
Keskin, Muhammed Emre and Triki, Chefi (2022) On the periodic hierarchical
Chinese postman problem. Soft Computing, 26 (2). pp. 709-724. ISSN 1432-7643.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/101953/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1007/s00500-021-06213-2

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/101953/
https://doi.org/10.1007/s00500-021-06213-2
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

OPTIMIZATION

On the periodic hierarchical Chinese postman problem

Muhammed Emre Keskin1,5 • Chefi Triki2,3,4

Accepted: 24 August 2021 / Published online: 1 November 2021
� Crown 2021

Abstract
This paper presents a mathematical formulation and a heuristic approach for a new variant of the Hierarchical Chinese

Postman Problem (HCPP). Indeed, we introduce the concept of periodicity, and we define and solve, for the first time, the

Periodic-HCPP, denoted as P-HCPP. Given that the resulting integer programming model makes use of a big number of

binary variables and given the extended time horizon considered, 30 days in our case, the problem is characterized by a

high level of complexity. However, our developed heuristic is able to solve instances having up to 40 nodes, 520 arcs and 5

hierarchies, whereas a general-purpose solver like Gurobi was not able to provide solutions for instances having more than

10 nodes. While the collected results are very encouraging, we provide at the end of this paper a set of possible future

extensions of this work.

Keywords Hierarchical Chinese postman problem � Periodicity restrictions � Layer algorithm � Simulated annealing �
Etc

1 Introduction and literature review

The importance of extending the planning horizon to consider

multi-period horizons within routing problems has been rec-

ognized since several decades (Campbell and Wilson 2014).

The objective is to ensure a better time-space consolidation in

order to achieve transportation cost savings. Usually, serving

customers (either placed at the nodes of a network or along its

arcs) over an extended timehorizon follows a specificpattern of

periodicity. This means that every customer will be charac-

terized by a given frequency (for example, once, twice or thrice

per week) to be respected in order to ensure a balanced service

distribution over the multi-period horizon. While the period-

icity aspect in the context of solving node routing problems had

intensive attention in the literature, the interest to solve periodic

arc problems increased only recently. A non-exhaustive list of

papers that dealt with the periodic traveling salesman problem

includes Paletta (1992), Chao et al. (1995) andPaletta andTriki

(2002). On the other hand, those that proposed optimization

models and/or solution methods for the several variants of the

periodic vehicle routing problems include Beltrami and Bodin

(1974), Cordeau et al. (1997), Bommisetty et al. (1998) and

Francis et al. (2006).Recently, several newworkshavedirected

their attention to the solution of periodic node routing problems

arising in real-life applications such as, the containers trans-

portation (Chen et al. 2020), the petrol stations replenishment

(Triki 2013; Al-Hinai and Triki 2020), the distribution-inven-

tory of perishable goods (Diabat et al. 2016), medical waste

collection (Taslimi et al. 2020), patrolling service by security

companies (Fröhlich et al. 2020), planning election logistics

(Shahmanzari et al. 2020), the distribution of gas cylinders

(Triki et al. 2017) and the train timetabling (Zhou et al. 2020).

Most of these and other studies that have been published along

the last 50 years were reviewed in the recent survey by Wang

and Wasil (2020).

& Chefi Triki

C.Triki@kent.ac.uk

Muhammed Emre Keskin

emre.keskin@atauni.edu.tr

1 Industrial Engineering Department, Atatürk University,

Erzurum, Türkiye

2 Kent Business School, University of Kent, Canterbury,

United Kingdom

3 Department of Engineering for Innovation, University of

Salento, Lecce, Italy, University of Salento, Lecce, Italy

4 College of Sciences and Engineering, Hamad bin Khalifa

University, Doha, Qatar

5 Division of Engineering Management and Decision Sciences,

College of Science and Engineering, Hamad Bin Khalifa

University, Doha, Qatar

123

Soft Computing (2022) 26:709–724
https://doi.org/10.1007/s00500-021-06213-2(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-9381-123X
http://orcid.org/0000-0002-8750-2470
http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-021-06213-2&domain=pdf
https://doi.org/10.1007/s00500-021-06213-2

This paper focuses on introducing the periodicity aspect

within a specific variant of arc routing problems, namely

the Hierarchical Chinese Postman Problem (HCPP). To the

best of our knowledge, the periodic version of this problem

has never been modeled or solved in the scientific litera-

ture. Our contribution consists here of filling in such gap by

defining for the first time the Periodic-HCPP (i.e.,

P-HCPP), developing an original model for its formulation

and suggesting a heuristic approach for its solution.

The HCPP arises in many application contexts such as

street sweeping, garbage collection, flame cutting and snow

removal (Liu 1988; Eiselt et al. 1995a, b; Perrier et al.

2008). In many of the above problems, the network’s arcs

do not need to be served every day of the planning horizon

but are rather following a periodicity pattern that defines

their service frequency. By extending the planning horizon

and optimally consolidating the service over the different

days, the decision maker can achieve significant cost sav-

ing and level of service improvement. Consequently, every

arc in the P-HCPP network will be characterized, besides

its traversal cost, by two further attributes: its frequency of

service and its hierarchy class. The hierarchy of an arc

represents its level of priority to be served before/after the

other arcs (depending on whether they have higher/lower

hierarchy). Consequently, the P-HCPP can be verbally

defined as the problem of identifying a set of least-cost

routes that start every day from a given depot node, visit

the network’s arcs according to their hierarchy level and

periodicity frequency, and then come back to the same

starting node at the end of each day of the planning hori-

zon. A more formal definition of the P-HCPP, in terms of

graph theory-based mathematical representation will be

given in Sect. 2.

An illustrative example of the P-HCPP is drawn in

Fig. 1. The colors identify the three classes of hierarchy of

each arc (red, green and blue in a decreasing hierarchical

order), and the number close to each arc represents its

frequency of service (here assumed to be once, twice or

thrice during the planning horizon, as the arcs replication

shows). For the sake of simplicity, we avoided to include

the arcs’ traversal costs (with and without service) in this

P-HCPP graph.

In the context of periodic arc routing, the P-HCPP finds

its root in two different streams of research. The first

stream is related to the HCPP that has been introduced in

the pioneering work of Dror et al. (1987). The authors

claimed that, despite the fact that the HCPP is an NP-hard,

a class of it can be solved in polynomial time if the network

obeys to certain conditions related to the linearity of the

precedence relation and to the graph connectivity. A first

heuristic method has been developed by Alfa and Liu

(1988), whereas exact solution approaches for the HCPP

have been proposed separately in Ghiani and Improta

(2000), Cabral et al. (2004) and Korteweg and Volgenant

(2006). More specifically, both the former works were

based on the idea of transforming the HCPP into a rural

postman problem and solving it by a branch-and-cut

technique, whereas the latter work suggested an improve-

ment of the above-mentioned algorithm of Dror et al.

Damodaran et al. (2008) have focused on developing lower

bounds for the HCPP, and Sayata and Desai (2015) have

employed a minimum spanning tree technique to reduce

the number of arcs in the underlying graph and reduce,

thus, the problem’s complexity. More recently, Çodur and

Yılmaz (2020) and Keskin et al. (2021) defined new vari-

ants of the HCPP in which they introduce the concept of

time-dependent traveling time between the nodes. Both the

Fig. 1 Illustrative example of

the P-HCPP

710 M. E. Keskin, C. Triki

123

papers proposed mathematical mixed integer formulations

and develop heuristic/metaheuristic approaches for its

solution. Unfortunately, the literature does not provide any

updated survey on the HCPP, but insightful details on some

of the above works have been given in the review of

Corberán and Prins (2010).

The second stream of research is related to the intro-

duction of the periodicity aspect in the context of the arc

routing. Despite their practical importance in representing

real-life applications, the interest in modeling and solving

periodic arc/edge routing problems has increased only

during the last decade. The first paper in this direction is

due to Ghiani et al. (2005) who focused on the periodic

rural postman problem and developed a heuristic approach

for its solution. Concurrently, Chu et al. (2005) developed

an integer formulation for the periodic capacitated arc

routing problem and proposed heuristic approaches for its

solution. During the following years, a particular attention

has been devoted to the introduction of several novel

variants of the periodic arc routing problems in order to

integrate different modeling features, such as considering

the irregularity of the arcs service (Monroy et al. 2013),

incorporating decisions related to inventory (Riquelme-

Rodrı́guez et al., 2014a and 2014b), including the service

facilities location along the arcs (Huang and Lin 2014;

Riquelme-Rodrı́guez et al., 2016), considering operational

time restrictions (Tirkolaee et al. 2018; Thomaz et al.

2018) and more recently involving the multi-objective

aspect into the optimization model (Tirkolaee et al. 2019).

Considering the solution strategies, most of the above-

mentioned studies have developed heuristic approaches to

solve the particular variant of the periodic arc routing

problem under exam. Population-based metaheuristics

have also been adopted and have shown to be very effec-

tive in solving such problems (Lacomme et al. 2005; Chu

et al. 2006; Mei et al. 2011; Zhang et al. 2017; and Batista

et al. 2019). Moreover, decomposition approaches that

exploit the problem’s structure to reduce its complexity

have been suggested by (Triki 2017), Chen and Hao (2018)

and Oliveira and Scarpin (2020). Finally, an attempt to

tackle the periodic arc routing problem through exact

methods has appeared only recently in the work of Bena-

vent et al. (2019).

The above literature review clearly highlights that, even

though several variants of the arc/edge routing problem

that incorporate periodicity restrictions have been modeled

and solved, none among the available papers has ever dealt

with the P-HCPP, despite its importance in modeling and

solving several real-life routing problems.

The paper will be structured as follows. Section 2 will

be devoted to formally defining the problem in terms of

graph theory and suggesting a novel optimization model

for the P-HCPP. Section 3 will describe our solution

approach, and Sect. 4 will summarize our computational

experiments that validate the model and assess the per-

formance of our solution approach. Finally, Sect. 5 will

draw some concluding remarks and suggest future avenues

of further investigation on the topic.

2 Optimization model

In this section, we first describe the sets, parameters, and

variables that are used in the formulation. Then the math-

ematical formulation of the P-HCPP is provided.

2.1 Sets, parameters and variables

We assume that the set of nodes is denoted by N and the

arcs connecting the nodes are characterized by a set, which

we call A. Indices i and j are used to represent the nodes,

and an arc from set A connecting i and j is represented by

i; jð Þ. Set of of patterns that comply with the periodicity

requirements of arc i; jð Þ is called as Kij. Note that a pattern

is a sequence of days in which value 1 appears for the day

that is included in the pattern, and value 0 appears, other-

wise. For instance, in the 30 day sequence: ‘‘1 0 1 0 … 1

0’’ this pattern includes days 1, 3, …, 29 and does not

include days 2, 4, …, 30. A similar pattern in which the

included days alternates in every other day would be ‘‘0 1 0

1 … 0 1’’. Note that these two patterns would be suit-

able for the arcs that have periodicity frequency equals to

2. We use index r for pointing the periodicity patterns. The

set of hierarchies is given by H and we refer to a specific

hierarchy by using index h 2 H. Set of arcs that belong to

hierarchy h is given by Ah. Finally, S stands for the set of

steps or periods and T represents the set of days in the

planning horizon, while s and m are the indices used to

refer to specific steps from set S and index t is used to point

out a specific day from set T .

There are 4 parameters used in the formulation and 3 of

them depend on the above-described sets and indices. c1ij
and c2ij respectively denote the service and traversing costs

of arc i; jð Þ. Note that serving an arc is a more time-con-

suming task than just traversing it without service implying

that c1ij [c2ij should hold. Besides, art indicates whether or

not day t is included in periodicity pattern r. Finally, M

stands for an enough large number.

The model has nine sets of decision variables. The con-

tinuous variables are b1ijt; b
2
ijt; zhst and cht. b

1
ijt and b2ijt simply

represent the number of service times and number of

traversing times of arc i; jð Þ on day t, respectively. Variable

zhst is the number of arcs belonging toAh that are servedbefore

step s at day t. Finally, cht represents the number of arcs

belonging to Ah that have to be served on day t. The binary

On the periodic hierarchical Chinese postman problem 711

123

variables of the model are hhst; yijst, aijr, x1ijst and x2ijst. hhst
indicates whether or not all arcs of hierarchy h that are

required to be served on day t are served before step s of day t

or not. Variable yijst takes value 1 if arc i; jð Þ is served before
step s of day t, and it is 0 otherwise. Variable aijr represents the
pattern selection variable for arc i; jð Þ. In other words, aijr
should be 1 if pattern r is assigned to arc i; jð Þ, otherwise aijr
should be set to 0. Finally, variables x1ijst and x2ijst indicate

whether or not arc i; jð Þ is served or traversed at step s of day t,
respectively. A summary of the sets, parameters and variables

definitions is provided inTable 1, for the sake of convenience.

2.2 Mathematical model

Our mixed integer linear program, abbreviated as P-HCPP,

is given below.

We minimize in the objective function (1) the total

service and traversing cost. Constraint (2) and constraint

(3) ensure that, at each day, the vehicle that leaves the first

node at step 1 (which is achieved by constraint (2)), should

go back to the same node at the last step Sj j (guaranteed by

constraint (3)). Note that Sj j is an upper limit value for the

number of steps that can be considered in any day (we

selected its value as twice the number of arcs). In order to

avoid forcing the vehicle to perform exactly Sj j steps on

each day, we added a dummy arc that connects the starting

node to itself and that has both the service and traversal

cost equal to 0. Thus, if on any day the vehicle needs to

return to the starting point with fewer steps than Sj j, it can
return to the starting node at the end of step Sj j by

traversing the dummy arc at 0 cost during the remaining

steps. This ensures the satisfaction of constraint (3) for that

min
P

i;jð Þ2A;i\j

P

t2T
c1ijb

1
ijt þ c2ijb

2
ijt

� �
ð1Þ

s:t: P

j: 1;jð Þ2A
x11j1t þ x21j1t

� �
¼ 1 t 2 T ð2Þ

P

j: j;1ð Þ2A
x1j1 Sj jt þ x2j1 Sj jt

� �
¼ 1 t 2 T ð3Þ

P

i;jð Þ2A
x1ijst þ x2ijst

� �
¼ 1 s 2 S; t 2 T ð4Þ

P

j: j;ið Þ2A
x1jist þ x2jist

� �
�

P

j: i;jð Þ2N
x1ij sþ1ð Þt þ x2ij sþ1ð Þt

� �
¼ 0 i 2 N; s 2 Sn Sj jf g; t 2 T ð5Þ

P

s2S
x1ijst þ x1jist

� �
¼ b1ijt i; jð Þ 2 A; i\j; t 2 T ð6Þ

P

s2S
x2ijst þ x2jist

� �
¼ b2ijt i; jð Þ 2 A; i\j; t 2 T ð7Þ

P

r2Kij

aijr ¼ 1 i; jð Þ 2 A; i\j ð8Þ

b1ijt �
P

r2Kij

artaijr i; jð Þ 2 A; i\j; t 2 T ð9Þ

b1ijt �M
P

r2Kij

artaijr i; jð Þ 2 A; i\j; t 2 T ð10Þ

Ps

m¼1

x1ijmt þ x1jimt

� �
� syijst i; jð Þ 2 A; i\j; s 2 T ; t 2 T ð11Þ

yijst �
Ps

m¼1

x1ijmt þ x1jimt

� �
i; jð Þ 2 A; i\j; s 2 S; t 2 T ð12Þ

P

i;jð Þ2Ah;i\j

yijst ¼ zhst h 2 H; s 2 S; t 2 T ð13Þ
P

i;jð Þ2Ah;i\j

P

r2Kij

artaijr ¼ cht h 2 H; t 2 T ð14Þ

chthhst � zhst h 2 H; s 2 S; t 2 T ð15ÞP

i;jð Þ2Ahþ1;i\j

yijst �Mhhst h 2 H; s 2 S; t 2 T ð16Þ

hhst; x1ijst; x
2
ijst; yijst; aijr 2 0; 1f g i; jð Þ 2 A; h 2 H; s 2 S; t 2 T ð17Þ

b1ijt; b
2
ijt; zhst; cht � 0 i; jð Þ 2 A; h 2 H; s 2 S; t 2 T ð18Þ

712 M. E. Keskin, C. Triki

123

day. Constraint (4) guarantees that the vehicle travels

through a single arc at each step of each day. Constraint (5)

ensures that the vehicle leaves the node at step sþ 1 if it

entered to it at the previous step s, and it cannot leave a

node at step sþ 1 if it did not enter it at the previous step s.

Hence, this constraint guarantees the continuity of the route

performed by the vehicle. Constraints (6) and (7) define b1ijt
and b2ijt variables. At the left-hand side of the constraints,

we sum up the service and traversing variables (x1ijst and

x2ijst) throughout the steps and let it be equal to b1ijt and b2ijt
for each day. Constraint (8) ensures that a suitable pattern

is assigned for each arc. Constraint (9) is written for each

arc and for each day and guarantees that each arc is served

at least once independent from the direction of the passing

if the arc is assigned to a pattern that requires its service for

the day the constraint is written for. Similarly, constraint

(10) guarantees that no arc is served on a day if the pattern

assignment does not require the arc to be served for the

specific day the constraint is written for. Constraints (11)

and (12) define the relationship between variables x1ijst and

yijst. Namely, if the number of services for an arc is zero at

a particular step, i.e.,
Ps

m¼0 x1ijmt þ x1jimt

� �
¼ 0, then yijst ¼

0 should follow. On the contrary, if yijst ¼ 1, then
Ps

m¼1

x1ijmt þ x1jimt

� �
[0 must hold. Constraint (13) computes

the value of variable zhst by counting the number of arcs

belonging to hierarchy h that traversed before step s.

Constraint (14) defines the cht variable. It sums up the arcs

that are assigned to pattern that requires the arc to be

served for the day the constraint is written for and assigns

the summation as the value of the cht variable. On the other

hand, constraint (15) defines variable hhst, i.e., it guarantees
that hhst variable is set equal to 0 if all the arcs belonging to

hierarchy h that are required to be served on a specific day

are not traversed before or during step s. Namely, con-

straint (15) ensures that hhst can be equal to 1 only if zhst is

equal to cht, and it is 0 otherwise. Similarly, constraint (16)

avoids serving through arcs belonging to hierarchy hþ 1 if

all the arcs of hierarchy h that are required to be served on

the day are not served yet. Both the constraints (15) and

(16) are written for each step of each day and for each

hierarchy. These constraints impose the hierarchy

Table 1 Sets, indices,

parameters and decision

variables of the P-HCPP

formulation

Set/Indices Definition

N=i; j Set of nodes/Node indices

A= i; jð Þ Set of arcs/Arc index

Kij=r Set of patterns representing periodicity of arc i; jð Þ/Pattern index

H=h Set of hierarchies/Hierarchy index

Ah Set of arcs belonging to hierarchy h

S=s;m Set of steps/Step indices

T=t Set of days/Day index

Parameters Definition

c1ij Service cost of arc i; jð Þ

c2ij Traversing cost of arc i; jð Þ
art Indicates whether or not pattern r includes day t

M An enough big number

Variables Definition

b1ijt Number of service times of arc i; jð Þ on day t

b2ijt Number of traversing times of arc i; jð Þ on day t

zhst Number of arcs belonging to Ah served before step s on day t

cht Number of arcs of hierarchy h assigned today t

hhst Indicates whether or not all arcs belonging to Ah (assigned to day t) are served before step s on
day t

yijst Indicates whether or not arc (i, j) is served before step s on day t

aijr Indicates whether or not pattern r is selected for arc i; jð Þ
x1ijst Indicates whether or not arc i; jð Þ (through from i to j) is served at step s on day t

x2ijst Indicates whether or not arc i; jð Þ (through from i to j) is traversed at step s on day t

On the periodic hierarchical Chinese postman problem 713

123

restrictions. Finally, constraint (17) and constraint (18)

represent the usual binary and non-negativity restrictions

on the decision variables.

As can be seen, the binary variable hhst is multiplied

with the continuous variable cht in constraint (15) which

introduces a nonlinearity in the model. In order to linearize

the multiplication term, we define a new continuous vari-

able lhtl to replace the multiplication term, i.e.,

lhst ¼ chthhst. We also introduce four new constraint sets,

which are linear and force lhtl to be equal to chthhst. These
constraints are given in the following.

lhst � cht h 2 H; s 2 S; t 2 T ð19Þ
lhst �Mhhst h 2 H; s 2 S; t 2 T ð20Þ
lhst � cht �M 1� hhstð Þ h 2 H; s 2 S; t 2 T ð21Þ
lhst � 0 h 2 H; s 2 S; t 2 T ð22Þ

As can be understood, if hhst takes value 1, then lhst is
set equal to cht by means of constraints (19) and (21).

Similarly, if hhst is zero, lhst is set to zero by means of

constraints (20) and (22). This implies that the nonlinear

multiplication chthhst existing in constraint (15) can be

replaced with lhst after adding constraints (19–22) to the

model.

Since P-HCPP is characterized by a high level of com-

plexity, the computational time that its exact solution may

require can be prohibitively large formoderate and large size

instances. It is well known that general mixed integer linear

programming problems belong to NP-hard problem class,

and P-HCPP is no exception. Hence, there is almost no hope

for finding a solution method that exactly solves P-HCPP

instances in polynomial time. (Interested readers are directed

to seminal work by Wolsey (1998)). This observation

underlines the need to resort to a heuristic solution procedure

for the solution of relatively larger instances of P-HCPP.We

propose in the sequel a novel hybrid heuristic solution in

which we integrate a famous simulated annealing meta-

heuristic together with an adaptation of the Dror et al.’s layer

algorithm in a nested manner.

3 Solution procedure

The difficulty of solving moderate and large P-HCPP

instances in tolerable computation times is due to the large

number of binary variables that our formulation of P-HCPP

includes. Hence, one must attempt to reduce the number of

binary decision variables in order to efficiently solve P-

HCPP instances in a relatively acceptable amount of time.

An observation which may help in reducing the number of

binary variables can be inspired from the nature of the pattern

selection variables, i.e., aijr. One may see that if the values of

aijr variables are given a priori beforehand as a parameter,

then solving the whole problem would reduce to solving an

HCPP instance for each day independently. We highlight

that solving HCPP instance for each day independently and

aggregating their solutions to obtain a solution for the orig-

inal P-HCPP is naturally easier and takes lesser time then

solving the P-HCPP instance at once altogether even if the

values of aijr variables are fixed. We take advantage of such

observation, and we propose a 2-phase Hybrid Heuristic

(HH) for the solution of P-HCPP instances. At the outer

phase of theHH,we search for the values of aijr variables by a
Simulated Annealing (SA) algorithm. In the inner phase, we

solve an instance of HCPP for each day independently, while

using the aijr values identified by the SA at the outer phase,

and we then aggregate the partial solutions to provide a

solution for the original P-HCPP instance. Our choice of

implementing the SA algorithm is based on two different

reasons. First, the SA is a metaheuristic that involves a

limited number of parameters and is relatively easy to code to

tune to validate. The second reason is the fact that it is nec-

essary to execute the layer algorithm to evaluate each solu-

tion, which needs relatively a long computational time. The

SA algorithm, inwhich only one solution is evaluated at each

step, results to be more advantageous empirically with

respect to the more modern metaheuristics (such as tabu

search, ILS or ALNS) that require the evaluation of a large

number of solutions at each step, and also with respect to the

genetic algorithm that requires the evaluation of a large

number of solutions to form the initial population.

3.1 Hybrid heuristic

We find unnecessary to give the theoretical foundations of

the famous simulated annealing algorithm here (interested

reader can refer to Delahaye (2019)). A sketch of our SA

implementation is given in the following. Note that by the

phrase ‘solution’ we mean an assignment of each i; jð Þ 2 A

to the one of the suitable periodicity patterns.

1. Initialization: Determine the initial solution (the values

of aijr variables are set by assigning each arc i; jð Þ 2 A

to the first suitable pattern), set iterlim ¼ 1000,

nonopt ¼ 0; nonopt limit ¼ 10, iterlength ¼ 10, T0 ¼
� sC
ln 0:9ð Þ where sC is the standard deviation of 30

randomly selected solutions, coef ¼ 0:99, and k ¼ 0.

Let the current solution be represented by ak and a

neighboring solution brepresented by a0.

2. While ile (time limit is not reached and k\iterlim and

nonopt\nonopt limit
a. nonopt ¼ nonopt þ 1.
b. for iter ¼ 1 : iterlengthð Þ

714 M. E. Keskin, C. Triki

123

i. Obtain a neighboring solution a0. and let f a0ð Þ
note the length of the associated tour and let

D ¼ f a0ð Þ � f akð Þ
ii. Let akþ1 ¼ a0 if D\0 or R 0; 1ð Þ\e

�D
Tk where

R 0; 1ð Þ denotes a random number generated

within the (0, 1) interval, else akþ1 ¼ ak
iii. If a0 is better than the best solution

nonopt ¼ 0

c. Tkþ1 ¼ Tk � coef

d. k ¼ k þ 1

The initial temperature selection (i.e.,T0 ¼ � sC
ln 0:9ð Þ) makes

it possible to accept, at the initial iterations of the algorithm, the

neighboring solutionwith approximately 90%probability even

if it isworse than thecurrent solution.Note that as thenumberof

iterations grows, the value of the temperature reduces (due to

Tkþ1 ¼ Tk � coef) and the probability of accepting worse

solutions decreases and converges to 0 toward the end of the

algorithm. In order to generate a neighboring solutionwith 50%

probability, we randomly select a single arc and change its

current pattern to one of the other suitable patterns, and with

50% probability, we randomly select two arcs and change each

of their assigned patterns. Finally, nonopt counts the number of

consecutive iterations in which the best solution does not

improve and if it reaches to nonopt limit, which is 10, the

algorithm terminates.We referred to theworkbyReeves (1993)

during the selection of initial temperature and selection of other

parameter values.

Once the periodicity pattern is assigned to each arc, one

has to solve an HCPP instance for each day of the planning

horizon in order to obtain the tour length f a0ð Þ for a can-

didate neighboring solution a0. Smaller instances of HCPP

can be optimally solved by commercial mixed-integer

linear programming solvers like Gurobi (2021). However,

once again we need here practical heuristic solution

strategies to tackle moderate and large sized HCPP

instances. Luckily, there are, as mentioned in the first

section, several good heuristic strategies developed in the

literature for the solution of HCPP instances. We adapt

here the Dror et al.’s layer algorithm.

Layer algorithm includes a polynomial number of opera-

tions and optimally solves HCPP with linear precedence

relationships. If the arcs belonging to each hierarchy are

connected and if there is, for each hierarchy (except the

highest hierarchy), at least one incident node of the hierarchy

that is also incident to a higher hierarchy, then the instance is

said to have linear precedence relationships. All instances

considered in this study are constructed so that they have

linear precedence relationships. However, since the periodic

service requirements of the arcs depend on the selected

pattern, i.e., the value of aijr variables, each arc does not have

to be passed each day. Hence, for a given day, we have to

solve an HCPP instance in which we are to find a tour that

serves a subset of arcs the selected pattern dictates. Those arcs

that waits to be serviced for a given day do not necessarily

possess a linear precedence relationship even if the original

network has that property. Therefore, the HCPP instances to

be solved for each day may not have the linear precedence

relationships. Moreover, we allow passage through arcs

without service probably for a lesser cost than the service

cost, which makes our problem even more different. Namely,

service order must follow the hierarchies while passage

without service is made when needed without following the

hierarchies. The layer algorithm does not guarantee optimality

for our HCPP instances due to the above-mentioned reasons,

but it is still able to provide a probably sub-optimal feasible

solution implying that it can be used as a heuristic procedure.

The famous blossom method of Edmonds (1965) is run as

a sub-procedure of the layer algorithm to find the shortest

path between two nodes of the graph. However, we do not

require service costs to be symmetric which makes blossom

method inapplicable for our case. Instead, we construct an

integer programming formulation and use it as a sub-proce-

dure within the layer algorithm in order to find the shortest

paths between any two nodes. This method shares some

similarity with the Windy Layer Algorithm (WLA) of Keskin

et al. (2021). However, our integer formulations are different

as our cost structure does not have their variable cost property

and also we allow here traversing arcs without service, con-

trary to the approach followed by Keskin et al. We go over

the details in the sequel.

We name the subgraph induced by the set of arcs of

hierarchy h as Gh ¼ Nh;Ahð Þ where Nh is the incident

nodes of Ah. We also define Fq as the union of the first q

sets, i.e., Fq ¼
Sq

h¼1 Gh. Now, if node i 2. Nh is incident to

an arc of Fh�1, it is defined as an entry node of Gh.

Moreover, we define Yh to represent the set of entry nodes

of Gh. Mathematically, Yh is equal to
Sh�1

q¼1 Nq

� �T
Nh.

Finally, we define Y1 and Y Hj jþ1 both equal to i1f g where i1
represents the depot where the tour starts and ends. Now, a

new graph, say G0 ¼ N 0;A0ð Þ, with node set N 0 ¼
S Hj jþ1

h¼1 Yh
and arc set A0 ¼ i; jð Þ : i 2 Yh; j 2 Yhþ1 for h ¼ 1; . . .; Hj jf g
is defined. It should be noted that a node may exist in more

than one of the sets Yh; h ¼ 1; . . .; Hj j þ 1. Namely, a node

can be an entry node for more than one hierarchy. In this

case, the node existing in more than one entry node set

should be treated as a different node each time. The

resulting bipartite graph G0 is illustrated in Fig. 2.

On the periodic hierarchical Chinese postman problem 715

123

We remind here that we are to solve an HCPP for each

day, and we do not have to pass through each arc every day

but only the arcs required by the values of the pattern

selection variables aijr that result from the outer SA algo-

rithm. Going from i to j in G0 through an arc i; jð Þ 2 A0 such
that i 2 Yh and j 2 Yhþ1 for some h ¼ 1; . . .; Hj j actually
means that we start the route from i and end with j and in

the meantime, each arc belonging to Ah which is assigned

to that specific day (according to aijr values) should be

served with minimum possible cost. Moreover, we should

make sure not serving any arc from lower hierarchy classes

(but traversing through an arc without service is permitted

when needed) and the arc cost belonging to i; jð Þ 2 A0 is

taken as the length of the above-mentioned route. The

length of the route is calculated by the help of an integer

programming formulation.

3.2 Shortest path identification within HH

Let P i; j; h; tð Þ denotes the problem of finding the shortest

path starting from node i, ending at node j that serves every

arc of Ah which are assigned to day t without serving any

arc from lower hierarchies. We define x1uv and x2uv as binary

variables indicating, respectively, whether or not arc u; vð Þ
is served through the direction from u to v and traversed

without service through the direction from u to v, in the

solution of P i; j; h; tð Þ: We report the formulation of the

problem P i; j; h; tð Þ with these new set of variables in the

following.

P(i, j, h, t) minimizes the total service and traversal cost

through expression (23). Note that c1uv represents the ser-

vice cost of arc u; vð Þ 2 A while c2uv represents the traversal

Fig. 2 The k þ 1ð Þ bipartite
graph G0 (Taken from Dror

et al. 1987)

min
P

u;vð Þ2A
c1uvx

1
uv þ c2uvx

2
uv

� �
ð23Þ

s:t:
x1uv þ x1vu �

P

r2Kuv

artaijr u; vð Þ 2 Ah; u\v ð24Þ
P

v: u;vð Þ2A
x1uv þ x2uv
� �

�
P

v: v;uð Þ2A
x1vu þ x2vu
� �

¼ 0 u 2 V : u 6¼ i; j ð25Þ
P

v: i;vð Þ2A
x1iv þ x2iv
� �

�
P

v: v;ið Þ2A
x1vi þ x2vi
� �

¼ 1 ð26Þ
P

v: j;vð Þ2A
x1jv þ x2jv

� �
�

P

v: v;jð Þ2A
x1vj þ x2vj

� �
¼ �1 ð27Þ

x1uv � 0 u; vð Þ 2 Ah0 ; h
0 ¼ hþ 1; . . .; Hj j ð28Þ

x1uv; x
2
uv 2 0; 1f g u; vð Þ 2 A ð29Þ

716 M. E. Keskin, C. Triki

123

(without service) cost of arc u; vð Þ 2 A. By constraint (24)

we make sure that each arc from Ah assigned to day t by the

selection of aijr values coming from the outer SA algorithm

is served at least once regardless of the direction. Note that

aijr are not decision variables but rather act as parameters

since their values are already known and fixed by SA

beforehand. Constraints (25–27) are flow balance con-

straints. More specifically, for a node different from i and j,

the number of ingoing arcs should be equal to the number

of outgoing arcs and that is stated by constraint (25). As the

tour starts from node i for P i; j; h; tð Þ, the number of

ingoing arcs to node i should be one less than the number

of outgoing arcs from node i which is achieved by con-

straint (26). On the other hand, as the tour ends at node j for

P i; j; h; tð Þ, the total number of ingoing arcs should be one

more than the total number of outgoing arcs for node j and

this requirement is satisfied by the help of constraint (27).

Constraint (28) avoids serving arcs belonging to lower-

level hierarchies while permitting traversing without ser-

vice. Finally, defining x1uv and x2uv as binary variables is

ensured by constraint (29).

Arc costs of G0 ¼ N 0;A0ð Þ can be calculated by solving

P i; j; h; tð Þ for each i; jð Þ 2 A0. Then, an algorithm like

Dijkstra’s label algorithm (Dijkstra 1959) can be incorpo-

rated to find the shortest path from i1 2 Y1 to i1 2 Y Hj jþ1.

The shortest path from i1 2 Y1 to i1 2 Y Hj jþ1 gives the

solution that we seek for day t. Lengths of the tours found

for each day t 2 T are then summed up to find the total cost

associated for a given a, namely, f að Þ.

3.3 Illustrative example

We now illustrate the layer algorithm on the small example

shown in Fig. 3 and we will highlight the steps to identify a

sub-optimal solution (not necessarily the optimal even for a

6 day problem).

Suppose the first hierarchy consists of the red arcs

including (1, 2) and (2, 4), and they have to be visited every

day. The second hierarchy includes the green arcs (2, 3)

and (2, 5), and their periodicity is two days implying that

they are to be visited once in every two days. Finally, blue

arcs (1, 4) and (4, 5) form the third hierarchy, and they

have to be visited once in every three days. Service costs

are written near each arc, and traversal costs of each arc

without service is considered equal to one fifth of its ser-

vice cost. Suppose there are 6 days in the planning horizon.

There are 6 different possible patterns: the first pattern

requires visiting the arcs every day, the second and the

third patterns require the arcs to be visited once in every

two days and the fourth, fifth and sixth patterns requires the

arcs to be visited once in every three days. Hence, the first

pattern is suitable for the first hierarchy, the second and

third patterns are suitable for the second hierarchy, and the

remaining patterns are suitable for the third hierarchy arcs.

Relationship between patterns and days of the planning

horizon is captured through arl parameter, as reported

below.

arl ¼

1 1 1

1 0 1

0 1 0

1 1 1

0 1 0

1 0 1
1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

We coded the mathematical model of P-HCPP in C# and

run the commercial solver Gurobi for this toy example to

obtain the following optimal solution. Arcs (1, 2) and (2, 4)

are assigned to the first pattern, arcs (2, 3) and (2, 5) are

assigned to the second pattern, and finally, the arcs (1, 4)

and (4, 5) are assigned to the fourth pattern. That is, all arcs

are assigned to the first possible pattern in the optimal

solution. Hence, a121, a241, a232, a252, a144, a454 values are

set to 1 while all the other aijr values are set to 0 in the

optimal solution. The tours and the associated costs

obtained in the optimal solution for each day are such as:

Day 1 Tour: 1–2–4–2–3–2–5–4–1; Cost=94?18?

3.6?25?5?32?43?36=256.6

Day 2 Tour: 1–2–4–1; Cost=94?18?7.2=119.2

Day 3 Tour: 1–2–4–2–3–2–5–4–1; Cost=94?18?3.6?

25?5?32?8.6?7.2=193.4

Day 4 Tour: 1–2–4–5–4–1; Cost=94?18?43?8.6?

36=199.6

Day 5 Tour: 1–2–4–2–3–2–5–4–1; Cost=94?18?3.6?

25?5?32?8.6?7.2=193.4

Day 6 Tour: 1–2–4–1; Cost=94?18?7.2=119.2

One may notice from the optimal solution that services

are made following the hierarchy order and traversal costs

without service are taken as one fifth of the service costs.

The total cost of the optimal solution for 6 days is 1081.4.

Now, let’s elaborate the solution that the layer algorithm

can find for this toy example. First of all, the outer SA

algorithm is initiated so that every arc is assigned to the

first suitable pattern, which is the optimal solution as

identified by Gurobi, and reported previously. Hence, the
Fig. 3 A toy example for layer algorithm

On the periodic hierarchical Chinese postman problem 717

123

values of the aijr variables obtained from the SA algorithm

is the optimal aijr values. However, the tours obtained from

the layer algorithm still deviates from the optimal tours

given above.

First of all, we define Y1 and Y4 to be equal to i1 ¼ 1f g.
We also define Y2, which is the set of entry nodes of

hierarchy 2, which only consists of node 2 since it is the

only node that is incident to the arcs of hierarchy 2 and

hierarchy 1. Moreover, Y3. consists of nodes 1, 4 and 5

since these nodes are incident to the arcs of hierarchy 3 and

to at least one of the higher hierarchies which are hierarchy

1 and 2. Now, the sketch of the G0 ¼ N 0;A0ð Þ constructed
for day 1 with node set A0 ¼

S4
h¼1 Yh and arc set A0 ¼

i; jð Þ : i 2 Yh; j 2 Yhþ1 for h ¼ 1; . . .; 3f g is given in Fig. 4.

The numbers written near to each arc i; jð Þ 2 A0 are the

lengths of the tours that serves all the arcs of the related

hierarchy starting from node i and ending at node j. For

instance, 115.6 is the length of the route on the original

network that starts from node 1 that serves arcs of hierar-

chy 1 and ends at node 2. That route can be written as 1–2–

4–2 with total cost 115.6 = 94 ? 18 ? 3.6. Hence, the arc

1; 2ð Þ in graph G0 represents the tour original graph G.

Similarly, 77.8 is the length of the route serving arcs of

hierarchy 2 that starts from node 2 and ends at node 1. The

route is 2–3–2–4–5–1 and its total cost can be calculated as

77.8 = 25 ? 5 ? 32 ? 8.6 ? 7.2. Here, the arc 2; 1ð Þ in

graph G0 represents the route 2–3–2–4–5–1 in the original

graph G. The other costs can be calculated in a similar

manner. The total cost of day 1 is equal to the length of the

shortest path from the first node of G0, which is node 1, to

the last node of G0, which is again node 1, and it is equal to

256.6 = 115.6 ? 62 ? 79. Note that this value is equal to

the day 1 solution value of the optimal solution. However,

on the other days, we do not have to serve all arcs while

layer algorithm always incorporates entry nodes assuming

that each hierarchy will be served, and that causes layer

algorithm to deviate from the optimal solution. For

instance, we re-construct the G0 ¼ N 0;A0ð Þ for day 4, as

shown in Fig. 5, during which only arcs of hierarchy 1 and

3 are to be served.

Note that we do not have to serve arcs of hierarchy 2 on

day 4 (since arcs of hierarchy 2 are served on days 1, 3 and

5 due to the assigned periodicity pattern) which reduces the

costs of the routes starting from node 2 in the second phase

of the method. To illustrate how we calculate the costs let’s

focus on the route starting from node 2 and ending at node

1. The route is 2–4–1, and its cost is only 10.8 = 3.6 ? 7.2

as the only aim is to head to node 1 without having to serve

the arcs of hierarchy 2. Total cost of day 4 is the length of

the shortest path from the beginning node to the ending

node in G0, and it is equal to 201 which is slightly larger

than the day 4 value of the optimal solution which is 199.6.

Besides, the total costs produced by the layer algorithm for

days 2 and 6 are both 126.4 which is slightly larger than the

costs of the optimal solution for the same days. In total, the

cost of the solution for all the 6 days that layer algorithm

finds is 1097.2 while the optimal objective function value

is 1081.4. This is a clear indication of the fact that the layer

algorithm does not necessarily produce optimal solution for

our instances. However, it is much faster than the com-

mercial solver and is able to produce good quality solutions

as the instance size gets larger, as we illustrate in the next

section.

4 Experimental results

In this section, we first describe how we generate the test

problems for P-HCPP and how the values of the parameters

of the P-HCPP are selected. Later, we illustrate the effi-

ciency and the accuracy of the Hybrid Heuristic (HH) on

the generated test instances.

4.1 Instance generation and parameter value
selection

4 sets of problems with 10, 20, 30 and 40 nodes with 3

different arc densities are generated, and, for each of them,

4 different number of hierarchies are assumed which pro-

duces 48 different P-HCPP instances. Three different
Fig. 4 Graph G0 ¼ N 0;A0ð Þ corresponding to day 1 for the toy

example

Fig. 5 Graph G0 ¼ N 0;A0ð Þ corresponding to day 4 for the toy

example

718 M. E. Keskin, C. Triki

123

number of arcs are calculated as
n� n�1ð Þ

3

l m
; n� n�1ð Þ

5

l m
; n� n�1ð Þ

7

l m
, respectively, where n stands

for the number of nodes. For instance, there are three

instances with 10�9
3

� �
¼ 30; 10�9

5

� �
¼ 18; 10�9

7

� �
¼ 13

number of arcs for the instances with 10 nodes. We ran-

domly assign each arc to one of the hierarchies so that arcs

of each hierarchy are connected, and the generated

instances have the linear precedence property. That is, for

each hierarchy, there is at least one incident node of the

hierarchy which is also incident to one of the higher hier-

archies. We incorporate 4 number of hierarchies as 2, 3, 4

and 5 for each instance.

Service costs of the arcs are randomly generated as c1ij ¼
30þ 70� rand 0; 1ð Þ for all i; jð Þ 2 A where rand 0; 1ð Þ is a
random real number from the 0; 1ð Þ interval. This will

make the service costs to be random real numbers from the

interval 30; 100ð Þ for all arcs. Besides, traversal costs

without service are equal to one fifth of the service costs for

each arc.

On the other hand, a period is assigned to each hierarchy

along all the planning horizon, chosen to be 30 days. If the

period is 3 for a hierarchy, it means that the arcs of that

hierarchy must be visited once in every 3 days. Periods are

assigned in such a way that higher hierarchies have lower

periods, and period can be at most 7 for any hierarchy.

After assigning the periods, possible patterns are generated

accordingly for each hierarchy, and the values of the arl
parameters are calculated for each pattern, and for each day

in the planning horizon.

4.2 Accuracy and efficiency of HH on small
instances

In this section, we assess the performance of the HH by

comparing the objective function values corresponding to

the solutions found by HH and those by the state-of-the-art

MILP commercial solver Gurobi (2021) for the generated

instances. We use C# language and Visual Studio envi-

ronment for coding both methods and all the experiments

for the generated instances are carried out using a single

Intel i5-4570 core. We let Gurobi and HH run for at most

5 h for each of the instances. If Gurobi is able to find the

optimal solution or if the HH converges to its best solution

before 5 h, then they report the solution found and

immediately starts running the next instance without

waiting until the end of 5 h. We are aware that 5 h is a long

time, and some real implementations would require less

computation times. However, we still set such computation

time limit for several reasons which are: (i) the resulting

solution gives a complete tour for a long planning horizon,

which is 30 days, implying that one may choose to bear 5 h

computation time only once at the beginning of each month

for a better quality solution for the whole month, (ii) the

problem is characterized by a high level of complexity, and

Gurobi is unable to find even feasible solutions for most of

the instances when a computation time limit of less than

5 h is selected. In order to obtain a comparison basis for at

least the smallest instances, having 10 nodes, we decide to

extend the computation time, (iii) HH runs an SA algo-

rithm at the outer part and is able to converge to its best

solution especially for the relatively smaller instances.

However, as the size of the instances gets larger, SA begins

to terminate before convergence since the solution time of

the layer algorithm (that is run at the inner level) requires

more and more time. In order to avoid early termination of

the SA for relatively larger instances, the limit of 5 h seems

very appropriate.

Despite the allotted high amount of computation time,

Gurobi does not produce feasible solutions for 7 out of the

12 smallest instances having 10 nodes and for none of the

instances with 20 nodes. Hence, we choose not to run

Gurobi for the larger instances having 30 and 40 nodes. On

the other hand, the HH is able to produce feasible solutions

for all instances. Hence, we split the report of the results

into two parts. In the first part, we report the instances with

10 and 20 nodes for which both Gurobi and HH methods

are run for in Table 2.

We specify the number of nodes and number of arcs in

the first and second columns of Table 2. The number of

hierarchies are given in the third column. The objective

function values, i.e., the total tour length for 30 days, found

by Gurobi and HH are respectively given in column 4 and

column 5. Finally, the corresponding computation times

are respectively given in columns 6 and column 7. As

previously stated, Gurobi is unable to produce feasible

solutions for 7 instances with 10 nodes, which are instances

10–13–3, 10–18–3, 10–18–4, 10–8–5, 10–30–3, 10–30–4

and 10–30–5 (we use here the nodes-arcs-hierarchies

notation). On the other hand, Gurobi is unable to find any

feasible solution for instances with 20 nodes. Phrase ‘NA’

in column 4 of Table 2 means that after the computation

time limit, no feasible solution is found by Gurobi, while

phrase ‘OOM’ is the abbreviation for ‘‘out of memory’’

implying that the instance is too large for the computer

memory and that the solver immediately halts without

reaching the end of the time limit.

The results of Table 2 show that for only two instances,

which are 10–13–4 and 10–13–5, Gurobi finds solutions

having smaller costs than those of HH. On the contrary, the

costs of the solutions identified by HH is better than those

of Gurobi for the 3 instances 10–13–2, 10–18–2 and

10–30–2. We summarize the same results for all 10-node

instances in Fig. 6 (that highlights once again how HH

obtained good quality solutions whereas Gurobi fails to

find any feasible solution for 7 instances). As stated before,

On the periodic hierarchical Chinese postman problem 719

123

no feasible solution is provided by Gurobi for all instances

with 20 nodes.

Furthermore, one may also observe from Table 2 that

the computation time spent by the HH is much smaller than

the computation time employed by Gurobi for all 10-node

instances. Indeed, Gurobi uses all the allotted time limit,

which is 18,000 s, while the HH employs at most

1733.24 s. As the sizes of the instances gets larger (i.e.,

node numbers reaching 20), the computation time used by

HH gets also larger reaching 18,000 s for some of the

20-node instances. On the other hand, Gurobi terminates

early for most of the 20-node instances due to the ‘out of

memory’ error. The comparison of the computation times

spent by both methods for instances with 10 nodes is also

summarized in Fig. 7, whereas the computation times are

clearly incomparable for all 20-node instances.

Table 2 Performance of Gurobi

and the HH for small instances
Node Arc Hierarchy Solution Time

Gurobi HH Gurobi HH

10 13 2 9749.80 7752.00 18,004.87 136.81

3 NA 17,494.20 18,000.07 157.91

4 8378.20 9193.00 18,000.29 86.96

5 14,297.80 14,488.80 18,000.29 231.97

18 2 31,641.20 31,409.80 18,000.51 100.01

3 NA 21,706.00 18,000.19 314.78

4 NA 16,372.20 18,000.21 418.59

5 NA 25,377.00 18,000.17 222.13

30 2 39,219.60 17,263.60 18,001.46 243.93

3 NA 18,757.20 18,000.51 1581.42

4 NA 36,324.40 18,000.51 1733.24

5 NA 35,494.40 18,000.56 964.20

20 55 2 NA 31,212.40 18,003.58 735.04

3 NA 23,092.20 18,003.22 3119.82

4 NA 66,465.80 18,003.50 5870.41

5 NA 59,898.40 18,003.17 6882.55

76 2 OOM 24,552.40 NA 1694.16

3 OOM 84,324.00 NA 9134.96

4 OOM 59,189.40 NA 7131.55

5 OOM 39,900.40 NA 14,148.82

127 2 OOM 151,994.40 NA 1421.25

3 OOM 174,778.60 NA 18,055.23

4 OOM 99,028.00 NA 18,184.72

5 OOM 145,798.40 NA 18,078.49

NA no feasible solution found, OOM out of memory

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

35000.00

40000.00

45000.00
Solu�on values for small instances

HH

Gurobi

Fig. 6 Solution values for small instances with 10 nodes

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

Computa�on �mes for small instances

HH

Gurobi

Fig. 7 Computational Times Spent by HH and Gurobi for Small

Problems

720 M. E. Keskin, C. Triki

123

Finally, Fig. 8 presents a summary of solution and time

comparison of Gurobi and HH for the small 10-node

problems. The figure includes the average costs of the

solutions found and the computation times spent by both

methods. Figure 8 clearly shows that the computation

times of HH are much less than the time spent by Gurobi.

On the other hand, the average cost of the solutions found

by HH for all 10-node instances is higher than the average

cost of Gurobi solutions. This is caused by the fact that HH

is able to find solutions for relatively larger 10-node

instances having naturally more costs. A fairer comparison

can be made by comparing both methods over only the

instances for which Gurobi provides feasible solutions.

Those instances are named as ‘‘Gurobi instances’’ in the

figure, and it is clear that the average cost of the HH

solutions over Gurobi instances is less than the average

cost of the solutions found by Gurobi. Therefore, it can be

claimed that, for those instances, HH is able to find better

quality solutions in much smaller amount of time compared

to the commercial solver Gurobi.

4.3 Accuracy and efficiency of HH on large
instances

The second set of experiments, whose results are reported

in Table 3, are devoted to the results of HH for all

instances reaching up to 40 nodes, 520 arcs and 5 hierar-

chies. The results of HH for instances with 10 and 20 nodes

are already reported in Table 2, but they are also kept here

in order not to harm the integrity of the HH results.

The objective function values of the solutions and the

computation times related to HH are reported in columns 4

and 9; and in columns 5 and 10, respectively. These values

are also depicted in Figs. 9 and 10, respectively.

One may extract from Table 3 and Figs. 9 and 10 that

the cost of the solutions tends to increase as the problem

size gets larger and consequently the computation times of

HH gets larger and reaches to the allotted 5 h for the rel-

atively larger instances. Moreover, the computation time

gets even larger than 5 h for the largest instance having 40

nodes and 520 arcs. Since the stopping condition can be

checked at the beginning of each iteration of the HH, and

as the inner iterations take relatively large amount of time

for large instances, the allotted computation time may

already have been surpassed at the check point. If the

computation time of an instance exceeds the allotted 5 h

substantially, this can be interpreted that the instance size

gets too large to be solved by HH in the allowed compu-

tation time. This is not surprising, given the high com-

plexity characterizing the problem under exam and also the

long-time horizon considered in our instances. Hence, we

decided not to test the HH on even larger instances.

However, much larger instances, can be decomposed into

several sub-networks having each 40 or less nodes that can

be solved simultaneously. This can be an interesting line of

research that can be investigated in future.

5 Concluding remarks

In this study, we developed a mixed integer linear pro-

gramming formulation of the Periodic Hierarchical Post-

man Problem which has never been covered in the

literature before. Since the developed model is character-

ized by so many binary variables, commercial solvers, like

Gurobi, are not able to solve large-scale problems. Hence,

we proposed a Hybrid Heuristic in which a simulated

annealing algorithm combined with an adaptation of layer

algorithm run in a nested manner. At the outer phase, the

simulated annealing identifies the patterns which are more

suitable with the periodicity requirements of the arcs. Then

the adaptation of the layer algorithm is run for each day

and for given pattern decision coming from the outer SA

algorithm at the inner phase. In the layer algorithm, instead

of employing the blossom algorithm, that finds the mini-

mum length route between two arcs while obeying service

requirements of the arcs without violating hierarchy

restrictions, we constructed and solved an integer pro-

gramming model to achieve the same goal. The reason is

that the Blossom algorithm does not suit our model settings

since our cost structure is not necessarily symmetric, as

blossom algorithm requires. Our developed method HH,

after being tested on several instances, has shown to per-

form much better than the commercial solver Gurobi

especially for moderate and large sized instances. More-

over, despite that a relatively high computation time was

allowed, Gurobi was unable to produce any feasible solu-

tion for instances having 20 or more nodes, whereas HH

produced good quality solutions for all instances, including

even relatively large ones, in a reasonable amount of time,

on the average.

20657.32

20969.38

16021.44

18000.80195

515.9966971

Avg Gurobi solu�on value

Avg HH solu�on value for all instances

Avg HH solu�on value for Gurobi instances

Avg computa�on �me Gurobi uses

Avg computa�on �me HH uses

Comparison Summary

Fig. 8 Comparison of Computational Times and Solution Values of

10-node Instances

On the periodic hierarchical Chinese postman problem 721

123

This work can be extended along several ways. First, the

periodic variant of the windy or rural hierarchical postman

problem versions can be defined and analyzed. Another

avenue of research consists in studying the fuzzy or the

stochastic versions of the problem (see Kaveh et al. 2021)

and its dynamic aspect (see Ghiani et al. 2007). Also,

another line of study is decomposing large-scale instances

that can arise in real-life applications into sub-problems

and solving them independently, and then testing the effi-

ciency of such decomposition approach. Finally, an inter-

esting direction of work is to extend the model so that

multiple vehicles and/or multiple depots are incorporated

into the problem and allowing some arcs to be visited with

some delays (Leggieri et al. 2007 and 2010).

Funding Open access funding provided by Università del Salento

within the CRUI-CARE Agreement.

Table 3 Performance of the HH

for all instances
Node Arc Hierarchy Solution Time Node Arc Hierarchy Solution Time

10 13 2 7752.00 136.81 30 125 2 42,492.60 18,007.33

3 17,494.20 157.91 3 44,813.60 18,008.01

4 9193.00 86.96 4 86,396.60 18,058.74

5 14,488.80 231.97 5 135,462.20 18,058.34

18 2 31,409.80 100.01 174 2 209,590.00 1785.61

3 21,706.00 314.78 3 70,878.60 18,121.26

4 16,372.20 418.59 4 111,718.40 18,212.53

5 25,377.00 222.13 5 237,047.60 18,048.79

30 2 17,263.60 243.93 290 2 91,088.00 18,013.48

3 18,757.20 1581.42 3 131,750.80 18,177.04

4 36,324.40 1733.24 4 263,492.60 18,030.58

5 35,494.40 964.20 5 375,338.20 18,029.67

20 55 2 31,212.40 735.04 40 223 2 148,152.60 18,017.70

3 23,092.20 3119.82 3 241,499.20 18,250.23

4 66,465.80 5870.41 4 238,127.80 18,243.13

5 59,898.40 6882.55 5 226,911.40 18,247.49

76 2 24,552.40 1694.16 312 2 168,189.80 18,037.88

3 84,324.00 9134.96 3 407,068.00 18,106.85

4 59,189.40 7131.55 4 292,748.60 18,348.93

5 39,900.40 14,148.82 5 316,115.00 18,811.36

127 2 151,994.40 1421.25 520 2 409,259.40 18,028.69

3 174,778.60 18,055.23 3 269,588.60 18,164.85

4 99,028.00 18,184.72 4 549,096.40 19,069.27

5 145,798.40 18,078.49 5 283,819.60 19,186.59

0

100000

200000

300000

400000

500000

600000

10
-1

3-
2

10
-1

3-
4

10
-1

8-
2

10
-1

8-
4

10
-3

0-
2

10
-3

0-
4

20
-5

5-
2

20
-5

5-
4

20
-7

6-
2

20
-7

6-
4

20
-1

27
-2

20
-1

27
-4

30
-1

25
-2

30
-1

25
-4

30
-1

74
-2

30
-1

74
-4

30
-2

90
-2

30
-2

90
-4

40
-2

23
-2

40
-2

23
-4

40
-3

12
-2

40
-3

12
-4

40
-5

20
-2

40
-5

20
-4

Solu�on values

Fig. 9 Objective Function Values for the Solutions Found by the HH

0

5000

10000

15000

20000

25000

10
-1

3-
2

10
-1

3-
4

10
-1

8-
2

10
-1

8-
4

10
-3

0-
2

10
-3

0-
4

20
-5

5-
2

20
-5

5-
4

20
-7

6-
2

20
-7

6-
4

20
-1

27
-2

20
-1

27
-4

30
-1

25
-2

30
-1

25
-4

30
-1

74
-2

30
-1

74
-4

30
-2

90
-2

30
-2

90
-4

40
-2

23
-2

40
-2

23
-4

40
-3

12
-2

40
-3

12
-4

40
-5

20
-2

40
-5

20
-4

Computa�on �mes

Fig. 10 Computation Times Spent by the HH

722 M. E. Keskin, C. Triki

123

Declarations

Conflict of interest The authors of this research certify that there is no

any affiliation with or involvement in any organization or entity with

financial interest or non-financial interest in the subject matter or

materials discussed in this manuscript.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Alfa AS, Liu DQ (1988) Postman routing problem in a hierarchical

network. Eng Optim 14(2):127–138

Al-Hinai N, Triki C (2020) A two-level evolutionary algorithm for

solving the petrol station replenishment problem with periodicity

constraints and service choice. Ann Oper Res 286(1):325–350

Batista GV, Scarpin CT, Pécora JE, Ruiz A (2019) A new ant colony

optimization algorithm to solve the periodic capacitated arc

routing problem with continuous moves. Math Probl Eng 2019

Beltrami EJ, Bodin LD (1974) Networks and vehicle routing for

municipal waste collection. Networks 4:65–94

Benavent E, Corberán Á, Laganà D, Vocaturo F (2019) The periodic

rural postman problem with irregular services on mixed graphs.

Eur J Oper Res 276(3):826–839

Bommisetty D, Dessouky M, Jacobs L (1998) Scheduling collection

of recyclable material at Northern Illinois University Campus

using a two-phase algorithm. Comput Ind Eng 35(34):435–438

Cabral EA, Gendreau M, Ghiani G, Laporte G (2004) Solving the

hierarchical chinese postman problem as a rural postman

problem. Eur J Oper Res 155(1):44–50

Campbell AM, Wilson JH (2014) Forty years of periodic vehicle

routing. Networks 63:2–15

Chao I-M, Golden BL, Wasil EA (1995) A new heuristic for the

period traveling salesman problem. Comput Oper Res

22:553–565

Chen Y, Hao JK (2018) Two phased hybrid local search for the

periodic capacitated arc routing problem. Eur J Oper Res

264(1):55–65

Chen B, Qu R, Bai R, Laesanklang W (2020) A variable neighbor-

hood search algorithm with reinforcement learning for a real-life

periodic vehicle routing problem with time windows and open

routes. RAIRO-Oper Res 54(5):1467–1494

Christofides N, Beasley JE (1984) The period routing problem.

Networks 14:237–256

Chu F, Labadi N, Prins C (2005) Heuristics for the periodic

capacitated arc routing problem. J Intell Manuf 16(2):243–251

Chu F, Labadi N, Prins C (2006) A scatter search for the periodic

capacitated arc routing problem. Eur J Oper Res 169(2):586–605

Çodur MK, Yılmaz M (2020) A time-dependent hierarchical Chinese

postman problem. CEJOR 28(1):337–366

Corberán A, Prins C (2010) Recent results on arc routing problems:

an annotated bibliography. Networks 56:50–69

Cordeau J-F, Gendreau M, Laporte G (1997) A tabu search heuristic

for periodic and multi-depot vehicle routing problems. Networks

30:105–119

Damodaran P, Krishnamurthi M, Srihari K (2008) Lower bounds for

hierarchical Chinese postman problem. Int J Ind Eng 15:36–44

Delahaye D, Chaimatanan S, Mongeau M (2019) Simulated anneal-

ing: from basics to applications. Handbook of metaheuristics.

Springer, Cham, pp 1–35

Diabat A, Abdallah T, Le T (2016) A hybrid tabu search based

heuristic for the periodic distribution inventory problem with

perishable goods. Ann Oper Res 242(2):373–398

Dijkstra EW (1959) A note on two problems in connexion with

graphs. Numer Math 1(1):269–271

Dror M (ed) (2000) Arc routing: theory, solutions and applications.

Kluwer Academic Publishers, Norwell, Massachusetts

Dror M, Stern H, Trudeau P (1987) Postman tour on a graph with

precedence relation on arcs. Networks 17:283–294

Edmonds J (1965) Paths, trees, and flowers. Can J Math

17(3):449–467

Eiselt HA, Gendreau M, Laporte G (1995a) Arc routing problems,

part I: the Chinese postman problem. Oper Res 43(2):231–242

Eiselt HA, Gendreau M, Laporte G (1995b) Arc routing problems,

part II: The rural postman problem. Oper Res 43(3):399–414

Francis P, Smilowitz K, Tzur M (2006) The period vehicle routing

problem with service choice. Transp Sci 40(4):439–454

Fröhlich GE, Doerner KF, Gansterer M (2020) Secure and efficient

routing on nodes, edges, and arcs of simple-graphs and of multi-

graphs. Networks 76(4):431–450

Ghiani G, Laporte G (2000) A branch-and-cut algorithm for the

undirected rural postman problem. Math Program 87(3):467–481

Ghiani G, Musmanno R, Paletta G, Triki C (2005) A heuristic for the

periodic rural postman problem. Comput Oper Res 32:219–228

Ghiani G, Quaranta A, Triki C (2007) New policies for the dynamic

traveling salesman problem. Optim Methods Softw

22(6):971–983

Gurobi optimizer 9.0 (2021) High-end libraries for math program-

ming. http://www.gurobi.com/. Accessed Mar 2021

Huang SH, Lin TH (2014) Using ant colony optimization to solve

periodic arc routing problem with refill points. J Ind Prod Eng

31(7):441–451

Kaveh F, Tavakkoli-Moghaddam R, Triki C, Rahimi Y, Jamili A

(2021) A new bi-objective model of the urban public trans-

portation hub network design under uncertainty. Ann Oper Res

296(1):131–162

Keskin ME, Yılmaz M, Triki C (2021) Solving the hierarchical windy

postman problem with variable service costs using a math-

heuristic algorithm. Submitted for publication

Keskin ME, Yılmaz M (2019) Chinese and windy postman problem

with variable service costs. Soft Comput 23(16):7359–7373

Korteweg P, Volgenant T (2006) On the hierarchical Chinese

postman problem with linear ordered classes. Eur J Oper Res

169(1):41–52

Lacomme P, Prins C, Ramdane-Cherif W (2005) Evolutionary

algorithms for periodic arc routing problems. Eur J Oper Res

165(2):535–553

Leggieri V, Haouari M, Layeb S, Triki C (2007) The steiner tree

problem with delays: a tight compact formulation and reduction

procedures. Technical report, University of Salento, Lecce

Leggieri V, Mohamed H, Chefi T (2010) An exact algorithm for the

Steiner tree problem with delays. Electron Notes Discrete Math

36:223–230

Liu DQ (1988) Snow clearing vehicle routing: the postman problem

in a hierarchical network. MSc. Thesis, University of Manitoba

Mei Y, Tang K, Yao X (2011) A memetic algorithm for periodic

capacitated arc routing problem. IEEE Trans Syst Man Cybern

Part B Cybern 41(6):1654–1667

On the periodic hierarchical Chinese postman problem 723

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.gurobi.com/

Monroy IM, Amaya CA, Langevin A (2013) The periodic capacitated

arc routing problem with irregular services. Discrete Appl Math

161(4–5):691–701

Oliveira JD, Scarpin CT (2020) A relax-and-fix decomposition

strategy based on adjacent nodes applied to the periodic

capacitated arc routing problem (PCARP). IEEE Lat Am Trans

18(03):573–580

Paletta G (1992) A multiperiod traveling salesman problem: heuristic

algorithms. Comput Oper Res 19:789–795

Paletta G, Triki C (2002) Solving the asymmetric traveling salesman

problem with periodic constraints. Networks 44(1):31–37

Perrier N, Langevin A, Amaya CA (2008) Vehicle routing for urban

snow plowing operations. Transp Sci 42(1):44–56

Reeves CR (1993) Modern heuristic techniques for combinatorial

problems. Wiley, New Jersey

Riquelme-Rodrı́guez JP, Gamache M, Langevin A (2014a) Periodic

capacitated arc-routing problem with inventory constraints.

J Oper Res Soc 65(12):1840–1852

Riquelme-Rodrı́guez JP, Langevin A, Gamache M (2014b) Adaptive

large neighborhood search for the periodic capacitated arc

routing problem with inventory constraints. Networks

64(2):125–139

Riquelme-Rodrı́guez JP, Gamache M, Langevin A (2016) Location

arc routing problem with inventory constraints. Comput Oper

Res 76:84–94

Sayata UB, Desai NP (2015) An algorithm for hierarchical Chinese

postman problem using minimum spanning tree approach based

on Kruskals’s algorithm. In: Souvenir of the 2015 IEEE

international advance computing conference, IACC 7154702.

pp 222–227

Shahmanzari M, Aksen D, Salhi S (2020) Formulation and a two-

phase matheuristic for the roaming salesman problem: applica-

tion to election logistics. Eur J Oper Res 280(2):656–670

Taslimi M, Batta R, Kwon C (2020) Medical waste collection

considering transportation and storage risk. Comput Oper Res

120:104966

Thomaz DV, Loch GV, Scarpin CT, Schenekemberg CM (2018) A

mathematical model for the periodic capacitated arc routing

problem with time windows. IEEE Lat Am Trans

16(10):2567–2573

Tirkolaee EB, Mahdavi I, Esfahani MMS (2018) A robust periodic

capacitated arc routing problem for urban waste collection

considering drivers and crew’s working time. Waste Manag

76:138–146

Tirkolaee EB, Goli A, Pahlevan M, Malekalipour Kordestanizadeh R

(2019) A robust bi-objective multi-trip periodic capacitated arc

routing problem for urban waste collection using a multi-

objective invasive weed optimization. Waste Manag Res

37(11):1089–1101

Triki C (2013) Solution methods for the periodic petrol station

replenishment problem. J Eng Res 10(2):69–77

Triki C (2017) Solving the periodic edge routing problem in the

municipal waste collection. Asia-Pacific J Oper Res

34(03):1740015

Triki C, Akil J, Al-Azri N (2017) Optimising the periodic distribution

of gas cylinders with customers priority. Int J Oper Res

28(2):279–289

Wang X, Wasil E (2020) On the road to better routes: Five decades of

published research on the vehicle routing problem. Networks

77(1):66–87

Wolsey LA (1998) Integer programming, vol 42. Wiley, New York

Zhang Y, Mei Y, Tang K, Jiang K (2017) Memetic algorithm with

route decomposing for periodic capacitated arc routing problem.

Appl Soft Comput 52:1130–1142

Zhou W, You X, Fan W (2020) A mixed integer linear programming

method for simultaneous multi-periodic train timetabling and

routing on a high-speed rail network. Sustainability 12(3):1131

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

724 M. E. Keskin, C. Triki

123

