

inbred line of
RW, selected

for cold
tolerance, to

WL

[32,33,37,42,44–
46] a
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Zagorsk 
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ZS 27 
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late feathering and 
down color in chicks 

Zagorsk, USSR, 
1950–1959, from 

RW, NH, RIR and 
YC 

[32,33] a 

Specialized foreign breeds 

 

Australorp 
Black 

AoB 30 DPB/MEB 

Australia, 1890s to 
1929, from Black 
Orpington, RIR, 
Black Minorca, 

WL, Langshan and 
Barred Plymouth 

Rock, bred in 
Russia since 1946 

[32,33] a 

 

Cornish White CW 24 MTB 

England, 1886, 
from local GB 
chickens, Asil, 
White Malay, 

Indian Game and 
Cochin, used as 
paternal stock in 

commercial broiler 
crosses, bred in 

Russia 

[33,37,42] a 

 

New 
Hampshire 

NH 10 DPB/MEB 
USA, early 20th 
century to 1935, 

from RIR 
[32,33] a 

 

Rhode Island 
Red RIR 17 DPB/EMB 

States of Rhode 
Island and 

Massachusetts, 
USA, 1880s to 

1904, from Cochin, 
Java, Malay, 

Shanghai and 
Brown Leghorn 

[32,47] a 

Ushanka
Foot-feathered UshF 6

DPB/MEB and
fancy, cold

tolerant

ARPRTI,
Sergiev Posad,

Russia, 20th
century (more
recently), from
Pavlov, Orloff
and possibly

Ush

[32] b
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Image sources: a, authors� own photographs; b, owned by one of the authors, D.V.A., and repro-
duced by him on his website (Ref. [32]). 

  

Zagorsk Salmon ZS 27

DPB/MEB,
sex-linked late
feathering and
down color in

chicks

Zagorsk, USSR,
1950–1959,

from RW, NH,
RIR and YC

[32,33] a

Specialized foreign breeds
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2.2. DNA Isolation

The manufacturer’s recommendations were followed when extracting DNA using
Nexttec columns (Nexttec Biotechnologie GmbH, Leverkusen, Germany). We employed
a Qubit 3.0 fluorometer to define the concentration of dsDNA solutions (Thermo Fisher
Scientific, Wilmington, DE, USA). Values of OD260/280 ratio were measured using a
NanoDrop-2000 to determine the recovered DNA purity (Thermo Fisher Scientific).

2.3. SNP Markers and Genotyping Quality Control

Using a Chicken 50 K CobbCons SNP microarray (Illumina, San Diego, CA, USA),
individual sample genotyping was performed. Before applying any quality control filters,
53,872 SNP markers were available. Using PLINK 1.9 software [50], the following filters
were set up to adjust the quality of the SNP genotypes: at least 90% of loci (--geno 0.1)
successfully genotyped in at least 80% of samples (--mind 0.2), with minor alleles being
contained at least 5% of the time (--maf 0.05) and the linkage disequilibrium (LD) criterion
being greater than 50% (--indep-pairwise 50 5 0.5). A total of 39,778 SNPs on 28 autosomes
(GGA1 to GGA28) were selected after filtering for further examination. The R software
(version 4.2.3) environment was used to create the input files for the analysis and subsequent
visualization of the findings [51].
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2.4. Genetic Diversity, Population Structure and Split and Admixture

The observed heterozygosity (HO), expected heterozygosity (HE), unbiased expected
heterozygosity (UHE) [52], rarefied allelic richness (AR) [53] and UHE-based inbreeding co-
efficient (UFIS) were computed in the R package diveRsity [54] to measure genetic diversity
of the breeds studied. We also carried out the analysis of molecular variance (AMOVA) for
our dataset using the following hierarchical structure: breed group (old Russian, improved
Russian and specialized foreign) > breed > sample. This analysis was performed using the
R package poppr [55]. Using PLINK 1.9, genetic differences between the examined breeds
were determined. The R package ggplot2 was used to conduct the principal component
analysis (PCA) visualization [56]. Additionally, PCA plots as well as hierarchical clustering
trees using Euclidean distances were generated using the Phantasus web application [57].

The SplitsTree 4.14.5 software [58] and T-REX web server [59] were employed to
plot Neighbor-Net and Neighbor-Joining [60] dendrograms using a matrix of pairwise
FST [61] and Reynolds et al. [62] genetic distances. The former distance was the respective
statistic also known as the fixation index. The latter distance was calculated based on
the appropriate Reynolds et al. [62] algorithm that assumed that genetic differentiation
occurs only through genetic drift and without mutations. In addition, the Neighbor-Joining
trees were reconstructed using the ADDTREE [63] and Unweighted Neighbor-Joining [64]
methods. Moreover, heat maps and trees were generated with the ClustVis web tool [65]
using Euclidean distances for both rows and columns of the matrix (with the average option
selected for the clustering method).

Using the Admixture v1.3 program [66], model-based clustering (obtained by Bayesian
clustering) was completed to refine population structure. The cross-validation (CV) proce-
dure was used to compute numbers (K) of clusters (ancestral populations), with K values
ranging from 1 to 30 and its lowest CV error being the optimal number of clusters. The
findings of the admixture analysis were visualized using the R package BITE [67].

2.5. Runs of Homozygosity Analysis

For the estimation of ROHs, the consecutive runs technique [68] implemented in the
R package detectRUNS (version 0.9.6) [69] was used, which is a window-free method for
consecutive SNP-based detection. In order to prevent underestimating the number of
ROHs longer than 8 Mb, we permitted one SNP with an unknown genotype and up to
one potential heterozygous genotype in one run [70]. We set the minimum length of an
ROH at 500 kb to account for strong linkage disequilibrium (LD), which usually extends
up to about 100 kb [71], and to exclude short and very frequent ROHs. We determined
the minimum number of SNPs (l), which was first determined by Lencz et al. [72] and
subsequently modified by Purfield et al. [73], in order to reduce false-positive results:

l =
loge

α
ns ·ni

loge

(
1 − het

) ,

where ns is the average number of SNPs that each individual has been genotyped for, ni is
the total number of individuals that have been genotyped, α is percentage of false-positive
ROHs (equal to 0.05 as the study’s cutoff) and het is the average level of heterozygosity
across all SNPs. In our situation, a minimum of 23 SNPs were required to be considered.

Each individual’s ROH length and number were calculated, and these values were
then averaged across all individuals in each breed. Additionally, we calculated the genomic
inbreeding coefficient based on ROH (FROH), which is the ratio of the total autosomal SNP
coverage to the aggregate of all ROHs for each animal (0.94 Gb).

As indicated by other studies [74,75], putative ROH islands were defined as overlap-
ping homozygous regions shared by more than 50% of analyzed individuals within each
breed. Given that shorter segments of 0.3–1 Mb are more common in the genome of white
egg-laying hens [76], we set the minimum overlapping length size threshold at 0.3 Mb.
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2.6. Demographic History Inference

The degree and patterns of population divergence (splits) and the level of gene flow
between the studied breeds were inferred using the TreeMix 1.12 program [77]. We tested
0 to 5 migration events (edges) with 30 iterations for each event. The optimal number
of migration edges was determined using the R package OptM [78] and TreeMix output
files. The common quail (Coturnix coturnix (Linnaeus, 1758)), genotyped using the same
chicken microarray, was used as an outgroup in reconstructing the maximum likelihood
(ML) trees based on ~16K validated SNPs. The respective residual matrices were visualized
as heat maps.

Using the algorithm built into the SNeP v.1.1 program [79] and based on LD [79–82],
Ne was calculated over the previous 50 to 500 generations. Except for the recombination
rate modifier computed following Sved and Feldman [83], the default settings were used.
In order to study the rate and direction of Ne changes that occurred over 50 generations, an
analysis of the Ne slope (NeS) was also performed [84]. Using the median of 50 most recent
Ne values, the slope of each segment connecting pairs of adjacent Ne values was defined
and the results were normalized. This enabled us to determine the Ne change coefficient
for the increase of pairwise coancestry (NeC) [85] in order to estimate the amount of Ne
change over the previous 50 generations. Using the SNeP program [79], it was also possible
to calculate the mean r2 (LD) and standard deviation r2 in a bin, the mean distance (dist)
between each pair of SNP markers in a cell and the number of SNP markers (items) used to
calculate r2 in the bin.

Statistical data analysis, including calculation of means, mean standard errors and
Student’s t-statistics, was performed using Excel (Microsoft Corporation, Redmond, WA,
USA) and the appropriate web tools [86,87].

3. Results
3.1. Genetic Diversity

As follows from the genetic diversity data presented in Table 2, the HO values varied
in the studied breeds from 0.164 ± 0.001 in WL to 0.365 ± 0.001 in CW. Interestingly, the
same pattern, i.e., the minimum values for WL and the maximum ones for CW, persisted
for other indices of genetic diversity. In particular, in terms of HE, UHE and AR, WL
had the lowest values (0.185 ± 0.001, 0.185 ± 0.001 and 1.452 ± 0.002, respectively),
and the largest ones were found in CW (0.368 ± 0.001, 0.371 ± 0.001 and 1.876 ± 0.001,
respectively; p < 0.001). The rest of the breeds had intermediate diversity indicator values.
Collectively, we can see that the studied commercial WL line, purposefully bred for egg
performance, has the characteristic least genetic variability. Native and foreign DPBs (of the
EMB and MEB subtypes of utility) had a significantly greater genetic variation. Another
specialized ETB of RW resulted from crossing local chickens with that WL fell into the
same intermediate diversity group. Finally, the maximum variability was observed in CW,
a commercial MTB synthetic by origin, derived from the Asiatic GBs and MTBs of Asil,
White Malay, Indian Game and Cochin, and subjected to selection for meat production
traits contrastingly different from the ETB of WL. One indigenous MEB, YC, was also
close to CW in terms of variability (Table 2), probably due to the fact that at least five
different breeds, including the Asiatic MTBs of Brahma, Cochin and Langshan, are believed
to have been used for its creation. In addition, there was a trend of higher average diversity
indices (i.e., heterozygosities and allelic richness) in the old Russian indigenous breeds,
intermediate ones in the group of improved Russian breeds and lower ones among the
specialized foreign breeds (Table 2). We also calculated the diversity indices for the three
breed groups (i.e., old Russian, improved Russian and specialized foreign) obtained by
pooling individual genotypes within each breed group (Supplementary Table S1). As a
result, the old Russian breed group had greater mean values of diversity indicators, with
intermediate and lower values being in the improved Russian and specialized foreign breed
groups, respectively.
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Table 2. Descriptive statistics for genetic diversity 1 in the studied breeds (populations) based on
SNP genotypes.

Breed HO (M ± SE) HE (M ± SE) UHE (M ± SE) AR (M ± SE) FIS [CI 95%] UFIS [CI 95%]

Old Russian indigenous breeds

OMF 0.291 ± 0.001 0.286 ± 0.001 0.291 ± 0.001 1.709 ± 0.002 −0.019 [−0.021; −0.017] −0.001 [−0.003; 0.001]

PC 0.257 ± 0.001 0.249 ± 0.001 0.255 ± 0.001 1.655 ± 0.002 −0.029 [−0.031; −0.027] −0.003 [ −0.005; −0.001]

RBB 0.250 ± 0.001 0.247 ± 0.001 0.252 ± 0.001 1.624 ± 0.002 −0.008 [−0.010; −0.006] 0.012 [0.010; 0.014]

RC 0.325 ± 0.001 0.327 ± 0.001 0.333 ± 0.001 1.819 ± 0.002 0.005 [0.003; 0.007] 0.022 [0.020; 0.024]

Ush 0.249 ± 0.001 0.255 ± 0.001 0.259 ± 0.001 1.647 ± 0.002 0.016 [0.014; 0.018] 0.033 [0.031; 0.035]

YC 0.347 ± 0.001 0.358 ± 0.001 0.363 ± 0.001 1.867 ± 0.001 0.029 [0.027; 0.031] 0.043 [0.041; 0.045]

Av. 0.287 ± 0.017 0.287 ± 0.019 0.292 ± 0.019 1.720 ± 0.041 −0.001 ± 0.009
[−0.031; 0.031]

0.018 ± 0.008
[−0.005; 0.045]

Improved Russian breeds

AS 0.321 ± 0.001 0.329 ± 0.001 0.335 ± 0.001 1.811 ± 0.002 0.020 [0.018; 0.022] 0.037 [0.035; 0.039]

KJ 0.256 ± 0.001 0.252 ± 0.001 0.256 ± 0.001 1.665 ± 0.002 −0.018 [−0.020; −0.016] 0.000 [−0.002; 0.002]

Kt 0.257 ± 0.001 0.256 ± 0.001 0.261 ± 0.001 1.650 ± 0.002 −0.006 [−0.008; −0.004] 0.012 [0.010; 0.014]

LMF 0.249 ± 0.001 0.228 ± 0.001 0.246 ± 0.001 1.606 ± 0.002 −0.090 [−0.094; −0.086] −0.011 [−0.015; −0.007]

Pm 0.291 ± 0.001 0.290 ± 0.001 0.295 ± 0.001 1.729 ± 0.002 −0.006 [−0.008; −0.004] 0.011 [0.009; 0.013]

RW1 0.255 ± 0.001 0.248 ± 0.001 0.252 ± 0.001 1.632 ± 0.002 −0.016 [−0.018; −0.014] 0.001 [−0.001; 0.003]

RW2 0.306 ± 0.001 0.305 ± 0.001 0.307 ± 0.001 1.763 ± 0.002 −0.001 [−0.002; 0.000] 0.006 [0.005; 0.007]

UshF 0.252 ± 0.001 0.232 ± 0.001 0.253 ± 0.001 1.645 ± 0.003 −0.088 [−0.092; −0.084] 0.003 [−0.001; 0.007]

ZS 0.275 ± 0.001 0.271 ± 0.001 0.276 ± 0.001 1.688 ± 0.002 −0.015 [−0.017; −0.013] 0.004 [0.002; 0.006]

Av. 0.274 ± 0.009 0.268 ± 0.011 0.276 ± 0.010 1.688 ± 0.022 −0.024 ± 0.013
[−0.094; 0.022]

0.007 ± 0.004
[−0.015; 0.039]

Specialized foreign breeds

AoB 0.296 ± 0.001 0.314 ± 0.001 0.319 ± 0.001 1.777 ± 0.002 0.045 [0.043; 0.047] 0.061 [0.059; 0.063]

CW 0.365 ± 0.001 0.368 ± 0.001 0.371 ± 0.001 1.876 ± 0.001 0.001 [−0.001; 0.003] 0.022 [0.020; 0.024]

NH 0.233 ± 0.001 0.205 ± 0.001 0.216 ± 0.001 1.542 ± 0.002 −0.122 [−0.125; −0.119] −0.067 [−0.070; −0.064]

RIR 0.256 ± 0.001 0.256 ± 0.001 0.264 ± 0.001 1.661 ± 0.002 −0.003 [−0.006; 0.000] 0.027 [0.024; 0.030]

WL 0.164 ± 0.001 0.185 ± 0.001 0.185 ± 0.001 1.452 ± 0.002 0.080 [0.077; 0.083] 0.103 [0.100; 0.106]

Av. 0.263 ± 0.033 0.266 ± 0.033 0.271 ± 0.034 1.662 ± 0.077 0.000 ± 0.034
[−0.125; 0.083]

0.029 ± 0.028
[−0.070; 0.106]

1 HO, observed heterozygosity; M, mean value; SE, standard error; HE, expected heterozygosity; UHE, unbiased
expected heterozygosity%]; AR, rarefied allelic richness; FIS, inbreeding coefficient [CI 95%, range variation of
UFIS coefficient at a confidence interval of 95%]; UFIS, unbiased inbreeding coefficient; Av., average (M ± SE). All
pairwise breed differences were significant at p < 0.001. Breed codes are given in Table 1.

The results of the AMOVA-based analysis for the three breed groups (i.e., old Russian,
improved Russian and specialized foreign) are presented in Table 3. The main share of
variation conformed to the differences between individuals within the populations (83.71%,
p-value = 0.001). Variation between the breed groups was only 1.36% (p-value = 0.011).
The results obtained were convincing since some breeds, including those belonging to
different groups, were of mixed origin. A comparable pattern was observed in a study of
Chinese gamecocks and native chicken breeds [88]. However, a relatively high proportion
of variation between breeds within groups (14.93%, p-value = 0.001; Table 3) may be
indicative of the apartness of each breed as a result of selection work.
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Table 3. Estimation of genetic variation 1 for the three major breed groups using AMOVA.

Source of Variation df 1 Sum of
Squares

Variance
Components

Percentage
of Variation

p-Value of
Fixation

Among groups 2 450,114,870.5 0.014 1.36 0.011
Among populations

within group 17 4,945,631,101 0.151 14.93 0.001

Within populations 508 27,729,967,336 0.163 83.71 0.001
Total 527 33,125,713,307 0.328 100

1 Degree of freedom.

When completing a comprehensive PCA of the genetic variability within this breed
sample using the four diversity indicators HO, HE, UHE and AR, we were able to distinguish
four breed clusters (Supplementary Figure S1A). The first one was the farthest from the rest
of the clusters, located in the lower right corner of the PCA plot and formed by the single
ETB of WL that had a pronounced minimum variability. The second cluster was situated in
the left extreme position on the graph and included two breeds with the greatest variation,
the MTB of CW and the MEB of YC. The other two clusters were located in the central part
of the PCA plot and mainly consisted of DPBs. Herewith, the third cluster was composed
of breeds with higher values of variability indicators, and the fourth cluster (which also
involved the ETB of RW) was represented with breeds that had a lower variation. A
similar distribution of the studied breeds based on the same four diversity indices was also
observed using the hierarchical clustering procedure (Supplementary Figure S1B).

We also evaluated the diversity of genotyped breeds depending on inbreeding coeffi-
cients that characterized the genetic structure of populations from a little different angle
(Table 2). Negative UFIS values indicated a slight excess of heterozygotes in OMF, PC,
LMF and NH (−0.001 to −0.067), while other breeds showed no or a slight deficiency of
heterozygotes (0.000 to 0.103) than what would be expected under the Hardy–Weinberg
equilibrium (Table 2). Therefore, we observed a rather significant scatter in the number of
heterozygotes in the studied breeds as tested for a deviation from the Hardy–Weinberg
equilibrium. Notably, WL had not only the minimum indicators of genetic variability, but
also the highest values of both the generally accepted inbreeding coefficient (FIS = 0.080)
and its unbiased derivative, UFIS (0.103). This was indicative of some shifts in the pop-
ulation structure of this selected WL line towards an excessive number of homozygotes.
Judging by the FIS coefficient, many other breeds, in contrast, showed some redundancy
of heterozygotes, except for RC, Ush, YC, AS, AoB and CW. On the other hand, based on
the UFIS values, the population structure of some old indigenous (RBB, RC, Ush and YC),
improved native (UshF, ZS, RW, Pm, Kt and AS) and specialized foreign (CW, RIR and
AoB) breeds tended toward excessive homozygotes.

The distribution of genotyped breeds based on the inbreeding coefficients FIS and
UFIS and using PCA and hierarchical clustering is shown in Supplementary Figure S2A,B,
respectively. On both of these graphs, five major clusters can be distinguished. WL that
had the maximum FIS and UFIS values formed one well-isolated single cluster. Kt was
located separately from other breeds as another single cluster. OMF that had an excess
of heterozygotes also formed a separate cluster. One more cluster was composed of five
breeds that also demonstrated a certain excessive number of heterozygotes. The largest
cluster (No. 3) can be divided into two subclusters: in one (3a), there was some bias
towards an excess of heterozygotes, and in the other (3b), a redundancy of homozygotes
(Supplementary Figure S2A).

3.2. ROH Distribution in Chicken Breed Genomes

According to Table 4, we revealed the lowest mean number of ROH segments in the
YC genome (70.11) and the greatest one in WL (249.75). Furthermore, YC and CW chickens
had the lowest coverage of genome by ROHs (146.91 and 154.61 Mb, respectively), whereas
WL had the greatest total length of ROHs (525.64 Mb). This resulted in the lowest values
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of inbreeding coefficient calculated based on ROHs in YC and CW (FROH = 0.154 and
0.162, respectively), with the highest value being identified in WL (0.551). There was an
overall tendency of lower average ROH-related metrics in the genomes of old Russian
indigenous chickens, intermediate ones in the improved Russian breeds and higher values
in the specialized imported breeds (Table 4). These observations were highly concordant
with the above genetic diversity data for the same chicken breeds studied (Table 2). When
pooling individual genotypes to form the respective three breed groups, the old Russian
breeds had significantly lower ROH-based statistics than those in the improved Russian
breeds (Supplementary Table S1). The respective Manhattan plots of the distribution of
ROH islands in individual chicken breeds can be seen in Supplementary Figure S3.

Table 4. Runs of homozygosity (ROHs) descriptive statistics 1 for the studied breeds.

Breed ROH Length, Mb
(M ± SE) ROH No. (M ± SE) FROH (M ± SE)

Old Russian indigenous breeds

OMF 266.42 ± 12.42 125.17 ± 4.03 0.279 ± 0.013

PC 337.93 ± 15.74 145.00 ± 6.50 0.354 ± 0.017

RBB 369.41 ± 16.07 141.32 ± 5.01 0.387 ± 0.017

RC 197.84 ± 19.08 89.28 ± 6.88 0.207 ± 0.020

Ush 375.63 ± 14.23 127.13 ± 2.70 0.394 ± 0.015

YC 146.91 ± 11.94 70.11 ± 2.62 0.154 ± 0.013

Average (M ± SE) 282.36 ± 38.78 121.75 ± 12.26 0.296 ± 0.041

Improved Russian breeds

AS 205.05 ± 9.33 94.87 ± 2.86 0.215 ± 0.010

KJ 368.96 ± 7.20 142.00 ± 2.71 0.387 ± 0.008

Kt 360.79 ± 9.22 143.86 ± 3.83 0.378 ± 0.010

LMF 375.11 ± 18.37 112.14 ± 4.13 0.393 ± 0.019

Pm 274.02 ± 9.01 139.87 ± 3.77 0.287 ± 0.009

RW1 323.45 ± 15.34 151.38 ± 2.41 0.339 ± 0.016

RW2 195.24 ± 5.89 130.83 ± 2.74 0.205 ± 0.006

UshF 357.71 ± 35.25 116.00 ± 4.56 0.375 ± 0.037

ZS 301.06 ± 9.48 154.04 ± 4.9 0.316 ± 0.010

Average (M ± SE) 306.82 ± 23.04 131.67 ± 6.66 0.322 ± 0.024

Specialized foreign breeds

AoB 260.03 ± 10.18 107.03 ± 2.89 0.273 ± 0.011

CW 154.61 ± 5.98 126.29 ± 3.28 0.162 ± 0.006

NH 403.39 ± 11.15 120.80 ± 1.43 0.423 ± 0.012

RIR 352.15 ± 14.42 151.94 ± 8.01 0.369 ± 0.015

WL 525.64 ± 6.12 249.75 ± 2.48 0.551 ± 0.006

Average (M ± SE) 339.16 ± 63.00 151.16 ± 25.70 0.356 ± 0.066
1 ROH No., number of ROHs in a genome; Mb, megabases; M, mean value; SE, standard error; ROH Length,
overall length of ROHs in a genome; FROH, inbreeding coefficient calculated based on ROHs.

3.3. Breed Relationship and Admixture

As one of the approaches to assessing the genetic structure and differentiation of
the studied breeds based on SNP genotyping, the PCA method was used. The results of
the corresponding clustering of genotyped individuals and breeds are shown in Figure 1
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and Supplementary Figure S4. The PCA plots in Figure 1 demonstrated a high degree of
genetic identification of genotyped individuals, i.e., there was a fairly good match of a single
individual to the breed cluster to which this individual belonged. This proved, firstly, a high
resolution power of genome-wide genotyping of this sample of breeds using a medium-
density SNP chip. Secondly, there was a definite consolidation of the genetic structure of
most breeds. Remarkably, both the PC1–PC2 (Figure 1a) and PC1–PC3 (Figure 1b) plots
well reflected the genetic differentiation of breeds and explained about the same amount
of total variance, pointing out their fairly significant and adequate display of clustering
patterns. As can be seen on these PCA plots (Figure 1a,b), certain breeds were characterized
by a rather pronounced genetic uniqueness. These included a distinctive ETB cluster of
compactly displayed WL individuals and two closer, but still differentiated, populations
RW1 and RW2. Such old indigenous breeds as Ush and RBB, as well as OMF, were also well
distinguished from the other breeds, with Ush and RBB showing a great genetic similarity
relative to each other (Figure 1a). An improved native breed of KJ appeared to have some
unique genetic features, too (Figure 1b), whereas the other, mostly synthetic by origin,
DPBs formed a conglomeration of breeds situated quite close to each other (Figure 1a).
The latter embraced clusters of individuals of the breeds that were more similar in genetic
structure to each other and were located more crowded in the bottom right (Figure 1a) and
upper right (Figure 1b) parts of the two graphs. Within this conglomeration, we observed a
closer vicinity of RIR, NH (derived from RIR) and PC (presumably intercrossed with RIR
and NH; Figure 1a). Closer to each other were also Pm and AS (originated from Pm).

The pairwise interbreed genetic distances that were computed using the FST statistic
and the Reynolds et al. [62] algorithm are presented in Supplementary Tables S2 and S3,
respectively. Using these obtained distances for the full spectrum of breeds genotyped
here, the respective phylogenetic trees were built as shown in Figure 2 and Supplementary
Figures S5 and S6. According to the similar tree topology presented in these figures,
we identified the presence of between-breed phylogenetic relationships, e.g., for such
pairs/trios of breeds as (1) the ETBs of WL and RW, (2) the MEBs of Ush and RBB, (3) the
EMBs of RIR, NH and PC, (4) the MEBs of Pm and AS, (5) the MEBs of ZS and Kt and
(6) the DPBs of AoB and LMF.

In addition, we performed an admixture-based genetic structure analysis, determined
the mixing degree in the composition of the given set of individuals and populations (breeds)
based on the SNP genotype information and estimated the origin of populations from K
hypothetical ancestral populations. As followed from the procedure for calculating CV errors for
different K values, the minimum error value corresponded to K = 26 (Supplementary Figure S7).
When discriminating the populations using admixture, the corresponding mixing patterns of
breed composition were observed (Figure 3, Supplementary Figures S8 and S9). The value of
K = 2 appeared to conform to the two main evolutionary lineages of domestic chickens, of the
Mediterranean (ETB) and Asiatic (MTB) roots [89]. WL, a typical breed of Mediterranean origin,
had a solid dark blue bar coloration on the admixture plot at K = 2. Two ETB populations of
RW had a significant proportion of WL genotypes in their genomes, with their respective bars
being largely dark blue on this plot. In the genomes of other breeds, the red Asiatic component
dominated, while dark blue Mediterranean genotype variants were present to a much lesser
extent, as was also reflected on the admixture plot. At K = 3, one more ancient evolutionary
Asiatic lineage of GB (of yellow bar color) may have been added, which participated to some
extent in the formation of many later breeds [89]. At K = 4, another ETB sublineage (of green bar
color) emerged. Accordingly, WL apparently began to break up into two sublineages, whereas
RW1 was mostly composed of the second ETB sublineage variants, which could, to some extent,
affect further steps in the identification of ancestral populations. The optimal patterns of the
breed-specific genetic structure were found at K = 26. On the corresponding bar plot, the unique
genomic composition of each breed can be seen (Figure 3, Supplementary Figures S8 and S9),
suggesting the distinctive patterns of breed consolidation and stratification in accordance with
their origin and breeding history. Although the situation when K is more than the number of
populations may seem unusual, such a pattern can be observed when the samples of various
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breeds studied are of mixed origin. Accordingly, the number of clusters K equal to, or lower
than, the number of populations was not enough in our case to differentiate samples between
breeds clearly. With an increase in the number K, clusters began forming within breeds, uniting
samples not by breed, but by other factors, e.g., belonging to a line or a family.
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components (PCs), with the respective percentage of the total variance (within the parentheses),
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Biology 2023, 12, 979 15 of 26

Biology 2023, 12, x FOR PEER REVIEW 14 of 27 
 

 

components (PCs), with the respective percentage of the total variance (within the parentheses), 
which can be explained by each of the two PCs. Breed codes are given in Table 1. 

The pairwise interbreed genetic distances that were computed using the FST statistic 
and the Reynolds et al. [62] algorithm are presented in Supplementary Tables S2 and S3, 
respectively. Using these obtained distances for the full spectrum of breeds genotyped 
here, the respective phylogenetic trees were built as shown in Figure 2 and Supplementary 
Figures S5 and S6. According to the similar tree topology presented in these figures, we 
identified the presence of between-breed phylogenetic relationships, e.g., for such 
pairs/trios of breeds as (1) the ETBs of WL and RW, (2) the MEBs of Ush and RBB, (3) the 
EMBs of RIR, NH and PC, (4) the MEBs of Pm and AS, (5) the MEBs of ZS and Kt and (6) 
the DPBs of AoB and LMF. 

  
(a) (b) 

Figure 2. Phylogenetic relationships established between the studied chicken breeds (populations) 
based on the FST genetic distances. Unrooted radial trees were reconstructed using the Neighbor-
Net algorithm [58] (a) and the Neighbor-Joining/ADDTREE method [63] (b). Breed codes are given 
in Table 1. 

In addition, we performed an admixture-based genetic structure analysis, deter-
mined the mixing degree in the composition of the given set of individuals and popula-
tions (breeds) based on the SNP genotype information and estimated the origin of popu-
lations from K hypothetical ancestral populations. As followed from the procedure for 
calculating CV errors for different K values, the minimum error value corresponded to K 
= 26 (Supplementary Figure S7). When discriminating the populations using admixture, 
the corresponding mixing patterns of breed composition were observed (Figure 3, Sup-
plementary Figures S8 and S9). The value of K = 2 appeared to conform to the two main 
evolutionary lineages of domestic chickens, of the Mediterranean (ETB) and Asiatic (MTB) 
roots [89]. WL, a typical breed of Mediterranean origin, had a solid dark blue bar colora-
tion on the admixture plot at K = 2. Two ETB populations of RW had a significant propor-
tion of WL genotypes in their genomes, with their respective bars being largely dark blue 
on this plot. In the genomes of other breeds, the red Asiatic component dominated, while 
dark blue Mediterranean genotype variants were present to a much lesser extent, as was 
also reflected on the admixture plot. At K = 3, one more ancient evolutionary Asiatic line-
age of GB (of yellow bar color) may have been added, which participated to some extent 
in the formation of many later breeds [89]. At K = 4, another ETB sublineage (of green bar 

Figure 2. Phylogenetic relationships established between the studied chicken breeds (populations)
based on the FST genetic distances. Unrooted radial trees were reconstructed using the Neighbor-Net
algorithm [58] (a) and the Neighbor-Joining/ADDTREE method [63] (b) Breed codes are given in
Table 1.

Biology 2023, 12, x FOR PEER REVIEW 15 of 27 
 

 

color) emerged. Accordingly, WL apparently began to break up into two sublineages, 
whereas RW1 was mostly composed of the second ETB sublineage variants, which could, 
to some extent, affect further steps in the identification of ancestral populations. The opti-
mal patterns of the breed-specific genetic structure were found at K = 26. On the corre-
sponding bar plot, the unique genomic composition of each breed can be seen (Figure 3, 
Supplementary Figures S8 and S9), suggesting the distinctive patterns of breed consolida-
tion and stratification in accordance with their origin and breeding history. Although the 
situation when K is more than the number of populations may seem unusual, such a pat-
tern can be observed when the samples of various breeds studied are of mixed origin. 
Accordingly, the number of clusters K equal to, or lower than, the number of populations 
was not enough in our case to differentiate samples between breeds clearly. With an in-
crease in the number K, clusters began forming within breeds, uniting samples not by 
breed, but by other factors, e.g., belonging to a line or a family. 

 
Figure 3. Admixture circular diagram plotted in the R package BITE [67] and representing cluster 
structure and individual ancestry proportions in the studied populations at K = 2 to 26. Breed codes 
are given in Table 1. 

Figure 3. Admixture circular diagram plotted in the R package BITE [67] and representing cluster
structure and individual ancestry proportions in the studied populations at K = 2 to 26. Breed codes
are given in Table 1.



Biology 2023, 12, 979 16 of 26

3.4. Demographic History Inference
3.4.1. Population Divergence and Gene Flow

One of the demographic history inference aspects explored here was the assessment
of breed/population divergence (or split) and gene flow (or migration events) [77]. The
respective analysis results are presented in Figure 4 and Supplementary Figure S10A–D.
As exemplified in Figure 4a, there was a migration event from the common ancestor of RW
and WL to the ancestor of ZS and Kt. This does not contradict the history of breed origin:
RW, indeed, was used in developing ZS and Kt, and this explains the discovered gene
flow example. We also discovered several other gene flow events that conformed to the
known origin and breeding history of the breeds (Supplementary Figure S10A). In addition,
maximum likelihood trees in Figure 4a and Supplementary Figure S10A,B reflected the
plausible breed/population divergence that was largely in agreement with the PCA plots
(Figure 1) and phylogenetic dendrograms (Figure 2, Supplementary Figures S5 and S6).
However, the maximum likelihood tree reconstruction algorithm was more sensitive in
placing the MTB of CW as a single basal offshoot not related directly to any other breed.
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Figure 4. Example of the assessed degree of divergence and the level of gene flow between the
studied breeds using 25 iterations. (a) Rooted maximum likelihood tree with one migration event.
Common quail (C. coturnix) was used as a root; cut length 10 s.e. corresponds to ten times the average
standard error (s.e.) estimated from the sample covariance matrix. Estimated gene flow is shown by
an arrow pointing from a donor population (ancestor of WL and RW2) to a recipient one (ancestor of
Kt and ZS) and is colored red in proportion to the intensity of the gene flow. (b) Plot representing the
proportion of variance (f-index) in the sample covariance matrix (¶W) accounted for by the model
covariance matrix (W) as a function of the number of migration events. (c) Residual matrix derived
from the TreeMix analysis for a single migration event, expressed as the number of standard error
deviations for the observations in the respective breeds.
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3.4.2. Effective Population Size

The assessment results of demographic history in terms of Ne values at the present time
and their change over recent 50–500 generations among the studied breeds are presented
in Figure 5, Supplementary Table S4 and Supplementary Figures S11 and S12. It is known
that Ne is an important indicator that describes the demographic history of a particular
population. Consideration of this indicator also allows us to assume how many individuals
could participate in the formation of the breed [90]. Based on the genome-wide analysis,
CW had the largest Ne value three generations ago (Ne = 321; Supplementary Table S4;
Figure 5a). The remaining breeds (populations) formed four large groups of breeds: (1) KJ
and RW2, Ne = [246; 261]; (2) Kt, YC, Pm, OMF and ZS, Ne = [121; 179]; (3) WL, PC, RIR,
AS, RW1 and RC, Ne = [80; 103]; and (4) UshF, LMF, NH, AoB, Ush and RBB, Ne = [29; 70]
(Supplementary Table S4; Figure 5a). This pattern of Ne values has been observed over the last
10–20 generations; the exceptions were OMF, ZS, KJ and RW2 that previously had somewhat
reduced Ne values. When considering the state of the studied populations 46 generations
ago (Supplementary Table S4; Figure 5a), most breeds had Ne values ranging from 115 to
203, three breeds (ZS, Pm, AS, RC) were characterized by higher Ne values (217–290) and
three more breeds (RW2, YC and CW) significantly outperformed the others by this indicator
(317–803). If we look at an even earlier demographic history of populations (at the level
of 500–525 generations ago, or approximately 230–240 years ago (Supplementary Table S4,
Figure 5b), WL had the smallest Ne (694), while CW and YC had the largest Ne (1814 and
2279, respectively). Remarkably, there was a sharp Ne reduction in YC (from 2279 to 141),
suggesting that this breed went through a severe genetic bottleneck, as confirmed by the fact
that YC was almost extinct by the end of World War II. It can be assumed that breeds with a
low Ne, both at present and 50–500 generations ago, apparently descended from a limited
number of ancestors or were under significant selection pressure in a number of generations.
However, it should be noted that, as a rule, a majority of the studied breeds were developed
by hybridization of several breeds, as well as by “blood refreshing” (i.e., introduction of single
telic mating to another population or breed), which could generally be reflected in similar
dynamics patterns of their demographic history and Ne changes in a series of generations.
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Figure 5. Dynamics of effective population size (Ne) changes in the studied chicken breeds (popula-
tions). Absolute Ne change across generations from approximately 50 (a) and 500 (b) generations ago;
(c) Ne slope (NeS), or relative Ne change across generations from approximately 50 generations ago:
the continuous rate of change is shown as a horizontal straight line at point 0 on the y-axis, while
deviations above and below zero represent, respectively, the relative increase and decrease in the
changing NeS as compared to the previous generation. Breed codes are given in Table 1.

Using the NeS method [84], we also identified subtle changes in the estimated Ne
curves (Figure 5c, Supplementary Figure S12), which are not visually detectable in the Ne
plots (Figure 5a,b, Supplementary Figure S11) and provided more detailed information
about changes in Ne. This analysis revealed sharp fluctuations in Ne in CW that occurred
approximately over the last 15–25 generations (Figure 5c). Less pronounced fluctuations
in Ne were observed over the last 5–15 generations in some other populations, e.g., OMF,
RC, YC, RW1, RW2, ZS and KJ. The earlier demographic history was characterized by
approximately similar and uniform NeS in all populations that corresponded to a relative
increase in Ne change and was represented as a bunch of horizontal lines above zero on the
y-axis (Figure 5c and Supplementary Figure S12).

In addition to the obtained plots of Ne change dynamics (Figure 5, Supplementary
Figures S11 and S12), we characterized the respective breed distribution using PCA
(Supplementary Figure S13A) and hierarchical clustering (Supplementary Figure S13B).
When combining the Ne data for 3, 46 and 520–525 generations ago, the greatest dis-
tinctiveness and distance of the trendline relative to the other breeds was inherent in
CW and, to a lesser extent, YC. Further, it was possible to observe the proximity for the
following three pairs of breeds: WL–Ush, RW–Pm and OMF–ZS. The rest of the breeds
formed a crowded core, which can generally indicate the similarity of their dynamics
of Ne changes over the last 520–525 generations. Based on the combined data of r2,
dist and items for three generations ago (not shown) as assessed using the SNP-based
genome-wide analysis, the patterns of breed distribution by LD were also obtained
(Supplementary Figure S14). The lowest LD values were characteristic of the ETBs of
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WL and RW, and the highest one was identified in the MEB of Kt, all three being located
separately on the respective PCA plot (Supplementary Figure S14A). The remaining
breeds formed two large clusters, one with slightly lower and the other with slightly
higher LD values. Finally, a comprehensive assessment of the studied breeds by parame-
ters showing the current Ne (three generations ago) and taking into account the three
parameters of LD between SNP markers made it possible to identify four clusters using
PCA (Supplementary Figure S15A) and hierarchical clustering (Supplementary Figure
S15B) methods. One cluster involved the MTB of CW, the other one combined two ETBs,
WL and RW, and all other breeds were distributed between two large clusters.

4. Discussion

To the best of our knowledge, this is the first thorough examination of the Russian
chicken gene pool heritage using whole genome screening and focusing on its overall
genetic diversity, phylogeny and demographic history. For this purpose, we employed
39,778 autosomal SNPs, explored genome-wide SNP genotypes amongst Russian native
breeds developed in the Russian Empire and Soviet Union, along with the specialized
foreign breeds.

Based on the performed analysis of the biodiversity of a large sample of native and
foreign breeds, we can suggest the presence of very specific patterns of variability and
genetic structure in the surveyed populations. For example, WL chickens were different
from other breeds that are basically synthetic by origin. This appears to indicate a stronger
and longer selection for egg production traits, which this line and the WL breed as a whole
were subjected to, and, possibly, a narrower structural variability in the genomes of its
ancestral forms. The greatest UFIS value (0.103) was identified in the WL population, which,
along with the lowest diversity indices, evidenced a severe selection pressure in this line of
laying hens.

The advantage of examining and contrasting the 19 breeds that are typical examples of
important, distinct and, in some ways, opposing evolutionary lineages occurred throughout
the process of domesticating and breeding chickens [89] has been used in the current study.
In particular, WL and RW were representatives of ETBs selected for fecundity, egg number
and other egg production traits, CW for meat traits and the others for dual purpose. We
discovered that 47.5 to 87.5% of the variability was attributed to allelic variation within the
breeds, while 12.5 to 52.5% of the variability was brought on by genetic variations between
the breeds compared in the pairwise mode (FST = 0.125 in the YC–RC pair to 0.525 in WL–
NH). WL was characterized by less genetic variability than the other breeds (Table 1). The
genetic drift that had a place in the WL line, which has undergone extensive selection for
egg performance as a closed population, may be one explanation for this. A larger degree of
genetic variation in CW chickens, however, may possibly be a result of crossbreeding of few
diverse breeds used for developing CW. WL had the greatest FROH inbreeding coefficient
(0.551), and YC and CW the lowest ones (0.154 and 0.162, respectively). This may be an
indication that WL descended from a small number of founders (e.g., [91]), whereas YC
and CW, in contrast, originated from a larger number of founders. WL may have an excess
of homozygotes due to a higher level of selection pressure for egg production traits, while
some other breeds, especially DPBs, with an excess of heterozygotes, are subject to selection
for more diverse breeding targets in comparison with WL [92]. Another reason why the
number of homozygotes or heterozygotes significantly deviated among the chicken breeds
studied from what would be predicted under Hardy–Weinberg equilibrium is genetic drift.

The PCA plotting, phylogenetic analysis and admixture clustering results (Figures 1–3,
Supplementary Figure S9) suggested that the breeds were to a large extent consolidated and
showed peculiar (i.e., breed-specific) admixture patterns. The genome-wide examination
convincingly distinguished the breeds and supported their distinct genetic origins and
selection history. In particular, two ETBs, WL and RW, demonstrated a close genetic kinship,
with RW being previously exposed to crossing with WL and both breeds being bred for
egg performance traits. Interestingly, RW1 and RW2 showed a clear differentiation, with
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RW2 being closer to WL, which suggested a varied genetic background and significant
differences in genetic structure of these two RW populations. Previously, Abdelmanova
et al. [42] suggested the differences between RW1 and RW2, only assuming what caused
them. From the data obtained, it can be seen that RW2 was once again crossed with
WL, in contrast to RW1. Inherently, RW1 is a purer population of this improved Russian
breed. In contrast, CW developed from the crossing of GBs and MTBs and selected for
characteristics related to growth, muscle development and meat production was located
in an opposite cluster in Figures 1 and 2. Overall, as shown in Figure 2, there were three
major superclusters composed of the 20 breeds/populations studied. The first supercluster
involved ETBs (WL, RW1 and RW2) and old Russian indigenous DPBs of OMF, Ush, RBB
and YC. The second supercluster embraced one MTB (CW) and most of the DPBs, both of
specialized foreign and Russian native origins. The third supercluster was made up by four
Russian native DPBs (KJ, Kt, RC and ZS). Interestingly, there was a migration event from
the common ancestor of WL and RW2 to Kt and ZS, confirming the known information
about the origin of Kt and ZS. Collectively, our findings revealed genetic uniqueness of
such Russian breeds as OMF, Ush, RBB, YC, KJ, Kt, RC and ZS, suggesting their further
continued preservation and breeding.

Many breeds explored here and manifesting different phenotypic traits were previ-
ously included in other phylogenetic studies and showed similar relationship patterns
(e.g., [15–20,37,89,93–98]). For instance, a thorough comparative phylogenetic assessment
of several chicken breeds was conducted by Moiseyeva et al. [89] utilizing two sets of
morphological discrete traits, body measurements, biochemical markers and the activity of
serum esterase-1 (i.e., carboxylesterase 1 like 1, or CES1L1). In the created dendrograms
reflecting evolutionary relationships in chickens, RW was grouped with WL and other
ETBs, whereas CW formed shared clusters with GBs and MTBs [89]. Recently, Dementieva
et al. [97] localized RW and WC on the opposing branches of an FST-based Neighbor-Joining
tree using the Illumina Chicken 60K SNP iSelect BeadChip. The RW and WC breeds, which
represent typical ETBs and MTBs, were also used in our previous investigation [42] based
on Chicken 50 K_CobbCons chip-assisted SNP genotypes. The earlier diversity and phy-
logenetic relationship analyses for RW, WC and other breeds were strongly validated by
our present data, supported also by the admixture, gene flow and demographic history
patterns we identified here.

Being at the junction between East and West, the vast territory of Russia has histor-
ically been a crossroads of trade routes, along which there was an intensive exchange of
breeds of domestic animals, including poultry. Having settled in Russia, these breeds
adapted to diverse and often harsh climatic conditions (e.g., [99]), and often lost their
original breed traits, turning into local ecotypes and populations of mongrel animals or
crossbreds, giving rise to new local breeds [100–104]. The degree of polymorphism in
Russian indigenous breeds is comparable to that of Asian breeds generally. Russian breeds
represent a mixed Eurasian group by origin and, therefore, included the gene pools of the
two global regions, with a predominant contribution from the Asian region, which could
predetermine their high polymorphism [3]. When considering the reasons for a greater
variability of Russian breeds shown here in comparison with foreign breeds (mostly of
Western origin), one should not forget about the large territory occupied by the Russian
Empire and the USSR in the past and by the Russian Federation at present. Here, as for
the whole Asian region, we should recognize the significance of the diversity of climatic,
landscape and ethnic conditions for the emergence of many and different ecotypes and
breeds of animals, including poultry [3].

5. Conclusions

Judging from the biodiversity analysis of this large sample of native and foreign breeds,
we noted very specific patterns of variability and genetic structure of the surveyed breeds,
with WL being especially different from other breeds of synthetic origin. This, apparently,
may indicate a stronger and longer selection for egg-laying traits, which this line and the
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WL breed as a whole were subjected to, and, possibly, a narrower structural variation in
the genomes of its ancestral stocks. The phylogenetic analysis results did not contradict
the available data on the origin and breeding history of the breeds. For example, WL and
RW are typical specialized ETBs selected for egg production; moreover, WL roosters were
used for the creation of RW. Ush and RBB are old indigenous breeds that are tolerant to
cold, have a brooding instinct and are also used for fancy purposes. RIR was an original
breed for developing NH, and both were supposedly involved in the creation of PC. One
of the initial breeds in the development of AS was Pm; in addition, when creating both
breeds, YC was also used. ZS was used to produce Kt, and both breeds descended from
NH and RW among other parent breeds. This historical breed information was in line with
the present whole genome screening study.

In general, using the results of a multilateral survey of this sample of breeds, it can
be argued that phylogenetic relationships based on their genetic structure and variability
reflect the known, previously postulated and discovered patterns of evolution and selec-
tion in chickens [33,42,89,105–107]. These findings add to our understanding of genomic
diversity, phylogeny and admixture in the genomes of unique Russian gene pool breeds
with divergent selection histories and phenotypic features. The outcome of the current
study will be beneficial for Russian chicken breed conservation, sustainable breeding and
effective selection.
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